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ABSTRACT 
 
Heart failure (HF), a progressive disorder with high mortality rates, currently 
affects 6 million Americans. One of the main causes of HF is left ventricular (LV) 
hypertrophy: a structural abnormality that results from growth of LV walls during 
cardiomyopathy, arterial hypertension, and/or valve disease. Valve diseases such 
as aortic stenosis and mitral regurgitation cause pressure and volume overloading 
of the heart, respectively. Chronic progression of volume and pressure overload 
leads to large amounts of LV hypertrophy resulting in HF. Prospective patient-
specific computational models of LV hypertrophy have the potential to aid 
diagnoses and drive development of tailored treatment plans to prevent 
progression of HF. As a result, our lab previously developed a rapid-computational 
growth model of the LV to model cardiac growth during pressure and volume 
overload. Although successful in accurately predicting growth, the model could 
only do so retrospectively because it relied on several hemodynamic parameters 
that were manually prescribed. To prospectively model patients, hemodynamic 
changes are often unknown and must be predicted to accurately model LV growth. 
Thus, this thesis aimed to develop a hemodynamic model that predicts 
hemodynamic changes to model LV growth during pressure and volume overload. 
(1) We modeled baroreceptor reflexes to predict short-term hemodynamic 
changes immediately following the onset of pressure or volume overload in 
canines. (2) We then modeled the renin-angiotensin II system to predict long-term 
hemodynamic changes several months after the onset of pressure and volume 
overload in canines. (3) Lastly, we coupled our short- and long-term hemodynamic 
models with the rapid-computational growth model to predict regression of LV 
hypertrophy following MitraClip implantation in individual mitral regurgitation 
patients. Overall, we built a hemodynamic and cardiac growth modeling 
framework to prospectively model patient-specific responses and help guide 
personalized treatments to prevent progression of HF.  
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1 CHAPTER 1: INTRODUCTION AND BACKGROUND  
 

1.1 SIGNIFICANCE OF HEART FAILURE  
 
 Nearly 6 million Americans have heart failure (HF) with a mortality rate of 45-60% within 
five years after diagnosis [1], [2]. It is expected that total medical costs of HF will increase from 
$31 billion to $70 billion by 2030 [3]. HF can be caused by various structural and functional 
abnormalities of the myocardium such as altered myocardial material properties, dysfunction of 
the pericardium, dysfunction of the heart valves, and/or diseased coronary arteries [4]. 
Understanding the physiological mechanisms of HF can help guide diagnosis and treatment of 
cardiovascular diseases to prevent HF. One of the main causes of HF is left ventricular (LV) 
hypertrophy: a structural abnormality that results from growth of the LV walls during 
cardiomyopathy, arterial hypertension, and/or valve disease [5]. Aortic stenosis and mitral 
regurgitation (MR), which are two common valve diseases, cause LV hypertrophy and ultimately 
HF due to pressure and volume overloading of the LV, respectively. 
 

1.1.1 Left Ventricular Hypertrophy  
  Both pressure and volume overloading of the LV cause LV hypertrophy, a key 
independent risk factor for HF, which is a response mechanism to deal with the increased 
overload of the heart [6]. There are two main types of LV hypertrophy: eccentric and concentric 
hypertrophy [7]–[12].  
 Volume overload is a pathological state that results in eccentric hypertrophy. LV cavity 
diameter and mass increase due to sarcomeres lengthening and being added in series [13]. 
During MR, a valve disease, blood is regurgitated from the LV back into the left atrium. Since the 
blood ejected from the LV during systole does not all go into systemic circulation, the 
regurgitation causes an increased amount of blood to be pumped by the LV and results in larger 
end diastolic volumes (EDV) [9], [10].  
 Concentric hypertrophy is observed in conditions that increase afterload and is 
characterized by thickening of the myocardial wall due to sarcomeres being added in parallel 
[13]. LV pressure overload is a pathological state in which higher than normal pressures are 
required to pump blood out of the aortic valve which leads to prolonged and increased afterload. 
Pressure overload has been shown to produce changes in stress, strain, and circulating 
hormones; these changes combine to stimulate myocyte growth [14]. During aortic stenosis, a 
valve disease, the calcified aortic valve cusps make it difficult to pump blood across the valve at 
normal pressures. As a result, pressure overload is developed, and is associated with increased 
LV systolic and diastolic pressures [12], [15], [16].  
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 Understanding how the LV grows during pressure and volume overload will allow for 
better predictions of long-term remodeling that leads to HF and potential evaluation of patient 
responses to therapies designed to prevent or treat failure. Although the underlying mechanism 
that causes eccentric and concentric hypertrophy is still unknown, hormonal, electrical, and 
mechanical stimuli have all been shown to drive cardiomyocyte growth and remodeling [17]. 
Prospective mathematical models using hormonal, electrical, and mechanical stimuli have been 
shown to successfully predict hypertrophy and regression of hypertrophy in response to pressure 
and volume overload [14], [18]–[20]. These prospective mathematical models can be used to 
predict patient-specific therapy outcomes during pressure and volume overload. For instance, 
following mitral valve replacement or mitral valve repair for MR patients, the LV is expected to 
undergo reverse hypertrophy to reduce cavity diameter. Mitral valve repair and replacement are 
different procedures with diverse risk profiles that may lead to variable outcomes depending on 
the amount of the MR that needs to be reduced [21]. Therefore, predicting outcomes for 
individual patients before surgery could provide clarity in selecting the best treatment possible. 
In addition, patient-specific mathematical models of the heart allow us output detailed 
information about LV pressures and volumes at several time points that cannot be measured 
clinically. Clinicians can use these detailed model outputs to provide better treatments and 
diagnostics. 
 

1.2 CARDIAC GROWTH MODELING 
 
 A wide range of cardiac growth models have been developed to successfully capture 
concentric and eccentric hypertrophy during pressure and volume overload. The geometric 
changes that occur, such as changes to the diameter of the cavity and thickness of the 
myocardium, are key factors in determining the course and severity of the HF that develops. 
Therefore, subsequent treatments could be guided using the provided model predictions such as 
changes in LV mass, end diastolic wall thickness, and maximum LV volumes. Hypertrophy often 
occurs on a spectrum ranging from concentric to eccentric, and the growth is progressive; 
therefore, simply predicting the expected remodeling in individual patients could also have 
important prognostic value in determining how closely to monitor, when to treat, etc. [22], [23].  
 It is widely accepted that mechanics play an essential role in tissue growth and 
remodeling. Computational models have been able to successfully predict cardiac growth using 
differential equations that predict growth as a function of stress and/or strain [7], [18], [19], [24]. 
The so-called growth laws usually assume that myocardium grows to drive stress and/or strain 
back to a homeostatic setpoint; therefore, larger changes in stress or strain result in more growth 
[7]. Consequently, growth causes a change in tissue volume because myocardium is added or 
subtracted, and in many models the amount and direction of these changes are specified by a 
growth deformation tensor [25]. Many models also assume that growth is driven based on the 
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change in stress or strain between a baseline (before intervention) and acute state (immediately 
after intervention) [26]. During volume overload (eccentric growth), the LV grows in the fiber 
direction where the LV cavity dilates resulting in larger end diastolic internal diameters and larger 
EDVs. During pressure overload (concentric growth), the LV grows in the radial direction where 
the LV wall thickens resulting in larger end diastolic wall thickness and larger systolic pressures.  
 The aforementioned growth laws can be applied within a wide array of models ranging 
from the cellular to organ level scales. The stresses and strains can be computed locally for each 
cardiomyocyte/region of the LV or on a global scale for the whole LV depending on the 
physiological detail needed from the model. Since the geometry of the LV is often complicated 
and the myocardium is mechanically anisotropic with varying myocardial fiber orientations, 3D 
finite-element models can be used to compute changes in stress or strain at many locations 
within the LV. Computing local mechanics in a finite-element model provides excellent 
anatomical details that can be used to drive local myocardial growth but is also relatively 
computationally expensive [27]. Kerckhoffs et al. developed a non-linear finite-element model 
that modeled LV growth during pressure and volume overload using a single set of strain based 
equations; however the model is computationally expensive taking over 3 weeks to simulate 1 
month growth on a fairly powerful computer [18], [26].   

Cardiac growth models have the potential to guide time-sensitive surgeries in routine 
clinical settings because they can predictively model each patient’s needs; however, to achieve 
that goal, models must be calibrated and run in a short time period to best guide clinical 
interventions [23]. To this end, our lab previously developed a rapid-computational model of the 
heart and circulation system than can predict growth following pressure overload, volume 
overload, and myocardial infarction using Kerckhoffs growth law [18]. The rapid-computational 
model treats the LV as a thin-walled sphere. The geometry of a sphere is much simpler than that 
of a finite-element LV; as a result, computing the mechanics is much simpler and faster. Despite 
simplifying the LV to a sphere, our rapid-computational model still accurately predicted 3 months 
of growth during pressure overload, volume overload, and myocardial infarction in under 3 
minutes on a local 16GB machine. We suspect that this was possible because the global changes 
in mechanics associated with severe disease are more sizable than the regional differences. 
Rondanina and Bovendeerd also developed a thin-walled LV sphere computational model using 
a different growth law that calculates growth based on the myofiber stress and sarcomere length. 
They were also able to accurately predict growth during pressure and volume overload without 
the detail needed from a finite-element model [24]. 

 

1.3 HEMODYNAMICS DURING CARDIAC GROWTH 
 
Hemodynamics have been shown to play a vital role in cardiac growth and are consequently 

incorporated into cardiac growth modeling. Witzenburg and Holmes showed that pressure and 
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volume overload predictions using the rapid-computational model are highly sensitive to 
hemodynamic perturbations [18]. They also showed that, when using the rapid-computational 
model to predict growth post myocardial infarction, perturbations to hemodynamics such as 
heart rate (HR), vascular resistance, and blood volumes greatly affected growth outcomes six 
weeks after infarction [28]. Patients with aortic stenosis often have reduced systemic arterial 
compliance which results in different severity levels of aortic stenosis and ultimately varying 
degrees of pressure overload [29]. Modeling hemodynamics such as systemic arterial compliance 
is necessary to compute the degree of concentric hypertrophy in patients with aortic stenosis. 
Rondanina and Bouvendeerd best matched patient EDVs and wall thicknesses following aortic 
stenosis, aortic regurgitation, or mitral regurgitation when they modeled hemodynamic changes 
concurrently with LV growth [30].  

As a result, cardiac models using growth laws require a circulation system to control the 
hemodynamics during a cardiac cycle. The circulation system is also used control the 
hemodynamic overloading during pressure and volume overload.  

The rapid-computational model developed by Witzenburg and Holmes used a lumped-
parameter circuit model of the circulation system previously published by Santamore and 
Burkhoff [31]. Blood flow and volumes across the circulation are controlled by arterial and venous 
resistances and capacitors. Pressures in the LV during the cardiac cycle are determined through 
a time varying elastance model. End-diastolic pressures (EDP) are determined volume and an 
exponential pressure-volume relationship reflecting nonlinear material properties, while end-
systolic pressures (ESP) are determined by a linear, time-varying elastance contraction model 
[31].  
 In both of the Witzenburg and Holmes [18] and Rondanina and Bovendeerd [24] 
computational models, hemodynamic parameters such as systemic vascular resistance, stressed 
blood volume (SBV), and heart rate were essential inputs to run a cardiac cycle and compute 
growth; however, these parameters were manually input to the models during growth. When 
growth models are used retrospectively to predict patterns that have already been observed in 
patients or animals, hemodynamic data are available as model inputs. Unfortunately, for 
prospective modeling of cardiac growth in patients, these parameters are unknown yet essential 
for computing growth. Kerckhoffs et al. discuss that in the absence of a hemodynamic adaptation 
system, they cannot match experimental blood pressures during chronic pressure overload with 
their LV growth model [26]. To allow for patient-specific, prospective growth modeling of 
pressure and volume overload, predicting the hemodynamics across cardiac cycles is essential.  
 

1.4 EXISTING HEMODYNAMIC MODELS  
 
 Similar to how cardiac growth models use stimuli to predict growth, hemodynamic 
models use various organ and cellular stimuli to predict hemodynamics. To maintain blood flow 
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and pressure at homeostasis, the body uses several feedback control systems that adjust vascular 
resistances, vascular compliances, and cardiac output. Two of the main physiological feedback 
control systems that influence cardiac function include the baroreflex and renin-angiotensin 
systems.  
 The baroreflex system is comprised of neurons called baroreceptors that are located in 
the aortic arch and carotid sinus. Baroreceptors detect changes in arterial wall stretch which 
initiate action potentials that modulate the sympathetic and parasympathetic nervous system to 
regulate heart rate, cardiac output, and vascular resistances. Baroreceptors control mean arterial 
pressure (MAP) using a negative feedback loop. When there is an increase in blood pressure, the 
baroreceptor firing rate increases leading to increased inhibition of sympathetic outflow to the 
peripheries. This results in vasodilation, and the opposite is true when there is a decrease in MAP 
[32]. Baroreceptors are mainly responsible for controlling short-term changes in blood pressure 
on the order of seconds to minutes [33]–[35]. 
 The renin-angiotensin system (RAS) is responsible for controlling blood volumes, water 
and salt balances, through modulation of circulating hormone concentrations [36]. 
Juxtaglomerular cells in the arterioles of the kidneys respond to changes in blood pressure and 
decreased sodium levels resulting in the formation of renin. Renin is then released into the 
bloodstream where renin activates angiotensin II (ang-II) through the help of angiotensin 
converting enzyme [37]. Ang-II is responsible for vasoconstriction which helps the body regulate 
systemic vascular resistances and blood volumes [37]. The RAS has been shown to help regulate 
chronic hemodynamic changes during cardiac hypertrophy. More specifically, RAS is responsible 
for long term (order of hours to days) regulation of blood volumes and arterial pressures [33], 
[36]. 
 Just as cardiac growth models range widely in complexity, predictive models of short- and 
long-term hemodynamic changes vary in complexity and physiological detail. Beard et al. 
developed an ordinary differential equations (ODE) model that models 6 different regulatory 
systems. The model captured short- and long-term changes in hemodynamics due to different 
interventions such as hemorrhages and blood volume infusions [33]. Mahdi et al. developed a 
hemodynamic model that focused on the modeling the mechanoreceptors that control 
baroreceptor firing rates. They modeled, in high detail, baroreceptor responses to changing 
pressure stimuli [35]. In terms of baroreceptor reflexes, both hemodynamic models model the 
mechanical changes occurring in the arterial wall to regulate baroreceptor firing; however, Mahdi 
et al. has a more physiologically detailed setup of viscoelastic components and membrane 
conductance. As a result, the model can better match experimental data for a wider array of 
pressure stimuli with varying frequencies and amplitudes. Beard et al. trades off this detail for a 
more phenomenological representation of the baroreceptor response so that systems for long-
term regulation can also be included in the model. Mahdi et al. uses a computationally expensive 
system to capture baroreceptor activity whereas Beard et al. uses fewer parameters in the 
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baroreceptor model component to allow for modeling of more regulatory systems with less 
computational demand.   

Rondanina and Bovendeerd showed that hemodynamic models of regulation can be 
further simplified by indirectly modeling the baroreceptors and RAS [30]. Beard et al. controlled 
the sympathetic tone of the vasculature based on baroreceptor responses due to changes in 
arterial stretch and long-term blood volumes based on renin-angiotensin II levels. On the other 
hand, Rondanina and Bovendeerd used a system of 2 differential equations to control 
peripheral vascular resistance and stressed blood volume (SBV) [30], [33]. Since baroreceptors 
and the RAS indirectly control cardiac output (CO) and MAP, Rondanina and Bovendeerd 
assumed that CO and MAP always drive back to a homeostatic setpoint and used that principle 
to control peripheral vascular resistance and SBV – a simplified method of modeling one of the 
function of the baroreceptors and SBV [30]. The trade-off for more detailed baroreceptor and 
RAS responses is computational cost and model simplicity.  
 

1.5 GOALS & OBJECTIVES 
 
 The aforementioned hemodynamic models by Beard et al. and Rondanina and 
Bovendeerd can predict key hemodynamic values, such as vascular resistance, SBV, and HR, that 
are essential to compute cardiac growth. Rondanina and Bovendeerd coupled their 
hemodynamic model to a simplified LV growth model [30]; however, the lack of separate short- 
and long-term hemodynamic systems results in limited patient-specific modeling capabilities for 
cardiac hypertrophy. Witzenburg and Holmes showed that hemodynamics play a major role in 
cardiac hypertrophy, and that the rapid-computational model is sensitive to hemodynamic 
changes [18], [28]. In terms of long-term hemodynamic changes during volume overload, one of 
the studies that the Witzenburg and Holmes modeled reported pulmonary congestion, 
suggesting that the hemodynamic parameter stress blood volume needs to be adapted during 
chronic volume overload [18]. Reducing systemic vascular resistance has been previously shown 
to work as a therapy for severe MR; thus, modeling the changes in vascular resistance using a 
coupled hemodynamic and growth model will allow us to predict how a patient may respond to 
this therapy [38]. Yoshida et al. recently showed that modeling of ‘reverse’ growth (regression of 
hypertrophy) is useful for modeling how the heart adapts after an intervention to treat pressure 
or volume overload [19]. Homeostatic setpoints for MAP and CO will likely adapt after 
interventions for treatment such as mitral valve or aortic valve repair. During retrospective 
modeling, we can manually feed in hemodynamic information to match growth; however, to 
prospectively model LV growth in patients, we must predict hemodynamic changes necessary for 
growth. 
 Thus, the goal of this thesis is to develop a short- and long-term hemodynamic model 
coupled with rapid-computational growth model to accurately predict LV growth during pressure 
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and volume overload. In Chapter 2, we will explore two hemodynamic models that differ in 
complexity and couple them with a rapid-computational model to predict acute short-term 
(minutes after an intervention) changes during pressure and volume overload in canines. Chapter 
3 will then incorporate a long-term (days or months after intervention) hemodynamic control 
system to predict chronic changes in pressure and volume overload in canines. Lastly, Chapter 4 
will aim to test the clinical feasibility of our coupled hemodynamic and growth model from 
Chapters 2 and 3 to model reversal of LV hypertrophy in patients who received mitral valve repair 
surgery (MitraClip) to treat MR.   
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2 CHAPTER 2: SHORT-TERM REFLEX SYSTEM  
 

2.1 INTRODUCTION 
 

Changes in LV mechanics between immediately before an intervention (baseline) and 
immediately after an intervention (acute) drive cardiac growth in Witzenburg and Holmes’ rapid-
computational model. Differences in hemodynamics between the baseline and acute states are 
drivers of those changes in mechanics, and are therefore vital to predicting LV hypertrophy [18]. 
The rapid-computational model can accurately predict cardiac growth during pressure and 
volume overload; however, it is not able to predict the hemodynamic changes that occur after 
inducing pressure or volume overload. As a result, the rapid-computational model was only able 
to retrospectively model LV hypertrophy since the hemodynamic changes were manually 
prescribed. Prospective modeling requires predicting hemodynamic changes in addition to 
cardiac growth because the hemodynamic parameters are not known. As described in section 
1.4, hemodynamic models are necessary to predict hemodynamic changes. Physiologically 
detailed models of the baroreflex can provide hemodynamic predictions necessary for modeling 
LV growth. 

Beard et al. previously developed a detailed physiological model of short- and long-term 
hemodynamic regulation of arterial pressure by developing a model composed of 6 different 
systems: aorta/large artery mechanics, kinetics of baroreflex afferent firing, mechanics of the 
heart and circulation, autonomic system, RAS, and pressure-diuresis/natriuresis. The 
baroreceptors and autonomic system are the primary regulators of short-term hemodynamic 
regulation because they regulate the sympathetic tone of the vasculature on the order of seconds 
to minutes [33]. 

After an intervention that causes pressure or volume overload, the body immediately 
responds by adapting HR and vascular constriction to maintain both CO and MAP. The baroreflex 
system in Beard et al’s model controls vaso- and venoconstriction and HR by computing the 
sympathetic tone of the vasculature based on baroreceptor activity [33]. HR and vascular tone 
are necessary inputs for the rapid-computational model to compute cardiac growth. 

We discussed earlier in section 1.4 that there also exist high-level physiological 
hemodynamic models (phenomenological hemodynamic models) that represent the activity of 
several systems with just one or two equations. To calculate growth with the rapid-
computational model, the most important hemodynamic parameter of interest is the vascular 
constriction that determines stressed blood volume and systemic arterial resistance (Ras). The 
hemodynamic model previously published by Rondanina and Bovendeerd adapts vascular 
constriction by trying to maintain homeostatic CO and MAP [30]. Short term CO and arterial 
pressure are generally controlled by peripheral resistance and compliance, LV pumping capacity, 
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and blood volumes which all greatly influence acute LV hypertrophy [39]. Since the baroreceptors 
control sympathetic tone, they lumped together the baroreceptor and autonomic system to 
indirectly control vascular constriction and blood volumes based on changes in CO and MAP. 
Rondanina and Bovendeerd showed that without incorporating any baroreflex information, the 
global average changes in CO and MAP can be matched without the local detail needed from the 
baroreflex system that Beard et al. uses. However, hemodynamic adaptation is affected by 
different systems for short- and long-term scales, and the Rondanina and Bovendeerd 
hemodynamic model cannot differentiate between these scales. This also limits the changes in 
MAP and CO homeostatic setpoints that may occur during forward and reverse modeling of 
cardiac hypertrophy. As a result, we treat the Rondanina and Bovendeerd hemodynamic model 
as only a short-term hemodynamic model and modify their system of ODEs to incorporate 
baroreflex characteristics. We later develop a long-term hemodynamic model in Chapter 3. 

In this chapter, we develop three short-term hemodynamic reflex models that are 
coupled to our rapid-computational model: two physiologically detailed short-term reflex models 
and one phenomenological short-term reflex model. The physiologically detailed short-term 
reflex models use the baroreflex system of ODEs from Beard et al. to compute the short-term 
hemodynamic changes between the baseline and acute states following sudden creation of 
pressure or volume overload in canines. In addition, we modify the rapid-computational model 
so that the circulation system can better reflect the location of the baroreceptors in the carotid 
artery. To build the phenomenological short-term reflex model, we modify the hemodynamic 
model built by Rondanina and Bovendeerd to include a baroreflex component to allow 
specifically for short-term hemodynamic adaptation. The three short-term hemodynamic reflex 
models are compared to determine which approach is better to predict the hemodynamic 
changes necessary to model LV growth using the rapid-computational model.  

 

2.2 METHODS 
 

2.2.1 Rapid-Computational Model of Cardiac Growth and Mechanics 
As previously discussed in section 1.2, our lab previously developed a rapid-

computational model of cardiac growth and mechanics that treats the LV as a thin-walled sphere 
to model cardiac growth during pressure and volume overload [18]. The rapid-computational 
model uses Kerckhoffs growth law where the differences in LV strain between baseline and acute 
states are used to calculate growth in the radial (thickening of the LV wall) and fiber (lengthening 
of the LV wall) directions. To account for hemodynamic loading, the LV and right ventricle are 
connected to a previously published lumped-parameter circulation system [31]. The systemic and 
pulmonary arteries and veins are described by capacitors and resistors (Figure 2.1). Total blood 
volume in the system is split up into unstressed and stressed blood volume (SBV). Unstressed 
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blood volume is the maximum amount of blood that can fit in the system without changing the 
pressure from 0 mmHg. Any blood volume left over is considered the SBV. SBV and systemic 
arterial resistance, Ras, were fitted to match experimental pressure or volume overload data. The 
rapid-computational model was defined by a system of ordinary differential equations for the 
changes in volume of the LV, right ventricle, system arteries and veins, and the pulmonary 
arteries and veins.  

 

2.2.2 Modifying Rapid-Computational Model to Account for Baroreceptor 
Location 
We adapted the previously published rapid-computational model for cardiac growth by 

Witzenburg and Holmes to include the carotid artery baroreceptor response using a system of 
differential equations from Beard et al. [18], [33]. Prior to incorporating the baroreceptor 
response, the method of inducing pressure and volume overload in the rapid-computational 
model had to be changed to account for the location of the baroreceptors. To simulate aortic 
banded pressure overload in canines, the rapid-computational model originally prescribed an 
increase in Ras to increase pressure in the LV. However, baroreceptors are located in the 
ascending aorta, well upstream of the small arterioles that account for most of the resistance in 
the arterial tree. Furthermore, the studies we are using for fitting and validation induce pressure 
overload by banding the ascending aorta [8], [11]. Therefore, to incorporate a baroreceptor 
response into the rapid-computational model, we must simulate pressure overload by 
constricting the ascending aorta rather than the small arterioles so that the carotid artery 
baroreceptors can detect the change in pressure. As a result, to best capture the pressure 
changes detected by the baroreceptors, the rapid-computational model was refitted and 
validated to induce pressure overload by increasing (characteristic systemic resistance) Rcs, 
instead of Ras, from baseline to acute. In our rapid-computational model, Rcs is located before the 
baroreceptors (Figure 2.1). The rapid-computational model was fitted and validated against 
independent canine pressure overload studies [8], [11].  

Additionally, to simulate MR volume overload in canines, the rapid-computational model 
originally prescribed a decrease in mitral valve backflow resistance (MVBR) and an adjustment of 
Ras. Later in this chapter, we discuss that Ras can be adapted using the baroreceptor response, so 
we did not want to prescribe Ras to induce volume overload. We also wanted to prescribe as few 
parameter changes as possible. As a result, we refitted the rapid-computational model to induce 
volume overload by only prescribing a decrease in MVBR. By decreasing MVBR, blood 
regurgitates back in the left atrium causing LV volume overload. The rapid-computational model 
was fitted and validated against independent canine volume overload studies [9], [10]. The 
optimal parameters from fitting the pressure and volume overload cases are shown in Appendix 

Table A.1. The baseline and acute pressure-volume (PV) loops are shown in Appendix Figures 

A.1-2. The results suggest that we obtained similar baseline and acute PV loops to that of 
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Witzenburg and Holmes when refitting the pressure and volume overload simulations. For all the 
pressure and volume overload studies, the growth parameters were not refitted. These versions 
of the rapid-computational model are used for all subsequent simulations in Chapters 2 & 3.  

 

 
Figure 2.1: Depicted is the circuit diagram representation of the lumped parameter system used by the rapid-
computational model [18]. The LV and RV are treated as thin-walled spheres, and the heart valves are represented as 
pressure sensitive diodes (tricuspid, pulmonary, mitral, and aortic valves). The systemic and pulmonary resistances and 
capacitances are represented as resistors and capacitors. Rcs & Rcp: systemic and pulmonary characteristic resistances. 
Ras & Rap: systemic and pulmonary arterial resistances. Rvs & Rvp: systemic and pulmonary venous return resistors. Cas & 
Cap: systemic and pulmonary arterial compliance. Cvs & Cvp: systemic and pulmonary venous compliance. To simulate 
hemodynamic pressure overload, Rcs is increased from the baseline to acute state. To simulate hemodynamic volume 
overload though mitral regurgitation, the mitral valve backflow resistance (MVBR) is decreased from the baseline to 
acute state. Note: when MVBR = ∞, then there is no backflow.  
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2.2.3 Constructing the Physiologically Detailed Short-Term Reflex Model 
2.2.3.1 Baroreceptor Firing and Sympathetic Tone Control  

After modifying the rapid-computational model to account for the baroreceptor location, 
the baroreceptor component from Beard et al.’s hemodynamic model was adapted to create a 
physiologically detailed short-term reflex model that can be coupled the rapid-computational 
model. Beard et al. calculated the baroreceptor afferent firing rate by computing the change in 
aortic strains. We used a similar approach by calculating the maximum stretch systemic arteries, 
λ: 

 

!!" =	$
%!"
%#,!"%

 
Equation 

2.1 

 
where %!" 	is the volume in the systemic arteries at maximum pressure in the arteries and %#,!"% 
is the unstressed blood volume (UBV) in the systemic arteries:  
 

%#,!"% =	
&!"
'&

(')% −	%%!" −	%%#") 
Equation 

2.2 
 
where &!" is the systemic arterial capacitance, '& 	is sum of all capacitances, %%!" 	& %%#" 	are the 
unloaded volumes of the left and right ventricles respectively, and TBV is the total blood volume.. 
TBV is the sum of UBV and SBV of the system. We will assume that at any one point, the ratio of 
UBV to SBV is 85% to 15% [40]. We will also assume that %%!"=%%#". 

Baroreceptor activity is physiologically regulated by changes in stretch of the carotid 
artery [41]. To capture the maximum arterial stretch after each cardiac cycle, we employed a 
moving average stretch for the arteries, !̅(t):  
 

-"
d!̅
d/ = !!" − !̅ 

Equation 
2.3 

 
where -" 		is an adjustable time constant. -" determines the length of the moving average window. 
A saturable relationship is used to calculate the baroreceptor firing rate, 0'(. The firing rate is 
proportional to 1) 	= max5!!" − !̅, 08 [33]:  
 

0'((/) = 	0%9(/)
	1)

	1) +	1%
 

Equation 
2.4 
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Where 0% 	is the adjustable gain parameter, 1% 	is the adjustable saturation constant, and 9(/) 
describes the ratio of baroreceptor afferents that are in an active state. The baroreceptors go 
from active to inactive at a rate proportional to 0'( 	and go to the active state at a constant rate 
[33]:  
 

d9
d/ = ;(1 − 9) − =9

	1)
	1) +	1%

 
Equation 

2.5 
 
where ;	 and =	 are adjustable constants. Beard et al. fitted -", 1%, 0%, ;, and =	 based on 
experimental data of step changes in non-pulsatile carotid sinus pressure and pulsatile aortic 
pressure, and we used identical parameters in our implementation [33], [34], [42]. It is important 
to note that Beard et al. controls the baroreceptors during every step of the cardiac cycle; 
however, to limit computational resources, we controlled the baroreceptors once every cardiac 
cycle. 

We used sympathetic tone, >*+(/), to control the autonomic system based on 
baroreceptor reflex arc [33]:  

 
d>*+
d/ = 	0*+(1 − >*+)5!!" ≠ !̅8 −	0'(>*+ 

Equation 
2.6 

 
where 0*+ 	is an adjustable constant parameter. >*+ has a range from 0 to 1 and at baseline 
>*+(/) = 0.25. When there is a drop in arterial pressure, the sympathetic tone parameter will 
increase towards 1. At baseline, the 0'( 	= 0 because the arterial strain is equal to the moving 
average arterial stretch; therefore, the 5!!" ≠ !̅8 term ensures that at baseline, there is no 
change in >*+. 5!!" ≠ !̅8 returns 1 if !!" is not equal to !̅; otherwise, the expression returns 0.  
 

2.2.3.2 Stress Blood Volume (SBV) and Heart Rate (HR) Adaptation 
SBV, HR, Ras, and MVBR are hemodynamic parameters necessary to run the rapid-

computational model of growth. Ras or MVBR are prescribed to induce pressure or volume 
overload, respectively; thus, it is only necessary to predict SBV and HR. Since SBV reflects vaso- 
and venoconstriction in the rapid-computational model, SBV can be adapted using the 
sympathetic tone determined by the baroreflex. The sympathetic tone of the system helps 
control vaso- and veno-constriction. As a result, SBV and HR were both controlled by the 
sympathetic tone parameter, >*+: 

 

@A =	@A% + @A,(>*+ − 0.25) 
Equation 

2.7 
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E)% = 	E)%% + E)%,(>*+ − 0.25) 
Equation 

2.8 
 
where @A% 	and E)%% are set so that the minimum HR and SBV can go down to a maximum of 
25% lower than the baseline HR and SBV, respectively. @A, 	and E)%,are set so that the maximum 
HR and SBV are set to create upper limits on HR and SBV. At maximal sympathetic tone >*+=1; 
therefore, the upper limit of SBV and HR is the sum of E)%% and 75% of E)%,. The upper limits 
were estimated based on the upper range of HR values in the experimental pressure and volume 
overload datasets [8]–[11] and the upper range of SBV values from Witzenburg and Holmes’ 
rapid-computational model simulations [18]. 
 Equation 2.1 through 2.8 describe the physiologically detailed short-term reflex model.  
 

2.2.3.3 Optional Capacitance Control (Physiologically Detailed Capacitance-Controlled 
Short-Term Reflex Model) 

Equation 2.8 shows that sympathetic tone can be used to regulate short-term SBV. We 
now propose an alternative mechanism to simulate vaso- and venoconstriction by adapting 
systemic arterial capacitance through sympathetic tone. Baretta et al. showed that there is a 
geometric relationship between the resistance and capacitance of a blood vessel [43]:  

 

&!"- =	&!"%(
A!"-
A!"%

)
./
0  

Equation 
2.9 

 
where &!"- 	and A!"- 	are the arterial capacitance and resistance respectively at each time step 
increment F. &!"% 	and A!"% 	are the initial arterial capacitance and resistance, respectively. Since 
systemic arterial resistance is directly related to the sympathetic tone parameter, we adapt A!"-  
using the equation below:  
 

A!"- =	A!"% + A!",(>*+ − 0.25) 
Equation 

2.10 
 
where A!",	 is an arbitrarily set parameter to define help define maximum constriction. When 
capacitance control is used, SBV is kept at baseline throughout the short-term time course. We 
can simulate constriction by adapting Cas or SBV because they both increase mean pressure. By 
increasing SBV, more blood is stressed the mean pressure increases which can simulate 
constriction. By decreasing Cas, we are making the blood vessels in the systemic arteries more 
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compliant which simulates constriction. HR is adapted at the same rate as shown in Equation. 

2.7. 
Equation 2.1-2.7 and Equation 2.9-2.10 describe the physiologically detailed capacitance-

controlled short-term reflex model. 
 

2.2.3.4 Physiologically Detailed Short-Term Reflex Model Fitting and Validation  
The physiologically detailed short-term reflex model was then fitted and validated for 

both pressure and volume overload. For pressure overload, the physiologically detailed short-
term reflex model, coupled to the rapid-computational model, was fitted to match reported 
changes in LV EDV, EDP, end-systolic volume (ESV), and maximum pressure (MaxP) 30 minutes 
after experimental aortic constriction from Sasayama et al. (Appendix B Equation B.1) [8]. After 
fitting, the coupled model was validated using an independent canine aortic constriction study 
by Nagatomo et al. [11]. For volume overload, the coupled model was tuned to match reported 
changes in LV EDP, minimum volume (MinV), MAP, and regurgitant fraction (RF) 30 minutes after 
experimental induction of mitral valve regurgitation (Appendix B Equation B.2) by Kleaveland et 
al. [9]. After fitting, the coupled model was validated against an independent canine mitral valve 
regurgitation study from Nakano et al. [10]. Note that these are the same fitting and validation 
studies used to calibrate the rapid-computational model. Fitting was done using the MATLAB 
2020b fminsearch algorithm [44]. Since the time step, dt, is a known constant, the short-term 
reflex system of ODEs can be solved algebraically without a numerical ODE solver. dt and the 
time between the baseline and acute states determines the number of reflex model iterations. 
Note: the rapid-computational model still uses the Runge-Kutta4 numerical ODE solver. The same 
process was repeated to fit and validate the physiologically detailed capacitance-controlled 
short-term reflex model.  

For both physiologically detailed short-term reflex models, we ran a Monte Carlo 
uniqueness analysis to test the uniqueness of the fitted solution. The fitted parameters were 
varied ±50% 300 times, and the fitting cost function value was recorded.  
 

2.2.4 Constructing the Phenomenological Short-Term Reflex Model 
2.2.4.1 Adapting SBV and Ras 

SBV and Ras are adapted to maintain a homeostatic CO and MAP using a similar 
mechanism as Rondanina and Bovendeerd [30]. A decrease in Ras causes an increase in stroke 
volume; thus, to compensate for a drop in CO, Ras can be decreased to bring CO back up 
(Equation. 2.11). Changes in MAP are inversely related to SBV because a drop in SBV can be 
compensated for an increase in MAP (Equation. 2.12): 

 



 2-21 

1
A;9

d(A;9)
d/ = E&1 , E&1 =

&H − &H234
&H234

∗ !,J
.)$5∗

&1.&1%&'
&1%&'  

Equation 
2.11 

 
1
E)%

d(E)%)
d/ = −E789 , E789 =

KLM −KLM234
KLM234

∗ !0J
.)(5∗

789.789%&'
789%&'  

Equation 
2.12 

 
where &H234 and KLM234 are the homeostatic setpoints for CO and MAP, respectively. For 
short-term reflexes, the homeostatic setpoints are kept at their baseline values. To prevent 
massive changes in SBV and Ras that could cause the rapid-computational model to crash, the 
maximum change in SBV and Ras allowed was ±75% and ±250%, respectively.  

We assume that the body’s reflex system will try to drive CO and MAP back to baseline 
immediately after an intervention but concede that the body may fail to do so because the 
intervention is too drastic. Furthermore, multiple studies have shown that baroreceptor activity 
decreases with sustained increased arterial pressure [34], [42]. Baroreceptors have a direct 
influence on MAP directly and CO indirectly; thus, we added an exponential decay gradually term 
that turns off the baroreceptor response after continued activation at high increased pressure. 
This is an indirect method of the system reaching a new homeostatic setpoint using the 
baroreflex. !, and !0 control the magnitude of baroreceptor deactivation while !: and !/ control 
the rate at which the baroreceptors decay. The decay rate is proportional to the change in either 
CO or MAP [34]. The entire phenomenological short-term reflex model is described by Equation 

2.11 and 2.12. 
 

2.2.4.2 Phenomenological Short-Term Reflex Model Fitting and Validation  
We fitted !/, the decay rate constant for MAP (Equation 2.11), to match canine 

experimental baroreceptor activity from Chapleau et al. [44] for a step pressure increase from 
40mmHg to 90mmHg. The fminsearch optimization algorithm in MATLAB 2021b was used to fit 
!/. 

To our knowledge, the hemodynamic short-term reflex response mechanism for pressure 
and volume overload should physiologically be the same; as a result, we simultaneously matched 
canine experimental data for both types of overloads to fit !,, !:, and !0. We matched EDV, ESV, 
MaxP, EDP, MAP, MinV, and RF from Sasayama et al. and Kleaveland et al. (Appendix C Equation 

C.1) [8], [9]. We simulated 30 minutes of post-intervention hemodynamic reflexes with a time 
step (d/) of 2 minutes. Like before, the reflex system of ODEs was solved without a numerical 
solver because dt is known at each iteration. The rapid-computational model is run at its baseline 
state, and then either aortic constriction or MR is induced by increasing Rcs or decreasing MVBR, 
respectively. Then the phenomenological short-term reflex model was run to compute the acute 
state SBV and Ras, and was fitted using the fmincon optimization algorithm, with a non-negativity 
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constraint, in MATLAB 2021b [45].  The phenomenological short-term reflex model was then 
validated against an independent canine volume overload study by Nakano et al. [10].  

To check the uniqueness of the fitted solution, we ran a Monte Carlo uniqueness analysis 
where !,, !:, and !0 were each randomly varied ±50%. The phenomenological short-term reflex 
model was run at each variation and the cost function (Appendix C Equation C.1) value was 
recorded. 
 

2.2.5 Overview of 3 Different Short-Term Reflex Models 
Figure 2.2 summarizes the 3 different short-term reflex models and how they interact 

with the rapid-computational model.  
 

 
Figure 2.2: Depicted is a high-level overview of how the different short-term reflex models are coupled with the 
rapid-computational model. 

 

2.3 RESULTS  
 

2.3.1 Physiologically Detailed Short-Term Reflex Model Results 
 The LV pressure-volume (PV) loops from the pressure overload fitting simulation are 
shown in Figure 2.3A. The fitted parameters (Appendix Table B.1) were then used in the 
validation study as shown in Figure 2.3B. The simulations were run with and without the reflex 
model. In both the fitting and validations, the results suggest that when no reflexes are used, 
experimental systolic and diastolic pressures were not matched. Using the reflex model, we 
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matched experimental LV pressure and volumes. Since this was a pressure overload study, we 
expect to see an increase in ESP and ESV from baseline to acute which is only apparent when the 
reflex system is used. The results suggest that the physiologically detailed short-term reflex 
model can adapt SBV and HR to match the pressure overload acute state.  
 

A 

 

B 

 
Figure 2.3: Depicted are PV loops for the A: fitting (Sasayama et al. [8]) and B: validation (Nagatomo et al. [11]) 
studies. The baseline loops in gold are before aortic constriction (before Rcs is increased). The dotted lines 
represent the acute state loops (after aortic constriction, after Rcs is increased) when SBV and HR are not adapted 
(kept constant from baseline). The solid represents the acute state loops when the short-term reflex system is 
turned on between the acute and baseline states. Experimental acute state max systolic pressure are shown in A 
and B, while A also shows experimental EDP. Since the experimental volume standard deviations for both pressure 
overload studies are very large, the experimental volumes are not shown in the figures for visualization purposes. 

 
Figure 2.4A shows the growth curves for what happens when we use the physiologically 

detailed short-term reflex model to compute acute state hemodynamics, and then calculate 
growth 10-18 days later (chronic state) using the rapid-computational model. Since the 
physiologically detailed short-term reflex can only predict hemodynamic changes from the 
baseline to acute states, we manually prescribed hemodynamics (Ras and SBV) changes after the 
acute state until the chronic state. Ras and SBV are prescribed after the acute state the same way 
Witzenburg and Holmes originally prescribed them to compute growth (Figure 2.4B) [18]. When 
we do not predict the hemodynamic changes from baseline to acute state (without reflexes), 
then even when manually prescribing hemodynamics after the acute state, we cannot match the 
experimental mean changes in growth as well as we can when predicting the baseline to acute 
hemodynamic changes (with reflexes). Figure 2.4 highlights that hemodynamic changes from 
baseline to acute are very important for computing long-term growth. 
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A 

 

B 

 
Figure 2.4: A: Depicted are growth simulations for the non-capacitance controlled fitting (Sasayama et al.) [8] and 
validation (Nagatomo et al.) [11] as shown in Figure 2.3. The short-term reflex model is used to predict the acute 
state hemodynamics and then growth is computed for the following day using the rapid-computational growth 
model described by Witzenburg and Holmes [18]. B: Depicted are the prescriptions of Ras and SBV after the acute 
state. After the acute state, SBV and HR are kept constant, while Ras changes are manually prescribed based on 
experimental observations. 

 
We also tried to run the physiologically detailed short-term reflex model for volume 

overload simulations; however, the model was not able to converge to a solution. Model 
parameter perturbations always resulted in the rapid-computational model crashing due to large 
changes in SBV and HR. As a result, the Runge-Kutta4 ODE solver in the rapid-computational 
model would crash due to extremely small, even negative, or large LV volumes, and we were not 
able to obtain a solution. 

Figure 2.5 shows the uniqueness test for the fitted solution to the Sasayama et al. 
pressure overload study when using the physiologically detailed short-term reflex model. It is 
evident that we did not obtain a unique solution. When we vary the parameter values, we 
obtained similar solutions especially when the parameter distance is far away from the fitted 
solution.  
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Figure 2.5: A: Monte Carlo parameter uniqueness analysis for the Sasayama et al. pressure overload as shown in 

Figure 2.3A. The fitted parameters in Appendix Table B.1 were randomly varied ±0-50% 300 times. Each time the 
parameters were varied, the short-term reflex model was run and the error from Appendix B Equation B.1 was 
recorded. Data is plotted on a log y-scale and the x-axis displays the mean relative parameter distance to the 
optimal fitted solution. The purple dot is the fitted simulation, and each green dot is a parameter varied 
simulation. 

 
  

2.3.2 Physiologically Detailed Capacitance-Controlled Short-Term Reflex Model 
Next, we ran a version of the physiologically detailed short-term reflex model using 

capacitance-control as described in section 2.2.3.3. In this version, Cas and Ras are adapted based 
on sympathetic tone (determined by the baroreflex), while SBV is not adapted (Equation 2.8 is 
not used). The PV loop results for volume overload are shown in Figure 2.6. Note: volume 
overload study from Nakano et al. was used for fitting the volume overload case using the 
Appendix B Equation B.3 cost function [10]. We were not able to obtain a converged solution for 
the pressure overload because the model would crash due to negative LV volumes during fitting. 
In addition, we tried to run an independent volume overload simulation using the Kleaveland et 
al. study; however, the model would crash due to negative LV volumes. Although we were able 
to fit the physiologically detailed capacitance-controlled short-term reflex model to the Nakano 
et al. volume overload study, the acute state when using the reflex model versus not using the 
reflex are not any better. We got closer to matching EDP using the reflex model, but we were no 
longer able to match peak end systolic LV pressure (Figure 2.6). 
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Figure 2.6: Depicted are PV loops for the capacitance controlled short-term reflex system fitted to Nakano et al. 
[10]. The dotted lines represent the acute state loops (after MR, after MVBR is decreased) when Ras and Cas are 
not adapted (kept constant from baseline). The solid represents the acute state loops when the short-term reflex 
system is turned on between the acute and baseline states. Experimental acute state EDP and max systolic 
pressure are shown in shaded gray regions. Since the experimental volume standard deviations are very large, 
the experimental volumes are not shown in the figures for visualization purposes. 

 
Figure 2.7 shows the uniqueness test for the fitted solution to the Nakano et al. volume 

overload study when using the physiologically detailed capacitance-controlled short-term reflex 
model. It is evident that we did not obtain a unique solution. When we vary the parameter values, 
we observed several similar solutions with different parameter values. 
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Figure 2.7: Depicted is a Monte Carlo sensitivity analysis simulation for the Nakano et al. Volume Overload 
simulation with capacitance control shown in Figure 2.6. The fitted parameters in Appendix Table B.1 were 
randomly varied ±0-50% 1000 times. Each time the parameters were varied, the short-term reflex model was run 
and the error from Appendix B Equation B.3) was recorded. The purple dot is the fitted simulation, and each 
green dot is a parameter varied simulation. Data is plotted on a log y-scale and the x-axis displays the mean 
relative parameter distance to the optimal fitted solution. The purple dot is the fitted simulation, and each green 
dot is a parameter varied simulation. 

 

2.3.3 Phenomenological Short-Term Reflex Model Results  
Our third short-term reflex modeling approach was to use a phenomenological short-

term reflex model as described in section 2.2.4. We first fitted part of the phenomenological 
short-term reflex model to match decay in baroreceptor activity. Figure 2.8 shows the 
baroreceptor response of the phenomenological short-term reflex system fitted against 
experimental baroreceptor activity at an elevated pressure. The decay constant in Equation 2.12 
can capture the decrease in baroreceptor activity during elevated MAP, which is often seen in 
between the baseline and acute states of pressure and volume overload due to the sudden 
intervention. The optimal value for !/ is shown in Appendix C Table C.1. 
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Figure 2.8: Depicted in orange is Equation 2.12 where !) and !* are fitted to match the experimental data from 
Chapleau et al. shown in blue [34]. MAP was elevated from 40 mmHg to 90 mmHg right after time zero and kept 
constant at 90 mmHg for the entire simulation. Note: Equation 2.12 was shifted down by 1 to ensure the output 
started at zero. !) was only fitted to provide a magnitude for fitting !*. !) results from this simulation were not 
used subsequently in the short-term reflex model.  

 
The PV loops from the pressure [8] and volume [9] overload fitting simulation are shown 

in Figure 2.8A, C. The fitted parameters of Equation 2.11 and Equation. 2.12, shown in the green 
column of Appendix Table C.1, were then used in the independent validation study as shown in 
Figure 2.8E. The simulations were run with and without the reflex model to highlight the 
importance of hemodynamic predictions. In the Sasayama et al. pressure overload fit (Figure 

2.8A), we were only able to match the experiment EDP and peak systolic LV pressure when using 
the phenomenological reflex model. In the same fitting study with Kleaveland et al. volume 
overload, we were still able to match the experimental EDP; although, it is evident that the reflex 
and no reflex PV loops are fairly similar in this study. In the Nakano et al. validation, we did not 
match the experimental pressures as well as we would’ve liked to (Figure 2.8E). It is evident that 
the with the phenomenological short-term reflex model, we were able to match EDP; however, 
we overshoot the peak systolic LV pressure.   

In addition to the PV loops shown, the adaptive stimuli (MAP and CO) and adapted 
parameters (SBV and Ras) from the short-term reflex model are shown in Figure 2.7B, D, F. We 
knew experimental acute state MAP for the Kleaveland et al. study, and the phenomenological 
short-term reflex model was able to match the acute state MAP (Figure 2.8D). These figure panels 
show that in each case, the model reached almost steady state stimuli values at the 30-minute 
time point. Since we observed some oscillations in SBV and Ras, we ran the simulations for an 
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additional 50 minutes to verify that there was no change in the hemodynamic predictions, and 
we observed no change.  

To verify the uniqueness of the solution, we ran a Monte Carlo uniqueness analysis, and 
the results are displayed in Figure 2.9. The analysis suggests that the fitted solution is unique 
because no other parameter variation results in the same cost function value. 
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Figure 2.8: Depicted are the PV loops for A: fitting for pressure overload (Sasayama et al. [8])  C: fitting for volume 
overload (Kleaveland et al. [9] E: validation for volume overload (Nakano et al. [10]). The baseline loops in gold 
are before aortic constriction or MR (before Rcs is increased or MVBR is decresaed). The dotted lines represent 
the turned off reflex model acute state loops (after aortic constriction or MR, after Rcs is increased or MVBR is 
decreased) when SBV and Ras are not adapted (kept constant from baseline). The solid represents the acute state 
loops when the short-term reflex system is turned on between the acute and baseline states and SBV and Ras are 
adapted. For A and E, experimental acute stae EDP and max systolic pressure are shown in the gray regions. For 
C, only experimental acute state EDP is shown in the gray region. Since the experimental volume standard 
deviations for all the experimental studies are very large, the experimental volumes are not shown in the figures 
for visualization purposes. Depicted in panels B, D, and F are the time course adaptations of MAP, CO, SBV, and 
Ras while the short-term reflex model is running for its respective simulation. In panel D, we show experimental 
acute state MAP in red because it was measure in the experimental study [9].  
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Figure 2.9: Depicted is a Monte Carlo uniqueness analysis for the fitted Sasayama et al. and Kleaveland et al. 
pressure and volume overload simulations shown in Figure 2.8. The fitted parameters in Appendix Table C.1 (!+, 
!,, and !) ) were randomly varied ±0-50% 500 times. Each time the parameters were varied, the 
phenomenological short-term reflex model was run and the error from Appendix C Equation C.1) was recorded. 
Data is displayed on a log y-scale and the x-axis displays the mean relative parameter distance to the optimal 
fitted solution. The purple dot is the fitted simulation, and each green dot is a parameter varied simulation.  

 

2.4 DISCUSSION  
 

The goal of this chapter was to develop a hemodynamic model that can predict the 
hemodynamic changes immediately following an intervention that causes pressure or volume 
overload in canines. Figure 2.4 highlights the importance short-term hemodynamics play, 
supporting the findings of Witzenburg and Holmes [18]. We were not able to develop a short-
term reflex model that predicted hemodynamics changes and matched experimental data for all 
pressure and volume overload cases; however, each type of short-term reflex model developed 
has unique characteristics that allow it accurately to predict the acute state in different cases.  

The physiologically detailed short-term reflex model can predict hemodynamic changes 
necessary to compute growth for pressure overload only, and this version of the model was 
successfully validated against an independent pressure overload study (Figure 2.3). The 
physiologically detailed capacitance-controlled short-term reflex model was only able to predict 
hemodynamic changes in one volume overload study (Figure 2.6), and we could not validate this 
model with an independent study. Using the two physiologically detailed short-term reflex 
models, we can capture the hemodynamic changes in pressure and volume overload; however, 
we were not able to support the use of different constriction mechanisms for hemodynamic 
reflexes in pressure versus volume overload from the literature. The reflex responding system 
should be the same in pressure and volume overload. The phenomenological short-term reflex 
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model predicted hemodynamic changes in both a pressure and volume using the same set of 
parameters; however, we were not able to fully validate the model against an independent study 
(Figure 2.8). 

For the physiologically detailed short-term reflex model, several assumptions were made 
that may also have contributed to difficulty fitting both pressure and volume overload 
simulations with the same reflex system. Baroreceptors are mechanically sensitive and respond 
to changes in aortic stretch. Beard et al. modeled aortic mechanics to compute aortic stretches; 
however, the rapid-computational model does not have an aortic compartment. Consequently, 
we had to estimate aortic stretches based on arterial volumes (Equation 2.1-2.3) resulting in less 
accurate baroreceptor activity. In addition, adapting SBV was dependent on a maximal SBV and 
that were set based on the mechanics of an average blood vessel which may not be true 
throughout the vasculature.  

For the physiologically detailed capacitance controlled short-term reflex model, we only 
adapted the arterial capacitances and resistances. However, much of the blood volume in the 
vasculature is on the venous side in our system: ~4.5% of the blood is in the systemic arteries and 
~74% of the blood is in the systemic veins. Although the changes in systemic arterial capacitance 
were still large enough to match the acute state for the Nakano et al. study, adapting the venous 
capacitances using the relationship in Equation 2.9 is worthwhile to explore because it may result 
in better acute state predictions for the volume and pressure overload studies we did not match.  

A major challenge of coupling the physiologically detailed short-term reflex model with 
the rapid-computational model was working with two different time scales. Beard et al. originally 
computed baroreceptor activity during each cardiac cycle on the order of seconds [33]. The rapid-
computational model is much more simplified in that it only computes one cardiac cycle for each 
baseline and acute state, and during growth, one cardiac cycle equals one day of growth. When 
constructing the physiologically detailed reflex model, we had to update baroreceptor activity 
only once per cardiac cycle to match the time scale of the rapid-computational model. Since 
baroreceptors respond to changes in arterial stretch very rapidly, we likely did not capture the 
true baroreceptor response in our physiologically detailed short-term reflex model.  

The results from the two physiologically detailed reflex models helped motivate exploring 
and developing the phenomenological reflex model. A simplified hemodynamic model allowed 
us to ignore the difference in time scale because there was no longer a need to compute 
baroreceptor activity in real time.  

For the phenomenological short-term reflex model, we were not able to validate it against 
the Nakano et al. volume overload study. Although we matched EDP, we did worse in matching 
peak systolic LV pressure compared when not using any reflexes. It is important to note that the 
goal of the rapid-computational model in volume overload studies is to compute LV growth. 
Growth during volume overload, eccentric growth, is driven by maximum fiber strain which 
occurs at end diastole [18]. In Figure 2.8, we see that when we use the phenomenological short-
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term reflex model, we obtain larger strains at end diastole indicated by the larger EDV compared 
to when no reflexes are used. Thus, although we overshoot the peak systolic LV pressure, in terms 
of modeling eccentric growth, it is more important for us to match EDP and EDV as accurately as 
possible.  

Prior to settling on a system of ODEs to describe the phenomenological short-term reflex 
system, several variations were explored. Equation 2.11 and 2.12 both contain an exponential 
decay term to describe the decrease in baroreceptor activity when high MAP is sustained for 
extended periods of time [34]. We originally did not include the exponential decay terms, similar 
to how Rondanina and Bovendeerd control SBV and Ras; however, this resulted in large 
magnitude changes in MAP and CO which led to the rapid-computational model crashing due to 
very low or high blood volumes. The exponential decay term allowed large magnitudes to be 
diminished much faster than without the decay term allowing us to reach a solution during fitting. 

We showed that the phenomenological short-term reflex model solution fitted against 
Sasayama et al. and Kleaveland et al. pressure and volume overload studies can be partially 
validated against the Nakano et al. volume overload study. We previously showed that the rapid-
computational model, without a reflex system where hemodynamics are manually prescribed, 
can be validated against the Nagatomo et al. pressure overload study [11]. We tried to validate 
our phenomenological short-term reflex model the against Nagatomo et al. pressure overload, 
but the model would often crash due to negative LV volumes and resistances. We also tried to fit 
against different combinations of the four aforementioned canine studies and validate against 
others; however, the best solution was obtained by fitting simultaneously to Kleaveland et al. 
and Sasayama et al. Appendix Table C.2 shows the cost function errors for each of the fitting and 
validation combinations. During fitting, we restricted the domain of the fitting parameters to try 
to obtain a solution faster. When fitting to Nagatomo et al. or Nakano et al. the optimizer would 
often try to go past either the lower or upper to essentially make the change in SBV or Ras either 
0 or extremely high (parameter values shown in Appendix Table C.1). 
 

2.4.1 Comparing the 3 Short-Term Reflex Models  
Part of our analysis included comparing the results between each of the 3 short-term 

reflex models. We used the physiologically detailed and phenomenological short-term reflex 
models to simulate pressure overload for the Sasayama et al. studies. We used the physiologically 
detailed capacitance-controlled and phenomenological short-term reflex models to simulate 
volume overload for the Nakano et al. studies. We decided to re-plot the results from Figures 

2.3A, 2.6, and 2.8E so that we can see how the different short-term reflex models predicted the 
acute states (Figure 2.10). In addition, we overlayed the results from Appendix A Figures A.1A 

and A.2B to see how the reflex results compare to when we fitted the acute state by manually 
prescribing hemodynamics in the Sasayama et al. and Nakano et al. simulations.  
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When simulating pressure overload for Sasayama et al., the physiologically detailed and 
phenomenological short-term reflex models perform similarly in predicting the acute state 
(Figure 2.10A). This suggests that we can capture the reflex responding system in the Sasayama 
et al. study using both a simplified and detailed model of the baroreceptors. 

In the Nakano et al. volume overload study, we observed that the physiologically 
detailed capacitance-controlled and phenomenological short-term reflex models behave 
differently. The phenomenological model does better at matching EDP but performs worse 
than the capacitance-controlled model when trying to match peak systolic LV pressure. We also 
observed that both the short-term reflex models and the manually fitted hemodynamics 
version all overestimate peak LV systolic pressure. The phenomenological model does better 
than the capacitance-controlled model in predicting the same EDV as the manually fitted 
hemodynamics version. Since the overall goal is to still model LV growth, accurately predicting 
EDV and EDP is vital.  

It is important to note that all 3 short-term reflex models were not verified and validated 
against experimental data in between the baseline and acute states. Our phenomenological 
short-term model predicts several oscillations, between the baseline and acute state, but we 
have no way of verifying this behavior. We also observed that it is difficult to predict HR changes 
from baseline to acute. We originally predicted HR with both the physiologically detailed model 
because we had success in doing so, but the experimental canine studies all reported that HR was 
controlled pharmacologically or electrically paced during the surgery [8]–[11]; thus, we may not 
have been capturing the true physiological reflex response to adapting HR. Exploratory analysis 
of the rapid-computational model suggests that the system is sensitive to HR changes; as a result, 
future work should include trying to better calibrate the model using HR adaptations. 
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Figure 2.10: Depicted are the PV loops from Figures 2.3A, 2.6, and 2.8E overlayed on top of each other for 
Sasyama et al. pressure overload and Nakano et al. volume overload. In both panels, the dotted red loop 
represents the acute state PV loops from Appendix A Figures A.1A and A.2B when we fitted the acute state by 
manually prescribed hemodynamics. This was the original method used by Witzenburg and Holmes [18] to model 
the acute state. In both panels, experimental peak systolic LV pressures and EDP mean ± 1 standard deviation are 
shown by the gray rectangles. Note: as stated in section 2.3, the physiologically detailed short-term reflex model 
was not able to simulate the Nakano et al. study. The capacitance-controlled short-term reflex model was not 
able to simulate the Sasayama et al. study.  

 
We concluded from the Chapter 2 results that we did not develop a short-term reflex 

model that can accurately predict the acute state hemodynamics in all four 4 canine studies 
used by Witzenburg and Holmes to fit and validate the rapid-computational model. However, 
we do show how different levels of physiological detailed in modeling the baroreceptors affects 
predicting the acute state. The phenomenological short-term reflex model did the best out of 
the three short-term reflex models in predicting both pressure and volume overload using the 
same set of parameters. In Chapters 3 and 4, we construct a long-term reflex model and model 
LV growth in humans, respectively. In both those chapters, we use the phenomenological short-
term reflex model for predicting changes in hemodynamics from baseline to acute.  
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3 CHAPTER 3: LONG-TERM REFLEX SYSTEM 
 

3.1 INTRODUCTION 
 
 In Chapter 2, we explored different approaches to modeling the short-term, 
baroreceptor-driven hemodynamics responses that occur immediately following the onset of 
pressure or volume overload. Several studies have shown that hemodynamic adaptations employ 
different physiologic systems depending on the time scale [33], [39], [46]. In Figure 2.4, we had 
to manually prescribed hemodynamic changes after the acute state to accurately predict long-
term LV growth. Rather than manually prescribing hemodynamics, we would like to develop a 
long-term reflex system to predict hemodynamics on the order of days to months after the acute 
state. 

During long-term hemodynamic adaptation, the renin-angiotensin system plays a key role 
in regulating blood volumes throughout the body, while quick short-term baroreflexes play a 
diminished role [33], [39]. The baroreflex system adapts within a couple of hours after a 
circulatory intervention. This adaptation is known as baroreceptor resetting [46], [47]. After the 
baroreceptors reset, blood volume becomes the primary regulator of MAP. Blood volume is 
determined by the kidneys, where arterial pressure and output of salt and water are inversely 
related on the order of hours to days [48]. When MAP gets too high, blood volumes drop because 
the kidneys excrete water and salt; conversely, the kidneys retain water and salt when MAP is 
too low which drives back MAP to normal [39]. On the hormonal scale, renin is released from the 
kidneys when there is decreased blood volumes and/or decreased MAP. Renin cleaves 
angiotensin to angiotensin I which downstream is converted to angiotensin-II which is the 
hormone responsible for vasoconstriction [37].  

In addition, during long-term hemodynamic adaptation, CO starts to play a smaller role in 
the regulation of total peripheral resistance. Tissues tend autoregulate blood flow based on local 
tissue demands. We have seen that total peripheral resistance, analogous to Ras, responds quickly 
to change in CO during an acute change; however, over time, tissue autoregulation is used to 
control local vasculature and total peripheral resistance changes only make a small contribution 
towards bringing back CO to normal [39]. During an acute circulatory change, local blood flow is 
controlled by constricting or dilating blood vessels nearby; however, over the course of weeks, 
structural changes in the blood vessels return the local blood flow towards normal [49], [50].  

Because cardiac growth models aim to capture changes that occur over weeks or months, 
capturing long-term regulation of blood volumes will be important in properly accounting for 
changes in loading of the ventricle. Due to the limited availability of cardiac hypertrophy data 
sets, information about salt-water balances and angiotensin-II activity is sparse in LV pressure 
and volume overload experiments. Consequently, similar to the phenomenological short-term 
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reflex system, we constructed a phenomenological long-term hemodynamic reflex system that 
predicts blood volume changes based directly on MAP. In this chapter, we construct and validate 
a long-term reflex model coupled to the rapid-computational model to regulate SBV based on 
MAP during chronic pressure and volume overload. 
 

3.2 METHODS 
 

3.2.1 Adapting Long-Term SBV 
To mimic the kidney’s regulation of blood volumes using salt and water levels, we adapt 

SBV to simulate changes in blood volume. We relate MAP and SBV below in Equation 3.1: 
 

1
E)%

d(E)%)
d/ =

E789
-;-<=>?

, E789 =
KLM −KLMNNNNNNN234

KLMNNNNNNN234
 

Equation 
3.1 

 
where -;-<=>? is the kidney reflex time constant, and KLMNNNNNNN234 is a moving average MAP 
homeostatic setpoint. The moving average was computed as the mean of the MAP values for the 
past n time steps where n is a customizable time window length. Guyton showed that in a volume 
loading hypertension experiment, MAP approached a new setpoint that was different from 
baseline. They concluded that when the heart is strong enough, it will adapt to pump at higher 
arterial pressures to meet kidney demands [39]. Consequently, we implemented a moving 
average homeostatic MAP that adapts based on a tunable history timeframe. Guyton also 
showed that total peripheral resistance adapted independently of CO over the course of days in 
the same experiment [39]. As a result, we only model blood volume changes through SBV 
adaptation. The time constant -;-<=>? is a fitted parameter that controls the rate at which SBV is 
adapted.  
 

3.2.2 Coupling the Short- and Long-term Reflex Systems 
 The long-term system is coupled to the phenomenological short-term system such that 
the baroreflexes (short-term reflex system) are turned on from baseline to acute, and then the 
short-term reflexes get turned off immediately after computing the acute state. The long-term 
reflexes then turn on from the acute state (after an intervention) until the chronic state (days to 
months after an intervention). The short-term reflex system is turned off after the acute state 
because the baroreceptors reset, and the kidney reflexes take over hemodynamic regulation. The 
coupled reflex model input-output diagram is shown in Figure 3.1. 
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Figure 3.1: Depicted is a high-level overview of the coupled short- and long-term reflex 
system.  

 

3.2.3 Reflex System Fitting and Validation  
The long-term reflex model parameter -;-<=>? was fitted simultaneously to the 

Kleaveland et al. and Sasayama et al. volume and pressure overload studies [8], [9]. We optimized 
-;-<=>? to match experimental EDV, ESV, EDP, MAP, minimum LV volume, and regurgitant 
fraction at day 9 and 18 of growth from Sasayama et al. and month 1 and 3 of growth from 
Kleaveland et al. as described in the Appendix D Equation D.1 cost function. To fit the long-term 
reflex model, the coupled reflex model, shown in Figure 3.1, was run for the corresponding days 
of growth for each study: 18 days for Sasayama et al. and 90 days for Kleaveland et al. The short-
term portion of the coupled reflex model uses the fitted parameters from the phenomenological 
short-reflex model in Chapter 2. After the acute state, the long-term reflex system was turned on 
and SBV was adapted. The moving average window length for KLMNNNNNNN234was set to 10, and the 
long-term reflex model was run for 5 iterations between each rapid-computational model run. 
During growth simulations in the rapid-computational model, each cardiac cycle (i.e., 1 rapid-
computational model iteration) corresponds to one day of growth. As a result, since we run the 
long-term reflex model 5 times between each cardiac cycle, the time for each long-term reflex 
iteration is 0.2 day (4.8 hours). A KLMNNNNNNN234 moving average window length of 10 is equivalent to 
48 hours. Like before, the long-term reflex ODE was solved without a numerical solver because 
d/ is known (d/ was set to 1 which is equivalent to 4.8 hours). Ras, Rcs, and LV elastance are kept 
constant throughout growth (after the acute state). HR was manually prescribed throughout the 
whole simulation based on experimental data. During the volume overload simulation, MVBR 
was manually prescribed throughout growth based on experimental data. Model was fitted using 
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the fmincon algorithm, with a non-negativity constraint in MATLAB2021b [45]. The reflex model 
was then validated against an independent canine volume overload study by Nakano et al. [10].  
 To check the uniqueness of the fitted solution, we ran a parameter sweep where -;-<=>? 
was varied from 1 to 20. The error (cost function value of Appendix Equation D.1) was recorded 
at each variation. We also tested the effect of the moving average window on the fitted solution 
by varying the KLMNNNNNNN234 time window from 1 to 25 when -;-<=>? was kept at its fitted value.  

 

3.3 RESULTS  
 
 The fitting results are shown in Figure 3.2. We compared the chronic growth results to 
experimental data from the respective studies and the previously published growth results from 
using only the rapid-computational growth model (no reflexes). The optimal fitted solution was 
-;-<=>? = 4.7808 = 22.95 hours. In the Kleaveland et al. volume overload study, we see that we 
were able to match maximum LV volume changes, suggesting good predictions of fiber growth. 
In the Sasayama et al. pressure overload study, we were able to match chronic changes in end-
diastolic wall thicknesses (radial growth). Additionally, in the Kleaveland et al. volume overload 
study, we can see in Figure 3.2D that we are better able to match the chronic mean changes in 
aortic pressure compared to the original rapid-computational growth model suggesting that MAP 
is adapting to the correct homeostatic value. In the Kleaveland et al. volume overload study, a 
little bit of fiber growth was observed, and the results from Figure 3.2A,C suggest that we 
underestimate the change in end-diastolic wall thickening.  
 The independent validation results are shown in Figure 3.3. Although we underestimate 
the radial growth, we are still able to match the experimental results for Nakano et al. Similar to 
the original rapid-computational growth model, we are still not able to match the 
experimentally reported steady EDP (Figure 3.3C) and decrease in systolic arterial pressure 
(Figure 3.3D) during chronic growth. In the rapid-computational growth model, SBV and EDP 
are directly correlated. In the growth simulation with the reflex model, we see a gradual 
decrease in SBV which results in a decrease in EDP. 
 The parameter sweep for -;-<=>? shown in Figure 3.4A suggests that the solver found the 
optimal solution. From Figure 3.4B we see that  -;-<=>? had very little effect on EDV, ESV, EDP, 
and maximum LV pressure for pressure overload; however, our ability to match experimental 
data (MAP, EDP, and minimum LV volume) during simulated volume overload was more sensitive 
to changes in  -;-<=>?. In Figure 3.5A, we see the results for the homeostatic moving average 
window length. The best cost function (Appendix D Equation D.1) value is still at a window length 
of 10. During pressure overload only EDP at day 9 and 18 are most sensitive to the window length. 
During volume overload, MAP and minimum LV volume are most sensitive to the window length.  
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Figure 3.2: Depicted are the fitted reflex model simulations for Kleaveland et al. (A-E) and Sasayama et al. (G-L) 
volume and pressure overload, respectively. Original model results depicted by the dotted lines represent the 
from reparametrized rapid-computational reflex model from Appendix Table A.1. During the original model 
growth simulations, after the acute state hemodynamics were manually prescribed. Ras, MVBR (volume overload 
only), and LV elastance were manually prescribed. SBV and Rcs were kept constant. The reflex model results 
(described by Figure 3.1) are shown in the solid-colored lines where hemodynamics are computed during the 
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phenomenological short- and long-term reflex systems. Experimental results are depicted by the black error bars 
(mean ± 1 standard deviation). The baseline state is the time point before day 0 and the acute state is time point 
at day 0. Fg,ff is fiber growth and Fg,rr is radial growth. Fg is the growth tensor.  
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G 

 

 

Figure 3.3: Depicted are the validation reflex model simulations for Nakano et al. (A-G) volume overload. Original 
model results depicted by the dotted lines represent the from reparametrized rapid-computational reflex model 
from Appendix Table A.1. During the original model growth simulations, after the acute state hemodynamics 
were manually prescribed. Ras, MVBR, and LV elastance were manually prescribed. SBV and Rcs were kept 
constant. The reflex model results (described by Figure 3.1) are shown in the solid-colored lines where 
hemodynamics are computed during the phenomenological short- and long-term reflex systems. Experimental 
results are depicted by the black error bars (mean ± 1 standard deviation). The baseline state is the time point 
before day 0 and the acute state is time point at day 0. Fg,ff is fiber growth and Fg,rr is radial growth. Fg is the growth 
tensor. 
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Figure 3.4: A: Depicted is a parameter sweep for the long-term reflex model to test the uniqueness of the solution 
fitted to the Kleaveland et al. and Sasayama et al. studies. The optimized parameter, "-./012, was varied from 1 

to 20, and the cost function (Appendix D Equation D.1) value was recorded as the error. The optimal  "-./012 

(fitted value) is depicted by the vertical dotted line. B: Depicted is a heatmap showing how the experimental data 
we fitted to changes with each	"-./012 variation. The fractional change is shown respect to the fitting criteria 

values at the fitted "-./012 = 4.7808. Notations: PO = Sasayama et al. pressure overload. VO = Kleaveland et al. 

volume overload. 9d = 9-day time point. 18d = 18-day time point. 1m = 1-month time point. 3m = 3-month time 
point.  
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Figure 3.5: A: Depicted is a parameter sweep for the long-term reflex model $%&'''''''345 moving average window 
length for the Kleaveland et al. and Sasayama et al. fitting study. The original window length was set at 10 when 
used for fitting. The window length was varied from 1 to 20 and each time the cost function (Appendix D Equation 
D.1) value was recorded as the error. "-./012 was kept at its fitted value of 4.7808.  B: Depicted is a heatmap 

showing how the experimental data we fitted to changes with each window length variation. The fractional 
change is shown respect to the fitting criteria values at a window length of 10. Notations: PO = Sasayama et al. 
pressure overload. VO = Kleaveland et al. volume overload. 9d = 9-day time point. 18d = 18-day time point. 1m = 
1-month time point. 3m = 3-month time point. 

 

3.4 DISCUSSION 
 
 The goal of Chapter 3 was to develop a long-term reflex model that regulates blood 
volumes based on long-term changes in MAP. Figure 3.3 and Figure 3.4 show that the long-term 
reflex model can capture the necessary changes for SBV in computing fiber growth over the 
course of several days for volume and pressure overload. In all three studies, the long-term reflex 
model accurately predicted the evolution of LV volumes and pressures. There was error in 
predicting LV EDP and systolic arterial pressure in the Nakano et al. study likely because the short-
term errors carried over into the long-term system. We hypothesize that fixing the short-term 
errors in the Nakano et al. study will help the long-term reflex model better predict EDP and 
systolic arterial pressure. We also concluded that the long-term reflex model slightly 
underestimates the changes in end diastolic wall thickening (radial growth). In addition, the 
results show that the coupled reflex model (short-term + long-term reflexes) can capture LV 
growth in pressure and volume overload in canines to similar levels of the original rapid-
computational model where hemodynamics were manually prescribed. 
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 Similar to the original rapid-computational model, we still cannot capture the decrease in 
systolic arterial pressure and no change EDP in the Nakano et al. volume overload study. Although 
these errors may in part to the error in the short-term prediction, Equation 3.1 still cannot 
capture both a decrease in systolic arterial pressure and EDP because when MAP increases, SBV 
will go up resulting in an increased EDP. This scenario highlights that a simplified hemodynamic 
model adjusting blood volumes based only on one input (MAP) may not be sufficient to capture 
the hemodynamic response following volume overload. A more detailed model of the renin-
angiotensin system may be needed to better regulate the long-term changes in blood volume. 
For instance, Beard et al. described long-term hemodynamic regulation using a system of ODEs 
to describe renin-angiotensin activity and neurohumoral control of pressure diuresis/natriuresis 
[33]. 
 Although total peripheral resistance plays a diminished role in long-term regulation of CO, 
CO goes back to its baseline state several days after the acute state, including in volume overload 
[9], [39]. Our long-term reflex system does not try to bring CO down; consequently, we see an 
increase in CO in both volume overload simulations (Figure 3.3F and Figure 3.4G). This suggests 
that we may need to implement a control system to drive back to CO to its baseline state 
independent of Ras. 
 Our long-term reflex model is also limited in the fact that it does not use any hormonal 
inputs to regulate angiotensin-II activity. Estrada et al. previously coupled a cell signaling network 
model to a LV growth model and showed that hormones, in addition to mechanics, play a major 
role in cardiac growth [14]. Hormonal outputs from the cell signaling network can feed into a 
physiologically detailed long-term reflex model to get accurate levels of renin and angiotensin II 
levels to adapt hemodynamics. The cell signaling model already includes angiotensin-II inside its 
network. A reflex model that takes in hormonal inputs can be coupled to the framework 
described by Estrada et al. to further improve long-term hemodynamic predictions. 
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4 CHAPTER 4: CLINICAL MODEL VALIDATION WITH 
MITRACLIP PATIENTS 

 

4.1 INTRODUCTION 
 
 In Chapters 2 and 3, we discussed how various short-term reflex models and a long-term 
reflex model can be used to predict hemodynamic changes after an intervention that causes 
pressure or volume overload in canines. In the earlier chapters, wanted to model forward LV 
growth happening during a diseased state. In Chapter 4, we aim to further validate our coupled 
reflex model (Figure 3.1) against patients who have chronic volume overload but are then treated 
for it. We are now focused on predicting to what extent the existing LV hypertrophy from chronic 
volume overload will reverse after a treatment is prescribed to the patient. We used a dataset 
that consists of patients who have severe or moderate-severe mitral regurgitation (MR) and have 
undergone a treatment known as MitraClip surgery. 
 Moderate and severe MR is becoming more and more prevalent in the aging population 
[51]. Traditionally, to fix the damaged mitral valve leaflets, the patient must undergo surgical 
mitral valve repair/replacement. Surgical mitral valve repair/replacement has improved patient 
symptoms, mortality, and LV geometry; however, many of the patients who have MR cannot 
undergo surgery due to prior comorbidities or because they are deemed to be at prohibitive risk 
for surgery. As a result, patients who have severe mitral regurgitation and cannot have mitral 
valve surgery are now eligible to undergo MitraClip treatment [52]. MitraClip treatment (also 
known as transcatheter mitral valve repair) is a minimally invasive mitral valve repair technique 
where a clip is placed on the mitral valve leaflets to allow them to fully close and prevent 
regurgitation. The MitraClip is delivered via a catheter guided by fluoroscopy and 
transesophageal echocardiography [53].  
 As previously discussed in section 1.1.1, MR often causes volume overload in the heart 
because the mitral valve cannot close properly, causing blood to regurgitate across the valve. 
Thus, the heart must pump a higher volume – the forward stroke volume plus the regurgitant 
volume – with each beat. Volume overload causes eccentric hypertrophy, in which the LV 
diameter increases resulting in larger EDVs. MitraClip treatment has been shown to cause 
reversal of eccentric LV growth because the MR is reduced [54]. Although MitraClip treatment 
has a high success rate of reducing MR severity, subsequent LV remodeling responses among 
patients differ vastly. Different studies report different changes in LV growth identifiers (LV cavity 
diameter, end systolic elastance, EDV, etc.) after clip implantation. For instance, some studies 
report that MitraClip treatment has been shown to significantly reduce LV EDV several months 
after clip implantation [54], [55], while other studies report that there is not a significant change 
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in EDV [56]. Further analysis of these studies suggests a high variability in patient response 
metrics. Therefore, understanding patient-specific responses might help clinicians better gauge 
if MitraClip treatment can improve patient health on an individual basis.  
 There are several variables that influence a patient’s MitraClip outcome, and correlative 
statistical approaches for analyzing MitraClip datasets do not provide enough insight into why an 
individual patient is responding in a particular way. Thus, our goal is to use our computational 
growth and hemodynamic modeling frameworks to model LV growth on a personalized patient 
basis. Our modeling framework allows us to simulate MitraClip implantation in patients before 
they even go into surgery, which could help guide a personalized treatment depending on how 
much reversal of LV growth we see in a patient. In this chapter, we use our coupled rapid-
computational model and reflex model to predict LV growth in individual patients who have 
undergone MitraClip treatment.  

  

4.2 METHODS 
 

4.2.1 Curating the Dataset  
We obtained access to data from MitraClip implantations performed at UVA between 

March 2009 and December 2014. We recorded data for 16 patients consisting of 7 males and 9 
females. Ages ranged from 73 to 92 years old. These patients included 1 Asian, 4 African 
Americans, and 11 Caucasians.  

As described in Table 4.1, patient measurements of interest were recorded at the 
following time points: before MitraClip implantation (pre), immediately after implantation (post), 
1 month after implantation (post 1 month), 6 months after implantation (post 6 months), and 1 
year after implantation (post 1 year). Patients underwent a transthoracic echo (TTE) examination 
at each time point, and LV geometrical measurements were recorded. (Table 4.1). From the TTE, 
we calculated LV EDV and ESV by outlining the LV myocardial wall and using Simpson’s Biplane 
Method [57]. We used the peak of the R-wave from the electrocardiogram (ECG) to estimate end 
diastole and used the TTE frame where the LV diameter was the smallest (about 40% of the QRS 
duration) to estimate end systole. Before MitraClip implantation (pre), we recorded the minimum 
volume rather than the ESV because it was difficult to estimate end systole in patients with severe 
MR.  

To quantify MR, we compute regurgitant fractions (RF) in each of the patients. As 
described later, RF is a vital parameter to prescribe MR in our computational modeling 
framework. RF is defined as the fraction of blood that is flowing backwards into the left atrium 
within each cardiac cycle. From the TTE, we can compute the amount of blood that passes the 
aortic valve and subtract it from the total stroke volume (difference between EDV and ESV) to 
compute the regurgitant volume. The RF calculation is described in Equation 4.1:  
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AO = 	
(PQ% − PE%) − (R%H'@AB)(R%H'&*8)

PQ% − PE%  
Equation 

4.1 
 
where PQ% and PE% are the end diastolic and end systolic volumes, respectively. R%H'@AB is the 
LV outflow tract velocity time integral, and R%H'&*8 is the LV outflow tract cross sectional area. 
Based on the principle of continuity, the product of R%H'@AB and R%H'&*8 is equivalent to the 
stroke volume across the aortic valve [58]. R%H'@AB is computed from pulsed Doppler during TTE 
by integrating the velocity of volume going through the outflow tract below the aortic valve 
respect to time. To compute R%H'&*8, we assume the aortic valve is circular and use the 
following relationship: R%H'&*8 = 0.785 × R%H'<-!4>5>C

:[59].  
Right before the implantation (minutes to hours before) and right after the implantation 

(minutes to hours after), left atrial (LA) and aortic pressure measurements were recorded using 
a pressure catheter. HR was logged at each time point. CO measured using thermodilution was 
recorded before and right after the implantation. Total systemic vascular resistance (TSVR) was 
recorded right after the implantation.   

 
Table 4.1: Depicted below are the patient measurements of interest we recorded. Measurements taken from TTE 
are shown in pink, and all other measurements are shown purple. Note: RF was calculated using TTE 
measurements (Equation. 4.1). Measurements taken at pre from TTE were recorded between 2 months to 1 day 
before surgery depending on the patient. Measurements taken at post from TTE were recorded between hours 
to 1 day after surgery depending on the patient. Pressure, thermodilution, HR, and resistance measurements 
were taken either hours to minutes before surgery (pre) or minutes to hours after surgery (post). HR at post 1 
month, post 6 months, and post 1 year was recorded from the TTE procedure. LV EDV and ESV was mostly 
measured by either the TTE technician, but we measured the volumes when data from the technician was not 
available.  

Measurement 

Time points measurement was recorded  

Pre Post 

Post 1 

Month 

Post 6 

Months 

Post 1 

Year 

LV Interventricular Septum Thickness at 
Diastole (IVSd) 

ü ü ü ü ü 

LV Internal Diameter at Diastole (LVIDd) ü ü ü ü ü 
LV Posterior Wall Thickness at Diastole 

(LVPWd) 
ü ü ü ü ü 

LV Internal Diameter at Systole (LVIDs) ü ü ü ü ü 
LVOT VTI  ü     

LVOT Diameter ü     
Mitral Valve (MV) VTI ü     

MR Effective Regurgitant Orifice Area (EROA) ü     
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MR VTI ü     
LV EDV ü ü ü ü ü 
LV ESV ü ü ü ü ü 

Regurgitant Fraction (RF) ü     

Systolic LA Pressure  ü ü    
Diastolic LA Pressure ü ü    

Systolic Aortic Pressure ü ü    
Diastolic Aortic Pressure ü ü    

Systolic Pulmonary Pressure ü ü    
Diastolic Pulmonary Pressure ü ü    

Thermodilution Cardiac Output (TDCO) ü ü    
Heart Rate (HR) ü ü ü ü ü 

Total Systemic Vascular Resistance (TSVR)  ü    
 

4.2.2 Fitting Baseline State for Patients  
Before modeling LV reverse growth in the MitraClip patients, we fitted the following 

rapid-computational model parameters to match the baseline (diseased) state of each patient: 
baseline SBV and baseline Ras. The goal was to obtain a baseline PV loop at the MR state for each 
patient so that we can later prescribe MitraClip treatment in our model and compute the acute 
state using the phenomenological short-term reflex model.  

To predict patient-specific outcomes for MitraClip patients, we had to recalibrate several 
parameters in the rapid-computational model. Since the lumped parameter circulation system 
was calibrated for canines, we needed to use resistance and capacitance values that reflected 
the human circulation. It was difficult to fit the rapid-computational model circulatory 
parameters for each patient because not enough circulation data was collected during the 
MitraClip procedure. As a result, we adopted resistance and capacitance values from Burkhoff 
and Tyberg who adapted their circulation system for a 75kg male [40]. The circulation parameters 
are shown in Table 4.2.  

Baseline SBV and Ras were fitted for each patient to match his/her EDP, end diastolic 
volume index (EDVI), minimum volume index (minVolI), MAP, regurgitant fraction (RF), and mean 
pulmonary arterial pressure (mPAP) (Cost function was Appendix Equation E.1). LV EDP was not 
directly measured; however, a Wigger’s diagram suggests that systolic left atrial pressure (systolic 
LAP) is a good estimate for LV EDP. We used the fmincon optimization algorithm with a 
nonnegativity constraint for fitting [45]. Since our circulation parameters are originally calibrated 
to a 75 kg male [40], we corrected all LV volumes for body surface area (BSA) to obtain EDVI, 
minVolI, and end systolic volume index (ESVI) (Equation 4.2). 
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R%	%VWXYJ	Z[\J] =
(R%	%VWXYJ)()ELDE;F	4!H>)

)ELI!5->=5
 

Equation 
4.2 

 where LV Volume is the measured volume from TTE, )ELDE;F	4!H> = 1.9 m2, and )ELI!5->=5 is 
the BSA of the patient.  
 In addition to fitting SBV and Ras, several rapid-computational model parameters had to 
be specified for each patient. MVBR was prescribed based on the amount of RF present in each 
patient. We developed a calibration curve by varying MVBR from 0.01 to 4.5 for the canines from 
the Kleaveland et al. and Nakano et al. volume overload studies and computing the resulting RF 
after running the rapid computational model. A power function was fitted to obtain a calibration 
curve that could be used to estimate MVBR to achieve a desired RF (Figure 4.1). 
 

 
Figure 4.1: Depicted are the variations of the MVBR and the resulting regurgitant fractions in the Kleaveland et 
al. and Nakano et al. canine volume overload studies. At each MVBR, the rapid-computational model was run for 
each canine study, and the regurgitant fraction was recorded. A power function was fitted to create a calibration 
curve that inputs regurgitant fraction and outputs MVBR. The function with its fitted parameters is shown in the 
legend.  

 
The rapid-computational model uses 4 parameters to describe the end systolic pressure 

volume relationship (ESPVR) and the end diastolic pressure volume relation (EDPVR): L,  ), 
P4!J, and %%. The ESPVR and EDPVR are shown in Equation 4.3 and 4.4, respectively: 

 

MK* = P4!J(%K* − %%) 
Equation 

4.3 
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MKL = LJ'(@67.@8) − L 
Equation 

4.4 
 
where MK* and MKL are the end systolic and end diastolic pressure, respectively. %K* and %KL are 
the end systolic and end diastolic volume, respectively. L and ) are myocardial material 
parameters that we kept at the same values as Burkhoff and Tyberg. P4!J is the maximum LV 
end systolic elastance, and since we did not have any data about the patient’s LV contractility, 
we kept P4!J at the same value as Burkhoff and Tyberg [40]. We assumed it was same among 
all patients for the baseline state. %% is the unloaded volume in the left ventricle (LV volume when 
MK*	= 0 mmHg). %% was estimated for each patient based on a linear ESPVR assumption (Equation 

4.3). Since we could not obtain patient end systolic pressures (MK*), we estimated MK* based on 
blood pressure cuff (arterial pressures) measurements (Equation. 4.5) as previously described by 
Kelly et al. [60].  
 

MK* =
2M" + M<

3  
Equation 

4.5 
 
where M" and M<  are the systolic and diastolic arterial pressures, respectively. M" and M<  were 
obtained from blood pressure cuff measurements, but systolic and diastolic aortic catheter 
pressure measurements were used when available. Now that we know MK*, we can solve for %% 
in Equation 4.3. HR at the pre time point was prescribed for each patient. All the baseline rapid-
computational model parameters are summarized in Table 4.2. 
 

Table 4.2: Depicted below are a description of the rapid-computational model parameters used to create the baseline 
state for each patient.  

Value Description Source  

Circulation Parameters    
Ras = patient specific Systemic Arterial Resistance  Fitted  
Rap = 0.03 mmHg*s/mL Pulmonary Arterial Resistance Burkhoff and Tyberg [40] 
Rcs = 0.03 mmHg*s/mL Systemic Characteristic Resistance Burkhoff and Tyberg [40] 
Rcp = 0.02 mmHg*s/mL Pulmonary Characteristic Resistance Burkhoff and Tyberg [40] 
Rvs = 0.015 mmHg*s/mL Systemic Venous Resistance Burkhoff and Tyberg [40] 
Rvp = 0.015 mmHg*s/mL Pulmonary Venous Resistance Burkhoff and Tyberg [40] 
Cas = 1.32 mL/mmHg Systemic Arterial Capacitance  Burkhoff and Tyberg [40] 
Cap = 13 mL/mmHg Pulmonary Arterial Capacitance Burkhoff and Tyberg [40] 
Cvs = 70 mL/mmHg Systemic Venous Capacitance  Burkhoff and Tyberg [40] 
Cvp = 8 mL/mmHg Pulmonary Venous Capacitance  Burkhoff and Tyberg [40] 



 4-53 

ESPVR/EDPVR Parameters   
Emax = 3 mmHg/mL LV end systolic elastance Burkhoff and Tyberg [40] 
A = 0.35 mmHg Linear material parameter Burkhoff and Tyberg [40] 
B = 0.033 Exponential material parameter Burkhoff and Tyberg [40] 
V0 = patient specific Unloaded LV Volume  Calculated 
Other Parameters   
Baseline SBV = patient specific Baseline stressed blood volume Fitted 
Baseline HR = patient specific Baseline Heart Rate Patient dataset 

 

4.2.3 Using Rapid-Computational Model and Reflex Model to Predict LV Growth 
After fitting the baseline (diseased) state for each patient, using the rapid-computational 

model, we used our coupled reflex and rapid-computational model to predict LV growth. The 
reflex model, earlier described in Figure 3.1, is the coupled phenomenological short- and long-
term reflex system. The phenomenological short-term reflex system is used to compute 
hemodynamics for the acute (immediately after MitraClip implantation) state, and the long-term 
reflex system is used compute hemodynamics at the post 1 month, 6 months, and 1 year states 
after MitraClip implantation. When the reflex model is coupled to the rapid-computational 
model, we can predict both hemodynamic changes and LV growth for individual MitraClip 
patients.  

The acute state is defined as immediately (hours to 1 day) after MitraClip implantation. 
To simulate MitraClip implantation, we assume there is no more regurgitation; thus, we prescribe 
an MVBR of infinity. After imposing a step change in MVBR, the phenomenological short-term 
reflex model is run until MAP and CO reach steady state to obtain a new acute state SBV and Ras. 
We used the same phenomenological short-term reflex model parameters that were originally 
fitted to Kleaveland et al. and Sasayama et al. Since the phenomenological short-term reflex 
model cannot predict HR, we manually prescribed HR based on the patient’s post time point HR. 
In terms of ESPVR and EDPVR parameters, we kept P4!J constant from baseline to acute.  
Gaemperli et al. did not find a significant difference in LV end systolic elastance before and after 
MitraClip implantation when looking at patients with functional and degenerative MR [56]. We 
assume the ESPVR did not shift from baseline to acute, so we kept %% constant from baseline to 
acute. We also assume that the material properties did not change from baseline to acute; thus, 
we keep L and ) constant at their baseline value.  

After the computing the acute state, we used the long-term reflex model to predict 
hemodynamics necessary for the rapid-computational model to compute growth. Since we do 
not have RF information at the post 1 month, 6 months, and 1 year time points, we assumed that 
there was no MR and prescribe MVBR to be infinity throughout growth. The long-term reflex 
model predicts SBV throughout growth based on MAP (Equation 3.1). We kept Ras constant at its 
acute state value throughout the growth simulation because our long-term reflex model does 
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not adapt Ras. HR was manually prescribed based on post 1 month, 6 month, and 1 year 
recordings using a linear interpolation based on the available data. We used the same long-term 
reflex model parameters that were originally fitted to Kleaveland et al. and Sasayama et al. 
Similar to the canine studies, we ran the long-term reflex model 5 times between each growth 
step. Each rapid-computational model iteration is considered 1 growth step, which simulates 5 
days of growth. We computed initial LV wall volume, a rapid-computational growth model 
parameter, using Appendix Equation E.2. L, ), P4!J, and %% were adapted during growth in the 
rapid-computational model as previously described by Witzenburg and Holmes which was based 
on the fiber and radial growth at every growth step [18] 

We previously modeled forward LV growth because we modeled growth following an 
intervention that induces pressure or volume overload, and we always treated baseline as the 
healthy state of the heart. However, when modeling MitraClip patients, we want to model LV 
growth following an intervention that treats volume overload. Since the baseline state is the 
diseased state of the heart, we are now modeling reverse growth after the acute state because 
the LV is going to reverse grow to return to its healthy state. Yoshida et al. previously modified 
Kerckhoffs strain-based growth law by implementing an evolving homeostatic growth setpoint 
to allow for reversal of growth in a pressure overload study [19]. Oomen et al. later showed that 
the evolving homeostatic growth setpoint in the growth law can be used predict reverse 
remodeling in patients with left bundle branch block [20]. As a result, we used the modified 
growth law to predict reverse growth in MR patients, all of whom have volume overload. We 
used the same evolving homeostatic growth setpoint memory window as Oomen et al. Due to 
time constraints, we only modeled patient specific responses for 3 patients.  
 

4.3 RESULTS 
 

4.3.1 Exploratory MitraClip Dataset Analysis  
Prior to modeling any of the patients, we conducted a simple exploratory analysis of the 

data to identify any trends in key growth metrics. Figure 4.2 shows some of the key changes in 
patient measurements. It is important to note that in our data collection process, we were not 
able to obtain all the measurements necessary to run our modeling framework; thus, we are only 
displaying patients that had enough data to complete the modeling process.  

LV EDVI is an indicator of reduction in LV cavity dilation during reverse eccentric growth. 
In most patients, we see a decrease in EDVI from pre to post, but then see an increase in EDVI 
(Figure 4.2A). This likely suggests that the MitraClip reduced regurgitation at the early time points 
after surgery, but some regurgitation came back at post 6 months and post 1 year.  

In several of the patients, we lacked aortic pressure measurements (Figure 4.2B); 
however, we only needed the MAP at the pre time point to set the initial homeostatic setpoint 
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for the long-term reflex model. In instances where we lack pre aortic pressure measurements, 
we would use blood pressure cuff measurements as a substitute. In most patients, we see an 
acute decrease in systolic LAP immediately after application of the MitraClip; however, in some 
patients, systolic LAP increased from pre to post (Figure 4.2C).  

Although not indicative of volume overload and eccentric growth, we saw several changes 
in LV wall thickness (Figure 4.2D). In the canine studies from Chapters 2 and 3, volume overload 
caused only small changes in wall thickness, whereas in the MitraClip patients, we see changes 
in wall thickness as much as 40%. As expected and similar to EDVI, we see an initial decrease in 
LV cavity diameter (Figure 4.2E), but then an increase at time points after MitraClip implantation.  
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Figure 4.2: A: Depicted are the measured patient end diastolic volume indexes (EDVIs) and end systolic volume 
indexes (ESVIs) at pre, post, post 1 month, post 6 months, and post 1 year. B: Depicted are the measured patient 
systolic and diastolic aortic pressures at pre and post. C: Depicted are the measured systolic and diastolic left 
atrial (LA) pressures pre and post. D: Depicted is LV posterior wall thickness at diastole (LVPWd). E: Depicted is LV 
internal diameter at diastole (LVIDd). In all panels, diastolic measurements are shown in purple and systolic 
measurements are shown in teal. Note: for several patients, not all data was available at all time points.  

 

4.3.2 Patient-Specific Modeling Results 
Figure 4.3 shows the fitted baseline states when running only the rapid-computational 

model and the acute state when the phenomenological short-term reflex model was run for 3 of 
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the patients we modeled. In each of the 3 patients, our model was able to predict the decrease 
in EDVI from baseline to acute; however, we underestimated the magnitude of the decrease in 
EDVI. The limited decrease in EDVI in the model could have been caused by an underestimate of 
the change in SBV or by an inappropriately steep EDPVR. In patients 23 and 35, MAP was 
measured at the post time point in our dataset. We were able to predict the acute state MAP in 
patient 23, but not in patient 35.  

In all three patients, according to the measurements in our dataset, ESVI decreased from 
baseline to acute (Figure 4.3A,C,E), and our model was not able to accurately predict the lower 
ESVI. Since we keep the ESPVR constant from baseline to acute, it was difficult for the model to 
capture the lower ESVI because that would require a left shift of the ESPVR, assuming ESP does 
not drop very low. In all three patients, the model was not able to accurately match the systolic 
arterial pressures. Our model predictions for MAP varied among the 3 patients; as a result, we 
could not reach a conclusion whether our model was able to accurately predict MAP.  
 

A 

 

B 

 
C D 

20 40 60 80 100 120 140 160 180 200 220
Volume (mL)

0

50

100

150

Pr
es

su
re

 (m
m

H
g)

MitraClip Patient 23 Baseline & Acute States

B-
ED

VI

B-
m

in
Vo

l

B-sysLAP

A-
ED

VI

A-
ES

VI

A-sysLAP

Baseline
Acute

0 10 20 30
Reflex Iteration

1360

1380

1400

1420

1440

SB
V 

(m
L)

MitraClip Patient 23 
SBV Reflex Adaptation

0 10 20 30
Reflex Iteration

0.8735

0.8735002

0.8735004

0.8735006

0.8735008

Ra
s 

(-)

MitraClip Patient 23 
Ras Reflex Adaptation

0 10 20 30
Reflex Iteration

75

80

85

90

95

100

105

M
AP

 (m
m

Hg
)

MitraClip Patient 23 
MAP During Reflex Model

0 10 20 30
Reflex Iteration

3

4

5

6

7

Ca
rd

ia
c 

O
ut

pu
t (

L/
m

in
)

MitraClip Patient 23 
CO During Reflex Model



 4-58 

  
E 

 

F 

 
Figure 4.3: Depicted are the PV loops for the 3 patients that we modeled: Patient 23 (Panels A & B), 35 (Panels C 
& D), and 22 (Panels E & F). The fitted baseline state (before MitraClip implantation) PV loop is shown in gray and 
the predicted acute state (after MitraClip implantation) is shown in red. The linear ESPVR and exponential EDPVR 
are shown in the black dotted lines. Baseline minimum LV volume (B-minVol), baseline EDVI (B-EDVI), acute ESVI 
(A-ESVI), and acute EDVI (A-EDVI) are shown as black vertical lines. Baseline and acute systolic left atrial pressure 
(B-sysLAP and A-sysLAP) are shown as black horizontal lines. The right-hand column shows the change in MAP 
and CO and the adaptation of SBV and Ras by the phenomenological short-term reflex model (described by 
Equation 2.11 and 2.12). If patient MAP was available from the dataset, then it is shown as a red asterisk.  

 
 Figures 4.4 shows the LV growth modeling results for patients 23, 35, and 22 when we 
ran the coupled reflex model and rapid-computational model. In the 3 patients, our model 
showed a reversal of growth in the fiber direction (i.e., reversal of eccentric growth) which is 
what we expect after MitraClip implantation. We also expect to see a decrease in maximum LV 
volume (EDVI) at every time point after MitraClip implantation. In the 3 patients, maximum 
volume dropped from baseline to acute, but increased from acute to post 1 month. Our model 
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did not match the maximum volume at the acute state (Figure 4.3); however, the model was able 
to match the maximum LV volume at post 1 month in patients 23 and 22. As a result, the model 
can capture the overall decrease in maximum LV volume from baseline to post 1 month, but the 
model cannot capture the increase in maximum LV volume that is observed from acute to post 1 
month.  
 The growth curves (Figure 4.4A,G,M) in the 3 patients show predicted radial growth; 
however, when we look at the measured patient change in end diastolic thickness (Figure 4.4J,P) 
from our dataset, there is a decrease in end diastolic thickness. According to the growth law we 
used, changes in end systolic strains drive radial growth. From baseline to acute, we saw an 
increase in ESV which resulted in larger end systolic strains, relative to baseline, leading to some 
radial growth. In our rapid-computational growth model, a decrease in ESV tends to produce a 
decrease in end diastolic wall thickness. Thus, we need to better match patient ESVIs to match 
the end diastolic wall thickness. In patient 35, there was an increase in end diastolic thickness 
and our model accurately predicted that there was radial growth; however, the model was not 
able to match the magnitudes of change in end diastolic thickness (Figure 4.4G).   

In patient 23, we matched the post 1 month MAP; however, the reflex model pushes MAP 
higher than it was experimentally observed in the patient at post 1 year. In patients 22 and 35, 
we are not able to match the increase in MAP.  
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Figure 4.4: Depicted are the results from the LV growth simulations for patient 23 (A-F), patient 35 (G-L), and 
patient 22 (M-R) using the coupled reflex model (short-term reflex model + long-term reflex model) and rapid-
computational growth model. A, G, M: Depicted are the radial (Fg,rr) and fiber (Fg,ff) model predictions. Fg is the 
growth tensor. B, H, N: Depicted are the change in the PV loops during growth. The baseline and acute loops are 
shown in gray and red, respectively. The orange to pink gradient shows the PV loops as the heart grows (time 
increase). The gradient goes from 1 day of growth (orange) to 1 year of growth (pink). C-F, I-L, O-R: Depicted in 
these panels are metrics of interest during LV growth. The model prediction is shown in orange and the patient 
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measurements from our dataset are shown in purple. Time point 0 represents the acute state and the time point 
before 0 is the baseline state. 

 
 Since a decrease in maximum volume (analogous to EDVI in these patients) is indicative 
of reversal of eccentric growth, we plotted the change in EDVI respect to baseline for all patients 
to see how our model did (Figure 4.5A). For the post and post 1 month time points, our model 
underestimate EDVI. For two of the patients, the EDVI model prediction error was the smallest 
at post 1 month, and the error tended to be larger at the post time point. This figure highlights 
that we cannot match the magnitude of the change in EDVI for the 3 patients.  
 To simulate a fully prospective patient-specific modeling case, we ran our model without 
prescribing HR at each time point. Since our modeling framework cannot predict HR, we kept HR 
constant. Thus, only the baseline (pre) state is fitted and every post state is a prediction (i.e., no 
parameters were manually prescribed based on post-surgery measurements). The EDVI change 
results are shown in Figure 4.5B. The model predicted very similar EDVIs compared to when HR 
was manually prescribed from the patient measurements. The errors for patients 33 and 23 at 
post 1 month and post 1 year, respectively, are smaller when HR is kept constant. The HR 
constant results suggest that our modeling framework can support prospective patient modeling.  
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Figure 4.5: A: Depicted is a plot of the EDVI change respect to baseline for patients 22 (blue), 23 (purple), and 35 
(red) from the dataset and model predictions when HR was manually prescribed at each time point. B: Depicted 
is a plot of the EDVI change respect to baseline when HR was not prescribed (kept constant) at each time for the 
model (prospective modeling). EDVI change was computed as the difference between baseline (pre) EDVI and 
each post time point divided by the baseline (pre) EDVI. The patient dataset (experimental) values are shown as 
the solid colored circles, and the model predictions are shown as the open colored circles.   

 

4.4 DISCUSSION 
 
 We built a rapid-computational growth and reflex model to prospectively model patient 
specific responses following disease treatment such as MitraClip implantation. The results from 
Figures 4.3 and 4.4 suggest that our modeling framework can predict some reversal of LV growth 
in MitraClip patients but cannot accurately predict the magnitude of the reversal of cavity size. 
In addition, the model cannot capture the changes in end diastolic wall thickening (radial growth). 
Our modeling framework can be further improved to better prospectively model patient specific 
responses post MitraClip treatment.  
 Patient data set analysis and the modeling results suggest that accurately calibrating the 
ESPVR is essential to capturing the baseline and acute state PV loops which is necessary to 
predicting radial growth. In several patients, we see a decrease in ESVI (Figure 4.2), but as shown 
in our 3 patient modeling cases, we cannot capture the small decrease in ESVI. In all the patient 
modeling cases, the model predicts an increase in ESVI which leads to increased radial growth. 
We assume that each patient has the same P4!J; however, patient-specific calibration of P4!J 
may allow us to have a more accurate ESPVR that can capture the small change in ESVI. Chen et 
al. developed a non-invasive method to estimate P4!J based on single heartbeat. They show 
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that P4!J can accurately be estimated using arterial pressures and the ratio of the pre-ejection 
period to the total systolic period derived from the aortic Doppler waveform [61]. Since we have 
access to the TTEs for each patient, future work will include computing a patient specific P4!J. 
Better capturing the systolic LV function at baseline and acute may result in better radial growth 
predictions.  
 In patients 23 and 35, where post 6 month and 1 year follow up data were available, 
respectively, the model had trouble estimating the hemodynamics and growth at those times 
given our MVBR prescription. We assume that MR does not resurface in the patients; however, 
many of the patients we modeled or intend to model are of old age with several complications 
where MR may resurface 6-12 months post-surgery. MR recurrence or other complications may 
explain the late increase in EDVI that our model cannot capture. On the other hand, either the 
growth law or reflex equations may be contributing to an inability of the model to capture the 
later increase in EDVI. We used an evolving growth setpoint history window length based on left 
bundle branch patients calibrated by Oomen et al., but that window might need to be 
recalibrated for this application. In addition, our long-term reflex model controls hemodynamics 
solely on MAP. As earlier described in section 3.1.4, we may need to incorporate a more detailed 
renin-angiotensin reflex system that adapts SBV based on several factors, in addition to MAP, 
and adapts total peripheral resistance. Beard et al. uses a physiologically detailed model of the 
renin-angiotensin system that can be implemented in our modeling framework to better predict 
hemodynamic changes necessary to compute LV growth [33]. 
 In the patients that we modeled, most evidently patients 35 and 22, we see that the 
magnitude of the decrease in EDVI is relatively small because the change in SBV was relatively 
small (Figure 4.3B,D,F). There are likely two possible reasons we are predicting a small decrease 
in EDVI. We assumed that the material parameters, L and ), are the same as what Burkhoff and 
Tyberg used for their patients. However, Burkhoff and Tyberg modeled healthy patients, and we 
modeled patients with dilated LVs due to MR. In dilated LVs, the EDVPR is generally much flatter 
than normal LVs. Patient-specific material parameters would help generate a flatter EDPVR 
resulting in larger baseline EDVIs, smaller acute EDVIs, and lower EDPs, which is what we 
observed in the patient dataset.  
 Another possibility is that we assumed the phenomenological short-term reflex model 
parameters fitted to canines can be used in humans. If !0, the parameter that controls the 
magnitude of SBV change (Equation 2.12), was larger, then we would see a larger decrease in 
SBV for the same increase in MAP. The same can be said about !, because the change in Ras is 
very minimal from baseline to acute even though CO increases by a relatively large amount.  
 To create our calibration curve that converts patient RF to MVBR, we assumed that 
changes in pressure did not affect the conversion. However, flow across the mitral valve is 
affected by resistance and change in pressures during systole and diastole. If any of the patients 
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have very large or small changes in pressures throughout the cardiac cycle, then we would be 
inaccurately prescribing MVBR using our calibration curve. 
 Overall, our modeling framework shows promise for modeling LV growth in MitraClip 
patients; however, further improvements on patient specific parameter estimation and on the 
coupled reflex model is necessary to capture patient specific responses. Future work includes 
modeling all the patients in our dataset. By developing a reflex model that can predict 
hemodynamics necessary for LV growth modeling, we set the framework for expanding our 
modeling framework to guide patient specific therapies in other disease states such as left bundle 
branch block. Oomen et al. previously showed that the rapid-computational model can be used 
to improve cardiac resynchronization therapy, and coupling our reflex model may allow for better 
patient-specific predictions since hemodynamics regulation plays a major role in LV growth [20].  
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5 CHAPTER 5: CONCLUSIONS AND FUTURE DIRECTIONS  
 
 The goal of this thesis was to develop a computational modeling framework to predict 
hemodynamics and LV growth during pressure and volume overload in both canines and humans. 
Our lab and others have shown that accurate hemodynamic predictions are essential for 
modeling LV growth [18], [26], [28], [30]. However, up to this point our computational modeling 
framework has been limited to only retrospective simulations of LV growth due the absence of 
hemodynamic predictions–both short and long-term hemodynamic changes had to be fitted to 
or prescribed from previously recorded experimental data. Therefore, this thesis focused on 
(Chapter 2) modeling the baroreceptors to predict short-term hemodynamic changes, (Chapter 
3) modeling the renin-angiotensin II to predict long-term hemodynamic changes, and (Chapter 
4) using the short- and long-term reflex models coupled to our rapid-computational growth 
model to predict regression of LV hypertrophy in patients who have undergone MitraClip 
treatment. 
 

5.1 SHORT-TERM REFLEX MODELING  
 
 In Chapter 2, we developed and tested three different short-term hemodynamic models 
to predict hemodynamic changes from baseline to acute following the onset of simulated 
pressure or volume overload. The models varied in physiological detail, and we analyzed the pros 
and cons of each modeling approach. We did not develop a short-term hemodynamic model that 
was successfully validated against multiple experimental canine studies for pressure and volume 
overload. However, we did conclude that the phenomenological short-term reflex model 
predicted necessary changes in hemodynamics (via changes in SBV and Ras) to match acute state 
experimental data in one pressure and one volume overload study. 
 For future work, we aim to continue improving both the physiologically detailed and 
phenomenological short-term reflex models to model several pressure and volume overload 
cases. For the phenomenological short-term reflex model, we already showed a simplified system 
can predict short-term hemodynamic changes. The upper and lower bounds we set on SBV, HR, 
and Ras changes were determined based on maximum and minimum values observed in our 
datasets and exploratory analysis with the rapid-computational model. We would like to set the 
bounds on SBV and Ras based on the maximum amount a blood vessel can dilate or constrict. In 
vitro experiments can be conducted to determine these bounds. In addition, we fitted one of the 
exponential decay parameters, !/, to match step changes in MAP; however, we did not fit the 
other exponential decay parameter, !:, to match experimental changes in CO. Since CO is 
determined by HR and stroke volume, we would like to match !: to match experimental studies 
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where HR or stroke volume are controlled, and baroreceptor activity is measured. Since Ras is 
adapted based on CO, a more accurate !: may provide better adaptation of Ras. 

Although we can fine tune the phenomenological short-term reflex model to improve 
predictions in the Nakano et al. and Nagaotmo et al. studies, there is more potential in improving 
the physiologically detailed short-term reflex models. We likely need to find better ways to fit 
the baroreflex parameters originally fitted by Beard et al. A balance between a detailed 
baroreceptor response and minimal ODEs/parameters can be found to best describe the 
necessary hemodynamic adaptation for the rapid-computational growth model. For the 
physiologically detailed capacitance-controlled model, we only adapted the arterial capacitances; 
however, since much of the blood is on the venous side, we would like to adapt venous 
capacitance to simulate constriction. This may allow us to better match the experimental 
pressure and volume overload studies we couldn’t match.  
 

5.2 LONG-TERM REFLEX MODELING 
 
 In Chapter 3, we developed a long-term reflex system that adapts blood volumes based 
on changes in MAP. Compared to manually prescribing hemodynamics throughout growth, the 
model predicted the evolution of LV volumes and pressures. In the Kleaveland et al. study, where 
experimental aortic pressures were available, the model predicted MAP well. In the Nakano et 
al. study, the model had trouble predicting EDP and systolic arterial pressure; however, there 
was error at the acute state that likely contributed to the long-term reflex model predicting the 
pressures accurately. The coupled reflex and rapid-computational model predicted eccentric 
growth well, but had some trouble predicted end diastolic wall thickening (concentric growth).   
 For future work, we aim to develop more physiologically detailed long-term reflex 
systems to run a similar comparison analysis like we did with the short-term reflex models. Beard 
et al. relates the renin-angiotensin II activity and sympathetic tone to adapt peripheral resistance 
through the system [33]. We discussed earlier in section 3.1 that, on the long-term scale, total 
peripheral resistance has small effects on CO [39], and we decided not to adapt Ras in the long-
term reflex model. Total peripheral resistance is still known to change, and Beard et al. adapts 
total peripheral resistance based on angiotensin II and sympathetic tone which is determined by 
a time average arterial pressure. Including this mechanism in our long-term reflex model may 
help better match some of the radial growth that we underestimated in the Sasayama et al. and 
Kleaveland et al. studies. In addition, adapting Ras in the long-term system may help improve 
growth predictions in our Chapter 4 patient study.  
 In our long-term reflex model, we did not model neurohumoral control of pressure 
diuresis/natriuresis. Body-fluid volume is heavily regulated by the pressure-diuresis relationship, 
and we can incorporate it into our system similar to how Beard et al. does it. We can have volume 
leave the system based on urine output that is governed by changes in MAP and the pressure-
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diuresis relationship [33]. This would be an alternative way to control blood volumes compared 
to SBV adaptation. The downside of using more detailed systems like Beard et al. is that we would 
be adding more parameters and complications to the model. Simplified, fast computational 
models are vital in prospective time-sensitive patient modeling [23]. 
 As earlier described in section 3.4, we would like to couple a physiologically detailed long-
term reflex model with Estrada et al’s cell signaling network model. The cell signaling network 
already includes angiotensin-II activity; thus, we can directly couple our reflex model with the cell 
signaling network model to consider hormonal inputs to better predict hemodynamics and 
improve prospective LV growth modeling.  
 

5.3 MITRACLIP PATIENT-SPECIFIC MODELING 
 
 In Chapter 4, we used our coupled reflex and rapid-computational growth model to 
predict patient-specific cardiac reverse growth in patients who underwent MitraClip treatment 
for MR. Following MitraClip implantation, patients are expected to have reversal of eccentric 
growth where LV cavity diameter and EDVI decrease. Our modeling framework was able to 
predict the decrease in EDVI in three patients; however, we were not able to predict the 
magnitude of decrease in EDVI. In addition, we were not able to accurately predict the decrease 
in end-diastolic wall thickening that was observed in these patients. Due to limited clinical data 
availability, we had difficulty prescribing a patient specific ESPVR and EDVPR which likely 
contributed to not fully predicting reversal of radial and fiber growth.  
 As described in section 4.4, we aim to use the single-beat method [61] to estimate LV 
elastance to develop patient specific ESPVRs. A more accurate ESPVR may help us better estimate 
pre and post end systolic volumes. In addition, we aim to create patient specific EDPVRs that 
better match dilated hearts and patient body mass. We can scale the Burkhoff and Tyber EDPVR 
material parameters (L and )) based on each patient’s cardiac geometry using the following 
radiological measurements: end-diastolic wall thickness, LV cavity diameter at end-diastole, and 
body surface area. In our mitral valve disease patients, we would expect that taking these 
measurements into consideration would lead to a ‘flatter’ EDPVR, which would result in smaller 
post EDVIs and larger pre EDVIs. This would result in larger magnitudes of reverse eccentric 
growth, which was observed in the patient dataset. 
 Although we cannot fully match experimental patient data, our modeling efforts highlight 
the potential of prospective patient specific modeling. As observed by the experimental patient 
data (Figure 4.2), patient responses vary on the individual level. Our modeling framework is able 
to predict different degrees of LV growth between individual patients with different changes of 
wall thickness, volumes, and arterial pressures. Our model also outputs PV loops at every step of 
growth for 12 months following MitraClip implantation. PV loops provide vital information about 
cardiac function that cannot be obtained in the clinic without continuous invasive measurements. 
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For example, before patient 23 even receives MitraClip treatment, a clinician may look at the PV 
loops (Figure 4.4B) and suggest a treatment plan for the increase in systolic pressures predicted 
by the model to occur months after surgery. Clinicians can use these detailed predictions to 
create individual treatments for patients that would not have been possible with only clinical 
measurements available.  
 In the future, we aim to expand our reflex and growth modeling framework to include 
hormonal signals. The growth law we used assumes that growth is driven by only mechanics; 
however, Estrada et al. previously showed that hormones play a role in driving concentric LV 
growth. Hormones have been shown to play a role in the progression of volume overload and HF 
[62], and they likely play a role in influencing reversal of eccentric LV growth. A cell signaling 
network model like the one employed in Estrada at al. also includes angiotensin II signaling, thus 
accommodating predicting changes in growth as well as hemodynamics. In addition, coupling our 
reflex and growth framework to a cell signaling network will allow us to simulate medications 
patients may be taking or medications a clinician may want to prescribe. Hormonal changes due 
to medications were overlooked in this thesis when modeling the MitraClip patients. Capturing 
the hormonal changes may allow us to better predict MitraClip patient cardiac conditions months 
after implantation. 
 Overall, this thesis contributed to cardiac growth modeling in pressure and volume 
overload by incorporating reflex systems in the modeling framework. Prospective computational 
models are necessary to create patient-specific treatments, which can help clinicians better treat 
and prevent HF. 
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6 APPENDICES 
6.1 APPENDIX A 

Table A.1: Depicted in the table are the refitted rapid-computational model parameters such that 
pressure overload is induced by increasing Rcs and volume overload is induced by decreasing MVBR. 
Ras is kept constant from baseline to acute. Fitting error is computed based on the cost functions 
described in Witzenburg and Holmes [18] supplementary material. Baseline Rcs is set to 0.023 for 
all simulations.  

 Sasayama et 
al. Pressure 
Overload [8] 

Nagatomo et 
al. Pressure 

Overload[11] 

Kleaveland et 
al. Volume 

Overload [9] 

Nakano et al. 
Volume 

Overload [10] 
Fitted Parameter     

A (mL) 0.3227 0.0688 0.2363 0.0655 
B (mmHg) 0.2322 0.0894 0.1082 0.0895 

V0 (mL) 7.5751 18.4888 14.1098 17.9531 
E (mmHg/mL) 24.8778 11.8049 17.8673 22.4417 
Baseline Ras 

(mmHg * s/mL) 
8.0297 1.5704 2.1027 2.0517 

Baseline SBV 
(mL)  

308.6214 369.6318 369.6616 334.9921 

Acute Rcs (mmHg 
* s/mL) 

0.3562 0.1000 
same as 
baseline 

same as 
baseline 

Acute SBV (mL) 389.1055 440.3870 348.9924 383.2973 
Acute MVBR 

(mmHg * s/mL) 
n/a n/a 

0.8570 
0.1086 

Fitting Error 0.0396 1.206 0.668 4.187 
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A 

 
B 

 
Figure A.1: A: Depicted are the refitted PV loops for Sasayama et al. [8] pressure overload. B: Depicted are the 
refitted PV loops for Nagatomo et al. [11] pressure overload. Experimental data from Sasayama et al. and 
Nagatomo et al are shown in the blue and pink ellipses. Rcs is increased from baseline to acute and Ras is kept 
constant. The dotted PV loops are generated from Witzenburg and Holmes’s [18] original rapid-computational 
model. 
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Figure A.2: A: Depicted are the refitted PV loops for Kleavleand et al. [9] volume overload. B: Depicted are the 
refitted PV loops for Nakano et al. [10] volume overload. Experimental data from Kleaveland et al. and Nakano et 
al are shown in the blue and pink ellipses. MVBR is decreased from baseline to acute and Ras is kept constant. The 
dotted PV loops are generated from Witzenburg and Holmes’s [18] original rapid-computational model. 
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6.2 APPENDIX B 

()*+9:0; = -
./012&<;:=1,	@A54/1B −./012&<;:=1,C<D<2<5<

45./012&<;:=1,C<D<2<5<
6
,

+ -
85&<;:=1,	@A54/1B − 85&<;:=1,C<D<2<5<

4585&<;:=1,C<D<2<5<
6
,

+ -
842<;:=1,	@A54/1B − 842<;:=1,C<D<2<5<

45842<;:=1,C<D<2<5<
6
,

+ -
852<;:=1,	@A54/1B − 852<;:=1,C<D<2<5<

45852<;:=1,C<D<2<5<
6
,

 

Equation 
B.1 

 

()*+9:0; = -
$%&<;:=1,	EA54/1B −$%&<;:=1,FB1<G1B<0/

45$%&<;:=1,FB1<G1B<0/
6
,
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85&<;:=1,EA	54/1B − 85&<;:=1,FB1<G1B<0/

4585&<;:=1,FB1<G1B<0/
6
,

+ -
.9:2<;:=1,	EA54/1B −.9:2<;:=1,FB1<G1B<0/

45.9:2<;:=1,FB1<G1B<0/
6
,

+ -
;<<;:=1,	EA54/1B − ;<<;:=1,FB1<G1B<0/

45;<<;:=1,FB1<G1B<0/
6
,

 

Equation 
B.2 

 

()*+9:0; = -
85&<;:=1,	EA54/1B − 85&<;:=1,H<-<04

4585&<;:=1,H<-<04
6
,

+ -
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45*=*&<;:=1,H<-<04
6
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Equation 
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6
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Equation 
B.4 
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Table B.1: Note: Parameter values that are fitted (when applicable) to match acute state hemodynamics using detailed 
hemodynamic short-term reflex system. Fitting for Sasayama et al. Pressure overload w/out capacitance control is shown 
in blue. Fitting for Nakano et al. Volume Overload w/ Capacitance control is shown in orange. No shading means that the 
same value was used in all simulations.  

Value Description Source  

Time Step   
dt = 1.5 mins   
Baroreceptor Firing   
VU,As0 = 90.5 mL VU,As0 = 97.34 UBV in the systemic arteries Calculated  
Cas = 1.02 Systemic Arterial Capacitance  [18] 
TC = 23.02 Total Capacitance  Calculated  
TBV = 2042.3 mL TBV  = 2241 mL Total Blood Volume  Calculated  
V0LV, V0RV = 7.58 mL V0LV, V0RV = 22 

mL 
Initial Volume in the LV and RV Rcs Induced Pressure 

Overload Rapid-
computational Growth 
Model for Sasayama et al. 
or Nakano et al. 

τS = 120.5 min τS = 150 min Baroreceptor Time Constant  Fitted 
f0 = 299.8*60*τgain min-1 Baroreceptor Gain Constant [33] 
a = 0.0651*60*τgain min-1  Baroreceptor Activation Rate [33] 
b = 0.2004*60*τgain min-1 Baroreceptor Deactivation 

Rate 
[33] 

δ0 = 0.4965*τbaro Baroreceptor Saturation Rate [33] 
τgain = 8.1e-05 τgain = 1.5e-05 Baroreceptor Gain Adjustment 

Factor 
Fitted 

τbaro = 0.01591 τbaro = 0.0474 Baroreceptor Rate and 
Saturation Adjustment Factor  

Fitted 

Sympathetic Tone Control   
fSN = 0.27801 min-1  fSN = 0.0311 

min-1 
Baroreceptor Arc Parameter Fitted 

SBV & HR   
H1 = 110 
beats/min 

H1 = 110 beats/min Adjustable HR Parameter  Calculated  

SBV1 = 400 mL SBV1 = n/a Adjustable SBV Parameter  Calculated  
Ras1 = n/a Ras1 = 4.8875 Adjustable SBV Parameter  Calculated  
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6.3 APPENDIX C 
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6
,

 

Equation 
C.1 

 
Table C.1: Depicted in the table are the high-level short term reflex parameter values when the model was fitted 
to various experimental studies. During fitting, !+and !, were constrained from 0 to 10 and !) was constrained 
from 0.001 to 10 to help speed up fitting. !* was fitted to Chapleau et al. [34] prior to fitting the other parameters 
to the pressure and volume overload studies. The green column shows the best fitting scenario. The cost functions 
for Sasayama et al. and Kleaveland et al. are derived from Appendix Equation C.1. The cost functions for Nakano 
et al. and Nagatomo et al. are shown from Appendix Equation B.3 and Appendix Equation B.4, respectively.  

Parameter 

Experimental Studies Short-Term Reflex Model was Fitted Against 

Sasayama et 
al. [8] 

Pressure 
Overload 

Nagatomo et 
al. [11] 

Pressure 
Overload 

Kleaveland et 
al.  [9] 

Volume 
Overload 

Nakano et al. 
[10] Volume 

Overload 

Sasayama et al. 
[8] + 

Kleaveland et 
al. [9] Pressure 

& Volume 
Overload 

_O 0.9291 4.4361 1.3006 3.3321 1.2364 

_P 0.8358 3.1731 0.7990 10.000 0.7677 

_Q 1.7775 0.0010 2.6479 3.2605 2.6749 

_R 1.1734 
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Table C.2: Depicted in the table are the cost function values when the high-level short term reflex model was 
fitted to and validated against various experimental studies. The cost functions for Sasayama et al. and Kleaveland 
et al. are derived from Appendix Equation C.1. The cost functions for Nakano et al. and Nagatomo et al. are shown 
from Appendix Equation B.3 and Appendix Equation B.4, respectively. A maximum error of 10000 was assigned 
to the cost function when the rapid-computational model crashed, the RK4 solver in the rapid-computational 
model maxed out its iterations, or a negative Ras or SBV was reported.  

 Fitting Studies 

Sasayama 
et al. [8] 
Pressure 
Overload 

Nagatomo 
et al. [11] 
Pressure 
Overload 

Kleaveland 
et al.  [9] 
Volume 
Overload 

Nakano et 
al. [10] 
Volume 
Overload 

Sasayama 
et al. [8] + 
Kleaveland 
et al. [9] 
Pressure & 
Volume 
Overload 

V
al

id
at

io
n 

St
ud

ie
s  

Sasayama et al. [8] 
Pressure Overload 

0.60152 10000 1.3814 10000 0.6089 

Nagatomo et al. 
[11] Pressure 

Overload 
10000 14.0892 10000 10000 10000 

Kleaveland et al.  
[9] Volume 

Overload 
0.15509 2.6678 0.10662 10000 0.12215 

Nakano et al. [10] 
Volume Overload 

8.8086 14.9858 67.5084 2.5849 8.8556 
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6.4 APPENDIX D 

()*+9:0; = -
>/=9_./0&<;:=1,	@A54/1B − >/=9_./0&<;:=1,C<D<2<5<

>/=9_45./0&<;:=1,C<D<2<5<
6
,

+ -
>/=9_85&<;:=1,	@A54/1B − >/=9_85&<;:=1,C<D<2<5<

>/=9_4585&<;:=1,C<D<2<5<
6
,

+ -
>/=9_842<;:=1,	@A54/1B − >/=9_842<;:=1,C<D<2<5<

>/=9_45842<;:=1,C<D<2<5<
6
,

+ -
>/=9_852<;:=1,	@A54/1B − >/=9_852<;:=1,C<D<2<5<

>/=9_45852<;:=1,C<D<2<5<
6
,

+ -
>/=9_./0&<;:=1,	@A54/1B − >/=9_./0&<;:=1,C<D<2<5<

>/=9_45./0&<;:=1,C<D<2<5<
6
,

+ -
>/=18_85&<;:=1,	@A54/1B − >/=18_85&<;:=1,C<D<2<5<

>/=18_4585&<;:=1,C<D<2<5<
6
,

+ -
>/=18_842<;:=1,	@A54/1B − >/=18_842<;:=1,C<D<2<5<

>/=18_45842<;:=1,C<D<2<5<
6
,

+ -
>/=18_852<;:=1,	@A54/1B − >/=18_852<;:=1,C<D<2<5<

>/=18_45852<;:=1,C<D<2<5<
6
,

+	-
.):+ℎ1_$%&<;:=1,	EA54/1B −.):+ℎ1_$%&<;:=1,FB1<G1B<0/

.):+ℎ1_45$%&<;:=1,FB1<G1B<0/
6
,

+ -
.):+ℎ1_85&<;:=1,EA	54/1B −.):+ℎ1_85&<;:=1,FB1<G1B<0/

.):+ℎ1_4585&<;:=1,FB1<G1B<0/
6
,

+ -
.):+ℎ1_.9:2<;:=1,	EA54/1B −.):+ℎ1_.9:2<;:=1,FB1<G1B<0/

.):+ℎ1_45.9:2<;:=1,FB1<G1B<0/
6
,

+	-
.):+ℎ3_$%&<;:=1,	EA54/1B −.):+ℎ3_$%&<;:=1,FB1<G1B<0/

.):+ℎ3_45$%&<;:=1,FB1<G1B<0/
6
,

+ -
.):+ℎ3_85&<;:=1,EA	54/1B −.):+ℎ3_85&<;:=1,FB1<G1B<0/

.):+ℎ3_4585&<;:=1,FB1<G1B<0/
6
,

+ -
.):+ℎ3_.9:2<;:=1,	EA54/1B −.):+ℎ3_.9:2<;:=1,FB1<G1B<0/

.):+ℎ3_45.9:2<;:=1,FB1<G1B<0/
6
,

 

Equation 
D.1 
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6.5 APPENDIX E 
 

()*+9:0; = E85&J<D1B.01,54/1B − 85&J<D1B.01,K<=.10=F
,

+ E852GJ<D1B.01,54/1B − 852GJ<D1B.01,K<=.10=F
,

+ E.9:2)HGJ<D1B.01,54/1B −.9:2)HGJ<D1B.01,K<=.10=F
,

+ E$%&J<D1B.01,54/1B −$%&J<D1B.01,K<=.10=F
,

+ E;<J<D1B.01,54/1B − ;<J<D1B.01,K<=.10=F
,

+ E.I/:&%&J<D1B.01,54/1B −.I/:&%&J<D1B.01,K<=.10=F
,
 

Equation 
E.1 

 

12	J/HH	2)HK.I =
4
3M -N12&J> +	

12G5>
2 P

)

−	N
12G5>
2 P

)

6 
Equation 

E.2 
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