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Abstract

Autonomous mobile robots (AMR) like ground and aerial vehicles may encounter internal failures and external

disturbances when deployed in real-world scenarios compromising the success of a mission. This thesis

proposes an online learning method to adapt the motion planner to recover and continue an operation after a

change in a robot’s dynamics. Our proposed framework builds on the Markov Decision Process (MDP) and

leverages the residual – defined in this work as the difference between the predicted and the actual state –

to update the transition probabilities online and in turn update the optimal MDP policy. To maintain the

system safe during learning, we propose a χ2-based dynamic learning rate that is event-triggered when the

robot approaches an unsafe region of the workspace. Our framework can also distinguish between external

disturbances versus internal failures by tracking the robot’s state in a local and fixed frame view. We finally

propose a state-machine-based resetting procedure to return to a previous MDP model when the problem

disappears. This framework for resilient planning of impaired vehicles is validated both in simulations and

experiments on unmanned ground vehicles (UGV) in a cluttered environment. Finally, we show an extension

of our framework for multitask cooperative missions in which robots need to balance tasks based on the

impaired dynamics of the robots in the network.
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Chapter 1

Introduction

As humans we have the ability to adapt to changes in our environment and solve what we would consider

to be simple problems. This may be just walking over a pile of rocks or going uphill. Robots can only act

in ways that they are trained or programmed. In many applications of planning, a robot must navigate an

environment even with many changing aspects of its surroundings which include ground or aerial disturbances,

and internal failures that can lead to improper actions. Disturbances typically arise from the environment

and are usually temporary. For example, a sheet of ice or gust of wind may cause the system to be unable to

turn properly. Internal problems including system aging tend to last longer; for example, a tire deflating

or a wheel stuck may cause improper wheel rotation. We note that typically a compromised system could

continue the operation working with limited capabilities, while maintaining safety (e.g., avoid collisions), and

even maintaining liveness conditions (e.g., eventually reaching the desired goal). With this consideration in

mind, we propose a Markov Decision Process (MDP)-based approach to adapt the motion planner online as

the system encounters changes in dynamics or disturbances. The MDP can find an optimal policy given a

system’s model represented as transition probabilities. At the core of our framework, we leverage a residual,

defined as the difference between the predicted state and the measured state, given an action and an initial

state. We then use such measures to update the transition probabilities and recompute at runtime the optimal

policy for the robot. To speed up learning and avoid undesired behavior near unsafe states, we propose a

χ2-based learning rate update method that detects changes in the dynamics of the system and based on the

surrounding environmental conditions (i.e., the presence of obstacles or other safety-critical states).

Our framework is able to distinguish between internal and external problems by tracking predicted and

measured states in a local and fixed-frame view. We also implement a state machine-based approach that

allows the system to quickly return to a previously trained model when a degradation is temporary (e.g., a
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change of slope or in terrain material). We also provide an approach for multi-vehicle coordination for tasks

while one vehicle is experiencing faults. Extensive simulations and experiments are presented throughout the

thesis to validate the framework.

The rest of the thesis is organized as follows: in Chapter 2, related work on other failure and recovery

techniques is summarized. The preliminaries for the MDP and robot dynamics are defined in Chapter 3.

The approach for our adaptive MDP approach to recover the system after failures is defined in Chapter 4.

Simulations and experiments are shown in Chapter 5. Multi-vehicle formulation and simulations are covered

in Chapter 6. We conclude our work in Chapter 7.

1.1 Contribution

The main contribution of this work is on the design of a computationally efficient online adaptable optimal policy

framework for autonomous systems under recoverable (both persistent and temporary) degradation. We also

validate the scheme with extensive simulations and experiments on a UGV navigating a cluttered environment

under different disturbances and failures. This thesis specifically has the following six contributions:

Adaptable Markov Decision Process: In the first part of the thesis, we present an MDP-based method

for online failure detection and recovery. The traditional MDP is changed to incorporate a reward and penalty

system for its transition probabilities. The MDP is recalculated after every iteration of rewards and penalties

to generate a new estimation of the rewards associated with the motion model estimation.

Dynamic Learning Rate: We propose a method to speed up model learning of an impaired system when

there is a statistical difference between the experimental and predicted motion model. The threshold for

these statistical tests is relaxed when safety is a concern. The quicker learning rate allows for quicker change

and the ability to avoid danger since the robot learns the optimal move earlier than the typical model.

Reset Mechanism: A reset state machine is employed so that the robot may return to the original model

after a temporary degradation (e.g., due to an external disturbance).

External vs Internal Disturbance Detection: We also design an approach to detect and differentiate

between external disturbances and internal faults allowing the robot to select the appropriate motion policy.

Multi-Vehicle Coordination under degraded conditions: We provide a solution for an impaired robot

to work alongside a normal robot to complete tasks. Each robot takes on the optimal number and order of

tasks so that each reaches the final task in the least amount of time.
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Experimental Validation: The different contributions are validated in simulation and real-world experi-

ments on UGVs under degradation. The robot is able to complete the task regardless of the disturbance type

or motion model parameter initialization.
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Chapter 2

Survey of Related Work and the State of the

Art in the Recovery of Faulty Systems

One of the most studied problems in robotics is how to adapt an autonomous system against changes in

dynamics and in the surrounding environment. A robot may encounter internal faults or external disturbances.

A general approach for solving this issue is fault detection and recovery. A robot must discover what is

damaged within the system, and either repair the damage or learn how to act with its defective system.

Many different research areas of robotics have attempted to solve similar problems; these topics range from

control-based approaches to reinforcement learning-based algorithms.

Classic approaches to fault tolerance rely on updating the model of the robot, either directly with

self-diagnosis, or indirectly with machine learning; the model is then used for planning or control [1]. For

instance, if a legged robot detects that one of its legs is not working as expected, it can stop using it and

adapt the controller to use only the remaining working legs [2]. These approaches may need many sensors to

detect all of these faults. Most of the current real-world experiments are on legged or wheeled robots [3], [4].

An alternative approach is to let a damaged robot learn a new policy by trial and error, which bypasses

the need for a diagnosis. In this line of work, the biggest challenge is to design algorithms that are as data

efficient as possible, because too many trials may damage the robot further, and learning must be rapid

enough to be useful in real-world situations.

4



2.1 Machine Learning and Reinforcement Learning

Many propositions try to learn a robot’s optimal action when a fault occurs. Learning algorithms can be

combined with controllers and planners to finish the current task. Supervised learning [5] has shown to be

more effective when teaching a robot how to adapt to a task. Unlabeled data or random robot movements are

unlikely to provide helpful information for the learning algorithm but supervised learning allows for learning

where the robot needs it.

In comparison to many of these forward learning models, reinforcement learning allows for the robot

to learn how to behave through trial and error. The robot learns how to maximize its reward while being

damaged [6]. In traditional reinforcement learning, the robot selects the action at the current state that is

projected to maximize the robot’s reward [7]. Many reinforcement learning approaches use discrete actions

spaces which fail to scale well in real-world experiments since the real world is in continuous space. In

[8], an algorithm is proposed that attempts to bridge the reality gap in evolutionary robotics through a

”transferability approach”, which focuses on finding realistic behaviors in simulation that also work on the

physical robot. Newer reinforcement learning methods focus on policy search methods for optimizing the

inputs of continuous controllers. Direct policy search is model agnostic but model-based approaches are needed

when the dimensionality of the search space increases. These model-based approaches are simultaneously

learning the model of the robot and learning the optimal policy for the task at hand [9]. Much of the learning

time is wasted when trying to learn parts of the new system model that may not be useful for a given task

[10].

Reinforcement learning has several constraints. First, the robot needs to restart at an initial state for every

iteration of learning [11]. They also have difficulty adapting when the environment changes from the initial

training environment. Since much of reinforcement learning is trial and error, damaging a robot at runtime

to test the potential outcome of a policy is not ideal. It takes several hours of iterations for convergence.

Reinforcement learning also does not scale well into high dimensionality. Reinforcement learning is a robust

technique for the initial training of a robot but is not practical for learning when the system changes during

a task. Reinforcement learning also has difficulty when used in real-world experiments. The overhead to

train these robots can be hours of training to perform simple tasks.

A meta-learning approach was used in unmanned aerial vehicles [12] to track the performance of the

system in faults that the robot has not seen. Reductions in thrust in some of the quadrotors emulated a

fault, and the reference tracker is updated based on future state predictions of the robot. The system was

able to follow its desired trajectory while remaining safe. A neural network based approach for UGVs in
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situations of changing or degraded environment is proposed in [11]. The speed of the robot was optimized to

reach the goal as quickly as possible while minimizing speed variability and planning for safety.

2.2 Control Based Methods

Control-based approaches have been used for allowing a system to continue when under degraded conditions.

Adaptive control has been used to monitor for significant failures and choose the best action to ensure the

success of the mission [13]. Authors of [14] present a method for actuator fault estimation and fault resilient

control to a problem of trajectory tracking in a system composed of three connected two-wheeled robots. A

nonlinear adaptive observer is used for state and fault estimation, the fault tolerance is created by updating

dynamic control law with fault estimations. Adaptive control can also be used in fault detection and recovery

in swarms [15].

2.3 Markov Decision Process

The Markov decision process is an integral part of stochastic control in robotics. MPDs can be used to solve

the dynamics of the system and the environment from experience [16]. A variant of the MDP called the

abstract MDP was used for task planning of a taxi problem where the robot had motion primitives and the

ability to pick up passengers and drop them off. Although this work uses similar motion primitives, this is

solely focused on task management and is not concerned with faults [17]. Partially observable Markov decision

(POMDP) processes can be used for fault detection and direct new high-level actions like ”give up on this

path” or ”request a new path” [18]. An approach for fault detection and recovery in autonomous underwater

vehicles (AUV) utilizes partially observable Markov decision processes (POMDP) [19]. The POMDP was

used for fault management and identification if it was an internal or environmental fault.

2.4 Trial-and-Error Approaches

Several trial-and-error approaches are used under the topic of fault detection and recovery. While robots

have a difficult time thinking outside the box, the Intelligent Trial-and-Error algorithm is designed to work

around issues similar to how animals adapt [20]. Their approach works with robot arms and legged robots.

Before runtime, their algorithm searches for multiple policies that will solve a given action. After the robot

is damaged, a subset of these policies is available with the damaged parts of the robots. In a real-world

experiment, a 6-legged robot was damaged and able to recover after two minutes of their algorithm attempting

6



policies. Another similar approach, the Reset-free Trial-and-Error algorithm [1], also computes hundreds of

possible behaviors with the simulated dynamics of a real robot. After the vehicle is impaired at runtime, the

optimal action is found through a Monte Carlo Tree Search. Trial and error can be exhaustive and does not

scale well as the complexity of the system model increases.
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Chapter 3

Preliminaries

Before discussing the approach of the thesis, we will define the Markov Decision Process (MDP) theory and

robot dynamics that are integral to our framework.

3.1 Markov Decision Process

Our model builds off the traditional Markov Decision Process [21], which entails four components: states

X, actions A, transition probabilities P , and reward functions R. This can be written as the tuple:

{X,A,P,R, x0}. To be Markovian, the previous actions and visited states should not affect the result of an

action, and the current state xi gives enough information to make an optimal decision. The set of states

X ∈ R2 is the total state space {x1, . . . , xnX
} where nX is the total number of states. The size nX is

determined by the height and width of the two-dimensional grid generated from the local view of the robot.

This local view entails all obstacles and a waypoint that points towards the goal. The set of actions A is

defined as {a1, . . . , anA
} where nA is the total number of potential actions. These actions are chosen to

control the next state x′.

Transition functions (P ) give the probabilities of entering new states through potential actions. The

representation P (x′|a, x) denotes a probability distribution that current state x will transition to the next

state x′ through action a. This P (x′|a, x) → [0, 1] gives the resulting distribution of transition values.

The reward for the MDP is state dependent. The policy will try to navigate through states and get higher

rewards until it reaches the maximum reward at the goal state. There are goal states (xg), loss or obstacle

states (xo), and penalties for movement. These will all be combined through value iteration.

Given states, actions, transitions, and rewards, the optimal policy can be calculated through the value

function. These value functions associate optimal criteria to policies. Since rewards are only dependant

8



on the state, the value function has to associate which action generates the best value depending on the

probability distributions.

V π(x) = max
a

[(R(x, a) + γ
∑
x′

P (x′|x, a)V π(x′))] (3.1)

In (3.1), the widely known Bellman equation is shown. The value of a given action can be determined

based on the transition probabilities multiplied by the initial reward and the discounted value of the state.

As this function is run over many iterations on the system of states and actions, each state is given a value

that is propagated from the initial reward values. The best action corresponds to the optimal policy. Given a

state, the best action is chosen through its probability distribution leading it to other states of higher value.

3.2 Action Space and the Robot’s Field Of View

While the Markov decision process involves discrete states and actions, our system is continuous and must be

converted to a discrete system for policy optimization. Then the discrete policy must be converted back to

continuous through controllers for primitive actions. For ease of discussion, in this work, the action space

is divided into four rudimentary actions. The two action spaces are in (3.2). Two different action spaces

depend on the frame of the robot as seen in Fig. 3.2.

A = {Forward(af), Left(al), Right(ar), Back(ab)}

A = {North(an), South(as), East(ae),West(aw)}
(3.2)

In Fig. 3.1(b) and (c), the local action space considers primitive actions related to the local frame of the

robot while the global actions are used for a given fixed-frame and provide cardinal directions of motion.

These primitive actions allow the robot to move to reachable states as seen in Fig. 3.1(a). As we will see

these two action spaces are necessary to differentiate between internal and external problems on the robot.

Both open-loop and closed-loop controllers were tested. Low-level control is kept simple to embody these

primitive actions. Open-loop control can be summarized as going a fixed linear and angular velocity for a

given amount of time. Closed-loop control involves a go-to-goal control implementation where the linear and

angular velocities are based on a proportional-integral-derivative (PID) controller.

In robotics, a field of view (FOV) must be defined for the robot; this is used to identify objects or obstacles

in nearby potential states. XL is the set of nearby states that are reachable within the robot’s view. In the

traditional MDP, the FOV is fixed around the robot and does not depend on the direction of the robot. After

analyzing the states in view after every iteration, the MDP determines which of the action primitives are

optimal for the robot. The action primitives for the local robot do not revolve around the angle orientation
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(a) Reachable states (b) Local actions (c) Fixed-frame actions

Figure 3.1: Primitive actions

of the robot. They are strictly action to get a robot from its current state to a surrounding local state. These

actions are defined in (3.2) as (North, South, East, West). This fixed FOV frame can be seen in Fig. 3.2(b)

where the robot is angled but the frame does not change based on its orientation.

(a) Local Vision (b) Fixed Frame Vision

Figure 3.2: FOV frames with primitive actions

Our variation of the Markov Decision Process varies through its local approach. Instead of the typical

global variation, we orient the MDP state space around the robot. Then local model generates policies that

are local actions and are entirely dependent on the pose of the robot. These actions would include (Forward,

Left, Right, Back). The actions to get to surrounding desired states would change as the orientation changes.

The blue lines in Fig. 3.2 denote obstacles while the pink box represents the frame around the robot. This

local frame can be seen in Fig. 3.2(a); the local frame is shown to pivot with the orientation of the robot.
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3.3 Ground Vehicle Dynamics

For the extent of the real-world experiments in this thesis, we will use a ROSbot [22]. The ground vehicle

dynamics of a similar robot can be represented with a non-holonomic skid-steering model as:

ẋR =
r

2
(ωr + ωl) cos θR

˙yR =
r

2
(ωr + ωl) sin θR

˙θR =
r

L
(ωr − ωl)

(3.3)

where xR, yR, and θR are the position and orientation of the robot and ωr and ωl are the angular velocities

of the right and left wheels, respectively. L is the wheel base length, and r is the radius of the wheel.

For our real-world experiments, the robot was limited via software not allowing to move backwards and/or

right. For example, a right turn may be limited to going straight if the ωr ≥ ωl. The left wheel angular

velocity would not be able to exceed the right wheel angular velocity resulting in the right action being

unavailable. If the angular velocity of the wheel was limited to being zero or positive, then the robot would

not be able to go in reverse.

11



Chapter 4

Adapting MDP Framework

4.1 Problem Formulation and Hypotheses

The goal of the work is to find the optimal policy for motion planning in an environment while having some

of the vehicle’s action space A limited. Due to system failures or perturbations, these impaired dynamics

f(x, u, d) differ from the original dynamics f(x, u). Our system has an environment with the set of states

{xgoal, xstart, xobstacle} = {xg, xs, xo} ∈ X. Given these states, the robot must choose the best series of

actions to navigate through the environment to the goal state while the system dynamics are changing. This

equates to the robot reaching the goal state x(t) = xg as t → ∞. Failures may arise and the system must

adapt while avoiding unsafe states.

PROBLEM. Trajectory Planning in Environments with Disturbances Given a vehicle with state

x and the dynamics ẋ = f(x, u), the dynamics become ẋ = f(x, u, d) due to external disturbances d = de

or internal problems d = di. Based on these assumptions, the robot will need to generate a motion model

estimation and detect which actions are affected. Using this model, the robot must find the optimal policy π

that leads the vehicle to the goal while avoiding all the obstacles.

The system will have to adapt dynamically as the system failures or disturbances are added and removed.

The robot will have a possible combination of actions to get to the goal regardless of disturbances and

obstacles. The environment’s obstacle density will be limited to allow for a possible trajectory from start to

finish. The robot may encounter one or a series of tasks based on the environmental setup.
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4.2 The Adaptable Markov Decision Process

The overall system architecture is summarized in Fig. 4.1. The current state xref of the robot is passed

into the planner where the MDP is calculated. From the MDP, an optimal action is chosen which is then

translated into control inputs for the robot. Various disturbances d affect the dynamics around the plant. On

the feedback side, an original matrix of the transition probabilities and measurement of the current state is

sent to the reset state machine. The transition probability matrix P is then potentially reset to the original

model if the problem had disappeared. A transition matrix estimate is used for non-reset conditions and goes

through the adaptation process.

Figure 4.1: System architecture

We propose a variation of a typical Markov decision process. The focus of this adapting Markov decision

process is to have the transition probabilities adjust to the true values of the underlying transition dynamics.

P (x′|x, a) changes depending on the dynamics of each primitive action. We assume that our dynamics change

f(x, u, d) from the original dynamics f(x, u). As the dynamics change, the actions reach different states than

the original dynamics. Hence, the need to update P (x′|x, a). The adapting Markov decision process uses the

same interaction of states, actions, rewards, and transitions probabilities to the traditional MDP. Bellman

equations are used to calculate the reward of the MDP. The difference is that these transition probabilities

change depending on what state was chosen and performed. Consider P where P ∈ RA×XL , each action

is associated with all local states in the transition probability matrix. After each iteration, a new actual

state x′
a is visited given an action and previous state. P (x′

a|x, a) is then rewarded using (4.1). In (4.2), the

probabilities of the unvisited states x′
u are normalized.

P (x′
a|x, a) = (P (x′

a|x, a) + β)/(1 + β) (4.1)
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P (x′
u|x, a) = P (x′

u|x, a)/(1 + β) (4.2)

The framework uses a learning rate β to increase the probability estimation that corresponds to the

given optimal action and actual state (ao, x
′
a). This process rewards and normalizes all of the probabilities

corresponding to the desired action. The probabilities that are rewarded are updated using the first equation

(4.1) which increases the associated probability while having smaller and smaller increases as this given

probability gets closer to one. The rest of the probabilities of the unvisited states x′
u in that action row are

updated using the second equation (4.2). The penalties become smaller as the probability gets closer to zero.

The denominator of both equations ensures that the sum of the probabilities of a desired action is still one.

In Fig. 4.2(a), a robot starts in x0 and achievable states are surrounding our robot. From the vision of the

robot, there are nine states (x1,1, x1,2, x1,3, x2,1, x2,2, x2,3, x3,1, x3,2, x3,3) from x2,2. There are four actions as

mentioned in (3.2): Forward, Left, Right, and Backwards. In Fig. 4.2, the probabilities for a forward action

are listed for the relevant achievable states.

(a) Example reachable states (b) Right turn chosen (t=0) (c) Resultant state (t=1)

Figure 4.2: Attempted forward action and probability update

Assume that the robot’s reward is maximized by choosing af. Although the forward action was predicted

to be most likely, a right turn occurred shown in green in Fig. 4.2(b). The vehicle reached the local state x3,3

but the local frame was recentered so x3,3 becomes x2,2 since the local frame shifts as the robot moves. The

local frame also pivots with the robot, keeping the local states with the same relative orientation at each

position. In Fig. 4.2, the probabilities to get to each reachable state given a forward action are listed on the

arrows.

The matrix relating to the example in Fig. 4.2 has the action and state pairing (ak, x
′
i) where k and i

represent a single action or state from their respective sets. The optimal action ao is the action that was

computed from the MDP and has the maximum expected reward over the next iteration. The actual state

x′
a is the measured state after the movement update is performed on the robot. Assume the transition
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probabilities in the first matrix of (4.3). With the desired action of af and actual state x3,3, reward equation

(4.1) is performed on (ao, x
′
a) = (af, x3,3). The remainder of the row af is then normalized by (4.2).

The example in (4.3) is a smaller scale of what is implemented in the simulations. While four actions are

still used in the simulations, the local states are in a 9x9 grid which increases the action state matrix size.



x1,1 x1,2 x1,3 x2,1 x2,2 x2,3 x3,1 x3,2 x3,3

af 0 0 0 0 0 0 0.1 0.8 0.1

al 0 0 0 0.1 0 0 0.8 0.1 0

ar 0 0 0 0 0 0.1 0 0.1 0.8

ab 0.1 0.8 0.1 0 0 0 0 0 0


=⇒ Movement Update



x1,1 x1,2 x1,3 x2,1 x2,2 x2,3 x3,1 x3,2 x3,3

af
0

1+0.25
0

1+0.25
0

1+0.25
0

1+0.25
0

1+0.25
0

1+0.25
0.1

1+0.25
0.8

1+0.25
0.1+0.25
1+0.25

al 0 0 0 0.1 0 0 0.8 0.1 0

ar 0 0 0 0 0 0.1 0 0.1 0.8

ab 0.1 0.8 0.1 0 0 0 0 0 0


=⇒



x1,1 x1,2 x1,3 x2,1 x2,2 x2,3 x3,1 x3,2 x3,3

af 0 0 0 0 0 0 0.08 0.64 0.28

al 0 0 0 0.1 0 0 0.8 0.1 0

ar 0 0 0 0 0 0.1 0 0.1 0.8

ab 0.1 0.8 0.1 0 0 0 0 0 0



(4.3)
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In Fig. 4.3 there are four sets of dynamics, one normal and three impaired trials. A start position in the

bottom right is denoted as a blue circle and a goal as a green diamond. The first simulation shows the vehicle

taking a normal right turn and proceeding to the goal. The second simulation in Fig. 4.3(b) has an internal

failure with a restricted action space. The robot must solve the problem with no right action. The third in

Fig. 4.3(c) also has a restricted action space with no right or back actions and must solve the problem with

no right or back actions. In the robot’s path, there are dark segments where the robot is attempting to go

right or back but is forced to go forward; this occurrence is defined as a conflicted action. In Fig. 4.3(d), the

dynamics are the same as in Fig. 4.3(c) but the learning rate β is reduced from 0.3 to 0.1. The model takes

longer to determine that a left turn is the correct action; the first black line is longer for the smaller learning

rate. Faster learning rates lead to quicker initial convergence to the true model estimations.

(a) Normal dynamics (b) Impaired dynamics (no right) β=0.3

(c) Impaired dynamics (no right or back)
with higher learning rate β=0.3

(d) Impaired dynamics (no right or back)
with lower learning rate β=0.1

Figure 4.3: Simple dynamics comparison
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The probability results are shown for each action in Fig. 4.4 for the third example in Fig. 4.3(c). The

two declines in the forward probability correspond to these segments. We see that the first decline penalizes

the probability more than the second due to the asymptotic nature of the equations in (4.1) and (4.2). The

probability corresponding to the forward action is rewarded as the right probability is penalized in 4.4(c).

The forward and left actions are rewarded while the back action also is shown to be compromised. As seen

in Fig. 4.4, only one action’s probability is updated at any given time, while the probabilities of the other

actions remain constant.

(a) Forward action is rewarded (b) Left action is rewarded

(c) Right action is penalized (d) Back action is penalized

Figure 4.4: Transition probabilities for a system with no back or right actions as shown in Fig. 4.3

While we are testing the probabilities of an action by state matrix, the results are displayed in the

probability distribution graphs by showing the probability that one action is performing like another. This

decision was done to not oversaturate the probability graphs with every single potential state.

4.3 Bounding the Learning Rate

Due to the reward and normalization equations, repetitive rewards to the same probability for (ao, x
′
a) will

result in asymptotic convergence to one. In (4.4), we analyze the probability as the same number of steps

where n is the number of repeated rewards to the same probability. Equations (4.5) and (4.7) represent the
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recursive sequence solutions to the limits in (4.4) and (4.6). As n approaches infinity, the second term goes

to 0 and the output becomes 1 regardless of the initial condition h(0). Equation (4.7) shows the convergence

to 0 as a probability is repetitively penalized. h(n) is defined to represent the limit of P (x′|x, a)n as n → ∞.

lim
n→∞

P (x′|x, a)n = (P (x′|x, a)n−1 + β)/(1 + β) (4.4)

h(n) = 1 + (h(0)− 1)(1 + β)−n (4.5)

lim
n→∞

P (x′|x, a)n = (P (x′|x, a)n−1)/(1 + β) (4.6)

h(n) = h(0)(1 + β)−n (4.7)

From the solutions in (4.5) and (4.7), the probabilities are bounded between 0 and 1. For ease of discussion

let’s simplify (4.1) and (4.2) with the following:

R(p) = (p+ β)/(1 + β) (4.8)

N(p) = p/(1 + β) (4.9)

Let us consider the following notation that represents repetitive recursive functions for c total occurrences for

a specific function.

f◦c = f ◦ f◦c−1 = f ◦ · · · ◦ f (4.10)

Consider a recursive series that has a constant pattern of rewards and penalties as t → ∞. This pattern

will create oscillations around the true transition probability estimates. Kr represents the number of rewards,

and Kn represents the number of penalties. The total pattern length is Kn +Kr. As time approaches infinity,

the minimum bound is calculated by N◦Kn(R◦Kr(p)), and the maximum bound is R◦Kr(N◦Kn(p)). For

example, a pattern is approximating the probability of 2/3. This pattern can be simplified to two rewards

and one penalty. The maximum of the oscillating series is found at the peak of the oscillations and the

minimum is found at the trough. We find that the minimum is obtained by N◦1(R◦2(p)) because the value is

checked after the penalty. The maximum is R◦2(N◦1(p)). To find the bounds of this recursive series, we take

the limit to get it in terms of β, shown by:

lim
n→∞

pn+1 = lim
n→∞

R◦2(N(pn)) =

pn
1+β+β

1+β + β

1 + β
(4.11)
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Since lim pn+1 = lim pn, these variables can be substituted for each other resulting in the following for

the maximum.

lim
n→∞

pn+1 =
β2 + 3β + 2

β2 + 3β + 3
(4.12)

In (4.13), the minimum bound is found for the alternating recursive series.

lim
n→∞

pn+1 =
β + 2

β2 + 3β + 3
(4.13)

From the minimum and maximum equations, the dependence on beta is shown. At small β values, the

maximum and minimum approach 2/3. With large β values, the max and minimum approach 1 and 0

respectively. An appropriate β value is chosen to balance quick probability adjustments and having low

variance for the motion model estimation. This becomes a safety vs accuracy trade-off.

(a) Low variance β = 0.01 (b) High variance β = 0.05

(c) RMSE of different learning rates

Figure 4.5: β Testing
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In Fig. 4.5(a) and (b), we evaluate the effects of different values of learning rates. The right action

probability is set to a probability of 0.5 and the left and back actions are set to 0.25. A random action

generator is used that picks actions based on those probabilities. The learning rate in (a) is set to 0.01, while

β is set to 0.05 in (b). There is a considerable difference in noisy oscillations across the two simulations. In

Fig. 4.5(c), the following learning rates are tested (0.0001, 0.000316, 0.001, 0.00316, 0.01, 0.0316, 0.1, 0.316,

1). A considerable increase in RMSE error increases as the learning rate increases. This further confirms the

safety vs error trade-off for the transition probabilities of our motion model.

4.4 Dynamic Learning Rate

One purpose of a dynamic learning rate is to have a higher learning rate when our transition probabilities are

very different from the recent actions. A faster learning rate will lead to recovering from a fault quicker as

seen in Fig. 4.3. The more different two models are increases the utility of a higher learning rate. As the

models converge, the model benefits from a lower learning rate because the model varies less as the estimation

oscillates around the true model of the system. High static learning rates would result in oscillations around

the optimal model parameters. Low learning rate parameters result in longer convergence time to changes

within the action space

This leads to the second reason for the dynamic learning rate; the robot must be able to adapt the model

quicker in potentially dangerous systems. Knowing when to make a turn earlier may prevent a collision with

an obstacle. A higher dynamic learning rate is activated for these situations. We propose a χ2-based dynamic

learning rate for our framework [23].

χ̃2 =
1

d

m∑
i=1

(Oi − Ei)
2

Ei
(4.14)

The χ2 statistic is used for comparing the categorical data of the expected distributions to the observed

distribution. As the χ2 statistic is taken, this metric is used for comparing if the observed and expected

distributions are different. Oi and Ei are the observed and expected data points, and d is the degrees of

freedom. m represents the total samples. This is compared to a threshold H. The H threshold changes

depending on safety constraints. The reduction of this threshold when safety is a concern allows for more

sensitive detectors of a changing distribution. When the χ2 term is greater than the threshold H, the learning

rate β is increased by a scalar of χ2.

In cases where the sample size is smaller, the Fisher’s exact test [24] performs better than χ2. Consider

two groups that are being tested to be statistically different across two categories.
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The Fisher’s exact test is performed on smaller sample sizes for the system. In (4.15), Fisher’s exact test

is calculated using the variables in Table 4.1. Although, Fisher’s exact test is valid for samples greater than

50, our framework switches to the χ2 test when the sample size criterion is met. The χ2 statistic is not used

when the sample size is less than 50. This becomes relevant when the robot begins a simulation and has

few samples for the current motion model estimation. Fisher’s exact test is then used to test the difference

between these models in safe and unsafe scenarios.

p =
(c+ d)!(e+ f)!(c+ e)!(d+ f)!

c!d!e!f!n!
(4.15)

Table 4.1: Fisher’s Exact Test Table

Group 1 Group 2
Category 1 c d
Category 2 e f

In Table 4.2, an example model based on training data and a model based on test data is shown. The χ2

and Fisher’s exact tests are computed on similar data to determine if a dynamic learning rate is needed. If

the statistical test determines that the experimental and expected models are different, then the dynamic

learning rate is activated.

Table 4.2: Testing Two Models

Forward Left Right Back
Training Model 995 252 251 2

Experimental Model 52 30 22 1

In Fig. 4.6, The effect of a dynamic learning rate is shown between (a) and (b). Much faster convergence

happens with the dynamic learning rate. The results of the χ2 test and the learning rate change rapidly as

the internal model changes at timestep 500. The new probability of the right action changes from 0.8 to 0.5.

The χ2 statistic can quickly guide the model into changing quicker to avoid longer convergence times to the

true model estimation.

For the learning rate in (4.16), β is divided into two terms: the initialized learning rate βI and the

dynamic learning rate βD. The initialized learning rate is the base on our learning rate and this generates

the lower bound of our learning rate. The dynamic portion of the learning rate is calculated by a scalar

multiplied by the χ2 statistic. The unsafe criterion is met by getting within a certain distance of an obstacle.
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(a) β=0.005 (b) Dynamic learning rate

(c) Difference in probability distributions de-
tected at t=500

(d) β increased at t=500

Figure 4.6: Effects of the dynamic learning rate

β = βI + ζ ∗ χ2 if χ2 > H

β = βI if χ2 < H

H = H/2 if unsafe

(4.16)

As the model converges to the recent actions through rewards and penalties, the learning rate will decrease.

This creates a smoother convergence to the true transition probabilities. The dynamic learning rate will be

deactivated when the experimental and expected models are not statistically different.

4.5 Reset Formulation from Active Perturbations

When a system’s dynamics are only impaired temporarily, a state machine is proposed to test the initial and

learned transition probabilities within the Markov decision process. This allows for the system to return to

the old transition probabilities when it has discovered that the impaired dynamics no longer exist. Although
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the robot can learn using the adapting framework, the robot may deem an action no longer viable and may

no longer attempt it regardless if the problem has subsided. Therefore, a reset framework is needed to recover

this old action space.

As depicted in Fig. 4.7, a state machine is used to determine how to reset these probabilities. τ is used as

a trust factor for our state machine; this heuristic is increased when the robot begins trusting its model more.

For this state machine, the robot has two MDPs running during every iteration of the simulation. Several

conditions need to happen to trigger the reset to the old Markov decision process. A counter is used that

increments up to τ . When the counter is greater than τ , the robot attempts an action if the optimal action

prediction is different from the current model’s optimal action. δ is used as the margin metric for comparing

the difference between two probability distributions.

Figure 4.7: Reset state machine

Given an action, a series of transition probabilities correspond to each of the possible resulting states from

that action. The original model generates the desired action; the probability distributions are then compared

between the current and original models. If the difference is greater than δ, then the system tries to take the

original model’s action to check if the system is still impaired. If the original model’s desired action is the

same as the actual action, then the original model’s probability distribution is replaced for that action using

the distribution from the old model. When the action fails, τ is increased because the robot is trusting the

current model and does not need to attempt the reset as frequently.
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4.6 Detection of Local and Global Problems

Two possible types of disturbances are possible in real world applications: i) internal due to onboard failures

like the loss of power in one motor and ii) external due for example to external forces like wind or change in

terrain slope. In other cases the dynamics of a system can be cast as ẋ = f(x, u, d) with d ∈ {di, de} where

di is the internal disturbance and de is the external disturbance.

To deal with both disturbances we introduce a dual MDP framework where the system has both a local

and a fixed frame MDP. The purpose of having this dual MDP system is to be able to differentiate between

internal and external problems. The combined system’s goal is to accomplish the task regardless of the

disturbances that act on the system. The local formulation solves internal problems. The system must also

solve disturbances that result from the environment using the fixed MDP. In our approach, the local and

fixed frame MDPs give the respective actions (Forward, Left, Right, Back) and (North, West, South, East).

In Fig. 4.8, the local and fixed frame implementations are shown. The goal is shown outside of the view of

the robot with a sub-goal placed inside of the MDP grid; the sub-goal’s reward is propagated across the MDP

grid. The robot makes movements typically toward this sub-goal using the respective actions from the local

and fixed-frame approaches. The local frame pivots with the robot while the fixed frame does not.

(a) Local MDP (b) Fixed Frame MDP

Figure 4.8: MDP differences when detecting internal vs external problems

The fixed frame variation creates an MDP of size A×XL ×O where O is the set of orientation of the

system; nO defines the total number of orientations. These orientations would be defined as different angular

poses. The local variation is smaller with a size of A×XL. Adding higher resolution or more depth to the

state or orientation matrices increases the size and computation complexity.
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The dual MDP system must decide which policy to give to the controller of the robot between the local

and fixed frame MDP. The P (x′|x, a) matrix is stored by using buffers of size B where B << T (total

iterations). The variance for each (ak, xi) pair in P (x′|x, a) is calculated over the total stored iterations in

the buffer. All of these variances are summed into one variance statistic. The total variance for the local and

fixed frame models are defined as σ2
L and σ2

F respectively. These calculations can be seen in (4.17):

σ2
ak,xi

=

∑B
l=1

(
P(ak,xi)l

− P(ak,xi)

)2
B − 1

σ2
L =

nX∑
i=1

nA∑
k=1

σ2
ak,xi

σ2
ak,xi,oj =

∑B
l=1

(
P(ak,xi,oj)l

− P(ak,xi,oj)

)2
B − 1

σ2
F =

nO∑
j=1

nX∑
i=1

nA∑
k=1

σ2
ak,xi,oj

(4.17)

The system with the smaller total variance gives the policy. This method of determining which MDP

is correct is based on the idea that the system with converging transition probabilities will have a smaller

total variance due to reduced oscillations around model parameters. If the fixed frame MDP was used for an

internal problem, the transition probabilities would continue changing as the actual state is different each

time. This would cause an elevated variance for the remainder of the mission.
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Chapter 5

Simulations and Experiments

5.1 Ground Robot Implementation

We apply the adaptive MDP to a real-world situation of a ground vehicle navigating around obstacles to

reach a goal state. The environment is discretized into the state space X where there are nX different states,

and XL is the local environment with nL total local states within view, each cell representing a different

state. The robot has nA motion primitives where nA is set to four in our simulations. The primitive actions

for local MDP formulation are (Forward, Left, Right, and Back). The MDP calculates the expected reward

of performing each action and chooses the optimal action. We utilize this adaptive MDP to account for when

the system is impaired. Our MDP-based approach provides the framework to navigate its environment with

a sub-optimal action space.

We present two possibilities for impair dynamics for our system. The first group of impaired system

dynamics are caused by internal system problems and the second group are external or environmental

problems. Some of the problems may be permanent or temporary. Our adaptive Markov decision process will

learn how these dynamics change the transition probabilities.

The robot’s dynamics are characterized as a non-holonomic vehicle with linear and angular velocity inputs

defined as v and w. Linear and angular disturbance are defined as dv and dw. In (5.1), the following equations

are used to represent the simulated robot.


ẋR

˙yR

˙θR

 =


cos(θR) 0

sin(θR) 0

0 1


 v + dv

w + dw

 (5.1)
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5.2 Software Stack

In Fig. 5.1, a summary of the implementation of our approach is shown. First, the goal state and obstacles

are sensed within the local frame. The MDP is calculated and gives the optimal action to avoid obstacles

while getting closer to the goal. The reset state machine is executed, and the robot is given a movement

command. Based on the experimental state and action, P (x′|x, a) is updated.

Figure 5.1: Software flow

5.3 Environment and Robot Primitives

An environment was created in MATLAB [25] for both simulations and real-world experiments. For most

simulations, a (40x40) grid was used for the size of the map; this sets nX to 1600 total states. Since we use

local vision, we have a local view of (7x7) or (9x9) for the more complex dynamics. XL becomes 49 or 81

total states. The local view is used since robots frequently have limited vision.

To reduce computation time, we use a local environment and have a vision depth value dvision that

determines how far out the robot analyzes the environment. This local environment is more practical from

an application standpoint because the robot rarely will know the entire environment unless it has previously

mapped the area. The robot has no map before the start of online learning. This decreases the computation

time by a factor of (widthmap/1 + 2 ∗ (dvision)2 and by 1600/49 for the (7x7) case. If an MDP on the full

map was calculated at every iteration, the approach would lose its runtime viability.
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The robot senses the obstacles in the environment and uses an occupancy grid for each obstacle when

computing the MDP. The local grid is oriented around the robot as the center and the obstacles also occupy

states. XL contains the states within this local grid. We generate a local goal within the MDP. The model

knows the location of the goal state, we make the closest point in the local grid to be the temporary goal.

This grid point must not be an obstacle or loss point. Open-loop controllers are used and are impaired when

disturbances arise.

The goal points are given reward values of 1000 and obstacles are given values of 0. These are the only

initialized values, the values of the initialized points cannot be changed but the values of the remaining states

are updated over many iterations of the value function. The value iteration equation continues updating until

the summed difference between the current and previous values changes by less than a predefined threshold.

Our MDP is first calculated at the initialization of the experiment but also between every action because we

are updating transition probabilities within the MDP.

5.4 Confused Action Convergence

For these simulations, the action primitives are confused. Forward and back are swapped, and left and right

are swapped initially. The transition probabilities are initialized to reflect this confusion. As the robot begins

moving, it attempts the action that gives the highest reward. We analyze this with two different learning

rates β = 0.1 and β = 0.2.

Fig. 5.2(a) contains the result from a confused simulation with β = 0.1. Due to the lower learning rate,

the simulation will take longer to find the goal and for the four transition probabilities to converge closer to

the true actions. From the delayed convergence of the forward action, left and right work together to make

the forward action and to reach the goal; these actions can be seen converging in Fig. 5.4(b) and (c). The

right and left actions are able to switch back and converge to the true probabilities for those actions. The

forward probability does not even reach 0.5 of the true probability in Fig. 5.4(a).

In the second simulation in Fig. 5.2, the MDP has a higher learning rate and allows for a much quicker

convergence to the solution. Left is the only action that does not get close to the convergence of the true

actions as seen in Fig. 5.3(b).
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(a) β = 0.1 (b) β = 0.2

Figure 5.2: Confused action trajectories

(a) Full convergence (b) Weak convergence

(c) Some convergence (d) Full convergence

Figure 5.3: Confused action probabilities β = 0.2
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(a) Weak convergence (b) Almost full convergence

(c) Almost full convergence (d) Almost full convergence

Figure 5.4: Confused action probabilities β = 0.1
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5.5 Testing the Reset State Machine on a Robot with a Temporary

Fault

In Fig. 5.5 and Fig. 5.6, a simulation is produced using the simple action primitives with an internal problem

and the reset mechanism enabled. Small amounts of noise were added to the linear and angular velocity of

the robot. The cyan color represents the segment of the simulation where the robot is reset to the original

dynamics. In Fig. 5.5(a), The robot performs several loops to create a left action and is eventually reset

roughly halfway to the goal because the disturbance is not present anymore at that stage. In Fig. 5.6(a), the

robot takes an alternative path, with a reset when the robot succeeds in its first right turn. The trust factor

τ set to 10 in the following simulations. In both simulations, the section colored cyan corresponds with the

reset to original dynamics in the probability graph. While several reset attempts were made prior, the only

successful one is shown.

(a) Trajectory (reset in cyan) (b) Right probability

(c) Legend

Figure 5.5: Reset simulation with noise

In Fig. 5.5(c), a universal legend is shown. For this experiment, only one robot is shown. Cyan is used for

resets and for the path of additional robots.

31



In Fig. 5.5(b) and Fig. 5.6(b), both right transition probabilities are reset at the same time step as their

respective trajectory graphs. They both return to the original models where the right action was enabled.

While the robot could not go right earlier in the simulations, the model was reset, and the right action was

utilized.

(a) Trajectory (reset in cyan) (b) Right probability

Figure 5.6: Additional reset simulation with noise

5.6 Simulations for Detecting Internal and External Problems

In Fig. 5.7, a robot is enabled with enhanced dynamics, a slightly different optimal action calculation,

and more complex disturbances and failures. The dynamics differ by having the controller turn in 45◦

increments compared to the more simple increments of 90◦. An open-loop controller is used to make a series

of small angled increments that sum up to 45◦. In Fig. 5.7(a), a robot is seen completing two tasks with no

disturbances. We enact a disturbance on the system by adding to the angular velocity of the system. The

two disturbance equations are shown below:

An internal disturbance is modeled by altering the angular velocity term in (5.1) as:

˙θR = ω + di (5.2)
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While an external disturbance is modeled by altering the linear velocity terms in (5.1) as:

ẋR =v cos(θR) + γde cos(ξ)

˙yR =v sin(θR) + γde sin(ξ)

(5.3)

In (5.2), the disturbance is created by simply adding a static drift factor di to the angular velocity of the

robot. As it can be noted, in the trajectory in Fig. 5.7(b), the robot drifts to the left when attempting to

go straight from the impaired actions. The robot eventually makes it to both goals but must learn how to

navigate while drifting to the left.

(5.3) represents the equation of motion affected by an external disturbance like wind with de the external

disturbance magnitude, ξ the direction of the disturbance, and γ a weight factor. Fig. 5.7(c) shows an

example for a wind external disturbance blowing from east to west (i.e., ξ = π rad). As the robot becomes

perpendicular to the wind, the angular disturbance is maximized, and the vehicle gains or loses velocity

depending on whether it is facing toward or away from the wind. The robot is able to differentiate between

internal and external disturbances and reach the goal using the formulation from Section 4.6 as demonstrated

in Fig. 5.7(b) and Fig. 5.7(c). In all three simulations, a small amount of noise was added to the linear and

angular velocity of the robot to make the simulations more realistic.

(a) No problem (b) Internal fault (c) External disturbance (wind blowing
from east to west)

Figure 5.7: Robot paths with complex dynamics
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5.7 Real-World Experimental Results

In the following section, experimental results on a real vehicle are presented in a lab-controlled environment.

For the following experiments, we use the ROSbot which is a skid-steering differential drive unmanned ground

vehicle with dynamics from (3.3). Everything was implemented under the robot operating systems (ROS)

framework [26]. ROS uses a publisher and subscriber model. Publishers send commands to the robot, and

subscribers receive sensor data from the robot. A total of three computers were used to run these experiments:

one on the robot, the VICON motion capture system computer for ground truth data, and the base-station

computer which sends instructions to the ROSbot. The robot is tracked through the VICON system, which

entails eight cameras capable of sub-millimeter positional accuracy. Four reflective markers are placed on the

robot to track the position and orientation of the robot; an object is created within VICON software to allow

for 3D visualization of the robot. The position and orientation are subscribed from the base computer.

The positions of the real-world obstacles match the positions in the simulated environment. In Fig. 5.8,

examples of the simulated and real environments are shown. Four obstacles are used for the robot to navigate

around as it goes from the current location of the robot to the green goal point.

(a) Rosbot (b) Simulation Map (c) Camera View

Figure 5.8: Real-world environment
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First, an example is shown in Fig. 5.9(a) when a robot is impaired in an environment with no obstacles

and does not use the adapting framework but simply uses a regular MDP to find its optimal policy. The

right and back actions are removed and result in states achieved by a forward action. Although our robot

is impaired by limiting that action via software, a similar real-world condition would occur if the angular

velocity of one side of wheels could not exceed the other side. In Fig. 5.9(b), the robot adapts while having

impaired dynamics, and the right and back transition probabilities are adapted as these actions are shown to

be defective.

(a) Traditional MDP (b) Our Approach

Figure 5.9: No obstacles with internal fault
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If we consider an environment with obstacles now, a normal robot trajectory is depicted in Fig. 5.10. The

robot will use the MDP to plan its path safely through the environment to the goal. Fig. 5.10(b) shows an

overlapped sequence of poses of the UGV as it navigates to the goal.

(a) Simulation map (b) Camera view

Figure 5.10: Nominal path as computed using a traditional MDP policy
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In Fig. 5.11, an experiment is run without the adapting framework while the dynamics are impaired

removing the back and right actions. As expected, the robot runs into the first obstacle and fails to reach the

goal.

(a) Simulation map (b) Camera view

Figure 5.11: An impaired robot using traditional MDP

Fig. 5.12 shows two runs of the same experiment with our proposed approach with β set to 0.3. The robot

is able to adapt robustly in all tests that we run and complete the task, making it to the goal without colliding

with any obstacles. The robot can detect and change the transition probabilities of the back and right action.

The first initial drop of the right probability is shortly before the first left turning loop. Fig. 5.12(c) is the

resulting transition probability graph for Fig. 5.12(a). Additionally, the robot takes a variety of left loops

depending on the experiment trial.

(a) Path for impaired system: trial 1 (b) Path for impaired system: trial 2 (c) Right action probabilities from trial 1

Figure 5.12: Real-world experiment with an impaired robot using our framework
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Fig. 5.13, shows an image of overlapped snapshots recorded during the experiment presented in Fig. 5.12(a)

Figure 5.13: Overlapped snapshots for the impaired trial 1 experiment in Fig. 5.12(a)
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Chapter 6

Multi-vehicle Cooperative Task Management

6.1 Formulation

In the previous chapters, all the framework and simulations were with a single robot. In this section, we

show an extension of our proposed work to deal with cooperative missions where one or more vehicles are

impaired. Let’s consider a set Q of nQ robots q with q = 1 . . . nQ. The problem we are interested to solve

here is how to best coordinate multiple robots with different dynamics to accomplish a series of tasks that in

our case consist of reaching different goal states. This is very similar to the traveling salesman problem where

a single agent must visit a given number of vertices in an optimal order [27]. These goal states are defined

as XG = {xg1 , . . . , xgng
} ∈ X where nG is the total number of goal states. When solving this problem, the

robots must coordinate with each robot to accomplish the set of tasks XG from their starting states xsq .

Each robot is then given a precomputed efficiency metric Eq that is defined as the rate travelled distance/time

for each robot navigating through a cluttered environment. This metric is calculated from several simulations

using a normal and impaired robot; their average E is calculated by the travelled distance/time over each

simulation. A higher rating allows that robots to take on more tasks. A set of goal states XGq , will be

generated for each robot q based on the starting states, goal states, and efficiency rating to find the minimum

time tc to complete the tasks. The sets of the states in each XGq
are ordered sets for the purpose of finding

the optimal sequence of tasks. The total completion time depends on the worst case scenario that is the

longest completion time for any given robot’s XGq
assignment. dist(XGq

) is the total distance over the
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ordered set XGq . The problem is defined as follows:

min
XG1

,XG2
,...,XGnQ

tc = max

(
dist(xs1 , XG1

)

E1
,
dist(xs2 , XG2

)

E2
, . . . ,

dist(xsnQ
, XGnQ

)

EnQ

)

s.t. XG = XG1 +XG2 + . . .+XGnQ

XG1 ∩XG2 ∩ . . . ∩XGnQ
= ∅

(6.1)

Our algorithm iterates over
∑nG

i=0
nG!

(nG−i)! permutations of the possible ordered sets and pairs these with

the starting states to find the optimal completion time given the distance over each trajectory and each

efficiency rating. Note that this algorithm becomes computationally expensive as the number of goals and

vehicles grows since it is an exhaustive search. For simplicity, consider an example with two robots and three

goals. In Table 6.1, all the combinations are shown for each robot task assignment. From these combinations,

every permutation is used to calculate the minimal distance from the starting point. When the minimum tc

is found, the tasks for each robot are assigned from the corresponding permutation.

Table 6.1: Task Assignment Combinations

Combinations of Goals Robot 1 Robot 2
0 and 3 None (xg1 , xg2 , xg3)
1 and 2 (xg1) (xg2 , xg3)
1 and 2 (xg2) (xg1 , xg3)
1 and 2 (xg3) (xg1 , xg2)
2 and 1 (xg1 , xg2) (xg3)
2 and 1 (xg1 , xg3) (xg2)
2 and 1 (xg2 , xg3) (xg1)
3 and 0 (xg1 , xg2 , xg3) None
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6.2 Simulations

In the following simulation, we consider two robots in the set Q, in which one experiences some failure. The

normal robot has full access to its action space while the impaired robot cannot turn back or right. The

impaired robot has a red trajectory while the robot with normal dynamics is in cyan. Between two robots,

eight goal states must be completed. In Fig. 6.1(a), all 8 goal states are completed while giving the impaired

robots only 3 tasks to perform. The impaired robot takes longer due to the initial learning in front of the

first obstacle. This robot will take longer to travel distance due to the need to perform a non-optimal series

of actions to emulate lost actions. The normal robot takes 84 iterations while the impaired robot takes 125

iterations to complete its tasks.

(a) (b) (c)

Figure 6.1: Independent multi-vehicle trials with an impaired robot

In Fig. 6.1(b) and (c), the impaired robot is assigned only three tasks but these tasks are much closer to

the starting position than in Fig. 6.1(a). In Fig. 6.1(b), the impaired robot finishes in 66 iterations while the

normal robot finishes in 82 iterations. The results in Fig. 6.1(c) are similar: 61 iterations for the impaired

robot and 96 iterations for the normal robot. The proximity of the goal states near the impaired robot allows

for much faster completion times than in Fig. 6.1(a).

In this implementation we have considered two vehicles tasked to visit a small number of goals. Future

work involves finding a faster heuristic to find optimal trajectories considering larger number of vehicles and

goals.
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Chapter 7

Conclusions and Future Work

7.1 Conclusion

In this thesis, we have demonstrated an adaptive online approach for trajectory planning when disturbances

and internal failures arise. Our solution utilizes the MDP formulation to estimate optimal actions for the

robot while discovering faults and disturbances. The basic principle behind our approach is that MDP

leverages transition probabilities to compute an optimal policy and thus updating these probabilities at

runtime will enable the discovery of new policies for changing dynamical systems. As shown in the results,

the framework is versatile for internal and external problems and confused action situations. Our approach

utilizes a dynamic learning rate for quicker learning in motion model estimates while smoothly converging to

the true transition probabilities. We validated our approach through single robot simulations and experiments.

A solution for multi-robot coordination was displayed through several simulations.

In comparison to many reinforcement learning implementations, our method works quickly at runtime

and requires little overhead for the initialization. Over just a few iterations, the robot is able to detect faults

and recover to still be able to complete its task. The robot is also able to have quick adaptations through our

local approach.

7.2 Future Work

Future work will involve more multi-robot environments by increasing the number of robots and tasks to

solve. A better solution to multitask management will also be explored, for example, considering Hungarian

algorithm-based strategies [28] or other heurstics like the Lin–Kernighan (LK) approach [29] to solve the
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traveling salesman problem. This adaptable framework can also be applied to higher dimensional state and

action spaces targeting for example unmanned aerial vehicles for which much quicker reaction times are needed.

Finally, other reinforcement learning or trial-and-error implementations can be tested against our approach.

Our approach could work in coordination with a reinforcement learning algorithm for quicker recovery while

learning more complex dynamical models. A final future direction would be to include heterogeneous robotic

systems to actively adjust task assignments based on disturbances like changes in dynamics and environmental

conditions.
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