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First Measurement of the Isospin-Dependence of Nuclear Struc-
ture Functions at 12 GeV Jefferson Lab

Cameron William Cotton

(ABSTRACT)

The structure functions of protons and neutrons provide crucial insight into how

the strong nuclear force, as described by Quantum Chromodynamics (QCD), man-

ifests at everyday energies, allowing us to better understand precisely how quarks

and gluons interact to form the basic building blocks of almost all visible mass in our

universe. Despite more than 40 years of experimental and theoretical effort, the EMC

effect – the observation that nuclear structure functions appear to be modified from

those of free nucleons – is still not fully understood. One open question that remains

is whether or not the modification of quark distributions is the same for all quark

flavors. Determining the flavor (isospin) dependence of the EMC effect, which is pre-

dicted by several models, is essential for coming to a complete understanding of how

QCD manifests in nuclei. To this end, inclusive electron Deep Inelastic Scattering

(DIS) from nuclei with approximately constant atomic mass number A and variable

proton-to-neutron ratio N/Z was measured in Jefferson Lab experiment E12-10-008

to look for isospin-dependent modification of nuclear structure functions. The pre-

liminary EMC ratios presented here cover a kinematic range of 2.8 < Q2 < 8.1 GeV2

and 0.18 < xBj < 1.0. The size of the EMC effect in these nuclei is extracted by

calculating the slope of the EMC ratio as a function of Bjorken x (xBj) over the

ranges 0.3 < xBj < 0.6 and 0.3 < xBj < 0.7; these slopes then are compared with

existing world data. Our preliminary results do not appear to indicate significant
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isospin-dependence of the EMC effect, though a more careful study is needed once

all results are confirmed.
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Chapter 1

Introduction

1.1 Overview

In 1983, the European Muon Collaboration (EMC) published results from their muon

scattering measurements on 2H and 56Fe that were conducted at CERN. These results

suggested that the internal structures of protons and neutrons (together referred to

as nucleons) bound in nuclei are different than those of free nucleons [1]. This obser-

vation, now known as the EMC effect, was largely unexpected due to the relatively

small energies that bind nucleons together. Consequently, this effect has been the

subject of significant theoretical and experimental efforts to determine its underlying

cause. Despite this effort, there is still no universally accepted fundamental expla-

nation for the EMC effect. The work described in this dissertation details Jefferson

Lab experiment E12-10-008 [2], which studied the EMC effect across a large number

of nuclei by measuring inclusive electron scattering cross sections.

This dissertation is organized as follows: In Chapter 1 I provide an introduction

to the physics of Deep Inelastic Scattering (DIS) in general, and the EMC effect in

particular, with emphasis on providing brief historical and theoretical backgrounds

for the EMC effect and highlighting several of the key goals of E12-10-008. Chapter 2

describes Jefferson Lab’s Continuous Electron Beam Accelerator Facility (CEBAF),

its experimental Hall C, and the High Momentum Spectrometer (HMS), which were

used to carry out E12-10-008. Chapter 3 presents the data analysis procedure which



2

consists of, but is not limited to, performing detector calibrations, executing Monte

Carlo simulations, and extracting experimental cross sections. Chapter 4 presents a

selection of preliminary results obtained from analysis of the data collected during this

experiment. These include measurements of EMC ratios covering a kinematic range

of 0.18 < xBj < 1.0 and 2.8 < Q2 < 8.1 GeV2 for 2H, 12C, 27Al, 40Ca, 48Ca, 48Ti,
54Fe, 58Ni, 64Ni, and 197Au. These results are then discussed, and several potential

future measurements of the EMC effect are outlined.

1.2 Electron Scattering from Nuclei

Our universe is largely composed of protons and neutrons, which together account

for over 99% of all visible mass. These subatomic particles, together referred to as

“nucleons”, are the building blocks of the atomic nucleus. These nucleons are in turn

composed of even more fundamental particles known as quarks. Quarks possess color

charge as well as conventional electric charge in units of 1/3 of the electron charge.

Color charge is the charge of the strong interaction that binds quarks together into

nucleons, with gluons acting as the force carrier. Unlike photons, which are the

force carriers of the electromagnetic force but do not carry electric charge themselves,

gluons carry color charge. This property of gluons causes the magnitude of the strong

force between a pair of color-charged particles such as quarks to not diminish with

distance like the Coulomb force. Rather, the energy contained in the gluon field

between two color-charged particles continues to increase without leveling off as the

separation increases between them. At some point, the energy contained in the gluon

field becomes so great that a quark-antiquark pair is produced, with each new quark

now pairing with one of the existing quarks. Due to this phenomenon, individual

quarks cannot be observed in isolation under normal conditions, only being accessible
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at very high energy densities such as those present in the early universe or at high-

energy colliders, where quark-gluon plasma (QGP) can be formed. The observation

that quarks cannot be observed in isolation under “normal” conditions is one of the

defining qualitative features of the strong interaction and is often referred to as color

confinement, or simply confinement. Understanding confinement is one of the major

unsolved problems of quantum chromodynamics (QCD), the fundamental theory that

describes the strong interaction. Because of confinement, QCD at lower temperatures

must be studied by looking into nucleons using methods such as muon or electron

scattering.

Leptons, such as electrons and muons, are invaluable tools to study nuclear struc-

ture. As electrically charged point-like particles that do not participate in the strong

interaction, a lepton’s interactions with nucleons and quarks are well described by

quantum electrodynamics (QED) alone. Therefore, a high-energy electron beam such

as the one produced by the Continuous Electron Beam Accelerator Facility (CEBAF)

provides physicists with a surgical way to probe the internal structure of the atomic

nucleus.

In typical electron scattering experiments such as those conducted at CEBAF,

an electron from a high-energy beam interacts with an individual quark, nucleon, or

nucleus in a given target material through the exchange of off-shell (virtual) photons

or Z0 bosons. In semi-inclusive or exclusive scattering experiments, some or all of the

final state particles are measured. This includes the primary electron, the recoiling

nucleus, and any other particles either created in the process or expelled from the nu-

cleus during the interaction. In an inclusive scattering experiment, only the scattered

electron is measured in the final state, effectively integrating over all possible final

states of the recoiling nucleus and any other final state particles. The experiment

discussed here primarily utilizes inclusive scattering measurements, so semi-inclusive
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Figure 1.1: Leading order Feynman diagram for lepton scattering in the lab frame.
Particles are labeled with their 4-vectors in the lab frame, where the target nucleon
is taken to be at rest in the initial state.

and exclusive scattering will not be addressed further.

To the first order, electron scattering is well described by the Single Photon Ex-

change (SPE) approximation as illustrated in Fig. 1.1. The success of this approxi-

mation is due to the relatively weak strength of the electromagnetic (EM) interaction,

which is quantified by the Sommerfeld or fine-structure constant α ≈ 1
137

. This causes

all higher-order Feynman diagrams involving multiple photon exchanges to be heavily

suppressed. Figure 1.1 also shows the momentum 4-vectors for the initial and final

state particles in the lab (target-at-rest) frame. In this frame, the electron initially has

4-momentum k with energy E and 3-momentum k⃗ as it leaves the accelerator track

and approaches the target. The electron then exchanges a virtual photon that has

4-momentum q with energy ν = E −E ′ and 3-momentum q⃗. The final state electron
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then moves off having a 4-momentum given by k′ with energy E ′ and 3-momentum

k⃗′. On the hadronic line of the Feynman diagram, the target nucleon starts at rest

with a 4-momentum given by P , with a 3-momentum of 0⃗, and energy equal to its

rest mass M . The scattering may be elastic, in which case the recoiling hadron stays

intact after the collision, or it may be inelastic, causing the hadron to fragment into

multiple pieces. For the inclusive scattering experiment discussed here, we do not

directly measure the final hadronic state; therefore, hadronic observables will not be

covered in more detail.

Several important Lorentz invariant quantities can be derived from the 4-vectors

shown in Fig. 1.1. First, Q2 is the negative square of the 4-momentum of the ex-

changed virtual photon (Q2 ≡ −q2) and is known as its off-shellness or virtuality.

This quantity is related to the spatial resolution of the interaction. Because Q2 is

related to spacial resolution and quarks are, to the best of our knowledge, point-like

particles with no spacial structure, measured quantities such as quark momentum

distributions exhibit little Q2 dependence above a certain value. This is known as

Bjorken Scaling and will be discussed in more detail later in this chapter. In the lab

frame, Q2 can be calculated using the equation

Q2 = 2EE ′(1− cos(θ)) , (1.1)

where θ is the scattering angle of the beam electron. Another key Lorentz invariant

quantity is W 2, the square of the invariant mass of the final hadronic system, which

includes all final state particles apart from the primary electron. W 2 loosely tells

us whether our electron interacted with an individual quark, nucleon, or the target

nucleus as a whole. It can be calculated using measured quantities from the electron
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Figure 1.2: Leading order Feynman diagram for lepton scattering in the Breit frame.
Particles are labeled with their 4-vectors in the Breit frame where the struck quark p
has 3-momentum of magnitude xP along the z-axis, where x = xBj is the fraction of
the proton’s total momentum carried by the struck quark, P is the total momentum
of the proton, and E is the energy of the quark.

line of the Feynman diagram as

W 2 ≡ (P + q)2 = M2 + 2Mν −Q2. (1.2)

Another reference frame that is useful for extracting meaningful physics quantities

is known as the Breit frame, shown in Fig. 1.2. The Breit frame is the frame of

reference in which the exchanged virtual photon only carries a 3-momentum vector

and does not have any energy. This is a consequence of the exchanged virtual photon

being space-like rather than time-like. Just as there is a rest (0-momentum) frame

for every time-like (Q2 < 0) particle, there is a 0-energy frame for every space-like

(Q2 > 0) particle. In this frame, there is an interesting variable known as Bjorken

x (x or xBj). xBj can be interpreted as the fraction of the total momentum of a
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composite object (such as a nucleon) carried by the struck constituent (such as a

quark) in the Breit frame.

Taking quarks to be point-like particles, the scattering process shown in Fig. 1.2

must be elastic. The equation for xBj can then be derived by first enforcing the elastic

scattering condition

p′2 = (p+ q)2 = p2 + 2p · q −Q2 → Q2 = 2p · q , (1.3)

where where we used p′2 = p2 in the last step, as the invariant mass of the struck quark

is constant. We now compare p · q to xBjP · q, where P is the proton 4-momentum,

E is the energy carried by the quark, and Ep is the total energy of the proton in the

Breit frame:

p · q = (E, 0, 0, xBjP ) · (0, 0, 0,−Q) = xBjPQ, (1.4)

xBjP · q = xBj(EP , 0, 0, P ) · (0, 0, 0,−Q) = xBjPQ. (1.5)

Noting that p · q is equivalent to xBjP · q in the Breit frame, we can insert xBjP · q

into what we found in Eq. 1.3 and solve for xBj:

Q2 = 2xBjP · q → xBj =
Q2

2P · q
. (1.6)

In the fixed-target (lab) frame, this reduces to

xBj =
Q2

2Mν
. (1.7)

In electron scattering experiments such as those carried out at CEBAF, four

unique types of scattering processes are observed: Elastic, Quasielastic, Resonance,

and Deep Inelastic (DIS). Depending on which region of kinematic space (see Fig. 1.3)



8

0.4

0.2

0.0

N
N 2

*

1

∆

*

3.0

2.0

1.0

Constant W

ν

2
Q  (GeV/c)

W = 2 GeV

2

��
��
��

��
��
��

(elastic)

(resonances)

W = M

(quasi−elastic)

Cross section

W = MT

W > 2 GeV

(deep inelastic)

Figure 1.3: Figure from [3]. In arbitrary units, the inclusive electron scattering cross
section parameterized as a function of ν and Q2.

is being probed, one of the four processes will contribute the most to the measured

cross section.

Elastic scattering describes the process in which an incoming electron interacts

with the target nucleus as a whole, resulting in a scattered electron and an intact

nucleus in the final state. This process predominantly occurs at low ν and Q2, where

the exchanged virtual photon does not carry enough energy to kick the bound nucleons

out of the nucleus, and where the spatial resolution of the virtual photon is too coarse

to discern individual nucleons.

On the other hand, quasielastic scattering occurs when the energy carried by

the virtual photon exceeds the nuclear binding energy (but is not enough to put

the nucleon’s wave function into an excited state), allowing it to resolve individual
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nucleons. In this type of scattering, the incoming electron interacts with a nucleon

in the target nucleus, kicking it out and causing the target nucleus to break into two

or more fragments. Because nucleons are not at rest and exhibit significant motion

about the nucleus’s center of mass – known as Fermi Motion – the quasielastic peak

shown in Fig. 1.3 is broadened relative to the elastic peak.

Resonance scattering occurs when the virtual photon transfers enough energy to

an individual quark to put its nucleon’s wave function into an excited state, caus-

ing the original nucleon to become a nuclear resonance. Resonance scattering can be

identified by peaks in the cross section spectrum where the invariant mass of the final

hadronic system is equal to the mass of one of these nuclear resonances (∆, N ∗
1 , N

∗
2 , ...).

These resonance peaks, shown in Fig. 1.3, sit on top of a large non-resonance inelastic

background, which can make them difficult to identify amongst the growing inelastic

cross section at larger W , especially at large Q2. In addition, with only the final

state of the electron measured, it is impossible to tell whether a particular electron

was involved in a resonance or inelastic scattering process. Therefore, measurements

of resonance scattering cross sections need to account for inelastically scattered elec-

trons at the same kinematics, and vice versa. This cross-contamination of different

scattering processes is present for all types of scattering when only inclusive measure-

ments are made, as the final state of the hadronic system is not measured. However,

the kinematic overlap between the resonance and inelastic contributions to the cross

section is particularly significant.

Finally, DIS is typically defined by scattering at W > 2 GeV and Q2 > 1 GeV2. In

this type of scattering, the exchanged virtual photon acts as a probe of the nucleon’s

internal structure, which is composed of partons (quarks and gluons). In this disser-

tation, we will be primarily concerned with quarks as they carry electric charge and

therefore can interact with electrons via the electromagnetic interaction. Due to the
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large energies involved in DIS processes and the fact that the coupling strength of the

strong interaction (αs) decreases as the energy scale of the interaction increases, the

quarks probed in these processes behave almost like free particles. This is a property

of the strong interaction known as asymptotic freedom. Therefore, instead of being

treated as a tightly bound object inside of a nucleon, the quark can be approximated

as being “quasi-free” when dealing with high-energy scattering processes. Without

asymptotic freedom, it would be much more difficult to interpret results from DIS

data. As the focus of this dissertation is the EMC effect - the observation that quark

momentum distributions appear to be modified in the nuclear environment - the

remainder of this dissertation will be predominantly focused on DIS.

1.3 Deep Inelastic Scattering

Before delving further into DIS, it is beneficial to first briefly examine elastic scat-

tering. Elastic scattering can be described in terms of a single degree of freedom.

This means that given the initial state of a system, measuring just one kinematic

parameter in the final state (e.g. θ or E ′) is sufficient to constrain all other final state

parameters. Inclusive DIS is not as simple. Due to the unknown states of quarks in-

side the atomic nucleus, measurement of an additional degree of freedom is required

in order to fully constrain the electron’s final state. From an experimental point of

view, this means that both the electron’s scattering angle θ and energy E ′ must be

measured to constrain all other kinematic parameters (Q2, W 2). The DIS differential

cross section can be written in natural units (h̄ = c = 1) as

d2σ

dΩdE ′ =
4α2E ′2

Q4

[
W2(Q

2, ν) cos2
(
θ

2

)
+ 2W1(Q

2, ν) sin2

(
θ

2

)]
, (1.8)
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where α is the Sommerfeld (fine-structure) constant, and W1(Q
2, ν) and W2(Q

2, ν)

are structure functions that contain information about the structure of the nucleon.

This equation can also be written in terms of the Mott cross section,

(
d2σ

dΩ

)
Mott

=
4α2E ′2 cos2

(
θ
2

)
Q4

, (1.9)

which describes the scattering of relativistic electrons from a point-like and infinitely

heavy target, as

d2σ

dΩdE ′ =

(
d2σ

dΩ

)
Mott

[
W2(Q

2, ν) + 2W1(Q
2, ν) tan2

(
θ

2

)]
. (1.10)

The structure functions W1(Q
2, ν) and W2(Q

2, ν) are commonly replaced by their

dimensionless counterparts

F1(x,Q
2) = MW1(Q

2, ν), and (1.11)

F2(x,Q
2) = νW2(Q

2, ν), (1.12)

which gives us

d2σ

dΩdE ′ =
4α2E ′2

Q4

[
1

ν
F2(x,Q

2) cos2
(
θ

2

)
+

2

M
F1(x,Q

2) sin2

(
θ

2

)]
. (1.13)

As previously mentioned, for scattering in the limit of large ν and Q2, one would

expect that the participating quark can be treated as independent from the rest of

the nucleon during the scattering process due to the large energies involved. This limit

where ν, Q2 → ∞ is known as the Bjorken limit. Therefore, in the Bjorken limit,

we should be able to treat the quark as a “quasi-free” point-like spin 1/2 particle.

It is then interesting to compare Eq. 1.13 to the equation for scattering from an
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independent point-like spin 1/2 particle

d2σ

dΩdE ′ =
4α2E ′2

Q4

[
cos2

(
θ

2

)
+

Q2

2M2
sin2

(
θ

2

)]
δ

(
ν − Q2

2M

)
, (1.14)

where the delta function is introduced due to the differentiation with respect to E ′

and requiring the elastic scattering condition. Comparing Eqs. 1.13 and 1.14 and

writing the delta functions in a more suggestive form, we find for an independent

stationary spin 1/2 particle that the structure functions can be written as

F2 = δ

(
1− Q2

2Mν

)
and (1.15)

2F1 =
Q2

2Mν
δ

(
1− Q2

2Mν

)
. (1.16)

Using Eq. 1.7 to simplify Eqs. 1.15 and 1.16, we find that this “quasi-free” treatment

of quarks allows the structure functions to be parameterized by a single variable,

xBj, rather than by ν and Q2 independently. In this framework, one also finds, for

nucleons composed of spin 1/2 particles, that their F1 and F2 structure functions are

no longer independent. Replacing the mass M of the point-like spin 1/2 particle with

the nucleon mass MN multiplied by the momentum fraction of the quark in the Breit

frame (M → MN ·xBj, which also results in F1 → F1 ·xBj), one finds that the F1 and

F2 structure functions are connected by the Callan-Gross relation,

F2 = 2xBjF1. (1.17)

Early results confirmed these predictions, showing that for a given value of xBj, the F1

and F2 structure functions are nearly constant at large Q2 [4][5] as shown in Fig. 1.4,

a phenomenon known as Bjorken Scaling [6], and that they satisfy the Callan-Gross
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Figure 1.4: Figure from [4]. Measured inelastic cross sections divided by Mott cross
sections for W = 2, W = 3, and W = 3.5 from SLAC, shown alongside elastic
scattering cross sections. The inelastic cross sections show little q2 dependence when
compared with the elastic scattering cross section, serving as evidence of Bjorken
Scaling.

relation. While the scaling is not perfect due to higher-twist effects and the running

strong coupling constant αs(Q
2), these were some of the first pieces of evidence to

support the claim that nucleons are comprised of point-like spin 1/2 quarks.

In the parton model, a nucleon’s structure can be described in terms of the longi-

tudinal momentum distributions of its constituent partons. Therefore, the F1 and F2

structure functions can be decomposed and written in terms of a more fundamental

quantity, parton distribution functions (PDFs). Today, we know that partons can be



14

divided into two categories: electrically charged quarks, and electric charge-neutral

gluons which act as the carriers of the strong force. As the cross section for elec-

tromagnetic scattering scales with the square of a particle’s electric charge, we can

treat the F2 structure function as a simple charge-squared and xBj weighted sum of

individual quark and antiquark PDFs, written as

F2 = xBj

∑
e2q[q(xBj) + q̄(xBj))], (1.18)

where eq is the charge carried by a given quark flavor and q and q̄ are the quark and

anti-quark PDFs, respectively. We can then apply the Callan-Gross relation to find

F1 =
1

2

∑
e2q[q(xBj) + q̄(xBj)]. (1.19)

In preparation for discussing the EMC effect, we will examine how measured

cross sections can be used to compare the structure functions of different nuclei.

Using Eq. 1.13 and denoting the per-nucleon cross section for a given nucleus with A

nucleons to be σAn , we see the ratio of cross sections is given as

σA2

σA1

=
FA2
2

FA1
2

[
1 + 2

νF
A2
1

MF
A2
2

tan2 θ
2

]
[
1 + 2

νF
A1
1

MF
A1
2

tan2 θ
2

] . (1.20)

F1/F2 can be written in terms of the ratio R = σL

σT
, where σL(T ) is the longitudinal

(transverse) virtual photon cross section. We first write the total differential cross

section in terms of the virtual photon cross sections as

d2σ

dΩdE ′ = Γ[σT (xBj, Q
2) + ϵσL(xBj, Q

2)] = ΓσT (xBj, Q
2)[1 + ϵR(xBj, Q

2)], (1.21)
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where Γ is the total flux of virtual photons given by

Γ =
αE ′(W 2 −M2)

4π2Q2ME(1− ϵ)
, (1.22)

and ϵ is the ratio of longitudinal to transversely polarized virtual photons given by

ϵ =
ΓL

ΓT

=

[
1 + 2

(
1 +

ν2

Q2

)
tan2 θ

2

]−1

. (1.23)

Now, we find that the ratio R can be written in terms of F1 and F2 as

R =
σL

σT

=
MF2

νF1

(
1 +

ν2

Q2

)
− 1, therefore (1.24)

νF1

MF2

=
1 + ν2

Q2

R + 1
. (1.25)

Plugging this into 1.20, we find that

σA2

σA1

=
FA2
2 (1 + ϵRA2)(1 + RA1)

FA1
2 (1 + ϵRA1)(1 + RA2)

. (1.26)

This means that the per-nucleon cross section ratio is only dependent upon the struc-

ture function ratio and RA1(2)
. Although studies of the nuclear dependence of R are

still ongoing, early measurements at SLAC [7][8] found R to be the same between

different nuclei within uncertainty. While some recent results have hinted at a pos-

sible nuclear dependence of R [9], no significant deviation has been found in recent

data. Therefore, it has historically been taken that the F2 structure function ratio

can be determined directly from a measurement of the cross section ratio by setting

RA1 = RA2 in Eq. 1.26, giving
σA2

σA1

=
FA2
2

FA1
2

. (1.27)
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Using the Callan-Gross relation, the F1 structure function could just as well be substi-

tuted into this equation in place of F2. However, as can be seen in Eq. 1.13, in fixed-

targets experiments with detectors at far-forward (small) angles, the F2 structure

function contributes significantly more to the measured cross section than F1. There-

fore, the measured cross section ratios in these experiments are generally equated to

the F2 structure function ratio rather than the F1 structure function ratio.

1.4 Discovery of the EMC Effect

In the atomic nucleus, the binding energies of nucleons are typically on the order

of a few MeV and their Fermi momenta are on the order of a few hundred MeV.

Both of these energies are significantly smaller than the typical energies involved in

DIS interactions, with some of the earliest experiments using beams with energies

exceeding 100 GeV. Therefore, neglecting the effects of Fermi motion, one would

expect that the measured structure function of a nucleus could be reasonably well

approximated by the sum of the free structure functions of its constituents, allowing

one to construct the equation

FA
2 = ZF p

2 +NF n
2 , (1.28)

where Z and N are the numbers of protons and neutrons in the nucleus, respectively.

To account for nuclear effects, one can perform a convolution of the Fermi motion of

nucleons with the motion of quarks, described by structure functions. This convo-

lution results in kinematic smearing of the observed structure functions. More con-

cretely, when comparing the per-nucleon structure function of a nucleus with that of

its free counterparts, this kinematic smearing results in a xBj dependent per-nucleon
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Figure 1.5: Figure from [1]. Theoretical predictions for the per-nucleon structure
function ratio between iron and its free constituents due to Fermi motion. The pre-
diction from the few-nucleon-correction model of Frankfurt and Strickman is given
by the dotted line [10]. The prediction from the collective-tube model of Berlad et al.
is given by the dashed line [11]. The solid line gives the prediction from Bodek and
Ritchie [12]. The dot-dashed and triple-dot-dashed lines are also calculations from
Bodek and Ritchie, however, they are not predictions and only serve as a measure of
the sensitivity of their prediction to assumptions that are poorly understood.

cross section ratio shown in Fig. 1.5.

However, when the European Muon Collaboration (EMC) measured 56Fe and 2H

cross sections using their muon beam and took the ratio between the two, they found

that the shape of the per-nucleon cross section distribution was different than pre-

dicted [1]. Instead of finding the per-nucleon cross section ratio to be approximately

unity at low xBj and to gradually rise due to Fermi motion at large xBj, they found

the cross section ratio to be nearly 1.15 around xBj = 0.1 and to decrease linearly up
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Figure 1.6: Figure from [1]. The measured ratio of the per-nucleon structure function
for 56Fe and 2H. The statistical uncertainty is given by the error bars, while the
shaded region indicates systematic uncertainty. Results are corrected for the non-
isoscalarity of 56Fe to account for the difference between F n

2 and F p
2 . This result was

in stark contrast to the theoretical predictions of the day as shown in Fig. 1.5.

to xBj of approximately 0.7, shown in Fig. 1.6.

This phenomenon, today known as the EMC effect, is often characterized by the

approximately linear region of the per-nucleon DIS cross section ratio in the range

0.3 < xBj < 0.7, though the exact limits can vary slightly. In addition, the region of

enhancement of the per-nucleon cross section ratio around xBj ≈ 0.2 is known as the

anti-shadowing region. Although the first results showing the EMC effect were pub-

lished in 1983 and our understanding of nuclear structure has expanded dramatically

over the past four decades, there is still no generally accepted explanation for what

causes the EMC effect.
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To come to a better understanding of the origin of the EMC effect, one can look

at how the size of the EMC effect varies across different nuclei. The most commonly

used metric to quantify the magnitude of the EMC effect is the “EMC slope”. This

is defined as the magnitude of the slope of the per-nucleon DIS cross section ratio

roughly in the range 0.3 < xBj < 0.7, written as |dREMC/dx|. This definition relies

on the fact that the shape of the EMC effect is the same across all nuclei and that

the slope in this range is relatively constant for a given nucleus.

1.5 Previous Measurements

Since the discovery of the EMC effect in 1983, a number of additional experiments

have been performed to verify and expand upon the original measurement. This

section will provide an overview of several of these experiments and discuss some of

the impact they had on our understanding of nuclear structure and the EMC effect.

1.5.1 European Muon Collaboration

Following up on their 1983 publication, in 1988 the European Muon Collaboration

published new results, shown in Fig. 1.7, for the per-nucleon cross section ratio of

three additional nuclei: C, Cu, and Sn [13]. This experiment collected data covering

a kinematic range of 5 < Q2 < 35 GeV2 and 0.03 < xBj < 0.7 and confirmed the

result from the 1983 paper that nucleon structure functions in nuclei differ from those

of free nucleons. However, in (slight) tension with the 1983 paper, but in agreement

with results since then, they found a smaller enhancement of the per-nucleon cross

section in the anti-shadowing region. In addition, by collecting data at kinematics

extending all the way down to xBj = 0.03, they found that the cross section ratio

falls below unity for xBj ≲ 0.05, a phenomenon known as shadowing. The shadowing
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Figure 1.7: Figure from [13]. Measurements of the structure function ratio for Sn, Cu,
and C are shown with statistical (inner bars) and total uncertainties. For all nuclei,
there is a clear suppression of the structure function ratio at small xBj. This effect
is most prominent for Sn, the largest nucleus studied. This supports the hypothesis
that this effect is due to shadowing, as the ratio of inner nucleons to surface nucleons
increases with the size of the nucleus.

effect at low xBj is most prominent in large nuclei, where the outer nucleons act as a

shield for the inner nucleons. This causes a relative drop in the cross section due to

the inner nucleons being in the “shadow” of the dense sea quark distributions at low

xBj of the outer nucleons. Because this experiment was conducted at Q2 > 5 GeV2,

this result suggested that the observed shadowing was due to partons as opposed to

nucleons as a whole. The tension between these results and results from their 1983

paper at low xBj is commonly attributed to uncertainties in the radiative corrections

procedure used in the analysis of the data published in 1983.
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1.5.2 BCDMS

Only two years after the discovery of the EMC effect in 1983, the BCDMS collabora-

tion published structure function ratios from their own deep inelastic muon scattering

experiment [14]. They measured 2H, N, and Fe cross sections with a kinematic cov-

erage of 26 < Q2 < 200 GeV2 and 0.2 < xBj < 0.7 for N and 46 < Q2 < 200 GeV2

and 0.08 < xBj < 0.7 for Fe. They built upon the original result as they were able to

put more precise systematic constraints on their data. Shadowing at low xBj was ob-

served, and the structure function ratios showed no Q2 dependence over the kinematic

range studied.

1.5.3 New Muon Collaboration

In many experiments studying the EMC effect, the 2H cross section is used in the

denominator of the EMC ratio in place of the free proton and neutrons cross sections.

This is primarily because free neutrons are unstable and therefore difficult to measure

in isolation. To work around this experimental difficulty, 2H is used because, as a

weakly bound nuclear system, its constituent nucleons can be treated as quasi-free.

However, as weakly bound as 2H is, its cross section is still slightly different than

the sum of its constituents due to nuclear effects. To quantify this difference, the

New Muon Collaboration measured F d
2 /F

p
2 , the ratio of the deuteron and proton

structure function [15]. This was then used to perform a model-dependent extraction

of the ratio of proton and neutron structure functions F n
2 /F

p
2 , a quantity that must

be known to high precision to study non-isoscalar nuclei which is discussed further in

Sec. 3.17. Using muon beams with energies of 90, 120, 200, and 280 GeV, their data

covered a wide kinematic range from 0.2 < Q2 < 245 GeV2 and 0.001 < xBj < 0.8. In

their analysis, they did not observe any shadowing in the ratio of F n
2 /F

p
2 . In addition,
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they found no Q2 dependence of F n
2 /F

p
2 at small xBj and a small Q2 dependence of

F n
2 /F

p
2 at large xBj.

Along with their measurement of F n
2 /F

p
2 , the New Muon Collaboration conducted

several experiments to measure the structure function ratios of other nuclei. They

first published the structure function ratios FHe
2 /FD

2 , FC
2 /F

D
2 , and FCa

2 /FD
2 covering

the kinematic range 0.0035 < x < 0.65 and 0.5 < Q2 < 90 GeV2 using a 200 GeV

muon beam [16]. Shortly thereafter, they published the structure function ratios

FC
2 /F

Li
2 , FCa

2 /F Li
2 , and FCa

2 /FC
2 covering the kinematic range 0.0085 < x < 0.6 and

0.8 < Q2 < 17 GeV2 utilizing a 90 GeV muon beam [17]. These datasets were later

reanalyzed to apply corrections for the 2H target masses and to improve radiative

corrections [18]. While both of these experiments collected data covering significant

portions of the nominal EMC effect kinematic region (0.3 < xBj < 0.7), the precision

of the data in this region was limited.

An additional study was conducted with seven different nuclear targets, covering

a kinematic range of 2 < Q2 < 70 GeV2 and 0.01 < xBj < 0.8 using a 200 GeV

muon beam [19] to investigate the kinematic and A dependence of nuclear structure

functions. They found that the structure function ratio had a universal qualitative

dependence on xBj for all nuclei studied. Their results also showed that nuclear

shadowing scales with A, as previously observed.

1.5.4 SLAC

In response to the observation of the nuclear dependence of structure functions by

the European Muon Collaboration in 1983, an analysis of existing DIS data collected

at SLAC was performed to extract cross section ratios of Al and Fe (steel) to 2H [20]

[21]. The existing data was collected using an electron beam with energies between
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4.5 and 20 GeV. These measurements, which had a Q2 coverage of 2 < Q2 < 20 for

aluminum and 3 < Q2 < 20 for iron, were found to be in good agreement with the

EMC results. This served as a test of the Q2 dependence of the EMC effect and as a

high-precision validation of the original observation of the EMC collaboration.

A dedicated measurement of the A-dependence of the EMC effect was then per-

formed at SLAC with experiment E139. Preliminary results were reported in 1984

[22], with final results later published that included an improved radiative corrections

procedure [23]. To study the A-dependence of the EMC effect, E139 measured DIS

cross sections of nine different nuclei including 2H, 4He, Ag, and Au. These cross sec-

tions were measured using an electron beam with energies between 8 and 24.5 GeV

and covered a wide kinematic range of 0.089 < xBj < 0.8 and 2 < Q2 < 15 GeV2.

Unlike other measurements at the time, this dataset included high-precision measure-

ments of cross section ratios at large xBj, where the effects of Fermi motion have the

largest impact. In agreement with previous measurements, the size of the EMC effect

was found to scale approximately logarithmically with A, with the exception of 4He.

1.5.5 HERMES

The HERMES collaboration at DESY used a 27.5 GeV positron beam to measure DIS

cross section ratios of 3He, 14N, and 84Kr with respect to 2H covering the kinematic

range of 0.010 < xBj < 0.65 and 0.5 < Q2 < 15 GeV2 [24] [25]. The first published

cross section ratios appeared to suggest a nuclear dependence of R, the ratio of the

cross sections of longitudinal and transverse photons. However, upon further analysis,

it was found that the apparent nuclear dependence of R was in fact due to previously

unrecognized instrumental and radiative effects. Accounting for these effects, the

corrected results were consistent with R having no nuclear dependence.
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1.5.6 Jefferson Lab

Several key experiments probing nuclear structure functions have been performed

utilizing the high-luminosity electron beam at Jefferson Lab. Experiment E89-008

measured cross section ratios of C, Fe, and Au to 2H in the resonance region (1.2 <

W 2 < 3 and Q2 ≈ 4 GeV2) [26], allowing for comparison with existing measurements

of cross section ratios in the DIS region. The measured cross section ratios were

parameterized in terms of the Nachtmann variable ξ, given by

ξ =
2xBj

1 +
√

1 + 4M2x2
Bj/Q

2
. (1.29)

ξ was used as opposed to xBj to account for target mass corrections at finite Q2. Note

that, in the Bjorken limit (Q2 → ∞), the Nachtmann variable ξ reduces to xBj. It was

found that the measured cross section ratios from the lower-energy resonance data

were consistent with existing higher-energy DIS data as shown in Fig. 1.8, indicating

that the nuclear effects are the same in both kinematic regions. This observation can

be understood through the lens of quark-hadron duality, where structure functions in

both the resonance and DIS regions exhibit the same behavior in perturbative QCD.

Experiment E03-103 at Jefferson Lab measured the EMC effect in 3He, 4He, Be,

C, Cu, and Au in the range 0.3 < xBj < 0.9 and Q2 ≈ 3–6 GeV2 [29] [30]. This

experiment placed particular emphasis on light nuclear targets (A<12), for which little

experimental data were available at the time. Light nuclear targets are of particular

interest as they are more amenable to comparison with theoretical calculations due

to having fewer constituent nucleons and the availability of “exact” Green’s Function

Monte Carlo (GFMC) calculations. In addition, due to the lack of available precision

data, it was unknown whether the shape of the EMC effect would be the same in
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Figure 1.8: Figure from [26]. Isoscaler corrected per-nucleon cross section ratios
as a function of the Nachtmann variable ξ. Cross section ratios measured in the
resonance region at Jefferson Lab (red circles) [26] are shown alongside DIS results
from SLAC E139 (blue diamonds) [23], SLAC E87 (magenta crosses) [20], BCDMS
(green squares) [27], and an updated version of the calculations from Ref. [28] which
include the contributions of nuclear binding effects on nuclear structure functions (red
curves).

light nuclei as it was in heavier nuclei. Also, due to the complex relationship between

nuclear mass and nuclear density (ρ) in light nuclei, mass and density-dependent

fits to the EMC effect make markedly different predictions for the magnitude of

nuclear modification in these nuclei. For example, despite having three times as

many nucleons, 9Be has an average nuclear density similar to that of 3He. For these

reasons, light nuclei provided a particularly enticing environment in which to make

new measurements of the EMC effect.
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Figure 1.9: Figure from [29]. Results for the size of the EMC effect in the nuclei
studied in experiment E03-103. The large EMC effect in 9Be compared to 3He and
4He suggested that the EMC effect may be driven by local nuclear density as opposed
to average nuclear density.

It was found that neither mass nor average density dependent fits could describe

the data, particularly due to 9Be which, despite having a lower average density, was

found to have a larger EMC effect than 4He as shown in Fig. 1.9. One possible

explanation of the 9Be data is that the EMC effect is driven by local density rather

than average density. Because 9Be can be viewed as a pair of dense α particles with

one additional neutron, the density “seen” by the average nucleon is much greater

than the average density of the entire nucleus due to the empty space between the

alpha clusters. Therefore, these results for the EMC effect in light nuclei are consistent

with the hypothesis that the EMC effect scales with local density rather than average

density.

As data for this experiment was collected at lower energies than previous exper-

iments, several measurements were made at different Q2 values to verify that the

results were Q2 independent. As shown in Fig. 1.10, no systematic Q2 dependence
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Figure 1.10: Figure from [29]. Carbon EMC Ratios for the 5 highest Q2 bins from
experiment E03-103. For Q2 > 4 GeV2, no Q2 dependence was observed.

was found in the highest Q2 data taken. However, Q2 dependence was observed for

settings where Q2 was below approximately 3 GeV2 and xBj > 0.6. These kinematics

correspond to values of W 2 below 2− 3 GeV2, where contributions due to resonances

become significant.

The commissioning run of experiment E12-10-008 at Jefferson Lab measured the

EMC effect in 9Be, 10B, 11B, and 12C using a 10.6 GeV electron beam. This corre-

sponds to a kinematic coverage of 0.3 < xBj < 0.95 and 4.3 < Q2 < 8.3 GeV2 [31]. It

was found that the sizes of the EMC effect in the boron isotopes 10B and 11B were

similar to that of 4He, 9Be, and 12C. Similarly to 9Be, the boron isotopes can be seen

as two dense α particles plus two or three additional nucleons. Therefore, by the same

argument that was made for the 9Be result from E03-103, these results further sup-

ported the idea that the EMC effect is driven by local, rather than average, nuclear
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density.

1.6 Models of an Isospin-Dependent EMC Effect

The flavor or isospin dependence of the EMC effect, that is, how the PDFs of different

flavors of quarks are modified in the nuclear environment, can be measured to gain

a deeper understanding of the origin of the EMC effect. There are numerous mech-

anisms by which the PDFs of up and down quarks could be modified differently in

nuclei. Even simple models including only Fermi motion would predict some isospin-

dependent nuclear modification due to the difference in the xBj distributions of up

and down quarks. Despite this, isospin-dependent modification is typically not incor-

porated into models of nuclear PDFs. This is partially due to the lack of available

data that is sensitive to isospin dependence. For light nuclei, it is difficult to discern

any isospin-dependent nuclear modification from the existing data due to the fact

that the size of the EMC effect in light nuclei is also highly sensitive to the details

of the structure of the nucleus, which are poorly understood. On the other hand,

for heavy nuclei, N/Z is highly correlated with A, making it difficult to distinguish

between the impacts of A-dependent and isospin-dependent effects in many of these

nuclei as well.

Despite these difficulties, a description of how isospin-dependent effects influence

the modification of nuclear PDFs is necessary to come to a complete understanding

of the EMC effect. In addition, an accurate description of the isospin-dependence

of the EMC effect will allow for a more accurate determination of nuclear PDFs,

which are essential to be able to reliably interpret results from measurements of

processes involving the weak interaction such as neutrino DIS, as they are more

directly impacted by quark flavor.
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The following sections will cover a few models that predict isospin-dependent

modification of nuclear PDFs.

1.6.1 CBT Model

One set of calculations predicting an isospin-dependent EMC effect is known as the

Cloet-Bentz-Thomas (CBT) model [32]. In their calculations, for non-isoscalar nuclei,

the isovector-vector mean field (ρ0) couples to the quarks inside of the bound nucleons.

In N>Z nuclei, this causes the up quarks to feel a small additional attraction and

down quarks to feel a small additional repulsion in the mean field, producing an

isospin-dependent modification of the nuclear PDFs as shown in Fig. 1.11. These

calculations were performed within the framework of the Nambu-Jona-Lasino model,

a low-energy QCD chiral effective field theory characterized by a 4-fermion contact

interaction between the quarks [33] [34].

The CBT model calculations of nuclear PDFs were then applied to a reanalysis

of the NuTeV extraction of the Weinberg or weak mixing angle, specifically sin2(θW ),

from neutrino DIS on 56Fe [32]. This was motivated by the fact that the NuTeV

extraction of the sin2(θW ) disagreed by three sigma with the Standard Model predic-

tion [35], a discrepancy that has become commonly known as the NuTeV anomaly,

shown in Fig. 1.12. In the reanalysis using the CBT model calculation, it was found

that the model’s isospin-dependent treatment of nuclear PDFs provides a resolution

to the NuTeV anomaly, reducing the discrepancy by two-thirds, bringing the result

into significantly better agreement with the Standard Model prediction.
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Figure 1.11: Figure from [32]. Theoretical calculations for the EMC effect in neutron-
rich matter at Q2 = 10 GeV2. The EMC ratios are found to decrease from isoscalar
nuclei until Z/N reaches approximately 0.6, at which point the EMC ratios begin to
increase.

1.6.2 Short Range Correlations

Short Range Correlated pairs of nucleons (SRCs) are characterized by their high rela-

tive and low center of mass momenta. These high-momentum nucleons are thought to

arise primarily due to the tensor component of the nucleon-nucleon interaction as well

as the repulsive core of the strong interaction at short distances [36]. Several mea-

surements have been performed to quantify the relative abundances of two-nucleon

(2N) SRCs in a variety of nuclei [37] [38] [39]. From these studies, it has been found

that the abundance of SRCs in a given nucleus strongly correlates with the size of

the EMC effect in that same nucleus as shown in Fig. 1.13 [40] [41] [42]. It has also

been experimentally found that most 2N SRCs are np pairs as opposed to pp or nn

pairs [43], a phenomenon referred to as np-dominance.
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Figure 1.12: World data and projections for future measurements of sin2(θW ) are
shown alongside the Standard Model prediction (blue line). The NuTeV measurement
is several standard deviations away from the prediction of the Standard Model. This
result has become known as the NuTeV anomaly.

If there is a fundamental connection between the EMC effect and SRCs, then one

would expect the isospin-sensitive nature of SRCs to introduce an isospin dependence

into the EMC effect.

1.6.3 Nuclear PDF Fits

Studies have been performed comparing nuclear correction factors (FA
2 /F

D
2 ) obtained

from Drell-Yan and charged-lepton DIS data with those obtained from neutrino DIS.

While some analyses have found that the nuclear correction factors extracted from

the two sources can be reconciled [44] [45] [46], other studies [47] [48] [49] published
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Figure 1.13: Figure from [42]. World data shows a strong correlation between the
size of the EMC effect, here given by the slope of the EMC ratio |dREMC/dx| in the
range 0.3 < xBj < 0.7, and the abundance of 2N SRCs in nuclei relative to 2H, here
given by R2NNtotal/Niso−1 (with the −1 term added so that the corresponding value
for 2H is 0, mirroring the EMC slope). R2N represents the probability relative to 2H
that a nucleon will be part of a 2N SRC configuration. Ntotal/Niso is the ratio of the
total possible 2N pairs A ∗ (A − 1)/2 to the total number of possible np pairs NZ,
accounting for the fact that 2N SRCs are predominantly np pairs [43]. It is important
to note that, as addressed in [42], there are several different SRC-related quantities
that can be used and that correlate well to the size of the EMC effect.

as recently as 2022 have found them to be in tension, as shown in Fig. 1.14. Due

to the highly flavor-sensitive nature of the weak interaction, this tension hints at

the possibility of isospin-dependent modification of PDFs. If true, this will have a

significant impact on our ability to correctly interpret neutrino DIS data.
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Figure 1.14: Figure from [47]. Nuclear correction factors for iron as a function of
xBj. The left plot shows data obtained from charged-lepton-nucleus scattering and
Drell-Yan data along with a fit of this data, labeled fit B. The right plot shows data
obtained from neutrino-nucleus data along with its fit, labeled fit A2. These are
shown alongside the SLAC/NMC parameterization (SLAC/NMC), fits from Kulagin
and Petti (KP) [50] [51], and Hirai et al. [52].

1.7 Experiment E12-10-008

This work covers experiment E12-10-008 [2]. This experiment measured inclusive DIS

cross sections for twenty-one nuclei, covering a broad kinematic range as shown in

Fig. 1.15. Data were taken at EMC effect kinematics at three different scattering

angles to allow for studies of the Q2 dependence of EMC ratios. In particular, this

allows for verification of the Q2 independence of the EMC ratios above Q2 = 4 GeV2

that was found in experiment E03-103 [29]. In addition, the broad xBj coverage

offers numerous advantages over measurements limited to the range 0.3 < xBj < 0.7,

where the EMC slope is typically determined. Extending our measurements to low

xBj is useful because much of the existing data has the highest precision in this

kinematic region. In addition, normalization uncertainties on these data are well

constrained. Therefore, by taking measurements at xBj < 0.3, one can compare

our results with existing high-precision data and verify that our data is properly

normalized. Extending our measurements to xBj > 0.7 also provides an advantage.
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Figure 1.15: Kinematic coverage of the XEM2 run group of experiments. The kine-
matics for E12-10-008 are shown in the region labeled “EMC”.

Above xBj > 0.7, the effects of Fermi motion begin to dominate the extracted EMC

ratios, while quasielastic scattering also contributes significantly to the measured

cross sections. Understanding quasielastic cross sections at xBj > 0.7 allows for

better extraction of the radiative corrections that impact EMC ratios at xBj < 0.7.

Utilizing the high-xBj data to better constrain our cross section model, EMC ratios

can be more accurately extracted from the data.

Numerous insights can be gleaned from analysis of the twenty-one different nuclei

that were studied in this experiment. Here, I will highlight a few of the primary goals

of our experiment before delving into the experimental setup of E12-10-008.

Much like E03-103, a major focus of E12-10-008 is the study of the EMC effect

in light nuclei. In addition to the light nuclei studied in E03-103, this experiment
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will provide the first measurements of the EMC effect at large xBj in 6Li, 7Li, 10B,

and 11B. This is of particular interest, as it will provide the best dataset to date for

discerning the impact of the local nuclear environment on nuclear structure functions.

Though it was measured in E03-103, 3He was also measured in this experiment.

Having an extreme N/Z ratio, 3He provides the ideal environment to validate the

isoscalar corrections that are made in order to compare isoscalar and non-isoscalar

nuclei. This validation can be performed by comparing the ratio 3He/(2H +1 H) to

the ratio 3He/2H, where the latter requires isoscalar corrections to be applied and

the former does not. This was not possible at large xBj with the 6 GeV data due to

resonances in the proton cross section impacting the data in that kinematic region.

Now, with the upgraded 10.6 GeV electron beam, EMC ratios can be measured at

higher Q2 where the proton resonances are pushed above xBj = 0.7.

Another major goal of this experiment, which will also be the focus of the remain-

der of this dissertation, is the isospin or flavor dependence of the EMC effect. With

this aim, targets such as 40Ca, 48Ca, 48Ti, 58Ni, and 64Ni were studied to investigate

the impact of varying the N/Z ratio at relatively fixed A. The motivations behind

studying the isospin dependence of the EMC effect were addressed in Sec. 1.6.

Finally, E12-10-008 will provide data to support the investigation of the apparent

relationship between the size of the EMC effect and the abundance of SRC pairs

in a given nucleus. To this end, E12-10-008 ran in parallel with E12-06-105 [53],

an experiment measuring the abundance of SRC pairs in nuclei through quasielastic

inclusive scattering at large xBj. Running these two experiments in parallel has the

effect of reducing the systematic uncertainty when comparing the EMC effect and

SRC data due to them having several shared systematics uncertainties, such as those

on the target thicknesses and cryogenic target density corrections. This in turn allows

for a more direct comparison between the measurements of these two quantities and
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a more precise determination of whether these two phenomena are fundamentally

connected.
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Chapter 2

Experimental Setup

Experiment E12-10-008 collected inclusive DIS data in Hall C of Jefferson Lab from

Fall 2022 through Spring 2023. This experiment primarily utilized the High Momen-

tum Spectrometer (HMS) and a 10.6 GeV electron beam produced by the Continu-

ous Electron Beam Accelerator Facility (CEBAF) [54]. Some data was also collected

with the Super High Momentum Spectrometer (SHMS) for systematic checks. This

chapter presents an overview of the instrumentation used for this experiment; more

information can be found in the Hall C Standard Equipment Manual [55].

2.1 The Accelerator

The major components of CEBAF are the injector, two linacs, and two sets of re-

circulating arcs arranged in a race track configuration as shown in Fig. 2.1. This

configuration allows the electron beam to circle the track up to 5 times (51
2

times for

Hall D), with a unique set of recirculating magnets required in each arc for each pass

to handle the increasing beam energy.

The electron beam begins its life at the polarized electron source in the photo-

cathode gun. The purpose of the photo-cathode gun is to provide bunches of highly

polarized (roughly 80%) electrons. First, four lasers, one designated for each experi-

mental hall, generate pulses at either 249.5 MHz or 499 MHz [56]. These frequencies

are chosen as they are sub-harmonics of the 1.497 GHz accelerating and bunching
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Figure 2.1: Sketch of the CEBAF accelerator site at Jefferson Lab in the 12 GeV era.

frequency of CEBAF. This approach allows for the simultaneous running of four ex-

perimental halls, each receiving variable beam currents. These laser pulses are then

directed towards a strained GaAs cathode to produce polarized electrons. The sum of

the currents sent to each of the four halls is typically on the order of several hundred

µA. The electrons produced by each of the designated lasers are then bunched to-

gether and accelerated to 123 MeV in the injector before entering the main accelerator

track.

The linacs utilize Superconducting Radio Frequency (SRF) technology to acceler-

ate the electrons by about 1.1 GeV through a single linac, or by 2.2 GeV for a whole

pass. For the 5-pass electron beam used in this experiment, the corresponding beam

energy measured in the hall was 10.602 GeV. The goal of the recirculating arcs is to

allow for multiple passes of the electron beam through a single linac. Each of the

recirculating arcs consists of 5 sets of magnets, one to handle the specific energy of

the beam at each pass. Once the desired number of passes around the accelerator

track for a given electron bunch is achieved, the bunch is kicked into the beamline

for the corresponding hall using an RF pulse. This kick is performed in an area of
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the accelerator known as the switchyard, located between halls A, B, and C and the

south linac.

2.2 Hall C Beamline

Once the electron bunch is kicked into the Hall C beamline, it passes through several

instruments on its way to the target chamber. These include wire scanners (harps),

Beam Position Monitors (BPMs), Beam Current Monitors (BCMs), magnets to steer

and focus the beam to the target, and rasters to increase the transverse size of the

beam to avoid damaging the target. An overview of these systems is given here.

2.2.1 Harps

To ensure that the absolute beam position and cross-sectional area of the electron

beam in the hall are within nominal limits, one can perform a harp scan. A harp scan

is performed by passing a harp, a collection of wires with different orientations, trans-

versely through the beamline with the beam powered on. As a wire passes through

different sections of the beam, varying levels of current will be induced depending on

the total flux of electrons along the wire as shown in Fig. 2.2. Using this information

from wires with various orientations, one can determine the absolute position of the

beam and reconstruct the beam profile. By placing several harps along the beamline,

one can also determine the trajectory of the beam and how the beam profile evolves

with position. The information provided by the harps is crucial for aligning the beam

to hit the target, beam energy measurements, and beam polarimetry measurements

which utilize the Compton or Møller polarimeters.
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Figure 2.2: Result of a harp scan performed during the running of E12-10-008. The
beam position is given by the X Pos and Y Pos values. The transverse size of the
beam at the location of this harp was measured to be approximately 0.5 mm x 0.1
mm (X Sigma, Y Sigma).

2.2.2 Beam Position Monitors

While harps are great tools for determining beam position, a harp scan is an invasive

measurement that requires dedicated beam time to perform. Therefore, to allow for

continuous monitoring of the beam position during production running, BPMs are

used instead. BPMs provide relative beam position measurements which, using harp

scans for calibration, can be converted to absolute beam positions.

The BPMs used in Hall C are composed of four open-ended wire striplines (XM,

XP, YM, YP), shown in Fig. 2.3, which are tuned to 1.497 GHz, the frequency of

the beam. The wires are rotated 45◦ relative to horizontal to avoid damage from

synchrotron radiation. As the electron beam passes through each of the BPMs, the

beam generates an image charge on the wires. The magnitude of this charge is

proportional to the distance of the beam from each of the plates. This allows one to

determine the position of the beam as it passes through a BPM.
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Figure 2.3: Figure from [55]. Schematic of the readout process for the Hall C BPMs.
The 1.497 GHz RF signal from the BPMs is down-converted to an intermediate
frequency (IF) and then digitized.

During the running of E12-10-008, the beam position remained relatively stable,

having variations on the order of the expected precision of the measurement, 0.1 mm.

Measured values for the beam position at each of the three upstream BPMs obtained

during June 2022 are given in Table 2.1.

2.2.3 Beam Current Monitors

The Hall C BCM system provides continuous, non-invasive measurements of the cur-

rent of the electron beam that enters the hall. This system is essential for determining

the total charge accumulated in a given dataset, which is used for extracting abso-

BPM X Position (mm) Y Position (mm)
IPM3H07A 0.172 0.085
IPM3H07B -0.211 0.242
IPM3H07C -0.374 0.234

Table 2.1: Single EPICS readout of the electron beam positions measured by the
upstream BPMs in Hall C in June 2022. These values are constrained by beam
position locks and therefore should not drift significantly over time. In addition,
these values are corrected in the analysis to give absolute beam positions. BPMs
IPM3H07A, B, and C are located 3.71 m, 2.25 m, and 1.23 m upstream of the target,
respectively.
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lute cross sections. To this end, there are several devices upstream of the target

whose function is to measure the beam current. The BCM system consists of an

Unser monitor and five RF resonating cavities (BCM1, BCM2, BCM4A, BCM4B,

and BCM4C) which are tuned to the beam frequency of 1.497 GHz. These monitors

are highly sensitive to temperature fluctuations and are therefore wrapped in thermal

blankets (Unser, BCM1, BCM2) or located in a thermally stabilized box (BCM4A,

BCM4B, BCM4C). The RF output signals from these monitors are processed and

sent to voltage-to-frequency (V2F) converters. Each signal is then sent to the data

acquisition system and read out by the scalers, resulting in a scaler rate equal to the

frequency of the signal output by the V2F converter.

The Unser monitor, a type of Parametric Current Transformer (PCT) [57], is un-

suitable for use during standard data collection. This is because it has an overall

offset that drifts significantly over time scales on the order of a few minutes. On

the other hand, the gain of the Unser monitor is very stable. This contrasts with

the BCMs, which have stable offsets but have slightly unstable gains that must occa-

sionally be determined to enable one to accurately convert from a BCM response to

the corresponding beam current. These gains are determined by performing a BCM

calibration, which utilizes the Unser monitor due to its stable gain. This property

of the Unser monitor allows for it to be used to determine the gains of the other

RF cavities provided a set of data where the beam is frequently turned on and off.

The beam-off periods allow one to account for the drifts in the Unser monitor’s offset

over short timescales, while the beam-on periods can then be used to determine the

gains of the RF cavities. The procedure to calibrate the BCMs is discussed further

in Sec. 3.4.
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2.2.4 Rasters

The primary raster system in Hall C, known as the Fast Raster (FR), consists of

two sets of orthogonal (horizontal and vertical) electromagnets that produce rapidly

varying magnetic fields to increase the transverse size of the beam on the target to

several square millimeters. These electromagnets are driven by four separate currents

with triangular waveforms as shown in Fig. 2.4. This is necessary due to the large

amounts of energy that would otherwise be deposited on small, highly concentrated

areas of the target chamber, the target, and the beam dump, which could lead to

permanent damage. The rasterization of the beam mitigates the risk of solid targets

melting, helps prevent the cells of cryogenic targets from being damaged, and reduces

density losses in cryogenic targets by spreading the heat load from the beam over a

wider area. In addition, this process serves to reduce uncertainties due to variations

in the thicknesses of targets by effectively averaging the target thickness over a larger

area. During experiment E12-10-008 the raster was set to spread the beam over a

square 2.00 mm × 2.00 mm area on the target.

2.3 High Momentum Spectrometer

The High Momentum Spectrometer (HMS) is the older of the two spectrometers

currently installed in Hall C, with the newer Super High Momentum Spectrometer

(SHMS) replacing the Short Orbit Spectrometer (SOS) with Jefferson Lab’s 12 GeV

upgrade. A sketch of the Hall C layout is given in Fig. 2.5. The HMS is located

beam-right and the SHMS is located beam-left. The HMS and SHMS are moderate

acceptance spectrometers, restricted to probing specific regions of kinematic (phase)

space at a given time. The moderate acceptance of these spectrometers enables them

to probe regions of phase space at higher luminosities than other larger acceptance
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Figure 2.4: The Hall C raster controls GUI during E12-10-008. The top right plot
shows the triangular waveform of the current driving the raster magnets. The bottom
right plots show the 2.00 mm × 2.00 mm square pattern of the beam after passing
through the raster. The size of the raster pattern is set using the “Width (mm)” and
“Height (mm)” input fields in the “Turning Raster On” section of the GUI, which is
located in the bottom left box.

spectrometers can handle. This allows one to quickly measure the regions of phase

space they are interested in with world-leading statistical precision.

The HMS magneto-optical components consist of four large superconducting mag-

nets: three quadrupoles and a dipole, which focus and bend particles of a given mo-

mentum into the detector hut as shown in Fig. 2.6. The quadrupoles focus particles

within roughly ±8% of a specified central momentum onto the nominal focal plane of

the spectrometer. This ensures that these particles will have a track that intersects all

detector subsystems in the detector hut. The dipole then bends these particles (again



45

NS

E

W
B

e
a
m

li
n

e

HMS
SHMS

Beam Dump

Target Chamber

Figure 2.5: View from above of the layout of the spectrometers in Hall C. The electron
beam enters the hall from the east side. It then intersects the target in the target
chamber. Most electrons pass straight through the target, traveling to the beam
dump on the west side of the hall. The SHMS is located beam-left, and the HMS
is located beam-right, with the detector huts for each spectrometer shown in orange
and yellow, respectively.

within roughly ±8% of the same specified central momentum) by 25◦ vertically up

into the detector hut. Except when a polarity change is made, the settings of these

magnets can be changed on order of 15 minutes, with special care made to minimize

the effects of hysteresis, allowing for rapid reconfiguration of the spectrometer so that

it can detect particles of various different momenta without significant downtime.

The HMS is mounted on top of a steel carriage that can move on a series of rails,

allowing the entire spectrometer to rotate about the target. This process typically

takes on the order of 10 minutes, depending on how far the spectrometer needs to

move.
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Figure 2.6: Figure from [58]. Sketch of the side profile of the HMS. Particles scattered
from the target chamber within the angular acceptance of the spectrometer first pass
through three quadrupole magnets (Q1, Q2, and Q3) that focus particles of a selected
momentum onto the spectrometer focal plane. Particles of the selected momentum
are then bent into the detector hut by the dipole magnet.

Both the angle and magnet settings of the spectrometer can be controlled remotely

from the counting house using the GUIs shown in Fig. 2.7. Using these controls,

one can select a particular region of phase space in Q2 and xBj to be measured

by carefully calculating the corresponding scattering angle and central momentum

and configuring the detector accordingly. Table 2.2 outlines the nominal operational

ranges, acceptances, and resolutions of the HMS.

Parameter HMS Performance
Maximum Central Momentum 7.3 GeV
Momentum Acceptance (δp/p) ±8%
Momentum Resolution (δp/p) <0.1%
Central Angle Range 10.5◦ - 90◦

Horizontal Angular Acceptance ±32 mrad
Vertical Angular Acceptance ±85 mrad
Horizontal Angular Resolution 0.8 mrad
Vertical Angular Resolution 1.0 mrad

Table 2.2: Nominal operational ranges, acceptances, and resolutions of the HMS.
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Figure 2.7: The spectrometer rotation and magnet control GUI in Hall C during
E12-10-008 running.

2.4 HMS Detector Package

Once scattered particles have passed through the optical components of the HMS, they

enter the detector hut. The HMS detector hut houses two horizontal drift chambers,

two pairs of scintillator hodoscope planes, a Cherenkov detector, and a lead glass

calorimeter. This section provides an overview of these detector subsystems.

2.4.1 Scintillator Hodoscopes

When high-energy charged particles, such as electrons, pass through a scintillating

material they lose some of their energy (typically a few MeV in the case of the HMS

scintillators). This deposited energy causes the scintillating material to be stimulated

into an excited state. The material then rapidly decays back into the ground state,

causing it to luminesce. Because the characteristic decay time of these excited states

is typically on the order of nanoseconds, the signal produced has excellent timing
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Figure 2.8: Diagram of the HMS detector package. Particles scattered or ejected from
the target travel along the positive z-direction, with most electrons (and positrons
for positive polarity magnet settings) ending their journey in the calorimeter. The
positive x-direction points towards the floor of Hall C with an angle of 25◦ relative
to vertical. The positive y-direction points towards the beamline.

resolution.

The HMS contains two pairs of scintillating hodoscope planes separated by ap-

proximately 2 meters. Each pair contains one plane with its hodoscope paddles ori-

ented along the x-axis of the spectrometer and another plane with hodoscope paddles

arranged along the spectrometer’s y-axis.

Each hodoscope plane is composed of ten to sixteen BC-404 [59] scintillators

optimized for use in high-rate environments; the time constant for these scintillators

is 1.8 ns. Table 2.3 summarizes the dimensions of the scintillators and how they

are divided between the four hodoscope planes. Each scintillator paddle is coupled

via light guides to one Philips XP2282B photomultiplier tube (PMT) on each end

to convert the light emitted by the scintillator material into an electrical signal and

amplify it. The material used as a light guide from the scintillator material to the

PMTs is UVT lucite. This material was selected for having good transparency to
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the 400 nm light emitted by the BC-404 scintillators. The hodoscope paddles are

wrapped in aluminum foil to reflect otherwise outgoing light, and tedlar to minimize

the amount of light that leaks between or otherwise escapes the paddles.

Due to their precise timing resolution, the primary purpose of the HMS hodoscopes

is to provide timing information for the other HMS subsystems. This information can

also be used for particle identification (PID) through time-of-flight (TOF) measure-

ments to distinguish between particles of different masses provided that the expected

TOF difference is larger than the timing resolution. In addition, due to the high

detection efficiency of the combined four hodoscope planes and the fast signals they

produce, the HMS hodoscope system is used to form the trigger that informs the data

acquisition system to begin reading out the signals from all of the detectors.

2.4.2 Drift Chambers

The typical drift chamber consists of a gaseous medium and planes of wires connected

to high-voltage. When a high-energy charged particle passes through the gas in

a drift chamber, a track of ionized atoms is left in its wake. The freed electrons

then accelerate toward the closest positive potential wires. These electrons reach

energies large enough to produce electron-ion pairs when they knock into atoms on

their way toward the wire, creating a Townsend avalanche. The electrons produced

Plane Number of Paddles Length Width Thickness
S1X 16 75.5 cm 8.0 cm 1.0 cm
S1Y 10 120.5 cm 8.0 cm 1.0 cm
S2X 16 75.5 cm 8.0 cm 1.0 cm
S2Y 10 120.5 cm 8.0 cm 1.0 cm

Table 2.3: Dimensions and layout of the scintillators in the HMS hodoscope planes.
The thickness of these paddles is kept small (1.0 cm) to minimize the energy loss of
the passing particles on their way to the calorimeter.
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in the Townsend avalanche are then collected by the nearest positive potential wire,

generating a signal. By creating a series of planes, each with its own set of parallel

wires, and orienting the planes normally to the path of the ionizing particle, one can

precisely determine the path the ionizing particle took through the wire planes based

on the wires in each plane that received a signal. This can be taken a step further

by utilizing the timing information from the hodoscopes. Because we know when the

particle passed through each of the hodoscope planes, we can also determine when

the particle passed through each of the wire chambers. Using the difference between

this time and the time that the ionized electrons were picked up by the wire, one can

determine precisely how far the ionizing particle was from that wire when it passed

through the plane. This is the fundamental working principle behind drift chambers.

Just after the 12 GeV upgrade to Jefferson Lab, the HMS received a new pair

of drift chambers. These drift chambers were modeled after those produced for the

SHMS [60], differing primarily in their cross-sectional area [61]. The HMS drift cham-

bers each consist of 6 wire planes, X, U, V, X’, U’, and V’. Each chamber is divided

into two half-chambers of 3 wire planes and four cathode planes (made from copper-

plated Mylar), with each wire plane located between two cathode planes as illustrated

in Fig. 2.9. Each wire plane consists of alternating sense wires that collect the nega-

tive charges (held at 0 V) and field wires held at a large negative potential (several

kV). The spacing between each of these wires is 0.5 cm. A fiberglass mid-plane

separates the two halves of a single drift chamber.

The wires in the X plane run horizontally relative to the ground. The wires in

the U plane are rotated 60◦ relative to the wires in the X plane. The V plane is

formed by rotating the U wire plane by 180◦ about the vertical axis. The primed

wire planes are formed by a 180◦ rotation about the axis normal to the wire plane

of the corresponding un-primed planes, producing the same wire pattern shifted by
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Figure 2.9: Side view of one of the HMS drift chambers.

1/2 of the wire separation. An illustration of the wire orientations is given in Fig.

2.10. In the first chamber, the planes are ordered U, U’, X, X’, V’, and V; the second

chamber is identical to the first chamber, but rotated 180◦ about the vertical axis.

This effectively reverses the order of the planes and also makes the V and V’ planes

in the second chamber parallel to the U and U’ planes in the first chamber, and vice

versa. The gas that flows through the drift chamber is composed of a 50-50 mix of

ethane and argon. Due to its chemical stability, large size, and relatively low cost,

argon gas is used to promote Townsend avalanches. On the other hand, ethane is

used for its quenching properties, absorbing UV photons to prevent electrons from

being freed from the cathode due to the photoelectric effect.

As previously mentioned, the primary role of the HMS drift chambers is to provide

precise tracking information. This information is then used in conjunction with the

known properties of the magneto-optical system to reconstruct the scattering vertex
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Figure 2.10: Wire layout in an HMS drift chamber viewed from along the direction
of incoming particle motion (+z-direction).

(the position in the target where the scattering event occurred), scattering angle (θ),

and momentum of a detected particle.

2.4.3 Gas Cherenkov

When a charged particle travels through a medium at a speed greater than the speed

of light in that medium, Cherenkov radiation is produced. This condition can be

expressed in terms of the medium’s index of refraction n as

β >
1

n
, (2.1)
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where β is the ratio of the particle’s speed to the speed of light in vacuum (c). This in

turn produces a cone (or ring after the radiation stops being produced) of Cherenkov

light as shown in Fig. 2.11. From this figure, the angle θc between the track of the

charged particle and the emission angle of Cherenkov radiation can be immediately

found to be

cos(θc) =
1

βn
. (2.2)

Assuming negligible energy loss, the charged particle produces a constant number of

Cherenkov photons between wavelengths λ1 and λ2 per unit length of the material it

travels through, given by

dN

dx
= 2παz2

∫ λ2

λ1

(
1− 1

(n(λ)2)β2

)
dλ

λ2
, (2.3)

where α is the Sommerfeld constant, and z is the charge of the particle producing

Cherenkov radiation [62]. In order to maximize the signal produced, Cherenkov

detectors tend to be very large compared to the previously discussed detectors.

The HMS Cherenkov detector is primarily used for particle identification (PID).

Revisiting Eq. 2.1 and using the equation (in natural units) for relativistic momentum

given by

p = γm0β, (2.4)

where m0 is the particle rest mass and γ is the Lorentz factor 1/
√
1− β2, one finds

that the momentum required for the production of Cherenkov radiation can be written

in the form
1

n
< β =

p√
m2

0 + p2
. (2.5)

This particular form is of interest because the magnets in the HMS select particles of

a given momentum to enter the detector stack. This means that particles of different
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Figure 2.11: Depiction of the relationship between Cherenkov angle θc, the index of
refraction n, and the particle velocity β. If 1/n is greater than β, there is no real
solution to Eq. 2.2, reflecting the fact that there will be no angle at which a coherent
wavefront can exist to produce Cherenkov photons.

rest masses will travel through the detector stack with different velocities. One can

carefully select the index of refraction of the medium in the Cherenkov detector such

that, at a given momentum, only certain types of particles (below a certain rest mass)

will produce Cherenkov radiation, while heavier particles will not. This makes the

Cherenkov detector a powerful tool for PID.

The HMS Cherenkov detector consists of a large cylindrical tank with an inner

diameter of 59 inches and a length of 60 inches. This tank contains two mirrors that

each focus their light onto one of two PMTs. The tank was filled with octafluorote-

trahydrofuran (C4F8O) at 0.4 atm. This setup results in, on average, a combined 12

photoelectrons emitted from the photocathodes of the PMTs for a single event above

the Cherenkov threshold. This gas mixture also corresponds to a pion Cherenkov

threshold momentum of approximately 4 GeV and an electron threshold momentum
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of about 15 MeV. This allows for the Cherenkov detector to be used to distinguish

between these two particles at energies that are above the electron threshold but

below the pion threshold. As pions are the main source of background in our data,

the ability to distinguish them from electrons is indispensable. One might note that

some of the data our experiment collected on the HMS is at momenta above 4 GeV,

making the Cherenkov detector mostly useless for this data because both electrons

and pions will produce a signal in the detector. However, at our kinematics, pion

yields decrease rapidly as momentum increases, to the point that pion contamination

is relatively insignificant above 4 GeV. Therefore, this limitation is not an issue.

2.4.4 Electromagnetic Calorimeter

The final detector that a particle encounters in the HMS detector stack is the elec-

tromagnetic calorimeter. The HMS electromagnetic calorimeter is composed of four

layers of thirteen stacked TF1 lead glass blocks [63]. Each block is coated in a layer

of aluminized Mylar and Tedlar for optical isolation. Their dimensions are 10 cm x

10 cm x 70 cm, with the long edges parallel to the y-axis as shown in Fig. 2.8. The

front two layers have PMTs on both of the square ends, while the back two layers

have PMTs on only one end.

The purpose of an electromagnetic calorimeter is to measure the energies of in-

cident electrons, positrons, and photons. These particles are in their own category

because they experience high energy losses from bremsstrahlung (for electrons and

positrons) and electron-positron pair production (for photons) when passing through

matter at high energies (>100 MeV). This contrasts with heavier particles (muons,

pions, protons, etc.), which are less impacted by energy loss from bremsstrahlung at

high energies due to their larger masses, and are therefore harder to stop. Because
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Figure 2.12: Figure from [63]. CAD drawing of the HMS electromagnetic calorimeter.

these heavier particles are harder to stop, most of them punch through the end of

the calorimeter, depositing only a fraction of their energy. Since the HMS’s track-

ing system already provides accurate information about a particle’s momentum, the

electromagnetic calorimeter is primarily used for PID by allowing one to distinguish

between particles that deposit all their energy into the calorimeter and those that do

not.

The precise working principle of a calorimeter can vary depending on the mate-

rial(s) used. The bulk of the HMS electromagnetic calorimeter is made up of lead

glass blocks. The lead glass functions as both the detector and the absorber, forming

what is known as a homogeneous calorimeter. The short radiation length of TF1 lead

glass (X0 = 2.74 cm) allows it to promote electromagnetic showers and absorb the

majority of a particle’s energy over relatively short distances (40 cm = 14.6X0). In
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Figure 2.13: Diagram of a simple electromagnetic shower.

the case of an electron, an electromagnetic shower is produced when the high-energy

electron emits a high-energy bremsstrahlung photon, which, in turn, may produce an

electron-positron pair. This cycle continues until the energies of the particles fall be-

low roughly 10 MeV, where processes such as ionization (for electrons and positrons)

begin to dominate. A simple diagram of an electromagnetic shower is shown in

Fig. 2.13. Somewhat counterintuitively, the energy lost in the aforementioned pro-

cesses is not what is directly measured in a lead glass calorimeter. What is directly

measured is the Cherenkov radiation produced by the electrons and positrons in the

shower as they travel through the lead glass (n = 1.65). The amount of Cherenkov

radiation produced is proportional to the sum of the path lengths of all electrons and

positrons in the shower. This, in turn, is proportional to the energy these same par-

ticles deposit into the calorimeter via ionization. Therefore, the measured Cherenkov

signal is proportional to the energy deposited into the calorimeter.
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2.5 Hall C Data Acquisition and Trigger

The purpose of the Data Acquisition System (DAQ) is to digitize the signals produced

by each of the detector subsystems described in the previous section and write them

to disk when selected conditions are met. In Hall C, the data acquisition system is

implemented using the CEBAF Online Data Acquisition (CODA) toolkit [64].

The signals are digitized using analog-to-digital converters (ADCs) and time-to-

digital converters (TDCs). The ADCs used in Hall C are FADC250 modules (fADCs)

[65]. These modules digitize the input signal at a sampling frequency of 250 MHz

(4 ns) and can be configured to provide either a complete digitized waveform or an

integrated pulse amplitude. They are used to digitize the signals from the HMS

hodoscope planes, gas Cherenkov detector, and lead glass calorimeter. The modules

are located in the Hall C Electronics Room of the Counting House and receive signals

from the hall below via cables that connect to the detector. The CAEN V1190A

TDCs [66] are used to provide precise timing information with a resolution of 100 ps.

These TDCs are used to digitize the signals from the HMS drift chambers, hodoscope

planes, gas Cherenkov detector, and lead glass calorimeter. The TDCs are located in

the Hall C Electronics Room of the Counting House for all detectors except the drift

chambers, for which they are located in the HMS Detector Hut.

Constantly writing the digitized signals from all of the detectors to disk would

produce significant amounts of data, most of which would be noise. Therefore, a

trigger system must be used to determine when the digitized signals should be written

to disk. Signals from the hodoscopes, calorimeter, and Cherenkov detector are used to

form their detector-specific pre-triggers. These pre-triggers are then combined using

logic gates (AND/OR) to form higher-level pre-triggers. A pre-trigger (or multiple

pre-triggers) can then be selected to form the Level 1 (L1) accept trigger that is sent
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Figure 2.14: Diagram of the trigger logic for the HMS. For pre-triggers with a fraction
under their name, that fraction indicates the number of pre-triggers connected to it
on the left that must have fired (been activated) for that pre-trigger to activate as
well. For example, the hEL_CLEAN pre-trigger will activate if both the hEL_LO
and hEL_HI pre-triggers fire, while the hEL_REAL pre-trigger will activate if either
one of them fires. The prefix “h” indicates that the pre-trigger is associated with the
HMS detector. The SHMS has a nearly identical trigger logic configuration, and the
associated pre-triggers begin with the letter “p”.

to the readout controllers (ROCs) to initiate the writing of the digitized signals to

disk for a given time window (several µs). A diagram of the trigger logic used in the

HMS during E12-10-008 is shown in Fig. 2.14.

All data collected during the E12-10-008 experiment used one of three trigger types

to initiate the writing of data to disk: hHODO 3/4, hEL_REAL, or hEL_CLEAN.

The maximum trigger rate allowed during the experiment was 4 kHz due to limitations

with the rate at which data can be written to disk. For kinematics where rates

exceeded this limit, a “prescale factor” was applied which drops all but every nth

trigger, allowing the computer to keep up with the rate at which data was trying

to be written to disk. Descriptions of the detector-specific pre-triggers are provided

below along with descriptions of the three trigger types used during E12-10-008.
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• hPreSH_LO, hPreSH_HI, and hShower_LO:

As previously discussed, the HMS calorimeter consists of four layers of lead

glass blocks. These layers are labeled A, B, C, and D from front to back.

For each layer, the sum of the signals produced by each of the blocks in that

layer is used to construct the quantities Asum, Bsum, Csum, and Dsum. The

hPreSH_LO and hPreSH_HI pre-triggers are formed if the sum of Asum and

Bsum are above the corresponding predetermined thresholds. Similarly, the

hShower_LO pre-trigger is formed when the sum of the signals from all four

layers is above another predetermined threshold.

• hCER:

The signal from the HMS Cherenkov detector is read out using two PMTs. The

signals from each of these PMTs are summed together. If this sum is above a

predetermined threshold, the hCER pre-trigger is formed.

• hHODO 3/4:

The hHODO 3/4 trigger (often simply called the “three-of-four trigger”) only

requires “hits” on three of the four hodoscope planes to fire. In a hodoscope

plane, a “hit” is defined as when at least one scintillator paddle produces signals

above a predetermined threshold in both of its PMTs. This trigger is often

called an unbiased trigger because, by not requiring any information from the

two PID detectors (the calorimeter and Cherenkov), it has an approximately

equal probability of firing for any type of charged particle. This trigger is

primarily used for background studies because it fires for a large portion of the

background events (which in our case are mostly pions). This trigger is also

used for PID detector efficiency studies.
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• hEL_REAL:

The hEL_REAL trigger was the primary trigger used to collect production

data for E12-10-008. Electrons are identified by their large energy deposition in

both the calorimeter and Cherenkov detectors. Therefore, by requiring either

the hPreSH_LO and hCER or the hShwr_LO and hPreSH_HI pretriggers

to have fired, this trigger is biased towards firing for electrons, however, a

decent number of background events do still cause this trigger to fire. For

most kinematic settings studied, the background suppression of the hEL_REAL

trigger resulted in reasonable (<4 kHz) trigger rates, therefore a more biased

(and potentially less efficient) trigger was not necessary for production data

taking.

• hEL_CLEAN:

The hEL_CLEAN trigger was the most strict trigger used during E12-10-008.

This trigger was selected to collect data for settings where background rates

far exceeded the 4 kHz limit at which data can be written to disk, and the

rates of the events of interest were small in comparison. Without a very strict

trigger, a larger prescale factor would be required to keep the prescaled trigger

rate below 4 kHz. This additional prescaling would proportionally increase the

beam time required to collect the desired number of non-background events.

Therefore, a more strict trigger must be used so that beam time can be more

efficiently utilized. To this end, the hEL_CLEAN trigger was employed dur-

ing positive-polarity data collection, where the particles of interest were pair-

produced positrons whose rates were significantly lower than the pion and pro-

ton backgrounds. The hEL_CLEAN trigger was not used during any of the

negative-polarity data collection.
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Figure 2.15: The run control GUI used by shift workers to start and stop data col-
lection for the HMS.

The data collected during E12-10-008 is organized into numbered .dat files, each

constituting an individual period of data collection known as a “run”. Data collection

for a run is started and stopped by the shift leader by using the run control GUI,

shown in Fig. 2.15. Each run is usually associated with a specific configuration

defined by the target, spectrometer configuration (angle, momentum setting), beam

energy, and trigger type. These parameters are not changed over the course of a

single run, allowing all of the data collected during a single run (and runs with the

same parameters) to be analyzed as a unit without needing further subdivisions. In

addition, quantities such as the average beam current are determined on a run-by-run

basis, though accelerator issues or special studies may cause the beam current to be

varied throughout a run.

The data contained in the .dat files for each run can be broken into three distinct

categories, as described below.
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• EPICS:

The slow control software used at JLab is called the Experimental Physics

and Industrial Control System (EPICS) [67]. Data that is fed into the EPICS

data stream are read out either every 2 or every 30 seconds. This can include

information like the beam energy, target temperatures, target pressures, magnet

set and readback currents, and the spectrometer angle.

• Scalers:

Scaler data are read out every 2 seconds or 1000 triggers, whichever comes

first. This data consists of many counters, most of which keep track of the

number of times each of the pre-triggers fires. However, these data also include

information on the beam current from the BCMs. The scalers are not impacted

by the DAQ dead time and are therefore used to determine and correct for it,

as will be discussed in the next chapter.

• Physics:

Physics data are read out on a trigger-by-trigger basis. These data contain

information about the signals from the detectors that were fed into the fADCs

and TDCs, as well as higher-level quantities derived from this information.

2.6 Targets

To investigate the nuclear dependence of the EMC effect, experiment E12-10-008

collected electron scattering data on twenty-five different targets. Of these, twenty-

two were dedicated nuclear targets, and three were specially designed targets used

to align the beam and perform systematic studies. Furthermore, of the dedicated

nuclear targets, four were composed of a cryogenic fluid encased in an aluminum
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Target Thickness (g/cm2) Chem. Purity (wt%) Enrichment (at%)
6Li 0.225 ± 0.0008 99.9 95
7Li 0.254 ± 0.003 99.99 99.88
9Be 0.986 ± 0.003 99.5 NAT

10B4C 0.576 ± 0.002 99.99 96.6
11B4C 0.633 ± 0.002 99.99 99.8
12C 0.574 ± 0.002 99.99 NAT
27Al 0.460 ± 0.001 99.9 NAT
40Ca 0.785 ± 0.003 99.99 99.97
48Ca 1.051 ± 0.003 99.99 90.04
48Ti 0.294 ± 0.001 99.99 NAT
54Fe 0.367 ± 0.001 99.99 97.68
58Ni 0.2408 ± 0.0004 99.9 99.5
64Cu 0.942 ± 0.003 99.999 NAT
64Ni 0.2607 ± 0.0005 99.9 95
108Ag 0.528 ± 0.002 99.9 NAT
119Sn 0.4562 ± 0.0006 99.75 NAT
197Au 0.4047 ± 0.0006 99.9 NAT
232Th 0.409 ± 0.001 99.5 NAT

Table 2.4: Specifications for the solid targets used during E12-10-008. For targets
that were not isotopically enriched, the mass number of the target is taken to be
the natural abundance-weighted average mass number of the element, rounded to the
nearest integer.

alloy shell (AA7075), and the other eighteen were solid. Specifications for these solid

and cryogenic targets can be found in Tab. 2.4 and Tab. 2.5, respectively. In addition,

Tab. 2.6 has the specifications for the aluminum alloy shell of the cryogenic targets.

The three specially designed targets are discussed at the end of this section.

The targets were installed onto one of two target ladders. In each of the target

ladders, the targets are aligned vertically along the pivot axis of the spectrometers.

The cryogen in the cryogenic targets is constantly kept flowing in a loop between the

target chamber and a heat exchanger to keep it cool. However, the density of the

cryogen around the beam line can vary due to the heat deposited by the electron

beam. Therefore, dedicated measurements are made at various beam currents to
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allow one to account for these density fluctuations (see Sec. 3.9.2). The solid targets

are cooled via conduction with the target ladder to avoid melting.

Because only one ladder can be installed in the target chamber at a time, one of

the ladders was used for the first half of the experiment and the other was swapped in

for the second half. The active ladder is connected to a vertical motion system that

is controlled remotely from the Hall C counting room using the target control GUI.

The target control GUIs for each of the target ladders are shown in Figs. 2.16 and

2.17. The target control GUI can be used to set the vertical position of the ladder

such that a particular target is placed into the beam line. This system allows the

target to be changed in just a few minutes. To avoid damaging the target ladder,

target changes must only be done when the beam is not being sent into the hall. In

addition to controlling the motion of the target ladder, the target control GUI is also

used to control and monitor the status of the cryogenic targets.

In addition to being connected to the vertical motion system, the active target

ladder is installed in the Hall C target chamber, shown in Fig. 2.18. The Hall C

target chamber is an aluminum cylindrical tank with an inner diameter of 41 inches

and 2-inch thick walls (resulting in an outer diameter of 45 inches). The inside of

the tank is kept at near-vacuum (around 10−6 or 10−7 mbar) during experimental

Target Length (mm) Nom. Pressure (PSIA) Nom. Temperature (K)
1H 99.98 ± 0.01 26 19
2H 99.98 ± 0.01 26 22
3He 99.98 ± 0.01 55 5.6
4He 99.98 ± 0.01 113 5.6

Table 2.5: Specifications for the cryogenic targets used during E12-10-008. The length
of the target cell is measured at room temperature and includes the thickness of the
aluminum alloy 7075 shell. Therefore, when determining the areal thickness (g/cm2)
of the cryogen, one must subtract the thickness of the shell and account for the
contraction of the target due to the temperature difference.
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Figure 2.16: The target control GUI for the first target ladder. The target position can
be set by selecting the desired target from the list on the left-hand side. The panels on
the right-hand side contain the controls and statuses of the cryogenic targets. On this
ladder, cryogenic loop 1 contained liquid deuterium (2H nuclei), and loop 2 contained
liquid hydrogen (1H nuclei).

running. The electron beam enters the target chamber from the beam line via the

entrance beam pipe. The vast majority of these electrons pass straight through the

target material with minimal deflection, exiting the target chamber via the beam exit

pipe and heading to the beam dump.

For the electrons that are significantly deflected, a thin window composed of 0.020-

Target Entrance (mm) Exit (mm) Right (mm) Left (mm)
1H 0.264 ± 0.082 0.208 ± 0.035 0.444 ± 0.015 0.329 ± 0.007
2H 0.168 ± 0.009 0.2024 ± 0.056 0.462 ± 0.011 0.330 ± 0.008
3He 0.168 ± 0.009 0.2024 ± 0.056 0.462 ± 0.011 0.330 ± 0.008
4He 0.264 ± 0.082 0.208 ± 0.035 0.444 ± 0.015 0.329 ± 0.007

Table 2.6: Specifications for the aluminum alloy 7075 shells that encased the cryogenic
targets.
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Figure 2.17: The target control GUI for the second target ladder. The display is
identical to that of the first target ladder apart from the targets listed. On this
ladder, cryogenic loop 1 contained 3He gas, and loop 2 contained 4He gas.

inch thick 2024-T3 aluminum forms the section of the target chamber wall between the

target ladder and possible spectrometer entrances. This window allows the scattered

electrons to exit the target chamber with minimal interference. The electrons within

the set angular acceptance of the spectrometer then pass through a small section of

air before entering one of the spectrometers. This physical separation between the

spectrometer and the target chamber is done to allow the spectrometers to rotate

about the target without coupling to the target chamber and beam line vacuum.

The 3 other targets that were used were the aluminum alloy 7075 dummy, carbon

optics, and hole targets. These targets are described below:

• Aluminum Alloy 7075 Dummy:

The aluminum alloy 7075 dummy target is composed of two AA7075 foils sep-

arated by 10 cm, with the front and back foils approximately aligned with the
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Figure 2.18: Picture of the target ladder installed in the Hall C target chamber during
the alignment process from [68]. During this process, the solid target portion of the
ladder only contained the hole target to prevent exposure of the other targets to air.

entrance and exit windows of the AA7075 shell that holds the cryogenic tar-

gets. This target is used to estimate the background caused by the AA 7075

shell of the cryogenic targets. The entrance and exit dummy target foils are

0.240 ± 0.003 g/cm2 and 0.236 ± 0.003 g/cm2, respectively. This is approxi-

mately 4 times thicker than the corresponding windows of the cryogenic target

shells. This is done to match the radiation length of the dummy target to that

of the cryogenic targets, causing both to experience similar external radiative

effects.
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Figure 2.19: Raster pattern with the carbon hole target roughly centered on the beam.
The electrons that pass straight through the hole in the target are not scattered and
therefore not detected by the spectrometer, while the electrons that hit the rest of
the target are detected.

• Carbon Optics:

The carbon optics target consists of two carbon foils: one located 8 cm upstream

of the spectrometer pivot axis and the other located 8 cm downstream of it.

This target is used to provide data to perform the optics calibrations for each

of the spectrometers. This calibration allows one to reconstruct the scattering

angle and momentum of a detected particle as it exited the target material

given its track through the spectrometer as measured by the drift chambers.

• Carbon Hole:

The hole target consists of a thin carbon foil with a 2 mm circular hole in the

middle. With the beam rastered to at least 2.00 mm × 2.00 mm, this target

is used to locate and center the beam position on the target ladder. A hole

appears in the raster pattern where electrons simply pass through the hole in

the foil and are not scattered into the spectrometer. The centering of the beam

position on the target ladder is performed by adjusting the beam position until
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the hole in the raster pattern is centered. An example of a raster pattern with

the beam centered on the hole is shown in Fig. 2.19.
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Chapter 3

Data Analysis

This chapter covers the data analysis procedure that was used to obtain the results

shown in Ch. 4. This includes setting the proper reference times and timing windows,

performing detector calibrations and efficiency studies, estimating backgrounds, and

comparing data to Monte Carlo simulations to extract cross sections.

3.1 Reference Times

As discussed in a previous chapter, when the Level 1 (L1) accept trigger is caused to

fire by one of the pre-triggers, it is sent to the readout controllers (ROCs) to initiate

the writing of data from all of the fADCs and TDCs. This L1 accept trigger operates

at a clock rate of 40 MHz, which corresponds to a 25 ns timing resolution. In addition,

the L1 accept trigger has an intrinsic 4 ns jitter, causing the timing resolution to be

29 ns. To measure the arrival time of the raw detector signals using the full 10 GHz

(0.1 ns) resolution of the TDCs, a time with a higher resolution than the L1 trigger

time must be used as a reference. For this experiment, the HMS reference time is a

copy of the hHODO 3/4 pre-trigger that is sent to all fADC and TDC modules. The

reference time is then measured against the 10 GHz clock of the TDCs, which allows

it to be used to correct for the jitter introduced by the coarse timing resolution of the

L1 accept trigger. One can then recover the 0.1 ns resolution of the arrival time of the

detected signal by taking the difference between it and the corresponding reference
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Figure 3.1: Two raw HMS drift chamber reference time spectra for a run using the
hHODO 3/4 trigger. The histograms in the top plots show the raw reference time
counts as a function of TDC channel (0.1 ns), while the bottom plots show the
multiplicity - the number of hits within the trigger readout window. The red and
blue histograms correspond to the TDC times with and without a multiplicity cut
requiring only one hit in the time window. The vertical yellow lines in the top plots
are the reference time cuts that were selected for use in further analysis. The small
gap between the random coincidences (blue) and the good reference time peak (red)
is likely due to electronic dead time. This dead time introduces a minimum time
interval between the occurrence of a valid trigger (corresponding to a good reference
time) and a random coincidence.

time.

Due to random coincidences (especially at high rates), more than one reference

time “hit” may occur during the read-out window of a single accepted trigger. To

ensure that the proper reference times, those corresponding to the trigger, are selected

to correct the raw times, one must set reference time cuts. Without any cuts applied,

the analyzer defaults to setting the first hit within the window to the reference time;

on the other hand, with the cut applied, the analyzer selects the first hit occurring

after the cut as the reference time. Histograms of the raw uncorrected TDC times and

fADC pulse times are shown in Fig. 3.1. The cuts are set just before the sharp peaks,

significantly increasing the probability that the proper reference time is selected. If
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Figure 3.2: Reference time parameter file used for the HMS hEL_REAL and
hEL_CLEAN runs. The cuts are set to negative values which, as noted in the pa-
rameter file, means that if no hit is found after the reference time cut, the first hit is
used instead.

there is no hit present after the cut, one can choose to either use the first hit or not

use a reference time at all for that event.

The reference time spectra were found to peak at different times when comparing

runs that used hHODO 3/4 as the trigger and runs that used either hEL_REAL or

hEL_CLEAN as the trigger. This occurred due to small differences in the time that

each of the triggers fires. To account for this, two sets of cuts were used: one for

runs taken using the hHODO 3/4 trigger, and another for runs taken using either

the hEL_REAL or hEL_CLEAN trigger. The file containing the cuts used for the

hEL_REAL or hEL_CLEAN runs is shown in Fig. 3.2. The peak times were oth-

erwise found to be consistent over the course of the experiment. This was expected

since no changes were made to the trigger logic or relevant hardware during this time.
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3.2 Timing Windows

The next step in the analysis process is determining the timing window cuts. These

timing window cuts help to remove background hits in the fADCs and TDCs that

occurred within the readout window, which is relatively wide compared to the typical

time distribution of good hits. For the hodoscope, the timing window cuts were

made on a PMT-by-PMT basis on the difference between the fADC pulse time and

TDC time for each of the hits. This difference should be constant for good physics

events (apart from differences due to finite timing resolution) because both the fADC

and TDC times originate from a good event (not background, cross-talk, etc.) and

are therefore derived from the same input signal. For the calorimeter and Cherenkov

detectors, the timing window cuts were also made on a PMT-by-PMT basis, however,

they used the difference between the hodoscope time projected to the spectrometer’s

focal plane (HodoStartTime) and the fADC time. This difference should also be

roughly constant for true events following the same argument that was made for

the hodoscope, provided that the time-of-flight (TOF) of the particle between the

hodoscope and the other detector (calorimeter or Cherenkov) is also approximately

constant. These definitions are summarized as

AdcTdcDiffTime = TdcTime[pmt][hit] - AdcPulseTime[pmt][hit] (3.1)

for the hodoscope PMTs, and

AdcTdcDiffTime = HodoStartTime - AdcPulseTime[pmt][hit] (3.2)

for the calorimeter and Cherenkov PMTs. A sample AdcTdcDiffTime spectrum for

one of the two HMS Cherenkov PMTs with cuts overlayed is shown in Fig. 3.3.
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Figure 3.3: Difference between the fADC pulse time and hodoscope time for the HMS
Cherenkov PMT 1. The vertical green lines show the cuts that were made on the
fADC-TDC time difference for all subsequent analyses. These cuts are intentionally
kept loose to minimize the risk of removing potentially good events, as any remaining
bad events will be removed by subsequent cuts.

The timing window cuts for the drift chambers were made on a plane-by-plane

basis using the raw TDC times. A sample drift time spectrum for one of the HMS

drift chambers is shown in Fig. 3.4 along with the timing window cuts used. The

drift time spectra for all twelve planes were found to be very similar, therefore one

set of cuts was used for all twelve planes.

3.3 HMS Detector Calibrations

Now that the reference time and timing window cuts have been set, the next step

in the analysis process is to perform the HMS detector calibrations. This section

will cover the calibrations for the HMS hodoscopes, drift chambers, Cherenkov, and
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Figure 3.4: Raw TDC time spectrum for the U plane in the front HMS drift chamber.
The timing window cuts are shown as vertical red lines. The spectra for all twelve
planes were found to overlap almost entirely, so these cuts were used for all planes.
The broad shape of the drift chamber TDC time spectrum is caused by the distri-
bution of drift times. A drift time is the interval between when an ionizing particle
passes through the drift chamber and when its signal is picked up by a sense wire.
This time is a function of the distance between where a particle passes through the
drift chamber and the nearest sense wire.

calorimeter.

3.3.1 Hodoscope Calibrations

The purpose of the hodoscope calibration is to determine the corrected TDC time

tCorr, representing the time that the particle passed through and produced a signal

in the scintillator paddle. In general, this can be written as

tCorr = traw − tTW − tcable − tprop. − tλ , (3.3)

where traw is the raw TDC time, tTW is the time-walk correction, tcable is the correction

accounting for the time it takes for the signal to propagate from the PMT to the TDC,
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DISC. DISC.

TDC TDC

Figure 3.5: Illustration of the individual components of the hodoscope timing correc-
tion. Using the raw TDC times, these corrections allow one to determine the times
that particles passed through the scintillator paddle.

tprop is the correction accounting for the time it takes for the signal to propagate from

its point of origin inside the scintillator paddle to the PMT at the edge, and tλ

accounts for any remaining time difference between individual scintillator paddles.

These general timing corrections are illustrated in Fig. 3.5.

• Time-Walk Correction:

When an analog pulse passes through a leading-edge discriminator, a logic signal

is output when the amplitude of that pulse exceeds some threshold voltage. This

causes the time of the output logic signal to be dependent not only on the pulse

arrival time but also on the pulse amplitude since a higher amplitude pulse will

cross the threshold voltage sooner than a lower amplitude pulse. This effect

that the pulse amplitude has on the timing of the output signal, illustrated

in Fig. 3.6, is known as time-walk. This time-walk effect has a non-negligible

impact on the time read-out by our TDCs and must be corrected for in our

analysis.
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Figure 3.6: Visualization of the time-walk effect. As the amplitude of the signal
increases, the time at which it crosses the discriminator threshold decreases relative
to its peak.

Fortunately, the method used to determine the pulse time on the fADCs is not

sensitive to the signal amplitude. This pulse time is defined as the time at

which the pulse’s voltage crosses some constant fraction of its maximum am-

plitude. Therefore, given that the pulse shape is consistent, the fADC provides

an amplitude-independent measure of the pulse time. One can then plot the

difference between the hodoscope ADC and TDC times as a function of the

pulse amplitude, fit away the time-walk effect, and recover the corrected TDC

time. The fit function used is

fTW (A) = c1 +
1

( A
TDCThrs

)c2
(3.4)

where A is the pulse amplitude, c1 and c2 are the fitting parameters, and

TDCThrs is the TDC threshold voltage. Figure 3.7 shows the fADC-TDC
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Figure 3.7: Difference between fADC and TDC times plotted against pulse ampli-
tude for the positive side PMT of paddle 1 in the 1x plane of the hodoscope. This
distribution is fit to remove the effect of time-walk, with the fitted results c1 and c2
of Eq. 3.4 shown within the figure.

time difference plotted as a function of the fADC pulse amplitude for a sin-

gle hodoscope PMT before the time-walk correction is applied. Applying this

correction to the TDC time removes the amplitude dependence of the fADC-

TDC time difference. This also allows one to use the TDC time, which is more

precise than the pulse time output by the fADC, in further analysis.

• Cable Time Offset and Propagation Velocity in the Scintillator:

The next step in the hodoscope calibration procedure is to determine the cable

time offset and the signal propagation velocity in the scintillator for each of the

paddles: tcable_offset and vp.

To determine these values, half of the difference between the time-walk corrected

TDC times for the positive and negative PMTs of a single scintillator paddle is

plotted against the position the particle passed through the paddle. Half of the

TDC time difference is taken because, for every unit the track position moves
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towards one PMT, it also moves a unit away from the other PMT. This causes

the time difference between the two PMTs to grow twice as quickly as the time

it takes for the signal to propagate from the track position to the center of

the scintillator. Therefore, to more directly extract the propagation velocity

from this plot, half of the TDC time difference is used. The track position

is determined using the tracking information from the drift chambers. Once

this data has been plotted, it is then fit to extract the propagation velocity

and difference between the positive and negative PMT cable times using the

function

f(ytrack) =
1

vp
ytrack + b0 , (3.5)

where ytrack is the y-position of the particle along the scintillator centered at

y = 0, vp is the propagation velocity of the signal in the scintillator, and b0

is half of the cable time difference between the positive and negative sides. A

sample plot showing this data with the above fit overlayed is shown in Fig. 3.8.

• Hodoscope Paddle Time Difference Corrections:

The final step in the hodoscope calibration procedure is to determine tλ for each

of the hodoscope paddles. Consider an event where a single charged particle

passes through all four hodoscope planes. One would expect the difference

in the TDC times read out from any two struck paddles in different planes

to be equivalent to the time it took for the particle to traverse between them.

However, the corrections described above aren’t totally sufficient, and additional

time offsets exist between hodoscope paddles. These offsets are accounted for

by applying the tλ correction for each hodoscope paddle.

First, a cut is made to ensure that one and only one hodoscope paddle receives a

hit in each of the hodoscope planes for an event. Then, the TDC time difference
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Figure 3.8: Half of the TDC time difference between the positive and negative sides
of a hodoscope paddle plotted against the position the particle passed through that
paddle. This distribution is fit to determine the propagation velocity of the signal
produced by the particle in the scintillator and the difference between the positive
and negative side cable propagation times.

is formed for six combinations of paddles in different planes, as shown in Fig. 3.9.

For this calibration, the measured TDC time for each paddle is defined as the

average time walk and cable time corrected TDC times of the positive and

negative sides, written as

ti =
T+
TW + T−

TW − 2× tcable_offset

2
, (3.6)

where T
+(−)
TW is the positive (negative) side time walk corrected TDC time.

The “true” time difference between two paddles in different planes can then be

written as

(ti + tλi)− (tj + tλj) =
Dij

v
, (3.7)

where tλi(j) is the tλ correction for the i (j) PMT, Dij is the distance between
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Figure 3.9: Sketch of the HMS hodoscope planes showing the time differences used
to determine the tλ corrections.

the points at which the particle crossed the planes of the i and j paddles as

determined by the tracking, and v is the velocity of the particle. The time

differences between the hodoscope paddles as defined in Fig. 3.9. We can then

use Eq. 3.7 to define the time difference between two paddles that is not due to

the time it took for the particle to traverse between them as

tλi
− tλj

=
Dij

v
− (ti − tj) ≡ bij . (3.8)

This gives six bij for one event, one for each pair combination of the four paddles.

Forming these differences for many events, one can set up a system of 52 linear
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equations, one for each hodoscope paddle, to solve for each of the 52 tλi as



c1,1 c1,2 . . . c1,51 c1,52

c2,1 c2,2 . . . c2,51 c2,52
... ... . . . ... ...

c51,1 c51,2 . . . c51,51 c51,52

c52,1 c52,2 . . . c52,51 c52,52





tλ1

tλ2
...

tλ51

tλ52


=



b1

b2
...

b51

b52


, (3.9)

where bm is defined as

bm =
52∑

n=m

bmn −
m∑

n=1

bnm , (3.10)

and cmn is the corresponding coefficient in front of the tλn term obtained after

performing the same operations that were used to form bm on the left-hand side

of Eq. 3.8.

For example, consider forming a matrix from two calculated time differences,

b1,20 and b20,40. We would then obtain



1 . . . −1 . . . . . . . . .

. . . . . . . . . . . . . . . . . .

−1 . . . 2 . . . −1 . . .

. . . . . . . . . . . . . . . . . .

. . . . . . −1 . . . 1 . . .

. . . . . . . . . . . . . . . . . .





tλ1
...

tλ20
...

tλ40
...


=



b1,20
...

b20,40 − b1,20
...

−b20,40
...


, (3.11)

with all other elements being 0. This system of equations is then solved nu-

merically using Singular Value Decomposition (SVD). Paddle 7 (1x7) is used

as the baseline, meaning that row 7 and column 7 of the coefficient matrix are

set to 0 (along with b7) before performing the SVD (otherwise, without setting
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a reference paddle, a uniform offset of all tλn would also be a solution due to

the linear dependence of the functions).

Once the full hodoscope calibration procedure is complete, it is important to

verify that the calibration worked as intended. One plot that is examined is a 2D

histogram that shows particle velocity, as determined by the hodoscopes, plotted

against the focal plane position of the particle, shown in Fig. 3.10. For a dataset

consisting primarily of GeV energy electrons, a good calibration would result in a

histogram whose distribution is a Gaussian that peaks near β = v
c
= 1 at all focal

plane positions. A poor calibration may have a β peak significantly offset from 1, or

a β distribution that varies as a function of hodoscope position. This variation would

appear as sharp discontinuities at positions corresponding to the boundaries between

individual hodoscope paddles.

The hodoscope calibration coefficients determined throughout the experiment

were found to be stable enough for our purposes to allow us to use a single set

of coefficients to analyze all of the data.

3.3.2 Drift Chamber Calibrations

As discussed in Sec. 2.4.2, when a charged particle passes through the drift chambers,

a track of ionized atoms is left in its wake. The freed electrons then accelerate in the

electric field toward the nearest positive potential wire. As the electron travels toward

the wire, a Townsend Avalanche is formed, resulting in a signal being produced once

the avalanche reaches the wire. The delay between the time that a charged particle

passes through a drift chamber and when a signal is produced in one of the wires is

known as the drift time. This drift time can be used to determine the distance at

which a charged particle passes by the wire, known as the drift distance. This allows
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Figure 3.10: Diagnostic plot for the hodoscope calibration. Using a dataset consisting
primarily of electrons at 4 GeV, β is plotted against the x-position of particle tracks
at the focal plane (xfp). The β distribution is peaked at 1 at all xfp, and no discon-
tinuities due to individual poorly calibrated paddles are observed. The spread in the
β distribution is primarily due to the timing resolution of the hodoscopes rather than
actual variations in the velocities of the detected particles.

for more precise tracking than possible from a simple wire chamber with the same

wire spacing. The goal of the drift chamber calibration is to produce the mapping

from drift times to the drift distances.

The first step in the drift chamber calibration procedure is to determine a quantity

known as the t0 offset. This offset corresponds to the TDC time of a particle that

passed directly through one of the wires, having no drift time. Once this offset is

applied to the TDC time spectrum, the corrected TDC time of a particle passing

directly through the wire will be zero (t0 = 0). It was noticed that the overall

offset of the drift time spectrum tended to shift over time, therefore, this offset was

monitored and updated with every kinematic change. This offset was determined

per discriminator card, with each card containing up to 16 wires. The overall timing

offset per card was determined using a linear fit to the rising edge of the drift time
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Figure 3.11: Sample drift time distribution with the linear fit used to extract the t0
offset overlayed in red. To extract the t0 offset, the fit line is extrapolated to the
x-axis to determine the x-intercept. This intercept is used as the offset.

distribution, as shown in Fig. 3.11. This fit was then extrapolated to the horizontal

axis, with the t0 offset corresponding to the x-intercept.

Once the overall drift time offset has been set such that t0 = 0, we can create the

map to convert from these corrected drift times to drift distances, using the fact that

the drift distances should be approximately uniformly distributed from 0 cm to 0.5

cm (the spacing between wires). The events should be uniformly distributed because

particles have no preferred distance at which to pass between two wires, and, for

sufficiently small wire spacing, the variation in the rate of events is approximately

linear as a function of position, leading to a uniform drift distance spectrum. With
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this, we can form a mapping between drift times and drift distances using the equation

ddrift(tdrift) = ∆

∫ tdrift≤tmax

t0
F (τ)dτ∫ tmax

t0
F (τ)dτ

, (3.12)

where ddrift is the drift distance, tdrift is the drift time, ∆ is the nominal width of the

drift distance distribution which is equal to the wire spacing (0.5 cm), F (τ) is the

drift time distribution, and tmax is the maximum drift time.

Due to the finite precision of the TDC time, Eq. 3.12 is implemented in practice

using a finite sum, not an integral. In addition, the integral in the denominator

of Eq. 3.12 is the total number of counts in the drift time distribution, which we

can write as Ntot. With this, the practical implementation of the drift time to drift

distance map can be written as

ddrift(tdrift) = ∆
1

Ntot

bin(t0+tdrift)∑
bin(t0)

F (n) , (3.13)

where F (n) is the number of counts in the nth bin. One of these time-to-distance

maps is made for each of the wire planes, resulting in a total of 12 maps.

To verify that the calibration worked as intended, one can analyze the data that

was used for the calibration with the new t0 offsets and time-to-distance maps applied,

and plot the drift distance spectra for each of the wire planes. If the calibration worked

as intended, it will by definition result in a uniform drift distance spectrum, as shown

in Fig. 3.12.

Unlike the hodoscope calibration, the drift chamber calibration coefficients were

found to not be stable enough to allow us to use a single set of calibration constants

to analyze data over the entire run period. Therefore, a unique set of calibration

constants was used for each kinematic setting, resulting in over 100 sets in total.
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Figure 3.12: Sample drift distance distribution using the t0 offsets and time-to-
distance maps from the calibration. The uniform nature of the distribution is used
to verify that the calibration worked as intended.

For several settings, a good drift chamber calibration could not be performed. This

occurred primarily due to having insufficient statistics for the particles of interest in

those settings. In those instances, the calibration constants from settings with similar

kinematics that were run nearby in time were applied instead.

3.3.3 Cherenkov Calibrations

When a charged particle travels faster than the speed of light in a medium, Cherenkov

radiation is produced. In the HMS Cherenkov detector described in Sec. 2.4.3, this
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radiation is focused by one of two mirrors onto a corresponding PMT. Upon reaching

the photocathode of a PMT, this radiation then stimulates the emission of a certain

number of photoelectrons. Assuming the photocathode is not near being saturated,

the number of photoelectrons emitted follows a Poisson distribution, with a mean

proportional to the amount of radiation incident on the photocathode. For a single

Cherenkov-producing charged particle passing through the HMS Cherenkov detector

filled with the gas mixture described in Sec. 2.4.3, the mean sum of the number of

photoelectrons emitted across both PMT’s photocathodes was found to be approx-

imately 12. These electrons are then multiplied by the PMT, resulting in a large

output signal that is sent to an fADC. The fADC then determines the integrated

charge present in the signal, measured in units of pC.

The goal of the Cherenkov detector calibration is to produce a mapping for each

PMT that allows one to convert from the integrated charge of a signal measured

by an fADC, which is not physically meaningful in itself as it is dependent on the

gain of the particular PMT, to the number of photoelectrons that were emitted from

the corresponding PMT’s photocathode, which is physically meaningful as it is di-

rectly related to the amount of radiation that was incident on it. These mappings

are very important because the sum of the number of photoelectrons emitted from

the photocathodes of both PMTs can be used to distinguish between particles that

produced Cherenkov radiation in our detector and those that only produced radiation

via other processes, as the signal produced in the PMTs due to radiation from these

other processes is typically much smaller than the signal produced due to Cherenkov

radiation.

Due to the approximately linear relationship between the number of photoelec-

trons emitted from the photocathode of a PMT and the charge integral of the output

signal, the mapping between these two quantities can be accomplished using a con-



90

PMT # pC/Photoelectron
PMT 1 10.01
PMT 2 9.46

Table 3.1: Calibration coefficients for the HMS Cherenkov PMTs. The coefficient for
each PMT is the factor used to convert from the signal output by the PMT (in pC)
to the number of photoelectrons emitted from the photocathode of that PMT.

stant scale factor that is equal to the charge integral corresponding to when a single

photoelectron is emitted from that PMT’s photocathode. For each PMT, this scale

factor is the calibration coefficient we want to obtain. To determine the calibration

coefficient for a single PMT, the single photoelectron (SPE) peak in that PMT’s

charge integral spectrum is fit with the function

f(x) = a+ bx+ cx2 + de−
1
2

(x−µ)2

σ2 , (3.14)

where the second-order polynomial is used to model the background, and the mean of

the Gaussian µ is the calibration coefficient for that PMT. The conversion can then

be made using the equation
ρc
µ

= npe , (3.15)

where ρc is the charge integral and npe is the number of photoelectrons that were

emitted from the photocathode of the PMT. A sample charge integral spectrum with

this fit overlayed is shown in Fig. 3.13.

Over the run period, the calibration constants for both of the HMS Cherenkov

PMTs were found to be stable enough for our purposes to allow for the use of a single

set of coefficients to analyze all of the data, provided in Tab. 3.1.
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Figure 3.13: Charge integral spectrum for one of the HMS Cherenkov PMTs with a
fit of the single photoelectron peak overlayed. The large number of counts to the left
of the SPE peak is due to electronic noise. This is also known as the pedestal.

3.3.4 Calorimeter Calibrations

The HMS lead glass calorimeter is primarily used for particle identification, as dif-

ferent types of particles have unique total energy deposition distributions. The goal

of the calorimeter calibration is to be able to determine the energy deposited in each

of the calorimeter blocks based on the signal amplitudes reported from each of the

corresponding fADCs.

In order to determine how much energy was deposited in the calorimeter blocks

from the measured signal amplitudes in the corresponding fADCs, one must determine
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Figure 3.14: Diagnostic plots for the HMS calorimeter calibration. The top left plot
shows the calorimeter spectrum before the calibration was performed. The bottom
left plot shows the same spectrum using the gains obtained from the calibration script.
The bottom right plot shows how the calorimeter spectrum varies as a function of
momentum relative to the central momentum. Ideally, there should be no noticeable
variation of the E/P peak as a function of δ, however, some slight variation is ob-
served. Fortunately, this variation is small enough that it doesn’t have any noticeable
impact on the analysis. The top right plot shows the relationship between the energy
deposited in the preshower (layers 1 and 2) and shower (layers 3 and 4) blocks.

the gains of each of the PMTs, as well as how much the produced Cherenkov light

was attenuated in each of the lead glass blocks before it was picked up by the PMT

[63].

The light attenuation is accounted for by multiplying the measured signal am-

plitude after pedestal subtraction by a correction factor. This correction factor is a

function of the track position’s distance from the PMTs.

The next step is to determine the relative gains of each of the PMTs. Before the
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experiment, the gains of the calorimeter’s PMTs were set such that the amplitude of

the fADC signals would on average be the same between blocks in the same layer. To

this end, the gains of the PMTs connected to the bottom blocks were kept relatively

low and the gains of the PMTs connected to the top blocks were kept relatively high,

counteracting the fact that higher energy particles are bent less by the dipole magnet

and are therefore detected lower on the calorimeter. The variation in PMT gains

from the top to the bottom of the calorimeter was approximately 20%, corresponding

to the total momentum acceptance of the HMS. This amplitude matching was done

to ensure that the calorimeter trigger efficiency would be constant over the entire

calorimeter.

To correct for the variation in the gains of each of the PMTs, the calibration code

minimizes the differences between the estimated total energies deposited by electrons

(or positrons) in the calorimeter, and the momenta of these electrons (or positrons)

as determined by the tracking. The estimated energy deposited in a PMT is given by

ϵ = c(A− Aped)f(y) , (3.16)

where ϵ is the estimate of the deposited energy, c is the calibration constant for that

PMT, A is the amplitude of the signal reported by the fADC, Aped is the pedestal

offset of the fADC, and f(y) is the horizontal (y) position-dependent correction to

account for the attenuation of light across the lead glass blocks. Calorimeter blocks

with PMTs on both sides have a different functional form for the position-dependent

correction than blocks with only a single PMT. They are given by:

f(y) =


ey/c1

1+ y2

c2

if 1 PMT

c3±y
c3± y

c4

if 2 PMTs
(3.17)
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The calorimeter calibration coefficients were found to not be stable enough to

allow us to use a single set of calibration constants to analyze data over the entire run

period. This is because the calorimeter PMTs are not optimized for use at high rates,

causing their gains to change slightly as the kinematic settings, and consequently the

rates, were changed. Therefore, like for the drift chambers, a unique set of calibration

constants was used for each kinematic setting. For settings where a good calibration

could not be performed due to low statistics, calibration constants from settings with

similar kinematics were used.

3.4 BCM Calibrations

To extract cross sections from our experimental data, we must have an accurate

measurement of how many electrons impinged on our target in each of our data

sets. This measurement relies on an accurate determination of the beam current

entering the hall, which is measured using an Unser monitor and several Beam Current

Monitors (BCMs) as described in Sec. 2.2.3.

The Unser monitor has a very stable response to changes in beam current (nom-

inally 4 mV/µA), which is calibrated by sending a known current through a wire

inside of the beam pipe. However, the Unser monitor has an offset that can drift

significantly over time scales of several minutes. This makes the Unser monitor un-

suitable for making accurate measurements of the beam current over longer periods

of time. On the other hand, the BCMs have very stable offsets, but their gains can

drift slightly over the course of several months and also have no a priori absolute

calibration. To provide an absolute calibration, special data sets were collected at

different times during the experiment to determine the gains of the BCMs relative to

the very stable gain of the Unser monitor. Using the gain determined from the cali-
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Figure 3.15: Figure from [69]. Unser rates over the course of a single BCM calibration
run (one data point every 2 seconds).

bration, the output of a BCM could then be accurately mapped to the corresponding

beam current I using the equation

I = (νon − νoff )A , (3.18)

where νon(off) is the signal from the BCM when the beam is on (off), and A is

the BCM’s gain. The BCM offset νoff is extrapolated from the calibration, not

determined directly from the BCMs when the beam is turned off.

The BCM calibration is performed using a data set where the beam current is

frequently turned on and off, as shown in Fig. 3.15. The beam-off periods are used to

determine the offset of the Unser monitor, which, as previously mentioned, can drift

over timescales of several minutes. With both the offset and gain of the Unser now

known, the current entering the hall during the beam-on periods can be accurately

measured. The gains and offsets for each of the BCMs can then be extracted by

plotting the currents measured by the Unser during the beam-on periods against the
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Figure 3.16: Figure from [70]. Measured gains and offsets for BCM4A. Because these
quantities were found to be relatively stable and the χ2/dof was found to be smaller
for a constant fit than for a linear fit, the weighted average of each of these quantities
was used to determine the beam current for all of the collected data.

corresponding scaler rates and performing a linear fit.

The gains and offsets for BCM1, BCM2, and BCM4A were found to be stable

(within measurement uncertainties) throughout the experiment. For each of these

BCMs, the weighted averages of the gains and offsets found in the calibrations were

used when determining the beam currents measured by that BCM throughout the

experiment, as opposed to using multiple different sets of offsets and gains.

In addition to having a stable gain and offset, BCM4A also utilizes a more ad-

vanced temperature control system and different electronics, giving it a more linear

response over a wider range of beam currents. Therefore, BCM4A was selected to

provide the current measurements that were used for the rest of the analysis. The

gains and offsets found for BCM4A are shown in Fig. 3.16.

After this calibration, it was found that a small offset persisted in the current

measured by BCM4A (as well as the other BCMs). This additional offset, which was

determined by looking at the current dependence of yields, is discussed in Sec. 3.9.2.
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Quantity Data Cut Monte Carlo Cut
Calorimeter Signal H.cal.etottracknorm > 0.7 NA
Cherenkov Signal H.cer.npeSum > 2.0 NA

Non-Dispersive Angle |H.gtr.ph| < 0.040 rad |hsyptar| < 0.040 rad
Dispersive Angle |H.gtr.th| < 0.090 rad |hsxptar| < 0.090 rad

Momentum |H.gtr.dp| < 8.0% |delta| < 8.0%
Beam Current H.bcm.bcm4a.AvgCurrent > 5.0 uA NA
Event Success NA stop_id == 0

Table 3.2: Summary of the cuts applied to get a clean electron data set for cross sec-
tion extraction. The calorimeter signal cut is applied on the momentum-normalized
total energy deposition. The Cherenkov signal cut is applied on the sum of the
integrals of the signals from the Cherenkov PMTs normalized by the integrals cor-
responding to the emission of a single photoelectron from the photocathodes of each
of the PMTs. The purpose of both the calorimeter and Cherenkov cuts is to re-
move non-electron events. Acceptance cuts are applied to the reconstructed particle
momentum relative to the spectrometer’s central momentum (δ), as well as to the
particle’s reconstructed scattering angle in the dispersive (x) and non-dispersive (y)
directions. A cut is applied on the beam current to remove any background events
that may have been collected while the beam was turned off. For the Monte Carlo
data, a cut is applied on the variable stop_id to remove events that failed to enter
the spectrometer.

3.5 Cuts and Efficiencies

To measure the inclusive cross section for electron-nucleus scattering, we need to

be able to distinguish electron events from events due to other types of particles

entering the HMS, primarily pions. This is accomplished by placing cuts on spectra

from the HMS calorimeter and Cherenkov detectors. We must also use the tracking

information to remove events that did not enter the HMS from within its nominal

acceptance, as the Monte Carlo simulation does not reproduce these events well.

Finally, a cut is applied to remove any events that occurred while the beam was off,

as these are primarily due to cosmic radiation. This section will cover the cuts applied

to the experimental data to extract cross sections and their efficiencies. The cuts are

summarized in Tab. 3.2.
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3.5.1 Calorimeter Cut and Efficiency

As discussed in Sec. 2.4.4, different types of particles have unique total energy deposi-

tion distributions in the HMS lead glass calorimeter. A cut is applied on the variable

H.cal.etottracknorm, the momentum-normalized total energy deposition (E/P ) spec-

trum, to remove most of the pion events while keeping the majority of the electron

events. Approximations of the electron and pion momentum-normalized total energy

deposition spectra in the calorimeter are shown in Fig. 3.17, where the approximately

pure electron and pion data sets are created by applying cuts on the signal from the

Cherenkov detector. A calorimeter cut of E/P > 0.7 was chosen to strike a bal-

ance between minimizing the number of pions that pass the cut and minimizing the

number of electrons that fail to pass the cut.

Now that the calorimeter cut has been selected, we must determine the percentage

of the good electron events that pass this cut, known as the calorimeter cut efficiency

ϵcal. The ideal data set to determine the calorimeter cut efficiency would use a trigger

that did not explicitly depend on the calorimeter signal and would be comprised purely

of electrons. The only trigger that was used during E12-10-008 that did not explicitly

depend on the calorimeter was the hHODO 3/4 trigger. Unfortunately, all of the data

we collected with this trigger had a significant number of pion events relative to the

number of electron events, where even very strict Cherenkov cuts would not create a

pure enough electron dataset to perform this study.

The hEL_REAL trigger (see Fig. 2.14) explicitly depends on the calorimeter

through several pretriggers such as hPreSH_LO, so runs using this trigger cannot

be used directly to determine the calorimeter cut efficiency. However, this explicit

dependence on calorimeter pretriggers can be accounted for by first determining the

hPreSH_LO electron trigger efficiency ϵhPR_LO, which can be accomplished using
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Figure 3.17: Calorimeter momentum-normalized total energy deposition spectra with
different cuts on the total Cherenkov signal integral normalized by the integral cor-
responding to the emission of a single photoelectron from the PMT’s photocathode
(Cer NPE Sum). Many of the events that pass the Cer NPE Sum > 5 cut but are be-
low the calorimeter cut are pion events that produced signal in the Cherenkov PMTs
through other processes. For example, as a pion passes through the material in the
spectrometer, it can knock electrons free that produce Cherenkov radiation in the
Cherenkov detector.

hHODO 3/4 trigger data. The hPreSH_LO electron trigger efficiency was determined

as

ϵPR_LO =
N([PR_LO] ∧H.cer.npeSum > 10.0)

N(H.cer.npeSum > 10.0)
, (3.19)

where the tight PID cut on the signal from the Cherenkov detector was selected

to ensure the cleanest electron data set possible while still retaining enough events

to prevent the study from losing any sensitivity due to statistical limitations. To

account for the small number of pions and other backgrounds that remained in the

data sets used to determine the hPreSH_LO electron trigger efficiency after the tight

Cherenkov PID cuts were applied, the hPreSH_LO electron trigger efficiency was
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determined for several targets and fit as a function of the ratio of electron to pion

counts for each target, normalized to carbon. The fit was then extrapolated back

to the y-axis to determine the electron trigger efficiency. Using this method, the

hPreSH_LO electron trigger efficiency was found to be 100.02% ± 0.02%, therefore,

we treated the efficiency of this trigger as consistent with 100% in the analysis.

Now, because the hEL_REAL trigger will fire if the hEL_LO pretrigger fires

and the hEL_LO pretrigger can only fire if the hPreSH_LO pretrigger fires, we can

determine the calorimeter cut efficiency using hEL_REAL trigger data, which was

taken at more favorable kinematic settings for this study than the hHODO 3/4 trigger

data, by applying an additional cut requiring the hEL_LO pretrigger to have fired

and multiplying the result by the hPreSH_LO efficiency. Therefore, the calorimeter

cut efficiency can be determined as

ϵcal = ϵPR_LO
N([EL_LO] ∧H.cer.npeSum > 10 ∧H.cal.etottracknorm > 0.7)

N([EL_LO] ∧H.cer.npeSum > 10)
,

(3.20)

where the tight PID cut on the Cherenkov signal was used for the same reasons

that it was used for in the hPreSH_LO electron trigger efficiency determination.

Once again, to account for the small number of pions and other backgrounds that

remained in the data used for this study, the calorimeter cut efficiency was determined

for several targets and fit as a function of the ratio of electron to pion counts for each

target, normalized to carbon, and extrapolated back to the y-axis to determine the

electron cut efficiency. The pion sample used to determine the pion fraction (π/e)

for each target is obtained by applying the cuts 0.2 < H.cal.etottracknorm < 0.4

and H.cer.npeSum < 0.5. This sample does not include all of the pions, however it

is sufficient because we only need to determine the relative pion fractions between

different targets. As shown in Fig. 3.18, this fit results in a calorimeter cut efficiency
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Figure 3.18: Calorimeter cut efficiency for several targets as a function of the ratio of
electron to pion counts for each target, normalized to carbon. The fit is extrapolated
to the y-axis to determine the cut efficiency for a data set consisting only of electrons.

of 99.9% with a statistical uncertainty of less than 0.1%. Within error, the calorimeter

cut efficiency was found to be uniform over the entire surface of the calorimeter.

3.5.2 Cherenkov Cut and Efficiency

To distinguish between particles that did and those that did not produce Cherenkov

radiation in the Cherenkov detector, a cut is placed on the total integral of the

signals from the Cherenkov PMTs normalized by the integrals corresponding to the

emission of a single photoelectron from the photocathodes of the respective PMTs.

This quantity is often called the Cherenkov NPE sum and is contained in the variable

H.cer.npeSum. Non-Cherenkov emitting particles may still produce a signal in the

Cherenkov detector PMTs due to radiation emitted in other processes, primarily

from “knock-on” electrons. However, the signals produced in the PMTs due to the

radiation from these other processes are on average smaller than those produced due
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Figure 3.19: Total signal integral from the Cherenkov PMTs normalized by the inte-
gral corresponding to the emission of a single photoelectron from the PMT’s photo-
cathode. Events that did not produce a signal in the Cherenkov PMTs corresponding
to over 0.1 photoelectrons have been filtered from this histogram, removing a large
peak at 0. A cut requiring that the NPE sum is greater than 2 is applied in our anal-
ysis to remove events that did not produce a significant signal in the PMTs, which
mostly occurs for non-Cherenkov-producing particles.

to Cherenkov radiation. As shown in Fig. 3.19, a cut requiring the Cherenkov NPE

sum to be greater than 2 removes most of these non-Cherenkov radiation-producing

particles.

With the Cherenkov NPE sum cut set, the cut efficiency now needs to be deter-

mined. As for the calorimeter cut efficiency, the ideal data set for determining the

Cherenkov cut efficiency uses a trigger that does not depend directly on the Cherenkov

and consists solely of electrons. While none of the hHODO 3/4 data could be used to

produce a clean enough electron sample, some of the hEL_REAL data could. To re-

move the Cherenkov dependency from the hEL_REAL trigger data, a cut was made

requiring the hEL_HI trigger to have fired, which has no Cherenkov dependency.

With this data, a tight cut on the calorimeter spectrum was applied to obtain the
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cleanest electron dataset we could achieve with our data, and the Cherenkov cut was

applied to determine its efficiency. Under the assumption that the data set will con-

sist of only electrons after PID cuts, the Cherenkov cut efficiency was determined

as

ϵcer =
N([EL_HI] ∧H.cal.etottracknorm > 1.0 ∧H.cer.npeSum > 2.0)

N([EL_HI] ∧ E.cal.etottracknorm > 1.0)
, (3.21)

where the tight PID on the calorimeter signal was used for the same purposes that the

tight PID cut on the Cherenkov signal was used in the determination of the calorime-

ter cut efficiency. Unlike the calorimeter, the Cherenkov cut efficiency was found

to vary over the momentum acceptance of the detector as shown in Fig. 3.20. The

detector efficiency can be represented by a binomial distribution, where the efficiency

is equal to the observed probability of success p of the binomial distribution. The

uncertainty of the detector efficiency σp in each δ bin is determined by approximating

the error of the binomial distribution as a normal distribution, which gives

σp =

√
p(1− p)

n
, (3.22)

where n is the number of events (trials) in the corresponding δ bin.

This efficiency was fit to a piecewise distribution and corrected for in the analysis.

This piecewise function can be written as

ϵcer =


0.9994 if δ < −1.0%

0.99727− 0.00213× δ if −1.0% < δ < 0.5%

0.9962 if δ > 0.5%

(3.23)
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Figure 3.20: Efficiency of the HMS Cherenkov cut as a function of δ, a particle’s
reconstructed momentum relative to the central momentum of the spectrometer, in
percent, for the cryogenic targets. The red line is the fit, given in Eq. 3.21, which
is used to correct for the Cherenkov efficiency in the analysis. The dip in efficiency
around δ = 0 is hypothesized to be due to differences between the top and bottom
mirrors or PMTs of the Cherenkov detector. At high δ, the efficiencies were found to
vary by about ±0.1% between different targets. The discrepancy between the fit and
the data points at high δ is because the fit was determined using the carbon target
efficiency, which had relatively low backgrounds compared to other targets.

where δ is the reconstructed momentum of the particle relative to the central mo-

mentum of the spectrometer, given in percent. A 0.1% point-to-point systematic

uncertainty was applied for the trigger and detector cut efficiency corrections to ac-

count for uncertainty in the methods used to extract the efficiencies and to account

for small variations in the Cherenkov cut efficiency observed across different targets.

This systematic uncertainty is small compared to our target statistical uncertainty of

0.5%, which is based on bins of size 0.025 in xBj.
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3.5.3 Acceptance Cuts

Comparisons are made between the experimental data and Monte Carlo simulations

to extract cross sections. The Monte Carlo simulation can reproduce the experi-

mental results very well within a certain momentum and angular acceptance of the

spectrometer. However, outside of this acceptance, the Monte Carlo does not repro-

duce the real-world data well. To limit the data to Monte Carlo comparison to the

kinematic region where the Monte Carlo can reproduce the experimental results well,

cuts are applied to the reconstructed dispersive angle, non-dispersive angle, and mo-

mentum (relative to the spectrometer’s central momentum) in both the experimental

and Monte Carlo data. The exact acceptance cuts used are provided in Tab. 3.2.

3.5.4 Beam Current Cut

A cut is applied to ensure that the beam current measured by BCM4A was above

5 µA at the time the event occurred. This cut is used to remove unwanted events

that happened while the beam was off, as these events are primarily caused by cosmic

radiation. This cut also eliminates events that occurred at the beginning of ramping

up the beam current into the hall, when the beam may not yet be stable. Additionally,

this cut removes any false beam current that the BCM might register due to a small

offset or noise in its output while the beam is off, ensuring a more accurate accounting

of the beam charge accumulated during a run.

3.6 Electron Tracking Efficiency

Occasionally, the tracking algorithm may fail to reconstruct a track for an electron

event passing through our detector. This can occur due to inefficiencies in the drift
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chamber planes, which can cause not enough planes to have wires that fired to enable

left-right ambiguities to be resolved and for a good track to be reconstructed. The

tracking algorithm may also fail if too many wires in each of the individual planes

fire in an event, making it difficult to unambiguously determine a single good track

to associate with that event.

The equation for the electron tracking efficiency of our detector can be written as

ϵe
−

track =
Nel_did

Nel_should

, (3.24)

where Nel_should is the number of events that passed electron PID cuts and passed

through a fiducial region defined by the hodoscope planes, and Nel_did is the number

of those events for which a good track was also found. As shown in Fig. 3.21, the

electron tracking efficiency was calculated to be over 98% for all of the data collected

during E12-10-008 and was generally above 99.6%.

To extract cross sections, these tracking efficiencies were applied as corrections to

the data on a run-by-run basis to account for the otherwise good electron events that

were not counted due to them not having tracks. The uncertainty of the electron

tracking efficiency was determined by filling an inverse-variance weighted histogram

with the residuals of the H1X rate-dependent linear fit shown in Fig. 3.21 and calculat-

ing the standard deviation of the distribution, which was found to be approximately

0.04%.

3.7 Dead Time Corrections

There are two types of dead times that must be corrected for when extracting ex-

perimental cross sections: computer dead time and electronic dead time. Both of
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Figure 3.21: Electron tracking efficiency of each of the data sets collected during
E12-10-008. The efficiency is plotted against the rate of hits in the first hodoscope
plane (H1X) to determine the rate dependence of the tracking efficiency. A first-order
polynomial, shown in red, is fit to the tracking efficiency, and the standard deviation of
the residuals of this fit is used to determine the uncertainty of the tracking efficiency.

these dead times can be corrected for together using a value known as the “total live

time”, ttlt, which is defined as the effective fraction of time during which events were

able to be counted by our detector and data acquisition system. As the computer

and electronic dead times are independent, the total live time can be written as their

product

ttlt = telt × tclt , (3.25)
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where telt is the electronic live time and tclt is the computer live time. These correction

factors correspond to the fractions of events that are not lost due to each of these

dead times. In this section, we define electronic and computer dead times and outline

how their correction factors are determined.

3.7.1 Computer Dead Time

Events may be dropped if the DAQ is unable to write data to disk quickly enough to

keep up with the incoming event rate. These dropped events are said to be lost due

to computer dead time. Fortunately, the scaler data makes determining how many

events were lost this way a simple process.

When a selected pre-trigger fires, it causes the DAQ to write an event to disk,

though, as previously mentioned, the event may be dropped if the data cannot be

written quickly enough. In addition, a copy of that pre-trigger’s output pulse is sent

to the scaler DAQ, which counts how many times that pre-trigger fires. By taking

the ratio between the number of events written to disk Ndisk and the corresponding

scaler DAQ count for that pre-trigger Nscaler, one can determine the computer dead

time correction factor (or effective computer live time) tclt as

tclt =
NDisk

NScaler

. (3.26)

The computer dead time correction factors calculated for runs taken during the E12-

10-008 experiment are shown in Fig 3.22. The computer dead time was corrected

for on a run-by-run basis. If more than one event type (hHODO 3/4, hEL_REAL,

hEL_CLEAN) is collected at a single time, applying the computer dead time correc-

tion can get complicated, however, because we only took one event type at a time,

this correction can be applied in a straightforward manner.
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Figure 3.22: HMS computer dead time correction factors (effective computer live
times) as a function of prescaled trigger rate for runs taken during E12-10-008. The
fraction of events lost due to the computer dead time was found to be generally on
the order of 0.1% for most runs, representing a relatively small correction – especially
at low (< 1 kHz) trigger rates.

3.7.2 Electronic Dead Time

When an event in the HMS meets the conditions of a pre-trigger, that pre-trigger will

generally fire, outputting a logic pulse. However, for a duration τ after a pre-trigger

fires, any additional events that reach that pre-trigger will be ignored and not be

counted, illustrated in Fig. 3.23. The events lost this way are said to be lost due to

electronic dead time. To extract experimental cross sections, we must account for the

events which were not counted due to this dead time.

A particle entering the spectrometer can be considered an independent, discrete

event. Therefore, the probability distribution of n, the number of good events that

are sent to the trigger over a fixed period of time τ , will follow a Poisson distribution,

written as

P (n) =
(Rtrueτ)

ne−Rτ

n!
, (3.27)
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Figure 3.23: Figure from [71]. Illustration showing how electronic dead time can
cause events to be dropped. The events shown in red are dropped because they
arrived within the dead time of a previous event.

where Rtrue is the average event rate. To correct for the electronic dead time, we

must determine the fraction of events that caused the pre-trigger to fire and were not

lost due to the electronic dead time, telt.

telt can be expressed as the ratio of Rmeas over Rtrue, where Rmeas is the measured

rate of accepted triggers as determined from the scalers, however, we have no direct

way to determine Rtrue. Rather, we infer the electronic dead time from measuring the

total dead time and removing the contribution from computer dead time. To measure

the total dead time, a system known as the Electronic Dead Time Monitor (EDTM)

is used. This system injects a pulse of a known frequency into the trigger electronics,

with a copy of the EDTM pulse being passed directly to the scaler DAQ to get a

count of how many EDTM pulses were sent to the trigger electronics. Like the events

coming from the detector, these pulses can be dropped due to both electronic and

computer dead times. Therefore, the fraction of output EDTM pulses (as measured

by the scalers) that caused the trigger to fire and were written to disk as events, is

equivalent to the total dead time correction factor, ttlt, which can be written as

trawtlt =
NEDTMDisk

NEDTMScaler

. (3.28)
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However, we need to account for the EDTM pulses that arrived during beam down-

times, as we are only interested in the electronic dead time correction factor as it

applies to physics events, which only occur when the beam is being sent into the hall.

Assuming fast beam ramp-up and ramp-down times, the effective total dead time

correction for physics events can be written as

ttlt =
trawtlt − (1− f)

f
, (3.29)

where f is defined as the average beam current including beam downtimes divided

by the average beam current not including beam downtimes. This correction factor

can then be used along with the computer dead time correction factor to determine

the electronic dead time correction factor using Eq. 3.25. A plot of the total dead

time correction factors calculated for runs taken during the E12-10-008 experiment

is shown in Fig 3.24. It was found that the total dead time determined using the

EDTM was smaller than the corresponding computer dead time. This should not be

possible because the total dead time includes the computer dead time, therefore the

total dead time should be greater than or equal to the computer dead time. This

observation indicates that there is an issue with how the EDTMs are counted. It

was found that this issue is due to random coincidences causing non-EDTM events

to be misidentified as EDTM events, which in turn causes the calculated total and

electronic dead time correction factors to be unreliable, especially for runs with higher

trigger rates. However, the data can be used to constrain the electronic dead time

correction factor to less than 0.1% for most kinematic settings using the data from

hEL_CLEAN runs, which have lower trigger rates. More reliable total and electronic

dead time corrections can be extracted in the future with further analysis and more

strict timing cuts. For now, the total dead time correction can be well approximated
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Figure 3.24: HMS total dead time correction factors as a function of prescaled trigger
rate for runs taken during E12-10-008. The total dead time correction factors were
generally greater than or equal to the corresponding computer dead time correction
factors alone. We believe this to be due to random coincidences causing non-EDTM
events that were written to disk to be misidentified as EDTM events.

by the computer dead time correction and a conservative 0.1% uncertainty to account

for the effects of the electronic dead time.

Once reliable electronic dead time correction factors can be determined, we would

like to calculate the electronic dead time τ from our determination of the electronic

live time. The electronic dead time is taken to be (approximately) non-extendable

(non-paralyzable), meaning that the dead time after an accepted trigger is a fixed

value that is not extended if an additional event arrives during the dead time. With

this, the fraction of time during which an event could not be recorded is given by

Rmeasτ . Therefore, the fraction of time during which an event could be recorded is

1−Rmeasτ . With this information, telt can be written as

telt ≡
Rmeas

Rtrue

=
1−Rmeasτ

1
=

1

1 + Rtrueτ
. (3.30)
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Therefore, the electronic dead time τ for a pre-trigger can be determined by fitting

the electronic dead time correction telt as a function of the measured rate of the

pre-trigger output.

3.8 Spectrometer Momentum Offset

The central momentum of the HMS was determined from the magnet settings through-

out the experiment and a value for the central momentum was recorded for each run.

However, due to various factors, the measured central momenta may be offset from

the true central momenta of the spectrometer.

We can leverage e − p elastic scattering measurements from our 1H target to

accurately determine the HMS’s central momentum offset, as the momentum of an

electron that is elastically scattered from a stationary proton is fully constrained

by the electron’s initial momentum and deflection angle. The invariant mass of a

scattering reaction, defined in terms of electron observables in Eq. 1.2, is equal to the

proton mass for electrons elastically scattered from a proton. Therefore, if we set the

kinematic acceptance of our spectrometer so that it covers the region of kinematic

space where we expect to observe elastically scattered electrons, we would expect

to see a peak in the invariant mass spectrum located near the proton mass, with

some offset and variance due to radiative effects, ionization energy loss, and the finite

resolution of the spectrometer. The effects that shift and widen the nominal invariant

mass peak expected from elastically scattered electrons are well modeled in SIMC,

one of the Hall C Monte Carlo programs [72].

To determine the central momentum offset of the HMS using simulated and mea-

sured invariant mass spectra at elastic kinematics, first, the elastic peaks for both

the measured and simulated data sets are fit to Gaussian distributions. Next, the
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Figure 3.25: Measured and simulated invariant mass spectra at elastic kinematics
without a spectrometer central momentum offset correction applied to the measured
data. The elastic peak from SIMC is not equal to the proton mass due to ionization
energy losses and radiative effects, which are discussed further in Sec. 3.14.1.

difference between the means of the two distributions, ∆W , is calculated. A plot of

the uncorrected measured and simulated invariant mass spectra is shown in Fig. 3.25.

One can then use Eq. 1.2 to determine the spectrometer central momentum offset

that needs to be applied to the data to reproduce the simulated invariant mass peak.

Reanalyzing the measured data using the corrected spectrometer central momentum,

we find that the locations of the measured and simulated elastic peaks now agree,

shown in Fig. 3.26.

By varying the HMS scattering angle, elastic data were collected over the majority

of the range of HMS central momentum settings that were used to collect DIS data

at 20◦. The kinematic settings used to collect elastic data are given in Tab. 3.3.

The E’ offset was determined for all of the elastic kinematic settings, and the

ratio between the nominal central momentum measured during data taking (Pnom)
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Figure 3.26: Measured and simulated invariant mass spectra at elastic kinematics
with a spectrometer central momentum offset correction applied to the measured
data.

and the central momentum determined from elastic scattering data (Ptrue) was fit as

a function of the nominal central momentum with

Ptrue

Pnom

= p0 − p1e
−0.5

(
x−p2
p3

)2

, (3.31)

as shown in Fig. 3.27. This function was then used to determine the correct spectrom-

eter central momentum when analyzing experimental data and generating simulated

Beam Energy (GeV) HMS Angle (Degrees) HMS Central Momentum (GeV)
10.544 39.08 -3.00
10.544 34.30 -3.57
10.544 30.05 -4.20
10.544 26.415 -4.78
10.544 23.61 -5.36
10.544 21.36 -5.878

Table 3.3: Kinematic settings used to collect elastic data with the HMS.
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Figure 3.27: HMS central momentum offset as a function of the nominal central
momentum set during data taking. A fit consisting of a uniform offset and a Gaussian
distribution was found to match the data well. The momentum offset was found to
increase up to an HMS central momentum of about 4.8 GeV, where the offset then
decreases. The increase of the offset up to around 4.8 GeV is due to the saturation of
the HMS magnets, which gets worse as the HMS central momentum setting increases.
Above 5 GeV, the offset decreases because the code used to set the HMS magnets is
configured to correct for the saturation effects at these higher momentum settings.

data. The drift chamber resolution was also determined using elastic data by adjust-

ing the drift chamber resolution in the simulation until the widths of the measured

and simulated elastic peaks matched. The drift chamber resolution was found to vary

with the spectrometer’s cental momentum. The variation was modeled by a fit to

data which yielded the function

σdcr = 0.094 · e−0.730·E′
+ 0.045 , (3.32)

where σdcr is the drift chamber resolution in centimeters. This function was then used

to determine the drift chamber resolution for the HMS simulated data.
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3.9 Cryogenic Target Corrections

In this section, we describe the corrections related to the cryogenic targets. These

include correcting for the effects of the target cell wall, the contraction of the target

cell at low temperatures, and density loss of the cryogenic target due to the energy

deposited by the electron beam.

3.9.1 Cell Wall and Cell Contraction Corrections

The nominal lengths of the cryogenic target cells are measured from their exteriors at

room temperature (∼ 293 K). When these aluminum alloy cells are cooled from room

temperature to 2̃0 K, they contract. Using existing data on the thermal properties of

aluminum, it is found that this temperature change causes the length of the cell to be

reduced by approximately 0.4% [73]. In addition, the cell walls have finite thicknesses,

which are provided in Tab. 2.6. Because the length of the cell is measured from the

exterior of the cell walls, the thicknesses of the front and back walls of the cell must

be subtracted from the measured length of the cell to determine the length of the

cryogenic material inside the cell.

To account for events that were scattered from the walls of the cryogenic target

rather than the target itself, we use the “dummy” target that was discussed in Sec. 2.6.

First, for a given kinematic setting, the charge normalized yield of the dummy target

is determined. This yield is broken into upstream and downstream dummy foil yields.

These yields are then scaled by the relative thicknesses between the dummy foils and

the corresponding cell walls and subtracted from the cryogenic target data, shown in

Fig. 3.28. With the yield due to the cell walls now accounted for, only the yield from

the cryogen itself remains.
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Raw 2H Data

Dummy-Subtracted Data

Scaled Dummy Data

Cryogenic Cell Subtraction

Figure 3.28: Cryogenic target yields before and after dummy subtraction along with
the scaled dummy target yield. The dummy-subtracted data also includes the density
fluctuation correction, discussed in the next section.

3.9.2 Density Loss Correction

As the electron beam passes through a cryogenic target, the deposited energy causes

the cryogen to heat up and its density to decrease. The density of the target must

be known to extract cross sections; therefore, to account for density loss due to

heating from the electron beam in the analysis, dedicated data sets were taken on the

cryogenic targets to measure the changes in the yield as a function of beam current

to infer the change in target density.

Measurements were also made on the carbon target at the same beam currents

to serve as the control data set. Since the thickness of the carbon target should

not change appreciably due to heating from the electron beam, the dedicated carbon

data allows for the identification and removal of any current-dependent changes to

the target yields that are not due to changes in the target density. As shown in

Fig. 3.29, the yield from the carbon target unexpectedly appears to decrease as the
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Figure 3.29: Charge normalized yield of the carbon target plotted as a function of the
beam current. The yield appears to decrease as the beam current increases. Because
the density of the carbon target should not significantly change due to heating from
the beam, this effect can be explained by a 0.37± 0.03 µA beam current offset that
persisted after the BCM calibration.

beam current increases.

This can be explained by a small beam current offset that persisted after the BCM

calibration, discussed in Sec. 3.4. First, the definition of the measured electron yield

can be written as

Ymeas =
N

Qmeas

=
N

Imeas∆t
, (3.33)

where N is the number of detected electrons (corrected for efficiencies), Qmeas is the

total accumulated charge as determined by a BCM, Imeas is the average measured

beam current for the collected data, and ∆t is the duration over which the data was

collected. If there is a small offset ∆I in the beam current measured by the BCM
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such that Itrue = Imeas +∆I, the true electron yield can be written as

Ytrue =
N

Qtrue

=
N

Itrue∆t
=

N

(Imeas +∆I)∆t
. (3.34)

Therefore, we can relate the measured and true electron yields as

Ymeas = Ytrue(1 + ∆I/Imeas) , (3.35)

and fit the measured yields as a function of the measured beam current to determine

the offset in the measured beam current. As shown in Fig. 3.29, this fit does a good

job of describing the carbon data. The beam current offset for BCM4A extracted

from this fit is 0.37 ± 0.03 µA. This offset is slightly larger than expected from the

uncertainties in the analysis presented in Sec. 3.4. This relatively large offset may

indicate that there is a systematic issue with how the BCMs are calibrated that causes

such an offset to persist even after calibration.

With the BCM offset from the carbon data in hand, we can now determine how

the yields of each of the cryogenic targets change as a function of the corrected beam

current. In Fig. 3.30, normalized yield data for each of the targets used in this study

is shown as a function of the corrected beam current, and the data for each of the

cryogenic targets is fit to a first-order polynomial. Normalized yields and fits of both

dummy-subtracted and non-dummy-subtracted data are shown for reference, however,

only the former are used in the analysis, as the fractions of events that originate from

the aluminum cell of the cryogenic targets vary across different kinematics.

A linear fit was found to model the data well for all cryogenic targets except 1H,

the density of which is not needed for the analysis presented here. These fits were

then normalized to make the y-intercept equal to unity, as the density of a target
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Figure 3.30: Relative yields with statistical error bars for the cryogenic and carbon
targets, plotted as a function of the beam current. The two sets of data on the carbon
target, labeled Carbon 2 and Carbon 4, are shown to verify the stability of the BCM
offset over time. In addition, dummy-subtracted and non-dummy-subtracted data are
shown for each of the cryogenic targets, as the density correction can be performed
using either data set. A linear fit models the data well for all targets except for
1H. None of the fits include the 10µA data point, as it is the most sensitive to any
remaining offset in the measured BCM current. The slopes of these fits, normalized
to make the y-intercept equal to 1, are provided in Tab. 3.4.

should be equal to its nominal value when the beam is turned off. The slopes of

the normalized fits, measured in percent change in yield per 100 µA, are provided in

Tab. 3.4.

The purpose of the density loss correction is to remove the impact the beam

current has on the measured yields by scaling them to the value they would be if

the beam current did not change the local density of the target along its path. This

correction is applied on a run-by-run basis as a function of the time-averaged and

offset-corrected beam current Iavg throughout the run, where the time averaging only
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Target Dummy-Sub. Slope (-%/100 µA) Non-Sub. Slope (-%/100 µA)
1H 10.98± 0.39 9.81± 0.34
2H 7.17± 0.27 6.72± 0.25
3He 25.55± 1.63 20.84± 1.28
4He 24.00± 0.95 21.46± 0.85

Table 3.4: Slopes of the normalized fits to the dummy-subtracted and non-dummy-
subtracted yields of the cryogenic targets as a function of beam current. These linear
fits modeled the data well for all cryogenic targets except for 1H.

includes times when the beam current was above 5 µA. For a given target, the density

loss correction be can calculated as

Cdens = 1−mIavg , (3.36)

where m is the slope of the normalized fit to the dummy-subtracted yields for that

target. This correction is applied by dividing the measured yield by Cdens.

Analysis showed that the magnitude of the density loss varied along the length

of the target. This may introduce effects that cannot be modeled by simply scaling

the yield for a run by a single number. However, the impact of this variation on

the momentum distribution of particles entering the spectrometer was found to be

consistent with zero, therefore, the correction defined in Eq. 3.36 is sufficient.

3.10 Reconstructed Momentum Correction

The momentum of a particle that enters the spectrometer is calculated using the

tracking and optics information. Looking at the ratio of the measured and Monte

Carlo yields, a small dependence on δ, the particle momentum relative to the central

momentum, was noticed. The same dependence was found for different targets and

kinematic settings, shown in Fig. 3.31.
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Carbon 20o Kinematic Settings

Figure 3.31: Data to Monte Carlo ratio binned in delta for the different 20◦ kinematic
settings. The ratios are fit to the inverse of a fifth-order polynomial f(δtrue)to extract
offsets in the momentum reconstruction.

This δ dependence has been observed since the first experiments using the HMS

spectrometer [74]. While the precise cause has not been determined, this effect is

likely due to small imperfections in the calibration of the momentum reconstruction.

This causes the experimentally measured δ to be different than the true value used

by the Monte Carlo. Instead, the measured δ is taken to be some function of the true

δ from the Monte Carlo, δexp = g(δtrue).

To determine g(δtrue), first, the data to Monte Carlo yield ratio, with each dataset

binned as a function of its respective δ, was fit with an inverse fifth-order polynomial

f(δ). This function was chosen as it fits the data well with relatively few parameters.

With this fit function, the measured value of δ can be written in terms of the true

Monte Carlo value as

δexp = g(δtrue) =

∫
1

f(δ)
dδ . (3.37)

With this equation, one can also determine the offset between the true and measured
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Figure 3.32: The offset between the reconstructed value of δ from the experimental
data and the true value from the Monte Carlo. The correction is small, not much
larger than 0.1% within the nominal momentum acceptance of the detector, and is
on the order of the momentum resolution of the spectrometer. The momentum offset
at the central momentum (δtrue = 0) is set to 0 because the HMS central momentum
offsets have already been determined and corrected for, as shown in Sec. 3.8.

values of δ, shown in Fig. 3.32. This offset does not get much larger than 0.1%, which

is within reason as it is comparable to the spectrometer’s momentum resolution. To

account for the apparent discrepancy between the true and experimentally measured

values of δ, this offset is applied on an event-by-event basis as a correction to the δtrue

values from the Monte Carlo.
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3.11 yTar Acceptance Correction

The Monte Carlo simulation may not perfectly model the acceptance of the HMS

spectrometer. In particular, for the cryogenic targets, which are 10 cm long, we

want to know how well the Monte Carlo acceptance function does to reproduce the

measured data as a function of ytar, the y-position of the event at the target in the

spectrometer’s rotated coordinate system.

To determine whether the Monte Carlo represents the ytar acceptance of the spec-

trometer well, the data to Monte Carlo ratio of several kinematic settings with the

spectrometer rotated to 20◦ was calculated for the aluminum target, which was lo-

cated closest to the central axis of the spectrometer at ytar = −0.163 cm, and the

upstream and downstream (aluminum alloy) dummy targets, which were located at

ytar = −1.858 cm and ytar = 1.623 cm, respectively. As shown in Fig. 3.33, these

ratios for each of the targets were found to be consistent within uncertainty across

multiple different momentum settings, however, the data to Monte Carlo ratios of

the dummy targets, which are located at larger ytar, further from the central axis of

the spectrometer, were systematically smaller than that of the aluminum target.

To account for the ytar dependence of the data to Monte Carlo ratio, the ratios

for the aluminum and dummy targets shown in Fig. 3.33, were fit to a second-order

polynomial, modeling the spectrometer’s acceptance as a smooth, continuous function

of ytar. The Monte Carlo events were then scaled by the value of this fit at the

corresponding ytar value, bringing the data to Monte Carlo ratios of the aluminum

and dummy targets into agreement with each other. This correction decreased the

measured 2H cross sections by 0.7% overall and was found to have little impact on

the xBj dependence of the extracted results.
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Figure 3.33: Data to Monte Carlo yield ratios for the upstream dummy (ytar =
−1.858 cm), downstream dummy (ytar = 1.623 cm), and aluminum (ytar =
−0.163 cm) targets at 20◦ kinematic settings, normalized to the aluminum target
ratios. The Monte Carlo appears to not model the yTar acceptance of the spectrom-
eter well, with the data to Monte Carlo yield ratio dropping by several percent for the
dummy targets relative to the solid aluminum target, which is closer to the central
axis of the spectrometer.

3.12 Background Subtraction

As discussed in Sec. 3.5, the PID cuts used to separate electrons from other particles

also remove a small fraction of good electron events. These removed electron events

are accounted for by determining the efficiencies of each of the PID cuts. In addition

to removing a small number of good electron events, the PID cuts do not remove all

of the events that we do not wish to count. These include pion events, as well as

events from electrons that did not originate from the beam but were instead created

through pair production by high-energy photons in the target, which predominantly

result from the decay of π0 mesons that are generated via photoproduction. These

events, which should not be counted when determining the inclusive DIS cross section,
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are generally referred to as contamination.

3.12.1 Pion Contamination

While the Cherenkov and calorimeter PID cuts remove most of the pion events, a

small fraction of pion events remain after both cuts. To get an estimate of how many

pion events are getting through both PID cuts, we first form two sets of data with the

spectrometer acceptance cuts applied: one with the nominal electron Cherenkov cut

used in the analysis, and one with a very tight low-pass Cherenkov cut, requiring that

the signal produced in the Cherenkov detector be less than one-tenth of the signal

produced when a single photoelectron is emitted from the photocathode of one of

the PMTs. The second data set is comprised primarily of pions and serves as a pion

sample for the rest of this study.

For a specific type of particle at a given energy, the signal formed in the Cherenkov

detector is independent of the signal formed in the calorimeter detector. Therefore,

the shape of the calorimeter distribution of the pion sample is the same as the shape of

the calorimeter distribution of the pions that passed the nominal electron Cherenkov

PID cut. With this information, we can determine the calorimeter distribution of

pions in the electron Cherenkov PID cut sample by scaling the calorimeter distribution

of the pion sample to match it in the region between 0.1 < H.cal.etottracknorm < 0.4,

where most of the events in the Cherenkov PID cut sample are pions that passed

the Cherenkov PID cut. The scaled pion sample provides an approximation of the

distribution of pions in the sample of data with the electron Cherenkov PID cut

applied. The nominal electron calorimeter cut of H.cal.etottracknorm > 0.7 is then

applied to the scaled pion distribution to determine the number of pion events that

pass both of the PID cuts. This is the estimated pion contamination. To get an
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Figure 3.34: Plots showing how the pion contamination estimate is determined. First,
two data sets are constructed with cuts on the Cherenkov detector response: one with
the cut H.cer.npeSum < 0.1, as an estimate of the pion sample, and one with the
Cherenkov electron PID cut used in the analysis, H.cer.npeSum > 2.0, given by the
blue line. The pion sample is then normalized such that its integral in the range
0.1 < H.cal.etottracknorm < 0.4 is the same as that of the sample with the nominal
Cherenkov PID cut. This scaled sample is given by the red line. The red-shaded area
represents the estimated pion contamination, and the green-shaded area represents
the estimated electron count after the pion contamination has been subtracted.

accurate estimate of the number of electron events in a data set, the estimated pion

contamination is subtracted from the data that passed both the Calorimeter and

Cherenkov electron PID cuts. The calorimeter distributions of the data sets discussed

here are illustrated in Fig. 3.34.

The pion contamination was determined as a fraction of the electron yield, shown

for the 20◦ data in Fig. 3.35. At 20◦, this fraction was found to be no larger than

1.5%, and as low as 0.02% for some targets just below the Cherenkov detectors pion
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Figure 3.35: Pion contamination results for the 20◦ data, shown as a function of the
measured particle momentum. The pion contamination is found to decrease as the
momentum increases, until the pion threshold at a momentum around 4.2 GeV, where
the Cherenkov detector loses its ability to distinguish between electrons and pions.

threshold, which is around 4.2 GeV. Above this threshold, the Cherenkov detector

cannot be used to distinguish between electrons and pions as both produce Cherenkov

radiation, causing the pion contamination to rise.

In addition, above the pion threshold, the procedure described above to determine

the pion contamination does not work, as a pion sample can no longer be formed by

applying a cut requiring little to no signal in the Cherenkov detector. To handle

this problem for kinematic settings with momenta above 4.2 GeV, the pion sample is

taken using a data set taken at the same angle and at the highest momentum setting

below the Cherenkov detector’s pion threshold.
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3.12.2 Charge Symmetry of the Pion Background

The charged pions that we observe at positive and negative polarity settings (π+ and

π−, respectively) are primarily produced via photoproduction:

γ + p → X + π+ , and

γ + n → X + π− ,

where X represents all additional outgoing particles. If these processes have similar

cross sections and dominate the production of the pion that we observe, then the pion

background can be approximated as charge symmetric. If this is the case, it would

allow us to account for the pion contamination in the charge-symmetric background

(CSB) correction described in the next section, removing the need to use the pion

contamination results from the previous section, as well as removing the need to

subtract the pion contamination from the positive polarity data before determining

the charge-symmetric background correction.

We first need to check if we can reasonably approximate the pion background

as being charge symmetric. This is done by calculating the difference between the

positive and negative polarity pion yields at a given kinematic and normalizing it by

the corresponding electron yield. As shown in Fig. 3.36, the background was found

to be nearly charge symmetric, with observed asymmetry being at most a 0.1% of

the measured electron yield for the 20◦ data. Therefore, the pion background was

determined to be close enough to charge symmetric that no explicit pion contamina-

tion subtraction needs to be performed using the negative polarity data, as it can be

accounted for in the charge-symmetric background correction by not subtracting the

pion contamination from the positive polarity data, described in the next section.
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Figure 3.36: Charge asymmetry of pion yields, normalized by the corresponding
electron yield, as a function of momentum at 20◦. The largest observed asymmetry
at this angle is only 0.1% of the corresponding electron yield.

3.12.3 Charge-Symmetric Background

e+ e− pairs can be formed via pair production from high-energy photons, forming a

charge-symmetric background of positrons and electrons. These pair-produced elec-

trons can enter the detector and are indistinguishable from electrons that originated

from the electron beam. As these pair-produced electrons are not from the process

that we are trying to measure (usually DIS) but are indistinguishable from the elec-

trons that are, we need to remove them from our data. Fortunately, because there

is a positron for each pair-produced electron, we can use the positive polarity data

to determine the positron yield, subtract the positron yield from the total electron
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yield, and find the yield of electrons that we are interested in. In addition, because

the pion background was found to be approximately charge symmetric, we chose not

to subtract the pion contamination from positive polarity data, instead allowing the

pion contamination in the positive polarity to be used to remove the pion contam-

ination from the negative polarity data when the charge-symmetric background is

subtracted.

Calorimeter spectra for positive and negative polarity data taken at the same

absolute momentum and angle are shown in Fig. 3.37. The same cuts and normaliza-

tion calculations are used for both the positive and negative polarity data sets in this

study, however, the negative polarity data includes one additional cut to account for

the fact that the hEL_CLEAN pre-trigger was used instead of the hEL_REAL pre-

trigger to form the trigger for positive polarity data in this study, as the hEL_REAL

rates at positive polarity kinematics were too high due to proton entering the de-

tector stack. This additional cut on the negative polarity data requires that the

hEL_CLEAN pre-trigger fired in addition to hEL_REAL, and can be written as

T.hms.hTRIG3_tdcMultiplicity ⩾ 1. This accounts for any differences in the elec-

tron efficiencies of the hEL_REAL and hEL_CLEAN pre-triggers.

The yield of the (approximately) charge-symmetric background can be written as

Ycsb = e−bg + π−
bg = e+bg + π+

bg , (3.38)

where e
−(+)
bg is the yield due to the electron (positron) background, and π

−(+)
bg is the

yield due to the pion background. The total yield of the negative polarity data can

then be written as

Y− = e−beam + e−bg + π−
bg = e−beam + Ycsb , (3.39)
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Figure 3.37: Calorimeter spectra for positive and negative polarity data taken at
±2.71 GeV and 20◦. The same electron PID cuts and acceptance cuts were applied
to both data sets, and an additional cut requiring the hEL_CLEAN pre-trigger to fire
was applied to the negative polarity data for comparison with the positive polarity
data that used hEL_CLEAN to form the trigger.

where e−beam is the yield due to electrons from the beam, which is what we are trying

to determine. The total yield of the positive polarity can also be written as

Y+ = e+bg + π+
bg = Ycsb . (3.40)

We can then calculate the ratio of the charge-symmetric background yield to the yield

of beam electrons as

Rcsb =
Ycsb

e−beam
=

Y+

Y− − Y+

. (3.41)

The total negative polarity yield can be scaled using this ratio to determine the yield
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due to electrons from the beam with the equation

e−beam = Y−(1 + RCSB)
−1 . (3.42)

The available positive polarity data does not cover the full range of kinematic set-

tings over which negative polarity data was collected, therefore, we must extrapolate

Rcsb to all kinematic settings at which data was collected to correct for the charge-

symmetric background in our data. At each spectrometer angle (20◦, 26◦, and 35◦,

Rcsb was plotted against the spectrometer’s central momentum. It was found that

the function f(x) = ea+bx fit the existing data well and was therefore used to deter-

mine Rcsb for all targets and kinematic settings. Fits of Rcsb for all targets at 20◦ are

shown in Fig. 3.38. In general, for a given target, the charge-symmetric background

was found to decrease exponentially as a function of momentum and increase as a

function of angle. In addition, the size of the charge-symmetric background was found

to roughly correlate with target radiation lengths, with the thickest targets having

the largest backgrounds.

As discussed in Sec. 3.12.1, there is a sudden increase in the pion contamination

around E ′ = 4.2 GeV as the Cherenkov detector’s pion threshold is crossed. This

jump is not accounted for in the Rcsb fits, as all positive polarity data was collected

below E ′ = 4.2 GeV. Positive polarity data was not collected at higher momenta

at 20◦ because pion and pair-produced electron backgrounds fall off rapidly as E ′

increases and are relatively tiny above E ′ ≈ 4.0 GeV. Therefore, an additional un-

certainty is applied in the cross section ratio results above 4.0 GeV to account for

differences in the pion contamination between targets.
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Figure 3.38: Rcsb plotted as a function of the spectrometer’s central momentum for
the 20◦ data. Comparison with Fig. 3.35 shows that the charge symmetric background
is primarily composed of pair-produced electrons at these kinematics as opposed to
pions. A fit of the form f(x) = ea+bx was found to model the charge-symmetric
background well for all targets except for tin (Sn). This occurred because the Tin
target deformed over the course of the experiment, causing the target thickness to
change from kinematic setting to kinematic setting. At this time, it is unknown
whether it will be reasonably possible to extract any meaningful results from the
data collected on the tin target.

3.13 Experimentally Measured Yield

The experimentally measured yield Yexp is defined as the number of beam electrons

that scattered from the target within a specified kinematic range, normalized by the

total charge of the beam electrons that were incident on the target. Starting with

the raw number of events that passed the electron PID cuts N raw
e− , one can apply

the corrections described previously in this chapter and calculate the experimentally

measured yield as

Yexp = N raw
e−

fps

(1 + Rcsb) ·Q · ttlt · ϵe
−
track · ϵcal · ϵcer

, (3.43)
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where fps is the prescale factor, Rcsb is used to remove the charge-symmetric back-

ground (see Sec. 3.12.3), Q is the total charge of the beam electrons that were incident

on the target, ttlt is the total live time which is given by the computer live time for

our analysis (Sec. 3.7), ϵe−track is the electron tracking efficiency (Sec. 3.6), ϵcal is the

calorimeter PID cut efficiency (Sec. 3.5.1), and ϵcer is the Cherenkov detector PID

cut efficiency (Sec. 3.5.2). When determining the yield for a cryogenic target such as
2H, the yield due to the target cell is subtracted and a boiling correction is applied,

as discussed in Sec. 3.9. For solid targets such as 48Ca that are contaminated with

a small percentage of different nuclei, the yield from these contaminating nuclei is

subtracted from the total yield, isolating the contribution from the primary nucleus.

3.14 Born Cross Section Model

From the electron yields, cross sections are extracted using the Monte Carlo ratio

method. This method, as well as the Monte Carlo simulation code used in this

analysis, are described in more detail in later sections. Now, we will cover the Born

cross section models which, after radiative corrections are applied, are used to weight

the events from the Monte Carlo simulation.

The results presented in this work use a hybrid model to estimate Born cross sec-

tions. In this model, the total Born cross section is divided into separate quasielastic

and inelastic components that each have their own model. The total model Born

cross section can be written in terms of the model inelastic and quasielastic cross

sections (σIN and σQE) as

σmodel
born = σmodel

IN + σmodel
QE . (3.44)
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The quasielastic cross section is determined from a fit [75] of empirical data that

uses equations derived from a superscaling treatment of electron scattering [76]. The

inelastic cross section is determined using an updated version of the deuterium fit

given in Ref. [75], which has been used in the analysis of experiments such as that

described in Ref. [77], with an EMC effect applied for heavier nuclei.

Initially, the model Born cross sections often do not agree well with the measured

Born cross sections. To account for their differences, small perturbations are applied

to the model to bring the model Born cross sections into agreement with the measured

values. This is important because the model Born cross section is used as input into

the radiative correction model, and an incorrect model Born cross section results in an

inaccurate determination of the radiative correction. This in turn causes the extracted

Born cross section to become incorrect. By iteratively applying small changes to the

Born cross section model to bring it into agreement with the measured result, a

more accurate radiative correction, and therefore a more accurate measured Born

cross section, is obtained. The results shown here were extracted using cross section

models that have not yet been fully iterated in this fashion.

3.14.1 Radiative Corrections

Radiative corrections are applied to the model Born cross sections described in the

previous section before they are used to weight the Monte Carlo events. The radi-

ated cross sections σrad account for additional interactions, beyond the single-photon

exchange quantified by the Born cross section, that electrons may have as they travel

through the target material and into the detector. These radiated cross sections,

where additional interactions are accounted for, reflect what is observed in the ex-

periment.
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Radiative corrections can be divided into two main categories: internal and ex-

ternal. Internal radiative corrections handle the effects of processes such as vacuum

polarization, vertex corrections, and internal Bremsstrahlung, which occur in the field

of the primary scattering nucleus and are not accounted for in the Born approxima-

tion. On the other hand, external radiative corrections account for energy lost by

the electrons in processes such as bremsstrahlung or ionization as they enter and exit

the target material and travel to the detector hut. External radiative corrections

are functions of the thickness of the materials that the electron must travel through

before and after scattering. Therefore, to keep the size of external radiative correc-

tions small, thin targets are used, and the total thickness of the material between the

target and the detector (scattering chamber and spectrometer windows, air) is kept

to a minimum.

The radiative corrections used in this analysis were calculated using the rc_externals

program. This program is derived from the software used for radiative corrections at

SLAC. This program is based on the formalism described in Ref. [78], and its imple-

mentation is described in Refs. [79] and [7]. Figure 3.39 shows radiative correction

factors (σrad/σborn) for several targets at 20◦ as a function of xBj, while Fig. 3.40

shows the corresponding model born and radiated cross sections.

3.14.2 Coulomb Corrections

Electrons accelerate in the Coulomb field of a target nucleus before and after scat-

tering from it. This causes the energy of the incoming and outgoing electrons at the

interaction vertex to be larger than if the Coulomb force were not present. In addi-

tion, the Coulomb attraction results in a focusing of the wavefunction of the incoming

electron towards the to-be-struck nucleus. Because both of these effects impact the
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Figure 3.39: Radiative correction factors (σrad/σborn) for several targets at 20◦ as a
function of xBj. The radiative correction factor decreases with xBj in the EMC effect
region. Note that the radiative correction factors generally change faster with xBj for
thicker targets.

measured cross section, they must be corrected for in the analysis.

In this analysis, where the scattered electron’s initial and final state energies

are several GeV, Coulomb corrections are determined using the improved Effective

Momentum Approximation (EMA) which accounts for these two effects [80]. First,

the enhancement of the electron’s kinetic energy at the scattering vertex is calculated.

Approximating nuclei as uniformly charged spheres with charge Z and radius R0, the

change in potential seen by a particle falling radially into the sphere from infinitely

far away is given by

∆V (z) = V (∞)− V (z) = −Zh̄αc

2R0

(
3− z2

R2
0

)
, (3.45)

for z < R0, where α is the Sommerfeld constant, h̄ is the Planck constant, and c is

the speed of light in vacuum. If the electron scatters at the center of the sphere, the



140

0.2 0.3 0.4 0.5 0.6 0.7
Bjx

10

20

30

40

50

60

b/
(s

r*
M

eV
))

µ
C

ro
ss

 S
ec

tio
n 

(

C Born12

C Radiated12

Model Born and Radiated Cross Sections

Figure 3.40: Model born and radiated cross sections for the 12C target at 20◦.

kinetic energy it gains due to the Coulomb field is given by

∆E(0) = −∆V (0) = V0 =
3(Z − 1)h̄αc

2R0

, (3.46)

where Z − 1 is used in place of Z to account for the fact that Coulomb corrections

are typically not performed for Z = 1 nuclei (1H, 2H), and 2H forms the denominator

of EMC ratios, which we are trying to calculate. Now, not every electron will scatter

from the geometric center of a nucleus. Consequently, the energy enhancement cal-

culated in Eq. 3.46 is an overestimate of the true value. It has been found that an

effective potential between 0.75 and 0.8 V0 provides reasonable results [80]. In this
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study, the central value of this range was used, such that

∆E = −0.775V0 . (3.47)

The RMS charge radius R0 for a given nucleus is required to calculate V0 to

determine ∆E as given by Eq. 3.47. For heavy nuclei, this is determined with

R0 = 1.1A1/3 + 0.86A−1/3 fm , (3.48)

where A is the mass number of the corresponding nucleus [81]. Charge radii are not

required for the Z = 1 1H and 2H targets as Coulomb corrections are not applied

for those nuclei, and measured RMS charge radii from Ref. [82] are used for 3He and
4He. RMS Charge radii and the corresponding effective vertex energy enhancements

for the nuclei measured in E12-10-008 are shown in Tab. 3.5.

Next, the focusing of the incident electron wave function due to the Coulomb

field must be accounted for. The focusing factor appears in the incoming (outgoing)

distorted electron wave function as k′
i(f)/ki(f), where k′

i(f) is the effective incoming

(outgoing) electron momentum at the interaction vertex after being enhanced in

the Coulomb field, and ki(f) is the incoming (outgoing) electron momentum if the

Coulomb field were not present. At highly relativistic energies, these focusing factors

can be written as
k′
i(f)

ki(f)
=

Ei(f) +∆E

Ei(f)

, (3.49)

where Ei is the energy of the incoming electron and Ef is the energy of the outgoing

electron. In the EMA, the incoming focusing factor appears quadratically in the cross

section.

The Coulomb correction factor to the cross section can then be given by the ratio
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Nucleus R0 (fm) ∆E (MeV)
3He 1.97 0.85
4He 1.68 1.0
6Li 2.47 1.36
7Li 2.55 1.31
9Be 2.70 1.875
10B 2.77 2.42
11B 2.83 2.37
12C 2.89 2.92
27Al 3.59 5.60
40Ca 4.01 7.93
48Ca 4.23 7.52
48Ti 4.23 8.31
54Fe 4.39 9.53
58Ni 4.48 10.1
64Cu 4.59 10.2
64Ni 4.62 9.78
108Ag 5.42 14.2
119Sn 5.59 14.7
197Au 6.55 19.9
232Th 6.90 21.6

Table 3.5: RMS charge radii and Coulomb energy enhancements for the targets
studied in E12-10-008. For targets that are not isotopically enriched, the natural
abundance-weighted average mass number rounded to the nearest integer is used in
the calculation of the RMS charge radius.

of Born cross sections with and without Coulomb-corrected electron vertex energies

multiplied by the inverse square of the incoming focusing factor, written as

fcoulomb =
σ(E,E ′)

σ(E +∆E,E ′ +∆E)

(
E

E +∆E

)2

. (3.50)

Coulomb corrections for several targets at 20◦ are shown as a function of xBj in

Fig. 3.41. It should be noted that, while there is a general consensus that the improved

EMA is valid for quasielastic scattering, it is unclear whether it is also appropriate for

DIS. To address this, an experiment has been proposed at Jefferson Lab that would
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Figure 3.41: Coulomb corrections for several targets at 20◦ as a function of xBj.
Coulomb corrections generally increase with the number of protons in the nucleus.
They also monotonically increase with xBj in the EMC effect region (0.3 < xBj < 0.7).

use an electron beam alongside a new positron beam to study Coulomb corrections

in the DIS regime [83].

3.15 Simulated Yield

The Monte Carlo simulation code used in Hall C for inclusive scattering analysis is

mc-single-arm [84]. This program consists of three main parts:

1. An event generator that randomly produces events distributed uniformly in δ,

x′
tar, and y′tar over a given kinematic range. The beam-target interaction point

is randomly selected over the target length and rastered beam spot size.

2. Multiple scattering is calculated in the target, target cell walls, scattering cham-

ber window, air, and spectrometer entrance window, and events are propa-

gated through the spectrometer collimator, magnets, and into the detector hut.
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Events that fail to pass through the collimator or are otherwise prevented from

entering the detector hut are flagged.

3. Events are transported through the detector stack to check if they hit each of

the detectors. The event position at each of the drift chambers is randomly

shifted according to the drift chamber resolution, and kinematic quantities (δ,

ytar, y′tar, and x′
tar) are reconstructed using the optics matrix from the simulated

variables in the detector, that is, the same way as for real measured data.

Once the events have been simulated by the Monte Carlo, they are each weighted

as

w = σrad · fps · fyTar
∆x′

tar ·∆y′tar ·∆δ · ρ · l ·NA

e ·M ·Nevents

, (3.51)

where σrad is the radiated cross section described in Sec. 3.14.1, fps is the Monte

Carlo phase space correction which will be discussed in Sec. 3.15.1, fyTar is the yTar

acceptance correction discussed in Sec. 3.11, ∆x′
Tar, ∆y′Tar, and ∆δ are the sizes of

the generation ranges of the corresponding kinematic variables (for example, if the

simulation generates events in the range −10% < δ < 10%, then ∆δ = 20%), ρ is

the mass density of the target material, l is the length of the target along the beam

direction, NA is Avagadros number, e is the electric charge of an electron, M is the

molar mass of the target material, and Nevents is the total number of simulated events.

The simulated yield can then be determined by adding the weights for all events in a

given kinematic bin. The corrected value for δ is used when binning for comparison

with experimental data as opposed to the reconstructed value of δ from the Monte

Carlo, as discussed in Sec. 3.10.
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3.15.1 Monte Carlo Event Generation Correction

The Hall C single arm Monte Carlo program, mc-single-arm, generates events uni-

formly along the length of the target and in x′
tar, y′tar and δ. The quantities x′

tar and

y′tar are defined as

x′
tar =

dx

dz
, (3.52)

and y′tar =
dy

dz
, (3.53)

where the positive z-direction points along the central axis of the spectrometer, the

positive x-direction points downwards, and the positive y-direction points spectrometer-

left. Because events are generated uniformly in x′
tar and y′tar, they are not generated

uniformly in a spherical coordinate system. With the small angular acceptance of the

HMS, this effect is very small because tan(θ) ≈ θ at small angles; however, it is non-

zero and should be corrected. This is accomplished to first order by first constructing

the Jacobian

J =

d cos(θ)
dx′

tar

d cos(θ)
dy′tar

dϕ
dx′

tar

dϕ
dy′tar

 , (3.54)

where θ is the polar angle and ϕ is the azimuthal angle. The determinant of the

Jacobian is then calculated, which, after simplification, comes to

det J =
1

(1 + x′
tar

2 + y′tar
2)3/2

. (3.55)

The Jacobian determinant is calculated for each event generated by the Monte

Carlo and is included in its normalization factor through multiplication.
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3.16 Born Cross Section Extraction

With the measured and simulated electron yields determined, the next phase of the

analysis process is to extract measured Born cross sections. The first step in this

extraction is to take ratios of the measured and simulated electron yields. These

ratios provide information about how close the model Born cross section is to the

measured Born cross section. With a first pass of ratios determined, the Born cross

section model is then iterated to bring the measured and simulated yields into better

agreement such that the yield ratios, and therefore the ratios of measured Born cross

sections to model Born cross sections, are close to unity. This iteration process is

important because yield ratios that are far from unity are not equal to the measured-

to-model Born cross section ratios, as the radiative corrections used to weight the

simulated yield have been determined with incorrect model Born cross sections, and

therefore cannot be used to extract measured Born cross sections.

Once the model has been iterated such that the ratio of measured and simulated

yields is 1.0 within uncertainties, the measured Born cross section is extracted by

weighting the yield ratio by the model Born cross section and the Coulomb correction,

written as

σmeas
born =

YData

YMC(σmodel
rad )

· σmodel
born · fcoulomb (3.56)

where YData is the electron yield extracted from the data, YMC(σ
model
rad ) is the electron

yield from the Monte Carlo simulation which is weighted by the radiated cross section,

and fcoulomb is the Coulomb correction defined in Sec. 3.14.2. Figure 3.42 shows the

measured and simulated yields and their ratio for the 12C target at one kinematic

setting.
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Figure 3.42: (Top) Measured and simulated electron yields for the 12C target at an
HMS angle of 20◦ and central momentum of 3.4 GeV plotted as functions of δ, which
is the electron momentum measured relative to the spectrometer’s central momentum
in percent. (Bottom) The ratio of the measured and simulated electron yields (shown
above) as functions of δ, illustrating the relative behavior of the two yields.

3.17 Calculating EMC Ratios

The final step in the analysis process is to extract per-nucleon Born cross section

(EMC) ratios of our measured target nuclei to 2H using the measured Born cross

sections. Now, the denominator in an EMC ratio is the per nucleon cross section of
2H, which, having equal numbers of protons and neutrons, is an isoscalar nucleus.

Protons and neutrons are known to have different cross sections. Therefore, in order

to study how the DIS cross section of an average nucleon in a target nucleus is
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modified relative to deuterium, one must account for any difference between the

relative numbers of protons and neutrons in the target nucleus and deuterium.

Given the per nucleon cross section ratio between a target nucleus of charge Z

and mass number A, and 2H, the isoscalar corrected ratio can be written as

(
σA

σ2H

)
iso

=

(
σA

σ2H

) 1
2
(σn + σp)

1
A
(Zσp + (A− Z)σn)

, (3.57)

which can be written in terms of the structure function ratio F n
2 /F

p
2 as

(
σA

σ2H

)
iso

=

(
σA

σ2H

) 1
2
(F n

2 /F
p
2 + 1)

1
A
(Z + (A− Z)F n

2 /F
p
2 )

. (3.58)

While there are several models for the ratio F n
2 /F

p
2 from fits of empirical data,

the results presented here use that which is described in Ref. [85] for the deuteron,

which takes into account the effects of “smearing”. Figure 3.43 shows the F2 ratio for

the “free” nucleon at Q2 = 12 GeV2. A new fit from the CJ collaboration [86] that

includes more recently published measurements, such as those from the MARATHON

collaboration [87], is being considered for the extraction of final results.

3.18 Systematic Uncertainties

The systematic uncertainties for the preliminary results presented here are based on

those used in the analysis of the published results from the commissioning run for

this experiment (E12-10-008) [31]. A detailed discussion of these uncertainties can

be found in Ref. [88]. Uncertainties used in this analysis are summarized in Tab. 3.6.

The uncertainties on the measured EMC ratios are divided into three main categories:

point-to-point, xBj-correlated, and scale (normalization).
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Figure 3.43: Figure from [85]. F2 ratio at Q2 = 12 GeV from the model described
therein for the “free” nucleon. The F2 ratio used in this analysis is that of that
deuteron.

• Point-to-Point:

Point-to-point uncertainties are considered independent from one kinematic

point to the next. They include uncertainties associated with the radiative

corrections procedure and detector efficiencies.

• xBj Correlated:

xBj correlated uncertainties vary in magnitude with xBj, but impact all points

in the same direction. These uncertainties stem from the precision of measure-

ments related to xBj, such as the incoming and outgoing electron momenta and

the angle of the outgoing electron.

• Scale (Normalization):
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Scale or normalization uncertainties affect all data points uniformly, scaling

them by a constant multiplicative factor. These arise due to uncertainties in

quantities such as the measured target thicknesses.
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Chapter 4

Results and Discussion

This chapter presents preliminary results from analysis of the data collected during

experiment E12-10-008. These include measurements of cross section (EMC) ratios

covering a kinematic range of 0.18 < xBj < 1.0 and 2.8 < Q2 < 8.1 GeV2, and EMC

slopes in 12C, 27Al, 40Ca, 48Ca, 48Ti, 54Fe, 58Ni, 64Ni, and 197Au. These results are

discussed in the context of theoretical predictions and previous experimental data,

which are covered in Ch. 1. Finally, several measurements of the EMC effect which

will or may be performed in the coming decade are discussed.

4.1 Cross Section Ratios

This section covers the measured EMC ratios, defined in Eq. 3.58, that were deter-

mined using data collected using the HMS at 20.00◦, spanning a kinematic range of

0.18 < xBj < 1.0 and 2.8 < Q2 < 8.1 GeV2. In addition, the EMC slopes calculated

from these ratios will be presented. The cross section ratios were calculated in 1% bins

in δ for each spectrometer momentum setting and rebinned into bins of size 0.025 in

xBj. At 20.00◦, the HMS central momentum was set to ten different values to collect

data covering the full kinematic range specified above: 2.42 GeV, 2.71 GeV, 3.04 GeV,

3.40 GeV, 3.81 GeV, 4.27 GeV, 4.78 GeV, 5.36 GeV, 5.878 GeV, and 6.60 GeV. How-

ever, one should note that most of the data collected at the 6.60 GeV setting falls

outside of the specified kinematic range, going to xBj > 1, and is used for studies of
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SuperFast Quarks (SFQs) [53].

The measured EMC ratios for the targets listed at the beginning of this chapter

are shown in Figs. 4.1-4.9 with error bars representing combined statistical and point-

to-point systematic uncertainties. These ratios are shown alongside previous world

data with consistent Coulomb and isoscalar corrections applied, and a fit to the

SLAC E139 results [23]; no Coulomb corrections and different isoscalar corrections

were used back when the SLAC fit was obtained, resulting in some difference between

the SLAC fit and results shown in the figures. An error band illustrating the xBj-

correlated uncertainties is shown in Fig. 4.1. This is only included for the carbon data,

as these uncertainties are largely target-independent. Normalization uncertainties are

indicated in parentheses next to the experiment name in the legend of each figure.

The ratios for each target show the EMC effect’s general characteristic shape as a

function of xBj. However, while previous measurements of EMC ratios show that

they decrease approximately linearly in the range 0.3 < xBj < 0.7, reaching a local

minimum around xBj = 0.725, our preliminary results show that the EMC ratios only

decrease linearly to xBj = 0.6, remaining relatively flat in the range 0.6 < xBj < 0.7.

This appears to be the case for the published commissioning data for our experiment

[31] (labeled XEM18) as well. For nuclei such as 48Ca and 48Ti, there appears to be

an anomalously large offset at low-mid xBj between our data and the SLAC fit. It is

unclear if this offset is the result of an anomalously large error in the normalization

of our data, or if it is a genuine feature of the EMC effect for these nuclei. Finally,

it should be noted that our data are not expected to agree with the SLAC fit above

xBj > 0.9 due to the differing kinematics of the two experiments, which result in

different quasielastic contributions around xBj = 1.
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Figure 4.1: EMC ratios from this work for 12C are shown alongside a fit to the SLAC
E139 results [23] and results from the JLab 12 GeV commissioning data (open magenta
triangles) [31], the JLab 6 GeV results (open green stars) [29], and the results from
SLAC E139 (open blue plus signs) [23]. The normalization uncertainty of each of the
experiments is shown in parentheses next to the experiment name in the legend, and
the xBj-correlated uncertainties for our experiment are given by the red band. The
xBj-correlated uncertainties are largely target-independent and will only be shown
for this target.
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Figure 4.2: EMC ratios from this work for 27Al are shown alongside a fit to the
SLAC E139 results [23] and results from SLAC E139 (open blue plus signs) [23]. The
normalization uncertainty of each of the experiments is shown in parentheses next to
the experiment name in the legend.
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Figure 4.3: EMC ratios from this work for 40Ca are shown alongside a fit to the
SLAC E139 results [23] and results from SLAC E139 (open blue plus signs) [23]. The
normalization uncertainty of each of the experiments is shown in parentheses next to
the experiment name in the legend.
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Figure 4.4: EMC ratios from this work for 48Ca are shown alongside a fit to the
SLAC E139 results [23]. The normalization uncertainty of our experiment is shown
in parentheses next to the experiment name in the legend.
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Figure 4.5: EMC ratios from this work for 48Ti are shown alongside a fit to the
SLAC E139 results [23]. The normalization uncertainty of our experiment is shown
in parentheses next to the experiment name in the legend.
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Figure 4.6: EMC ratios from this work for 54Fe are shown alongside a fit to the SLAC
E139 results [23] and 56Fe results from SLAC E139 (open blue plus signs) [23]. The
normalization uncertainty of each of the experiments is shown in parentheses next to
the experiment name in the legend.
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Figure 4.7: EMC ratios from this work for 58Ni are shown alongside a fit to the
SLAC E139 results [23]. The normalization uncertainty of our experiment is shown
in parentheses next to the experiment name in the legend.
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Figure 4.8: EMC ratios from this work for 64Ni are shown alongside a fit to the
SLAC E139 results [23]. The normalization uncertainty of our experiment is shown
in parentheses next to the experiment name in the legend.
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Figure 4.9: EMC ratios from this work for 197Au are shown alongside a fit to the SLAC
E139 results [23] and the results from JLab 6 GeV experiment (open green stars) [29]
and SLAC E139 (open blue plus signs) [23]. The normalization uncertainty of each of
the experiments is shown in parentheses next to the experiment name in the legend.
While the SLAC E139 data agree reasonably well with this work, the JLab 6 GeV
data appear to be systematically higher between 0.3 < xBj < 0.6 before converging
with our results at larger xBj.
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While a couple of potential causes have already been investigated, the reason for

this discrepancy remains unclear. Initially, the cross section model was considered

to be a likely culprit, as early iterations of the model did not agree well with the

measured data in certain kinematic regions. However, after several iterations of two

different cross section models, the discrepancy remained, suggesting that it is not

the source of the issue. The impact of the charge-symmetric background (CSB) was

also studied, as the CSB correction did not account for the increase in the pion

background above the Cherenkov detector’s pion threshold. However, the impact of

this on the measured cross section ratio is only a few tenths of a percent, an order

of magnitude smaller than the observed discrepancy. In addition, this impact was

already accounted for in the error budget. Therefore, the CSB was also determined

not to be the cause.

There are several other reasons why this discrepancy may be occurring. It may be

an effect of the HMS magnets saturating at large field settings (E ′ > 5 GeV). If this

is the case, this could be checked by comparing the results from the data collected

using the HMS detector to those from the SHMS detector, which has a dipole magnet

that is nominally able to operate at higher field settings without saturation, optics

data available at higher momenta, and which also took limited data sets at EMC

effect kinematics for comparison with the results from the HMS detector. The initial

detector calibrations for the SHMS detector have not yet been completed, which has

prevented this study from being performed up to this point. If it is found that the

results extracted from the SHMS data agree with the HMS results, then it is unlikely

that the HMS magnet saturation is the cause of the discrepancy. Another possibility

is that this observation is due to a previously unnoticed Q2 dependence of the EMC

effect.

A summary of the EMC slopes determined from the analyzed data is provided
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in Tab. 4.1. These slopes have been extracted from linear fits of the EMC ratios

performed over two different ranges: 0.3 < xBj < 0.7, and 0.3 < xBj < 0.6. The

first is a standard range that has been used to quantify the EMC effect in previous

experiments and analyses, and the second was selected due to the flattening of the

EMC ratio in the range 0.6 < xBj < 0.7 in our preliminary data.
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Nucleus EMC Slope (0.3–0.6) EMC Slope (0.3–0.7)
12C 0.266± 0.027 0.216± 0.017
27Al 0.339± 0.028 0.269± 0.017
40Ca 0.331± 0.027 0.291± 0.017
48Ca 0.327± 0.028 0.280± 0.017
48Ti 0.382± 0.029 0.313± 0.017
54Fe 0.385± 0.028 0.314± 0.017
58Ni 0.378± 0.029 0.316± 0.017
64Ni 0.365± 0.028 0.314± 0.017
197Au 0.414± 0.028 0.341± 0.017

Table 4.1: Preliminary EMC slopes from this work with total error bars. Slopes
are extracted from a linear fit performed over two ranges: 0.3 < xBj < 0.6 and
0.3 < xBj < 0.7. The slopes from the fit over the larger range are systematically
lower than the slopes from the fit over the smaller range because the cross section
ratio flattens out over the range 0.6 < xBj < 0.7.
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4.2 A-Dependence of the EMC Effect

Now that the sizes of the EMC effect in several nuclei have been quantified, we can

investigate how these results compare with various predictions to gain some insight

into its underlying cause.

We will first look at the A-dependence of the EMC effect. It has been predicted

that the size of the EMC effect should generally scale with A−1/3 for heavy (A > 12)

nuclei [89], and recent studies have found this prediction to hold surprisingly well,

even for some lighter nuclei [42]. The argument for this scaling can be summarized by

several key points. The density distributions of heavy nuclei have been found to have

an approximately universal shape, and the density in the nuclear interior is relatively

constant in these nuclei. The portion of the scattering cross section that comes from

the interior of the nucleus then scales with A. The density of the surface of these

nuclei also has an approximately universal shape. The portion of the scattering cross

section that comes from the surface of the nucleus scales as R2, or A2/3. Dividing the

individual interior and surface portions of the scattering cross section by A to obtain

the per-nucleon cross section, we see that it should consist of a constant term plus

a term that scales with A−1/3 due to the surface contribution to the cross section,

where the nuclear density is lower than in the interior. This argument does not hold

for light nuclei because the nearly universal shape of the nuclear density distribution

that is seen in heavy nuclei, which is essential to the argument described above, is

not seen in lighter nuclei.

Figure 4.10 shows measurements of the size of the EMC effect in various nuclei

as a function of A−1/3. For nuclei measured in past experiments, our preliminary

results are generally consistent within one to two standard deviations of the previous

measurements. In addition, our preliminary results generally support the conclusion
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of previous analyses: that the EMC effect in heavy (A > 12) nuclei scales well with

A−1/3.

Given that the A−1/3 dependence holds for arbitrarily heavy nuclei, we can perform

a linear fit to the world EMC slope data for A > 12 nuclei as a function of A−1/3 and

extrapolate this fit to A−1/3 = 0 to find the EMC slope for a hypothetical infinitely

heavy nucleus. Performing this fit and extrapolating to A−1/3 = 0, we find the EMC

slope of a hypothetical infinitely heavy nucleus to be 0.537±0.020, provided that the

A−1/3 scaling continues to hold.
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Figure 4.10: Measured EMC slopes of various nuclei shown as a function of A−1/3.
Preliminary EMC slopes from our experiment, E12-10-008, are determined from a
linear fit of the EMC ratios over the range 0.3 < xBj < 0.6, given in Tab. 4.1, while
0.3 < xBj < 0.7 is the fit range used for the other data sets. Our preliminary results
(closed red circles), are shown alongside results from the JLab 12 GeV commissioning
data (open magenta triangles) [31], the JLab 6 GeV results (open green stars) [29],
and the results from SLAC (open blue plus signs) [23]. The EMC slopes for the JLab
6 GeV and SLAC data are drawn from Ref. [30], while the 12 GeV commissioning
results are drawn directly from the original publication [31]. The world data above
A ⩾ 9 is fit, and results are shown in the bottom left corner of the plot.
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4.3 Isospin-Dependence of the EMC Effect

Now we will investigate the isospin-dependence of the EMC effect, focusing on targets

with mass numbers in the range 40 ⩽ A ⩽ 64. As introduced in Sec. 1.6, a descrip-

tion of how isospin-dependent effects impact nuclear structure functions is essential to

determining nuclear PDFs and reliably extracting fundamental quantities from mea-

surements that depend on these PDFs; however, existing data are not sensitive to any

potential isospin dependence. Our measurements, particularly those on the 40Ca and
48Ca targets, are the most sensitive to date for determining the isospin-dependence

of the EMC effect.

Now, it is important to note that the extraction of the isospin dependence of

the EMC effect is particularly sensitive to the F n
2 /F

p
2 model used to determine the

isoscalar corrections that are applied to the EMC ratios, which were discussed in

Sec. 3.17. The preliminary results presented here use the F n
2 /F

p
2 model including

smearing in deuterium described in Ref. [85].

In an attempt to isolate the isospin dependence of the EMC effect, we naively

hypothesize that the size of the EMC effect for nuclei with mass numbers in the

range 40 ⩽ A ⩽ 64 scales only with isospin and A. We then subtract the naive

A-dependence of the EMC slopes from the measured values for each of our target

nuclei. To determine this naive A-dependence, we fit our measured EMC slopes for
12C and 40Ca, the two isoscalar nuclei we studied, as a function of A−1/3. For each

target, we then subtract the value of the fit at the corresponding mass number A,

leaving the residual EMC slope with the naive A-dependence removed. Figure. 4.11

presents our preliminary results for the size of the EMC effect in nuclei over the

range 40 ⩽ A ⩽ 64, with the naive A-dependence removed, plotted as a function of

the neutron-to-proton ratio N/Z in these nuclei.
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Figure 4.11: EMC slopes from this work determined from fits over the range 0.3 <
xBj < 0.6 with their naive A-dependence removed for nuclei with mass numbers in
the range 40 ⩽ A ⩽ 64 are plotted as a function of N/Z and shown alongside EMC
slopes from fits over the same xBj range of theoretical predictions for N/Z = 1 and
N/Z = 1.4 nuclear matter [90] from the CBT model described in Ref. [32].

The 40Ca and 48Ca targets provide the largest lever arm to measure isospin de-

pendence, as they have very different neutron-to-proton ratios and similar numbers

of nucleons. The observation that the EMC slopes of 40Ca and 48Ca are very similar

suggests that the EMC effect does not have a significant isospin dependence. This

conclusion is further supported by the similarity between the slopes of 58Ni and 64Ni.

However, if the EMC effect is only A-dependent with no isospin-dependence at all,

it is then difficult to explain the difference between the measured EMC slopes of

the 48Ca and 48Ti targets, as they have the same number of nucleons. This may

suggest that some other property of these nuclei, apart from A and isospin, has an
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effect on the size of the EMC effect in these nuclei. Alternatively, it is possible that

isospin dependence of the EMC effect causes it to increase with N/Z until 54Fe and
48Ti (N/Z ≃ 1.15) before turning over and decreasing as N/Z increases. In the

CBT model, such a turnover is expected, though it is predicted to occur around

N/Z ≃ 1.66 [32].

The precision of these results could be improved by taking the cross section ratio of

the A > 40 targets directly with 40Ca, removing the additional uncertainty introduced

by the cryogenic 2H target. Additional studies are needed to draw stronger conclusions

about the exact nature of the isospin dependence of the EMC effect, though these

preliminary findings do not seem to indicate that the EMC effect has significant

isospin dependence.

4.4 Future Directions

The experiment described in this dissertation, E12-10-008, studied the EMC effect via

measurements of inclusive DIS cross sections. Alongside the results presented here,

which focus on the isospin-dependence of the EMC effect, data for the additional

targets listed in Tabs. 2.4 and 2.5 and at 26.00◦ and 35.00◦ have been collected and

are being analyzed in parallel. In addition, there are several proposed experiments

that will use methods other than inclusive, unpolarized DIS to study the EMC effect.

Here, I will highlight a few of the EMC effect-related measurements that have been

proposed at Jefferson Lab.

An experiment utilizing the CLAS12 spectrometer [91] in Hall B of Jefferson Lab

is proposed that plans to make the first measurements of the spin-dependent EMC

effect [92]. This is accomplished using a polarized 7LiD target, where it is presently

understood that almost all of the spin of the 7Li is carried by a single proton. One
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can then extract the modification of that polarized proton rather than the average

over all of the nucleons in that nucleus.

There is an experimental proposal that leverages the Solenoidal Large Intensity

Device (SoLID) [93] to study the isospin dependence of the EMC effect through mea-

surements of the parity-violating electroweak asymmetry APV in DIS (PVEMC) [94].

SoLID is a planned large-acceptance, high-luminosity spectrometer that is currently

under development. Provided continued funding, SoLID is expected to be installed

in Hall A of Jefferson Lab following the Super Bigbite Spectrometer (SBS) [95] and

Measurement Of a Lepton-Lepton Electroweak Reaction (MOLLER) [96] experimen-

tal programs.

The main observable of the PVEMC experiment is the parity-violating electroweak

asymmetry APV of electron DIS off a 48Ca target, defined as

APV =
σR − σL

σR + σL

=
GFQ

2

4
√
2πα

[Y1 · a1(xBj) + Y3(y) · a3(xBj)] , (4.1)

where σR and σL are the scattering cross sections for right-handed and left-handed

electrons, GF is the Fermi constant, α is the Sommerfeld constant, Y1(3) are kinematic

factors, and a1(3) are related to the nuclear PDF of 48Ca [94]. The isospin-dependent

EMC effect would affect the xBj-dependence of value a1, see Fig. 4.12 for projected

uncertainties for this experiment compared with several models. Therefore, measuring

APV of 48Ca will provide insight into the isospin-dependence of the EMC effect.

4.5 Conclusion

In conclusion, we have presented preliminary EMC ratios from data collected by the

HMS during experiment E12-10-008 for 12C, 27Al, 40Ca, 48Ca, 48Ti, 54Fe, 58Ni, 64Ni,
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Figure 4.12: Figure from [94]. Projected uncertainties for the SoLID PVEMC experi-
ment are shown alongside models that predict an isospin-dependent EMC effect. The
solid black line is the SLAC E139 fit [23], which is isospin-independent. The solid red
line is the prediction from the CBT model [32]. The other model curves are described
in Ref. [94].

and 197Au in the kinematic range 0.18 < xBj < 1.0 and 2.8 < Q2 < 8.1 GeV2. EMC

slopes have been extracted to quantify the size of the EMC effect in these nuclei, and

the A and isospin dependencies of this effect have been studied by parameterizing the

EMC slopes as functions of A−1/3 and the neutron-to-proton ratio N/Z.

Our preliminary results do not appear to indicate significant isospin-dependence of

the EMC effect, though a more careful study is needed once all results are confirmed.

In addition, we find the EMC effect scales reasonably well with A−1/3 for A ⩾ 9 nuclei.

Once the SHMS data is analyzed, it will be interesting to see if the flattening-out of

the EMC ratio between 0.6 < xBj < 0.7 that is seen in the 20.00◦ HMS data is also
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observed, or if the depletion of the EMC ratio continuous to xBj ≈ 0.7 as found in

previous measurements. In the latter case, it is likely that the flattening-out observed

in the HMS data is due to saturation of HMS’s magnets at high momenta. Otherwise,

if the HMS and SHMS data are found to yield consistent results, it is possible that

this flattening of the EMC ratio is a genuine feature of the EMC effect in our Q2

range that has gone unnoticed thus far.

Additional data are needed to elucidate the exact nature of the EMC effect and its

isospin dependence. This will be accomplished as the SHMS data and additional HMS

data collected during E12-10-008 are analyzed, and other planned measurements are

carried out, including those using the SoLID and CLAS12 spectrometers in Halls A

and B of Jefferson Lab.
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