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Abstract

In this dissertation I analyze the effects of various uncertainties on aggregate

economy, especially on unemployment. For that reason I build a general equilibrium

model with heterogeneous firms with Diamond-Mortensen-Pissarides style search-

and-matching in the labor market. Firms can hire more than one worker and hiring

decision is partially irreversible due to linear hiring costs. First, I analyze the effect

of an increase in time-varying idiosyncratic volatility, which is a mean-preserving

increase in the standard deviation of firm-level productivity. I show that the model

that contains idiosyncratic volatility shock in addition to aggregate productivity shock

explains 60% of the variation in unemployment and 54% of the variation in vacancies,

while also performing well in consumption and investment dynamics. In that model if

idiosyncratic volatility rises, unemployment rate increases. However, workers become

more productive due to the reallocation of resources from low productive to high

productive firms. Thus, even though there are fewer people working, total wage bill

and consumption is larger. Output and capital also increase with volatility because

the increase in capital demand of large and highly productive firms dominates the

reduction in capital demand of small and less productive firms when volatility goes

up. The irreversible search costs in the labor market by itself are not large enough

to induce large and counteracting option value effects of volatility.

Secondly, I solve the model with low and high ambiguity aversion levels to under-

stand the role of model uncertainty. I show that since low-volatility states are the

ones with low utility, ambiguity-averse households distort the conditional expecta-

tions by putting more weight on low-volatility states when higher ambiguity aversion

is considered. In addition, the distortion creates a correlation between aggregate pro-
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ductivity and idiosyncratic volatility shocks, which are independent in the benchmark

distribution. However, the additional effect of this distortion and the correlation it

induces on the dynamics of aggregate variables is negligible.

Lastly, I add disasters in terms of capital depreciation into the baseline model

and analyze effects of an increase in probability of a disaster on the economy. When

probability of a disaster increases without an actual realization of disaster, the rate

of return on capital net of depreciation becomes riskier and lower on average, thus

household reduces investment today. Rental rate of capital goes up, capital and out-

put decline over time. On the separation margin, since marginal benefit of a worker to

a firm depends negatively on the rental rate of capital, separation thresholds increase

for all firms, expanding the separation region, thus increasing the total separations.

The rise in number of unemployed lowers the labor market tightness. The effect on

the hiring margin is non-trivial. Lower labor market tightness makes hiring less costly

for all firms, however higher disaster probability also reduces the marginal benefit of

a worker to a firm. Responses of hiring threshold at various productivity levels show

that the reduction in marginal benefit outweighs the reduction in marginal cost at

lower productivity levels, and the opposite result holds at higher productivity levels.

On aggregate matches are increasing because the number of hires made by highly

productive firms is greater than the number of hires less productive firms decided not

to make after the increase in disaster risk.
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Chapter 1

Risk and Uncertainty in Labor

Markets

1.1 Introduction

The effect of uncertainty on the real economy has been a popular research topic since

the Great Recession, since various measures of volatility, both at macro and micro-

level, increased during the recession along with the unemployment rate. One measure

of micro-level volatility is the cross-sectional variance of innovations to establishment-

level TFP constructed from the U.S. Census of Manufacturers data. According to

Bloom et al (2016) this measure increased by 76% during the Great Recession. Figure

1.1 compares the distribution of establishment-level TFP before and after the Great

Recession. The distribution after the recession has a lower mean and a higher dis-

persion. During the same period, the unemployment rate increased from 5% in 2008

to 10% in 2009. This is not an isolated incident, Figure 1.2 plots the establishment-

level TFP dispersion series and unemployment rate since 1970s and unemployment
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rate is positively correlated with the establishment-level TFP dispersion with one-

year lag. Motivated by those facts, I aim to understand the contribution of uncer-

tainty, especially volatility, on unemployment by analyzing the employment decisions

of multi-worker firms in this work.

Figure 1.1: Distribution of establishment-level TFP

Note: Bloom et al. (2016) Figure 1

The model contains firms that are heterogeneous in productivity and size. Firms

hire by posting costly vacancies in a frictional labor market with Diamond-Mortensen-

Pissarides style search-and-matching. The linear hiring cost gives rise to productivity

thresholds for separation and hiring. Thus there exists option value of inaction at

both hiring and separation margins, and a range of productivity over which firms do

not adjust labor. They also rent capital from the ambiguity-averse households, which

pools wages of employed members, rental income from capital and profit from firms to

provide equal consumption to its members and to invest in capital. Firms are subject

to persistent aggregate and idiosyncratic productivity shocks. In addition, volatility
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Figure 1.2: Unemployment rate and micro-level volatility
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Note: Bloom et al. (2016) micro-level volatility measure and annual unemployment rate,
both series are detrended with Hodrick-Prescott filter with parameter 100.

of the idiosyncratic productivity shock is time-varying and common to all firms.

Idiosyncratic volatility affects the economy through multiple channels. First, the

option value of inaction for firms increases at both hiring and separation margins. At

the separation margin, option value of inaction increases since the firm knows that

even though today’s productivity is low, due to high volatility tomorrow’s productivity

might be much higher and it might be costlier to re-hire a worker once separated

today. Similarly, at the hiring margin, the firm may not choose to hire despite a good

productivity shock today because in a volatile environment tomorrows productivity

might be much lower and the hires of today may need to be fired, and maybe rehired

later if conditions improve. These option-value effects shift both thresholds outward
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and result in an expansion of the inaction zone. As both separations and matches

are expected to decline, the net result of option value effect on the unemployment is

unclear.

Second, while the option value effect is due to the expectations about future

volatility, there is also a realized volatility effect occurs due to the actual realization

of the volatility. If volatility goes up today, firms become more dispersed both in

productivity and size, and they hit the adjustment thresholds more often. As firms

become more active due to volatility, the resources are reallocated towards more

productive firms from less productive ones.

Third, there are also Oi-Hartman-Abel effects of volatility. In the frictionless

case, at given prices, factor demands are convex functions of productivity. Thus, if

there is a mean-preserving spread of productivity, expected factor demands are larger.

This positive effect is present in this model since labor demand is convex outside the

inaction zone, and capital demand is convex but less so inside the inaction zone.

With convex capital demand, firms that experience larger positive shocks demand

more capital thus aggregate capital demand goes up.

Lastly, there are general equilibrium effects operating mainly through labor market

tightness. Due to Oi-Hartman-Abel effects, value of firms increases with volatility.

Firms demand more capital and labor. The initial surge in vacancies causes labor

market tightness to rise. When tightness increases the vacancies become harder to fill

and thus their expected cost increases, shifting the hiring threshold to the right. In

addition, a higher labor market tightness makes finding a job easier for the workers

and improve their outside options. The increase in value of unemployment causes

separations to go up. These effects combined will result in both separations and

matches rising, but since separations increase more, unemployment increases.
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On the household side, the volatility shock is welfare-improving due to wages and

capital increasing with volatility. Wages are determined by Stole-Zwiebel bargaining

as in Elsby and Michaels (2013). In a multi-worker firm, firm bargains with the

last worker over the marginal surplus and all the other workers of the firm earn

this bargained wage. The bargained wage depends on the marginal productivity of

the marginal worker, which is convex in idiosyncratic productivity. For the values

of productivity inside the inaction zone, wage becomes even more sensitive to the

changes in productivity. If volatility rises, number of unemployed agents increases,

however the employed ones end up working in more productive firms and earning

more. Then the total wage bill of the representative household goes up, leading to an

increase in consumption.

The simulated business cycle moments show that incorporating idiosyncratic volatil-

ity shocks in a model with search-and-matching and capital improves the fit for a set

of business cycle moments. The model can account for 60% of the variation in unem-

ployment and 54% of the variation in vacancies. It also performs well in explaining

consumption and investment dynamics. The idiosyncratic volatility shock improves

the amplification in labor market variables through its effect on the firm distribution,

which is a slow-moving object. Moreover, since the firm bargains with the marginal

worker over the marginal surplus and all the other workers of the firm earn this bar-

gained wage, it is possible to generate a large average surplus and a small marginal

surplus. This feature of the model brings cyclicality of labor market tightness closer

to the data as Elsby and Michaels (2013) show.

This work is related to the growing literature on the effects of uncertainty shocks.

Bloom (2009) shows in a model with non-convex adjustment costs in capital and labor

adjustments, higher volatility increases the option value of waiting and leads to an
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initial freeze in hiring and investment decisions. In the presence of labor attrition and

capital depreciation, the freeze leads to an immediate decline in capital, labor and

output. Bloom et al. (2016) extends Bloom (2009) to general equilibrium setting and

find significant negative effects of volatility shocks. In my model separations happen

endogenously and capital depreciates at the aggregate level. Thus, when a volatility

shock hits firms are able to keep their sizes the same. Moreover, in my model labor

adjustment costs are due to search-and-matching frictions and calibrated to match

the labor market flows. I show that when the search costs are calibrated to match

the labor market flows, they do not create irreversibilities in employment decision as

strong as in Bloom (2009) and Bloom et al. (2016).

Schaal (2017) also analyzes the effect of volatility on unemployment; he uses a

different labor market structure, but reaches the same conclusion that search costs are

not large enough to create strong option value effects. Both in my model and in Schaal

(2017) the weak option value effect arising from search frictions are not enough to

dominate the other positive effects of volatility. In Schaal (2017), free-entry condition

creates a channel through which firms are affected by the Oi-Hartman-Abel effects.

In my model, there is no entry, but the flexibility on capital dimension depresses the

option value effect and also makes the Oi-Hartman-Abel effects stronger.

This work is also related to the literature on ambiguity aversion. I model the am-

biguity aversion of the agents with Hansen and Sargent (2008) multiplier-preferences.

In this class of preferences, conditional expectations over future exogenous states are

distorted towards the low-utility states to guard against possible model misspecifica-

tion. The idiosyncratic volatility is one of the exogenous states of the economy, thus

magnitude and direction of the distortion depend on the level of volatility and how it

affects household utility. Tallarini (2000) finds that considering higher risk aversion
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in risk-sensitive preferences improves the performance of the standard RBC model in

matching asset pricing data, while not changing the results for aggregate quantities.

1 In a related study, Bidder and Smith (2012) analyze the effects of an increase in

aggregate volatility and whether it changes with ambiguity-aversion in a represen-

tative agent model. The model is armed with various assumptions to deliver joint

declines in output, capital and consumption (to address co-movement issues in RBC

models) in response to a shock to the volatility of aggregate productivity. Aggregate

volatility shock in this model delivers small third-order effects. They find that since

higher volatility yields lower consumption, the ambiguity-averse agents assign higher

probabilities to high-volatility states. However, they also find that this distortion

does not have a significant effect on the response of aggregate quantities, echoing Tal-

larini (2000) result. In this work I consider higher ambiguity in a model in which an

idiosyncratic volatility shock produces larger first-order effects, due to the existence

of option value.

I show that due to volatility shocks positive effect on capital and consumption,

low-volatility states are the ones with low utility, thus the ambiguity averse house-

hold puts more weight on low-volatility states when taking expectations. Since firms

are owned by the ambiguity-averse households, they use the households’ stochastic

discount factor when discounting future values. This way the households’ concern

about low-utility states is transferred to the firms and basically firms are told by the

households to put more weight to the low-utility states of the world. I show that

concern for model uncertainty creates a correlation between aggregate productivity

and idiosyncratic volatility in the worst-case distribution. Even though the probabil-

1The risk aversion parameter in the risk-sensitive preferences corresponds to the ambiguity aver-
sion parameter in multiplier-preferences. In the former it represents the aversion towards quantifiable
risk, while in the latter it shows the aversion to model uncertainty.
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ity distortion directly affects the stochastic discount factor and the stochastic steady

state levels of capital, output and rental rate of capital, its effect on the aggregate

dynamics is negligible.

Lastly, I also solve a version of the model with Epstein-Zin preferences and disas-

ters in terms of higher capital depreciation rate as in Gourio (2012). The disaster risk

is used in macro-finance literature within representative agent frameworks to explain

asset pricing facts such as equity premium puzzle, however its effects on heteroge-

neous firms in a general equilibrium setting has not been studied yet, to the best of

my knowledge. In this version of the model when probability of a disaster increases,

household invests less since now their investment is subject to a higher depreciation

rate on average. At the same time, unemployment goes up, capital and output goes

down. Even though consumption goes up on impact because of setting intertemporal

elasticity of substitution greater than one following Gourio (2012), this version of the

model is able to create a mild recession in response to an increase in disaster risk,

in contrast to the first model with productivity risk. The movement of productivity

thresholds for hiring and separation, and the movement of firm distribution are creat-

ing non-trivial labor market dynamics in the model with disaster risk. Moreover, due

to the presence of labor adjustment costs and slow-moving firm distribution, adjust-

ments after the disaster risk shock are not instantaneous and responses demonstrate

more propagation compared to Gourio (2012) results.
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1.2 Model with volatility shock

1.2.1 Household’s Problem

There is a representative household in the economy with L members. The number of

employed members is determined with the random search-and-matching in the labor

market. The household owns the firms, and also rents capital to the firms. Given the

rental rate of capital r, the total wage bill W , and the aggregate states capital K,

aggregate productivity A, idiosyncratic volatility σz, the household chooses how much

to consume and invest. The total wage bill is the sum of the wages of the employed,

the unemployment benefits of the unemployed, and the profits from the firm net of

the lump-sum tax. The government is collecting taxes only to finance the unemploy-

ment benefits, T = (L −
∑
n(n−1, z,K,A, σz,Γ)Γ(n−1, z))b, where Γ(n−1, z)) is the

distribution of firms over the number of workers they had last period n−1 and the

idiosyncratic productivity z. In the equilibrium the total wage bill is given as:

W (K,A, σz,Γ) =
∑

w(n, z,K,A, σz,Γ)n(n−1, z,K,A, σz,Γ)Γ(n−1, z)

+
∑

Π(n, z,K,A, σz,Γ)Γ(n−1, z)

The household takes the total wage bill W as given when solving its problem thus

household’s decisions do not depend on the distribution of its employed members

over the firms Γ(n−1, z) directly. Moreover, due to perfect insurance assumption, the

household provides equal consumption to all its members.

The representative household is ambiguity-averse, which means that it does not
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know the true distribution of the shocks driving the economy, has a benchmark distri-

bution in mind, however entertains a set of possible distributions around this bench-

mark distribution. Since it has aversion to having ambiguity over possible distribu-

tions, it chooses to act on the worst-case one to guard itself from possible adverse

consequences of model uncertainty. This leads to acting on a distorted version of

the benchmark distribution. I assume that the household has multiplier-preferences

as in Hansen and Sargent (2008). With that class of preferences the ambiguity-

aversion parameter is ϕ > 0 and the Bellman equation takes a special form with

log-exponential continuation value as shown in Section A.3. If ϕ → ∞, the prefer-

ences collapse into the expected utility preferences, and the smaller the ϕ the higher

the ambiguity-aversion is. This representation is the same as in Tallarini (2000) risk-

sensitive preferences, however in Tallarini (2000) the parameter ϕ shows the aversion

to quantifiable risks.

The problem of the household is:

V H(K,A, σz,Γ) = max
C,K′

{
log(C)− βϕ logE

[
exp(
−V H(K ′, A′, σ′z,Γ

′)

ϕ
)
]}

subject to the budget constraint

C +K ′ = (1− δ + r(K,A, σz,Γ))K +W (K,A, σz,Γ)

and the law of motion for the firm distribution Γ′ = H(K,A, σz,Γ).

This problem will give us the decision rules C(K,A, σz,Γ), K ′(K,A, σz,Γ), the
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household’s value function V H(K,A, σz,Γ) and the distortion to the probabilities as:

m(K ′, A′, σ′z,Γ
′) =

exp(−V H(K ′, A′, σ′z,Γ
′)/ϕ)

E
[

exp(−V H(K ′, A′, σ′z,Γ
′)/ϕ)

]
With the expected utility the distortion would be 1 at every state. With the

ambiguity aversion, the expected value of this distortion is 1. It is larger (smaller)

than 1 at the states for which V H(K ′, A′, σ′z,Γ
′) is low (high). The magnitude and

the direction of the distortion are dependent on the ambiguity-aversion parameter

ϕ, the future values of exogenous states A′, σ′z, and it is conditional on the current

aggregate states K,A, σz and Γ through K ′(K,A, σz,Γ).

1.2.2 Firm’s problem

There is a constant measure 1 of firms in the economy. There is no entry or exit,

however the firms can increase or decrease the number of workers they have. Firms

differ with respect to the number of their workers they had last period n−1, and their

idiosyncratic productivity z. The firm decides on how many workers to employ this

period n, how many vacancies v it needs to post to get n workers, if hiring, and how

much capital k to use. If the firm decides to hire, it has to post vacancies with cost

of κ, but firing workers is costless. For a hiring firm, the total vacancy posting cost

is κv. Then at a given rental rate of capital r and labor market tightness θ, the firm
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with n−1 workers and productivity z solves the following problem:

V F (n−1, z,K,A, σz,Γ)

= max
n,v,k

{
Azkαknαn − r(K,A, σz,Γ)k − w(n, z,K,A, σz,Γ)n− κv

+ βC(K,A, σz,Γ)EA′|AEσ′z |σz

[m(K ′, A′, σ′z,Γ
′)

C(K ′, A′, σ′z,Γ
′)
Ez′|z

[
V F (n, z′, K ′, A′, σ′z,Γ

′)
]]}

subject to the law of motion for Γ(n−1, z) (4), and to the law of motion for employ-

ment:

4n1+ = q(θ)v

where 4n is the change in number of workers, q(θ) is the job-filling probability

and 1+ is an indicator function that is 1 if firm is hiring and 0 otherwise. The optimal

choice of capital satisfies r = αkAzk
αk−1nαn . If I substitute the optimal capital and

vacancy choices into the problem above, the firm’s problem becomes:

V F (n−1, z,K,A, σz,Γ)

= max
n

{(1− αk
αk

)( αkAzn
αn

r(K,A, σz,Γ)αk

) 1
1−αk − w(n, z,K,A, σz,Γ)n− κ

q(θ)
4n1+

+ βC(K,A, σz,Γ)EA′|AEσ′z |σz

[m(K ′, A′, σ′z,Γ
′)

C(K ′, A′, σ′z,Γ
′)
Ez′|z

[
V F (n, z′, K ′, A′, σ′z,Γ

′)
]]}

There is a kink in the value function at 4n = 0. It is similar to the kinked labor

and capital adjustment costs used by Bloom et at. (2016) however here the labor
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adjustment cost, κ
q(θ)

, is endogenously determined since the job-filling probability q

depends on the labor market tightness θ(K,A, σz,Γ). This problem gives us produc-

tivity thresholds for hiring and separation decisions for a firm of size n−1. In fact,

it is possible to calculate number of workers that would be optimal at each level of

productivity under separation (costless adjustment) and hiring (costly adjustment)

cases, and to derive the optimal labor demand for any size firm as a combination of

these two decision rules.

The hiring thresholds can be calculated by assuming that not only the positive

adjustments but all adjustments incur the hiring cost. Let nh(z) denote the optimal

number of workers to employ with productivity z under costly adjustment case. The

following is the first-order condition with respect to employment with adjustment

costs, where π(n, z) is the profit of a firm excluding the adjustment cost and aggre-

gate shocks are ignored for ease of notation.

∂π(nh, z)

∂nh
+ βEz′|z

[
Vnh

F (n, z′)
]

=
κ

q(θ)

Similarly, the firing thresholds can be calculated by assuming that all adjustments

are costless. Let nf (z) denote the optimal number of workers to have with produc-

tivity z under costless adjustment case.

∂π(nf , z)

∂nf
+ βEz′|z

[
Vnf

F (n, z′)
]

= 0

Then the optimal labor demand for a firm of size n−1 is of the form:
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n(n−1, z) =


nh(z) if z > n−1

h (n−1)

n−1 if z ∈ [n−1
f (n−1), n−1

h (n−1)]

nf (z) if z < n−1
f (n−1)

This problem will give us the employment decision rule n(n−1, z). Figure 1.3 shows

the labor demand function of a firm that has 25 workers, as an example. It is optimal

for this firm to reduce its workforce to a level that satisfies the first-order condition

for firing if it draws a productivity lower than 1.03 = n−1
f (25). Similarly, if this firm

draws a productivity higher than 1.15 = n−1
h (25) then it is optimal to expand until

the condition for hiring threshold is satisfied. For the intermediate values of z, it is

optimal to keep the number of workers the same.

After obtaining the employment decision rule, capital decision rule is calculated

as a function of it:

k(n−1, z,K,A, σz,Γ) =
(αkAzn(n−1, z,K,A, σz,Γ)αn

r(K,A, σz,Γ)

) 1
1−αk

1.2.3 Wage setting

Whether there is constant or diminishing marginal returns of labor in production

matters for the wage bargaining. In the classical search-and-matching model with

linear production function labor has a constant marginal product. This assumption

provides tractability by making the rents that firm and workers bargain over the

same for each worker within a firm. Then it becomes possible for the firm to bargain

with each of its workers independently. If we assume that firms have diminishing
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Figure 1.3: Labor demand of a firm
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marginal product of labor instead, these rents will depend on the number of workers

in each firm. On top of that due to the decreasing returns to scale in production,

working with N one firm-one worker matches is not equivalent to working with one

large firm with N workers. It breaks the independence of the rents of each individual

employment relationship within a firm. Now the firm and workers should bargain

over the marginal surplus. The bargaining solution of Stole and Zwiebel (1996) is

suitable for this case.

Workers’ bargaining power is η ∈ (0, 1). If workers had no bargaining power

the firm would pay the unemployment benefit b to make workers indifferent between

employment and unemployment and workers would decide to work. If workers had
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all the bargaining power then they would get all the benefits of hiring the marginal

worker for the firm. The benefits are the marginal product of labor for this worker

adjusted for the lower wages due to decreasing returns to scale and the savings made

on vacancy costs in the future by hiring today. The wage that results from Stole and

Zwiebel (1996) bargaining is a weighted average of these two limiting cases and given

by 2

w(n, z,K,A, σz,Γ) = η

{
αn(1− αk)

1− αk − η(1− αk − αn)

( αk
r(K,A, σz,Γ)

) αk
1−αk (Az)

1
1−αk n

αk+αn−1

1−αk

+ βκC(K,A, σz,Γ)EA′|AEσ′z |σz

[m(K ′, A′, σ′z,Γ
′)

C ′(K ′, A′, σ′z,Γ
′)
θ′(K ′, A′, σ′z,Γ

′)
]}

+ (1− η)b

1.2.4 Recursive competitive equilibrium

A recursive competitive equilibrium in this economy is a set of quantity functions

{C,K ′, n, k}, price functions {r, θ,W}, wage function w, and value functions {V H , V F}.

V H and {C,K ′} are the value and policy functions solving (2) while V F and {n, k}

are the value and policy functions solving (7) and wage function w solves the bar-

gaining problem between a firm and marginal worker. The price functions {r, θ,W}

clear

(i) the capital market

K =
∑∑(αkAzn(n−1, z,K,A, σz,Γ)αn

r

) 1
1−αk Γ(n−1, z),

2Derivation of the wage function is in Section A.4.
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(ii) the labor market

1

(1 + θ−g)1/g
=

∑∑(
n(n−1, z,K,A, σz,Γ)− n−1

)
+

Γ(n−1, z)(
L−

∑∑
n−1Γ(n−1, z)

)
and (iii) the goods market

W =
∑∑

w(n, z,K,A, σz,Γ)n(n−1, z,K,A, σz,Γ)Γ(n−1, z)

+
∑∑

Π(n, z,K,A, σz,Γ)Γ(n−1, z).

Lastly, the evolution of the firm distribution Γ(n−1, z) is consistent, which means

thatH(K,A, σz,Γ) is generated by the appropriate integration of n(n−1, z,K,A, σz,Γ)

and k(n−1, z,K,A, σz,Γ), along with the exogenous stochastic evolution of A, z, σz

and the endogenous evolution of K.

1.2.5 Stationary equilibrium

In the stationary equilibrium the aggregate productivity A is 1 and the idiosyncratic

volatility is at its mean σ̄z. Household’s problem gives

r∗ =
1

β
− 1 + δ

At r∗, each firm solves the following problem at given labor market tightness θ
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and firm distribution Γ(n−1, z)

V (n−1, z,K; θ,Γ) = max
n

{[(αk
r∗

) αk
1−αk z

1
1−αk n

αn
1−αk − wn− κ

q(θ)
4n1+

]

+ βEz′|z

[
V (n, z′; θ,Γ)

]}

where

w(n, z; θ) =η

[
αn(1− αk)

1− αk − η(1− αk − αn)

(αk
r∗

) αk
1−αk z

1
1−αk n

αk+αn−1

1−αk

+ βκθ

]
+ (1− η)b

The steady state of the economy can be characterized by two relationships as

in Elsby and Michaels (2013). First one is the job creation condition, which is a

generalization of the labor demand condition as a function of labor market tightness.

The unemployment implied by the job creation is given as

UJC(θ) =
(
L−

∑∑
n(n−1, z; θ)Γ(n−1, z)

)

Second one is the Beveridge curve relation. It is obtained from the evolution of

unemployment over time through inflows by separations and outflows by matches as

∆U = S(θ) − f(θ)U . In the stationary equilibrium the aggregate employment, thus

unemployment is constant, and the unemployment implied by the Beveridge curve

relation is given as

UBC(θ) = S(θ)/f(θ)
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The steady-state level of labor market tightness θ∗ and the stable firm distribution

Γ∗(n−1, z) solve these two conditions together, and ensure that total number of separa-

tions S(θ∗) is equal to the total number of matches f(θ∗)
(
L−
∑∑

n(n−1, z; θ
∗)Γ(n−1, z)

)
.

In other words, θ∗ clears the search-and-match market and Γ∗(n−1, z) is the invariant

distribution under the operator T that is generated by the aggregation of individual

firm’s optimal decisions, i.e. T (Γ∗) = Γ∗.

Figure 1.4 shows the contour map of the resulting stable firm distribution Γ∗(n−1, z).

It has mass around both adjustment bands, meaning that in the stationary equi-

librium some firms are always hitting the adjustment bands as their idiosyncratic

productivity evolves, however in the absence of any aggregate shocks the aggregate

employment stays the same since at θ∗ separations and matches are equal.

Figure 1.4: Firm distribution at the stationary equilibrium
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1.3 Solution method

I solve the model with value function iteration. The solution of this model is chal-

lenging for three reasons. First, since it is a heterogeneous firm model with aggregate

shocks, it requires keeping track of the firm distribution over time. Second, with a

constant firm mass with no entry or exit, there is no free entry condition. Instead, the

labor market tightness must be solved as an additional equilibrium object. Third,

it is stated by Krusell and Smith (2006) and Young (2010) that in the standard

Krusell-Smith algorithm when the agents respond to the forecasted prices instead of

the actual prices, markets do not clear. To avoid that problem, I use the algorithm

proposed in Young (2010) and make sure that the agents are responding to the actual

prices both today and in the future, instead of the forecasted prices. To achieve that,

I embedded a simulation and projection step in between each value function iteration

step. The details of the solution algorithm are given in Section A.5.

To simulate the model with aggregate shocks and construct the approximate

pricing functions r(K,A, σz), W (K,A, σz), and θ(K,A, σz), I need to calculate the

prices that clear the capital, labor and good markets at each period. Given a

time series of aggregate states, A, σz, I find the prices that solve the market clear-

ing conditions (11), (12) and (13). Along the way the cross sectional distribution

Γt(n−1, z,K,A, σz) is updated by the histogram approach described in Young (2010).

Then I project the resulting time series for r,W, θ on the aggregate states to obtain

r(K,A, σz),W (K,A, σz), and θ(K,A, σz), which are be used to update the value func-

tion in the next iteration. The coefficients of price functions are given in Table 1.1.

In principle, prices are also functions of the firm distribution Γ(n−1, z) at each period,
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however I do not include a moment of this distribution in the regressions. The reason

is that the firm distribution at time t is known by the firm, since it is generated by

updating the firm distribution at time t− 1 according to the employment choices at

time t − 1. Similarly the capital stock at time t is also determined at time t − 1 as

a function of the aggregate states at time t − 1. Thus, the explanatory variable Kt

contains the same information that is needed to determine Γt and it is not necessary

to include another variable related to the firm distribution in the price regressions.

Table 1.1: Price functions - Expected utility

constant log(K/Kss) log(A) log(σz/σ̄z) R2

log(r/rss) -0.00026 -0.66918 1.08917 0.06102
(0.00003) (0.00128) (0.00175) (0.00037) 0.99

log(W/Wss) 0.00008 0.33044 1.07891 0.04492
(0.00003) (0.00151) (0.00207) (0.00044) 0.99

log(θ/θss) 0.00789 1.69794 4.95413 0.51271
(0.00078) (0.03784) (0.05197) (0.01098) 0.98

log(C/Css) 0.01265 0.76069 0.15233 0.00816
(0.00004) (0.00178) (0.00245) (0.00052) 0.99

Note: Regressions are run for the expected utility case (ϕ = 20000) for 500 periods.
Standard errors are in parentheses.
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1.4 Calibration

1.4.1 Functional forms and exogenous processes

I assume a production function with decreasing returns to have a distribution of firms

with different sizes.

y = Azkαknαn , αk + αn < 1

I choose the following matching function as in Den Haan et al.(2000) to make sure

that the job-finding and job-filling probabilities are always less than 1.

M(U, V ) =
UV

(U g + V g)
1
g

Then the job-finding and job-filling probabilities are respectively given as follows:

f =
1

(1 + θ−g)
1
g

, q =
1

(1 + θg)
1
g

where θ = V/U is the labor market tightness.

The idiosyncratic and aggregate productivity shocks follow the AR(1) processes

respectively:

log(zt) = ρz log(zt−1) + σzt
√

(1− ρ2
z)ε

z
t , εzt ∼ N(0, 1)

log(At) = ρA log(At−1) + σA
√

(1− ρ2
A)εAt , εAt ∼ N(0, 1)

where the time-varying volatility of the idiosyncratic shock has a mean σ̄z and has
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the following process:

σzt = (1− ρσz)σ̄z + ρσzσ
z
t−1 + σσz

√
(1− ρ2

σz)ε
σz

t , εσ
z

t ∼ N(0, 1)

I use Rouwenhorst (1995) method to discretize the processes. For the idiosyncratic

productivity process I first discretize the volatility process σzt into three grid points

for low, medium and high volatility states. Next I use Rouwenhorst method three

times to get different grids for log(zt) at each volatility state.

1.4.2 Calibration strategy

Table 1.2 summarizes the parameter calibration and Table 1.3 lists the moments

that result from the calibration. The time period in the model is one quarter. I

set the capital depreciation rate to 2.5% to match annual depreciation rate of 10%.

The quarterly rental rate of capital is set to 3.1% resulting in a discount factor β of

0.994. The production function parameter for capital αk is set to 0.31 to ensure the

capital-output ratio of 10 and thus the investment-output ratio of 0.25.

The production function parameter for labor αn that is set to 0.57 leads to an

labor income-output ratio of 0.60, which is close to its data counterpart of 0.64. I

set the matching function parameter g to 1.60 as in Schaal (2017), who estimates

the job-finding function f =
1

(1 + θ−g)
1
g

using the job-finding rate series constructed

by Shimer (2007) and a measure of labor market tightness constructed with the

vacancy series from Conference Board’s Help Wanted Index and JOLTS, and the

unemployment rate series from the BLS.

The unemployment benefit b, the vacancy posting cost κ and the size of the

labor force L are calibrated together to match the separation rate S/N = 0.03,
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unemployment rate (L − N)/L = 0.045 and the average firm-size of N = 17. The

unemployment benefit controls the separations, while the vacancy posting cost affects

the matches. In the stationary equilibrium the separations are equal to the matches,

thus the ratio of b and κ determines the labor market tightness to be 0.73, which is

close to its data counterpart of 0.72. The levels of b and κ determine the average

firm size. I target the vacancy posting cost κ to be 33% of the average wage in the

economy as in Schaal (2017). The resulting value for the unemployment benefit is

84% of the average wage, thus the calibration is close to Hagedorn and Manovskii

(2008) case. In addition, the unemployment benefit corresponds to 50% of the average

output per person, which is lower than 63% in Schaal (2017) and 71% in Hall and

Milgrom (2008).

The persistence of aggregate and idiosyncratic productivity shocks are both set

to 0.95 and consistent with Khan and Thomas (2008). The standard deviation of the

aggregate productivity is set to 0.012 to match the standard deviation of output in

the data which is 0.017. The mean idiosyncratic volatility σ̄z is set to 0.12, and it is

close to the mean of the uncertainty measure Gilchrist et al. (2014) obtained from

the profits of Compustat firms, which is 0.15. The standard deviation of idiosyncratic

volatility is also set to 5% of its mean value as in Gilchrist et al. (2014). The persis-

tence of the volatility shock is backed out from simulating the uncertainty process in

Bloom et al. (2016).
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Table 1.2: Calibration

Parameter Meaning Value

β Discount factor 0.994
δ Depreciation rate 0.025
αk y = Azkαknαn 0.31
αn y = Azkαknαn 0.57
b Value of leisure 0.928
η Worker’s bargaining power 0.40
g Matching function parameter 1.60
κ Vacancy posting cost 0.36

ρz Persistence of idios. prod. 0.95
σ̄z Mean vol. of idios. prod. 0.12
ρσz Persistence of vol. of idios. prod. 0.976
σσz Std. dev. of vol. of idios. prod. 0.006

ρA Persistence of agg. prod. 0.95
σ̄A Mean vol. of agg. prod. 0.012

1.5 Results

1.5.1 Business cycle statistics

The simulated business cycle moments show that incorporating idiosyncratic volatility

shocks in a model with search-and-matching and capital improves the fit for a set of

business cycle moments. The model can explain 60% of the variation in unemployment

and 54% of the variation in vacancies, which more in line with the data than Shimer

(2005) and comparable to Schaal (2017) results. It also performs well in consumption

and investment dynamics, which is missing in Schaal (2017).

The idiosyncratic volatility shock improves the amplification in labor market vari-

ables through its effect on the firm distribution, which is a slow-moving object. More-

over, since the firm bargains with the marginal worker over the marginal surplus and

all the other workers of the firm earn this bargained wage, it is possible to generate a
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Table 1.3: Moments

Moment Meaning Model Data

F Firm mass 1 Normalization
L Labor force 17.53 u = 4.5%
N Avg. firm size 16.74 17

W/Y Labor income share 0.60 0.64
K/Y Capital output ratio 10 I/Y = 0.25
Π/Y Profit income ratio 0.08 0.10
S/N Separation rate 0.03 0.04
θ Labor market tightness 0.73 0.72

κ/W Vacancy cost/Avg. wage 0.33 Schaal (2017)
(κ/q)/W Expected hiring cost/Avg. wage 0.44
b/W Unemp. benefit/Avg. wage 0.84

b/(Y/N) Unemp. benefit/Labor productivity 0.50

large average surplus and a small marginal surplus. This feature of the model brings

cyclicality of labor market tightness closer to the data as Elsby and Michaels (2013)

show.

The correlations of hirings and separations with the output are especially affected

by the inclusion of the volatility shock, comparing last two rows of Column 5 and Col-

umn 7 in the top panel of Table 1.4. First, I explain, by referring to impulse-responses,

how including volatility shock improves the correlation of hirings and output, turning

the large negative correlation to a small but positive one. As Figure 1.10 in Section

1.5.4 shows, if a negative aggregate productivity shock hits fewer vacancies are posted

initially and labor market tightness decreases. Then with a lower labor market tight-

ness, the hiring cost κ/q(θ) is lower and matches recover quickly, even surpass their

pre-shock level, thus creating a negative correlation between hirings and output. I

also find that a positive volatility shock increases output and hirings at the same time

as Figure 1.7 in Section 1.5.3 demonstrates. When both shocks are considered to-
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gether in the model, I find that the positive correlation of hirings and output created

by the volatility shock dominates the negative correlation created by the aggregate

productivity shock, and the result is a mild positive correlation.

Similarly, the inclusion of volatility shock reduces the large negative correlation of

separations and output to a small but still negative one. With only negative aggregate

productivity shock, separations increase since many workers are now not productive

enough to work. But at the same time, due to low labor market tightness, job finding

rate is lower and there are less incentives to separate for the workers. The former

effect dominates and the result is a large negative correlation between separations and

output. However, as shown in Figure 1.7, a positive volatility increases both separa-

tions and output due to the strong positive effect of job finding rate on separations.

Thus, when considered together the positive correlation induced by volatility shock

reduces the negative correlation of separations and output, and brings it closer to the

data.

1.5.2 Effects of higher idiosyncratic volatility

Option value effect

The option value of inaction increases at both margins with higher volatility. At

the separation margin, the option value of inaction increases since the firm knows

that even though today’s productivity is low, due to high volatility the productivity

might be higher tomorrow and it might be costlier to re-hire a worker once separated

today. Similarly, at the hiring margin, the firm may not choose to hire despite a good

productivity shock today because in a volatile environment tomorrows productivity

might be much lower and the hires of today may not be worthy of their costs, thus
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Table 1.4: Business cycle statistics

Data Model (only A) Model (A and σz)
σ(x) ρ(x, Y ) σ(x) ρ(x, Y ) σ(x) ρ(x, Y )

Y 0.017 1 0.015 1 0.018 1
I 0.070 0.90 0.035 0.851 0.040 0.852
C 0.013 0.90 0.012 0.834 0.014 0.847
U 0.121 -0.86 0.050 -0.958 0.073 -0.650
V 0.138 0.70 0.024 0.926 0.074 0.539

Hirings 0.058 0.68 0.014 -0.605 0.059 0.056
Separations 0.042 0.70 0.015 -0.745 0.060 -0.016

Schaal (2017) Bloom et al. (2016) Shimer (2005)
σ(x) ρ(x, Y ) σ(x) ρ(x, Y ) σ(x) ρ(x, Y )

Y 0.017 1 0.020 1 0.017 1
I 0.012 0.90
C 0.009 0.50
U 0.089 -0.722 0.007 -0.982
V 0.053 0.267 0.021 0.993

Hirings 0.049 0.202 0.003 0.448
Separations

Layoffs 0.086 -0.600 0.001 0.931
Quits 0.071 0.648

Note: Time series are at quarterly frequency and presented in log-deviation from an HP
trend with parameter 1600. Statistics for Schaal (2017) and Shimer (2005) are from
Schaal (2017) Table 3 and 4. Statistics for Bloom et al. (2016) are from Bloom et al.
(2016) Table 7. See Section A.2 for data sources.

leading to separations and searching again. These option-value effects are expected to

shift both thresholds outward and result in an expansion in the inaction zone, in the

absence of other effects. As both separations and matches are expected to decline,

the net result of option value effect on the unemployment is not clear. The strength

of the option value effect depends on the size of the hiring cost and the mass of firms

close to the adjustment thresholds.

Realized volatility effect

The realized volatility effect occurs due to the actual realization of the volatility.
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If volatility increases today, dispersion across firm increases and firms may hit the

adjustment thresholds more often. As firms become more active due to high volatility,

the resources are reallocated towards more productive firms.

Oi-Hartman-Abel effect

Aside from the option value effect, there is also Oi-Hartman-Abel effects of volatil-

ity. In the frictionless case, at given prices, the factor demands are convex functions

of the productivity. Thus, if there is a mean-preserving spread of productivity, i.e.

productivity becomes more volatile, the factor demands are expected to increase.

This positive effect is present in this model since labor demand is convex outside the

inaction zone, and capital demand is convex but less so inside the inaction zone as

shown in Figure 1.5.

Figure 1.5: Labor and capital demand of a firm
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General equilibrium effects

In the general equilibrium, labor market tightness clears the labor market as

the rental rate of capital clears the capital market. The general equilibrium effect

of changes in the labor market tightness are particularly important since it affects

the matching decision through its effect on the hiring costs and separation decision

through its effect on job-finding probability.

Adjustment bands at low and high volatility

Figure 1.6 displays the adjustment bands for low and high volatility states. With

higher volatility both adjustment bands move to the right, due to combination of

all the effects listed above. The shift of hiring band to the right is mostly due to

option value effect since in a highly volatile environment firms now require higher

productivity to incur irreversible hiring costs. The shift of separation band to the

right is mainly due to the general equilibrium effect of higher labor market tightness.

In a tight labor market finding a job is easier for workers, thus there is more incentive

to separate. Even though the option value effect is expected to shift the separation

band to the left and reduce the separations, in this case the general equilibrium effect

dominates the option value effect and the bands shifts to right. Higher labor market

also affects the hiring band through its effect on the hiring costs. With a higher labor

market tightness, job-filling probability of a firm declines and the expected hiring

costs go up, contributing to the rightward shift of the hiring band.
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Figure 1.6: Adjustment bands at low and high volatility

Note: Solid lines: Low volatility, Dashed lines: High Volatility,
Red: Separation bands, Blue: Hiring bands

1.5.3 Impulse-response analysis of a volatility shock

Figure 5 shows the responses of various variables to a one-standard deviation positive

shock to the volatility. If volatility increases, expected value of a match increases

due to Oi-Hartman-Abel effect, leading firms to post more vacancies and hire more.

The initial surge in vacancies causes labor market tightness to rise. When tightness

increases, vacancies become harder to fill and thus their expected cost increases,

shifting the hiring threshold to the right. In addition, a higher labor market tightness

makes finding a job easier for the workers and improve their outside options. The

increase in the value of unemployment causes separations to go up. These effects
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combined will result in both separations and matches increasing, but since separations

increase more, unemployment goes up. In addition, with convex capital demand,

the firms that experience larger positive shocks demand more capital thus aggregate

capital demand goes up. Since at the beginning of the period the capital supply is

pre-determined, increase in capital demand immediately results in an increase in the

rental rate of capital.

In addition, as Figure 1.8 shows, the number of inactive firms i.e. the mass of

firms inside the inaction zone, declines when the shock hits, showing that the realized

volatility effect is stronger than the option value effect and firms become more active

in response to higher volatility. Consistent with the shifts int he adjustment bands,

the mass of firms separating goes up as the mass of firms hiring goes down. The

reallocation effect is also evident with the fact that matches are increasing as the

mass of firms hiring is decreasing. Thus it must be the case that with the positive

volatility shock, there are firms with very favorable productivity draws, which are

not many in numbers but are hiring more workers per firm and increasing the overall

productivity of the workforce.

I decompose the total responses to a one-standard deviation positive shock to the

volatility and display results in Figure 1.9. The dashed line shows the response if the

shock affects the expectations only, meaning that the actual volatility is not changing

with the shock. Compared to the total response, the dashed line shuts down the

realized volatility effect. I call this case the constant realized volatility case. The

constant realized volatility case includes all the other remaining effects; option value,

Oi-Hartman-Abel and general equilibrium. The realized volatility effect causes signif-

icant reallocation in the economy from less productive firms towards more productive

firms. The effect of reallocation on output, consumption and capital is large and pos-
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Figure 1.7: Responses to a 1 std.dev. positive σz shock

Figure 1.8: Responses to a 1 std.dev. positive σz shock - Firm mass
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itive since without realized volatility they all would be decreasing. Moreover, Figure

1.9 also shows that the rise in unemployment is mostly due to combination of the other

remaining effects, not due to reallocation. Even in the absence of realized volatility,

it possible to see the effect of convexity in the increasing matches and the general

equilibrium effect of higher labor market tightness in the increasing separations. In

addition, the capital demand is now decreasing since without an actual increase in

volatility, less number of workers are employed by not the most productive firms and

producing less in total. At the period shock hits capital supply is pre-determined,

thus lower capital demand results in a lower rental rate of capital.

Figure 1.9: Decomposition of response to σz shock

Note: Black solid line: actual response, Red dashed line: if expectations about volatility
changes only (shuts down realized volatility effect)
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1.5.4 Effects of lower aggregate productivity

Figure 1.10 shows the response of aggregate variables to a decline in aggregate pro-

ductivity. As expected aggregate output, consumption and capital all decline and

unemployment increases. Lower aggregate productivity increases separations for all

firms, while it decreases matches on impact. With fewer vacancies posted and more

workers separated, labor market tightness is lower after the shock. Matches recover

quickly because lower labor market tightness increases job-filling probability q(θ),

which in turn incentives more matches due to lower cost of κ/q(θ). However the

general equilibrium effects are affecting firms with different productivity levels dif-

ferently. Figure 1.11 plots how adjustment bands for firing and hiring change when

aggregate productivity decreases. One thing to notice is that the adjustment band for

hiring decreases especially for low productive firms on impact, but then it increases

for all productivity levels as the general equilibrium effects, such as the changes in the

labor market tightness, in rental rate of capital and firm distribution, take place. By

looking at these changes in the hiring thresholds I deduct that the initial decline on

matches is due to low productive firms reducing hiring, while the following increase

in matches is mainly due to the high productive firms that benefit from the lower

rental rate of capital and lower labor market tightness.
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Figure 1.10: Responses to a 1 std.dev. negative A shock

Figure 1.11: Responses of adjustment bands to a 1 std.dev. positive A shock
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Note: Upper (lower) panel is the responses of the firing (hiring) thresholds at various
idiosyncratic productivity levels.
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1.6 Higher ambiguity aversion

1.6.1 Probability distortion

Figure 1.12 displays the probability distortion for each aggregate productivity and

idiosyncratic volatility combination that can be experienced next period, conditional

on A = 1, σz = σ̄z and steady state level of capital today. I set ambiguity aversion

parameter ϕ to 20000 for low ambiguity (or expected utility) case and set it to 10 for

the high ambiguity case. Hansen and Sargent (2008) derive the equivalence between

Epstein-Zin preferences with intertemporal elasticity of substitution equal to 1 and

multiplier preferences and show that the ambiguity aversion parameter can be written

as ϕ = −1/(1 − β)(1 − ϕEZ), where β is the discount factor and ϕEZ is the risk

aversion parameter in Epstein-Zin preferences. This conversion formula implies that

the high ambiguity aversion case corresponds to a risk aversion of 17.6, as the low

ambiguity aversion case corresponds to a risk aversion of 1 i.e. standard expected

utility specification.

With high ambiguity aversion, the probability distortion is higher for low aggregate

productivity levels and low idiosyncratic volatility levels. With low ambiguity aversion

(or expected utility preferences), the probability distortion is 1 for every future state.

Table 1.5 tabulates the same conditional probability distortion for each level of A

and σz to demonstrate the correlation created at the worst-case distribution. As the

highest A and highest volatility combination is distorted to have less weight (0.890)

compared to the baseline of 1, the lowest A and lowest volatility combination is

distorted to have disproportionately more weight (1.123).
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Figure 1.12: Probability distortion

1.6.2 Volatility shock with higher ambiguity aversion

Figure 1.13 shows the impulse-response analysis for 1 standard deviation idiosyncratic

volatility shock, at two different ambiguity aversion levels. The blue ones are for an

economy with ϕ = 20000, which is equivalent to the household having expected utility

preferences, while the red dotted lines are for the economy with ϕ = 10, meaning

that household is ambiguity averse. At the stochastic steady state, the economy with

higher ambiguity aversion has higher capital, lower rental rate of capital and slightly

higher output. The responses as the percentage deviations from the corresponding

stochastic steady states are the same at both levels of ambiguity aversion.

Considering higher ambiguity aversion does not lead to any change in aggregate
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Table 1.5: Probability distortion

σz1 σz2 σz3
A1 1.123 1.105 1.088
A2 1.101 1.083 1.067
A3 1.079 1.062 1.045
A4 1.058 1.041 1.025
A5 1.037 1.020 1.004
A6 1.016 1.000 0.984
A7 0.996 0.980 0.965
A8 0.976 0.961 0.946
A9 0.957 0.941 0.927
A10 0.938 0.923 0.908
A11 0.919 0.904 0.890

dynamics but it increases the market price of risk σ(SDF )/E[SDF ], since it increases

the volatility of the stochastic discount factor. With ϕ = 20000 the average market

price of risk over 500 periods is 0.00087, while it is 0.0022 with ϕ = 10.

1.7 Model with disaster risk

In this section I explain a version of the model with disasters in terms of higher

depreciation rate for capital, similar to Gourio (2012). Disaster risk version is inter-

esting and relevant because it is a shock that can lead to a decline in investment. In

previous sections results of an increase in idiosyncratic volatility show how important

dynamics of capital demand is in whether increase in risk leads to a recession or not.

In this section by considering an increase in disaster risk, I am considering a case in

which an increase in risk is reducing the capital supply, and even though there may

be some increase in capital demand, it is possible to observe a recession in response

to a rise in risk.
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Figure 1.13: Responses to a 1 std.dev. positive σz shock - Higher ambiguity

Note: High ambiguity aversion (dashed red line), low ambiguity aversion (solid blue line)

1.7.1 Household’s problem

Given the distribution of its employed members over the firms Γ(n−1, z), the rental

rate of capital r, total wage bill W , and aggregate states capital K, disaster probabil-

ity p, and disaster state x, the household chooses how much to consume and invest.
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The problem of the household in presence of disaster risk is:

V H(K, p,x,Γ) = max
C,I

{
(1− β)C1−γ

+ βEp′|p

[
(1− p′)V H(K ′, p′, 0,Γ′)1−φ + p′V H(K ′, p′, 1,Γ′)1−φ

] 1−γ
1−φ
} 1

1−γ

subject to

C + I = r(K, p, x,Γ)K +W (K, p, x,Γ)

K ′ = ((1− δ)K + I)(1− xbk)

where x is 1 if there is a disaster, and 0 if there is no disaster and bk is the size of

the disaster in terms of extra capital depreciation.

The disaster probability follows a persistence AR(1) process around the mean p̄:

pt = (1− ρp)p̄+ ρppt−1 + σp
√

(1− ρ2
p)ε

p
t , εpt ∼ N(0, 1)

This problem will give us: the decision rules C(K, p, x,Γ), K ′(K, p, x,Γ) and the

value function V H(K, p, x,Γ).

The stochastic discount factor is given as:

SDF = β

(
C(K, p, x,Γ)

C(K ′, p′, x′,Γ′)

)γ(
V H(K ′, p′, x′,Γ′)

Ep′|p

[
(1− p′)V H(K ′, p′, 0,Γ′)1−φ + p′V H(K ′, p′, 1,Γ′)1−φ

] 1
1−φ

)γ−φ
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1.7.2 Firm’s problem

For given rental rate of capital r, labor market tightness θ and wage bill W , a firm

with n−1 workers and z productivity solves the following problem:

V F (n−1, z,K,p, x,Γ) = max
n,v,k

{
zkαknαn − κv − wn− rk

+ βC(K, p, x,Γ)γEp′|p

[
(1− p′) m(K ′, p′, 0,Γ′)

C(K ′, p′, 0,Γ′)γ
Ez′|z

[
V F (n, z′, K ′, p′, 0,Γ′)

]

+ p′
m(K ′, p′, 1,Γ′)

C(K ′, p′, 1,Γ′)γ
Ez′|z

[
V F (n, z′, K ′, p′, 1,Γ′)

]]}

where the distortion to the probabilities is now

m(K ′, p′, x′,Γ′) =

(
V H(K ′, p′, x′,Γ′)

Ep′|p

[
(1− p′)V H(K ′, p′, 0,Γ′)1−φ + p′V H(K ′, p′, 1,Γ′)1−φ

] 1
1−φ

)γ−φ

Idiosyncratic productivity follows an AR(1) process with a constant standard

deviation σ̄z:

log(zt) = ρz log(zt−1) + σz
√

(1− ρ2
z)ε

z
t , εzt ∼ N(0, 1)

If we substitute the constraint 4n1+ = qv and optimal capital level that satisfies
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r = αkzk
αk−1nαn into the problem above, the firm’s problem becomes:

V F (n−1, z,K,p, x,Γ) = max
n

{(αkznαn
r

) 1
1−αk (

1− αk
αk

)− wn− κ

q(θ)
4n1+

+ βC(K, p, x,Γ)γEp′|p

[
(1− p′)m(K ′, p′, 0,Γ′)

C(K ′, p′, 0,Γ)γ
Ez′|z

[
V F (n, z′, K ′, p′, 0,Γ′)

]

+ p′
m(K ′, p′, 1,Γ′)

C(K ′, p′, 1,Γ′)γ
Ez′|z

[
V F (n, z′, K ′, p′, 1,Γ′)

]]}

Solution to this problem will give the decision rule n(n−1, z,K, p, x,Γ) and from

that we can get the capital demand of a firm as

k(n−1, z,K, p, x,Γ) =
(αkzn(n−1, z,K, p, x,Γ)αn

r

) 1
1−αk

1.7.3 Wage Setting

Similar to the version of the model with volatility shocks, the wage that results from

Stole and Zwiebel (1996) bargaining is:

w(n, z,K, p, x,Γ) =η

{
αn(1− αk)

1− αk − η(1− αk − αn)

( αk
r(K, p, x,Γ)

) αk
1−αk z

1
1−αk n

αk+αn−1

1−αk

+ βC(K, p, x,Γ)γEp′|pEz′|z

[
(1− p′) m(K ′, p′, 0,Γ′)

C(K ′, p′, 0,Γ′)γ
θ(K ′, p′, 0,Γ′)

+ p′
m(K ′, p′, 1,Γ′)

C(K ′, p′, 1,Γ′)γ
θ(K ′, p′, 1,Γ′)

]}
+ (1− η)b
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1.7.4 Solution

This version is solved the same way the model with volatility shock is solved. The

detailed algorithm is in Section A.7.

Calibration

The additional parameters for the disaster risk model are given in Table ????. The

remaining parameters are same as in volatility model, except for the aggregate pro-

ductivity and idiosyncratic volatility shock models since these shocks are absent in

this version. Intertemporal elasticity of substitution (IES) is 1.2 and risk aversion

parameter φ is 3. In this theoretical exercise I calibrate capital depreciation disasters

as small and not-so-rare occurrences. When disaster occurs non-depreciated capital

from last period (1 − δ)K and new investment I depreciate at an additional 4.3%,

which is one-tenth of the disaster size Barro (2006) considers. The probability of

disaster is set to 2% per quarter on average, which is higher than the 0.72% Gourio

(2012) considers. I assume the disaster probability has a persistence of 0.96.

Table 1.6: Additional parameters - Disaster risk

Parameter Meaning Value

φ Risk aversion 3
1/γ Intertemporal elasticity of substitution 1.2
bk Size of the disaster 0.043
p̄ Mean of disaster prob. 0.02
ρp Persistence of disaster. prob. 0.96
σp Std. dev. of disaster prob. 0.013

Market Clearing

To simulate the model with aggregate shocks and construct the approximate pricing

functions r(K, p, x), WB(K, p, x), and θ(K, p, x), I need to calculate the prices that
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clear the capital, labor and good markets each period. Given a realization of aggregate

states, p, x, and the current firm distribution Γ(n−1, z), r, WB, and θ solve the

following three equations:

(i) the capital market

K =
∑∑(αkzn(n−1, z,K, p, x,Γ)αn

r

) 1
1−αk Γ(n−1, z),

(ii) the labor market

1

(1 + θ−g)1/g
=

∑∑(
n(n−1, z,K, p, x,Γ)− n−1

)
+

Γ(n−1, z)(
L−

∑∑
n−1Γ(n−1, z)

)
and (iii) the goods market

W =
∑∑

w(n, z,K, p, x,Γ)n(n−1, z,K, p, x,Γ)Γ(n−1, z)

+
∑∑

Π(n, z,K, p, x,Γ)Γ(n−1, z).

I solve these equations at every period for a given time series of aggregate state

variables. While solving the model, I used Rouwenhorst (1995) method to discretize

the AR(1) process for the disaster probability. At each period in simulation first

I simulate a series of disaster probabilities pt then I draw a value for x̂t from a

Uniform(0,1) distribution and I check whether x̂ is greater than pt. If x̂ > pt I set

the disaster realization xt to 1, otherwise to 0. Along the way the cross sectional

distribution Γt(n−1, z) is be updated by the histogram approach described in Young

(2010). Then I project the resulting time series for r,WB, θ on the aggregate states
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to obtain r(K, p, x),WB(K, p, x), and θ(K, p, x), which are be used to update the

value function in the next iteration.

Table 1.7: Price functions - Disaster risk
constant log(K/Kss) log(p/p̄) x R2

log(r/rss) -0.00016 -0.65988 0.00095 0.00071
(0.00001) (0.00034) (0.00025) (0.00003) 0.99

log(WB/WBss) -0.00018 0.33796 0.00091 0.00037
(0.00001) (0.00042) (0.00032) (0.00003) 0.99

log(θ/θss) -0.00901 1.63409 0.01964 0.02838
(0.00018) (0.01181) (0.00880) (0.00084) 0.99

log(C/Css) -0.00100 0.64686 0.22313 0.02218
(0.00001) (0.00010) (0.00007) (0.00001) 0.99

Note: Regressions are run for 1500 periods. Standard errors are in parentheses.

1.7.5 Results

In response to an increase in disaster risk, household decreases investment. Capital

and output decline as rental rate of capital increases. Consumption increases on

impact but then declines as in Gourio (2012). The movement of the adjustment

thresholds for hiring and firing and the movement of firm distribution are creating

non-trivial labor market dynamics in the model with disaster risk. Unemployment

increases in response to higher disaster risk, since separations increase more than the

matches in total. I observe that in response to an increase in disaster risk, productivity

thresholds for firing decrease for all firm sizes, while the productivity thresholds for

hiring decrease for the small firms and increase even more for the large firms. The
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parallel shift to the right in the firing threshold is causing the separation region to

expand for firms of all sizes but the counterclockwise twist in hiring threshold is

decreasing the hiring region for small and low productive firms while increasing it

for large and highly productive firms. At the aggregate the increase in matches of

large firms dominates the lack of hiring in small firms and total number of matches

increases. As a result since separations are across the board for all sizes and increase

more than matches, unemployment rate increases. The twist in the hiring threshold

and the expanding matching region for highly productive firms points to the fact that

marginal benefit of a worker to a small firm declines more in face of higher disaster risk

compared to that of a large firm. In addition, labor adjustment costs and slow-moving

firm distribution create more propagation compared to Gourio (2012) results.

1.8 Conclusion

In this paper, I build a general equilibrium model with heterogeneous firms to ana-

lyze the effects of uncertainty on aggregate economy, in particular on unemployment.

There is Diamond-Mortensen-Pissarides style search-and-matching in the labor mar-

ket, firms can hire more than one worker and hiring decision is partially irreversible

due to linear hiring costs. First, I considered the effects of an increase in time-varying

idiosyncratic volatility. The model gives rise to multiple effects of volatility, such as

option value, realized volatility, Oi-Hartman-Abel and general equilibrium effects,

and each of them has different implications for aggregate variables. I found that

the irreversible adjustment costs created by search frictions in the labor market do

not create strong option value effects to cause an economic downturn when volatil-

ity increases. In addition, there are strong realized volatility effects that causes the
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Figure 1.14: Responses to a 1 std.dev. positive p shock
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firms to become more active in face of high volatility. As firms hit the adjustment

thresholds more often, reallocation of resources from less productive firms to more

productive ones increases. As a result, even though in total there are less people

working in the economy, on average the workers become more productive. Moreover,

the out-of-steady-state dynamics of the model also shows a comparable performance

to Schaal (2017) in explaining labor market volatilities, while also performing well in

explaining consumption and investment dynamics. The inclusion of volatility shock

brings many business cycle moments in line with data.

I also considered a possible role of aversion to model uncertainty, in form of am-
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Figure 1.15: Responses of adjustment bands to a 1 std.dev. positive p shock
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Note: Upper (lower) panel is the responses of the firing (hiring) thresholds at various
idiosyncratic productivity levels.

biguity aversion, in presence of idiosyncratic volatility shocks. With ambiguity aver-

sion agents act on a worst-case distribution, which is distorted towards low utility

states. I show that since low-volatility states are the ones with low utility, ambiguity-

averse household distorts the conditional expectations by putting more weight on

low-volatility states when taking expectations. In addition, the distortion creates

a correlation, which is absent in the benchmark distribution, between low aggregate

productivity and low idiosyncratic volatility states since the worst-case scenario is fac-

ing unfavorable realizations of both shocks at the same time. However, the additional

effect of this distortion on the dynamics of aggregate variables is negligible.

Finally, I solved a version of the model with disasters in the form of additional

capital depreciation. If probability of a disaster increases, investment goes down. At

the same time, unemployment goes up, capital and output goes down. The difference
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of this version from the model with volatility shock is that in this version of the model

an increase in risk creates a recession. The rise in unemployment is due to a larger

increase in separations compared to that in matches. Total separations increase,

because separations from firms of all sizes and productivities increase. Total matches

also increase however it is mainly due to highly productive firms, because marginal

value of a worker declines less for more productive and large firms compared to less

productive and small firms. Moreover, due to the presence of labor adjustment costs

and slow-moving firm distribution, adjustments after the disaster risk shock are not

instantaneous and responses show more propagation compared to Gourio (2012).
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Appendix

A.1 Calculation of establishment-level TFP

Bloom et al. (2016) use the annual U.S. Census of Manufacturers panel data for

15,673 establishments with 25+ years of data, from 1972 to 2011. They calculate

the total factor productivity (TFP) of establishment i at year t, log(ẑi,t), by using

Foster, Haltiwanger, and Krizan (2000) approach. TFP shock (ei,t) is the residual

from estimation of the following AR(1):

log(ẑi,t) = ρ log(ẑi,t−1) + µi + λt + ei,t

where µi is the establishment-level fixed effect and λt is the year fixed effect.

The micro-level volatility measure I plot in Figure 1 is the interquartile range

(IQR) of ei,t, which is made available online by the authors at

https://people.stanford.edu/nbloom/sites/default/files/census_data.zip.
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A.2 Data description

• Output: the quarterly GDP in 2005 dollars from 1972Q1 to 2009Q4 from the

NIPA tables constructed by the Bureau of Economic Analysis.

• Unemployment: the seasonally adjusted monthly unemployment rate constructed

by the BLS from the Current Population Survey over the period January 1972-

December 2009 (for people aged 16 and over). The series are averaged over

quarters.

• Total civilian labor force: for people aged at least 16 from the BLS over the

period January 1972-December 2009. The series are averaged over quarters.

• Vacancy: the quarterly average of the monthly vacancy measure from the Job

Openings and Labor Turnover Survey. Since the measure is available only since

2001, the Conference Boards Help Wanted Index is used to complete the measure

from 1972Q1 to 2000Q4.

• Hirings, layoffs and total separations: the quarterly sums of the JOLTS mea-

sures from January 2001 to December 2009. The series are normalized by total

labor force.

A.3 Derivation of household’s Bellman equation

The agents have a benchmark model in mind, but the parameters are estimated with

some standard error. Thus, there is a set of alternative models that can be realized.

The ambiguity averse agents want to guard themselves against possible models that
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will result in lower utility. The following two-step optimization problem enables agents

to make decisions that are robust to model uncertainty. First, they minimize utility

by choosing the probability distortion m(K ′, A′, σ′z) that would result in the worst-

case scenario and then maximize utility by choosing other variables (C,K ′) using the

conditional probabilities distorted by m(K ′, A′, σ′z).

V H(K,A, σz) = max
C,K′

min
m(K′,A′,σ′z)>0

{
log(C) + βE

[
m(K ′, A′, σ′z)V

H(K ′, A′, σ′z)

+ ϕm(K ′, A′, σ′z) log(m(K ′, A′, σ′z))
]}

st. E[m(K ′, A′, σ′z)] = 1

C +K ′ = (1− δ + r(K,A, σz))K +W (K,A, σz).

ϕ is the penalty parameter on m(K ′, A′, σ′z) log(m(K ′, A′, σ′z)), which is the con-

ditional relative entropy ie. measure of how far the worst-case model is from the

benchmark model. For small ϕ > 0 it makes sense to care about the model uncer-

tainty and ambiguity aversion is high. For large ϕ → ∞ it does not make sense to

worry about the model uncertainty and the preferences are equivalent to the expected

utility case.

The solution to the inner minimization problem gives the following probability

distortion:

m(K ′, A′, σ′z) =
exp(−V H(K ′, A′, σ′z)/ϕ)

E[exp(−V H(K ′, A′, σ′z)/ϕ)]

Substituting this probability distortion into the problem above gives us the log-
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exponential Bellman equation for the outer maximization problem:

V H(K,A, σz) = max
C,K′

{
log(C)− βϕ logE

[
exp(
−V H(K ′, A′, σ′z)

ϕ
)
]}

subject to the budget constraint

C +K ′ = (1− δ + r(K,A, σz))K +W (K,A, σz)

A.4 Wage bargaining

The derivation of the wage as a result of a Nash bargaining between a firm and a

marginal worker follows Elsby and Michaels (2013). Let the exogenous aggregate

states to be denoted as Ω = {A, σz}. For the ease of notation throughout the deriva-

tion I surpass the dependence of functions on aggregate state variables (K,Ω), except

when taking conditional expectations and also use m̂ as a shorthand for the proba-

bility distortion m(K ′,Ω′). The firm problem is then given as:

V F (n−1, z,K,Ω) = max
n

{
y(n, z)− rk(n, z)− w(n, z)n(n−1, z)−

κ

q(θ
4n1+

+ βEΩ′|Ω

[
m̂
C

C ′
Ez′|z

[
V F (n, z′, K ′,Ω′)

]]}

Since r = αky/k, in the current period’s profit I replace y−rk with rk(1−αk)/αk.

The optimal decision for employment can be divided into two parts. For hiring firms

i.e. the firms with productivity draws that are higher than the hiring threshold for

their size n−1
h (n−1):
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(1− αk)
αk

∂k(n, z)

∂n
r−w(n, z)− ∂w(n, z)

∂n
n(n−1, z)

− κ

q(θ)
+ βEΩ′|Ω

[
m̂
C

C ′
Ez′|z

[
Vn

F (n, z′,Ω′)
]]

= 0

For firing firms i.e. the firms with productivity draws that are lower than the

firing threshold for their size n−1
f (n−1):

(1− αk)
αk

∂k(n, z)

∂n
r−w(n, z)− ∂w(n, z)

∂n
n(n−1, z)

+ βEΩ′|Ω

[
m̂
C

C ′
Ez′|z

[
Vn

F (n, z′,Ω′)
]]

= 0

Then the marginal value of a worker in a firm that wants to be size n, and has

productivity z is denoted as J(n, z). If a firm needs to hire to reach the size n, then

the marginal value of a worker in that firm is given as:

J(n, z) =
(1− αk)
αk

∂k(n, z)

∂n
r−w(n, z)− ∂w(n, z)

∂n
n

+ βEΩ′|Ω

[
m̂
C

C ′
Ez′|z

[
Vn

F (n, z′,Ω′)
]]

=
κ

q(θ)

If a firm needs to reduce its number of workers to n and draws productivity z,

then the marginal value of the nth worker in that firm is given as:

J(n, z) =
(1− αk)
αk

∂k(n, z)

∂n
r−w(n, z)− ∂w(n, z)

∂n
n

+ βEΩ′|Ω

[
m̂
C

C ′
Ez′|z

[
Vn

F (n, z′,Ω′)
]]

= 0
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The effect of today’s employment decision on the next period’s value function can

be decomposed into three parts depending on the next period’s productivity z′ as:

Ez′|z

[
Vn

F (n, z′,Ω′)
]

= Ez′>n−1
h (n)

[ κ

q(θ′)

]
︸ ︷︷ ︸

hiring

+En−1
f (n)<z′<n−1

h (n)

[
J(n, z′)

]
︸ ︷︷ ︸

inaction

+Ez′<n−1
f (n)

[
0
]

︸ ︷︷ ︸
firing

With this decomposition J(n, z) can be rewritten as:

J(n, z) =
(1− αk)
αk

∂k(n, z)

∂n
r − w(n, z)− ∂w(n, z)

∂n
n

+ βEΩ′|Ω

[
m̂
C

C ′

(
Ez′>n−1

h (n)

[ κ

q(θ′)

]
+ En−1

f (n)<z′<n−1
h (n)

[
J(n, z′)

]
+ 0

)]

On the household side, the marginal value of being nth worker in a firm of size n

and productivity z is

W (n, z) = w(n, z) + βEΩ′|Ω

[
m̂
C

C ′

(
Ez′<n−1

f (n)

[
W (n′, z′)(1− s) + U ′s

]

+ En−1
f (n)<z′<n−1

h (n)

[
W (n′, z′)

]
+ Ez′>n−1

h (n)

[
W (n′, z′)

])]
Similarly the value of being unemployed is:

U = b+ βEΩ′|Ω

[
m̂
C

C ′

(
(1− f(θ′))U ′ + f(θ′)En

[
Ez′>n−1

f (n)

[
W (n′, z′)

]]) ]

According to Stole and Zwiebel (1996), with large firms the bargained wage is

the same as the outcome of Nash bargaining over the marginal surplus, so (1 −
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η)(W (n, z)− U) = ηJ(n, z) holds. For hiring firms:

W (n′, z′)− U ′ = η

(1− η)
J(n′, z′) =

η

(1− η)

κ

q(θ′)

For inactive firms:

W (n′, z′)− U ′ = η

(1− η)
J(n, z′)

For firing firms:

W (n′, z′)− U ′ = η

(1− η)
J(n′, z′) = 0 ⇒ W (n′, z′) = U ′

Then the wage bargaining rule W (n, z)−U =
η

(1− η)
J(n, z) can be expanded as

w(n, z)− b+ βEΩ′|Ω

[
m̂
C

C ′

(
Ez′>n−1

h (n)

[ η

(1− η)

κ

q(θ′)

]

+ En−1
f (n)<z′<n−1

h (n)

[ η

(1− η)
J(n, z′)

]
− η

(1− η)

f(θ′)

q(θ′)
κ
)]

=
η

(1− η)

[∂(y − rk)

∂n
− w(n, z)− ∂w(n, z)

∂n
n

+ βEΩ′|Ω

[
m̂
C

C ′

(
Ez′>n−1

h (n)

[ κ

q(θ′)

]
+ En−1

f (n)<z′<n−1
h (n)

[
J(n, z′)

])]]
With a few more steps the equation above reduces to the following differential
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equation:

w(n, z) =η
[(1− αk)

αk

∂k(n, z)

∂n
r − w(n, z)− ∂w(n, z)

∂n
n

+ βEΩ′|Ω

[
m̂
C

C ′
f(θ′)

q(θ′)
κ
]]

+ (1− η)b

The solution to the differential equation (after substituting k(n, z) in as a function

of n explicitly) is the following wage function:

w(n, z) =η
[ αn(1− αk)

1− αk − η(1− αk − αn)

(αk
r

) αk
1−αk (Az)

1
1−αk n

αk+αn−1

1−αk

+ βEΩ′|Ω

[
m̂
C

C ′
θ′κ
]]

+ (1− η)b
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A.5 Solution algorithm for the model with volatil-

ity

• Guess V H
s (K,A, σz) and V F

s (n−1, z,K,A, σz) for the first iteration. Guess also

the forecast functions for the future labor market tightness θ̂(K ′, A′, σ′z) and the

future consumption Ĉ(K ′, A′, σ′z). These forecast functions will be used only in

the first iteration. In the following iterations I will use the projection functions

I get from the previous iterations.

• Simulate series of A and σz for T periods.

• In the first period, start with the steady state level of capital, Kss and steady

state firm distribution Γss(n−1, z).

• At every period, the Levenberg-Marquardt routine finds the prices P = (r, wb, θ)

at which the following problems are solved:

– Household and firm problems are solved at the simulated values of A and

σz in the following order:

Household’s problem:

max
K′

{
log((1−δ+r)K+wb−K ′)−βϕ logEA′|AEσ′z |σz

[
exp(
−V H

s (K ′, A′, σ′z)

ϕ
)
]}

Get K ′, C = (1− δ + r)K + wb−K ′, and ms(K
′, A′, σ′z).

Firm’s problem:
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max
n

{(αkAznαn
rαk

) 1
1−αk

(1− αk
αk

)
− ws(n, z,K,A, σz)n−

κ

q(θ)
4n1+

+ βCEA′|AEσ′z |σz

[ms(K
′, A′, σ′z)

Ĉ(K ′, A′, σ′z)
Ez′|z

[
V F
s (n, z′, K ′, A′, σ′z)

]]}

where the wage at this iteration is given as:

ws(n, z,K,A, σz) = η

{
αn(1− αk)

1− αk − η(1− αk − αn)

(αk
r

) αk
1−αk (Az)

1
1−αk n

αk+αn−1

1−αk

+ βκCEA′|AEσ′z |σz

[ms(K
′, A′, σ′z)

Ĉ(K ′, A′, σ′z)
θ̂(K ′, A′, σ′z)

]}
+ (1− η)b

Get n(n−1, z,K,A, σz).

– Calculate the aggregate quantities for the market clearing with the current

firm distribution Γ(n−1, z). Solve for the (r, wb, θ) that satisfy the follow-

ing market clearing conditions

K =
∑∑(αkAzn(n−1, z,K,A, σz)

αn

r

) 1
1−αk Γ(n−1, z)

1

(1 + θ−g)1/g
=

∑∑(
n(n−1, z,K,A, σz)− n−1

)
+

Γ(n−1, z)(
L−

∑∑
n−1Γ(n−1, z)

)
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wb =
∑∑

w(n, z,K,A, σz)n(n−1, z,K,A, σz)Γ(n−1, z)

+
∑∑

Π(n, z,K,A, σz)Γ(n−1, z)

– Update the firm distribution Γ(n−1, z) with the non-stochastic simulation

method of Young (2010) for the next period.

• Regress the time series of (r, wb, θ), on the time series of (K,A, σz) to get pro-

jection functions r(K,A, σz), wb(K,A, σz), and θ(K,A, σz).

• Update the value functions to V H
s+1(K,A, σz) and V F

s+1(n−1, z,K,A, σz) by solv-

ing the household and firm problems again at every point of the aggregate

state-space (K,A, σz), by using the prices given by the projection functions.

• Repeat until the value functions converge.
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A.6 Price functions for the high ambiguity aver-

sion case

Table A.1: Price functions - Ambiguity Averse

constant log(K/Kss) log(A) log(σz/σ̄z) R2

log(r/rss) -0.00028 -0.66993 1.08944 0.06102
(0.00003) (0.00122) (0.00195) (0.00042) 0.99

log(W/Wss) 0.00006 0.32927 1.08002 0.04496
(0.00003) (0.00154) (0.00222) (0.00045) 0.99

log(θ/θss) 0.00865 1.72727 4.94166 0.51345
(0.00076) (0.03733) (0.05531) (0.01082) 0.98

log(C/Css) 0.01575 0.76461 0.14944 0.01026
(0.00005) (0.00232) (0.00317) (0.00051) 0.99

Note: Regressions are run for the ambiguity averse case (ϕ = 10) for 500 periods.
Standard errors are in parentheses.
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A.7 Solution algorithm for the model with disas-

ters

• Guess V H
s (K, p, x) and V F

s (n−1, z,K, p, x) for the first iteration. Guess also

the forecast functions for the future labor market tightness θ̂(K ′, p′, x′) and the

future consumption Ĉ(K ′, p′, x′). These forecast functions will be used only in

the first iteration. In the other iterations I will use the projection functions I

get from the previous iterations.

• Simulate series of p and x for T periods.

• In the first period, start with the steady state level of capital, Kss and steady

state firm distribution Γss(n−1, z).

• At every period, the Levenberg-Marquardt routine finds the prices P = (r, wb, θ)

at which the following problems are solved:

– Household and firm problems are solved at the simulated values of p and

x in the following order:

Household’s problem:

max
C,I

{
(1−β)C1−γ+βEp′|p

[
(1−p′)V H(K ′, p′, 0)1−φ+p′V H(K ′, p′, 1)1−φ

] 1−γ
1−φ
} 1

1−γ

s.t.

C + I = rK +W
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K ′ = ((1− δ)K + I)(1− xbk)

Get K ′, C = (1− δ + r)K + wb−K ′/(1− xbk), and ms(K
′, A′, σ′z).

Firm’s problem:

max
n

{(αkznαn
r

) 1
1−αk (

1− αk
αk

)− wn− κ

q(θ)
4n1+

+ βC(K, p, x)γEp′|pEz′|z

[
(1− p′) m(K ′, p′, 0)

C(K ′, p′, 0)γ
V F (n, z′, K ′, p′, 0)

+ p′
m(K ′, p′, 1)

C(K ′, p′, 1)γ
V F (n, z′, K ′, p′, 1)

]}

where the wage at this iteration is given as:

w(n, z,K, p, x) = η

{
αn(1− αk)

1− αk − η(1− αk − αn)

(αk
r

) αk
1−αk z

1
1−αk n

αk+αn−1

1−αk

+ βC(K, p, x)γEp′|pEz′|z

[
(1− p′) m(K ′, p′, 0)

C(K ′, p′, 0)γ
θ(K ′, p′, 0)

+ p′
m(K ′, p′, 1)

C(K ′, p′, 1)γ
θ(K ′, p′, 1)

]}
+ (1− η)b

Get n(n−1, z,K, p, x).

– Calculate the aggregate quantities for the market clearing with the current
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firm distribution Γ(n−1, z,K, p, x). Solve for the (r, wb, θ) that satisfy the

following market clearing conditions

K =
∑∑(αkAzn(n−1, z,K, p, x)αn

r

) 1
1−αk Γ(n−1, z)

1

(1 + θ−g)1/g
=

∑∑(
n(n−1, z,K, p, x)− n−1

)
+

Γ(n−1, z)(
L−

∑∑
n−1Γ(n−1, z)

)

wb =
∑∑

w(n, z,K, p, x)n(n−1, z,K, p, x)Γ(n−1, z)

+
∑∑

Π(n, z,K, p, x)Γ(n−1, z)

– Update the firm distribution Γ(n−1, z) with the non-stochastic simulation

method of Young (2010) for the next period.

• Regress the time series of (r, wb, θ), on the time series of (K, p, x) to get projec-

tion functions r(K, p, x), wb(K, p, x), and θ(K, p, x).

• Update the value functions to V H
s+1(K, p, x) and V F

s+1(n−1, z,K, p, x) by solving

the household and firm problems again at every point of the aggregate state-

space (K, p, x), by using the prices given by the projection functions.

• Repeat until the value functions converge.


