

Acknowledgements

I would like to thank my advisor Prof. Madhur Behl for his endless patience
and gentle nudging during these long months of quarantine while I slagged
along listlessly, hoping that something would eventually come of this work.
Without his guidance I don’t think I ever would have finished my Masters
degree.

I would also like to thank my family, for keeping me company and pro-
viding me a place to live and food to eat all this time. If not for you I would
be lonely, starving and homeless.

Abstract

Autonomous cyber-physical systems such as self-driving cars are increasingly
becoming dependent on AI enabled methods for their perception, planning,
and control tasks. Unfortunately, deep learning algorithms have been proven
to be unreliable in presence of incomplete, imprecise, or contradictory data
and adversarial attacks that exploit critical design flaws leading to untrust-
worthy results. Managing uncertainty is possibly the most important step
towards safe autonomous systems. Modeling an autonomous vehicle’s unfa-
miliarity for a given dynamic scenario enables appropriate subsequent deci-
sions to be made under such uncertainties.

We propose to develop a framework to characterize and quantify the un-
certainty in the perception stage of an autonomous vehicle’s computation
loop. Using Bayesian learning, we can quantify the confidence the AV has in
its scene understanding outputs. Using this framework, we can also detect
when the autonomous vehicle is operating outside of its operational design
domain (ODD). Mistakes by lower-level AI components can propagate up
the decision-making process and lead to devastating results. In such modular
autonomous systems, we can use probabilistic reasoning in low-level compo-
nents and make safe, and reliable high-level decisions given this uncertainty
information.

In this thesis, we first provide motivation for the use of Bayesian methods
in autonomous vehicles, followed by some background on Bayesian networks
in machine learning. Then we explore two case studies. The first is a simpli-
fied look at the capabilities of Bayesian neural networks on the basic MNIST
image detection dataset. Then we explore a problem more relevant for au-
tonomous vehicles, semantic segmentation of driving scenes, and examine
the benefits of Bayesian neural networks for this task. We find that Bayesian
neural networks can provide more reliable measures of confidence than stan-
dard softmax outputs and can enable us to detect inputs that fall outside of
our training domain.

Contents

Contents iii

List of Figures v

List of Tables vii

1 Introduction 1
1.1 Limitations of Deterministic CNNs 2
1.2 Probabilistic Reasoning in Neural Networks 4
1.3 Challenges for Bayesian Neural Networks 4
1.4 Probabilistic Reasoning for Self-Driving Cars 5
1.5 Aleatoric vs Epistemic Uncertainty 6
1.6 Outline . 7

2 Related Work 8
2.1 Bayesian Neural Networks . 8
2.2 Other Methods for Uncertainty 9
2.3 Perception and Semantic Segmentation 11
2.4 Bayesian Perception . 12

3 Bayesian Theory for Machine Learning 13
3.1 Bayesian Modelling . 13
3.2 Variational Inference . 14
3.3 Bayesian Backpropagation . 15
3.4 Bayesian Neural Networks . 16

4 Probabilistic Deep Learning with Pyro 18
4.1 Pyro Basics . 18
4.2 Stochastic Variational Inference 19
4.3 Probabilistic Neural Networks 20

iii

CONTENTS iv

5 MNIST Experiments 21
5.1 Deterministic CNN . 21

5.1.1 Model Analysis . 21
5.1.2 Discussion . 24

5.2 Bayesian Neural Networks . 25
5.2.1 Refusing to predict . 27
5.2.2 Evaluation and Analysis 27

5.3 Discussion . 32

6 Semantic Segmentation Experiments 34
6.1 Dataset Description . 35
6.2 Base Model . 35
6.3 Bayesian Model . 37

6.3.1 Bayesian Module Accuracy 38
6.3.2 Identifying Error with Bayesian Uncertainty 39
6.3.3 Comparison of Uncertainty metrics 44
6.3.4 Framework for ODD Violation 44

7 Discussion and Conclusion 47

List of Figures

1.1 Examples of MNIST classifier predictions on English letters . . 3
1.2 Example input and labels for semantic segmentation 6

5.1 Basic MNIST CNN diagram 22
5.2 Distribution of model confidence for correctly and incorrectly

classified MNIST examples . 22
5.3 Examples of misclassified MNIST examples. They are labeled

with ground truth, prediction and confidence from left to right.
Some examples have misleadingly high confidences. 22

5.4 Examples of MNIST classifier predictions on English letters . . 23
5.5 A randomly generated image Classification: 8: 88.8% 24
5.6 Distribution of model confidence on the MNIST and not-MNIST

datasets, on a log scale . 24
5.7 Architecture of basic Bayesian neural network. It contains

814,090 Bayesian weights (including bias terms) consisting of
µ and σ. 26

5.8 Architecture of Bayesian convolutional neural network. The
convolution layers are unchanged from the deterministic model
trained before, but the fully-connected layers are replaced with
Bayesian weights as above. It contains 405,510 Bayesian weight-
s/bias terms consisting of µ and σ. 26

5.9 Distribution of average model confidence on each dataset, ac-
cording to Bayesian CNN . 29

5.10 Inference time of each model by number of samples 30
5.11 Inference time (in ms) of BNN models vs pruning % 32

6.1 Example input image and segmentation labels (colorized) from
BDD100K dataset . 35

v

LIST OF FIGURES vi

6.2 The Bayesian Semantic Segmentation model. The structure is
exactly copied from the deterministic CSAIL model, but the
convolutions in the decoder are replaced by Bayesian weights.
This allows a distribution of softmax vectors to be output for
each pixel. Note that the segmentation resolution is divided
by 8. There are a total of 231,939 Bayesian weights. 38

6.3 Example image with large amounts of input noise and high
error. From left to right, top to bottom: input image, ground
truth labels; deterministic model segmentation, Bayesian model
segmentation; Deterministic softmax uncertainty, Bayesian soft-
max uncertainty; Bayesian standard deviation uncertainty . . 41

6.4 Another example with high segmentation error. From left to
right, top to bottom: input image, ground truth labels; deter-
ministic model segmentation, Bayesian model segmentation;
Deterministic softmax uncertainty, Bayesian softmax uncer-
tainty; Bayesian standard deviation uncertainty 42

6.5 A low-error example, showing the very sparse uncertainty maps.
From left to right, top to bottom: input image, ground truth
labels; deterministic model segmentation, Bayesian model seg-
mentation; Deterministic softmax uncertainty, Bayesian soft-
max uncertainty; Bayesian standard deviation uncertainty . . 43

6.6 Example images with high safety-critical uncertainty score,
along with their segmentation and standard-deviation uncer-
tainty maps. 46

List of Tables

5.1 Results of experiments on MNIST and not-MNIST datasets.
Majority thresholds are tuned based on MNIST-not-MNIST
precision and recall. *On the MNIST-not-MNIST selection task 28

5.2 Inference time of each model by number of samples 30
5.3 Time breakdown for sampling and forward pass, in µs 31
5.4 The MNIST accuracy and MNIST-non-MNIST precision/re-

call for different amounts of pruning 32

6.1 Berkeley DeepDrive semantic segmentation categories 35
6.2 IoU’s for each class and total accuracy for the two models . . 37
6.3 IoU’s for each class and total accuracy for the Bayesian model 39
6.4 Correlation coefficient between pixel error and uncertainty scores 44

vii

Chapter 1

Introduction

In the last decade much progress has been made in the use of artificial intelli-
gence to automate tasks that previously could only be performed by humans.
This has many benefits: not only can we improve efficiency and reduce hu-
man burden in some tasks by enabling computers to supplement the work
of humans, but we can also use autonomous systems to perform tasks which
are too difficult or dangerous for some humans to perform. Driving is one
function that could result in major improvements for humanity if it can be
automated on a large scale: improving traffic flow, reducing accidents, af-
fording people who are disabled or otherwise unable to drive better mobility
and freedom, and simply increasing convenience for people who have long
commutes and don’t want to spend large amounts of time driving.

But driving is a difficult and complex task. Even for humans, we have
state-mandated driving training courses and minimum hours of learning re-
quired before we are allowed to drive unsupervised. There are many con-
current sub-tasks which a human or computer must master in order to drive
effectively. First, there is perception: the environment surrounding a car
must be thoroughly scanned and all obstacles or items of interest identified,
including the road and its markings, other cars on the road, road signs and
signals, pedestrians walking along or crossing the road, and bicyclists and
other atypical objects on the road. These must not only be identified but
localized in the three-dimensional environment surrounding the car. Then a
plan must be generated, taking into account all objects in the surroundings
and the desired destination to generate a driving route. Finally the vehicle
must be controlled to implement this plan, which requires precise feedback
and understanding of physics to ensure the car does not deviate from its
path. All of these tasks must be performed concurrently in real time to en-
sure safe and correct driving. There are many challenges to implementing
each of these tasks in a self-driving car, but most importantly, each one is

1

CHAPTER 1. INTRODUCTION 2

safety-critical, meaning any error could potentially result in human injury
or loss of life. Therefore an autonomous vehicle system must be particularly
cautious and aware of its own limitations, and never take an action that
cannot be guaranteed to be safe with a high degree of confidence. The per-
ception or scene understanding stack is particularly important because if the
vehicle fails to properly identify obstacles in its way, then the planning and
control stages have no hope of avoiding them, so this component must be
scrutinized more than any other.

Deep learning has made impressive strides in the field of computer vision,
particularly with convolutional neural networks (CNNs). These networks
are incredibly powerful and flexible for classifying and detecting objects in
images, which makes them the preferred choice for implementing perception
stacks in self-driving cars. Tasks performed by neural networks can include
object detection (both for obstacles like cars in the road and for signs/sig-
nals), lane detection, drivable surface detection, and semantic segmentation
- which is like object detection but on a per-pixel level, giving an exact shape
for each object. Several existing open source self driving car platforms use
neural networks for some or most of their perception algorithms, some exam-
ples being Baidu’s Apollo [1] and Comma.ai’s openpilot [8], which both use
custom neural networks for perception, and Autoware.AI [19], which includes
state-of-the-art YOLO and SSD models for object detection.

1.1 Limitations of Deterministic CNNs

The downside to deep neural networks is that they are mostly black boxes
when it comes to analysis. It is very difficult to gain intuitive understanding
or make predictions about the behavior of a neural network, let alone provide
strict guarantees. A neural network may provide the correct classification
99.9% of the time for pictures of cars, cats and dogs or whatever you prefer,
but there are always some edge cases where it fails to predict correctly.

This comes in part from the limitations of the supervised training process:
the model has not seen every possible scenario during its training stage, so we
cannot know how it will act when it sees something it has limited experience
with. There is also simply error inherent in the fact that the real world cannot
be perfectly divided into a neat set of finite objects and classes everywhere.
What should the network report if the lane markings are faded, or the weather
is obscuring part of its vision, or there are objects that don’t quite fit into
the category of “car” or “truck”? These are severe problems when we are
implementing something that requires strong safety guarantees.

What we ultimately would like is some method of determining how reli-

CHAPTER 1. INTRODUCTION 3

able our model’s predictions about the environment are. We need a model
that can output not only a function of its input but also a measure of confi-
dence or uncertainty in its results.

But don’t neural networks give us a confidence measure? Certainly, most
neural networks produce their final results via a sigmoid or softmax function
(for binary or multi-class classification). These functions assign a value to
each result between zero and one, such that all classes’ scores sum to one. So
these outputs can indeed be intuitively considered as probabilities for each
class being the correct class, and we can say that our uncertainty is simply
how far away our chosen class score is from 1.

Unfortunately, it is not that simple. An artificial neural network is de-
signed to learn an arbitrary function from input vectors to output vectors,
and the softmax function’s purpose is merely to “squash” the output vector
into the range of zero to one so that it can be compared to a one-hot ground
truth vector. This means that for examples within its training domain a
neural network should learn to output scores close to zero or one, but for
outliers there is little guarantee about what the network will output, and in
fact it may simply learn to output highly “confident” scores for any input
example (this is an example of overfitting). As a brief example of a case
where softmax outputs cannot be treated rigorously, here are some example
outputs of an MNIST [26] digit classifier on inputs that don’t fit into any of
its defined categories:

(a) Label: 4, 100% conf (b) Label: 8, 84.5% conf (c) Label: 3, 94.5% conf

Figure 1.1: Examples of MNIST classifier predictions on English letters

As can be seen, although none of the examples are actually digits, the
model outputs a high confidence score with its classification, even as high as
100% for the letter A as 4. We will revisit this later in chapter 5.

While misclassifying a handwritten digit is not a safety-critical failure, the
CNNs used for scene understanding and perception for self driving cars rely
on similar neural network architectures and training practices and therefore
could suffer form similar shortcomings. Consequentially, we would like to
include a more rigorous measure of confidence or uncertainty in our model
results, which is the focus of this work.

CHAPTER 1. INTRODUCTION 4

1.2 Probabilistic Reasoning in Neural Net-

works

We ideally would like to be able to generate a probability distribution of all
possible outputs from a model. This means that we can generate both a mean
and standard deviation for numerical results of a model, and we can hopefully
get a more reliable measure of how likely a given result is correct. This not
only gives us our confidence score but lets us see what other results had high
probability, which is useful for tasks like image classification/segmentation
where we might want to know all of the likely candidates besides the final
classification.

Since a distribution can be an arbitrary abstract function, in practice we
can generate a sample of a large number of stochastic model outputs as our
distribution, and derive numerical statistics from this sample. This means
there must be some randomness built into the model. This randomness could
be provided in a static manner via random perturbations to the network
and/or inputs, multiple independently trained networks (an ensemble), or
mechanisms like dropout. A more dynamic and comprehensive approach is
to learn random distributions for model parameters, which yields a Bayesian
neural network (BNN). This means for example each weight of a neural
network layer could be represented as a normal distribution N (µ, σ) with µ
and σ learned independently. More complex multivariate distributions could
also be used to capture interdependence between weights. In this work we
explore the implications of Bayesian neural networks for autonomous driving
tasks.

1.3 Challenges for Bayesian Neural Networks

The curse of dimensionality: There are many challenges to implement-
ing and using Bayesian neural networks, especially for real-time applications
like autonomous driving. One of the major problems is the curse of dimen-
sionality - that is, the fact that models become increasingly difficult to train
as the number of model parameters increase and become subject to overfit-
ting. Making neural network weights Bayesian by adding sigma terms to each
parameter greatly increases the network size, making it both more space- and
time-consuming and more difficult to converge to an optimal solution. One
way to address this problem is by only making parts of the network Bayesian,
and keeping the rest of the network deterministic - which can then be thought
of as only a ”feature extractor” followed by a fully Bayesian network.

CHAPTER 1. INTRODUCTION 5

Computation time: Another challenge is the computation time needed
for inference in Bayesian neural networks. In order to obtain a reasonable
estimate of the true distribution of the result, we have to sample at least
in the tens to hundreds of model passes for a single input. Each pass in-
cludes sampling the distributions of all model weights followed by a forward
pass through the network. Minibatching can allow reuse of a single model
sample for many forward passes, but this might not be viable for real-time
applications. Thus the inference time can be increased by hundreds. The
inference time can be improved again by keeping the initial layers of the
network deterministic, thereby requiring only one pass for this part of the
network followed by several shorter passes. A way to address this further
is to use a kind of pruning: if we can determine which model weights have
lower variance or contribute less to the overall randomness, we can replace
them with deterministic weights and then avoid having to sample them each
time. This doesn’t speed up the forward data pass however.

Interpreting uncertainty: A final more abstract problem is how to in-
terpret and use the Bayesian model outputs to make better AI’s for driving
and other tasks. This requires defining various metrics and heuristics to de-
cide how to act on probabilistic results. There are multiple ways to interpret
the “confidence” probabilistic results, in terms of output variance as well as
average scores across multiple passes. At some point it is necessary to define
arbitrary thresholds and rules for when to consider the uncertainty too high
and thus requiring some extraneous behavior or human intervention.

1.4 Probabilistic Reasoning for Self-Driving

Cars

For our specific case of self-driving cars, there are many tasks that Bayesian
networks could be applied to. For lane detection we could compute many
different approximate paths for each detected lane marker and use these to
determine how safe a particular trajectory is. For object detection we could
compute many bounding boxes for an object to see how confident in its
position or distance we are, or for objects that only appear spuriously, how
likely they are actually there in the first place.

Probabilistic scene understanding: Semantic segmentation is like ob-
ject detection but can provide more fine-grained pixel-level information so
is easily adaptable to many tasks. The goal is to label every pixel in an

CHAPTER 1. INTRODUCTION 6

input image with a corresponding class label. An example of the semantic
segmentation task is shown in Figure 1.2

Figure 1.2: Example input and labels for semantic segmentation

This task is easily adaptable to Bayesian neural networks because the out-
puts are simple numerical results per-pixel, as opposed to models outputting
discrete geometric features which require confidence thresholds and duplicate
suppression. Moreover this is an essential component of many autonomous
perception stacks, and other tasks can build off of it by using pixel clustering
algorithms or other techniques to detect objects rather than using a whole
separate model. We therefore focus on semantic segmentation in this work.

Operational Design Domain violations: An independent use for Bayesian
neural networks in autonomous vehicles regardless of their primary task is de-
tection of Operational Design Domain (ODD) violations. The ODD defines
the set of operating conditions that an autonomous vehicle is designed to
safely operate in [32]. We can assume that the set of conditions seen during
training for a neural network constitutes part of the ODD; therefore when
the model outputs high variance results for a large part of the perception
input image this is a good signal that the ODD is being violated as the car
is encountering a scenario it has not been thoroughly trained on. This can
be a useful signal to tell a driver to take control of the vehicle or stop the
vehicle altogether.

1.5 Aleatoric vs Epistemic Uncertainty

One final thing that is useful to note is that uncertainty is not uniform; it
can be divided into different types. Epistemic uncertainty, also called model
uncertainty, is the uncertainty that results from a lack of knowledge, i.e.,
lack of training data in parts of the input domain. While neural networks
perform very good at interpolation tasks, it is adequate to say that they

CHAPTER 1. INTRODUCTION 7

cannot extrapolate well. In other words, neural networks can only deal with
things similar to what they have seen before.

On the other hand, there is also uncertainty due to potential intrinsic
randomness of the real data generating process. This is called aleatoric un-
certainty. It includes things like measurement and process noise. Aleatoric
uncertainty is mostly independent of the model, meaning a different model
or even a human wouldn’t necessarily perform better, because the model is
simply not given enough information to produce a reliable response.

We can further distinguish between homoscedastic and heteroscedastic
aleatoric noise. Noise is called homoscedastic if it follows the same distribu-
tion indifferent of the input values. Heteroscedastic noise, on the other hand,
depends on the input and can, thus, change in variance or even distribution
across the input domain.

1.6 Outline

This dissertation is organized as follows. First we present a summary of re-
lated work in Chapter 2. Then we provide a background on Bayesian theory
for machine learning in Chapter 3, followed by a brief tutorial on probabilistic
programming and Bayesian network implementation with the Pyro python
library in Chapter 4. We then present the two main studies conducted in
this work. Chapter 5 presents an exploration of Bayesian neural networks
for a simplified task, MNIST digit classification, in which we focus on the
potential of BNNs for generic computer vision without worrying about the
complications of driving tasks. The second study in Chapter 6 involves the
more real-world application of semantic segmentation for scene understand-
ing. In this we look deeper into how we can use Bayesian models to augment
normal segmentation with uncertainty features for self-driving cars. Finally
we conclude with a discussion of the results and potential future research
directions in Chapter 7.

Chapter 2

Related Work

In this section we will discuss the prior work relevant to this research. First we
present an overview of Bayesian neural networks and other kinds of stochastic
neural network models. Then we provide relevant background on computer
vision and scene understanding, leading up to our case study in semantic
segmentation. Finally we discuss some limited work that tries to combine
Bayesian learning with convolutional neural networks.

2.1 Bayesian Neural Networks

One of the first attempts to apply Bayesian methods to neural networks
with back propagation was by Buntine and Weigend [5] in 1991. They dis-
cuss various methods of approximating uncertainties for network weights and
incorporating prior probabilities, with applications for network pruning and
estimating model uncertainty. MacKay [30] explored similar applications of
Bayesian uncertainty for neural networks, showing that model evidence is
correlated to generalization error and could be used for model selection and
comparison.

Hinton and van Camp [16] used a Bayesian model for network weights as
a form of regularization. They showed that finding a Minimum Description
Length form of a neural network, based on information theory, was equiv-
alent to minimizing the distance of the posterior weight distribution from
a given prior distribution. They used a diagonal Gaussian to represent the
network weight posterior distribution and constructed a loss function based
on KL divergence from the prior. This was the first application of variational
inference to NNs.

Neal [31] in his thesis suggested an alternative approach to Bayesian NNs
using Hamiltonian Monte Carlo techniques. Rather than using an explicit

8

CHAPTER 2. RELATED WORK 9

approximating distribution for the network weights, this uses a dynamical
simulation (in an analogy to physics) to generate Markov chains to approx-
imate the distribution. This requires fewer assumptions about the distribu-
tion, and can incorporate any prior distribution, but does not scale to larger
data sizes.

These early techniques were generally difficult to scale to large network
architectures and data sizes. They all suffer from intractable integrals that
must be solved in order to find the optimal probability distribution. Later
works attempted to make these problems more tractable.

More recently, in 2011 Graves [13] used data sub-sampling to make vari-
ational inference more scalable, by drawing weight samples for each data
sample instead of applying sampled weights over the entire dataset. The
author used a diagonal Gaussian distribution similar to Hinton and Keeping.
This work was further improved by Blundell et al. [3] who used a reparame-
terization of the log likelihood that leads to unbiased gradient estimates for
back-propagation. They also extended the method to non-Gaussian priors.
Their algorithm is known as Bayes by Backprop.

A further improvement to the Bayes by Backprop algorithm is by Kingma
et al [21], who introduced the local reparameterization trick. Their innovation
is that instead of randomly sampling the model weights and multiplying
them with the inputs to get the activations, they instead sample from the
activations directly. To do this they first calculate the posterior distribution
of the activation as a function of the weight posterior, which given that the
weight posterior is a diagonal Gaussian will also be a Gaussian. This means
they can merely compute the µ and σ of the activations from those of the
weights and the input values. This reduces the sampling necessary and results
in lower variance of the gradients. They call the result variational dropout
as an generalization of Gaussian dropout, described below.

Our work in this thesis is primarily based on the methods by Graves
and Blundell et al. Their algorithms are generic enough that they are imple-
mented in the open source Pyro [2] library for probabilistic machine learning,
which is the implementation we use. We chose not to explore the local repa-
rameterization method of Kingma et al. due to its increased complexity,
especially for CNNs; although there has been at least one attempt to apply
this to CNNs, which we will discuss later.

2.2 Other Methods for Uncertainty

There have been several other methods proposed that incorporate uncertainty
into neural networks.

CHAPTER 2. RELATED WORK 10

One of the most well-known is dropout, introduced by Geoffrey Hinton
et al. in 2012 [15]. It was proposed as a regularization method to reduce
overfitting, particularly the “co-adaptation” of individual neurons to fit the
training data. By randomly omitting some proportion of the neurons for each
training sample (setting the activations to zero), individual neurons can learn
more robust features that are less dependent on the overall configuration of
the network and can better withstand noise.

Dropout was originally applied only during training. However, Gal et
al. [11] proposed in 2016 the use of dropout as a Bayesian approximation,
known as Monte Carlo dropout. In this approach randomly zeroing neuron
outputs is also performed at test time. This allows a distribution of outputs
to be sampled and uncertainty obtained. Gal showed that this approach
compared favorably with variational inference-based methods in terms of
both accuracy and uncertainty estimates.

Gal later expanded on the use of dropout and other stochastic regular-
ization techniques (SRTs) for Bayesian inference in his PhD dissertation [9].
SRT is defined as any form of regularization that injects stochastic noise into
the model. He shows that for some choice of approximating distribution,
variational inference yields an equivalent optimization problem to dropout.
He further shows that other SRTs such as multiplicative Gaussian noise [38]
can be recovered from different choices of variational distributions, and that
any approximating distribution and prior satisfying some constraint corre-
sponds to an SRT with a similar training procedure to dropout. He then
shows how to use these to obtain model uncertainty.

One more method for generating uncertainty is using ensembles of net-
works. An ensemble means that several models are trained on the same
data with different random initializations. Lakshminarayanan et al. [24] de-
veloped a method for using ensembles to derive uncertainty comparable to
Bayesian networks. One limitation of this approach is that it requires mem-
ory proportional to the number of ensemble networks trained to store the
parameters.

While these alternative methods of approximate Bayesian network rep-
resentation are interesting and can provide performance benefits, they do
have their limitations compared to the variational Bayesian approach. For
instance, Shridhar [37] noted that they the MC dropout technique doesn’t
allow prior knowledge of the distribution to be incorporated. Thus we chose
not to follow this route.

CHAPTER 2. RELATED WORK 11

2.3 Perception and Semantic Segmentation

Yan LeCun [27] was the first to use back-propagation to learn convolution
kernel coefficients in a neural network for digit recognition, demonstrating
the promise of Convolutional Neural Networks (CNNs) for computer vision.
In 1998 he improved on this with the model known as LeNet-5 [25], also
introducing the now-standard MNIST dataset. More than a decade later,
CNNs accelerated by GPUs first entered into mainstream machine learning
with AlexNet [22], which won the ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) in 2012. From there deep learning for computer vision
advanced rapidly, with the state-of-the-art for image classification being set
by Microsoft’s deep residual networks (ResNets) [14], which won the ILSVRC
2015. ResNets avoid the problem of very deep models being harder to train
by adding skip connections between layers, allowing later layers direct access
to earlier inputs which makes training more stable.

Object detection is a slightly more recent field. Object detection in-
volves computing bounding boxes and class labels for one or more distinct
objects in an image. The first major use of CNNs to perform object detection
was R-CNN [12], which used a non-learning-based region proposal algorithm
to generate bounding boxes, followed by a convolutional network to derive
rich features from the identified subregion of the image, and a linear SVM
to produce the final object classifications. This was followed up by Faster
R-CNN [35], which improved on this by using convolutional layers for the
region proposal network, followed by a Region of Interest (RoI) pooling layer
which slices the convolutional feature map based on the generated bounding
boxes, and finally a fully connected component that runs on each region of
the feature map to produce the final detections/classifications. Later work
including the YOLO [34] and SSD [28] models improved on detection speed
even more by eliminating the multiple stages in favor of a single pass from
convolutions to outputs, where the output is mapped to a grid and each grid
point generates a bounding box regression and class labels along with con-
fidence scores. These models are on par with image classification models in
terms of both speed and accuracy.

Semantic segmentation is a slightly simpler task than object detection,
although potentially expensive, as there are no bounding boxes, but a classi-
fication vector has to be computed at each pixel. Early methods like Ciresan
et al. [7] applied a traditional CNN over a region centered at each pixel cor-
responding to the output, requiring in many expensive model evaluations.
Long et al. [29] obtained better results with a fully convolutional network
(FCN) which made use of an upsampling (deconvolution) layer to produce
high-resolution outputs. The U-Net [36] improved on the FCN with a sym-

CHAPTER 2. RELATED WORK 12

metric architecture consisting of a sequence of downsampling convolutions
followed by a sequence of upsampling convolutions, concatenated with the
corresponding feature maps from the downsampling part. Pyramid Scene
Parsing Network (PSPNet) [42] uses a different approach without decon-
volutions by upscaling and concatenating convolution outputs of different
scales before a final convolution including all scaled feature maps, known
as a pyramid pooling module (PPM). It also uses dilated convolutions in
the downsampling part to increase the receptive field. Finally, UPerNet [40]
combines this PPM with a feature pyramid network (FPN) which combines
different upscaled feature maps with corresponding scaled feature maps from
the downsampling (encoder) stage.

2.4 Bayesian Perception

Applications of Bayesian machine learning to computer vision is a relatively
new topic, but there are some existing works. Gal et al. [10] used a Monte
Carlo dropout approximation to Bayesian inference for CNNs, which he also
expanded upon in his above mentioned thesis [9]. Kendall and Gal [20]
later examined the implications of modeling both aleatoric and epistemic
uncertainties in computer vision. Shridhar et al. [37] recently introduced an
efficient method for Bayesian Convolutions using the local reparameterization
trick mentioned above to transfer uncertainty in the weights into uncertainty
in the activations. He did this by computing two separate convolutions for
each CNN layer, one for the means and one for the standard deviations,
which are then used to sample the resulting activations. [20]

Kampffmeyer et al. [18] has applied the MC dropout Bayesian approxi-
mation to the task of semantic segmentation. This is the first work we know
of to attempt this. They obtained uncertainty scores by computing standard
deviation of softmax scores across multiple model passes with dropout, and
averaged these across all classes.

While researchers have implemented Bayesian approaches to image clas-
sification, as well as MC dropout for semantic segmentation, the use of BNNs
with variational inference for semantic segmentation has not to our knowledge
been addressed, nor has there been an analysis of coherent representations
for segmentation uncertainty. This is where the contribution of your work
lies.

Chapter 3

Bayesian Theory for Machine
Learning

Before discussing the implementation and applications of Bayesian neural
networks in this work, we will first review the theory behind Bayesian models
and variational inference.

3.1 Bayesian Modelling

In general, in machine learning we have a dataset X = {x1, ..., xn} and
Y = {y1, ..., yn} and are trying to learn a function y = fω(x) with some
parameters (or weights) ω. In the ordinary frequentist approach, we want
to learn a point estimate representing the maximum likelihood estimation
or MLE for ω. In the Bayesian approach, on the other hand, we are trying
to learn a probability distribution for ω. To do this need to define two
more functions, the prior distribution for p(ω) and the model likelihood
distribution p(y|x, ω). The prior essentially defines our initial guess for what
the distribution of our model parameters should be, without considering the
training data. The likelihood function defines the relationship between inputs
and outputs in a probabilistic interpretation. For instance, for a classification
task, this can be defined with a softmax function:

p(y = c|x, ω) =
exp(fω,c(x))∑
c′ exp(fω,c′(x))

(3.1)

What we want to derive is the posterior probability distribution of ω,
which is the probability of ω after taking the observed data into account.
This can be solved for using Bayes’ theorem:

13

CHAPTER 3. BAYESIAN THEORY FOR MACHINE LEARNING 14

p(ω|X, Y) =
p(Y |X,ω)p(ω)

p(Y |X)
(3.2)

If we can solve this then we can perform model inference to predict y∗

given x∗ by taking an expectation over the weight distribution:

p(y∗|x∗, X, Y) =

∫
p(y∗|x∗, ω)p(ω|X, Y)dω (3.3)

If we can sample from the posterior weight distribution, than we can estimate
this integral easily by the Monte Carlo method, i.e. averaging the likelihood
over many weight samples.

The difficulty in evaluating equation 3.2 is the unknown denominator, the
model evidence, also called marginal likelihood. This is the probability that
the dataset would be observed for any model parameters, given our model
definition. We can rewrite this by marginalising the likelihood over ω, as
follows:

p(ω|X, Y) =
p(Y |X,ω)p(ω)∫
p(Y |X,ω)p(ω)dω

(3.4)

Unfortunately in the general case this integral is intractable, because
the search space for ω is too large. One way to alleviate this is to use an
approximation to the true posterior distribution. This is the approach of
variational inference.

3.2 Variational Inference

The basic idea of variational inference is to replace an arbitrary posterior
distribution over unobserved variables conditioned on observed data p(ω|X),
which cannot be estimated directly, with an approximating or variational
distribution qθ(ω), which can be expressed in closed form with parameters
θ. (Note: for simplicity in this section I will use just X to represent the
dataset, omitting Y). In order to obtain an optimal approximation we want
to minimize some measure of distance between qθ(ω) and p(ω|X). The most
convenient distance measure between distributions is the Kullback-Leibler
(KL divergence) [23], which in general is defined as:

DKL(P ||Q) =

∫
P (x) log

P (x)

Q(x)
dx (3.5)

KL divergence is 0 when two probability distributions are identical, and
increasingly positive the farther apart the distributions are. In our variational

CHAPTER 3. BAYESIAN THEORY FOR MACHINE LEARNING 15

inference case we have

DKL(qθ(ω)||p(ω|X)) =

∫
qθ(ω) log

qθ(ω)

p(ω|X)
dω (3.6)

We can’t compute this directly since this still depends on knowing the true
posterior p. However, we can rearrange this a bit:

DKL(qθ(ω)||p(ω|X)) =

∫
qθ(ω) log

qθ(ω)p(X)

p(X,ω)
dω

=

∫
qθ(ω)(log qθ(ω) + log p(X)− log p(X,ω))dω

= log p(X) +

∫
qθ(ω)(log qθ(ω)− log p(X,ω))dω

(3.7)

log p(X)−DKL(qθ(ω)||p(ω|X)) = Eqθ(ω)[log p(X,ω)− log qθ(ω)] = ELBO
(3.8)

This gives us what is known as the Evidence Lower Bound (ELBO),
since the KL divergence is non-negative so this represents a lower bound
on the evidence term log p(X). More importantly, maximizing this term is
equivalent to minimizing the KL divergence since log p(X) is constant. It
also turns out that this formula is actually tractable: it can be evaluated by
Monte Carlo sampling ω ∼ qθ(ω), rather than requiring integrading over all
ω.

We can also see some intuition for the ELBO loss function with a little
more rearranging:

ELBO = Eqθ(ω)[log p(X|ω) + log p(ω)− log qθ(ω)]

= Eqθ(ω)[log p(X|ω)]−DKL(qθ(ω)||p(ω))
(3.9)

In this form, we can see that there are two key components to this loss
function: the first term is trying to maximize the expected log likelihood
of the model, meaning we want the training data to be assigned high prob-
abilities by the model; the second term is trying to minimize the distance
between the variational distribution and the prior distribution p(ω).

3.3 Bayesian Backpropagation

Since we want to maximize the ELBO, we must negate it to use it as our loss
function. During training, for each batch we must Monte Carlo sample the

CHAPTER 3. BAYESIAN THEORY FOR MACHINE LEARNING 16

weights and compute forward passes through the model. In theory we must
take many samples of the weights to accurately compute the ELBO, but in
practice for stochastic gradient descent we only need rough unbiased gradient
estimates so a single sample per batch turns out to work well enough.

One final problem however is that we need to compute the gradient of an
expectation to optimize the ELBO loss. This turns out to be easy enough
if we can reparameterize our random variables so they no longer depend on
the parameters theta.

Suppose we have an arbitrary function f(ω) and we want to compute
gradients of the expectation over q:

∇θEqθ(ω)[f(ω)] (3.10)

If we can reparameterize this such that the expectation is not dependent on
ω like so:

Eqθ(ω)[f(ω)] = Eq(ε)[f(gθ(ε))] (3.11)

In which q(ε) is a fixed distribution, such as a standard normal, and gtheta
is a function that transforms it to the distribution qθ; in the Gaussian case
by scaling and shifting ε by the µ and σ. Then we can move the gradient
inside the expectation:

∇θEq(ε)[f(gθ(ω))] = Eq(ε)[∇θf(gθ(ω))] (3.12)

This means that we can get unbiased gradient estimates by simply per-
forming our Monte Carlo sampling over the reparameterized distribution (i.e.
the standard normal) and scaling and shifting the weights by our parameters.

3.4 Bayesian Neural Networks

Now we will briefly illustrate how this can all be applied to Bayesian feed-
forward networks and convolutional neural networks.

A standard feed-forward layer of a neural network has the structure:

f(x) = α(Wx+ b) (3.13)

where W and b are the weight and bias parameters and α is a nonlinear
activation function; for the final layer this may be a sigmoid or softmax
output for classification. To apply Bayesian weights to this we simply decide
on a prior p(W, b) and a variational distribution qθ(W, b), and then we can
Monte Carlo sample W, b ∼ qθ to compute forward and backward passes
through the model, using the negative ELBO as the loss. During inference

CHAPTER 3. BAYESIAN THEORY FOR MACHINE LEARNING 17

we can generate many samples of the model weights and use them to compute
a distribution of outputs and obtain both the mean or median result and the
model variance for a given input.

This can be applied to convolutional layers as well with no changes to the
overall procedure. All we need to do is change the model definition:

f(x) = α(W ~ x+ b) (3.14)

where ~ represents convolution of a set of 2D input image channels x by a
set of feature kernels W .

Chapter 4

Probabilistic Deep Learning
with Pyro

Pyro [2] is a Python library that works together with PyTorch to enable
construction and training of probabilistic models for machine learning. The
basic functionality it contains allows us to define models as joint probability
distributions of latent and observed random variables as well as learnable
parameters. The probabilities of any random variables sampled inside the
model can be tracked, and random samples can be substituted with predeter-
mined values to implement conditioning. Because Pyro is based on PyTorch
tensors, gradients can be tracked automatically and it can easily be imple-
mented into deep learning models.

4.1 Pyro Basics

Pyro’s most basic primitive is the sample function. The main effect of this is
to sample a random distribution. However it also enables Pyro to keep track
of samples of a named random variable, as well as substitute other values for
it. This is a powerful way of implementing joint probability distributions.
For example if we have the following model, with y dependent on x:

def model():
x = pyro.sample('x', pyro.distributions.Normal(0, 1))
y = pyro.sample('y', pyro.distributions.Normal(x, 1))
return x, y

This function will sample from the joint distribution of x and y. We can
condition the model on x using pyro.condition:

cond_model = pyro.condition(model, {'x': 3})

18

CHAPTER 4. PROBABILISTIC DEEP LEARNING WITH PYRO 19

Calling the new conditioned function will sample from the conditional dis-
tribution p(y|x = 3).

We can also pass the obs keyword argument to a sample call to pass
observed data, which has the same effect as condition if we know the
value inside the model. This may seem useless since we could just replace
the sample call with the observation, but the key is that Pyro still records
the sample call and its probability, which means it can compute the model
likelihood with respect to the observed data.

Pyro also allows random samples to be recorded and reused with the
trace and replay functions. trace runs a stochastic model and remem-
bers the values of all sampled variables as well as their probability density
functions so their log-probabilities can be accumulated. replay runs a
model with a trace from a previous model run and substitutes all variable
samples with their values from the original run. These functions are not nec-
essary to use directly, but are essential to the workings of Pyro’s variational
inference algorithm, explained below.

4.2 Stochastic Variational Inference

Pyro’s most powerful feature is its Stochastic Variational Inference (SVI)
algorithm. This allows us to learn models of latent variable from observed
data using the techniques discussed in Chapter 3. To perform variational
inference, we must first define a model function and a guide function. The
model function should take in observed data as a parameter and sample both
latent variables and the observed variable. As an example1:

def model(data):
loc = pyro.sample("loc", dist.Normal(0., 1.))
with pyro.plate("data", len(data), dim=-1):

pyro.sample("obs", dist.Normal(loc, 1.), obs=data)

This models loc with a prior distribution. If we want to learn the posterior
distribution p(loc|data) given the observed data, we can use a variational
distribution qθ(loc) to approximate it, as we learned in the last chapter. In
Pyro this is called a guide function. This looks like the following:

1From Pyro’s documentation, http://pyro.ai/examples/minipyro.html.
We can ignore the plate function; it is an implementation detail to perform broadcasting
from the sample distribution to the data size

CHAPTER 4. PROBABILISTIC DEEP LEARNING WITH PYRO 20

def guide(data):
guide_loc = pyro.param("guide_loc", torch.tensor(0.))
guide_scale = ops.exp(pyro.param("guide_scale_log",

torch.tensor(0.)))
pyro.sample("loc", dist.Normal(guide_loc, guide_scale))

This uses another Pyro primitive, param, to define learnable parameters,
which are simply PyTorch tensors that can have gradients computed; the
passed arguments are the initial values. These are the θ parameters that we
want to learn to approximate the posterior distribution of loc.

To learn this we use Pyro’s SVI class, which takes in the model and guide
functions, a optimizer algorithm (like Adam), and a loss function, typically
Trace ELBO which computes the ELBO function for all latent variables and
observed data. Then we call svi.step(data) in our training loop with a
batch of data each time to compute the loss and update our parameters.

Internally, what this does is compute a trace of the guide function,
which samples the latent variables from the variational distribution; then
uses replay to run the model function conditioned on the values that were
generated from the guide, along with the observed data; and finally accu-
mulates all of the log-probability terms from each sample and computes a
single-sample Monte Carlo approximation of the ELBO loss. Then all of
the gradients can be computed and the Pyro parameters updated using Py-
Torch’s standard autograd functionality. Note that for gradients to be cor-
rectly computed all random variables that depend on parameters must be
reparameterizable as discussed in 3.3.

4.3 Probabilistic Neural Networks

Pyro also includes some convenient functionality for integrating variational
inference into neural networks. The PyroModule class allows us to wrap
PyTorch modules and have all of their parameters registered as Pyro params.
The PyroSample class allows neural network parameters to be replaced by
sample calls when accessed. This allows a Bayesian neural network to be
quickly built by wrapping normal neural network components.

Pyro also provides automatic guide functions that can use a standard
distribution for all learnable variables, for instance AutoDiagonalNormal,
which uses an independent normal distribution for all variables. We use this
guide function for our models in this work.

Chapter 5

MNIST Experiments

The first case study conducted is an application of Bayesian neural networks
to simple image classification using the MNIST[26] handwritten digit dataset,
one of the most common computer vision benchmarks. The MNIST classifi-
cation task is to take an image of a handwritten digit and classify it as one
of the ten digit labels 0-9. We have two goals for this study: first we want
to demonstrate the limitations of a standard non-Bayesian neural network
when it comes to expressing uncertainty. Second, we want to demonstrate
how Bayesian neural networks can be used to improve the situation by fil-
tering out misclassified examples and examples that don’t fit into any class.

5.1 Deterministic CNN

For our first set of experiments we used an off-the-shelf CNN model trained
on MNIST, taken from the PyTorch examples [33]. The structure of the
model is shown in Figure 5.1. It consists of two convolutional layers, each
with a kernel size of 5 and hidden dimensions of 20 and 50, each followed
by max-pooling layers, then followed by two fully-connected layers with a
hidden dimension of 500 and a final 10-way softmax. The ReLU activation
function is used for all intermediate layers.

5.1.1 Model Analysis

The model was trained on the MNIST training set of 60,000 images for 10
epochs. It achieves a test set accuracy of 99.0%. This leaves little room
for improvement in terms of raw accuracy; however, we are interested in the
model confidence. In Figure 5.2 we plot the distribution of model confidence
scores (i.e. the highest softmax outputs) for the correctly classified examples

21

CHAPTER 5. MNIST EXPERIMENTS 22

Figure 5.1: Basic MNIST CNN diagram

along with the incorrectly classified ones. We also show some examples of
misclassified digits and their confidence levels (Figure 5.3).

Figure 5.2: Distribution of model confidence for correctly and incorrectly
classified MNIST examples

Figure 5.3: Examples of misclassified MNIST examples. They are labeled
with ground truth, prediction and confidence from left to right. Some exam-
ples have misleadingly high confidences.

The median score for the incorrect examples is 74.9%; 25% of the scores
are above 88% and 5% of them are above 99%. Most of the correct examples
are above 99% confidence. If we wanted to use the model confidence to
discard mispredicted examples, then there would necessarily be a tradeoff
between how many good examples we are willing to discard and how many
bad examples we are willing to allow (precision vs. recall). If we wanted to

CHAPTER 5. MNIST EXPERIMENTS 23

avoid 95% of misclassifications for example, we would have to discard more
than 8% of samples.

As we can see, while the model confidence is generally lower for these
“bad” examples it can sometimes be very high. What we really want to see
though is how the model responds to clearly bad input, i.e. images that are
not even digits. For this we conducted experiments with a separate smaller
dataset of English letters, as well as some uniformly random noise images.

The letters dataset, known as not-MNIST, was obtained from the article
Making Your Neural Network Say “I Don’t Know” — Bayesian NNs using
Pyro and PyTorch[6] (original dataset from [4]). It consists of 459 exam-
ples of the English letters from A-J in various fonts, in the same shape and
prepared the same way as MNIST. This provides a reasonable set of images
that superficially resemble digits, at least enough to fool an algorithm that
has never seen anything other than a digit before, while still being distinctly
not digits. Thus it seems like a good test for how our model handles out-of-
distribution data.

Our näıve expectation is that on inputs that don’t fit within the training
domain, our model would give roughly equal scores of 10% for each of the 10
classes, indicating that all classes are equally unlikely. But in reality it gives
scores much higher than 10%, ranging from the mid 40%’s all the way to
100%. We showed some examples back in Chapter 1, which we show again
here (Figure 5.4):

(a) Label: 4, 100% (b) Label: 8, 84.5% (c) Label: 3, 94.5%

Figure 5.4: Examples of MNIST classifier predictions on English letters

The fact that the A is interpreted as a four is somewhat understandable—
in fact most of the A’s are interpreted as 4’s with high probability—but
the other two are more surprising. Regardless, we would like to be able to
distinguish between an actual digit and something that is clearly not a digit
at all.

Even more surprising is that purely random noise is also classified quite
confidently. Strangely, almost all the uniform random samples we generated
were classified as an 8 with probability around 80% (Figure 5.5)

A possible explanation of this is that the difference in detail between
individual random images is too high frequency for the network to detect, so

CHAPTER 5. MNIST EXPERIMENTS 24

Figure 5.5: A randomly generated image
Classification: 8: 88.8%

it sees them all as vaguely grey squares, and thus computes the same label
for all of them. Still, the returned probability is much higher than we would
expect.

To quantify the problem numerically, on the English letters dataset, the
median model confidence across all samples was 83%. This is very much
higher than the expected average confidence of 10%. Thus the model seems
to have a false confidence in its own predictions. To demonstrate this further
we show histograms of the model confidences on each dataset in Figure 5.6:

Figure 5.6: Distribution of model confidence on the MNIST and not-MNIST
datasets, on a log scale

As can be seen, a large number of examples in the not-MNIST dataset
are given confidences very close to 1; in fact 25% of the scores are above 98%.
This makes these examples practically indistinguishable from the actual digit
examples by the model.

5.1.2 Discussion

This points to a fundamental problem with deterministic networks which
we would like to address. Because the network has only been trained on a

CHAPTER 5. MNIST EXPERIMENTS 25

finite set of data, it isn’t necessarily able to generalize to data outside of its
training domain. However it will still produce some result no matter what
input we give it, and this result may be completely arbitrary depending
on how similar it is to what the network has seen before, so the model
confidence score can’t be relied on in this case. If we could instead generate a
distribution of outputs, then the variance of examples outside of the training
domain should be expected to be larger than that of points within the training
region, because it is less constrained by what the model has learned. Thus
this variance can be interpreted as an uncertainty measure for the model.

5.2 Bayesian Neural Networks

To test this intuition, we trained two Bayesian neural networks on the MNIST
dataset to compare with the deterministic model. Their architectures are
shown in Figures 5.7 and 5.8. As a starting point we adapted code from
this [6] article on Bayesian NNs. The first model architecture is extremely
simple, a Bayesian version of a standard feed-forward network with two fully-
connected layers and a softmax output. Each weight matrix is modeled
as a diagonal (component-wise independent) normal distribution in terms
of µ and σ, which are learned using variational inference. At test time, a
number of instances of the network are sampled from the learned posterior
distribution and applied to the test inputs. The highest-scoring label after
averaging the scores across all model samples is chosen as the prediction.

The second model architecture is a modified version of the original de-
terministic CNN, with Bayesian posteriors placed over some of the weights.
Instead of making the network fully Bayesian, we only replace the two final
fully-connected layers with Bayesian weights, again with diagonal normal
distributions. This is because adding more Bayesian parameters to a model
makes it harder to train. In this way we can think of the Bayesian CNN as
a deterministic feature extractor followed by a fully Bayesian feed-forward
network. In order to train this we don’t start the variational inference from
scratch; instead we first train the deterministic version of the network (or
reuse the original weights) and then train the Bayesian weights with varia-
tional inference as a sort of fine-tuning step, where the non-Bayesian weights
can still update but they have a reasonable initial value. We also tried train-
ing a version with all Bayesian parameters, including the convolution and
linear layers, but it was unable to converge to an optimal solution.

One evident property of these networks is that they have a less stable
training process than deterministic networks. That is it may require restart-
ing the training process multiple times before the network converges to a

CHAPTER 5. MNIST EXPERIMENTS 26

Figure 5.7: Architecture of basic Bayesian neural network. It contains
814,090 Bayesian weights (including bias terms) consisting of µ and σ.

Figure 5.8: Architecture of Bayesian convolutional neural network. The con-
volution layers are unchanged from the deterministic model trained before,
but the fully-connected layers are replaced with Bayesian weights as above.
It contains 405,510 Bayesian weights/bias terms consisting of µ and σ.

CHAPTER 5. MNIST EXPERIMENTS 27

reasonable locally optimum solution. Moreover even when it does converge
it may lead to significantly different quality models between different train-
ing attempts. The results we show are based on the best models we selected
during trained.

5.2.1 Refusing to predict

Besides computing average scores to pick the best class, our model can also
refuse to predict. There are multiple ways we can interpret the stochastic
model outputs in a way that allows us to discard uncertain results. The
method we pick is based on a form of majority vote. We choose two thresh-
olds, the score threshold s and the majority threshold m. The model outputs
a separate softmax vector for each sample pass. The rule for classification
is that in order to be classified with a given label, at least m percent of
the softmax scores for that class have to be greater than s. In other words
we use the score threshold to determine how many positive votes there are
for the class, and then we require the number of votes to pass the majority
threshold. If the condition is not satisfied we mark the example as discarded.

5.2.2 Evaluation and Analysis

We evaluate our Bayesian models in three ways. First we report the raw
accuracy of the models on MNIST, taking the maximum average softmax
score as the predicted class. Next we report the number of discarded samples
and accuracy on the remaining MNIST data after applying our threshold
rule. Finally we evaluate the model on a mixed dataset containing an equal
number of examples from MNIST and not-MNIST. On this set we simply
test whether the example is discarded or not; we use this to identify MNIST
from not-MNIST, and count a correctly accepted MNIST example as a true
positive, and a correctly discarded not-MNIST example as a true negative,
etc. (we don’t actually consider whether the digit class was correct, only
whether it chose to classify at all). We then report precision, recall and F1
scores for this task.

The results of our experiments on both models are shown in Table 5.1,
along with the deterministic CNN accuracy.

Some general observations to be drawn from this table are:

• Although our accuracy before discarding examples is slightly reduced
compared to the plain CNN, the Bayesian models can produce even
higher accuracy after discarding bad examples

CHAPTER 5. MNIST EXPERIMENTS 28

• We can achieve over 90% precision and recall when distinguishing digit
inputs from non-digits. This is promising.

• While the digit vs. non-digit selection scores are not significantly dif-
ferent between the two BNN models, the Bayesian CNN has higher
overall accuracy than the fully connected BNN.

CNN Bayesian NN Bayesian CNN

Samples 10 100 1000 10 100 1000
Majority Threshold 55% 63% 63% 50% 58% 58%
Raw Accuracy 99% 96% 96% 96% 97% 98% 98%
% Discarded 8% 7% 7% 11% 7% 7%
Accuracy w/ Discard 98% 99% 99% 100% 100% 100%
Precision* 90% 93% 93% 88% 92% 91%
Recall* 91% 92% 92% 88% 92% 92%
F1* 90% 92% 92% 88% 92% 92%

Table 5.1: Results of experiments on MNIST and not-MNIST datasets. Ma-
jority thresholds are tuned based on MNIST-not-MNIST precision and recall.
*On the MNIST-not-MNIST selection task

Varying number of samples

In the table we show the results with varying number of model samples, from
10 to 1000, for each model. We found that both accuracy and selection ability
slightly improve as the number of samples is increased, but the difference
between 100 and 1000 samples is negligible. Even with only 10 samples the
raw accuracy is barely reduced.

Threshold tuning

As mentioned we have two thresholds that can be tuned to trade off between
false positives and false negatives. In practice we observed that the trained
model almost always outputs scores close to 0 or 1, so the score threshold
is somewhat arbitrary; we set it to 20%. As for the majority threshold, we
tuned different thresholds for each model and different numbers of samples
in order to obtain optimal precision/recall values in the MNIST-not-MNIST
selection task on the balanced dataset. We can also tune it lower to re-
duce the number of discarded results in the MNIST set at the expense of a

CHAPTER 5. MNIST EXPERIMENTS 29

slight amount of accuracy; in practice this threshold should be based on the
expected proportion of good and bad examples in the test data.

Prior weights and initial parameter values

There are some hyperparameters we can tune during the model selection
process; one simple one is the prior weight scale. All of the weights and
biases are given a prior distribution of a zero-centered normal; the scale of
the normal distribution can be tuned to produce more stable training. If the
prior scale is too high or too low the model may not converge. By trial and
error we determined that the non-CNN Bayesian network works best with a
prior scale of 10, and the Bayesian CNN we left with a prior scale of 1. We
can also change the mean of the priors to be equal to the previously learned
deterministic weight values, instead of 0; however this might inadvertently
bias the Bayesian model to be too similar to our deterministic model, which
we may not want; in practice it seems to have little effect.

One more thing we can change is the initialization of the µ and σ pa-
rameters in the variational distribution (guide) function; by default they are
randomized, but we might set the initial µ parameter equal to the determin-
istic weight values instead, which shouldn’t have the same biasing problem
as changing the priors, since the loss function is not changed; nevertheless
this seems to have no observable effect either.

Distribution of model confidence

Figure 5.9: Distribution of average model confidence on each dataset, ac-
cording to Bayesian CNN

Above we showed that the deterministic model’s confidence scores tended
to cluster around 1 even for non-MNIST images. We plot the same infor-
mation for the Bayesian CNN in Figure 5.9, with the confidence scores for

CHAPTER 5. MNIST EXPERIMENTS 30

each sample being averaged together, and show that it is much closer to our
expectation for the non-MNIST dataset.

Computational cost analysis

We also performed a timing analysis of each model based on the number of
samples. The results are shown in Table 5.2, and in Figure 5.10.

CNN BNN B-CNN

Samples 1 1 10 50 100 500 1000 1 10 50 100 500 1000
Time (ms)/Input 0.085 0.06 0.11 0.32 0.58 2.7 5.4 0.065 0.13 0.45 0.86 4 8.8

Table 5.2: Inference time of each model by number of samples

Figure 5.10: Inference time of each model by number of samples

Pretty intuitively, the inference time is linear in the number of samples
taken. Also the Bayesian CNN is slower than the simpler feed-forward net-
work.

We also looked at the time breakdown between the model sampling part
and the forward propagation part of inference, for two minibatch sizes (128
and 256). The results are in Table 5.3. It is important to note that while
the sampling phase takes the majority of the time in the Pyro/PyTorch
implementation, this is not optimized, and the relationship would likely be

CHAPTER 5. MNIST EXPERIMENTS 31

more balanced if it were the model were implemented in optimized C or
C++. One observation to be made is that we can reduce the proportion of
time required for sampling by increasing the minibatch size, so that more
instances can be processed for the same amount of random sampling. This
however might not be possible in real-time applications like driving, where
you generally want the inference to happen as soon as the data is received.

BNN B-CNN

Batch Size 128 256 128 256
Sampling 620 (90%) 620 (84%) 869 (74%) 869 (61%)
Forward Pass 66 (10%) 119 (16%) 300 (26%) 561 (39%)
Total 686 739 1169 1430

Table 5.3: Time breakdown for sampling and forward pass, in µs

Bayesian parameter pruning

One thing that we can potentially do to reduce inference time, particularly
in the sampling part, is to use parameter pruning. Ordinarily neural net-
work pruning would involve completely removing some subset of weight val-
ues. However in this case we propose just pruning the stochastic part of the
weights, i.e. the σ’s. We can do this by sorting the σ’s in each parameter
tensor and setting the smallest ones to 0. Then during parameter sampling,
we can generate a Gaussian distribution only for the non-zero σ components
of the weight, and simply substitute the mean for the pruned weights. (Note
that some authors [13] [3] have also suggested using the Bayesian weight dis-
tributions to prune entire weights, setting the mean to 0 as well, by testing if
they are statistically close to 0. We do not implement this.) Table 5.4 shows
the accuracy and precision/recall statistics of the model after pruning X% of
the Bayesian weights.

This table shows that the model accuracy is not effected at all by the
stochastic weights, and they can be safely replaced with their mean values
if we only want an accurate deterministic model. However we can still get
some use from the Bayesian component of the model even with pruning, for
example by pruning 50% of the weights on the Bayesian CNN we can still
get 75% precision on separating non-MNIST instances from MNIST, which
means we are correctly discarding 2/3 of the bad images.

We completed a final timing analysis showing how the inference time can
be reduced by pruning, shown in Figure 5.11. Note that these are completely

CHAPTER 5. MNIST EXPERIMENTS 32

% Pruned 0% 10% 30% 50% 70% 90% 100%

BNN

Accuracy 96% 96% 96% 96% 96% 96% 96%
Accuracy w/ Discard 99% 97% 96% 96% 96% 96% 96%
Precision 93% 88% 81% 76% 69% 58% 50%
Recall 92% 98% 99% 100% 100% 100% 100%

B-CNN

Accuracy 98% 98% 98% 98% 98% 98% 98%
Accuracy w/ Discard 99% 99% 99% 99% 98% 98% 98%
Precision 92% 88% 80% 75% 70% 62% 50%
Recall 92% 95% 97% 97% 98% 99% 100%

Table 5.4: The MNIST accuracy and MNIST-non-MNIST precision/recall
for different amounts of pruning

Figure 5.11: Inference time (in ms) of BNN models vs pruning %

different times than the previous chart because we are bypassing the Pyro in-
frastructure and doing the sampling manually along with some preprocessing,
so it is highly unoptimized. Although the time saved in this implementation
is not very significant until we prune 100% of the model, a more optimized
low-level version should be able to save significant time as well as space due
to fewer parameters requiring storage.

5.3 Discussion

We demonstrated with this experiment that Bayesian neural networks can
successfully model uncertainty and allow for fairly reliably discarding low-
confidence results. This isn’t perfect of course, as we still necessarily have

CHAPTER 5. MNIST EXPERIMENTS 33

some false negatives where we are overly cautious in discarding an image,
as well as some false positive images that are classified even though the
should probably be discarded; we have to accept a tradeoff. We also learned
that useful Bayesian uncertainty can be obtained from a convolutional neural
network, even though only the non-convolutional layers were made Bayesian;
this means that we don’t need to make an entire network Bayesian to get
probabilistic results.

The lessons learned from this study were helpful in formulating our sec-
ond study on semantic segmentation. We can generalize the problem of
computing uncertainty for a multi-class classification output to computing
pixel-wise uncertainty where each pixel is a multi-class classification. This is
the subject of the next chapter.

Chapter 6

Semantic Segmentation
Experiments

In our second study we seek to provide proof-of-concept that we can obtain
practical benefits from Bayesian neural networks on real-world applications;
specifically for self-driving cars. The focus for this study is Bayesian networks
for semantic segmentation. We picked the semantic segmentation task for two
reasons:

1. It is relevant for autonomous driving

2. It is simpler to deal with than other tasks related to driving, such as
object detection or lane detection

Common perception tasks for self-driving cars often output discrete ge-
ometric objects; this the case for object detection which outputs bounding
boxes, and for lane detection which outputs line segments or other path de-
scriptions. These could in theory be posed in a stochastic framework, with
the implication that many potential bounding boxes could be derived for
an object, or many possible paths for a lane. One complication that this
presents is that the models have a variable number of outputs; there can be
zero to arbitrarily many objects in a scene, and the same for lane paths. This
generally implies some kind of filtering or “suppression” algorithm which re-
duces a large fixed number of outputs to a few. Additionally even for a
single object detection, formulating a loss function is more complex than
many machine learning problems as there is both a regression component
(the bounding box points) and a classification component (for the object
classes). We would like to avoid these complicating factors for our Bayesian
neural network experiments but leave them as a challenge for future work.

Semantic segmentation on the other hand is essentially pixel-wise clas-
sification. This means the model only needs to output a fixed sized tensor

34

CHAPTER 6. SEMANTIC SEGMENTATION EXPERIMENTS 35

with a softmax vector for each pixel. A lot of what we used for the MNIST
classification model can thus be applied to this task with some minor adjust-
ments.

6.1 Dataset Description

The dataset we use for this task is the Berkeley DeepDrive dataset (BDD100K)
[41]. This comes with many different kinds of labeled and unlabeled data,
including raw video footage, object detections, semantic/instance segmenta-
tion, drivable surface markings and lane markings. For our purposes we are
interested only in the semantic segmentation set. This consists of 10,000 pairs
of input images and target images, with class labels represented as grayscale
values. An example image and target from the dataset is shown in Figure
6.1.

Figure 6.1: Example input image and segmentation labels (colorized) from
BDD100K dataset

The dataset contains 19 categories, listed in Table 6.1:

Road Pole Sky Bus
Sidewalk Light Person Train
Building Sign Rider Motorcycle
Wall Vegetation Car Bicycle
Fence Terrain Truck

Table 6.1: Berkeley DeepDrive semantic segmentation categories

6.2 Base Model

The base model we selected to perform our Bayesian modifications was taken
from MIT’s CSAIL Computer Vision Git repo [39][43]. Their code provides

CHAPTER 6. SEMANTIC SEGMENTATION EXPERIMENTS 36

a number of different semantic segmentation model architectures split into
encoder-decoder pairs. For the encoders they provide ResNet18, 50 and
101 [14] as well as MobileNet [17], modified to use dilated convolutions to
increase their receptive field. MobileNet is a convolutional network opti-
mized for mobile and embedded platforms by simplifying the convolution
layers, separating them into a depth-wise convolution followed by a point-
wise (1x1) convolution. For decoders they provide a simple single convolution
module (C1), a Pyramid Pooling Module (PPM) [42], and a UPerNet mod-
ule [40]. They provide pre-trained weights for all these networks on the MIT
ADE20K scene parsing dataset. We modified the code to support training
and evaluation on the BDD100K dataset.

We trained two of their model architectures deterministically, using the
pre-trained weights as a starting point for transfer learning. The first is the
combination of dilated ResNet50 + PPM, which is their default model. The
second is MobileNetV2 + C1. The accuracy and per-class Intersection over
Union (IoU) obtained on these models are shown in Table 6.2

We chose to adapt the MobileNetV2 + C1 model for our Bayesian NN
experiments. While it is less powerful than the first model, it has a much
smaller and simpler structure, making it both faster to train and test and
simpler to convert to Bayesian, and the reduction in accuracy is low enough
for our purposes. It also may be a better choice to use for autonomous driving
since it is designed for more constrained hardware. (Note however that in a
real self-driving car we would probably need a more accurate model.)

Before discussing the Bayesian model, here is a more detailed description
of the deterministic model architecture. The encoder part of the model,
as mentioned, is a modified MobileNetV2. This model contains a series of
bottleneck layers with residual (skip) connections between them, similar to
ResNet. Within each bottleneck block there is an initial 1x1 (pointwise)
convolution, followed by a 3x3 depthwise convolution, and another pointwise
convolution. The depthwise convolution, which maps each input feature map
to only one output feature map, has a number of parameters linear in the
input/output dimension instead of quadratic like an ordinary convolution.
The depthwise followed by pointwise convolution thus results in a cheaper
approximation of a single multi-channel convolution layer.

The decoder part of the model consists only of a 3x3 convolution, a batch
normalization, a ReLU activation function, and a final 1x1 pointwise convo-
lution. Note that a pointwise convolution is the same as a fully-connected
layer that is applied separately to each pixel with the same weights. Finally
the output is passed through a softmax for classification.

During evaluation the model scales a given input image to multiple differ-
ent resolutions and passes each through the model one at a time, then bilinear

CHAPTER 6. SEMANTIC SEGMENTATION EXPERIMENTS 37

IoU ResNet50 + PPM MobileNetV2 + C1

Road 0.938 0.932
Sidewalk 0.636 0.618
Building 0.849 0.828
Wall 0.340 0.281
Fence 0.510 0.413
Pole 0.361 0.323
Light 0.286 0.354
Sign 0.509 0.427
Vegetation 0.863 0.845
Terrain 0.469 0.457
Sky 0.947 0.933
Person 0.615 0.563
Rider 0.328 0.188
Car 0.893 0.878
Truck 0.497 0.383
Bus 0.744 0.374
Train 0.000 0.000
Motorcycle 0.456 0.388
Bicycle 0.446 0.375
Mean IoU 0.563 0.503
Accuracy 92.8% 91.7%

Table 6.2: IoU’s for each class and total accuracy for the two models

filters them back to a common size and averages their softmax scores before
computing the final label at each pixel.

Note that the decoder does not have any up-scaling convolutions. This
means that since the encoder reduces the feature resolution by a factor of 8,
the final segmentation image is also reduced by a factor of 8, before being
bilinear filtered to match the original size again. This is not a huge problem
since generally we don’t need particularly high resolution to detect objects.

6.3 Bayesian Model

For our Bayesian semantic segmentation model, we took an approach sim-
ilar to the MNIST model in that we didn’t convert the entire network to
Bayesian, but only the last few layers. In this case we left the entire Mo-
bileNet encoder module fixed, treating it as a black-box deterministic feature

CHAPTER 6. SEMANTIC SEGMENTATION EXPERIMENTS 38

Figure 6.2: The Bayesian Semantic Segmentation model. The structure is
exactly copied from the deterministic CSAIL model, but the convolutions
in the decoder are replaced by Bayesian weights. This allows a distribution
of softmax vectors to be output for each pixel. Note that the segmentation
resolution is divided by 8. There are a total of 231,939 Bayesian weights.

extractor. We froze its weights, copied from the deterministic model, while
training the Bayesian model. For the C1 decoder module we made both lay-
ers Bayesian. Note that unlike for the MNIST model, this includes Bayesian
convolution kernels, although the 1x1 Bayesian convolution is again equiva-
lent to a fully-connected layer applied on each pixel. The model architecture
is in Figure 6.2. We trained the model with Stochastic Variational Inference
for 10 epochs.

6.3.1 Bayesian Module Accuracy

For simple inference we take a sample of 100 model outputs and average the
softmax scores at each pixel before taking the argmax, similar to what we
did for MNIST. The resulting accuracy and IoU scores are shown in Table
6.3. Interestingly, the overall accuracy is a tiny bit better than the equivalent
deterministic model, although the average IoU is worse.

CHAPTER 6. SEMANTIC SEGMENTATION EXPERIMENTS 39

Class IoU Class IoU

Road 0.931 Person 0.462
Sidewalk 0.587 Rider 0.000
Building 0.824 Car 0.884
Wall 0.274 Truck 0.456
Fence 0.407 Bus 0.616
Pole 0.308 Train 0.000
Light 0.187 Motorcycle 0.000
Sign 0.343 Bicycle 0.003
Vegetation 0.839 Mean IoU 0.446
Terrain 0.419 Accuracy 91.8%
Sky 0.936

Table 6.3: IoU’s for each class and total accuracy for the Bayesian model

6.3.2 Identifying Error with Bayesian Uncertainty

Now we know that we can use our Bayesian network like an ordinary network
and get decent accuracy, but what we really want is to use it to compute
uncertainty. In our MNIST experiment, the only thing we could really do
with uncertainty was determine whether or not to classify the image. But
with semantic segmentation we can get pixel-level uncertainty.

There are multiple ways we can define this. One way is to use the vari-
ance/standard deviation of the outputs. If we take 100 samples of our model,
then for each pixel of output, we have 100 softmax vectors each with 19 class
probabilities. If we look only at the class we chose for that pixel based on
the maximum average score, then we can measure the standard deviation of
softmax probabilities for that class. If the model gives very inconsistent soft-
max scores for the given class then it is probably not trustworthy. Another
option is to simply average the softmax scores and take 1− p where p is the
maximum softmax score/confidence. These two measures should be corre-
lated because a high variance in softmax scores will tend to pull the average
away from 1. Alternatively we could use a voting-based method by counting
the number of scores that pass some threshold, as we did for MNIST; but
this isn’t substantially different from averaging the scores and discards some
information, so we didn’t try this.

We can also use the softmax scores from the non-Bayesian network to
attempt to show uncertainty. As mentioned in the previous chapter, deter-
ministic softmax scores tend to be over-confident and generate close to binary
values, so they aren’t as reliable as the Bayesian derived uncertainty values.

CHAPTER 6. SEMANTIC SEGMENTATION EXPERIMENTS 40

To demonstrate the results of uncertainty on high-error inputs, we col-
lected a subset of the BDD dataset consisting of the 100 images attaining
the lowest accuracy from the deterministic model. We call this the “bad”
dataset. We also collected a “good” dataset of the 100 highest accuracy im-
ages. We can look at some of the bad examples to see how our uncertainty
metrics can identify regions of high error; see Figures 6.3 and 6.4. Figure 6.5
shows a “good” image with very low error for comparison.

The first example we can see has a lot of noise due to rain covering
the car’s windshield; we can say the uncertainty here is aleatoric since it the
image is inherently harder to predict. We can see that both deterministic and
Bayesian networks are able to predict the two cars, but otherwise produce a
lot of random spurious results in the lower left and upper right. This means
we should expect to see high uncertainty in the uncertainty maps; which is
the case for all three maps. However we can see that the Bayesian uncertainty
maps seem to have more uncertainty concentrated in these areas.

The second image is a good example of epistemic noise. This is a case
where a human could clearly identify that there is a large truck taking up
most of the space in the image. However the model likely had limited training
data with large flat uniform-colored trucks at that close distance; hence it
somewhat reasonably thinks that part of the truck is a building or wall. The
uncertainty outputs neatly reflects this; we can clearly see that the truck is
given a high uncertainty by all three metrics, especially the Bayesian ones,
reflecting the fact that the model hasn’t learned to converge towards a definite
answer for this input.

The third input is simply a good demonstration of how uncertainty works
when there is very little error. All three uncertainty maps are close to zero
for the most part, reflecting high confidence; although there are lines of
uncertainty around the object borders in all three maps.

CHAPTER 6. SEMANTIC SEGMENTATION EXPERIMENTS 41

Figure 6.3: Example image with large amounts of input noise and high error.
From left to right, top to bottom: input image, ground truth labels; deter-
ministic model segmentation, Bayesian model segmentation; Deterministic
softmax uncertainty, Bayesian softmax uncertainty; Bayesian standard devi-
ation uncertainty

CHAPTER 6. SEMANTIC SEGMENTATION EXPERIMENTS 42

Figure 6.4: Another example with high segmentation error. From left to
right, top to bottom: input image, ground truth labels; deterministic model
segmentation, Bayesian model segmentation; Deterministic softmax uncer-
tainty, Bayesian softmax uncertainty; Bayesian standard deviation uncer-
tainty

CHAPTER 6. SEMANTIC SEGMENTATION EXPERIMENTS 43

Figure 6.5: A low-error example, showing the very sparse uncertainty maps.
From left to right, top to bottom: input image, ground truth labels; deter-
ministic model segmentation, Bayesian model segmentation; Deterministic
softmax uncertainty, Bayesian softmax uncertainty; Bayesian standard devi-
ation uncertainty

CHAPTER 6. SEMANTIC SEGMENTATION EXPERIMENTS 44

6.3.3 Comparison of Uncertainty metrics

All three uncertainty metrics are clearly associated with higher error. We
can see that the deterministic softmax-based uncertainty is much sparser
than the other ones and yields high uncertainty mainly at object boundaries.
This is consistent with the previous assertion that softmax tends to be biased
towards high confidence. The Bayesian softmax uncertainty also tends to be
highest around object edges. This is probably because the softmax scores
are linearly interpolated when the image is upscaled, which means at any
boundary between two different classes the softmax values will have to rapidly
change and there will be a point where they are both less than .5. On the
other hand, it makes sense to have high uncertainty at object boundaries
since there are multiple classes competing for nearby pixels. The Bayesian
softmax uncertainty is consistently higher than the deterministic uncertainty,
which implies that it is less biased due to the added randomness.

The standard deviation-based uncertainty can’t be directly compared
with the softmax based ones since it is on a different scale (standard de-
viation verses probability). However we can determine statistically how well
each uncertainty score predicts segmentation error. We computed the Pear-
son correlation coefficient between the uncertainty scores and the binary
per-pixel errors (1 if the pixel is misclassified, 0 otherwise) for each image
in the “bad” dataset and the “good” dataset, then averaged them over all
images.

Bayesian Std Dev Bayesian Softmax Deterministic Softmax

.173 .213 .140

Table 6.4: Correlation coefficient between pixel error and uncertainty scores

We can see from Table 6.4 that both Bayesian measures of uncertainty
are more correlated with error than normal softmax, although not by a huge
threshold. Interestingly the Bayesian softmax seems to be a better predictor
of error than the standard deviation.

6.3.4 Framework for ODD Violation

We’ve so far looked at the per-pixel uncertainty, but we can also consider
aggregating the uncertainty over the whole image. This can be useful for
detecting Operational Design Domain (ODD) violations. The simplest way
to do this is simply to average the uncertainty over the whole image. If the
uncertainty is above a certain threshold a self-driving car could choose to take

CHAPTER 6. SEMANTIC SEGMENTATION EXPERIMENTS 45

some exceptional action like relinquishing control to the user. It could also
be useful to have this information recorded so for example if a self-driving
car gets in an accident, technicians could determine whether it was driving
under abnormal conditions at the time by looking at the on-board logs.

We can add additional features to an ODD violation check, for instance
instead of weighting all pixel uncertainty equally, we could weight classes by
“safety criticality”.

We implemented two functions for the purpose of aggregating uncertainty
and determining ODD violations, one that computes the total uncertainty by
averaging the standard deviation over all pixels, and one that is the same but
it only counts pixels with a class we consider safety-critical, with all other
classes weighted 0. For this purpose the safety critical classes are determined
to be Car, Truck, Bus, Person, Rider, Bicycle, and Motorcycle: basically all
the objects that need to be avoided on a road.

When run on the good and bad datasets, we found that the total uncer-
tainty metric for the good images averaged around .12, while for bad images
averaged .16. The safety-critical uncertainty averaged around .04 and .07 in
each set respectively.

As an example, Figure 6.6 shows two images from the bad set that have
higher than average critical uncertainties at around .12 (we already saw the
first one above). These examples illustrate the purpose of the critical un-
certainty score, because we can see they both include a large nearby vehicle
with a lot of conflicting classifications, which would be a serious problem for
a self-driving car.

These uncertainty scores are not precise enough to be able to reliably dis-
tinguish between high-error and low-error scenarios, but they are still useful
as a tool to help the car determine how confident it is that its predictions
are safe and reliable.

CHAPTER 6. SEMANTIC SEGMENTATION EXPERIMENTS 46

(a) Critical uncertainty: .119 (b) Critical uncertainty: .122

Figure 6.6: Example images with high safety-critical uncertainty score, along
with their segmentation and standard-deviation uncertainty maps.

Chapter 7

Discussion and Conclusion

We implemented Bayesian neural networks and applied them to two tasks.
The first task, MNIST classification, is partially recreating existing work, and
the MNIST dataset is not particularly novel or state-of-the-art. However we
demonstrated a meaningful proof of concept that we can use Bayesian neural
networks to identify inputs with high uncertainty or that fall outside of our
training domain, and thus improve our model reliability at the expense of
some inputs that we refuse to classify.

The second task is, as far as we are aware, a completely novel innovation.
The application of Bayesian Convolutional Neural Networks to the task of
semantic segmentation for self-driving cars allowed us to derive per-pixel un-
certainty metrics that intuitively mirror the sections of the input image that
have high misclassification error. This can be seen in some cases to be re-
lated to high noise in the image (aleatoric uncertainty), such as rain; in other
cases it is due to limitations of the model’s discrimination ability (epistemic
uncertainty), such as between a large white truck back and a wall, or an
oddly-shaped bus and a car or truck. In either case this uncertainty is a
problem that we need to address for autonomous driving. We further ad-
dressed the problem of detecting ODD violations by aggregating uncertainty
over an image, and how this can be important in the decision making process
of a self-driving car, for instance it may decide to pass control to a human.

There are some limitations that our work did not address which could
be expanded on in future work. One improvement could be to try apply-
ing Bayesian weights to a larger part of the segmentation model, and see
whether equal or better results are obtained; ablation studies could be done
to determine specifically what parts of the model should be made Bayesian.

Another option that we explored with MNIST but not with the segmen-
tation model was Bayesian weight pruning. The same experiment could be
performed on the segmentation model to see if reasonable uncertainty can

47

CHAPTER 7. DISCUSSION AND CONCLUSION 48

still be obtained with fewer Bayesian weights. Additionally there are other
hyperparameters and factors we tuned on the MNIST model that we did
not change on the segmentation model; for example we could try changing
the prior distribution for the weights, which in our trained model was set to
N (0, 1). Increasing or decreasing the prior scale parameter could change the
distribution of our uncertainty scores.

A broader task for future work would be to apply this premise to other
autonomous driving tasks. For instance as briefly mentioned we could apply
Bayesian uncertainty to object detection and obtain not only distributions
of class scores, but distributions of bounding box locations which may be
helpful in identifying localization error. It could also be applied to lane
detection to generate many possible paths which could all be ingested by
the planning algorithm. Bayesian uncertainty could even be applied to the
planning stage itself for end-to-end learning algorithms; this would allow
the car to predict many different possible paths and select between them.
There are many possible applications for learnable uncertainty in safety-
critical cyber-physical systems that should be explored.

Bibliography

[1] Baidu. Apollo. 2020. url: https://github.com/ApolloAuto/
apollo.

[2] Eli Bingham et al. “Pyro: Deep Universal Probabilistic Programming”.
In: Journal of Machine Learning Research (2018).

[3] Charles Blundell et al. Weight Uncertainty in Neural Networks. 2015.
arXiv: 1505.05424 [stat.ML].

[4] Yaroslav Bulatov. notMNIST dataset. 2011. url: http://yaroslavvb.
blogspot.com/2011/09/notmnist-dataset.html.

[5] Wray L Buntine and Andreas S Weigend. “Bayesian back-propagation”.
In: Complex systems 5.6 (1991), pp. 603–643.

[6] Paras Chopra. Making Your Neural Network Say “I Don’t Know” —
Bayesian NNs using Pyro and PyTorch. Nov. 2018. url: https://
towardsdatascience.com/making-your-neural-network-
say - i - dont - know - bayesian - nns - using - pyro - and -
pytorch-b1c24e6ab8cd.

[7] Dan Ciresan et al. “Deep neural networks segment neuronal membranes
in electron microscopy images”. In: Advances in neural information
processing systems. 2012, pp. 2843–2851.

[8] Comma.ai. openpilot. 2020. url: https://github.com/commaai/
openpilot.

[9] Yarin Gal. “Uncertainty in Deep Learning”. PhD thesis. University of
Cambridge, 2016.

[10] Yarin Gal and Zoubin Ghahramani. “Bayesian convolutional neural
networks with Bernoulli approximate variational inference”. In: arXiv
preprint arXiv:1506.02158 (2015).

[11] Yarin Gal and Zoubin Ghahramani. “Dropout as a Bayesian Approxi-
mation: Representing Model Uncertainty in Deep Learning”. In: ICML.
2016.

49

BIBLIOGRAPHY 50

[12] Ross Girshick et al. “Rich feature hierarchies for accurate object de-
tection and semantic segmentation”. In: Proceedings of the IEEE con-
ference on computer vision and pattern recognition. 2014, pp. 580–587.

[13] Alex Graves. “Practical Variational Inference for Neural Networks”.
In: Advances in Neural Information Processing Systems 24. Ed. by
J. Shawe-Taylor et al. Curran Associates, Inc., 2011, pp. 2348–2356.
url: http://papers.nips.cc/paper/4329-practical-
variational-inference-for-neural-networks.pdf.

[14] Kaiming He et al. “Deep residual learning for image recognition”. In:
Proceedings of the IEEE conference on computer vision and pattern
recognition. 2016, pp. 770–778.

[15] Geoffrey E. Hinton et al. “Improving neural networks by preventing
co-adaptation of feature detectors”. In: CoRR abs/1207.0580 (2012).
arXiv: 1207.0580. url: http://arxiv.org/abs/1207.0580.

[16] Geoffrey E Hinton and Drew Van Camp. “Keeping the neural net-
works simple by minimizing the description length of the weights”. In:
Proceedings of the sixth annual conference on Computational learning
theory. ACM. 1993, pp. 5–13.

[17] Andrew G Howard et al. “Mobilenets: Efficient convolutional neural
networks for mobile vision applications”. In: arXiv preprint arXiv:1704.04861
(2017).

[18] Michael Kampffmeyer, Arnt-Borre Salberg, and Robert Jenssen. “Se-
mantic segmentation of small objects and modeling of uncertainty in ur-
ban remote sensing images using deep convolutional neural networks”.
In: Proceedings of the IEEE conference on computer vision and pattern
recognition workshops. 2016, pp. 1–9.

[19] Shinpei Kato et al. “Autoware on board: Enabling autonomous vehi-
cles with embedded systems”. In: 2018 ACM/IEEE 9th International
Conference on Cyber-Physical Systems (ICCPS). IEEE. 2018, pp. 287–
296.

[20] Alex Kendall and Yarin Gal. “What uncertainties do we need in bayesian
deep learning for computer vision?” In: Advances in neural information
processing systems. 2017, pp. 5574–5584.

[21] Diederik P. Kingma, Tim Salimans, and Max Welling. Variational
Dropout and the Local Reparameterization Trick. 2015. arXiv: 1506.
02557 [stat.ML].

BIBLIOGRAPHY 51

[22] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet
classification with deep convolutional neural networks”. In: Advances
in neural information processing systems. 2012, pp. 1097–1105.

[23] S. Kullback and R. A. Leibler. “On Information and Sufficiency”. In:
Ann. Math. Statist. 22.1 (Mar. 1951), pp. 79–86. doi: 10.1214/
aoms/1177729694. url: https://doi.org/10.1214/aoms/
1177729694.

[24] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell.
“Simple and scalable predictive uncertainty estimation using deep en-
sembles”. In: Advances in neural information processing systems. 2017,
pp. 6402–6413.

[25] Y. Lecun et al. “Gradient-based learning applied to document recogni-
tion”. In: Proceedings of the IEEE 86.11 (1998), pp. 2278–2324.

[26] Yann LeCun, Corinna Cortes, and CJ Burges. “MNIST handwritten
digit database”. In: ATT Labs [Online]. Available: http://yann.lecun.com/exdb/mnist
2 (2010).

[27] Yann LeCun et al. “Backpropagation applied to handwritten zip code
recognition”. In: Neural computation 1.4 (1989), pp. 541–551.

[28] Wei Liu et al. “Ssd: Single shot multibox detector”. In: European con-
ference on computer vision. Springer. 2016, pp. 21–37.

[29] Jonathan Long, Evan Shelhamer, and Trevor Darrell. “Fully convo-
lutional networks for semantic segmentation”. In: Proceedings of the
IEEE conference on computer vision and pattern recognition. 2015,
pp. 3431–3440.

[30] David J C Mackay. “A Practical Bayesian Framework for Backprop
Networks”. In: 1991.

[31] Radford M Neal. Bayesian learning for neural networks. Vol. 118. Springer
Science & Business Media, 2012.

[32] NHTSA. Federal Automated Vehicles Policy: Accelerating the Next Rev-
olution In Roadway Safety. Sept. 2016.

[33] PyTorch. Basic MNIST Example. Jan. 16, 2019. url: https://
github . com / pytorch / examples / blob / master / mnist /
main.py.

[34] Joseph Redmon et al. “You only look once: Unified, real-time object
detection”. In: Proceedings of the IEEE conference on computer vision
and pattern recognition. 2016, pp. 779–788.

BIBLIOGRAPHY 52

[35] Shaoqing Ren et al. “Faster r-cnn: Towards real-time object detection
with region proposal networks”. In: Advances in neural information
processing systems. 2015, pp. 91–99.

[36] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. “U-net: Con-
volutional networks for biomedical image segmentation”. In: Interna-
tional Conference on Medical image computing and computer-assisted
intervention. Springer. 2015, pp. 234–241.

[37] Kumar Shridhar, Felix Laumann, and Marcus Liwicki. “A Comprehen-
sive guide to Bayesian Convolutional Neural Network with Variational
Inference”. In: arXiv preprint arXiv:1901.02731 (2019).

[38] Nitish Srivastava et al. “Dropout: A Simple Way to Prevent Neural
Networks from Overfitting”. In: Journal of Machine Learning Research
15.56 (2014), pp. 1929–1958. url: http://jmlr.org/papers/
v15/srivastava14a.html.

[39] MIT CSAIL Computer Vision. Semantic Segmentation on MIT ADE20K
dataset in PyTorch. Apr. 13, 2020. url: https://github.com/
CSAILVision/semantic-segmentation-pytorch/.

[40] Tete Xiao et al. “Unified perceptual parsing for scene understand-
ing”. In: Proceedings of the European Conference on Computer Vision
(ECCV). 2018, pp. 418–434.

[41] Fisher Yu et al. “BDD100K: A Diverse Driving Dataset for Hetero-
geneous Multitask Learning”. In: The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). June 2020.

[42] Hengshuang Zhao et al. “Pyramid Scene Parsing Network”. In: CVPR.
2017.

[43] Bolei Zhou et al. “Semantic understanding of scenes through the ade20k
dataset”. In: International Journal on Computer Vision (2018).

