

Applications of Web Development in Portfolio Research

A Capstone Report

presented to the faculty of the

School of Engineering and Applied Science

University of Virginia

by

Anish Mandalika

May 12, 2023

On my honor as a University student, I have neither given nor received unauthorized aid

on this assignment as defined by the Honor Guidelines for Thesis-Related Assignments.

Anish Mandalika

Capstone advisor: Briana Morrison, Department of Computer Science

Applications of Web Development in Portfolio Research

CS4991 Capstone Report, 2023

Anish Mandalika

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

am8wk@virginia.edu

ABSTRACT

A New York City-based investment management

firm needed a new system to aid investment

professionals in performing portfolio research

that took advantage of advances in web

technologies and data-driven methods. I worked

with a team that is developing a suite of tools to

address this, including tools to aid in data

visualization and tools that can be interacted with

programmatically. The various tools involved

creating large-scale data processing routines in R,

compiling and exposing relevant data endpoints

using Java and Spring Boot, as well as providing

a GUI front-end for the endpoints. The suite

covers a range of areas—from tools to better

visualize the existing portfolio, to tools to keep

track of stocks worth watching—all designed to

neatly integrate with the firm’s existing systems.

The suite of tools has already gained users from

within the firm, and new features are being added

regularly based on user feedback. While the suite

of tools is quite robust, there are several

additional tools and features now in development

that have the potential to further aid the process

of portfolio research.

1. INTRODUCTION

The rise of Big Data has led to a revolution in the

investment sector. Through the power of

computer-aided analysis techniques, investment

professionals have been able to greatly augment

the information based on which to make their

decisions. Because of this interest in data-aware

investing, companies in the investment space

have been developing various data analysis

systems for their traders. I worked for a New

York City-based investment management firm

that wanted to provide these analytics to its

traders. The firm had an existing suite of tools

that performed various analyses on trading data,

but needed to optimize existing processes and

add new functionality.

2. RELATED WORKS

Kamdar (2022) details the implementation of a

Serverless Stock Market Web Application that

runs in the cloud. The application ingests raw

data, processes it, performs analyses and presents

the results in a user-friendly format. While the

specific technologies used in this application

(Python and ReactJS) differ from those used in

my application (Java, R and Spring), both have

similar aims and use similar techniques,

including the use of Machine Learning (ML)

algorithms to perform basic predictions. This

application also leverages cloud computing

techniques while my application was designed to

run on a physical server.

Lin (2018) talks about the design, deployment

and performance of a Stock Forecasting

Application that was built in two weeks. Lin

provides deeper insights into the ML and

Artificial Intelligence (AI) algorithms that

analyze the data, and he explains the importance

of a responsive User Design. This application

relies heavily on ML and AI to perform analysis

and make predictions. In contrast, the application

I worked on is aimed at Investment Professionals

and therefore only provides basic forecasts.

mailto:am8wk@virginia.edu

3. SYSTEM DESIGN

The application I worked on has been in use for a

few years, and so is quite complex. Most of the

application is written in Java using Spring Boot,

with some data processing in R and front-end UI

written in various JavaScript-based frameworks.

3.1 Overview of System Architecture

The Portfolio Research Application provides a

number of Portfolio Analysis and Research tools.

The data for each tool is processed as a daily

batch on a company-owned server. The rough

ordering of the data processing pipeline for each

of these tools is:

• Raw data is pulled from various sources,

cleaned and stored in a database. These data

include various stock performance metrics,

performance data for indices such as the

Standard & Poor (S&P) 500, currency

exchange rates and other relevant market data

such as mergers and acquisitions.

• The cleaned data is used to perform analysis,

including time-series analysis of various

metrics as well as basic predictions. The exact

nature of these analyses is dependent on the

needs of the specific end-user and can be

tailored to include the performance of their

current portfolios as well as any what-if

scenarios of their choosing.

• The results of the analyses are made available

through API endpoints. Some end users use

these results as inputs into their own

prediction algorithms, while others have

written their own User Interfaces that present

results in the way they choose. These API

endpoints allow those users to consume

results directly.

• Many users choose to use the User Interface

included with the tool. The UI consumes

results from the API endpoints and displays

graphs and tables of the user’s choosing.

3.2 Requirements

I was tasked with creating two separate

functionalities during my time at the company:

• A cache file to store daily index performance

data using R; and

• APIs using Spring Boot and Java for Stock

Ticker Overrides and Internal Quality

Assurance Data.

3.3 Implementation

All my tasks were slight variations of existing

functionality. Because of this, I studied the

existing systems thoroughly and used parts of the

existing codebase wherever possible.

3.3.1 Index Performance Cache File

Various data sources report daily performance

metrics for indices such as the S&P 500. Stock

traders find it useful to perform various time

scale analyses on these metrics to inform their

decisions. These analyses involve a large number

of simultaneous calls to the database storing

performance data, causing execution to slow

down. Since the analyses look at week-on-week

or month-on-month performance, creating a

cache file containing a month’s worth of data

might prevent the database from being inundated

with repeated requests for that month’s data.

I implemented a routine that creates such a cache

file. Given the system architecture, it made the

most sense to generate the cache file right after

the data was ingested and cleaned. Because those

functionalities were implementing using R, and R

includes good tools for processing large amounts

of data, the cache file generation routine was

implemented in R. The routine reads performance

data from the database and saves it as a cache file

in the server’s local memory.

3.3.2 Stock Ticker Override API

Some traders may want to combine the

performances of multiple companies for various

reasons including shared ownership and

correlated performance. These overrides were

being stored in the database and needed to be

made accessible to the UI frontend and/or end

users’ programs. I used a REST API to achieve

this. I chose Spring Boot, which uses Java, to

implement this API, since it was already in use

across the system for implementing APIs. The

Spring Boot routine makes a call to the database

querying the specified user’s Overrides and

returns them to the user in JSON format.

3.3.3 Quality Assurance Data API

Several Quality Assurance (QA) metrics are

generated by the system during the daily data

processing batch. While these metrics are

generated for internal use by the development

team, some end users who wrote their own

programs consuming this application’s data felt

that QA data would help them determine how

much to trust the results of their algorithms. For

this reason, I implemented a REST API that

aggregates various QA metrics and makes them

available. Once again, I chose Spring Boot to

implement this API since it was already in

widespread use within the application.

4. RESULTS

I was able to implement all functionalities I was

tasked with during my time at the company.

4.1 Index Performance Cache File

The cache file generation routine was put into

production and led to around 180 fewer database

calls per day. Since each of those database calls

would have involved large amounts of data

spanning multiple weeks or months, this

represents a significant reduction in database

traffic. While the time savings of using the cache

file are difficult to quantify due to the

complexities of the system, the reduction in

database traffic has allowed developers to make

better use of database resources.

4.2 Stock Ticker Override and Quality

Assurance Data APIs

Both APIs were implemented and put into

production. They reported over 99.9% uptime

throughout my time at the company. These APIs

have allowed the GUI front-end as well as end

users’ programs to show Ticker Overrides and

QA data. Both streams of data enhance the

usefulness of other metrics that the application

provides by providing additional functionality

and context.

5. CONCLUSION

Investment Management firms are constantly

looking for ways to enhance data available to

their traders. Web-based analysis applications can

help traders derive helpful insights into their

performance, thereby helping to improve it.

Improvements in system performance ensure the

reliability and stability of the system by reducing

strain on system components during peak times,

and additional data streams help traders to make

better use of the data at hand.

6. FUTURE WORK

The entire application is being updated on an

ongoing basis, with user feedback driving most of

the development. The Index Performance Cache

File was implemented as a proof-of-concept, and

its apparent success could lead to the creation of

similar cache files for data involved in similar

time scale analyses. Other methods to optimize

resource usage during heavy computations such

as parallelization can also be explored. New APIs

are constantly being implemented within the

system based on user need, but implementing

additional APIs to provide metadata such as QA

logs and system performance may prove useful to

some users depending on the application.

7. UVA EVALUATION

As a part of this project, I worked within a

Software Development team, which used a

Scrum-based methodology to measure

development progress. CS 3240 (Advanced

Software Development) was extremely helpful in

preparing me to work in such a team. The

course’s discussion of collaborative development

etiquette and methodologies, including

technologies such as Git and techniques such as

Scrum, served as good preparation for working

with a team. The course’s project was also a good

way to get a feel for working with a team for an

extended period.

REFERENCES

Priyanka Kamdar. 2022. Serverless Stock Market

Web Application. CS 687 Capstone Project

Progress Report. City University of Seattle,

Seattle, WA.

Yun Zhi Lin, 2018. Building a Stock Forecast

Application in 2 Weeks Using Serverless AI and

Responsive Design. Retrieved December 4, 2022

from https://www.contino.io/insights/building-a-

stock-forecast-application-in-2-weeks-using-

serverless-ai-and-responsive-design

https://www.contino.io/insights/building-a-stock-forecast-application-in-2-weeks-using-serverless-ai-and-responsive-design
https://www.contino.io/insights/building-a-stock-forecast-application-in-2-weeks-using-serverless-ai-and-responsive-design
https://www.contino.io/insights/building-a-stock-forecast-application-in-2-weeks-using-serverless-ai-and-responsive-design

