
s

1

Introduction

 Professors and teaching assistants hold office hours to provide students with dedicated

time periods where they may seek help, advice, or otherwise be able to meet with the course

staff. With courses facing enrollment sizes of over 1,200 in some cases (“Monstrous class sizes

unavoidable at colleges”, 2007), the number of students seeking help at office hours may

overwhelm the availability of the course staff. To provide order to what could otherwise turn into

a chaotic scene, a queueing system may be used to efficiently keep track of how many students

need help and which students to help next. At the same time, it is important to keep in mind that

office hour queues, just as with any technology, are more than just a piece of software and has

many social-technical aspects to consider.

 The lack of extensive research on office hours queues was noted by MacWilliam &

Malan in 2011 and remains an issue today, but anecdotal evidence suggests that queues have

become a common staple of computer science courses and are a critical aspect of course

administration (MacWilliam & Malan, 2013; Juett, n.d.; “Office Hours”, n.d.; “CS 61B Queue”,

n.d.; Banerji, n.d.; Tychonievich, Brunelle, & Pettit, n.d.; etc.). While queues themselves have

been studied extensively as part of “queueing theory” (Cooper, 1981), much of the field of study

has focused on impersonal applications of queues, rather than investigating the impact a queue

can have when applied in a social context. Indeed, Queuing Systems, a journal dedicated to

queueing theory, is “primarily interested in probabilistic and statistical problems in [queueing

theory]” (“Queuing Systems”, n.d.). Consequently, many of the aforementioned queues have

been created to improve office hours from a purely administrative standpoint or were a natural

result of technological improvement. At Stanford, “challenges have encouraged professors and

TAs to create new methods aimed at ensuring each student receives the necessary

2

help…including online office hours [queues]” (Park, 2018). The University of Pennsylvania

makes their motivation for using office hours even more clear: “an online office hours queue is

in the works [to address wait times]” (Basu, 2018). Looking at it from a different perspective,

Malan (2009) writes that “fifteen years ago, students signed up for such help by writing their

name on a sheet of paper...eventually, that sheet of paper evolved into a whiteboard, but the

process today remains largely the same. It works, and it is simple”. This viewpoint that treats

queues as a simple process is largely misleading and does not adequately address social

interactions. Additionally, the emphasis on providing the means to receive help, rather than

focusing on the process itself, leaves an incomplete picture of how a queue impacts its

environment.

 By looking at queues through a socio-technical lens and applying the Social Construction

of Technology framework, it becomes apparent that there are many nuances to queues that have

important implications beyond course administration that extend to students, course staff, and

more. In particular, a queue is just not a supplementary tool for office hours. It is a full-fledged

application, with multiple considerations to be made to optimize its usefulness for any given

course.

Background

 In their most basic form, queues model a system in which customers arrive and are

processed by order of priority by any number of servers. This model is a common occurrence,

playing a part in supermarket lines, customer service helpdesks, internet traffic, automobile

traffic, etc. In the context of office hours, students are asked to join a queue and are then helped

by the course staff, typically on a first-come-first-serve basis. Unlike the emergence of major

learning management systems, academia has as-of-yet been unable to consolidate office hour

3

queueing systems. As a result, a plethora of queues have been created to suit the needs of

individual professors, with minimum interaction or information sharing between the different

authors. A prime example of this fragmentation can be seen at the University of Virginia, where

at the time of this writing there are no less than four separate queue systems that are actively

used within just the Computer Science department.

Conceptual Framework

 Social Construction of Technology (SCOT) can be applied to office hour queues to

comprehensively analyze how queues impact students, course staff, and various other

stakeholders. Importantly, SCOT emphasizes that each technology can be used differently by

distinct groups and independently adapted to best suit the needs of each group. Additionally,

SCOT recognizes that technologies are shaped by their stakeholders, and that it is essential for

any successful technology to identify its stakeholders and keep them in mind when making

decisions.

Analysis

 Across the world, university professors have transitioned to using online queues to

administrate office hours. While every queue is based on the same underlying model, each one

has developed independently to support the separate needs and use cases of each course. These

queues have defined their own concepts of fairness, usability, and efficiency, metrics which may

be analyzed from the unique perspective of each different stakeholder.

4

Stakeholders

 There are two primary stakeholders that drive the success of an office hours queue – the

course staff and the students. The course staff, who are generally teaching assistants or other

individuals who provide a supporting role in the course, can be identified as one of the primary

stakeholders as they interact directly with the queue to hold office hours. The extent to which

they are able to perform their staff duties hinges on the efficacy of the queue. At the same time, it

would be remiss to not also name the students as primary stakeholders. As students attending

office hours, they require a functioning system that they are able to easily navigate in order to

receive the help they need. These two groups are the ones that are not only the most impacted by

any implementation of a queue, but also the most dependent on having a working queue

available. While their needs are oftentimes similar, there are also occasions when their priorities

are at odds with each other. Course staff, for example, prioritize the ability to know what

students need help with and tools to help them minimize the amount of time each student is kept

waiting, which may involve helping groups of students at the same time. Students, on the other

hand, want detailed and individualized help as quickly as possible, even if that means not

providing detailed information on what they have questions on.

 In addition to the primary stakeholders, there are also a variety of secondary stakeholders

that play a part in the development of office hour queues. Queues provide multiple benefits to

professors, such as allowing them to devote more of their time to other aspects of course

administration, or enabling the collection of various statistics that can be used to identify

potential concerns or places for improvement. They are also the ones that are directly responsible

for the performance and success of the queue. The software developers are the ones who create

and maintain the queue. Oftentimes, they may be a part of another stakeholder group as well,

5

such as the course staff or professors, but they may also be otherwise completely detached from

the course, and for the purposes of this paper, they will be treated as a separate stakeholder

group. Looking more broadly, university administrators are indirectly involved with office hour

queues through the handling of room reservations. While these stakeholders are more detached

from the queue, they remain as voices that have an important say in the final design of the queue.

Just as with the primary stakeholders, the values of secondary stakeholders sometimes seem to

be mutually incompatible. While professors and administrators want to be able to use stable

software releases, software developers continuously tweak and improve their product,

occasionally leading to compatibility issues with the professor’s or university’s computing

framework.

 SCOT allows us to examine office hour queues from a multi-faceted point of view,

keeping in mind that for every decision, there are multiple other possibilities that may be valid

for other queue implementations. In the end, the final vision of the queue depends on the

priorities of the various stakeholders, and no implementation is necessarily superior to any other

because of its design decisions.

Fairness

 Receiving help during office hours should be an impartial process – there should be no

bias on the part of the course staff when selecting which students to help. In a traditional office

hours system, students wait to receive help in the order that they arrive at office hours. Similarly,

most queues, as the name itself implies, model the traditional way of holding office hours by

utilizing a first-in-first-out (FIFO) strategy. This is a familiar and ingrained model to students

and course staff, and needs practically no introduction or training to be used. However, it would

6

be a naïve mistake to assume that FIFO is the best option simply because that is the model that

most office hours follow.

 Consider an office hours session that runs for two hours, say from 2-4pm. If every student

had equal opportunity to attend this office hours session, then perhaps a FIFO algorithm might

appear to be fair. However, the reality is often much murkier. Students have classes throughout

the day that may prevent them from being present when office hours begin. Some students may

pre-emptively join the queue, even before they have any questions to ask. Different students will

be working on different assignments, some due later that night, some due far into the future.

Given all these considerations, FIFO may not be as fair as it initially appears to be.

 To increase fairness, developers and professors may look to change the priority algorithm

to take into account factors other than time-of-entry. If the goal is to prevent preemptive help

requests and allow students with scheduling conflicts to receive similar amounts of help, a useful

priority metric would be number-of-entries, rather than time-of-entry. Under this system, the

more times a student has requested help, the lower their priority is. Thus, there is an active

incentive for students to not enter the queue until they need help from course staff; likewise,

students with less access to the queue are still able to receive help without being disadvantaged

by their lesser availability. However, this is a double-edged sword: students may feel as if they

are actively being punished for taking the initiative to seek out help. Course staff may also

become more inclined to stay with a student longer to answer all the questions they have, rather

than only guiding the student to a starting point so that the student does not suffer the decreased

priority penalty if the starting point was not enough for them to complete the assignment on their

own. A similar problem exists when tuning priority to account for assignment deadlines.

Students working on assignments with closer deadlines would be prioritized over students

7

working on later assignments. While this greatly helps students who need some extra help in

order to complete the assignment, it also disincentivizes starting assignments early and going to

office hours to receive advance guidance, as the queue will assign them a low priority, leading to

longer wait times.

 As the professor is the one running the course, it is up to the professor to determine what

they believe is most fair for both the students and course staff. Any decision they make has a

direct impact on those stakeholders, who must go with the professor’s solution. Of course, a

professor is also limited by the options that the developer has integrated into the queue.

Usability

 For a queue to be useful, students, course staff, and professors must be able to easily

manipulate the queue to perform any number of tasks, from joining the queue as a student, to

viewing the number of students in the queue as a member of the course staff, to differentiating

students and course staff as a professor. A queue that is difficult to use will passively discourage

students and course staff from using the queue and lower the likelihood of positive office hour

experiences.

 One way to increase usability is for the developer to take advantage of modern browser

features. Allowing the queue to display properly on phones or other form factors gives more

flexibility to course staff and students to choose what is the most comfortable for them. Showing

a notification to course staff whenever a student enters an empty queue improves response

speeds and means that course staff won’t accidentally keep students waiting. Additionally, if the

queue is able to update automatically without having to manually refresh the application, both

course staff and students will be given a better idea of the current status of the queue. However,

integrating newer features into the queue also necessitates raising the minimum computer

8

requirements needed to use the queue (Deveria, n.d.). The developer must be aware of these

tradeoffs and clearly communicate them to the professor, who will then also be tasked with

deciding what a reasonable technological baseline is for the students and course staff.

 Usability often depends on the number of features available in a queue. Allowing course

staff to “requeue” students, for example, reduces the work that needs to be done to hand off one

student to another member of the course staff. While it may appear harmless to add on features to

improve usability, any extra features should be carefully validated by the relevant stakeholders to

ensure that the desired outcome will actually be achieved. MacWilliam & Malan observed that

their attempt to direct students with similar questions to the same course staff member did not

end up working, as they did not consider that there was no perceivable incentive for students to

be detailed in their problem description, nor did they effectively communicate to course staff that

students would be providing a description of what they needed help on, and thus most course

staff “did not have [the queue] open…and were unaware of the students’ questions until they

arrived in person”.

 In order to use the queue, members of the course must not only be introduced to it but

also be able to find and utilize it without assistance later on. Thus, terminology plays an

important role in the usability of a queue. The very notion of a “queue” inserts additional

complexity into the very general concept of office hours. A queue must have a strict ordering;

office hours do not have such a requirement. The term “queue” dehumanizes the experience and

introduces both technical vocabulary and unnecessary implementation details into an abstract

concept. In American English, “queue” is also seldomly used – it is not one of the 5,000 most

common words (“Word frequency data”, n.d.). Considering that the most common 3,000 words

comprise 90% of English conversations (“3000 most common words in English”, n.d.), the

9

correlation between queues and office hours may not be immediately obvious. Thus, the

developer may want to limit using “queue” in user-facing contexts, resorting instead to more

generic terms such as “office hours” or “ask for help”, while professors and course staff should

do the same and abstract away the details of the queue when discussing office hours with

students.

 At every step of the process, care must be taken to consider what impact certain design

decisions may have on the final usability of the queue. Students and course staff, as the primary

stakeholders, are a crucial voice and should be consulted during the development of a queue so

that no unexpected surprises arise later on.

Efficiency

 Queues are typically introduced as a part of the course structure to allow the course to run

more efficiently. Some of the benefits are very clear – queues automatically keep track of who

needs to be helped next, allow many course staff to be present at office hours without interfering

with each other, and clearly identify course staff as such. Some of the benefits may be less

obvious, such as allowing office hours to occur in large common areas, perhaps concurrently

with other courses’ office hours, which simplifies or even reduces administrative logistics for

reserving rooms, and providing professors with a wealth of data that can be analyzed to identify

trends and points of concern. As one example of the increased efficiency queues can bring,

Harvard University courses’ decisions to move office hours into dining halls were facilitated by

the development of digital queues and resulted in “more than linear” office hours attendance as

the new locations were “more convenient and social for students, [and] motivated higher

attendance” (MacWilliam & Malan, 2013). Furthermore, MacWilliam & Malan, the professors

of the aforementioned courses, found that moving to an online queue allowed them to understand

10

students’ work habits and “quantify students’ confusion on each [assignment]”. These benefits

are all strong arguments for backing office hours with digital queues.

At the same time, queues also make some tasks harder to perform. A queue by itself is

inherently focused on one student at a time and has no way to help multiple students at once.

This can reduce efficiency when multiple students are having the same problem, or when there is

a difficult concept that the course staff would like to reinforce with everyone. In the case of

MacWilliam & Malan, they found that “it was not uncommon for multiple teaching assistants to

answer the same question independently and concurrently”, even after developing a queue that

tried to reduce the number of duplicate questions. Furthermore, while queues can indeed allow

office hours to take place in common areas, that same advantage can also make it harder for the

course staff to find the student that they are looking for. Finally, care must be taken by the

developer to ensure that the queue performance does not deteriorate as time goes on and that no

matter how many students are in, or have been in, the queue, course staff are able to find out

which student they are helping next in real time.

Once again, it is up to the judgement of the professor to determine whether the benefits

outweigh the potential disadvantages. Is this a course that is large enough to take full advantage

of the benefits that a queue provides? Is the professor willing to dedicate the time to analyzing

queue statistics to improve the course? Did the developer even provide a way to view those

statistics? Is there an established procedure to help groups of students at a time? All of these

questions and more should be considered before committing to using queues.

Conclusion

 On the surface, office hour queues appear to be a simple solution to a straightforward

problem. Once examined using Social Construction of Technology, though, many considerations

11

from the stakeholders arise that must be addressed to adequately provide fairness, a good

experience, and an efficient workflow. Queues cannot be viewed as just a way to return order to

office hours. Rather, they should be seen as complex technologies that have the ability to alter

multiple aspects of course administration as well as students’ overall performance. By changing

the lens through which we examine not just office hours queues, but the use of various

technologies in general, many lessons can be learned for how to better integrate technology into

the lives of those around us.

12

References

3000 most common words in English. (n.d.). Retrieved March 26, 2020, from

https://www.ef.com/wwen/english-resources/english-vocabulary/top-3000-words/

Banerji, D. K. (n.d.). debkbanerji/office-hours-queue. Retrieved March 26, 2020, from

https://github.com/debkbanerji/office-hours-queue

Basu, K. (2018, December 5). Some CIS courses are so overloaded that students wait more than

an hour for homework help. Retrieved from https://www.thedp.com/article/2018/12/cis-120-

office-hours-wait-time-penn-upenn-philadelphia

Cooper, R. B. (1981). Queueing theory. Proceedings of the ACM ‘81 Conference. doi:

10.1145/800175.809851

CS 61B Queue. (n.d.). Retrieved March 26, 2020, from https://oh.datastructur.es/

Deveria, A. (n.d.). Can I use... Support tables for HTML5, CSS3, etc. Retrieved March 27, 2020,

from https://caniuse.com/#info_about

Juett, J. (n.d.). EECS Office Hours. Retrieved from https://lobster.eecs.umich.edu/eecsoh/

MacWilliam, T., & Malan, D. (2013). Scaling office hours: managing live Q&A in large courses.

Journal of Computing Sciences in Colleges, 28(3). doi: 10.5555/2400161.2400179

Malan, D. J. (2009). Virtualizing office hours in CS 50. ACM SIGCSE Bulletin, 41(3), 303. doi:

10.1145/1595496.1562969

Monstrous class sizes unavoidable at colleges. (2007, November 24). Retrieved from

http://www.nbcnews.com/id/21951104/ns/us_news-education/t/monstrous-class-sizes-

unavoidable-colleges/

Office Hours. (n.d.). Retrieved March 26, 2020, from https://cmu.ohqueue.com/#/

13

Park, E. (2018, January 29). Honor code cases, office hour queues among challenges of

expanding CS class sizes. Retrieved from https://www.stanforddaily.com/2018/01/28/honor-

code-cases-office-hour-queues-among-challenges-of-expanding-cs-class-sizes/

Queueing Systems. (n.d.). Retrieved from https://www.springer.com/journal/11134

Tychonievich, L., Brunelle, N., & Pettit, R. (n.d.). CS 1110/1111 – Office Hours. Retrieved

March 26, 2020, from https://cs1110.cs.virginia.edu/oh.html

Word frequency data. (n.d.). Retrieved March 26, 2020, from

https://www.wordfrequency.info/free.asp?s=y

