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Abstract

Human brain is still a mystery and finding the possible relationships between different parts of

the brain is an important and unsolved topic. Our research provides a new perspective to explore

this mystery by looking at the Electroencephalography (EEG) data recorded when the subject is

performing cognitive task or gambling task. EEG is the multichannel recordings of the electri-

cal activities generated by collections of neurons within the brain. Different channels reflect the

activity within different brain regions. Motivated by the EEG dataset from Reward Two-back

Continuous Performance Task, a novel methodology of Bayesian tapering test and corresponding

Bayesian multiple testing procedures for assessing whether two independent stationary time series

have same spectral density has been proposed. Tapering test based on the raw log-periodograms,

Fourier transformation of the log-periodograms, and “optimal” kernel smoothed log-periodograms

as estimates for log-spectrum are explored. The tapering testing procedures when the replication

exists is further investigated. The formal setup of asymptotic performance of models are deduced

based on “rate-of-testing” theory, a framework to find the rate at which the power is retained under

geometric smoothness constraints. As a result, the “optimal” kernel smoothing model and corre-

sponding tapering test procedures are recommended wether the replication exists or not. Bayesian

testing procedures are further explored due to its practical advantages. And the Bayesian multiple

testing procedure based on the closed form of Bayesian tapering test is explored. Furthermore, the

empirical power of the newly proposed tapering test are demonstrated through a comprehensive

simulation study. The proposed “optimal” tapering test is found to be generally more powerful

than the existing tests. Finally, the operation of the proposed Bayesian tapering test and Bayesian

multiple testing procedure is demonstrated on the motivating scalp EEG (EEG) and the Stereo-

tactic EEG (SEEG) dataset. Clinical meaningful results are found, which help us to gain more

insights into the brain activities.

KEY WORDS: electroencephalography (EEG); spectral density; tapering test; kernel smoothing;

bandwidth; rate of testing; Bayesian testing; Bayesian multiple testing.
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Chapter 1

Introduction

1.1 Description of the Testing Problem

In the research work presented here, we developed a new non-parametric testing approach for

comparing the spectral density of two independent stationary time series, or equivalently, their

auto-covariance functions. Firstly let me introduce our testing problem in details.

Let n1, n2 ∈ Z+ with n1 ≤ n2 and consider two independent stationary real-valued time series,

{X1,t1 , t1 = 1, · · · , n1} and {X2,t2 , t2 = 1, · · · , n2}. We are interested in testing the hypothesis of

two time series process {X1,t1} and {X2,t2} have the same spectral density function can be written

as

H0 : f1(ω) = f2(ω), for all ω ∈ (0, π) (1.1)

H1 : f1(ω) 6= f2(ω), for some ω ∈ (0, π)

where f1(ω) and f2(ω) are spectral density functions of these two time series process.

If {Xt} is a stationary time series with absolutely summable auto-covariance function γ(.),

{Xt} has a continuous spectral density (power spectrum) given by

f(ω) = (2π)−1
∞∑

h=−∞
γ(h)e−ihω, ω ∈ [−π, π],

where ω is the frequency, γ(h) is the auto-covariance function, and e−ihω denotes complex explo-

nentiation. And note that the definition of spectral density indicates that it is the Fourier transform
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of the auto-covariance sequence.

Given a stationary stochastic process {Xt}, the auto-covariance is a function that gives the

covariance of the process with itself at pairs of time points, which is given by

γ(h) = E [(Xt − µt) (Xt+h − µt+h)] ,

where µt = E(Xt), µt+h = E(Xt+h).

Function f is the spectral density of a real-valued stationary process if and only if the following

conditions are satisfied,

(1) f(ω) = f(−ω)

(2) f(ω) ≥ 0

(3)
∫ π
−π f(ω)dω <∞

Since spectral density is unknown, we need certain methods to estimate it. The most con-

venient way to estimate it is to use periodogram. Suppose we have finite number of observations

{xt, t = 1, · · · , n} of the stochastic process {Xt}. The periodogram of {xt, t = 1, · · · , n} is defined

at the Fourier frequencies ωj = 2πj/n, ωj ∈ [−π, π], by

I(ωj) =
1

n

∣∣∣∣∣
n∑
t=1

e−itωjXt

∣∣∣∣∣
2

=
∑
|h|<n

γ̂(h)e−ihω, ω 6= 0

And the estimated auto-covariance function γ̂(h) is defined by

γ̂k(h) =
1

n

n−|h|∑
t=1

(xk,t − xk) (xk,t+h − xk)) ,

where xk = 1
n

∑n
t=1 xk,t is the sample mean.

From the definition, we can find that the periodogram is simply the discrete Fourier transform

of the biased estimator of the auto-covariance sequence, that’s why periodogram can be regarded as

an estimator of spectral density. Actually, periodogram is the unbiased but non-consistent estimate

of spectral density, see Priestley (1981) [20], Brockwell and Davis (1991) [6], and Brillinger (2001)

[5].

Additionally, periodogram is a symmetric and periodic function of ω with period 2π, and thus

we only need to look at ω ∈ (0, π]. And by Theorem 10.3.2 in Brockwell and Davis (1991) [6],
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the random variables I(λl)/ (πf(λl)) are approximately independent and distributed as chi-

squared with 2 degree of freedom among l = 1, · · · ,m if 0 < λ1 < · · · < λm < π. Note that λ = π

is excluded since its sampling distribution is proportional to χ2(1) not χ2(2).

For simplicity assume n1 and n2 are even, let’s focus on ωk,j ∈ (0, π) i.e. j = 1, 2, · · · , bnk2 c

and define pn = n1
2 − 1 as the dimensionality parameter. Therefore, for j = 1, · · · , pn,

Ik(ω1,j)
D−→ πfk(ω1,j)χ

2(2)

where I2(ω1,j) = 1
n2

∣∣∑n2
t2=1 e

−it2ω1,jX2,t2

∣∣2 .

1.2 Overview of the Methodological Development

The comparison and clustering of different time series is an important topic in statistical data

analysis and has various application. Our method to identify similarities or dissimilarities between

two process is to compare the entire auto-covariance structure of two time series, which can be

effectively done in the frequency domain by comparing their spectral characteristics. In this context

frequency domain methods are more appealing and related procedures have found considerable

interest in the literature. Such problems were posed by Coates and Diggle (1986) [8], who proposed

periodogram based tests and studied the homogeneity of a single wheat price series over time and

compared the wall thicknesses of a gas pipe at two different locations. This paper included two

nonparamtric tests. However, one test, is based on the range of peridogram ratios with the test

statistic

R := max

{
log

I1(ωj)

I2(ωj)

}
−min

{
log

I1(ωj)

I2(ωj)

}
,

is weaker whereas the other, based on cumulative sums of transformed periodogram ratios depends

on the arbitrary labelling of the two series {X1,t} and {X2,t}. That is, the achieved significance

level does not remain the same if the series {X1,t} and {X2,t} are interchanged. Note that I1(ωj)

and I2(ωj) are periodograms for these two time series and ωj is the Fourier frequency, and we will

define those concepts latter on. In this paper, they also proposed a semiparametric procedure based

on model that the underlying spectral densities f1(ω) and f2(ω) are related via the equation

f2(ω) = f1(ω)exp(α+ βω + γω2)
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However, in general, a semiparametric approach is likely to give a more powerful test when the

parametric assumptions are approximately valid and vice versa. We believe that there is merit in

using a nonparametric procedure at least in the exploratory phase of the data analysis.

Diggle and Fisher (1991) [10] use graphical devices to compare cumulative periodograms and

apply Kolmogorov-Smirnov or Cramer-von Mises type test statistics based on empirical spectral

distributions, i.e.

Dm = sup | F1 (ω)− F2 (ω) |

F1 (ωj) =

j∑
i=1

I1 (ωi) /

pn∑
i=1

I1 (ωi)

F2 (ωj) =

j∑
i=1

I2 (ωi) /

pn∑
i=1

I2 (ωi) .

They applied the methods to test whether the frequency characteristics of the pulsatile release

pattern for luteinizing hormone (LH) concentrations in blood are the same in two phases of the

subject’s menstrual cycle. But both for Coates and Diggle (1986) [8] and Diggle and Fisher (1991)

[10], their interests are in detecting shape rather than scale differences between the two underlying

spectra. Thus, the hypothesis are

H0 : f1(ω) = f2(ω), 0 < ω ≤ π

H1 : f1(ω) = κf2(ω), 0 < ω ≤ π

Lund et al. (2009) [18] considered both time domain and frequency domain tests to assess

whether two stationary and independent time series have the same auto-covariances at all lags.

They reviewed frequency domain tests based on the average of log ratio of periodograms as well

as the likelihood principles. and also devises a time domain approach similar to Caiado et al.

(2006) [7], based on the asymptotic distribution of the estimated auto-covariance function. But

time-domain tests have less satisfactory performance and merit further exploration. The frequency

domain test that we will compare with in our simulation study is defined through the test statistic

D :=
1

(n/2− 1)

n/2−1∑
j=1

∣∣∣∣log
I1(ωj)

I2(ωj)

∣∣∣∣ .
They applied these testing procedures to the analysis of temperatures and precipitations in Atlanta

and Athens in Georgia in order to identify a good climatological reference series for given stations.

Multivariate version of these tests are also considered in this paper.
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Recently Lu and Li (2013) [17] considered tests for assessing whether two stationary and

independent time series have the same spectral densities (or same auto-covariance functions). Both

frequency domain and time domain test statistics for this purpose are reviewed. The adaptive

Neyman test (ANT) introduced by Fan (1996) [11] are then applied to the log-ratio periodogram

test and time domain test in Lund et al. (2009) [18] and their performances are investigated. The

frequency domain test that we will compare with in the simulation study is defined through the

test statistic

LL
?

:= max
1≤k≤nm

1√
kσ̂22

∑k

i=1

((
D̄?
m,i

)2 − σ̂21)

Dm,i = ln

m−1
im∑

k=(i−1)m+1

I1(ωk)

m−1
im∑

k=(i−1)m+1

I2(ωk)

i = 1, · · · , Nm

D
?
m,i =

1

Nm

Nm∑
i=1

Dm,iψj,i

σ̂21 =
1

Nm − INm

Nm∑
i=INm+1

(
D
?
m,i

)2
−

 1

Nm − INm

Nm∑
i=INm+1

D
?
m,i


2

σ̂22 =
1

Nm − INm

Nm∑
i=INm+1

(
D
?
m,i

)4
−

 1

Nm − INm

Nm∑
i=INm+1

(
D
?
m,i

)2
2

,

where ψj,i is the Fourier basis functions as defined before, Nm =
[
n
m

]
, INm =

[
Nm
4

]
.

However, their definition of tests and simulation study are problematic and lack of theoretical

derivation especially for the time domain test, we will discuss more about this in Chapter 2.

There are a number of tests in the literature on this topic with various applications, for instance,

Kakizawa et al. (1998) [15] studied whether seismological series were more likely earthquakes

or nuclear tests based on discrimination and clustering; Shumway (2003) [25] considered similar

classification problems related to functional magnetic resonance image series; Quinn (2006) [21]

tested signal equality by fitting autoregressive models to the series and then comparing model

coefficients. The following authors have considered spectral-based extensions to locally stationary

and non-stationary series: Huang et al. (2004) [12], Shumway and Stoffer(2013) [26], and Bengtsson

and Cavanaugh (2008) [3]. Our work concentrates on the stationary case as there is much to be

done even in this setting.
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However, those existing methods in literatures either suffer from low power or cannot be directly

apply to our context. Therefore, the main objective of our research is to propose a powerful test

for comparing two estimated spectral densities that can easily fit into our context of EEG dataset.

Note that this objective is twofold, primarily, we want powerful testing procedure;

secondly, we want a procedure which is very convenient to implement in practice. The

proposed approach is particularly inspired by techniques described in Lu and Li (2013) [17], in

which a test for comparing spectral densities is developed from the ANT of Fan (1996) [11]. The

original context of the ANT is goodness-of-fit testing, nonparametric regression, and functional data

analysis, which is the same context in which Spitzners (2008) [28] tapering test is developed. In

that context, Spitzner compares the operating characteristics of various procedures, including the

ANT, and identifies broad, practically relevant parameter configurations under which tapering is

expected to exhibit superior performance. Our original interest in comparing spectra thus stemmed

from curiosity in how well Spitzners tapering test would adapt to the time-series context.

1.3 Overview of Spectral Density Estimation Methods

Inspired by the method proposed by Coates and Diggle (1986) [8], tests proposed in our research

were built on the sequence of

log
(
f̂1(ωj)

)
− log

(
f̂2(ωj)

)
(1.2)

Then, the challenge comes as to find proper estimate of the spectral density f̂(ωj).

A natural estimate of f(ωj) for ωj 6= 0 is the periodogram I(ωj), which is unbiased estimator

of f(ω) for ω 6= 0 and ω ∈ [−π, π], as defined in Section 1.1. However, the raw periodogram as the

estimate of power spectrum suffers from several problems. First of all is the inefficiency. I(ωj) is

not a consistent estimator of f(ω). If we add more samples to the signal, or increase the sampling

rate, the estimate are not improved since this will only increase the frequency domain resolution of

estimate. Additionally, it suffers from high variance. See for example Priestley (1981)[20], Brockwell

and Davis (1991) [6], and Brillinger (2001) [5]. There are three different ways to gain a consistent

estimate: local average smoothing; lag window smoothing and periodogram averaging (Welch’s-

Bartlett spectral estimation method). But the Welch’s-Bartlett method lead to the spectral leakage

and bias. The most popular approach is to directly smooth on the periodogram via a local average,
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which is equivalent to the kernel smoothing via discrete compact kernel form. For considering of

simplicity and the computation time, only local average smoothed periodogram is considered in

this paper as the estimates for spectral density. The periodograms are smoothed by averaging in

a small neighborhood of ω. Since the number of Fourier frequencies in a given interval increases

approximately linearly with n, we can indeed construct consistent spectral density estimators by

averaging over a suitably increasing number of frequencies in a neighborhood.

The procedure of local average smoothing can provide consistent estimates, however, it in-

creases the bias. When we have enough data, we may obtain the spectral estimate with satis-

factory bias and variance. When the data are limited, a tradeoff between bias and variance is

inevitable. Perhaps the first non-parametric method to address simultaneously the issues of bias

and variance in an optimal fashion was the multitaper spectral estimation technique developed by

David Thomson (1982) [31]. Instead of local average smoothing, the Multitaper Method (MTM)

reduces estimation bias by obtaining multiple independent estimates from the same sample. As-

sume X(t), t = 0,±1, · · · is a stationary r vector-valued series with mean vector µX . Components of

X(t), i.e. Xj(t), j = 1, · · · , r have all moments exist, and have absolutely summable auto-covariance

functions,
∑
|γab| <∞, a, b = 1, · · · , r. Define the orthonormal tapers hk(t), t = 1, · · · , n− 1 which

is bounded , of bounded variation and vanishes for t > T . And the Discrete Fourier Transform

(DFT) of the tapered series hk(t)X(t), t = 1, · · · , n− 1 can be constructed as,

dka(λ) =
n−1∑
t=0

hk(t)Xa(t)exp(−iλt), −∞ < λ <∞, for a = 1, · · · , r.

Each data taper is multiplied element-wise by the signal to provide a windowed trial from which

one estimates the power at each component frequency. As each taper is pairwise orthogonal to all

other tapers, the windowed signals provide statistically independent estimates of the underlying

spectrum. Let r=2, define the eigen-spectra for component series Xa(t), a = 1, · · · , r of X(t) based

on the taper hk(t), as

f̂ka (ωj) =
1

2πn
da(ωj)da(ωj), a = 1, 2.

Then the multitaper spectral density estimate is defined as the weighted average of eigen-spectra,

f̂(ωj) =

∑K
k=1 ukf̂k(ωj)∑K

k=1 uk
,

where uk are weights corresponding to each eigen-spectra. The final spectrum is obtained by

averaging over all the tapered spectra. Averaging over this (small) ensemble of spectra yields



8

a better and more stable estimate, i.e., one with lower variance than do single taper methods.

Thomson chose the Slepian or discrete prolate spheroidal sequences as tapers since these vectors

are mutually orthogonal and possess desirable spectral concentration properties. Note that the

case with only one set of tapers reduces to the trivial Blakman-Tukey case of a single tapered

DFT. MTM offers the appeal of being nonparametric, in that it does not prescribe an a priori

(e.g., autoregressive) model for the process generating the time series under analysis. Because the

windowing functions or eigentapers are the specific solution to an appropriate variational problem,

this method is less heuristic than traditional nonparametric techniques.

To derive a powerful testing procedure, in Section 2.1, we will firstly introduce the basis model

based on the raw periodogram (log-periodogram) as the estimate of power spectrum (log-spectrum).

However, this model suffers from issues since periodogram or log-periodogram is not a consistent

estimator. Then we will explore the Fourier transform of the log-periodogram as estimates for

log-spectrum and proposed the Model 2 in Section 2.2, inspired by Lu and Li’s (2013) [17] paper.

By Fourier transformation, we achieved a vanishing variance, which makes it possible to even think

about the asymptotic performance based on rate of testing criteria. However, Fourier transform of

log-periodogram as estimates for log-spectrum doesn’t have a very meaningful interpretation in time

series context, instead, kernel smoothing of the periodogram (log-periodogram) is more acceptable.

See for example Priestley (1981)[20], Brockwell and Davis (1991) [6], and Brillinger (2001) [5]. There

are three different ways to smooth the periodogram (log-periodogram): local average smoothing, lag

window smoothing and periodogram averaging (Welch’s-Bartlett spectral estimation method). But

the Welch’s-Bartlett method lead to the spectral leakage and bias. Considering that the objective

of our research is to develop a powerful testing procedure which is convenient to use even for people

with little statistical background, the simple moving averaged log-periodogram as the estimate for

log-spectrum will be used, which is equivalent to do kernel smoothing with the Uniform Kernel.

Since the number of Fourier frequencies in a given interval increases approximately linearly with n,

we can indeed construct consistent log-spectrum estimators by averaging over a suitably increasing

number of frequencies in a neighborhood.
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1.4 Spitzner’s Tapering Test

Spitzner (2008) [28] proposed the test based on tapering for use in testing a global linear hypothesis

under a functional linear model. The test statistic is constructed as a weighted sum of squared linear

combinations of Fourier coefficients, a tapered quadratic form, in which higher Fourier frequencies

are down-weighted so as to emphasize the smooth attributes of the model.

After some initial pre-processsing, functional data may typically presented by a discrete, high-

dimensional model,

Yn,j = θj + n−1/2en,j (1.3)

for j = 1, · · · , pn, ignoring any replication, where pn represents some (high) maximum number of

dimensions to be accounted for at a given n. en,j are zero-mean, unit-variance error-vectors that

the en,j are independent across j. (However, small correlations among the en,j are possible.) Then

the functional linear hypothesis translates to

H0 : θj = 0 for j = 1, · · · , pn (1.4)

H1 : notH0

Based on the model (1.3), the test statistic based on the quadratic form are proposed

QOPTn = n

pn∑
j=1

j−1/2Y 2
n,j (1.5)

This test incorporates the smoothness assumption that (θ1, ...., θpn) belongs to Sobolev class. In

this article, the “rate of testing” theory and “adaptive rate of testing” theory is discussed and the

asymptotic optimality of the test based on the weight j−1/2 among tests based on tapering are

proved, under further assumptions that the fourth moment of en,j is bounded and the covariance

of Yn,j dies out as the sample size increases.

Simulation studies on Gaussian case to test the null hypothesis versus spiked alternatives as

well as smoothed alternatives are conducted in this article. The performance of tapering test and

other testing procedures including adaptive Neyman test, wavelet thresholding test are compared.

Results suggest that any test based on tapering is asymptotically suboptimal to tests based on

truncation or thresholding; however, QOPTn exhibits better empirical power under the class of

smoothed alternatives that would be of natural interest in many applications.



10

While this article argues in support of the tapering test procedure on the basis of the power

properties, another reason for choosing tapering test is that the test statistic in Equation (1.5)

is easy to be written through a formal Bayesian construction, as a monotone transformation of

the posterior null probability. While in literature, even there exists Bayesian construction of the

thresholding mechanism for use in estimation, which suggests that the test statistic might be

viewed as a summary metric based on a Bayesian estimator. This fails to represent test statistic

as a monotone transformation of a posterior null probability.

1.5 Rate of Testing Theory

The asymptotic performance criteria used in Spitzner(2008) [28] and in our research is from “rate

of testing” theory, a framework to find the rate at which the power is retained under geometric

smoothness constraints.

Rate of Testing Criteria:

We wish to test the null hypothesis

H0 : θj = 0 for j = 1, · · · , pn

against the composite nonparametric alternative that the mean vector {θj , j = 1, · · · , pn} is sepa-

rated away from zero in L2 norm, ‖ θ ‖≥ δ and also {θj , j = 1, · · · , pn} possesses some smoothness

properties. The problem is to describe the minimal (optimal) rate δn → 0 for which testing with

prescribed error probabilities is still possible. The “rate” δn → 0 in rate of testing theory charac-

terize test performance. Then the rate of testing theory is to look at the asymptotic hypothesis

testing problem as the sample size n→∞, and evaluate the optimal (fastest) rate of decay to zero

of the δn as a function of n.

A key issue in testing is how to impose the smoothness assumption, so as not to waste statistical

power attempting to distinguish the rougher aspects of the model. Rate of testing criteria restrict

the mean vector of the discrete model Yn,j = θj + n−1/2en,j to smooth-function class. In the most

general settings, this would be a Besov class Bs,p,q(M) with p < 2, but here it is taken to be a

Sobolev class as a special class when p = q = 2, which is appropriate when working with Fourier

decompositions. Suppose θ is an element of a Sobolev ellipsoid in continuous space, the restriction
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can be expressed as

θ = (θj , j = 1, 2, · · · ) ∈ Bs,M

Bs,M =

(θ1, θ2, · · · ) :

√√√√ ∞∑
j=1

j2sθ2j ≤M


, where Bs,M is a Sobolev ellipsoid of radius M in infinite-dimensional discrete space, and M > 0,

s > 1/2 are fixed constants, larger s makes the restriction stronger.

Fix M > 0, s > 1/2, and for each n, let φn = φn (Yn,1, · · · , Yn,pn) be the test such that

limn P0 [φn = 1] ≤ α for a fixed level α ∈ (0, 1). Pθ denotes the probability under the model

Yn,j = θn,j + n−1/2en,j for a specific θ and fixed n. The rate of testing theory are formulated from

sequance δn → 0 satisfying

inf
θ∈H1(δn/δ?n;s,M)

Pθ [φn = 1]→ 1,∀δ?n → 0 (1.6)

H1(δ; s,M) =

θ ∈ Bs,M :

√√√√ ∞∑
j=1

θ2j ≥ δ


Remark 1.5.1. The rate of testing criterion describes the rate at which a gap may shrink between

the null hypothesis and a class of distinguishable alternatives, those the test would be able to detect

with high power, asymptotically. The better performing tests allow this gap to shrink faster. If for

some δn → 0 the criterion is satisfied for one test, but not another, the former test is preferred.

Minimax Rate and Adaptive Minimax Rate:

Ingster (1993) [13] established the optimal rate of testing:

δ̂Mn (s) = n−2s/(4s+1), (1.7)

which is commonly expressed as the minimax rate for geometry Bs,M at specific s. In the paper,

he proved that no test does any have the rate δn converge to zero faster than δ̂Mn (s) that satisfy

the criteria (1.6). And he proposed the rate-optimal test based on tapering with the “rate” δ̂Mn (s)

that satisfies the criteria (1.6). However, the practical applications of this test that proposed by

Ingster meet the crucial problem that it depends on the smoothness parameter s, which are typically

unknown.

To address this problem with Ingster’s “rate of testing” theory, Spokoiny (1996) [30] proposed

“adaptive rate of testing” theory, by restricting the unknown smoothness parameter s to the interval
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(s?, s
?) and 1

2 < s? < s? are two known constants. Spokoinys showed that the adaptive (assumption

free) testing with the same rate is impossible with regarding to the problem that the smoothness

parameters is unknown, and he defined the optimal adaptive rate of testing:

δ̂AMn (s) =
[
n2 (loglogn)−1

]4s/(4s+1)
across s? < s < s?. (1.8)

The rate δ̂AMn (s) is commonly expressed as the adaptive minimax rate for geometry Bs,M across

s? < s < s?. Note that comparing δ̂AMn (s) with δ̂Mn (s), the adaptive minimax rate add an adaptive

factor
(
loglogσ−2n

)1/4
in δ̂Mn (s) to make it adaptive, and thus is slower than Ingster’s minimax rate.

Spokoiny in this paper proved that no test does any with the rate δn converge to zero faster than

δ̂AMn (s) that satisfy the criteria (1.6) uniformly across s? < s < s?, and derived the rate-optimal

adaptive test based on thresholding with the “rate” δ̂AMn (s) that satisfies the criteria (1.6).

Spitzner (2008) [28] proved that no tapering test with rate δn goest to 0 faster than

δ̂Qn (s) =
[
n2 (log n)−1

]−s/(4s+1)
across s? < s < s?

will satisfy the rate of testing criteria, and proposed the optimal tapering test QOPTn in (1.5) with

rate δ̂Qn satisfies the rate of testing criteria.

Remark 1.5.2. Note that compared with Ingster’s minimax rate in (1.7) and Spokoiny’s adaptive

minimax rate in (1.8), the rate δ̂Qn is slower than both of them. But δ̂Qn already represents an

adaptively optimal configuration among tests based on tapering. Spitzner in his paper reiterates that

an empirical investigation in a non-asymptotic context has demonstrated that the test QOPTn has

superior power against a class of alternatives. Another important reason that Spitzner recommended

this test is that the test statistic in (1.5) may arise through a formal Bayesian construction, as a

monotone transformation of a posterior null probability, which has been shown in Spitzner (2008)

[27].

1.6 Applied Motivation

As our research is actually motivated by solving real world problem regarding to EEG dataset. Let

me introduce this motivating example in details.

The human brain is the most complex organ in the body. Composed of 50 to 100 billion neurons,

the human brain remains one of the world’s greatest unsolved mysteries. Our research will provide
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a way to take a closer look at the spectral characteristics of scalp Electroencephalography (EEG)

recordings to discover more about the relationship between lobes during cognitive tasks. And this

is achieved by developing more powerful testing procedures in spectral densities of EEG signals

from the Reward Two Back Study.

The research in this article was driven by solving real world problem regarding to the dataset

from the Swartz Center for Computational Neuroscience (SCCN) of the University of California,

San Diego. SCCN is founded by U.S. National Institutes of Health grants. Studies at SCCN focus

on how EEG data, alone or combined with functional hymodynamic imaging data, can be used to

observe, model and test new theories about how different parts of the brain interact dynamically

to support human awareness and behavior.

EEG is the multichannel recording of the electrical activity generated by collections of neurons

within the brain. Different channels reflect the activity within different brain regions. When the

EEG is measured using non-invasive electrodes arrayed on an individual’s scalp, it is referred to as

scalp EEG. In clinical contexts, EEG refers to the recording of the brain’s spontaneous electrical

activity over a short period of time, as recorded from multiple electrodes placed on the scalp.

Diagnostic applications generally focus on the spectral content of the EEG, that is, the type of

neural oscillations that can be observed in EEG signals.

The scalp EEG is non-invasive measure of the electrical potentials generated by the activity

of tens of millions of neurons within the brain. An EEG signal, or channel is formed by taking the

difference between potentials measured at two electrodes. Each EEG channel summarizes activity

localized within a region of the brain. The neurons that contribute the most to the scalp EEG are

those closest to the scalp surface. Scalp EEG activity is modulated by the state of vigilance of an

individual. In particular, the dominant frequency and spatial distribution of EEG activity during

the awake state is different than that during sleep. EEG signals arriving at each electrode are the

sum of activities in all such EEG source areas, as well as electrical artifacts from muscles, eyes,

electrodes, movements, and the electrical environment.

EEG signals are stochastic, i.e. they can be represented as a sequence of related random

variables. Statistical spectral analysis treats EEGs as time series data generated by stationary

stochastic (random) processes. Recently more and more advanced mathematical tools may be

brought to bear on the problem of understanding the link between brain activity, as seen in the
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EEG, and function as determined via the implementation of experimental protocols. The task

oriented brain activity analysis and classification is a prime issue in EEG signal processing these

days. The similar attempt has been done here to estimate the brain activity on the basis of power

spectrum analysis. The accurate testing procedures of electrical activity for a particular state of

human brain helps in neurological diagnosis and also for establishing standards for instrumentation

development. This procedure also helps in the brain computer interfacing which has been gaining

wide attraction in the research industry.

Our research is driven by the data of EEG recordings from “Reward Two-back Continuous

Performance Task Study”. The aim of this study is to explore the cognitive effects of positive and

negative reinforcement. This study utilizes the Two-back continuous Performance Task (CPT) with

auditory feedback and reward/punishment. Subjects were seated in front of computer monitor with

a response pad in the laps that was held with both hands. During the task, subject were presented

sequential single letters. Beginning with the third letter, subject respond to each letter, specifying

with a right or left thumb press whether the current letter was the same as the one presented two

before. An auditory feedback signal at letter offset informed the subject of whether their answer

was correct or wrong. After 850 milliseconds, the next letter was presented. Correct responses add

1 point ($ in their pocket), and incorrect or failures to respond deducted 1 cent from the subject’s

performance reward ($ out of their pocket). Visualization of the trial can be found in Figure 1.1.

Figure 1.1: Visualization of the Reward Two-back Continuous Performance Task Study.
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During the study, 256 electrodes were put on the subject’s scalp and EEG recordings are

collected from these subjects performing the task. To facilitate repetition, a standard is used for

electrode positions known as the international 10-20 system. This includes guidelines on position

and an associated system for labeling those positions. The Figure 1.2 shows how electrodes are

located on scalp as for this system.

Figure 1.2: The international 10-20 system seen from (A) left and (B) above the head. A = Ear lobe, C =

central, Pg = nasopharyngeal, P = parietal, F = frontal, Fp = frontal polar, O = occipital.

We are interested in just one trial from letter shown up on the screen until the next letter

shown up as in 1.1. The sampling rate is 256 Hz, which means that we have 256 samples every

second. Thus for one tail in Figure 1.1, we will have 340 discrete EEG observations. EEG signals

are recorded for a normal 22 years old, right-handed young man with only electrode D27 unstable,

otherwise clean EEG recordings is studied. The 3D plot of channel locations are shown in Figure 5.4.

Data were read and preprocessed using MATLAB toolbox EEGLAB.
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Figure 1.3: 3D channel locations.
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The event related EEG recordings are assumed to be realizations of a specific type of non-

stationary random process, namely, a locally stationary process. Thus, within short segments

of time, the process exhibits stationary, even though the global characteristics vary throughout

the trial. For non-parametric of the spectral density or the cross-spectral density of the EEG

recordings, a trade-off has to be made regarding the length of the data segment for analysis. The

segment should not be too long to satisfy the assumption of the local stationarity but must provide

adequate spectral resolution. One trial with the during of around 1.5 sec segment was chosen as

being short enough to ensure the approximate stationarity, but at the same time give a proper

spectral resolution.

There are four main different lobes on the brain, Frontal Lobe, Temporal Lobe, Occipital

Lobe and Parietal Lobe, as shown in the Figure 5.8. The frontal lobe has many functions most of
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which center on cognition, problem solving and reasoning. For the temporal lobe, there are two

temporal lobes located on both sides of the brain that are in close proximity to the ears. The

primary function of the temporal lobes is to processing auditory sounds. The occipital lobe, the

smallest of the four lobes, is located near the posterior region of the cerebral cortex, near the back

of the skull. The occipital lobe is the primary visual processing center of the brain. The parietal

lobe is responsible for processing sensory information from various parts of the body. Thus, for

the right-handed healthy young man in the Reward Two-back Study, the Frontal, Temporal Left

and Occipital Lobe will be most active. We will only focus on these three lobes for our testing of

potential relationships.

Figure 1.4: Four different lobes in the brain.

The electroencephalogram (EEG) is a complex signal and an important brain state indicator

(e.g. waking, sleep, seizure). Crucial aspects of the signal might not be recognized by visual

inspection of the EEG. Therefore, additional quantitative analysis is fundamental to investigate

the EEG in more detail. Modern brain research is intimately linked to the feasibility to record

the EEG and to its quantitative analysis. EEG spectral analysis (decomposing a signal into its
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constituent frequency components) is an important method to investigate brain activity. Spectral

analysis is a mathematical approach to quantify the EEG. It have been used for a long time in

the analysis of EEG signals, which referred to as frequency domain analysis or spectral density

estimation. Its purpose is the decomposition of signals such as the EEG, into its constituting

frequency components. The fast Fourier transform is a widely applied method for obtaining the

EEG spectrum. The power density spectrum or power spectrum displays the distribution of power

or variance over the frequency components of a signal. It is defined as the Fourier transform of

the autocorrelation function. Spectral content reveals neural oscillation. And characterizing such

neural oscillatory behavior gives insight into the underlying dynamics of brain systems.

In this research, we will look at the spectral contents of these three lobes and apply our powerful

testing procedures to find possible links and similar patterns between them.
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Chapter 2

Models and Asymptotics

Our main goal in this chapter is to develop a new powerful test based on “rate of testing” theory

that is very convenient for implement in practice, even for some people have no background in

statistics. Although Spitzner’s tapering test was originally proposed in functional data analysis

framework, we can still borrow the idea of tapering and try to identify suitable definitions of those

quantities for time series problems. Thus, our testing procedures will be derived from Spitzner’s

tapering test based on certain discrete models. The model is constructed based on different methods

of estimating spectral densities as discussed in Section 1.3. We will mainly explore three different

models based on the raw periodogram, Fourier transformation and kernel smoothing. Under each

model, the optimality of the tapering test is derived based on “rate of testing” theory.

2.1 Model 1 (Basic Model Based on Raw Periodogram)

As introduced in Section 1.3, a natural and most convenient estimate of spectral density is the

periodogram. We will firstly try to derive the model and testing procedure based on the model

derived from periodogram as the estimate of spectral density. For now, let’s suppose the length of

these two time series {X1,t1 , t1 = 1, · · · , n1} and {X2,t2 , t2 = 1, · · · , n2} are equal, i.e. n1 = n2 = n.

Define

Yj = log I1(ωj)− log I2(ωj),
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which relfects the context of our problem. And define θj = log f1(ωj)− log f2(ωj) for j = 1, · · · , pn.

pn is the number of frequencies and pn = n/2 if n is even, pn = n/2− 1 if n is odd. Then it is easy

to prove that Yj
D−→ N

(
θj , σ

2
)

asymptotically independent across j, where σ2 = π2

3 .

We are interested in testing the hypothesis of whether these two time series have the same

spectral density. Note that by the definition of θj , the hypothesis is equivalent to

H0 : θj = 0 for all j = 1, · · · , pn versus H1 : θj 6= 0 for some j = 1, · · · , pn. (2.1)

Since the natural and most convenient estimate of spectral density is the periodogram, the basic

model for tapering test is derived firstly based on the asymptotic properties of periodogram:

Yj = θj + σεj for j = 1, · · · , pn,

where εj =
Yj−θj
σ are asymptotic independent standard normal random variables.

The tapering test statistic is constructed in the form of a tapered sum of squared summary

coefficients Yjs,

Qn =

pn∑
j=1

wn,jY
2
j ,

whose wights wn,j are presumed to taper to zero in the sense that wn,j → 0 as j → ∞. For such

asymptotic statements to make sense, we think conceptually that pn is arbitrarily large, however,

in practice pn is finite and determined by data configuration.

Remark 2.1.1. As defined before the “rate” in rate of testing theory, δn, defines the gap between

the null hypothesis and the class of “distinguishable” alternatives where the test can detect with high

power, asymptotically. The class of distinguishable alternatives, θ ∈ H1(δn/δ
?
n; s,M) are defined

based on the smoothness assumption, where

H1(δ; s,M) =

θ ∈ Bs,M :

√√√√ ∞∑
j=1

θ2j ≥ δ

 ,

and the smoothness restriction on θ is defined as

Bs,M =

(θ1, θ2, · · · ) :

√√√√ ∞∑
j=1

j2sθ2j ≤M

 ,

a Sobolev geometry ellipsoid of radius M in infinite-dimensional discrete space, where M > 0 and

s > 1/2 are fixed constants, with larger s making the restriction stronger.
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Thus δn characterized the test performance and the optimal testing procedures should satisfy

the rate of testing criteria with the fastest rate of δn among the same testing mechanism.

Then we will explain step by step as how do we get assess the asymptotic performance of the

proposed test based on “rate of testing” theory.

Lets firstly define some items that we will use latter in the proofs. Define

Sn(p) =

p∑
j=1

w2
n,j

Wn(p) = min
{
w2
n,j , j ≤ p

}
Un(p, q) = qWn(q)/Sn(p)

Un(p) = Un(p, p),

where the weights 0 < wn,j ≤ 1 and the dimension here is pn = n/2 − 1. When the weights wn,j

dose not depend on n, then Sn(p) becomes S(p), Wn(p) becomes W (p), Un(p, q) becomes U(p, q),

and Un(p) becomes U(p).

The results of the following lemma will be used in the proof of Lemma 2.1.2 to derive the mean

of variance of our test statistic Qn.

Lemma 2.1.1. Let Xn and Yn are two asymptotically independent sequence satisfying

lim
n→∞

Cov(Xn, Yn) = 0

, then

lim
n→∞

Cov {g (Xn) , g (Yn)} = 0

for any suitably integrable function g.

Proof.

lim
n→∞

Cov(Xn, Yn) = 0 ⇒

lim
n→∞

[E(XnYn)− E(Xn)E(Yn)] = 0 ⇒

lim
n→∞

∫ ∫
f(x, y)dxdy = lim

n→∞

∫ ∫
fX(x)fY (y)dxdy ⇒

lim
n→∞

f(x, y) = lim
n→∞

fX(x)fY (y)
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. Then

lim
n→∞

Cov {g (Xn) , g (Yn)} =

lim
n→∞

{E [g(Xn)g(Yn)]− E [g (Xn)]E [g (Yn)]} =

lim
n→∞

{∫ ∫
g(x)g(y)f(x, y)dxdy −

∫ ∫
g(x)g(y)fX(x)fY (y)dxdy

}
=∫ ∫

g(x)g(y) lim
n→∞

{f(x, y)− fX(x)fY (y)} dxdy = 0

The key of the “rate of testing” criteria is to look at the asymptotic power of our test Qn, to

calculate the power, we firstly need to get the asymptotic mean and variance of Qn. The following

lemma provides the formula of E (Qn) and V ar (Qn) when n→∞.

Lemma 2.1.2. Based on the model of Yj as discussed before, to test the hypothesis of equal spectral

densities, the test is specified through the tapering test statistic Qn =
∑pn

j=1wn,jY
2
j , which rejects

null hypothesis when Qn is large. we have

lim
n→∞

E (Qn) = σ2Rn(pn) + θ21,n(pn)

lim
n→∞

V ar (Qn) = AnSn(pn) + 4σ2θ22,n(pn)

, where Rn(p) =
∑p

j=1wn,j, θ
2
m,n(p) =

∑p
j=1w

m
n,jθ

2
j , and An � 1.

Proof. Firstly, let’s look at the asymptotic expectation of the test statistics limn→∞E (Qn),

E (Qn) = E(

pn∑
j=1

wn,jY
2
j ) =

pn∑
j=1

wn,jE(Y 2
j )

=

pn∑
j=1

wn,j

[
V ar(Yj) + (EYj)

2
]

⇒

lim
n→∞

E (Qn) = σ2
pn∑
j=1

wn,j +

pn∑
j=1

wn,jθ
2
j

= σ2Rn(pn) + θ21,n(pn)

Secondly, let’s look at the asymptotic variance of the test statistics limn→∞ V ar (Qn),

V ar (Qn) = V ar(

pn∑
j=1

wn,jY
2
j ) =

pn∑
j=1

w2
n,jV ar(Y

2
j ) + 2

∑
1≤j≤k≤pn

wn,jwn,kCov(Y 2
j , Y

2
k )



23

. Let’s firstly look at the covariance part Cov(Y 2
j , Y

2
k ).

Cov {Yj , Yk} = Cov

{
log

f̂1(ωj)

f̂2(ωj)
, log

f̂1(ωk)

f̂2(ωk)

}
= Cov

{
logf̂1(ωj), logf̂1(ωk)

}
+ Cov

{
logf̂2(ωj), logf̂2(ωk)

}
, since these two time series are independent.

For periodograms, we have limn→∞Cov
{
logf̂1(ωj), logf̂1(ωk)

}
→ 0, and

limn→∞Cov
{
logf̂2(ωj), logf̂2(ωk)

}
→ 0. Thus we will have

lim
n→∞

Cov {Yj , Yk} = 0 ⇒

lim
n→∞

Cov
{
Y 2
j , Y

2
k

}
= 0 (Lemma 2.1.1)

Thus, ∃ constant M and integer n0 s.t. for n > n0,∣∣∣∣∣2
∑

1≤j≤k≤pn wn,jwn,kCov(Y 2
j , Y

2
k )

Sn(pn)

∣∣∣∣∣ ≤M
, that is

2
∑

1≤j≤k≤pn

wn,jwn,kCov(Y 2
j , Y

2
k ) = O (Sn(pn))

Let 2
∑

1≤j≤k≤pn wn,jwn,kCov(Y 2
j , Y

2
k ) = anSn(pn), where an � 1. Then

V ar (Qn) =

pn∑
j=1

w2
n,jV ar(Y

2
j ) + anSn(pn)

Then let’s look at the first part of V ar (Qn). We have V ar(Y 2
j ) = E(Y 4

j )−
[
E(Y 2

j )
]2

.

[
E(Y 2

j )
]2

=
[
V ar(Yj) + (EYj)

2
]2

⇒

lim
n→∞

[
E(Y 2

j )
]2

= σ4 + θ4j + 2θ2jσ
2.

For E(Y 4
j ), which is the fourth moment of Yj , since the asymptotic distribution for Yj is normal

with mean θj and variance σ2n,

lim
n→∞

E(Y 4
j ) = θ4j + 6θ2jσ

2 + 3σ4.

Thus

lim
n→∞

V ar(Y 2
j ) = lim

n→∞
E(Y 4

j )− lim
n→∞

[
E(Y 2

j )
]2

= 4θ2jσ
2 + 2σ4.
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Thus

V ar (Qn) =

pn∑
j=1

w2
n,jV ar(Y

2
j ) + anSn(pn)

= 4σ2
pn∑
j=1

w2
n,jσ

4θ2j + 2

pn∑
j=1

w2
n,j + anSn(pn)

= 4σ2θ22,n(pn) + 2σ4Sn(pn) + anSn(pn)

= AnSn(pn) + 4σ2θ22,n(pn)

, where An � 1.

To take a closer look at the “rate of testing” criteria, let’s firstly write it into two equivalent

conditions involving the asymptotic mean and variance of Qn.

Lemma 2.1.3. For fixed smoothness parameter s > 1/2 and M > 0, and some positive sequence

δn → 0, the rate of testing criteria holds if and only if

inf
θ∈H1(δn/δ?n;s,M)

EH1−0(Qn)/
√
V arH0(Qn)→∞ and (2.2)

inf
θ∈H1(δn/δ?n;s,M)

EH1−0(Qn)/
√
V arH1−0(Qn)→∞, (2.3)

where

EH1−0(Qn) = EH1(Qn)− EH0(Qn)

V arH1−0(Qn) = V arH1(Qn)− V arH0(Qn)

Proof. In the rate of testing criteria, to look at the power of the test under the smoothness constraint

of the alternative, let’s first derive the forms of the critical value for the size-α test based on Qn.

Define the critical value be C, that is, PH0(Qn > C) = α. Then,

α = P

(
Qn − EH0(Qn)√
V arH0(Qn)

>
C − EH0(Qn)√
V arH0(Qn)

)

= P

(
Qn − EH0(Qn)√
V arH0(Qn)

> C̃H0

)
,
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where C̃H0 =
C−EH0

(Qn)√
V arH0

(Qn)
. Then by Chebychev’s Inequality, we have

α ≤ 1

1 + C̃H0

=⇒ 1

α
− 1 ≥ C̃H0 =

C − EH0(Qn)√
V arH0(Qn)

=⇒ C ≤
{
EH0(Qn) + C

√
V arH0(Qn)

}
{1 + o(1)} ,

where C = 1
α − 1 is a constant. Thus the critical value for size α test that rejects for large Qn is

EH0(Qn) + C
√
V arH0(Qn).

Then the power can be written as

PH1(δn/δ?n;s,M)

(
Qn > EH0(Qn) + C

√
V arH0(Qn)

)
= P

(
Q̂n =

Qn − EH1(Qn)√
V arH1(Qn)

>
EH0(Qn) + C

√
V arH0(Qn)− EH1(Qn)√
V arH1(Qn)

)

= P

(
Q̂n >

−EH1−0(Qn) + C
√
V arH0(Qn)√

V arH1−0(Qn) + V arH0(Qn)

)

= P

(
Q̂n >

−EH1−0(Qn)/
√
V arH0(Qn) + C√

1 + V arH1−0(Qn)/V arH0(Qn)
{1 + o(1)}

)
,

where Q̂n is the standardized test statistic under alternative hypothesis. Since

lim
n→∞

E(Q̂n) = 0

lim
n→∞

V ar(Q̂n) = 1,

the probability coverges to 1 if the right term inside diverge to −∞ as n → ∞. Thus the rate of

testing criteria PH1(δn/δ?n;s,M)

(
Qn > EH0(Qn) + C

√
V arH0(Qn)

)
→ 1 is eqivalent to

−EH1−0(Qn)/
√
V arH0(Qn) + C√

1 + V arH1−0(Qn)/V arH0(Qn)
→ −∞ under the constraint θ ∈ H1(δn/δ

?
n; s,M) (2.4)

Since the asymptotic distribution for ej is normal, then P (ej ≤ −t) > 0 for each t > 0. Thus

PH1(δn/δ?n;s,M)

(
Q̂n ≤ −t

)
> 0 for each t > 0. Thus such divergence is also a necessary condition.

Finally it is easy to verify that the condition (2.4) is equivalent to

inf
θ∈H1(δn/δ?n;s,M)

EH1−0(Qn)/
√
V arH0(Qn)→∞ and

inf
θ∈H1(δn/δ?n;s,M)

EH1−0(Qn)/
√
V arH1−0(Qn)→∞
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Then we can plug the results of Lemma 2.1.2 into Lemma 2.3.1, and after some manipulations

we can get the equivalent conditions of “rate of testing” criteria as in the following theorem.

Theorem 2.1.1. Based on the model of Yj, to test the hypothesis of equal spectral densities, the

test is specified through the tapering test statistic Qn =
∑pn

j=1wn,jY
2
j , which rejects null hypothesis

when Qn is large. For fixed smoothness parameter s > 1/2 and M > 0, and some positive sequence

δn → 0, the rate of testing criteria holds if and only if

lim sup
n→∞

Un(pn)p−(4s+1)
n <∞ (2.5)

lim inf
n→∞

Un(pn, qn)q−(4s+1)
n > 0, (2.6)

where qn =
{
δn
M

}−1/s
.

Proof. According to Lemma 2.3.1 and Lemma 2.1.2, the rate of testing criteria is equivalent to

inf
θ∈H1(δn/δ?n;s,M)

θ21,n(pn)/
√
Sn(pn)→∞ and

inf
θ∈H1(δn/δ?n;s,M)

θ21,n(pn)/
√
θ22,n(pn)→∞

(2.7)

, where θ21,n(pn) and θ22,n(pn) are defined as θ2m,n(p) =
∑p

j=1w
m
n,jθ

2
j in Lemma 2.1.2.

Furthermore,

0 < wn,j ≤ 1⇒ θ21,n(pn) ≥ θ22,n(pn)

⇒ θ21,n(pn)/
√
θ22,n(pn) ≥ θ21,n(pn)/

√
θ21,n(pn) = θ1,n(pn).

And since Sn(pn) → ∞, the first condition in Equation (2.7) implies θ21,n(pn) → ∞ and also

implies the second condition in Equation (2.7). Thus to develop equivalent conditions for rate of

testing criteria is equivalent to develop equivalent conditions for Equation (2.7), and is equivalent

to develop equivalent conditions for

inf
θ∈H1(δn/δ?n;s,M)

θ21,n(pn)/
√
Sn(pn)→∞ (2.8)

To look at Equation (2.8), firstly, we have θ21,n(pn) = θ21,n(∞)−
∑∞

j=pn+1wn,jθ
2
j . Additionally,

for θ ∈ Bs,M ,
∞∑

j=pn+1

wn,jθ
2
j =

∞∑
j=pn+1

wn,jj
−2sj2sθ2j

≤ wn,p̃np
−2s
n

∞∑
j=pn+1

j2sθ2j ≤ wn,p̃np
−2s
n M2
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, where p̃n is the index between 1 and pn that minimize wn,j for j = 1, · · · , pn.

Using Lagrange multipliers method, we can get that the vector θ that achieves the lower bound

of θ21,n(∞) subject to constraints θ ∈ H1(δn/δ
?
n; s,M) is that

θj =

 δn
δ?n

j = J̃

0 o.w.

, where J̃ is the index between 1 and pn that satisfy that J̃ ≤
{

δn
δ?nM

}−1/s
and w

n,J̃
minimize wn,1, · · · , wn,pn .

Then
∑∞

j=1 j
2sθ2j = J̃2sδ2 ≤M2, i.e. θ ∈ Bs,M satisfied. And

∑∞
j=1 θ

2
j = δ2, i.e., θ ∈ H1(δn/δ

?
n; s,M)

satisfied.

Thus,

θ21,n(∞) =

∞∑
j=1

wn,jθ
2
j ≥ wn,J̃

(
δn
δ?n

)2

under θ ∈ H1(δn/δ
?
n; s,M)

⇒ θ21,n(pn) ≥ w
n,J̃

(
δn
δ?n

)2

− wn,p̃np
−2s
n M2

⇒ 1

σ2n
θ21,n(pn)/

√
Sn(pn) ≥ 1

σ2n

{
w
n,J̃

(
δn
δ?n

)2

− wn,p̃np
−2s
n M2

}
/
√
Sn(pn).

Then Condition (2.8) holds for every δ?n → 0 is equivalent to

lim sup
n→∞

wn,p̃np
−2s
n /

√
Sn(pn) <∞ and

lim
n→∞

w
n,J̃

(
δn
δ?n

)2

/
√
Sn(pn) =∞,

(2.9)

where the first condition is needed because the rate of the first one converge to ∞ can be slowed

down arbitrarily by ∀δ?n → 0.

Let’s firstly look at the first condition in Equation (2.9),

lim sup
n→∞

wn,p̃np
−2s
n /

√
Sn(pn) <∞ ⇔

lim sup
n→∞

w2
n,p̃n

p−4sn /Sn(pn) <∞ ⇔

lim sup
n→∞

Un(pn)p−(4s+1)
n <∞.
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Then let’s firstly look at the second condition in Equation (2.9),

lim
n→∞

w
n,J̃

(
δn
δ?n

)2

/
√
Sn(pn) =∞ ⇔

lim
n→∞

 w2
n,J̃

δ?4n Wn

({
δn
M

}−1/s)
Un

(
pn,

{
δn
M

}−1/s)
δ(4s+1)/s
n =∞ ⇔

Take the square, and since w2
n,J̃

= min

{
w2
n,j , j ≤

(
δn
δ?nM

)−1/s}
= Wn

({
δn
δ?nM

}−1/s)

lim
n→∞


Wn

({
δn
δ?nM

}−1/s)
δ?4n Wn

({
δn
M

}−1/s)
Un (pn, qn)

{
δn
M

}(4s+1)/s

=∞ ⇔

Take the square, and since Wn

({
δn
δ?nM

}−1/s)
≥Wn

({
δn
M

}−1/s)
for ∀δ?n → 0

lim inf
n→∞

Un(pn, qn)q−(4s+1)
n > 0

Finally let’s take a closer look at those equivalent condition of “rate of testing” criteria”.

Remark 2.1.2. Condition (2.6) will never be satisfied, since

Un(pn, qn)q−(4s+1)
n =

q
1−r1−(4s+1)
n (log qn)r2(qn)

S(pn)
→ 0

since 4s+ 1 > 3, r1 ≥ 0, r2(qn) ≤ 0, qn →∞ and pn →∞ as n→∞.

Thus rate of testing criteria will never be satisfied for tapering testing based on raw periodogram.

Then main reason that our Model 1 based on raw periodograms cannot satisfy “rate of testing”

criteria is that the periodogram is not a consistent estimator of spectral density and thus the σ in

Model 1 is a constant and does not go to zero as n goes to infinity. To further explore impact of

the non-consistent estimator, we compared the asymptotic power of our test based on consistent

estimators with that based on non-consistent estimators and have the following theorem.

Theorem 2.1.2. Based on the model of Yj, to test the hypothesis of equal spectral densities, the

tapering tests based on the model with constant σ to construct test statistic Qn will always asymp-

totically have lower power than tests based on the model with σ in the model goes to 0 as n→∞.
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Proof. To construct the power of tapering test, let’s first look at the critical value. Let the critical

value be C, that is, PH0(Qn > C) = α. Then,

α = P

(
Qn − EH0(Qn)√
V arH0(Qn)

>
C − EH0(Qn)√
V arH0(Qn)

)

= P

(
Qn − EH0(Qn)√
V arH0(Qn)

> ĈH0

)

, where ĈH0 =
C−EH0

(Qn)√
V arH0

(Qn)
. Then by Chebychev’s Inequality, we have

α ≤ 1

1 + ĈH0

⇒

1

α
− 1 ≥ ĈH0 =

C − EH0(Qn)√
V arH0(Qn)

⇒

C ≤
{
σ2Rn(pn) +

(
1

α
− 1

)√
AnSn(pn)

}
{1 + o(1)} (Lemma 2.1.2) ⇒

C ≤
{
σ2Rn(pn) + Cn

√
AnSn(pn)

}
{1 + o(1)} ,

where Cn = 1
α − 1 � 1 and Rn(pn), Sn(pn), and An � 1 are notations defined before. Thus the

critical value for size α test that rejects for large Qn is σ2Rn(pn) + Cn
√
AnSn(pn) for An � 1 and

Cn � 1.

Then the power can be written as

PH1

(
Qn > σ2Rn(pn) + Cn

√
AnSn(pn)

)
=

P

(
Q̂nH1 =

Qn − EH1(Qn)√
V arH1(Qn)

>
σ2Rn(pn) + Cn

√
AnSn(pn)− EH1(Qn)√

V arH1(Qn)

)
=

P

Q̂nH1 >
−θ21,n(pn)/

√
AnSn(pn) + Cn√

1 + 4σ2θ22,n(pn)/
√
AnSn(pn)

{1 + o(1)}


, where Q̂nH1 is the standardized test statistic under alternative hypothesis.

Define CV =
−θ21,n(pn)/

√
AnSn(pn)+Cn√

1+4σ2θ22,n(pn)/
√
AnSn(pn)

. Then let’s look at the value of CV for constant σ as

well as σ → 0 as n → ∞ . The difference of CV is mainly on the σ in denominator of CV. Thus,

when σ → 0 as n→∞, CV have smaller value and thus the power is higher.
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Remark 2.1.3. By Remark 2.1.2, the tapering test based on the model of raw log-

periodograms as estimates for log-spectrums will never satisfy the rate of testing criteria

and according to Theorem 2.1.2, the tapering test based on non-consistent estimates of log-

spectrum will always sub-optimal to the test based on model based on consistent estimates with

σ → 0 when n → ∞. However, even we cannot based on Model 1 to derive the “optimal”

tapering test, it still can serve as the basis for making transformations and constructing more

complex model. The following sections will explore the way of doing Fourier transformation

and kernel smoothing to the basis model and therefore explore the asymptotic optimality of

tapering test.

2.2 Model 2 (Fourier Transform)

The raw periodogram as the estimate of power spectrum suffers from several problems since peri-

odogram is not a consistent estimator of spectral density. Consequently, the biggest problem with

Model 1 is that σ does not goes to zero as n goes to infinity. Some transformation on Yjs and

θjs are needed to satisfy the “rate of testing” criteria or “adaptive rate of testing” criteria. In

Lu and Li (2013) [17] paper, they proposed the testing scheme based on the Adaptive Neyman

test in Fan (1996) [11]. The test statistic is calculated on the Fourier transform of block-average-

periodograms. Model 2 here is an improvement of their idea. We summarize the periodogram

locally to reduce variability and thus the “rate of testing criteria” can be satisfied. For now, let’s

suppose the length of these two time series {X1,t1 , t1 = 1, · · · , n1} and {X2,t2 , t2 = 1, · · · , n2} are

equal, i.e. n1 = n2 = n.

Define the Fourier coefficients of Yjs and θjs:

Y ?
j =

1

pn

pn∑
k=1

Ykψj,k

θ?j =
1

pn

pn∑
k=1

θkψj,k,

where ψj,k is the Fourier basis function defined as below:
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pn is odd pn is even

ψ1,k = 1

for j = 1, · · · , pn − 1

2

ψ2j,k = cos

(
2πjk

pn

)
ψ2j+1,k = sin

(
2πjk

pn

)

ψ1,k = 1

for j = 1, · · · ,
(pn

2
− 1
)

ψ2j,k = cos

(
2πjk

pn

)
ψ2j+1,k = sin

(
2πjk

pn

)
and ψpn,k = cos (kπ)

Let’s firstly try to derive the asymptotic distribution of those newly defined Y ?
j s.

Lemma 2.2.1. For ∀j 6= i,

pn∑
k=1

cos

(
2πjk

pn

)
cos

(
2πik

pn

)
(2.10)

=

pn∑
k=1

sin

(
2πjk

pn

)
sin

(
2πik

pn

)
(2.11)

=

pn∑
k=1

cos

(
2πjk

pn

)
sin

(
2πik

pn

)
(2.12)

= 0

Proof. For ∀j 6= i,

1 ≤ i, j ≤ pn − 1

2
(pn is odd ) or

pn
2
− 1(pn is even )

=⇒ 1 ≤ |i− j| ≤ pn − 1

2
− 1(pn is odd ) or

pn
2
− 2(pn is even )

2 ≤ i+ j ≤ pn − 2(pn is odd ) or pn − 3(pn is even )
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And we have

summation (2.10) =
1

2

pn∑
j=1

[
cos

(
2π(j − i)

pn
k

)
+ cos

(
2π(j + i)

pn
k

)]

summation (2.11) =
1

2

pn∑
j=1

[
cos

(
2π(j − i)

pn
k

)
− cos

(
2π(j + i)

pn
k

)]

summation (2.12) =
1

2

pn∑
j=1

[
sin

(
2π(j + i)

pn
k

)
− sin

(
2π(j − i)

pn
k

)]

Define A = 2π(j−i)
pn

. Since sin A
2 = 0 only when j−i

pn
is integer which is not possible as |i− j| <

pn − 1, then sin A
2 6= 0. And thus

pn∑
j=1

cos

(
2π(j − i)

pn
k

)
= cosA+ cos 2A+ · · ·+ cos pnA

=
sin A

2 (cosA+ cos 2A+ · · ·+ cos pnA)

sin A
2

=
1
2

[
sin
(
(12 + pn)A

)
− sin A

2

]
sin A

2

= 0

(Since sin

(
(
1

2
+ pn)A

)
= sin

(
A

2
+ 2π(j − i)

)
= sin

A

2
)

pn∑
j=1

sin

(
2π(j − i)

pn
k

)
=

sin A
2 (sinA+ sin 2A+ · · ·+ sin pnA)

sin A
2

=
1
2

[
cos A2 − cos

(
(12 + pn)A

)]
sin A

2

= 0

(Since cos

(
(
1

2
+ pn)A

)
= cos

(
A

2
+ 2π(j − i)

)
= cos

A

2
).

Similarly, if we set A = 2π(j+i)
pn

, we will get cos
(
2π(j+i)
pn

k
)

= 0 and sin
(
2π(j+i)
pn

k
)

= 0.

Thus, summation (2.10)=summation (2.11)=summation (2.12)=0.

Lemma 2.2.2.

pn∑
k=1

cos2
(

2πjk

pn

)
=

pn∑
k=1

sin2

(
2πjk

pn

)
=
pn
2
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Proof. 1 ≤ j ≤ pn−1
2 (pn is odd ) or pn

2 − 1(pn is even )

pn∑
k=1

cos2
(

2πjk

pn

)
=

pn∑
k=1

1 + cos
(
4πjk
pn

)
2


pn∑
k=1

sin2

(
2πjk

pn

)
=

pn∑
k=1

1− cos
(
4πjk
pn

)
2



Then let’s look at
pn∑
k=1

cos
(
4πjk
pn

)
, define B = 4πj

pn
. Since sin B

2 = 0 only when 2j
pn

is integer

which is not possible as 1 ≤ j ≤ pn−1
2 (pn is odd ) or pn

2 − 1(pn is even ), then sin B
2 6= 0. And thus

pn∑
k=1

cos

(
4πjk

pn

)
=

sin B
2 (cosB + cos 2B + · · ·+ cos pnBa)

sin B
2

=
1
2

[
sin
(
(12 + pn)B

)
− sin B

2

]
sin B

2

= 0

(Since sin

(
(
1

2
+ pn)B

)
= sin

(
B

2
+ 4πj

)
= sin

B

2
)

, Thus summation
pn∑
k=1

cos2
(
2πjk
pn

)
=

pn∑
k=1

sin2
(
2πjk
pn

)
= pn

2 .

Theorem 2.2.1. If Yj is defined before as Yj
D−→ N

(
θj , σ

2
)
, asymptotically independent

across j for j = 1, · · · pn, and Y ?
j is the Fourier coefficients of Yj defined before. Then

Y ?
j

D−→ N
(
θ?j , σ

2
n

)
Cov(Y ?

j , Y
?
i )→ 0, ∀j 6= i,

where σ2n = σ2

2pn
.

Proof. The Fourier coefficients Y ?
j is the linear combination of Yjs, and since the distribution of

Yj is asymptotic normal, then the distribution of Y ?
j is also asymptotic normal. For the mean and

variance,

E(Y ?
j ) =

1

pn

pn∑
k=1

ψj,kE(Yk)→
1

pn

pn∑
k=1

ψj,kθk = θ?j

V ar(Y ?
j ) =

1

p2n

pn∑
k=1

ψ2
j,kV ar(Yk)→

σ2

p2n

pn∑
k=1

ψ2
j,k.
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And for
pn∑
k=1

ψ2
j,k, by Lemma 2.2.2,

pn∑
k=1

ψ2
j,k =

pn∑
k=1

cos2
(

2πjk

pn

)
=
pn
2
, or

pn∑
k=1

ψ2
j,k =

pn∑
k=1

sin2

(
2πjk

pn

)
=
pn
2

=⇒ V ar(Y ?
j ) −→ σ2

p2n

pn∑
k=1

ψ2
j,k =

σ2

2pn
.

Then Y ?
j

D−→ N
(
θ?j , σ

2
n

)
, where σ2n = σ2

2pn
.

And for j 6= i,

Cov
(
Y ?
j , Y

?
i

)
= Cov

(
1

pn

pn∑
k=1

Ykψj,k,
1

pn

pn∑
l=1

Ylψi,l

)

=
1

p2n

pn∑
k=1

pn∑
l=1

ψj,kψi,lCov (Yk, Yl)

=
1

p2n

pn∑
k=1

ψj,kψi,kCov (Yk, Yk) +
1

p2n

∑∑
k 6=l

ψj,kψi,lCov (Yk, Yl)

→ 0

(since
1

p2n

pn∑
k=1

ψj,kψi,kCov (Yk, Yk)→
σ2

2pn

pn∑
k=1

ψj,kψi,k = 0 for ∀j 6= i(Lemma 2.2.1)

1

p2n

∑∑
k 6=l

ψj,kψi,lCov (Yk, Yl)→ 0 since Cov (Yk, Yl)→ 0 for k 6= l)

Theorem 2.2.1 gives the asymptotic distribution of those Y ?
j s and their asymptotic covariance.

Then we can start to construct our model and deduce our tapering test statistic.

Model 2 based on Fourier transformations is constructed as follows:

Y ?
j = θ?j + σne

?
j for j = 1, · · · , pn

Y ?
j

D−→ N
(
θ?j , σ

2
n

)
, asymptotically independent across j ,

(2.13)



35

where

Y ?
j =

1

pn

pn∑
k=1

ψj,k log I1(ωk)−
1

pn

pn∑
k=1

ψj,k log I2(ωk) defined based on Fourier coefficients of log-periodograms

θ?j =
1

pn

pn∑
k=1

ψj,k log f1(ωk)−
1

pn

pn∑
k=1

ψj,k log f2(ωk) defined based on Fourier coefficients of log-spectrum

e?j =
Y ?
j − θ?j
σn

are asymptotic i.i.d. standard normal random variables

σ2n =
σ2

2pn
→ 0 as n→∞.

Yj , θj and σ are defined the same as in Model 1.

Note that now σ2n → 0 as n → ∞. We have achieved a vanishing variance. And this is what

makes it possible to even think about rates of testing criteria.

Now the hypothesis we want to test becomes

H0 : θ?j = 0 for all j = 1, · · · , pn

H1 : θ?j 6= 0 for some j = 1, · · · , pn

Then tapering test statistic is constructed in the form of a tapered sum of squared summary

coefficients Y ?
j s,

Q?n =

pn∑
j=1

wn,jY
?2
j ,

whose wights wn,j are presumed to taper to zero in the sense that wn,j → 0 as j → ∞. For such

asymptotic statements to make sense, we think conceptually that pn is arbitrarily large, however,

in practice pn is finite and determined by data configuration.

Remark 2.2.1. As defined before, the “rate” in rate of testing theory, δn, defines the gap between

the null hypothesis and the class of distinguishable alternatives, where the test can detect with high

power, asymptotically. The class of distinguishable alternatives, θ? ∈ H1(δn/δ
?
n; s,M) are defined

based on the smoothness assumption, where

H1(δ; s,M) =

θ ∈ Bs,M :

√√√√ ∞∑
j=1

θ?2j ≥ δ

 .

Thus δn characterized the test performance and the optimal testing procedures should achieve the

fastest rate of δn among the same testing mechanism.
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Here, smoothness constrains are defined as a restriction on the parameter θ to a smooth-

function class, θ ∈ Bs,M .

Note that the smoothness constraint is based on θjs, however, the “distinguishable region”

H1(δ; s,M) is defined on θ?j s. The following lemma will link these two definitions and provide

the basis for future proofs for “rate of testing” criteria. This lemma represents one of the key

innovations, and original contributions, of our work.

Lemma 2.2.3. The smoothness constraint on θ and the smoothness constraint on θ? have the

following relationship:

θ ∈ Bs,M ⇒ θ? ∈ Bs,M? .

Proof.

θ? ∈ Bs,M?

⇐⇒
∞∑
j=1

j2sθ?2j ≤M?2

⇐⇒ θ?T J̃?θ? ≤M?2

⇐⇒ tr
(
θ?T J̃?θ?

)
≤M?2

⇐⇒ tr
(
θTF T J̃?Fθ

)
= tr

(
θT J̃?θF TF

)
≤M?2,

where J̃? is the pn × pn diagonal matrix

J̃? =


12s

22s

. . .

p2sn


and F is the pn × pn matrix of Fourier basis functions

F =


ψ1,1 ψ1,2 · · · ψ1,pn

ψ2,1 ψ2,2 · · · ψ2,pn

...
...

...

ψpn,1 ψpn,2 · · · ψpn,pn


Since

tr
(
θT J̃?θF TF

)
≤ tr

(
θT J̃?θ

)
tr
(
F TF

)
,



37

and

tr
(
F TF

)
=

pn∑
i=1

pn∑
j=1

ψ2
ij

≤
(pn

2
+ 1
)
pn,

Then

tr
(
θT J̃?θF TF

)
≤ tr

(
θT J̃?θ

)(pn
2

+ 1
)
pn.

And since

θ ∈ Bs,M

⇐⇒
∞∑
j=1

j2sθ2j ≤M2

⇐⇒ θT J̃?θ ≤M2

⇐⇒ tr
(
θT J̃?θ

)
≤M2,

Define the fixed constant M?2 =
(pn

2 + 1
)
pnM

2, then our smoothness constraint

θ ∈ Bs,M ⇒ θ? ∈ Bs,M? .

From our specification of model (2.13), our definition of σ2n, Remark 2.2.1 and Lemma 2.2.3,

we can find that our current context is quite similar to the context in Spitzner (2008) [28] and our

Model 2 is similar to the model (1.3) as in this paper. So, similar asymptotic results can be derived

and the corresponding theorems and proofs can be found in Spitzner (2008b) [29].
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Remark 2.2.2. Based on the model of Y ?
j , the test is specified through the tapering test

statistic Q?n =
∑pn

j=1wn,jY
?2
j , which rejects null hypothesis when Q?n is large. The Fourier

coefficients are specified as before. wj is the regular tapering scheme. Define known constants

1/2 < s? < s? and

δ̂Fn (s) =
{
p2n (log pn)−1

}−s/(4s+1)
,

then no tapering test will satisfy the “rate of testing” criteria with rate δn = o
(
δ̂Fn (s)

)
, i.e.

δ̂Fn (s) is the optimal adaptive rate of testing for the tapering mechanism. Additionally, when

wn,j = j−1/2 ,

then the test Q?n will satisfy the rate of testing criteria for δn = δ̂Fn (s) across s? < s < s?.

2.3 Model 3 (Kernel Smoothing)

In Section 2.1, we introduced the basis model based on the raw periodogram (log-periodogram)

as the estimate of power spectrum (log-spectrum). Since Model 1 will never satisfy the “rate

of testing” criteria, we explored the Fourier transform in basis model and proposed the Model 2

in Section 2.2, inspired by Lu and Li (2013) [17] paper. Based on Model 2, we investigated the

asymptotic optimality property and derived the “optimal” tapering test from the “optimal weights”

wn,j = j−1/2 in the definition of tapering test. However, Fourier transform of log-periodogram as

estimates for log-spectrum doesn’t have a very meaningful interpretation in time series context,

instead, kernel smoothing of the periodogram (log-periodogram) is more acceptable. See for ex-

ample Priestley (1981)[20], Brockwell and Davis (1991) [6], and Brillinger (2001) [5]. There are

three different ways to smooth the periodogram (log-periodogram): local average smoothing, lag

window smoothing and periodogram averaging (Welch’s-Bartlett spectral estimation method). But

the Welch’s-Bartlett method lead to the spectral leakage and bias. Considering that the objective

of our research is to develop a powerful testing procedure which is convenient to use even for people

with little statistical background, the simple moving averaged log-periodogram as the estimate for

log-spectrum will be used, which is equivalent to do kernel smoothing with the Uniform Kernel.

Since the number of Fourier frequencies in a given interval increases approximately linearly with n,

we can indeed construct consistent log-spectrum estimators by averaging over a suitably increasing
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number of frequencies in a neighborhood. Firstly, let’s define our problem based on the kernel

smoothing.

The advantages of kernel smoothing is twofold: firstly, a smoothed periodogram, when suitably

constructed, is an asymptotically consistent estimate of its underlying spectral density (provided

that density is also smooth), which admits consideration of asymptotic performance concepts used

in rates of testing theory; secondly, a smoothed periodogram may be calculated at any frequency,

ω, which provides a means of extension to the case of unequal time series lengths, n1 6= n2.

Let’s firstly define the kernel smoothing function as

Ci,j,ki = K

(
ωiki − ωj

bi

)/ pi∑
ki=1

K

(
ωiki − ωj

bi

)
,

for frequencies ωj spread on an even grid between 0 and π. And wi,ki = 2πki/ni, n1 and n2

are lengths of these two time seires, K(.) is a specified kernel function, satisfying K(t) → 0 as

t → ±∞. In addition, bi are bandwidth parameters, and note that for these two time series, the

bandwidth parameter can be different. In the present investigation, the grid is wj = 2πj/n across

j = 1, · · · , p, where n is the minimum of n1 and n2 and p is minimum of p1 and p2. Then define

the kernel smoothed log-periodogram:

log Ĩi (ωj) =

pi∑
ki=1

Ci,j,ki log Ii (ωj)

In the proposed methodology, the Yj are defined according to

Ỹj = log Ĩ1 (ωj)− log Ĩ2 (ωj) ,

for frequencies ωj spread on an even grid between 0 and π. In the present investigation, the grid is

ωj = 2πj/n across j = 1, · · · , pn, where n is the minimum of n1 and n2 and pn is the minimum of

pn,1 and pn,2.

By Brockwell and Davis (1991) [6], it is easy to prove that Ỹj
D−→ N

(
θj , σ

′2
n

)
asymptotically

independent across j, where σ′2n = V ar(Ỹj) = σ2

2

{∑p1
k1=1C

2
1,j,k1

+
∑p2

k2=1C
2
2,j,k2

}
.

To reflect the asymptotic framework, the subsequent notation is updated to indicate a depen-

dency of relevant quantities on n, so that, e.g., bi = bn,i, Ỹj = Ỹn,j , etc. Limiting behavior is defined

with respect to n→∞, assuming that both n1/n2 and n2/n1 are bounded.
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The bandwidth parameter in the kernel function, bn,i is a positive integer depends on ni,

which is also denoted as “bandwidth” parameter in kernel smoothing. And the way we deduce the

optimality of tapering test is to derive the optimal rate for the bandwidth parameter bn,i. In order

for this estimate of the spectral density to be consistent, we impose the following conditions on b

and the kernel function:

bn,i →∞ and bn,i/ni → 0 as ni →∞
pn,i∑
ki=1

C2
i,j,ki

→ 0 as ni →∞.

The above conditions ensure that the discrete spectral average estimator converges to true value

and its covariance converges to zero. That is,

Cov
(

log Ĩ1 (ωj) , log Ĩ2 (ωk)
)
→ 0, if j 6= k

⇒ Cov
(
Ỹn,j , Ỹn,k

)
→ 0, if j 6= k

⇒ Cov
(
Ỹ 2
n,j , Ỹ

2
n,k

)
→ 0, if j 6= k

as ni sufficiently large. Note that the rate of vanishing moments is important here, because in our

mathematical results we will work with sums of coefficients, whose number of terms increase with

pn, and thus are affected by aggregate covariance, which could grow out of control if individual

covariances do not vanish quickly enough. See Brockwell and Davis (1991) [6], and Brillinger (2001)

[5].

Remark 2.3.1. Since the form of the kernel is not our focus, instead, we are interested in deriving

the optimal tuning parameter in the kernel smoothing so as to do the tapering test based on Model 2.

More importantly, our target is to propose a test with simple form but good performance regarding to

both asymptotic and empirical powers. So we would rather use the simplest kernel which is easiest

to understand as well as implement in practice and try to optimize the tapering test based on this

kernel. In the following theorems and proofs, we will take the kernel defined in before as general

case and the Uniform discrete compact kernel as the special case.

Uniform Kernel means K(tl) = 1{tl≤1}, which is equivalent to simple local moving average,

as a common technique to smooth the periodogram (log-periodogram), see Priestley (1981)[20],

Brockwell and Davis (1991) [6], and Brillinger (2001) [5].

Model 3 based on the kernel smoothing of log-periodogram as estimates for log-spectrum is
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defined as follows:

Ỹn,j = θj + σ′nε̃j for j = 1, · · · , pn (2.14)

Ỹn,j
D−→ N

(
θj , σ

′2
n

)
, asymptotically independent across j ,

where

Ỹn,j = log Ĩ1 (ωj)− log Ĩ2 (ωj)

θj = log f1(ωj)− log f2(ωj)

ε̃j =
Ỹn,j − θj

σ′n
are asymptotic standard normal random variables

σ′2n =
σ2

2


p1∑
k1=1

C2
1,j,k1 +

p2∑
k2=1

C2
2,j,k2

→ 0 as n→∞.

Note that now σ′2n → 0 as n → ∞. We have achieved a vanishing variance. And this is what

makes it possible to even think about rates of testing criteria.

Similarly to the setting in Model 1, to test the hypothesis of equal spectral densities is equiv-

alent to test

H0 : θj = 0 for all j = 1, · · · , pn

H1 : θj 6= 0 for some j = 1, · · · , pn

Finally, the corresponding tapering test statistic is constructed as

Q̃n =

pn∑
j=1

j−1/2Ỹ 2
n,j .

Additionally, in order for this estimate of the spectral density to be consistent, we impose the

following conditions on bn,i and the kernel function:

bn,i →∞ and bn,i/ni → 0 as ni →∞
pn,i∑
ki=1

C2
i,j,ki

→ 0 as ni →∞

The above conditions ensure that the kernel smoothed spectral estimator converges to true value
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and its covariance converges to zero. And by Lemma 2.1.1,

Cov
(

log Ĩ1 (ωj) , log Ĩ2 (ωk)
)
→ 0, if j 6= k

⇒ Cov (Yn,j , Yn,k)→ 0, if j 6= k

⇒ Cov
(
Y 2
n,j , Y

2
n,k

)
→ 0, if j 6= k

as ni sufficiently large. See Brockwell and Davis (1991) [6], and Brillinger (2001) [5].

To look the “rate of testing” criteria, we need to investigate the asymptotic power of our test.

Thus the following remark is very important as it defines the “distinguishable region” of our test,

i.e. H1(δn/δ
?
n; s,M).

Remark 2.3.2. The “rate” in rate of testing theory, δn, defines the range of the indistinguishable

region where the test cannot detect with high power, asymptotically. The class of “distinguishable”

alternatives, H1 : θ ∈ H1(δn/δ
?
n; s,M) are defined based on the smoothness assumption, where

H1(δ; s,M) =

θ ∈ Bs,M :

√√√√ ∞∑
j=1

θ2j ≥ δ

 .

Thus δn characterized the test performance and the optimal testing procedures should achieve the

fastest rate of δn → 0 among the same testing mechanism.

To take a closer look at the “rate of testing” criteria, let’s firstly write it into two equivalent

conditions involving the asymptotic mean and variance of Qn. Similarly to the proof of Lemma

2.3.1, we can prove the following lemma.

Lemma 2.3.1. For fixed smoothness parameter s > 1/2 and M > 0, and some positive sequence

δn → 0, the rate of testing criteria holds for the test statistic Qn =
∑pn

j=1 j
−1/2Y 2

j if and only if

inf
θ∈H1(δn/δ?n;s,M)

EH1−0(Qn)/
√
V arH0(Qn)→∞ and (2.15)

inf
θ∈H1(δn/δ?n;s,M)

EH1−0(Qn)/
√
V arH1−0(Qn)→∞, (2.16)

where EH1−0(Qn) = EH1(Qn)− EH0(Qn) and V arH1−0(Qn) = V arH1(Qn)− V arH0(Qn).

The following lemma will be used in the proof of our main results, Theorem 2.3.1
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Lemma 2.3.2.
pn∑
j=1

j−1 � log pn

Proof. For
∑pn

j=1 j
−1, consider the area of rectangles with the curve y = 1/x, we will get

∑pn
j=1 j

−1 >∫ pn+1
1

1
xdx = log(pn + 1). And since the partial sums of the series have logarithmic growth, in

particular
∑pn

j=1 j
−1 < log(pn) + 1. Thus we will have 1 < log(pn+1)

log pn
<

∑pn
j=1 j

−1

log pn
< log(pn)+1

log pn
=

1 + 1
log pn

≤ 1 + 1
log 2 , thus

∑pn
j=1 j

−1 � log pn.

The following theorem serves as the main results and the key contributions of our research. We

write the “rate of testing” criteria into two equivalent conditions involving the unknown parameters

of our interest and do some manipulations to finally get the “optimal” bandwidth parameter and

“optimal” rate.

Theorem 2.3.1. Based on the model of Ỹj, the test is specified through the tapering test

statistic Q̃n, which rejects null hypothesis when Q̃n is large. Define b̂n,i to be the setting of

the bandwidth parameter bn,i, such that

min
i,j

Ci,j,ki =
{
p4s+1
n log pn

}−1/4
, (2.17)

where min
i,j

Ci,j,ki is the minimal non-zero value of Ci,j,ki across i = 1, 2, and j = 1, · · · , pn.

Fix bn,i = b̂n,i, at n = 1, 2 and define known constants 1/2 < s? < s? and the sequence

δ̂n(s) =
{
σ′4n log pn

}s/(4s+1)
. (2.18)

then no tapering test will satisfy the “rate of testing” criteria with rate δn = o
(
δ̂n(s)

)
, i.e.

δ̂n(s) is the optimal adaptive rate of testing for the tapering mechanism. Additionally, when

bn,i = b̂n,i for i = 1, 2, then the test Q̃n will satisfy the rate of testing criteria for δ̂n(s) across

s? < s < s?.

Proof. By Lemma 2.3.1, to find the equivalent conditions for the adaptive rate of testing criteria,

we need to look at condition (2.15) and (2.16). Let’s look at the mean and variance of the test
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statistic Q̃n.

E
(
Q̃n

)
= E(

pn∑
j=1

j−1/2Y 2
n,j)

=

pn∑
j=1

j−1/2E(Y 2
n,j)

=

pn∑
j=1

j−1/2
{
V ar(Yn,j) + [E(Yn,j)]

2
}

−→
pn∑
j=1

j−1/2
{
σ′2n + θ2j

}
=

pn∑
j=1

j−1/2σ′2n +

pn∑
j=1

j−1/2θ2j

V ar
(
Q̃n

)
= V ar(

pn∑
j=1

j−1/2Yn,j)

=

pn∑
j=1

j−1V ar(Y 2
n,j) +

∑∑
j 6=k

j−1/2k−1/2Cov(Y 2
n,j , Y

2
n,k)

−→
pn∑
j=1

j−1V ar(Y 2
n,j) (Lemma 2.2.1)

=

pn∑
j=1

j−1
{
E(Y 4

n,j) +
[
E(Y 2

n,j)
]2}

−→
pn∑
j=1

j−1
{

4θ2jσ
′2
n + 2σ′4n

}
= 4σ′2n

pn∑
j=1

j−1θ2j + 2σ′4n

pn∑
j=1

j−1

Then condition (2.15) and (2.16) becomes

inf
θ∈H1(δn/δ?n;s,M)

∑pn
j=1 j

−1/2θ2j√
σ′4n
∑pn

j=1 j
−1
→∞ and (2.19)

inf
θ∈H1(δn/δ?n;s,M)

∑pn
j=1 j

−1/2θ2j√
σ′2n
∑pn

j=1 j
−1θ2j

→∞ (2.20)



45

Afterwards, let’s look at the condition (2.20). Since

pn∑
j=1

j−1θ2j <

pn∑
j=1

j−1/2θ2j

=⇒
pn∑
j=1

j−1/2θ2j

/√√√√σ′2n

pn∑
j=1

j−1θ2j >

pn∑
j=1

j−1/2θ2j

/√√√√σ′2n

pn∑
j=1

j−1/2θ2j

=⇒
pn∑
j=1

j−1/2θ2j

/√√√√σ′2n

pn∑
j=1

j−1θ2j >

√∑pn
j=1 j

−1/2θ2j
σ′2n

= An.

And if condition (2.19) is satisfied, since
∑pn

j=1 j
−1 → ∞ as n → ∞, then An → ∞ as n → ∞.

And thus condition (2.20) is satisfied. Thus condition (2.19) implies condition (2.20).

Therefore, we only need to look at condition (2.19). Now, for condition (2.19), since the

denominator is not related with θjs, let’s firstly look at the lower bound of
∑pn

j=1 j
−1/2θ2j under the

constraint θ ∈ H1(δn/δ
?
n; s,M). Since

pn∑
j=1

j−1/2θ2j =

∞∑
j=1

j−1/2θ2j −
∞∑

j=pn+1

j−1/2θ2j .

Let’s firstly look at
∑∞

j=1 j
−1/2θ2j . By Langrange multiplier, we can conclude that the lower bound

of
∑∞

j=1 j
−1/2θ2j subject to the constraint θ ∈ Bs,M is achieved by

θj =

 δn
δ?n

j = ĵ

0 o.w.
,

where ĵ is the largest index between 1 and ∞ that satisfies ĵ ≤
(
δ?nM
δn

)1/s
. Then the lower bound

of
∑∞

j=1 j
−1/2θ2j is ĵ−1/2

(
δn
δ?n

)2
. And since

∞∑
j=pn+1

j−1/2θ2j =
∞∑

j=pn+1

j−1/2j−2s
(
j2sθ2j

)
≤ p−(2s+1/2)

n

∞∑
j=pn+1

j2sθ2j

≤ p−(2s+1/2)
n M2

(since θ ∈ Bs,M i.e.

√√√√ ∞∑
j=1

j2sθ2j ≤M
2).

Additionally, when θj is specified as before and ĵ =
(
δ?nM
δn

)1/s
> pn then

∑∞
j=pn+1 j

2sθ2j = M2, and∑∞
j=pn+1 j

−1/2θ2j achieves the upper bound as p
−(2s+1/2)
n M2.
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Thus the lower bound of
∑pn

j=1 j
−1/2θ2j subject to the constraint θ ∈ H1(δn/δ

?
n; s,M) is

inf
θ∈H1(δn/δ?n;s,M)

pn∑
j=1

j−1/2θ2j = ĵ−1/2
(
δn
δ?n

)2

− p−(2s+1/2)
n M2

≥
(
δn
δ?n

) 4s+1
2s

M−
1
2s − p−

4s+1
2

n M2,

which is achieved by

θj =

 δn
δ?n

j =
(
δ?nM
δn

)1/s
> pn

0 o.w.

Thus condition (2.19) becomes(
δn
δ?n

) 4s+1
2s − p−

4s+1
2

n√
σ′4n
∑pn

j=1 j
−1

→∞

⇔

lim
n→∞

(
δn
δ?n

) 4s+1
2s√

σ′4n
∑pn

j=1 j
−1

=∞ and lim sup
n→∞

p
− 4s+1

2
n√

σ′4n
∑pn

j=1 j
−1

<∞

(the second condition is needed because the rate of the first condition →∞

can be arbitrarily slowed down by ∀δ?n → 0)

And then the first condition take the square is equivalent to

lim
n→∞

{
1

δ
? 4s+1

s
n

}
δ

4s+1
s

n

σ′4n
∑pn

j=1 j
−1 =∞.

Since this condition is valid for ∀δ?n → 0, then the item in braces tends to infinity but with arbitrarily

slow rate. Then the condition is equivalent to

lim inf
n→∞

δ
(4s+1)/s
n

σ′4n
∑pn

j=1 j
−1 > 0.

And by Lemma 2.3.2, this condiiton is equivalent to

lim inf
n→∞

δ
(4s+1)/s
n

σ′4n log pn
> 0. (2.21)

For the second condition, take the square, by Lemma 2.3.2, and based on the definition of min
i,j

Ci,j,ki ,

this condition is equivalent to

lim sup
n→∞

p
−(4s+1)
n

min
i,j

C4
i,j,ki

log pn
<∞. (2.22)
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For min
i,j

Ci,j,ki , it is defined as minimally allowed, if it is the fastest rate goes to zero that

satisfies condition (2.22).

For the positive sequence δn → 0, it is defined as minimally allowed, if it is the fastest rate

decaying to zero that satisfies condition (2.21). And if the condition (2.22) is also satisfied, then

δn is the minimax rate we are looking for.

Then let’s prove that min
i,j

Ci,j,ki is minimally allowed, if and only if

p
−(4s+1)
n

min
i,j

C4
i,j,ki

log pn
� 1. (2.23)

It is easy to prove that condition (2.23) is a necessary condition. To prove it is a sufficient condition,

if exits another sequence min
i,j

C?i,j,ki → 0 satisfies condition (2.23) and min
i,j

C?i,j,ki = o(min
i,j

Ci,j,ki).

Then

p
−(4s+1)
n

min
i,j

C?4i,j,ki log pn
=

p
−(4s+1)
n

min
i,j

C4
i,j,ki

log pn

mini,j Ci,j,ki
min
i,j

C?i,j,ki

4

→∞,

and thus condition (2.22) dose not hold. Therefore, condition (2.23) is equivalent to condition

(2.22).

Then let’s prove that the sequence δn is minimally allowed, if and only if

δ
(4s+1)/s
n

σ′4n log pn
� 1. (2.24)

It is easy to prove that condition (2.23) is a necessary condition. To prove it is a sufficient condition,

if exits another sequence δ?n → 0 satisfies condition (2.24 and δ?n = o(δn). Then

δ
?(4s+1)/s
n

σ′4n log pn
=

δ
(4s+1)/s
n

σ′4n log pn

(
δ?n
δn

)(4s+1)/s

→ 0

and thus condition (2.21) dose not hold. Therefore, condition (2.24) is equivalent to condition

(2.21).

Then the “rate of testing” criteria is equivalent to condition (2.23) and condition (2.24). From

condition (2.23), we can get the optimal bandwidth in equation (2.17) and minimax rate in equation

(2.18).

Note that this is the theorem for the general kernel functions and these the log-periodogram

can be smoothed with different bandwidth parameter. By plugging the specific form of the kernel
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function into Equation (2.17), we can derive the corresponding “optimal” bandwidth b̂n,i for that

kernel. Additionally, when we need to smooth differently for these two time series, the results in

Equation (2.17) becomes the relationship of the “optimal” bandwidth parameter of these two time

series, i.e., b̂n,1 and b̂n,2.

Remark 2.3.3. In Theorem 2.3.1, we have developed the tapering test procedure for the general

case when n1 is not necessary equal to n2 and/or bn,1 is not necessary equal to bn,2. However, in

our empirical work, driven by the needs of the motivating SEEG dataset, let’s consider the scenario

that the length of these two time series are equal and the bandwidth for these two time series are

equal, i.e. n1 = n2 = n, bn,1 = bn,2 = bn.

Remark 2.3.4. Assume the notation and conditions of Theorem 2.3.1, for the Uniform

Kernel (i.e. simple moving average), the “optimal bandwidth” is

b̂n = B
⌊1

2
p3/4n (log pn)1/4 − 1

2

⌋
, (2.25)

where the lower bound of smoothness parameter s is used to construct the rate, B > 0 is a

leading constant and bac denotes the integer part of a number. And the “optimal adaptive

rate of testing” is

δ̂n(s) =
{
p4s+1
n (log pn)−1

}−s/(2(4s+1))
. (2.26)

Remark 2.3.5. However, in Equation (2.25),
⌊
1
2p

3/4
n (log pn)1/4 − 1

2

⌋
is just the “optimal”

rate of bandwidth for n goes to infinity. To get the value of bandwidth in practice for a specific

value of n, we add the leading constant B into b̂n. The “optimal” leading constant is defined

as the value of B that results in optimal power of the tapering test across different value of

pn, since our main consideration of performance is the power. However, it’s challenging to

think about the approach that can address this question asymptotically. Here for simplicity,

in our empirical work, we will set B = 1 as it is often used by convention, see Ma and He

(2016) [19] for similar specifications. Additionally, in the following chapter, we will show

that setting B = 1, our proposed tapering test Q̃n exhibits very strong empirical performance

across wide ranges of value of pn.

Remark 2.3.6. Note that the “optimal bandwidth” and “optimal adaptive rate of testing” can be
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derived by plugging any kernel function into Equation (2.17) and (2.18). For the simplicity of

our testing procedure, Uniform kernel is used and the corresponding “optimal bandwidth” b̂n and

“optimal adaptive rate of testing” δ̂n are deduced as in Corollary 2.3.4. Other forms of kernel can

also be plugged into these two conditions in Theorem 2.3.1.

For example, for Epanechnikov kernel with

K(tl) =
3

4
(1− t2l )1{tl≤1}

the optimal bandwidth is

b̂n = B
⌊
p3/8n (log pn)1/8

⌋
and the “optimal adaptive rate of testing” is

δ̂n(s) =
{
p4s+1
n (log pn)−3

}−s/(4(4s+1))
.

2.4 Connection Between Fourier Transform and Kernel Smooth-

ing

In Section 2.2 we introduced the model based on Fourier transform of the log periodogram as the

consistent estimate of log spectral density, and in Section 2.3 based on “optimal” kernel smoothing

of the log periodogram as the consistent estimate of log spectral density. As sometimes Fourier

transformation is equivalent to kernel smoothing under certain form of the kernel, we will now try

to look at whether this connection is applicable in our case.

For any unknown probability density function f(x) of a direction x, it is periodic with

period 2π. We have i.i.d. random sample {xk} from f , k = 1, · · · , n. φj =
∫ π
−π f(x)e−ijxdx =

E
(
e−ijx

)
for each j are called Fourier coefficients of f . The collection of φj for all j is called

the Fourier transform of f . Since φjs are unknown, we have estimates φ̂j = En
(
e−ijx

)
=

1
n

∑n
k=1 e

−ijxk . If we reconstruct f from its Fourier transform at any point x where it is continuous,

we will get the Fourier series density estimate g. And after doing some transformations, we
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have

g(x) =
1

2π

m∑
j=−m

φ̂je
ijx

=
1

2π

m∑
j=−m

( 1

n

n∑
k=1

e−ijxk
)
eijx

=
1

n

n∑
k=1

( 1

2π

m∑
j=−m

eij(x−xk)
)

=
1

n

n∑
k=1

Km

(
x− xk

)
,

with Km

(
y
)

= 1
2π

∑m
j=−m e

ijy = 1
2π

sin[(m+ 1
2)y]

sin( 1
2
y)

is called a Poisson Kernel, which is symmetric

about 0 and
∫ π
−πKm(y)dy = 1 and is more concentrated near zero as m grows. m is the smoothing

parameter. The larger m, the more wiggly complexity is possible to g. g actually converges to

f , and is thus on longer just an approximation, at points where f is continuous. Additionally,

since kernel density estimates are defined as estimates of the form g(x) = 1
n

∑n
k=1Km

(
x−xk

)
,

Fourier series density estimate is equivalent to kernel density estimate with Poisson kernel.

In our case, our goal is not to get density estimates based on a sample from this density, instead,

we are trying to estimate spectral density using periodograms, i.e. Model 1. However, Model 1 will

never satisfy rate of testing criteria. The reason is that the σ in the model is a constant, it dose

not goes to zero as n goes to infinity. And we have proved that model with constant σ will always

sub-optimal to the model with σ goes with zero, with regarding to the asymptotic power. Thus we

want to apply some transformation to Model 1 and thus get the new model with σ goes to zero.

Fourier transformation and kernel smoothing are chosen to transform the Model 1. So our goal here

is not to reconstruct the density from the Fourier transformation of the sample from this density,

we mainly use Fourier transformation to get a new model with σ goes to zero as n goes to infinity,

which satisfies rate of testing theory and thus have better asymptotic power. Consequently, our

Fourier transformed model is not equivalent to kernel smoothed model.

2.5 Model 4 (Basic Model with Replications)

Our Model 1, Model 2 and Model 3 are based on one single realization {x1,1, · · · , x1,n1} and

{x2,1, · · · , x2,n2} from time series process {X1,t1} and {X2,t2}. How about we have m realiza-
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tions of {X1,t1} and {X2,t2}? Do we still need kernel smoothing? The answer is yes and I will

explain step by step through the evaluation of empirical performance based on “rate of testing”

criteria.

Suppose there are m replicated samples for each of {Xk,tk} and m can be either a constant or

m → ∞ and m
n → 0 as n → ∞, the tapering test procedure is still applicable and similar testing

framework can be derived. For the i = 1, · · · ,mth sample, define

Y
(i)
j = log I

(i)
1 (ω1,j)− log I

(i)
2 (ω1,j),

j = 1, · · · , pn and the average over m replicated samples,

Ym,j =
1

m

∑m

i=1
Y

(i)
j .

Then Ym,j
D−→ N

(
θj ,

σ2

m

)
. The basic Model 1 based on raw periodogram now becomes

Ym,j = θj +
σ√
m
εm,j for j = 1, · · · , pn, (2.27)

where εm,j =
Ym,j−θj
σ/
√
m

are asymptotic independent standard normal random variables. And the test

statistic becomes

Qm,n =

pn∑
j=1

j−1/2Y 2
m,j .

Now let’s consider the model with m replications of each time series. Suppose m → ∞

andmn → 0 as n → ∞, then σ/
√
m → 0 in the basic model (2.27). Thus the question comes as

whether kernel smoothing is still needed. The following theorem provides the “optimal adaptive

rate of testing” under basic model with replications.
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Theorem 2.5.1. Based on the basic model with replication (2.27), the goal is to test the

hypothesis (2.1) through the tapering test statistic Qm,n, which rejects null hypothesis when

Qm,n is large. Set

δ̂m,n(s) =
{
p4s+1
n (log pn)−1

}−s/(2(4s+1))
(2.28)

and suppose 1/2 < s? < s?. For no test Qm,n is “rate of testing criteria” satisfied with

δm,n(s) = o
(
δ̂m,n(s)

)
across s? < s < s?. Moreover, if the number of replications m is set

to be

m̂n = B
⌊
p(4s+1)/2
n log p1/2n

⌋
, (2.29)

where B > 0 is a leading constant and bac denotes the integer part of a number. Then test

Qm,n satisfies rate of testing criteria with “optimal adaptive rate of testing” δ̂m,n(s) across

s? < s < s?.

Proof. The same results can be derived for basic model with replication as in Lemma 2.3.1, i.e. the

“rate of testing criteria” is equivalent to

inf
θ∈H1(δn/δ?n;s,M)

EH1−0(Qm,n)/
√
V arH0(Qm,n)→∞

inf
θ∈H1(δn/δ?n;s,M)

EH1−0(Qm,n)/
√
V arH1−0(Qm,n)→∞.

Additionally, since Ym,j
D−→ N

(
θj ,

σ2

m

)
and Qm,n =

pn∑
j=1

j−1/2Y 2
m,j , then

lim
n→∞

E (Qm,n) =
σ2

m

pn∑
j=1

j−1/2 +

pn∑
j=1

j−1/2θ2j

lim
n→∞

V ar (Qm,n) =
2σ4

m2

pn∑
j=1

j−1 +
4σ2

m

pn∑
j=1

j−1θ2j .

Thus, those two conditions becomes

inf
θ∈H1(δn/δ?n;s,M)

∑pn
j=1 j

−1/2θ2j√∑pn
j=1 j

−1/m2
→∞ and inf

θ∈H1(δn/δ?n;s,M)

∑pn
j=1 j

−1/2θ2j√∑pn
j=1 j

−1θ2j/m
→∞. (2.30)

In the first condition of (2.30), since
∑pn

j=1 j
−1/2 →∞, then

inf
θ∈H1(δn/δ?n;s,M)

∑pn
j=1 j

−1/2θ2j√∑pn
j=1 j

−1/m2
→∞⇒

pn∑
j=1

j−1/2θ2jm→∞.
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And since ∑pn
j=1 j

−1/2θ2j√∑pn
j=1 j

−1θ2j/m
≥

∑pn
j=1 j

−1θ2j√∑pn
j=1 j

−1θ2j/m
=

√√√√ pn∑
j=1

j−1/2θ2jm→∞,

the first condition in (2.30) ⇒ the second condition in (2.30). Then we only need to look at the

first condition in (2.30).

Firstly, let’s look at inf
θ∈H1(δn/δ?n;s,M)

∑pn
j=1 j

−1/2θ2j →∞. Similar to proof of Theorem 2.3.1, we

can get

inf
θ∈H1(δn/δ?n;s,M)

pn∑
j=1

j−1/2θ2j = ĵ−1/2
(
δn
δ?n

)2

− p−(2s+1/2)
n M̃2

=

(
δn
δ?n

) 4s+1
2s

M̃−
1
2s − p−

4s+1
2

n M̃2,

which is achieved by

θj =


δn
δ?n

j =
(
δ?nM̃
δn

)1/s
> pn

0 o.w.
,

where ĵ is the largest index between 1 and ∞ that satisfies ĵ ≤
(
δ?nM̃
δn

)1/s
. Then the condition

becomes

lim
n→∞

ĵ−1/2
(
δn
δ?n

)2
m√∑pn

j=1 j
−1

=∞ and lim sup
n→∞

p
−2s−1/2
n m√∑pn

j=1 j
−1

<∞. (2.31)

The second condition is needed because the rate of the first condition can be arbitrarily slowed

down by ∀δ?n → 0. For the first condition in (2.31), take the square,

ĵ−1
(
δn
δ?n

)4
m2∑pn

j=1 j
−1 =

{
ĵ−1

δ?4n j̃
−1

}
j̃−1δ4nm

2∑pn
j=1 j

−1 →∞,

where j̃ is defined as
(
M
δn

)1/s
. Then ĵ ≤ j̃ ⇒ ĵ−1/2 ≥ j̃−1/2, and thus the item in braces →∞ for

∀δ?n → 0. Therefore, the first condition in (2.31) is equivalent to

lim inf
n→∞

j̃−1δ4nm
2∑pn

j=1 j
−1 > 0 i.e. lim inf

n→∞

j̃−1δ4nm
2

log pn
> 0, (2.32)

based on Lemma 2.3.2. For the second condition in (2.31), take the square, then it is equivalent to

lim sup
n→∞

p−4s−1n m2∑pn
j=1 j

−1 <∞ i.e. lim sup
n→∞

p−4s−1n m2

log pn
<∞, (2.33)

based on Lemma 2.3.2.
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Similarly to the definition in Theorem 2.3.1, for the number of replications m, where m→∞

and m
n → 0 as n→∞, it is defined as minimally allowed, if it is the fastest rate →∞ satisfying

the first condition in (2.33). Define δn as minimally allowed if it is the fastest rate→ 0 that satisfies

the first condition of (2.33) and if the second condition of (2.33) is also satisfied, δn is the minimax

rate we are looking for.

Similarly to proofs of Theorem 2.3.1, we can prove that the number of replications m is

minimally allowed if and only if

j̃−1δ4nm
2

log pn
� 1

⇔ mδ
(4s+1)/s
n

log pn
� 1

the sequence δn is minimally allowed if and only if

p
−(4s+1)
n m2

log pn
� 1.

From the second condition, the optimal number of replications can be derived as

m̂n =
{
p4s+1
n log pn

}1/2
and if we plug m̂ into the first condition, the optimal adaptive rate of testing can be derived as

δ̂m,n(s) =
{
p4s+1
n (log pn)−1

}−s/(2(4s+1))
.

Remark 2.5.1. From results of Theorem 2.5.1, in order to achieve the “rate of testing”

criteria, the number of replications needs to be as large as m̂n. And from Equation (2.29),

we can easily find that m̂
n → ∞ as n → ∞. Thus, although the “rate of testing criteria”

can be satisfied under model (2.27) with “optimal rate” δm,n(s), the number of replications

to make that happen is too large, which is contrary to our assumption of m
n → 0 and is not

meaningful in practice. Thus kernel smoothing model is recommended over replicated basic

model.
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2.6 Model 5 (Kernel Smoothing Model with Replications)

Since the basic model with replications still dose not satisfy the “rate of testing” criteria, the kernel

smoothing Model 3 is further extended to the current context with replications.

Suppose m is treated as constant as n→∞, which is the common case and is more meaningful

in practice. Similar to the replicated basic model, define

Ỹ
(l)
j =

(
log Ĩ

(l)
1 (ωj)

)
−
(

log Ĩ
(l)
2 (ωj)

)
,

j = 1, · · · , pn and the average over m replicated samples,

Ỹm,j =
1

m

∑m

l=1
Ỹ

(l)
j .

Then Ỹm,j
D−→ N

(
θj ,

σ′2n
m

)
. The Model 3 based on kernel smoothing now becomes

Ỹm,j = θj +
σ′n√
m
ε̃m,j for j = 1, · · · , pn (2.34)

where ε̃m,j =
Ỹm,j−θj
σ′n/
√
m

are asymptotic independent standard normal random variables. And the test

statistic becomes

Q̃m,n =

pn∑
j=1

j−1/2Ỹ 2
m,j .

Remark 2.6.1. We can easily prove that the same theoretical results can be derived for

kernel smoothing model as in Theorem 2.3.1, which means that kernel smoothing model with

“optimal bandwidth” is still recommended over basic model.

2.7 Summary

In this chapter, we are trying to develop the tapering test under time series context. Firstly, we

build Model 1, the basic model based on the periodogram (log-periodogram) as the estimate for

spectrum (log-spectrum). However, this model suffers from in-efficiency problem, mainly because

of the in-consistency of periodogram (log-periodogram). And we prove that the model based on

in-consistent estimate will always be sub-optimal to the model based on consistent estimate. Thus
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we are trying to overcome this problem by Fourier transform of the basic model as Model 2 which

is inspired by Lu and Li (2013) [17] paper. After Fourier transformation, the variance of the new

Y ?
j s go to zero as n goes to infinity. The corresponding “optimal weights” and “optimal adaptive

rate of testing” are derived. However, Fourier transform is not generally used in time series to

estimate periodogram (log-periodogram). Thus we propose the Model 3 based on kernel smoothing

of log-periodogram as the estimate for log-spectrum. If the bandwidth of the kernel satisfy certain

conditions, the kernel smoothed estimator is consistent and thus the “rate of testing criteria” can

be satisfied. The corresponding “optimal bandwidth” and “optimal adaptive rate of testing” are

derived. Therefore, the “optimal tapering test” based on kernel smoothing model using the “optimal

bandwidth” is derived.

We also explores the relationship between Fourier transform and kernel smoothing to see

whether the Fourier transform in Model 2 can be written into kernel smoothing as in Model 3. But

we find out that these two models are actually not related.

Additionally, since our current “optimal tapering test” are based on single sample from each

of the time series. But in practice, we will encounter with the scenario where there are multiple

samples for each time series. We future look at the replicated model. And since the replicated

basic model does not have the problem of in-consistency anymore, the question is whether kernel

smoothing is still needed. We explore the “rate of testing theory” under basic model. The “optimal

number of replications” and “optimal adaptive rate of testing” are derived. However, the number of

replications needed to satisfy rate of testing criteria is too large, which is contrary to our assumption

and is meaningless in practice. Thus, kernel smoothing is sill recommended. The replicated kernel

smooth model is built based on the reasonable assumption that the number of replication m is

constant as n goes to infinity. The same “optimal bandwidth” and “optimal adaptive rate of

testing” are derived as Model 3.

In summary, no matter whether replication exists, kernel smoothing model is recommended

for its optimal asymptotic power.
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Chapter 3

Bayesian Tapering Test and Bayesian

Multiple Testing

3.1 Bayesian Tapering Test

Since the tests under kernel smoothing model, i.e. Model 3 without replication and Model 5 with

replications, the Bayesian testing framework explored in this chapter is based on Model 3 and

Model 5. The reasons we want to write our test into Bayesian framework are

• firstly, to prepare for our future work in Bayesian multiple testing;

• secondly, to actually implement the tests in real data, the asymptotic critical value performs

not good as the empirical critical value, however, it is too hard to get the empirical critical

value for two time series with unknown relationship of their spectral densities;

• finally, we will explain latter that the Bayes factor can be written as the monotone transfor-

mation of the tapering test statistic, which makes it easier to implement and understand the

Bayes tapering test framework.
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3.1.1 Bayesian Setup

As discussed in Section 1.4, another important advantage of Spitzner’s tapering test is that the test

statistic in Equation (1.5) is easy to be written through a formal Bayesian construction. Spitzner

(2008) [27] studied the Bayesian point-null testing problem under a high-dimensional normal-means

model. A non-informative prior structure is proposed for general problems, and then refined for

the specialized contexts of goodness-of-fit testing and functional data analysis. Here we further

explore our testing procedures in Bayesian framework following the idea of Spitzner (2008) [27].

For ease of explanation, we will only look at Model 3 based on kernel smoothing as in Section

2.3, and the Bayesian framework for models based on Fourier transformation is similar. The

asymptotic framework under consideration is defined according to

Ỹj = θj + σ′nε̃j for j = 1, · · · , pn

Ỹj
D−→ N

(
θj , σ

′2
n

)
, asymptotically independent across j

The objective is to test the hypothesis:

H0 : θj = 0 for all j = 1, · · · , pn

H1 : θj 6= 0 for some j = 1, · · · , pn

Special attention is given to the context where smoothness assumption θ ∈ Bs,M is incorporated

into the Bayesian framework.

Following the idea of Spitzner (2008) [27] by building the standard Bayesian setup as in Berger

(1985) [4] and Robert (2001) [23],

• a prior mass ρ0,n ∈ (0, 1) is placed on the null hypothesis H0.

• a continuous distribution (1− ρ0,n)π (θ|H1) is placed on the alternative hypothesis H1.

• the prior on θ is specified according to θ|H1 ∼ N
(
ξ, τ2nWnΣn

)
,

where Wn = diag (wn,1, · · · , wn,pn) is the diagonal matrix of weights, Σn = σ′nI = σ2

2bn+1I

is the covariance matrix depending on the unknown tuning parameter b.

• the likelihood is P (Ỹ|θ) = N(θ,Σn).
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Thus the marginal likelihood under null hypothesis is Ỹ|H0 ∼ N (0,Σn), and the marginal likeli-

hood of the data under alternative hypothesis is Ỹ|H1 ∼ N
(
ξ,Σn + τ2nWnΣn

)
.

Our procedure will focus on ξ = 0, which means that θ|H1 ∼ N
(
0, τ2nWnΣn

)
. And define

υn,j =
{

1 + 1
τ2nwn,j

}−1
. Then τ2nwn,j =

(
υ−1n,j − 1

)−1
, and thus 1 + τ2nwn,j = (1− υn,j)−1.

To determine whether to reject null hypothesis in the Bayesian testing framework, we need the

Bayes factor and/or the posterior null probability. Bayes factor is defined as the marginal likelihood

of the data under null hypothesis divided by the marginal likelihood of the data under alternative

hypothesis:

BF0(Ỹ) =
m
(
Ỹ|H0

)
m
(
Ỹ|H1

)
=

N (0,Σn)

N (0,Σn + τ2nWnΣn)

=

pn∏
j=1

{
σ′−1n exp

(
−1

2 Ỹ
2
j /σ

′2
n

)}
pn∏
j=1

{
(1 + τ2nwn,j)

− 1
2 σ′−1n exp

(
−1

2 Ỹ
2
j / [(1 + τ2nwn,j)σ

′2
n ]
)}

=

pn∏
j=1

{
(1− υn,j)−

1
2 exp

[
− 1

2σ′2n

(
Ỹ 2
j − (1− υn,j) Ỹ 2

j

)]}

=

pn∏
j=1

exp

{
− 1

2σ′2n
υn,j Ỹ

2
j −

1

2
log (1− υn,j)

}

= exp

− 1

2σ′2n

pn∑
j=1

υn,j Ỹ
2
j −

1

2

pn∑
j=1

log (1− υn,j)

 (3.1)

The decision is made based on the value of of 2 logBF , which provides us information that how

much confident we have for the H0 based on the data we have. As provided by Kass and Raftery

(1995) [16], the value of 2 logBF from 0 to 2 means “Not worth more than a bare mention”; those

from 2 to 6 means “positive” evidence for H0; those greater than 6 indicate “strong” evidence for

H0; and those greater than 10 means “very strong” evidence for H0. While the negative values

indicate the strength of evidence for H1.

Posterior null probability can also be derived from Bayes factor:

P
(
H0|Ỹ

)
=

{
1 +

ρ−10,n − 1

BF0(Ỹ)

}−1
(3.2)
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Thus, to make decisions, we need to firstly specify these unknown parameters ρ0,n, τn and Wn.

3.1.2 Specification of the Prior Null Probability ρ0,n

However, the Bayesian testing problem is challenging even in more basic scenarios, especially if

prior information is vague or absent, and further challenges arise if the dimensionality is high.

Because the priors used in testing place mass on a point-null hypothesis, the standard techniques

used in estimation to construct non-informative priors lead to test procedures that are not sensible.

For instance, at, improper priors, which are commonly used in estimation, lead to test procedures

that are sensitive to arbitrary normalizing constants.

To address this issue, Spitzner (2008) [27] considered different procedures and decided to

adapted Robert (1993) [22]’s idea to impose a dependency structure among the prior parameters.

But instead of invoking an equiponderance device as in Robert (1993) [22], Spitzner (2008) [27]

assumes that the dependencies is to be determined by an asymptotic-consistency principle discussed

in Diaconis and Friedman (1986) [9], i.e. “what if” guidelines. This method scrutinizes the choice of

prior by asking whether, given a particular data set, the posterior distribution makes a meaningful

update of the prior. (The name of the method alludes to the question, “What if the data came out

that way?”). For present purposes, to check for “meaning” it is sufficient to consider the extreme

limits of the posterior null probability: Pn

[
H0|Ỹ

]
→ 1 is here to mean “overwhelming evidence

for H0” and Pn

[
H0|Ỹ

]
→ 0 is to mean “overwhelming evidence against H0”. The limits here are

“almost sure” with respect to the model; this mode of convergence is stronger than convergence “in

probability” and is required by the “what if” method’s focus on data rather than probabilities. By

applying “what if” guidelines, the resulting tests are sensitive to the data in high dimensions and

meaningful in the sense of being proper Bayes or limits of proper Bayes procedures. Moreover, the

proposed priors are non-informative, but avoid the need to specify arbitrary normalizing constants.

The connection between the choice of the prior and the “what if” guidelines is made through

the following parameterization where ρ0,n is represented in terms of other parameters:

ρ0,n =

1 + exp

−1

2

pn∑
j=1

[log (1− υn,j) + υn,j ]



−1

. (3.3)

Note that this parameterization dose not constrain the prior in any way.
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3.1.3 Specification of the Matrix of Weights Wn

To incorporate the underlying smoothness assumption, suppose θ is an element of a Sobolev ellipsoid

in continuous space, the restriction can be expressed as

θ = (θj , j = 1, 2, · · · ) ∈ Bs,M

Bs,M =

(θ̃1, θ̃2, · · ·) :

√√√√ ∞∑
j=1

j2sθ̃2j ≤M


, where Bs,M is a Sobolev ellipsoid of radius M in infinite-dimensional discrete space, and M > 0,

s > 1/2 are fixed constants, larger s makes the restriction stronger.

Spitzner (2008) [27] set up the Bayesian mathematical framework similar to the frequentist

“rate of testing” theory as discussed in Section 1.5. Consider the sequence δn → 0 satisfying

sup
θ∈H1(δn/δ?n;s,M)

Pθ

[
H0|Ỹ

]
→ 0, ∀δ?n → 0

H1(δ; s,M) =

θ ∈ Bs,M :

√√√√ ∞∑
j=1

θ2j ≥ δ


(3.4)

The parameter δn defines the range of an indistinguishable region, which collects these θs which

are consistent with H1 and do not yield Pθ

[
H0|Ỹ

]
→ 0 almost surely. The objective of “rate of

testing” theory is to keep the indistinguishable region as small as possible. δn, which is referred to

as “rate” in the “rate of testing” theory, gives the boundary of the indistinguishable region, and so

faster rate of testing identifies a smaller indistinguishable region. This leads to the guideline that

δn goes to 0 as fast as possible.

Thus the favorable setting for weights wn,1, · · · , wn,pn are those for which the associated δn

goes to 0 with the fastest rate among all tapering mechanism.

Note that in the formula for the Bayes factor as in Equation (3.1), the data appear in the

quadratic form
pn∑
j=1

υn,j Ỹ
2
j , which is similar to our test statistic Q̃n =

pn∑
j=1

j−1/2Ỹ 2
j as in Section 2.3

for Model 3. Spitzner (2008) [27] showed in Appendix 3 that the current problem of finding optimal

setting for wn,1, · · · , wn,pn based on “rate of testing” criteria in Equation (3.4) is mathematically

parallel to the ideas in frequentist context where the only tests considered are those which use

a quadratic form as a test statistic. Even the tapering test is originally proposed for testing in

Functional linear model, not for the testing of equal spectral densities in time series, we can still
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borrow the idea of tapering and try to identify suitable definitions of those quantities for time

series problems under our settings in Chapter 2. Thus the same results can also be applied in

our context, as our Bayesian setting is mathematically parallel to frequentist setting of the “rate of

testing” theory. So we can draw results for our Bayesian context similar to Remark (2.1.3), Remark

(2.2.2), and Remark (2.3.4) in Chapter 2.

Consequently, the optimal rate will be achieved by the settings of υn,j such that

υn,j = j−1/2, j = 1, · · · , pn. (3.5)

As discussed in Chapter 2, this rate is adaptively optimal among tests based on quadratic forms.

Thus this weight setting achieves the prior that, from an adaptive “rate of testing” viewpoint,

reduce the indistinguishable region to the greatest extent.

Additionally, as we defined before, υn,j =
{

1 + 1
τ2nwn,j

}−1
, so the definition of υn,j as in Equa-

tion (3.5) will also help us to skip the specification of overall scale parameter τn, which could be

very difficult for Bayesian testing setup.

Finally, if we plug the settings of weights υn,j as in Equation (3.3) into the setup of prior

parameter ρ0,n as in Equation (3.3), we will get the adaptive optimal settings of priors based on

parameters ρ0,n, τn and Wn under the Bayesian context of our Model 3 or Model 4. Under Model

3, Bayes factor and posterior null probability can also be derived based on Equation (3.1) and

Equation (3.2), i.e.

BF0(Ỹ) = exp

− 1

2σ′2n

pn∑
j=1

j−1/2Ỹ 2
j −

1

2

pn∑
j=1

log
(

1− j−1/2
) . (3.6)

Under Model 4, Bayes factor and posterior null probability can also be derived based on Equation

(3.1) and Equation (3.2), i.e.

BF0(Ỹ) = exp

− 1

2σ′2n /m

pn∑
j=1

j−1/2Ỹ 2
j −

1

2

pn∑
j=1

log
(

1− j−1/2
) . (3.7)

We can make decisions of whether to reject H0 based on values of 2 logBF and/or P
(
H0|Ỹ

)
.
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3.2 Bayesian Multiple Testing

In Session 3.1.3, the Bayes factor in Equation (3.6) are written as a closed form which is the mono-

tone transformation of the test statistic in our newly proposed “optimal” tapering test. Another

benefit of writing the testing procedure into Bayesian framework is that form of Bayes factor helps

a lot in setting up Bayesian multiple testing framework.

Suppose we need to do simultaneous testing of M hypotheses and we want to identify the

tests that we have enough evidence to argue that the null hypothesis is true. For each of these

k = 1, · · · ,M tests, hypothesis is

H0,k : θk = 0 v.s. H1,k : not H0,k.

Scott and Berger (2010) [24] studies the multiplicity-correction effect of standard Bayesian

variable-selection priors in linear regression. They clarify how multiplicity correction enters Bayesian

variable selection by allowing the choice of prior model probabilities to depend upon the data in an

appropriate way, i.e., each variable is presumed to be in the model independently with an unkown

common probability q.

Following Scott and Berger’s (2010) [24] idea, let’s define a binary vector

γ = (γ1, · · · , γM )

be a set of “model indicators”, with each entry

γk =

1 if H0,k is true

0 if H1,k is true
.

Define nγ as the number of tests with γk = 1, which means the number of tests with null

hypothesis is true.

Then the multiple testing problem can thus be formulated as a model selection problem: to

choose among 2M models indicated by all possible values of γ.

As indicated by Scott and Berger (2010) [24], the standard practice in Bayesian model selection

problems is to treat each inclusion as exchangeable Bernoulli trials with common success probability
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p, which implies that the prior probability of a model indicated by γ given the success probability

p is

p (γ|p) = pnγ (1− p)M−nγ

with unknown parameter p has a Beta distribution,

p ∼ Beta(a, b)

The default choice is a = b = 1, implying a Uniform(0,1) prior on p. Then the prior of the model

indicated by γ reduces to

p (γ) =
(nγ !) (M − nγ)!

(M + 1) (M !)
=

1

M + 1

M
nγ

−1 .
And the likelihood is

f (Y|γ) =

M∏
k=1

f (Yk|γk) =
∏
γk=1

N(0,ΣH0
n )

∏
γk=0

N(0,ΣH1
n ).

Here ΣH0
n = σ′2n I, and ΣH1

n = σ′2n × diag
((

1 + j−1/2
)−1)

, according to the kernel smoothing model

in Equation (2.14); ΣH0
n = σ′2n

m I, and ΣH1
n = σ′2n

m × diag
((

1 + j−1/2
)−1)

, according to the replicated

kernel smoothing model in Equation (2.34).

Then the posterior for the model indicator γ will be

p (γ|Y) ∝ p (γ) f (Y|γ) .

And posterior inclusion probability of each test can be derived from the posterior probability of

the model indicator γ. We are interested in the median-probability model, the model that includes

those tests having posterior inclusion probability at least 0.5. According to Barbieri and Berger

(2004) [1], under many circumstances, this model has greater predictive power than the most

probable model.

Additionally, common Bayesian procedures assign vanishingly small posterior probabilities

to all models in high-dimensional settings, even when the maximum probability model assigns

relatively high probability to the true model. It is for this reason that articles describing Bayesian

model selection algorithms usually do not report the posterior probability assigned to the most

probable model, often opting instead to report the marginal probabilities that individual covariates
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were included in models sampled from the posterior distribution, i.e. posterior inclusion probability

which is defined as

pk = Pr (γk = 1|Y) =
∑
γ

1γk=1p (γ|Y) .

To get the posterior inclusion probability, we need samples from posterior distribution p (γ|Y).

However, direct simulation from p (γ|Y) is too difficult since we do not have the closed form for it,

instead, we will run Markov Chain Monte Carlo (MCMC) to simulate samples from the posterior

empirical distribution, which eventually converge to the stationary distribution p (γ|Y).

Steps to run MCMC are described as following:

1. Define the initial state γ(0) =
(
γ
(0)
1 , · · · , γ(0)M

)
.

2. For the current state γ(l), update each γ
(l)
k separately by generating a candidate t

(l)
k from the

symmetric proposal distribution, Bernoulli(0.5).

3. Define the current state S
(l)
k =

(
γ
(l+1)
1 , · · · , γ(l+1)

k−1 , γ
(l)
k , γ

(l)
k+1, · · · , γ

(l)
M

)
and the candidate state

T
(l)
k =

(
γ
(l+1)
1 , · · · , γ(l+1)

k−1 , t
(l)
k , γ

(l)
k+1, · · · , γ

(l)
M

)
with T

(l)
k only changes one element in S

(l)
k . Then

calculate the acceptance ratio α = min

1,
p

(
T

(l)
k |Y

)
p

(
S
(l)
k |Y

)
.

4. Accept t
(l+1)
k and set γ

(l+1)
k = t

(l+1)
k with probability α, otherwise, γ

(l+1)
k = γ

(l)
k .

5. After updating all M elements of γ(l), we will get the new state as γ(l+1).

6. Repeat Step 2-Step 5 for L times, to get
{
γ(1), · · · ,γ(L)

}
as L posterior samples of γ and

calculate the posterior inclusion probability for each test.

The critical aspect of the MCMC steps is to calculate the acceptance Ratio,

α = min

1,
p
(
T

(l)
k |Y

)
p
(
S
(l)
k |Y

)
 .

The Posterior Ratio can be derived from our settings of priors,

p
(
T

(l)
k |Y

)
p
(
S
(l)
k |Y

) = BFTSk ×
p
(
T

(l)
k

)
p
(
S
(l)
k

)
= BFTSk ×

nT(l) ! (M − nT(l))!

nS(l) ! (M − nS(l))!
,
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where BFTSk is the Bayes factor of comparing model indicated by T
(l)
k with the model indicated

by S
(l)
k . It is equivalent to the Bayes Factor of comparing hypothesis indicated by γ

(l)
k with the

hypothesis indicated by t
(l)
k . Additionally,

if t
(l)
k = 1, γ

(l)
k = 0, BFTSk = BF0k

if t
(l)
k = 0, γ

(l)
k = 1, BFTSk = 1/BF0k

if t
(l)
k = γ

(l)
k , BFTSk = 1.

BF0k is the Bayes factor we derived in Equation (3.6) or Equation (3.7). Therefore, the closed

form for Bayes factor for the tapering test make it more convenient to do Bayesian multiple testing

process.



67

Chapter 4

Power Study

In Chapter 2, three new testing procedures are proposed based on three different methods of

estimating the spectral density. Each test is derived from the optimizing criteria “rate of testing”

theory, a framework to find the rate at which the power is retained under geometric smoothness

constraints. Since our tests are derived to optimize the asymptotic power, we also want to assess the

empirical power of our newly proposed tests and compare the performance with existing tests. The

empirical powers of these tests are investigated here in this chapter by a comprehensive simulation

study.

4.1 Outline of Study

In this chapter, empirical power of the tests described in Chapter 2 based on raw periodogram,

Fourier transformations, and discrete Uniform Kernel smoothing as well as some currently popular

tests for testing equal spectral density in literatures are compared. Details about those tests to be

compared are listed as below:

• Coates and Diggle (1986) [8]’s test based on the range of periodogram ratios, with the test

statistic

R := max

{
log

I1(ωj)

I2(ωj)

}
−min

{
log

I1(ωj)

I2(ωj)

}
.

• Diggle and Fisher (1991) [10]’s test based on Kolmogorov-Smirnov statistics of the normalized
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cumulative periodograms, with the test statistic

Dm = sup | F1 (ω)− F2 (ω) |

F1 (ωj) =

j∑
i=1

I1 (ωi) /

pn∑
i=1

I1 (ωi)

F2 (ωj) =

j∑
i=1

I2 (ωi) /

pn∑
i=1

I2 (ωi) .

• Lund et al. (2009) [18]’s frequency domain test based on the average of log ratio of peri-

odograms, with the test statistic

D :=
1

(n/2− 1)

n/2−1∑
j=1

∣∣∣∣log
I1(ωj)

I2(ωj)

∣∣∣∣ .
• Lu and Li (2013) [17]’s frequency domain test applying Fan (1996) [11]’s adaptive Neyman

tests idea to the Lund et al. (2009) [18]’s test, with the test statistic

LL
?

:= max
1≤k≤nm

1√
kσ̂22

∑k

i=1

((
D̄?
m,i

)2 − σ̂21)

Dm,i = ln

m−1
im∑

k=(i−1)m+1

I1(ωk)

m−1
im∑

k=(i−1)m+1

I2(ωk)

i = 1, · · · , Nm

D
?
m,i =

1

Nm

Nm∑
i=1

Dm,iψj,i

σ̂21 =
1

Nm − INm

Nm∑
i=INm+1

(
D
?
m,i

)2
−

 1

Nm − INm

Nm∑
i=INm+1

D
?
m,i


2

σ̂22 =
1

Nm − INm

Nm∑
i=INm+1

(
D
?
m,i

)4
−

 1

Nm − INm

Nm∑
i=INm+1

(
D
?
m,i

)2
2

,

where ψj,i is the Fourier basis functions as defined before, Nm =
[
n
m

]
, INm =

[
Nm
4

]
.

• Our tapering test based on Model 1 (Raw periodogram) as proposed in Section 2.1, with test

statistic

Q̃n :=
∑pn

j=1
j−1/2Y 2

j .

• Our tapering test based on Model 2 (Fourier transform) as proposed in Section 2.2, with test

statistic

Q?n :=
∑pn

j=1
j−1/2Y ?2

j
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• Our tapering test based on Model 3 (Kernel smoothing) as proposed in Section 2.3, with test

statistic

Q̃n :=
∑pn

j=1
j−1/2Ỹ 2

j

Note that the kernel used here is the Uniform kernel as defined before, and the rate of the

bandwidth parameter to do Uniform Kernel smoothing is chosen according to the optimal

rate derived in Equation (2.25) with leading constant B is set to be 1.

The simulation design is such that the models examined each have dimensionality pn. The

length of the time series are specified into two scenarios, short time series with n = 256, and long

time series with n = 1024. We compared the powers of the tests by applying them to simulations of

pairs of moving average of order q, MA(q), autoregressive of order p, AR(p), or long-order Gaussian

seasonal AR(1)12 processes:

• A MA(q) process {Xt} is defined by

Xt = εt + θ1εt−1 + · · ·+ θqεt−q

where θ1, · · · , θ1 are parameters of the model, εt, εt−1 are the white nose error terms.

• An AR(p) process {Xt} is defined by

Xt = φ1Xt−1 + · · ·+ φpXt−p + εt

where φ1, · · · , φp are parameters of the model, εt is the white nose error term.

• An AR(1)12 process {Xt}, which is a generalized exponential smoothing models that can

incorporate long-term trends and seasonality, is defined by

Xt = φ12Xt−12 + εt

where φ12 is the parameter of the model, εt is the white noise error term.

Simulated powers are calculated at each of the following settings:

Setting 1: MA(1) with θ1 = 0.1 versus MA(1) with various θ′1 values.

Setting 2: AR(1) with φ1 = 0.1 versus AR(1) with various φ′1 values.



70

Setting 3: AR(1) with φ1 = 0.5 versus long-order Gaussian seasonal AR(1)12 with various φ′1 values.

Setting 4: AR(1) with φ1 = {−0.75,−0.5,−0.25, 0.25, 0.5, 0.75} versus MA(1) with θ1 = ±
√
φ21/

(
1− φ21

)
,

where the plus sign is chosen if φ1 > 0 and the minus sign is chosen when φ1 < 0. This choice

of θ1 makes the variances of the two series identical; moreover, the lag-one auto-covariances

have the same sign.

Setting 5: MA(1) with θ1 = 1 versus MA(2) with θ′1 = 1, θ′2 = {0.1, 0.25, 0.5}. Hence, the two time

series differ only in their second-order moving-average coefficient.

Note that Setting 1-3 are designed by ourself, and Setting 4-5 cover those simulation scenarios

in Lund et al. (2009) [18] and Lu and Li (2013) [17]. Other different settings were also explored,

but similar results can be derived with current settings. Therefore, Setting 1-5 are presented as

examples.

4.2 Empirical Comparisons

The first phase of the study consisted of calculating the empirical critical values for each test. For

this phase, we performed 10,000 replicate simulations of each pair of processes to give reasonably

precise estimates of actual significance levels. Firstly, independent pairs of series of length n =

256 or 1024 are simulated. The series length is taken as the multiple of two so that the fast

Fourier transform algorithm can be employed to rapidly compute the I1(ωj) and I2(ωj). It is very

important to explore multiple settings of pn (at 256 and 1024), since it helps to check our choice

of the leading constant B. For calculating the empirical critical values, both series have the same

parameter values θ1, · · · , θq or φ1, · · · , φp, and this parameter is varied within the causal model

range of |φ| < 1. The innovations (errors) are normally distributed with a unit variance. Hence,

the two series have equivalent spectral densities. Table 4.1 and Table 4.2 reports the empirical

critical values for the Coates and Diggle (1986) [8]’s test (i.e. R), Diggle and Fisher (1991) [10]’s

test (i.e. Dm), Lund et al. (2009) [18]’s test (i.e. D), Lu and Li (2013) [17]’s test (i.e. LL
?
),

Tapering test based on raw periodograms (i.e. Qn), Tapering test based on Fourier transform (i.e.

Q?n), Tapering test based on kernel smoothing (i.e. Q̃n), with the significance level 5%.

Remark 4.2.1. Note that for our tapering test based on Model 3 (Kernel smoothing), i.e. Q̃n,

the selection of the “optimal” bandwidth as in Equation (2.25) is also dependent on the leading
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constant B. So the selection of the value for B becomes critical for the calculation of Q̃n. Here for

simplicity, in our empirical work, we will set B = 1 as it is often used by convention, see Ma and

He (2016) [19] for similar specifications. And the simulation results listed as following help us to

check our choice of the leading constant B.

Table 4.1: Table of Empirical Critical Values for short series (n = 256) under different simulation scenarios

described in Section 4.1.

R Dm D LL
?

Qn Q?n Q̃n

MA(1) with θ1 = 0.1 14.06 0.20 1.56 11.71 91.94 0.40 2.11

AR(1) with φ1 = 0.1 14.31 0.28 1.55 11.95 92.07 0.39 2.10

AR(1) with φ1 = 0.5 14.55 0.44 1.56 15.58 93.45 0.41 2.41

AR(1) with φ1 = −0.75 14.21 0.30 1.56 10.76 95.30 0.41 2.20

AR(1) with φ1 = −0.5 14.03 0.22 1.56 11.92 93.48 0.39 2.18

AR(1) with φ1 = −0.25 14.12 0.18 1.56 10.26 94.31 0.40 2.12

AR(1) with φ1 = 0.25 14.09 0.17 1.57 9.99 93.72 0.40 2.15

AR(1) with φ1 = 0.5 14.15 0.21 1.56 12.07 93.13 0.39 2.13

AR(1) with φ1 = 0.75 14.04 0.31 1.56 12.43 96.21 0.39 2.20

MA(1) with θ1 = 1 14.23 0.19 1.58 12.14 94.36 0.43 2.20
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Table 4.2: Table of Empirical Critical Values for for long series (n = 1024) under different simulation

scenarios described in Section 4.1.

R Dm D LL
?

Qn Q?n Q̃n

MA(1) with θ1 = 0.1 17.02 0.10 1.47 8.60 171.83 0.17 3.50

AR(1) with φ1 = 0.1 17.06 0.15 1.47 7.94 170.54 0.17 3.54

AR(1) with φ1 = 0.5 17.05 0.11 1.48 7.56 170.70 0.17 3.61

AR(1) with φ1 = −0.75 16.90 0.17 1.47 7.39 169.77 0.17 3.55

AR(1) with φ1 = −0.5 17.04 0.11 1.47 7.24 172.28 0.17 3.71

AR(1) with φ1 = −0.25 16.58 0.09 1.47 9.06 172.13 0.17 3.62

AR(1) with φ1 = 0.25 16.92 0.09 1.47 8.14 169.90 0.17 3.54

AR(1) with φ1 = 0.5 16.80 0.11 1.47 7.84 169.13 0.17 3.60

AR(1) with φ1 = 0.75 16.82 0.16 1.48 7.71 171.66 0.17 3.53

MA(1) with θ1 = 1 16.93 0.10 1.48 9.69 170.60 0.18 3.61

The second phase consisted of obtaining estimates of the power when the two underlying

processes are different. For this phase, we performed 1,000 replicate simulations of each pair of

processes since good coverage of a range of cases was more important than precise estimation of

power in any particular case. We try to look at different scenarios as introduced in Section 4.1.

These scenarios includes pairs of processes with values of parameters adjusted so that {X1,t} and

{X2,t} have the same variance. The power of the test therefore derives from shape differences be-

tween the two underlying spectra. Scenarios that pairs of processes differed only in their variances,

in order to assess the robustness of the test to purely scale differences in the underlying spectra,

are also included. The empirical powers are summarized in the following tables and figures.
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4.2.1 Comparison of Empirical Powers under Setting 1

Figure 4.1: Figure of the spectral density for MA(1) with different parameter values.
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Table 4.3: Empirical powers of 5% tests for short series (n = 256) and long series (n = 1024) under

Setting 1 for MA(1) with θ1 = 0.1 vs MA(1) with different values of θ′1. R is for Coates and Diggle (1986)

[8]’s test based on the range of periodogram ratios; Dm is for Diggle and Fisher (1991) [10]’s test based on

Kolmogorov-Smirnov statistics of the normalized cumulative periodograms; D is for Lund et al. (2009) [18]’s

frequency domain test based on the average of log ratio of periodograms; LL
?

is for Lu and Li (2013) [17]’s

frequency domain test which applies Jianqing Fan (1996) [11]’s adaptive Neyman tests idea to the Lund et

al. (2009) [18]’s test; Qn, Q?
n, and Q̃n are tapering tests proposed in this paper.

(a) short series: n=256

θ′1 R Dm D LL
?

Qn Q?
n Q̃n

0.2 0.04 0.05 0.06 0.04 0.06 0.07 0.12

0.3 0.05 0.23 0.08 0.08 0.07 0.10 0.24

0.4 0.06 0.51 0.14 0.17 0.10 0.21 0.50

0.5 0.05 0.76 0.21 0.32 0.13 0.38 0.77

0.6 0.09 0.89 0.36 0.50 0.18 0.64 0.93

0.7 0.10 0.94 0.56 0.66 0.25 0.87 0.99

0.8 0.10 0.97 0.80 0.75 0.42 0.98 1.00

0.9 0.17 0.97 0.93 0.85 0.59 1.00 1.00

(b) long series: n=1024

θ′1 R Dm D LL
?

Qn Q?
n Q̃n

0.15 0.04 0.06 0.05 0.06 0.06 0.06 0.38

0.2 0.06 0.29 0.06 0.10 0.07 0.08 0.57

0.25 0.04 0.61 0.07 0.25 0.06 0.13 0.78

0.3 0.05 0.87 0.11 0.55 0.08 0.29 0.93

0.35 0.06 0.98 0.16 0.82 0.10 0.54 0.98

0.4 0.06 1.00 0.20 0.95 0.13 0.75 1.00

0.45 0.04 1.00 0.32 0.99 0.16 0.93 1.00

0.5 0.07 1.00 0.50 1.00 0.21 0.98 1.00
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Figure 4.2: Figure of simulated powers under Setting 1 for comparing MA(1) with θ1 = 0.1 vs MA(1) with

θ′1 for short series (n = 256) and long series (n = 1024).
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Table 4.3 summarized empirical powers of these seven tests we want to compare as introduced

before, when both time series are moving average process of order 1 but with different parameter

values as listed in the table. Results are summarized in this table for both short series and long

series. Also note that for here, we fix θ1 = 0.1 and try different θ′1 values. We also tried other

values of θ1, but still get similar results. Thus we will only show results of θ1 = 0.1 as an example.

Note that parameter settings for long series are designed to have narrower ranges of parameter

values to reflect the generally higher power of tests. The corresponding spectral densities under
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each parameter setting are plotted in Figure 4.1. As in the Figure 4.1, the spectral densities of

MA(1) process are quite smooth and very similar under different parameter values. Additionally,

to better visualize the power comparison, we also plot these empirical powers in Figure 4.2. From

Figure 4.1, Table 4.3, and Figure 4.2, we find that long series generally will have higher empirical

power for all tests compared with results of short series. Additionally, even the spectral densities

of these two time series are very similar, for both short series and long series, the newly proposed

tapering test based on Model 3 (Kernel Smoothing) still performs very good with the highest power;

Diggle and Fisher (1991) [10]’s test also performs very good; the tapering test based on Model 2

(Fourier Transformation) as well as Lu and Li (2013) [17]’s test based on adaptive Neyman test

performs quite similar with second highest empirical power; Lund et al. (2009) [18]’s test performs

worse than those tests but better than the tapering test based on Model 1 (Raw Periodogram);

and Coates and Diggle (1986) [8]’s test performs the worst with the lowest empirical power.

4.2.2 Comparison of Empirical Powers under Setting 2

Figure 4.3: Figure of the spectral density for AR(1) with different parameter values.
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Table 4.4: Empirical powers of 5% tests for short series (n = 256) and long series (n = 1024) under

Setting 2 for AR(1) with φ1 = 0.1 vs AR(1) with different values of φ′1. R is for Coates and Diggle (1986)

[8]’s test based on the range of periodogram ratios; Dm is for Diggle and Fisher (1991) [10]’s test based on

Kolmogorov-Smirnov statistics of the normalized cumulative periodograms; D is for Lund et al. (2009) [18]’s

frequency domain test based on the average of log ratio of periodograms; LL
?

is for Lu and Li (2013) [17]’s

frequency domain test which applies Jianqing Fan (1996) [11]’s adaptive Neyman tests idea to the Lund et

al. (2009) [18]’s test; Qn, Q?
n, and Q̃n are tapering tests proposed in this paper.

(a) short series: n=256

φ′1 R Dm D LL
?

Qn Q?
n Q̃n

0.2 0.04 0.05 0.06 0.04 0.06 0.07 0.12

0.3 0.05 0.23 0.08 0.08 0.07 0.10 0.24

0.4 0.06 0.51 0.14 0.17 0.10 0.21 0.50

0.5 0.05 0.76 0.21 0.32 0.13 0.38 0.77

0.6 0.09 0.89 0.36 0.50 0.18 0.64 0.93

0.7 0.10 0.94 0.56 0.66 0.25 0.87 0.99

0.8 0.10 0.97 0.80 0.75 0.42 0.98 1.00

0.9 0.17 0.97 0.93 0.85 0.59 1.00 1.00

(b) long series: n=1024

φ′1 R Dm D LL
?

Qn Q?
n Q̃n

0.15 0.04 0.00 0.06 0.05 0.05 0.07 0.07

0.2 0.05 0.02 0.07 0.11 0.06 0.08 0.20

0.25 0.05 0.13 0.07 0.29 0.06 0.16 0.44

0.3 0.05 0.52 0.13 0.59 0.09 0.32 0.75

0.35 0.07 0.89 0.15 0.84 0.12 0.57 0.95

0.4 0.06 0.99 0.24 0.96 0.19 0.80 0.99

0.45 0.06 1.00 0.37 1.00 0.29 0.95 1.00

0.5 0.07 1.00 0.51 1.00 0.43 1.00 1.00
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Figure 4.4: Figure of simulated powers under Scenario 2 for comparing AR(1) with φ1 = 0.1 vs AR(1)

with φ′1.
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Table 4.4 summarized empirical powers of these seven tests we want to compare as introduced

before, when both time series are auto regressive process of order 1 but with different parameter

values as listed in the table. Results are summarized in this table for both short series and long

series. Also note that for here, we fix φ1 = 0.1 and try different φ′1 values. We also tried other values

of φ1, but still get similar results. Thus we will only show results of φ1 = 0.1 as an example. Note

that parameter settings for long series are designed to have narrower ranges of parameter values

to reflect the generally higher power of tests. The corresponding spectral densities under each

parameter setting are plotted in Figure 4.3. As in the Figure 4.3, the spectral densities of AR(1)

process are quite smooth and have different shapes under different parameter values. Additionally,
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to better visualize the power comparison, we also plot these empirical powers in Figure 4.4. From

Figure 4.3, Table 4.4, and Figure 4.4, we find that long series generally will have higher empirical

power for all tests compared with results of short series. And we can can declare that, for both

short series and long series, the newly proposed tapering test based on Model 3 (Kernel Smoothing)

still performs very good with the highest power; the performance of Diggle and Fisher (1991) [10]’s

test, the tapering test based on Model 2 (Fourier Transformation) and Lu and Li (2013) [17]’s

test based on adaptive Neyman test are very similar, with Lu and Li (2013) [17]’s test will have

higher power for short series; Lund et al. (2009) [18]’s test as well as the tapering test based on

Model 1 (Raw Periodogram) perform worse than those tests; and Coates and Diggle (1986) [8]’s

test performs the worst with the lowest empirical power.
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4.2.3 Comparison of Empirical Powers under Setting 3

Figure 4.5: Figure of the estimated spectral density for long-order Gaussian seasonal AR(1)12 with different

parameter values.
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Table 4.5: Empirical powers of 5% tests for short series (n = 256) and long series (n = 1024) under Setting

3 for AR(1) with φ1 = 0.5 vs long order Gaussian seasonal AR(1)12 with different values of φ′1. R is for

Coates and Diggle (1986) [8]’s test based on the range of periodogram ratios; Dm is for Diggle and Fisher

(1991) [10]’s test based on Kolmogorov-Smirnov statistics of the normalized cumulative periodograms; D is

for Lund et al. (2009) [18]’s frequency domain test based on the average of log ratio of periodograms; LL
?

is

for Lu and Li (2013) [17]’s frequency domain test which applies Jianqing Fan (1996) [11]’s adaptive Neyman

tests idea to the Lund et al. (2009) [18]’s test; Qn, Q?
n, and Q̃n are tapering tests proposed in this paper.

(a) short series: n=256

φ′1 R Dm D LL
?

Qn Q?
n Q̃n

0.1 0.07 0.05 0.31 0.55 0.34 0.53 0.94

0.2 0.08 0.05 0.34 0.44 0.33 0.56 0.93

0.3 0.08 0.07 0.42 0.34 0.38 0.64 0.94

0.4 0.10 0.09 0.50 0.17 0.42 0.69 0.94

0.6 0.13 0.16 0.80 0.02 0.62 0.90 0.94

0.7 0.14 0.22 0.90 0.00 0.74 0.96 0.95

0.8 0.19 0.33 0.97 0.00 0.86 1.00 0.94

0.9 0.25 0.44 0.99 0.00 0.95 1.00 0.96

(b) long series: n=1024

φ′1 R Dm D LL
?

Qn Q?
n Q̃n

0.3 0.10 1.00 0.93 1.00 0.71 1.00 1.00

0.35 0.10 1.00 0.97 1.00 0.76 1.00 1.00

0.4 0.09 1.00 0.98 1.00 0.80 1.00 1.00

0.45 0.09 1.00 0.99 1.00 0.88 1.00 1.00

0.55 0.14 1.00 1.00 1.00 0.95 1.00 1.00

0.6 0.14 1.00 1.00 1.00 0.98 1.00 1.00

0.65 0.12 1.00 1.00 1.00 0.99 1.00 1.00

0.7 0.18 1.00 1.00 1.00 1.00 1.00 1.00
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Figure 4.6: Figure of simulated powers under Scenario 3 for comparing AR(1) with φ1 = 0.5 vs long-order

Gaussian seasonal AR(1)12 with φ′1.

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

φ

p
o
w
e
r

0.1 0.2 0.3 0.4 0.6 0.7 0.8 0.9

Short Series

Tests

Coates and Diggle
Diggle and Fisher
Lund
Lu and Li
Tapering(Periodogram)
Tapering(Fourier)
Tapering(Kernel)

0.3 0.4 0.5 0.6 0.7

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

θ

p
o
w
e
r

Long Series

Tests

Coates and Diggle
Diggle and Fisher
Lund
Lu and Li
Tapering(Periodogram)
Tapering(Fourier)
Tapering(Kernel)

Table 4.5 summarized empirical powers of these seven tests we want to compare as introduced

before, when one time series is auto regressive process of order 1 with parameter value 0.5 and the

other time series is long-order Gaussian seasonal auto regressive process with different parameter

values as listed in the table. Results are summarized in this table for both short series and long

series. Also note that for here, we fix φ1 = 0.5 and try different φ′1. We also tried other values

of φ1, but still get similar results. Thus we will only show results of φ1 = 0.5 as an example.

Note that parameter settings for long series are designed to have narrower ranges of parameter

values to reflect the generally higher power of tests. The corresponding spectral densities under

each parameter setting are plotted in Figure 4.5. the spectral densities of AR(1)12 process are
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not smooth and have a lot of spikes. Compared with the smooth spectral density curve of AR(1)

with φ1 = 0.5 as plotted in Figure 4.3, these tests should detect the difference with higher power.

Additionally, to better visualize the power comparison, we also plot these empirical powers in Figure

4.6. From Table 4.5 and Figure 4.6, it is clear that when comparing the time series with spikes

in its spectral density curve with the time series with smooth spectral density curve, these tests

generally have higher empirical powers. Additionally, we can find that long series generally will have

higher empirical power for all tests compared with results of short series. Comparing among those

tests, the newly proposed tapering test based on Model 3 (Kernel Smoothing) also have the highest

power; the tapering test based on Model 2 (Fourier Transformation) as well as Diggle and Fisher

(1991) [10]’s test also performs very good for long series, however, for short series, the tapering

test based on Model 2 (Fourier Transformation) has the secondly highest powers while Diggle and

Fisher (1991) [10]’s test performs extremely bad; Lund et al. (2009) [18]’s test performs a little bit

better than the tapering test based on Model 1 (Raw Periodogram); and Coates and Diggle (1986)

[8]’s test performs the worst with lowest empirical power. Note that the performance of Lu and Li

(2013) [17]’s test is not good for short series. It is mainly because that even the adaptive Neyman

test should always outperform tapering test asymptotically, but the way they apply the adaptive

Neyman test as in the paper is not proper. They waste a lot of information from the data. That’s

also the reason we want to propose the tapering test based on Model 2 (Fourier Transformation)

which is an improvement of their test.
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4.2.4 Comparison of Empirical Powers under Setting 4

Figure 4.7: Figure of the estimated spectral density for AR(1) and MA(1) with different parameter values.
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Table 4.6: Empirical powers of 5% tests for short series (n = 256) and long series (n = 1024) under

Setting 4 for AR(1) with various values of φ1 versus MA(1) with θ1 = ±
√
φ21/ (1− φ21). R is for Coates and

Diggle (1986) [8]’s test based on the range of periodogram ratios; Dm is for Diggle and Fisher (1991) [10]’s

test based on Kolmogorov-Smirnov statistics of the normalized cumulative periodograms; D is for Lund et al.

(2009) [18]’s frequency domain test based on the average of log ratio of periodograms; LL
?

is for Lu and Li

(2013) [17]’s frequency domain test which applies Jianqing Fan (1996) [11]’s adaptive Neyman tests idea to

the Lund et al. (2009) [18]’s test; Qn, Q?
n, and Q̃n are tapering tests proposed in this paper.

(a) short series: n=256

φ1 θ1 R D LL
?

Qn Q?
n Q̃n

-0.75 -1.13 0.12 0.88 0.71 1.00 0.63 0.99 0.99

-0.5 -0.58 0.05 0.26 0.08 0.40 0.11 0.21 0.27

-0.25 -0.26 0.06 0.06 0.06 0.07 0.08 0.08 0.08

0.25 0.26 0.06 0.07 0.06 0.05 0.05 0.06 0.07

0.5 0.58 0.05 0.28 0.12 0.27 0.06 0.25 0.19

0.75 1.13 0.11 0.86 0.73 0.99 0.39 0.99 0.98

(b) long series: n=1024

φ1 θ1 R D LL
?

Qn Q?
n Q̃n

-0.75 -1.13 0.08 1.00 1.00 1.00 1.00 1.00 1.00

-0.5 -0.58 0.07 0.87 0.21 1.00 0.20 0.90 0.99

-0.25 -0.26 0.06 0.09 0.06 0.09 0.05 0.07 0.11

0.25 0.26 0.05 0.12 0.06 0.11 0.04 0.08 0.11

0.5 0.58 0.05 0.87 0.21 1.00 0.10 0.92 0.97

0.75 1.13 0.13 1.00 1.00 1.00 0.88 1.00 1.00
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Figure 4.8: Figure of simulated powers under Scenario 4 for comparing AR(1) with φ1 versus MA(1) with

θ1 = ±
√
φ21/ (1− φ21).
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Table 4.6 summarized empirical powers of these seven tests we want to compare as introduced

before, when one time series is auto regressive process of order 1 and the other time series is

moving average process of order one with different parameter values as listed in the table. Results

are summarized in this table for both short series and long series. Except those values listed in

the table, we also tried other values of φ1, but still get similar results. Thus we only show results

of φ1 values defined in the table as an example. Also note that this choice of parameter values for

these two time series makes the variances of the two series identical; moreover, the lag-one auto-

covariances have the same sign. The corresponding spectral densities are plotted in Figure 4.7. As
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in the Figure 4.7, the spectral densities are quite smooth and have different shapes under different

parameter values. But when φ1 = −0.25 and 0.25, the spectral density curve for these two time

series are quite similar. Then these tests have low powers under these conditions as shown in Table

4.6. Additionally, to better visualize the power comparison, we also plot these empirical powers in

Figure 4.8. From Figure 4.7, Table 4.6 and Figure 4.8, we can declare that long series generally will

have higher empirical power for all tests compared with results of short series. Comparing among

those tests, the newly proposed tapering test based on Model 3 (Kernel Smoothing) still performs

very good; Lu and Li (2013) [17]’s test, the tapering test based on Model 2 (Fourier Transformation)

and Diggle and Fisher (1991) [10]’s test also perform very good with similar empirical powers with

tapering test based on Model 3 (Kernel Smoothing); Lund et al. (2009) [18]’s test and the tapering

test based on Model 1 (Raw Periodogram) have similar performance which is not so good; and

Coates and Diggle (1986) [8]’s test performs the worst with lowest empirical power.

4.2.5 Comparison of Empirical Powers under Setting 5

Figure 4.9: Figure of the estimated spectral density for MA(1) and MA(2) with different parameter values.
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Table 4.7: Empirical powers of 5% tests for short series (n = 256) and long series (n = 1024) under

Setting 5 for MA(1) with θ1 = 1 versus MA(2) with θ′1 = 1, and various values of θ′2. R is for Coates and

Diggle (1986) [8]’s test based on the range of periodogram ratios; Dm is for Diggle and Fisher (1991) [10]’s

test based on Kolmogorov-Smirnov statistics of the normalized cumulative periodograms; D is for Lund et al.

(2009) [18]’s frequency domain test based on the average of log ratio of periodograms; LL
?

is for Lu and Li

(2013) [17]’s frequency domain test which applies Jianqing Fan (1996) [11]’s adaptive Neyman tests idea to

the Lund et al. (2009) [18]’s test; Qn, Q?
n, and Q̃n are tapering tests proposed in this paper.

(a) short series: n=256

θ′2 R D LL
?

Qn Q?n Q̃n

0.1 0.07 0.07 0.06 0.07 0.06 0.05 0.06

0.25 0.07 0.22 0.15 0.24 0.10 0.20 0.16

0.5 0.15 0.54 0.59 0.73 0.23 0.88 0.62

(b) long series: n=1024

θ′2 R D LL
?

Qn Q?n Q̃n

0.1 0.05 0.18 0.08 0.13 0.05 0.12 0.14

0.25 0.07 0.73 0.47 0.97 0.14 0.93 0.94

0.5 0.17 1.00 1.00 1.00 0.67 1.00 1.00
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Figure 4.10: Figure of simulated powers under Scenario 5 for comparing MA(1) with θ1 = 1 versus MA(2)

with θ′1 = 1, θ′2.
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Table 4.7 summarized empirical powers of these seven tests we want to compare as introduced

before, when one time series is moving average process of order 1 and the other time series is

moving average process of order two with different parameter values as listed in the table. Results

are summarized in this table for both short series and long series. This choice of parameter values

for these two time series leads to the difference of them only in their second-order moving-average

coefficient. Also note that for here, we fix θ1 = θ′1 = 1 and try different θ′2 values. We also tried

other values of these parameters, but still get similar results. Thus we will only show these results

as the example. The corresponding spectral densities are plotted in Figure 4.9. As in the Figure

4.9, the spectral densities have similar shapes under different parameter values. Then these tests

have lower powers as shown in Table 4.7. Additionally, to better visualize the power comparison, we
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also plot these empirical powers in Figure 4.10. From Figure 4.9, Table 4.7 and Figure 4.10, we can

declare that long series generally will have higher empirical power for all tests compared with results

of short series. Comparing among those tests, the newly proposed tapering test based on Model 3

(Kernel Smoothing), the newly proposed tapering test based on Model 2 (Fourier Transformation)

and the Lu and Li (2013) [17]’s test perform the best with highest empirical powers; Diggle and

Fisher (1991) [10]’s test as well as Lund et al. (2009) [18]’s test have second highest empirical

power; the tapering test based on Model 1 (Raw Periodogram) performs a little bit worse than

Lund et al. (2009) [18]’s test; and Coates and Diggle (1986) [8]’s test performs the worst with

lowest empirical power.

4.2.6 Summary

Based on the Table 4.3 to Table 4.7 as well as Figure 4.2 to Figure 4.10, we can make our final

conclusion that our results from the comprehensive simulation study show that the newly proposed

tapering test based on discrete compact Uniform Kernel smoothing with optimal tuning parame-

ter, Q̃n, generally performs the best with the highest empirical power. Even it is observed that

sometimes Diggle and Fisher (1991) [10]’s test or the recently proposed Lu and Li (2013) [17]’s test

LL
?

or the tapering test based on the Fourier transform Q?n performs a little bit better, however,

the difference is very small and the performance of the tapering test based on “optimal” kernel

smoothing is the most stable test with very high power under each of these five settings, which cov-

ers a wide variety of testing scenarios. Consequently, the tapering test based on “optimal“ kernel

smoothing Q̃n is recommended for testing equal spectral density for two independent stationary

time series, which is very easy to implement in practice while has very good asymptotic and em-

pirical performance. Additionally, the strong empirical powers shown here also provide supports

for our argument of setting leading constant B equals to one.
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Chapter 5

EEG Data Study

In Chapter 4, we conducted simulations to assess the empirical power of these newly proposed

tapering test, comparing with these popular tests in literature. From simulation results, we learned

that the newly proposed tapering test based on kernel smoothing always performs the best, also

this test is also regarded as the most reasonable one from the point of view of time series. Based on

the Bayesian tapering test framework derived in Chapter 3.1 from the Model 3 (Kernel Smoothing),

we can now answer the scientific questions we proposed regarding to the motivating example EEG

dataset.

5.1 Motivating Example: EEG Data Study

5.1.1 Outline of Study

From the simulation results in Section 4.2, we find that the Tapering test based on discrete Uniform

Kernel smoothing with optimal rate of tuning parameter, i.e. Q̃n performs best in general. Thus,

for this section, we will further implement the Bayesian version of the tapering test Q̃n as discussed

in Chapter 3.1 to solve our real data problem in the Reward Two-back Study as discussed in Section

1.6. We will focus on EEG observations from one trial as shown in Figure 1.1. The duration of

the trial is around 1.5 seconds, from letter shown up on the screen until the next letter shown up.

Since the sampling rate is 256Hz, the length of the EEG observations will be 340 for the trial. In
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addition to looking at the whole trial, we also split the trial into two periods, as in Figure 5.1.

Period 1 is from letter shown up on the screen till the auditory feedback, and Period 2 is from the

auditory feedback till the end of the trial. We will do separate testing for equal spectral densities

under the following three scenarios:

• The whole trial: 340 observations

• Only Period 1: 116 observations

• Only Period 2: 224 observations

Figure 5.1: Visualization of the two periods of one whole trial. The duration of one trial is around 1.5

second, from the letter shown up on the screen until the next letter shown up. The duration of Period 1

is around 0.7 seconds, from the letter shown up on the screen until the auditory feedback. The duration of

Period 2 is around 0.8 seconds, from auditory feedback until the next letter shown up on the screen.

As discussed in Section 1.6, among the four lobes on the brain, we will only focus on Frontal

Lobe, Temporal Left Lobe and Occipital Lobe, which are highly active during the Reward Two-back

study. From the data, we picked up series for each lobe:

• Temporal Left Lobe (TL): 10 series

• Occipital Lobe (OL): 15 series

• Frontal Lobe (FL): 15 series

We will do Bayesian tapering test on each pair of these three lobes, and do the same process

separately for the whole trail, Period 1 and Period 2. After setting up the structure, two main

questions we are trying to answer are
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1. Similar patterns between lobes while performing cognitive tasks as in Reward Two-back

study?

• TL versus OL

• TL versus FL

• OL versus FL

2. Will this pattern changes while we are looking at these three different time periods?

• Whole trial

• Period 1

• Period 2

As for each lobe, we have multiple time series, however, our Bayesian tapering test as in Chapter

3.1 is for testing the equal spectral density for two time series. Additionally, dealing directly with

a high-dimensional spectral matrix itself is somewhat cumbersome because it is a function into the

set of complex, nonnegative-definite, Hermitian matrices. Our problem can be restate as suppose

have a stationary, p-dimensional, vector-valued process Xt and we are only able to keep a univariate

process yt such that, when needed, we may reconstruct the vector-valued process, Xt, according to

an optimality criterion. So we further do spectral domain Principle Components Analysis (PCA)

on the data matrix of each lobe. The topics of principal components in the frequency domain are

rigorously presented in Brillinger (2001) [5] (Chapters 9 and 10) and many of the details concerning

these concepts can be found in Shumway and Stoffer (2013) [26].

For the case of time series, suppose we have a zero mean, p×1, stationary vector process Xt that

has a p×p spectral density matrix given by fxx(ω). Recall fxx(ω) is a complex-valued, nonnegative-

definite, Hermitian matrix. Using the analogy of classical principal components, suppose, for a fixed

value of ω, we want to find a complex-valued univariate process yt(ω) = c(ω) ∗Xt, where c(ω) is

a complex, such that the spectral density of yt(ω) is maximized at frequency ω, and c(ω) have

unit length. Because at frequency ω, the spectral density of yt(ω) is fy(ω) = c(ω)fxx(ω)c(ω), it is

equivalent to find the complex vector c(ω) such that

max
c(ω)6=0

c(ω)fxx(ω)c(ω)

c(ω)c(ω)
(5.1)
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Suppose {(λ1 (ω) , e1 (ω)) , · · · , (λp (ω) , ep (ω))} are pairs of eigenvalues and eigenvectors of spectral

density matrix fxx(ω), where λ1 (ω) > · · · > λp (ω) > 0 and eigenvectors e1 (ω) , · · · , ep (ω) are of

unit length. Note that the eigenvalues of a Hermitian matrix are real, thus, λ1 (ω) , · · · , λp (ω) are

real values. The solution of Equation (5.1) would be c(ω) = e1 (ω). Then the linear combination

would be yt(ω) = e1(ω) ∗Xt and

max
c(ω)6=0

c(ω)fxx(ω)c(ω)

c(ω)c(ω)
= λ1 (ω)

This process may be repeated for any frequency ω, and the complex-valued process, yt1(ω), is

called the first principal component series at frequency ω. The k-th principal component series at

frequency ω, for k = 1, · · · , p, is the complex-valued time series ytk(ω) = ck(ω) ∗Xt, in analogy to

the classical case. In this case, the spectral density of ytk(ω) at frequency ω is λk(ω).

5.1.2 Results

For each of these three lobes, we firstly estimate the spectral density matrix for each frequency. For

example, for the whole trial, Temporal Left Lobe, we will get a 10× 10 estimated spectral density

matrix for each of these 169 frequencies ω1, · · · , ω169.

Then the second step is for each frequency, for the 10× 10 estimated spectral density matrix,

calculate the eigenvalues. In this step, for each lobe under whole trial, Period1 and Period 2,

for each frequency ω, we checked the cumulative contribution rates of the principal components

of the estimated spectral density matrix. Each of the first principal components have cumulative

contribution rate higher than 90%. Thus, it is reasonable to consider the estimated spectral density

of the first principle component series of each lobe to represent the spectral characteristics of the

lobe, which is actually the first eigenvalue of each estimated spectral density matrix. In Figure

5.2, we plot one example of the estimated spectral density of the first principle component series of

Temporal Left Lobe. For each of the other two lobes, we also get one series of the spectral density.
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Figure 5.2: One example of the estimated spectral density of the first principle component series of Temporal

Left Lobe. Spectral density matrix is estimated based on the discrete Uniform Kernel smoothing with the

optimal rate of tuning parameter.
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After the second step, for each lobe, we get one estimated spectral density series. For example

for the whole trial, we will get {
f̂TL(ω1), · · · , f̂TL(ω169)

}
{
f̂OL(ω1), · · · , f̂OL(ω169)

}
{
f̂FL(ω1), · · · , f̂FL(ω169)

}
.

We will get similar series for Period 1 with length 57, and Period 2 with length 111. Then the

third step is for each pair of the comparison in Question 1, calculate the log-ratio of the estimated

spectral density, and then do the discrete Uniform Kernel smoothing with optimal rate of tuning

parameter we derived in Section ?? on these log-ratios. Then we will get those Ỹjs as in Chapter

3.1.

The last step will be calculating the Bayes factor as discussed in Chapter 3.1. Following the

setup and the prior specifications of Chapter 3.1, we will get Bayes factor values for each of the

comparisons in Question 1 and for each scenario in Question 2.

BF0(Ỹ) =
m
(
Ỹ|H0

)
m
(
Ỹ|H1

) .
Decisions will be made based on the values of 2 logBF , and decision rules are discussed in Chapter
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3.1. Results are listed in Table 5.1. From Table 5.1, we will find that, only Temporal Left Lobe

Table 5.1: Results of doing Bayesian tapering test based on the discrete Uniform Kernel smoothing with

the optimal rate of tuning parameter. This table is to answer Question 1 and Question 2 with each row is

one comparison under different scenarios and each column is one scenario for different comparisons. These

values listed in table are values of 2 logBF and posterior null probabilities (inside the parentheses).

Comparison Whole trial Period 1 Period 2

TL vs OL -144 (≈0) -84 (≈0) -112 (≈0)

TL vs FL -1 (0.1) 10 (0.98) 2 (0.38)

OL vs FL -254 (≈0) -94 (≈0) -184 (≈0)

and Frontal Lobe at Period 1 will have strongly similar pattern, and this pattern dose not appear

in Period 2 and the whole trial. So an very interesting phenomenon of the brain lobes can be

identified from our results: when the Temporal Left Lobe, Occipital Lobe and Frontal Lobe are

all very active, the Temporal Left Lobe tends to have similar patterns of activities with Frontal

Lobe, however, this phenomenon cannot be observed if all these lobes are not very active, and we

also cannot observe phenomenon if we look at the combined period of highly active and not active

of these three lobes. And this provide us a very interesting perspective to explore further in the

future.

5.2 Gambling Task: SEEG Data Study

Stereotactic electroencephalography (SEEG) is often used to localize a seizure focus in patients who

are candidates for surgery. It uses needlelike electrodes implanted in the depths of specific brain

areas redundant to record from structures within that region. Visualization of how these depth

electrodes are implemented can be found in Figure 5.3.
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Figure 5.3: Depth electrodes to record SEEG.

Statistical spectral analysis treats SEEGs as time series data generated by stationary stochas-

tic (random) processes. Recently more and more advanced mathematical tools may be brought

to bear on the problem of understanding the link between brain activity, as seen in the SEEG,

and function as determined via the implementation of experimental protocols. The task oriented

brain activity analysis and classification is a prime issue in SEEG signal processing these days. The

similar attempt has been done here to estimate the brain activity on the basis of power spectrum

analysis. The data are from the Neuromedical Control Systems Laboratory (NCSL) at John Hop-

kins University. They were able to examine high temporal resolution (2kHZ) electrophysiological

data in the subject who are performing the task involves a gambling decision, by taking advantage

of SEEG recordings in epileptic patients at the Cleveland Clinic. The subject played a game of

high card with a computer where they would win virtual money if their card beat the computer’s

card. The cards ranged from 2 to 10, even numbers only. After seeing their card, the subject had

to decide whether to bet high($20) or low ($5). Finally the computer’s card was revealed and the

results of bet were shown to the subject. The timeline of one trial in gambling task is shown in

Figure 5.4. We have SEEG recordings for around 30 minutes from a 41 year old female seizure

patient. 104 electrodes were implanted on 13 depth electrodes, which were inserted in twenty-seven

different brain areas through skull. In total, 162 different trials were recorded.
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Figure 5.4: The timeline of one trial for the gambling task. After fixation, subjects are shown their card.

Once the bets are shown, subjects select one of the choices and then are shown the computer’s card following

a delay. Feedback is provided afterwards.

SEEG spectral analysis (decomposing a signal into its constituent frequency components) is

an important method to investigate brain activity. Spectral analysis is a mathematical approach to

quantify the EEG. It have been used for a long time in the analysis of EEG signals, which referred

to as frequency domain analysis or spectral density estimation. Its purpose is the decomposition of

signals such as the SEEG, into its constituting frequency components. The fast Fourier transform

is a widely applied method for obtaining the SEEG spectrum. The power density spectrum or

power spectrum displays the distribution of power or variance over the frequency components of

a signal. It is defined as the Fourier transform of the autocorrelation function. Spectral content

reveals neural oscillation. And characterizing such neural oscillatory behavior gives insight into the

underlying dynamics of brain systems.

The task related SEEG recordings are assumed to be realizations of a specific type of non-

stationary random process, namely, a locally stationary process. Thus, within short segments of

time, the process exhibits stationary, even though the global characteristics vary throughout the

trial. Our focus is on the SEEG recordings of around 0.5 seconds (i.e. length of each recording

is 1024) after showing card, which are regarded as the period of processing card information and

making decision on whether to bet high or low in gambling task. The first question we are trying to

address is how these 27 regions communicate or connect during the decision making process. Two

regions have the same spectral characteristics over this period probably have certain connections.

Therefore, to address this question, our newly proposed “optimal” tapering test for replicated model

introduced in Section 2.5 can be applied for each pair of these 27 regions and the brain network

can thus be constructed based on the connections identified by the procedure. To implement
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the testing procedure, in the replicated model (2.5), recordings over 162 trials are regarded as

replicated samples and the Uniform kernel smooth function (simple moving average) is defined

based on the optimal bandwidth b̂n, which has been proved in this paper to be powerful in both

asymptotical and empirical perspectives. Furthermore, to test between any pair of these 27 brain

regions to see whether they have same power spectrum over this period means to perform 351 tests

simultaneously. The multiplicity adjustment is considered and thus the Bayesian multiple testing

procedure introduced in Section 3.2 was implemented. Finally, the brain network was constructed

based on the connections identified by this procedure. The median probability model is built based

on MCMC posterior samples and the brain network graph is plotted in Figure 5.11. This figure

provides insights into how these 27 regions are connected in the brain while the subject is making

the bet decisions.

We will then explain step by step how our testing procedure helps to address this question

and why our procedure is attractive by plots. Firstly, two regions are randomly picked from those

27 regions in SEEG data. Each of these two regions have three electrodes, from each electrode in

each region, remember that we have the data for 162 trials, for simplicity, we take the data for

the first trial for visualization and extract recordings of 0.5 seconds after showing card. Then the

log-peirodogram is calculated and plotted as following,

Figure 5.5: Heatmap for the raw log-periodograms for those two randomly picked regions. Each row repre-

sents each electrode in those regions. These two heatmaps are in the same scale.
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From the above plot, even for one single trial, we cannot tell whether these two regions perform

similarly or not regarding to the spectral densities, since there are multiple electrodes in each region.

Thus, we average over the electrodes in the same region and plot the averaged raw log-periodograms

as following,

Figure 5.6: Heatmap for the averaged raw log-periodograms for those two randomly picked regions, after

averaging over the electrodes in the same region. These two heatmaps are in the same scale.

From the above plot, we can compare the left and right side heatmap. However, we can find

that the variability in these two plots are very large. That’s the reason that we need to do kernel

smoothing. The way we make it optimal is to use “optimal” bandwidth in the kernel function, which

is derived from “rate of testing” theory. Then kernel smoothing is performed on the averaged log-

periodograms for each region and the heatmap for optimal kernel smoothed log-periodogram is

plotted as following,
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Figure 5.7: Heatmap for the optimal kernel smoothed log-periodograms for those two randomly picked

regions, for the first trial. These two heatmaps are in the same scale.

However, this is only for one trial. There are 162 trials in total. We further plot the comparison

of the raw log-periodograms and optimal kernel smoothed log-periodograms for all these 162 trials

for Right Hippocampus Anterior region to illustrate the effect of kernel smoothing in reducing the

variability.
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Figure 5.8: Heatmap for the comparison of raw log-periodograms and kernel smoothed log-periodograms with

the “optimal bandwidth”. Region “HA”, i.e. right hippocampus (anterior) is randomly picked to showcase

the effect of “optimal kernel smoothing”. Each row represents each of those 162 trials, and each column

represents each frequency.

The comparison of the optimal kernel smoothed log-periodograms for these two regions is also

plotted as follows,
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Figure 5.9: Heatmap for the comparison of kernel smoothed log-periodograms with the “optimal bandwidth”

for these two randomly picked regions. Each row represents each of those 162 trials, and each column

represents each frequency.

From the above plot, we cannot tell whether these two regions performs similarly or not, i.e.,

they have communications or connections or not during the decision making process, since there are

replicated trials. Thus, the models for replications and the corresponding testing procedures are

needed to perform test between these two regions. The Bayesian testing procedures for replications

as introduced in Chapter 2 are applied for each of 351 pairwise comparisons of those 27 regions.

The corresponding heatmap for the Log-Bayes Factor are plotted in the following left side figure. In



104

this figure, the red color indicates communication or connection exists between the corresponding

regions in the row and column. So the conclusion from this figure is that no communications

or connections can be identified. That’s not the result we want. The main reason is that we

are making 351 comparisons simultaneously without multiplicity adjustment. Therefore, Bayesian

multiple testing procedure based on the kernel smooth model with replications are further applied

and the corresponding results are shown in the right side of the following plot.

Figure 5.10: Heatmap for the log Bayes factor and posterior inclusion probability of comparing each pair of

27 brain regions to see whether they have connection or communication during the decision making process.

The left side plot is for the log Bayes factor without multiplicity adjustment, and the red color indicates con-

nection or communication between the corresponding two regions in the raw and column. The right side plot is

for the posterior inclusion probability for each pair, and the red color indicates connection or communication

between the corresponding two regions in the raw and column. Each region is named by its acronyms: AG

means “right angular gyrus’”; CF means “right calcarine fissure”; C means “right cuneus”; EC means “right

entorhinal complex”; FG means “right fusiform gyrus”; HA means “right hippocampus (anterior)’ HA; HP

means “right hippocampus (posterior)”; IFG means “right inferior frontal gyrus”; ITG means “right inferior

temporal gyrus”; ITS means “right inferior temporal sulcus; IS means ”right intraparietal sulcus; LG means

“right lingulal gyrus”; MTG means “right middle temporal gyrus”; OG means “right occipital gyrus”; OCL

means “right orbitofrontal cortex (lateral)”; OCM means “right orbitofrontal cortex (mesial)”; PS means

“right parieto-occipital sulcus’” PT means “right planum temporale”; PCC means “right posterior cingulate

cortex”; PI means “right posterior insula” P means “right precuneus”; SPL means “right superior parietal

lobule”; STS means “right superior temporal sulcus; SG means “right supramarginal gyrus”; TP means

“right temporal pole”; V means “right ventricle”; WM means “white matter”.

From the above right side plot, communications or connections can be identified. And to

summarize the results, the brain network graph is plotted as following,



105

Figure 5.11: The brain network graph for 0.5 seconds after showing card. Each dot in the graph represents

a region, each line connects the pair of regions that have connections during this period and the larger dot

means the corresponding region has more connections with other regions.
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The second question of interest is to identify the regions that are involved in encoding card

numbers. For a certain region, it is probably related with encoding the card number if it performs

differently under different card numbers. For each region, SEEG recordings of around 0.5 seconds

after showing card are extracted separately for different card number trials. Gambling trials with

card number 2 are compared with card 4, card 6, card 8 and card 10 for each region and regions

with the trend of having different spectral characteristics under these comparisons are regarded as

involved in encoding card numbers. Therefore, Bayesian tapering test introduced in Section 3.1

was applied based on the replicated model as discussed in Section 2.5 for each of those 27 regions.

The heatmap of corresponding 2 logBF values for each region and for each comparison are plotted

in Figure 5.14. This heatmap suggests that Right Cuneus (C), Right Entorhinal Complex (EC),

Right Hippocampus (anterior and posterior) (HA and HP), Right Inferior Temporal Sulcus (ITS),

Right Superior Temporal Sulcus (STS), Right Temporal Pole (TP) tend to perform differently
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regarding to the power spectrum under those comparisons of different card number and thus they

are probably actively involved in encoding card numbers.

To explain step by step how our proposed Bayesian tapering testing procedure based on kernel

smoothing model with or without replications helps to address this question, we plot those figures

in the following.

Firstly, for each of these card numbers, we plot the raw log-periodograms of the recordings for

the first trial of these 162 trials.

Figure 5.12: Heatmap of raw log-periodograms for each of these 27 regions for the recordings of the first

trial. Each row represents each region, and each column means each frequency. Those heatmaps are in the

same scale.

From the above plot, we can find that the varibility is vary large. Then the “optimal” kernel
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smoothing is performed and the smoothed log-periodograms for each card number for the first trial

are plotted as following,

Figure 5.13: Heatmap of “optimal” kernel smoothed log-periodograms for each of these 27 regions for the

recordings of the first trial. Each row represents each region, and each column means each frequency. Those

heatmaps are in the same scale.

From the above plot, we can find that the variability is improved a lot. Now we cam make

comparisons between any two card numbers. However, this is only for the first trial, and we have

162 trials in total. Considering 162 plots, we cannot tell whether any of the region performs

differently under different card numbers. Thus, the tapering testing procedures based on the kernel

smoothing model with replications is needed to address this question. The results of comparisons

between each card number is plotted as the heatmap in the following,
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Figure 5.14: Heatmap of 2 logBF values for each of these 27 regions and for each comparison. Each

row represents each region, and each column means each comparison. Values smaller than -6 means strong

evidence for this region being involved in encoding card numbers.

From the above plot, regions that performs differently under different card number trials can

be identified. 2 log(BF ) values provides insights of testing results: smaller than -6 indicate “strong”

evidence for this region being involved in encoding card number; and smaller than -10 means “very

strong” evidence. While the positive values indicate the strength of evidence for this region not

being involved in encoding card number. The trend of how differently each regions will perform

under different card numbers over the period of around 500 milliseconds can be identified from these

heatmaps. Right Cuneus (C), Right Entorhinal Complex (EC), Right Hippocampus (anterior and

posterior) (HA and HP), Right Inferior Temporal Sulcus (ITS), Right Superior Temporal Sulcus

(STS), Right Temporal Pole (TP) are identified to be actively involved in encoding card numbers.

In summary, the illustration of how our tapering testing procedures can be used to extract

useful information regarding to how brain performs when the subject is doing different tasks is shown

by two EEG datasets. The functions of some of these brain regions are still not well understood,
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and our method provides a new powerful way to gain insights into the brain activities.
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Chapter 6

Summary and Future Work

Motivated by an application example of EEG data, a new methodology of Bayesian tapering test

and corresponding Bayesian multiple testing procedures for assessing whether two independent

stationary time series have same spectral density has been developed. Non-parametric time series

methods are relevant to a variety of applied contexts. Related literatures describe applications

to economic time series of wheat prices, medical monitoring data of hormone levels in blood, and

meteorology data of temperature and precipitation levels.

In Chapter 2, tapering test based on the raw log-periodograms, Fourier transformation of the

log-periodograms, and “optimal” kernel smoothing of log-periodograms are explored. The problem

of whether kernel smoothing is still needed when the replication exists is further investigated.

The limiting behavior is defined with respect to n → ∞. The theoretical powers of these tests

are optimized based on “rate-of-testing” theory, which minimizes the “indistinguishable region”,

i.e. the region that the our test cannot detect with high asymptotic power, by letting the rate

of the parameter δn that controls the size of this region goes to zero as fast as possible. The

optimal weights and optimal rate of bandwidth parameter is derived from the fastest rate δn → 0.

Theoretical theorems and proofs under each model are explained in details in Chapter 2 and as

a result, the “optimal” kernel smoothing model and corresponding tapering test procedures are

recommended wether the replication exists or not.

In Chapter 3, driven by the needs of the application SEEG dataset, the corresponding Bayesian

tapering test framework is constructed and the Bayesian multiple test procedure is further investi-
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gated based on Beta-Binomial prior. The benefits of Bayesian tapering test procedures are mainly

in its convenience of construct the acceptance ratio in constructing MCMC posterior estimates.

In Chapter 4, the empirical performance of these tests are further investigated by a compre-

hensive simulation study. The newly proposed tests are compared with existing tests in literature

under different truth scenarios. All these three tests performs pretty good, and especially the test

based on the Kernel smoothing model generally performs the best, which is consistent with the

theoretical results.

In Chapter 5, how the newly proposed tapering test procedures based on “optimal” kernel

smoothing model can be applied to answer the questions proposed regarding to how different

regions of human brain performs during the subject is doing different tasks is illustrated by the

motivating Scalp EEG dataset and the Stereotactic EEG dataset. Some interesting and clinical

meaningful phenomenon are identified, which provides insights into human brain.

To sum up, this newly proposed tapering test based on “optimal” kernel smoothing model

with or without replications achieves the target of our research, which is to propose a new testing

procedure which is powerful and empirically as well as easy to implement in practice even for

clinicians.

There are still remaining issues that needs discussion and further exploration. The multitaper

method is recently proposed by David Thomson in [31] to get consistent estimator of spectral

density, as discussed in Section 1.3. This estimation method addresses simultaneously the issues of

bias and variance in an optimal fashion. We have some preliminary theoretical results that starts

from the “rate-of-testing” theory to derive the “optimal” tapering test based on the multitaper

spectral density estimates. The optimality is constructed by deriving the “optimal” number of

tapers in multitaper method. But we didn’t get too much progress. Considering the fact that

the underlying theory of choosing optimal type of tapering sequence in multitaper method is very

complicated and it is not quite easy to implement in practice, we decided that that’s not the

correct direction we want to go in this research. Probably in the future, when the multitaper

method gets more and more popular and easier to understand, the tapeirng test framework based

on the multitaper spectral density estimation method can be further explored.

Additionally, the cumulative periodogram, which is closely related to the cumulative spectrum,
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is a useful tool for describing the overall behavior of the periodogram. It is defined as

Fx(ωj) =

j∑
i=1

Ix(ωi)
/ pn∑

i=1

Ix(ωi).

It is a direct application of the periodogram for testing the hypothesis that a particular time series is

a white noise sequence or it is a purely random series. Bartlett (1954) [2] proposed a plot of Fx(ωj)

against ωj to assess departure from white noise. See also Jenkins and Watts (1968) [14]. Diggle

and Fisher (1991) [10] extended this idea to the comparison of two sample periodograms via a plot

of Fy(ωj) against Fx(ωj). Probably the asymptotic results for the cumulative periodogram is more

sound. The question comes as whether we can propose our tapering tests based on cumulative peri-

odogram. However, in literatures, only Diggle and Fisher (1991) [10]’s graphic method is proposed

based on the cumulative periodogram in the current context. No formal testing procedures can be

found based on the cumulative periodograms. Probably it is because that the underlying asymp-

totic properties of the cumulative periodogram is much more complicated than the periodogram

and it is not easy to implement in practice. We explored the tapering test based on cumulative

periodogram based on “rate of testing” theory. But we didn’t get too much progress. Maybe in the

future, when the asymptotic properties of the cumulative periodogram is more deeply investigated

and thus attracts more attentions, we work more on developing the tapering test procedures based

on the cumulative periodogram.
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