
MSER Exploratory Research: Implementations,
Virtual Laboratory Development, and

Parameterization Analysis

A Dissertation

Presented to

the faculty of the School of Engineering and Applied Science

University of Virginia

in partial ful�llment

of the requirements for the degree

Doctor of Philosophy

by

Sung Nam Hwang

May 2017

APPROVAL SHEET

This Dissertation

is submitted in partial ful�llment of the requirements

for the degree of

Doctor of Philosophy

Author Signature:

This Dissertation has been read and approved by the examining committee:

Advisor: Prof. K. Preston White, Jr

Committee Member: Prof. Michael C. Smith

Committee Member: Prof. James W. Lark III

Committee Member: Prof. William T. Scherer

Committee Member: Dr. Paul J. Sanchez

Committee Member:

Accepted for the School of Engineering and Applied Science:

Craig H. Benson, School of Engineering and Applied Science

May 2017

ii

TABLE OF CONTENTS

TABLE OF CONTENTS .. II

LIST OF FIGURES .. IV

LIST OF TABLES ... X

Acknowledgement ... XII

Abstract .. XIII

Executive Summary ... XIV

Chapter 1: Introduction ... 1
1.1 The Importance and Ubiquity of Discrete-Event, Stochastic Simulation 1
1.2 Types of Simulation with Respect to Output Analysis .. 2
1.3 The Analysis of Terminating Simulation Outputs ... 3
1.3 The Analysis of Nonterminating Simulation Outputs .. 5
1.5 The Locus of this Research .. 8
1.6 Background: A Note on Smart Initialization ... 12

Chapter 2: Literature Review .. 14
2.1 MSER: Approach, Inception, and Development ... 14
2.2 Open Issues ... 19

2.2.1 Implementation and automation .. 20
2.2.2 Batch Size .. 21

2.3 Current Related Work .. 23
2.3.1 N-SKART .. 23
2.3.2 Potentially Insufficient Truncation ... 24

2.4 Optimal Analysis for the Mean of a Simulation Output .. 25
2.4.1 The terminating simulation problem .. 25
2.4.2 The steady-state simulation problem: replication/deletion approach 27
2.4.3 The steady-state simulation problem: batch means approach .. 28

Chapter 3: MSER Implementation Issues .. 30
3.1 Online Analysis .. 31

3.1.1 External Approach .. 31
3.1.1.1 How to build DLL linked with ProModel (MedModel) ... 32

3.1.2 Internal Approach... 34
3.1.2.1 Software development environments ... 34
3.1.2.2 Current Features for Dealing with the Start-up Problem.. 35

3.2 Post analysis ... 46
3.2.1 R .. 47
3.2.2 C/C++ .. 47
3.2.3 Matlab ... 48
3.2.4 SAS .. 48
3.2.5 VBA ... 49

3.3 Merits of the alternative codes ... 49

Chapter 4. The MSER Laboratory ... 51

iii

Chapter 5. Implementation of MSER in Commercial Software 57
5.1 ExtendSim Implementation ... 57

5.1.1 ExtendSim Process Flow .. 58
5.1.2. ExtendSim Code .. 59

5.2 Arena Submodel Implementation .. 63
5.2.1 Arena Process Flow .. 64
5.2.2 Arena MSER Modules ... 66

5.3 Promodel/Medmodel Implementation ... 66
5.3.1 Promodel/Medmodel Process Flow .. 67
5.3.2 ProModel DLL Code .. 68

Chapter 6. Implementation in Post Analysis Codes ... 72
6.1. R Source Code .. 72
6.2. The SAS Source Code .. 74
6.3. Matlab Source Code .. 75
6.4. VBA Source Code ... 76
6.5. C Source Code .. 80
6.6. C++ Source Code .. 84

Chapter 7. Parameterization Issues, Analyses, and Results ... 90
7.1 Choosing the Run Length of a Nonterminating Simulation ... 90
7.2 Test Models and Results ... 94

7.2.1 Model 1: Uniform Distribution with Superimposed Deterministic Bias 95
7.2.1.1 Model Description ... 95
7.2.1.2 Results: Batch size effects for long runs .. 97
7.2.1.3 Results: Batch size effects for short runs ... 105
7.2.1.4 Results: Overlapping Batch Means .. 113

7.2.2 Model 2: Waiting Time in an M/M/1 .. 116
7.2.2.1 Results for Model 2 with traffic intensity of 0.90 .. 117
7.2.2.2 Results for Model 2 with traffic intensity of 0.80 .. 124
7.2.2.3 Results for Model 2 with traffic intensity of 0.70 .. 129
7.2.2.4 Results for Model 2 with traffic intensity of 0.60 .. 134
7.2.2.5 Result for Model 2: Simulation run length effect... 139
7.2.2.6 Result for Model 2: Traffic intensity effect ... 140
7.2.2.7 Results: Overlapping Batch Means for M/M/1 with Traffic Intensity of 0.90. 141
7.2.2.8 Results: Initialization Bias ... 149
7.2.2.9 Summary Results for Model 2 ... 153

7.2.3 Model 3: EAR(1) ... 155
7.2.3.1 Results for Model 3 with =0.99 ... 158
7.3.3.2 Results for Model 3 with =0.90 ... 165
7.3.3.3 Results for Model 3 with =0.80 ... 170
7.3.3.4 Results for Model 3 with =0.70 ... 175
7.3.3.5 Results Using OBM for Model 3 with =0.70 ... 180

Chapter 8. Conclusion and future research .. 184

References ... 191

Appendix I. Arena MSER Submodel User Guide .. 196

Appendix II. Personal reflections on the importance of the warm-up problem and
undergraduate simulation curriculum survey .. 207
II.1 Anecdotal case to emphasize the importance of warm-up period ... 207
II.2 Undergraduate curriculum survey ... 207	

iv

LIST OF FIGURES

Figure 1.1 Types of simulation (Law 2015) ... 3	
Figure 1.2 Example of transient and steady-state density functions (after Law 2015) 6	
Figure 2.1 Testing Module for identifying optimal truncation points in SIMUL8. 20	
Figure 2.2 Output Analysis Tree for Wilson and Students ... 24	
Figure 3.1 Example of DLL usage in ProModel ... 33	
Figure 3.2 Specifying Warm-up Period in Arena’s Run Setup Dialogue 37	
Figure 3.3 Warm-Up Period Determination in AutoMod ... 38	
Figure 3.4 Warm-Up Period in SIMUL8 .. 39	
Figure 3.5 Output Analysis Support in SIMUL8 .. 39	
Figure 3.6 Specifying a Warm-Up Period in ProModel ... 40	
Figure 3.7 Specifying a Warm-Up Period in FlexSim .. 41	
Figure 3.8 Specifying a Warm-Up Period in Simio .. 42	
Figure 3.9 Warm-Up Period in ExtendSim using Clear Statistics under Statistics library44	
Figure 3.10 GUI of SimCAD .. 45	
Figure 4.1. Introduction of MSER Laboratory Web page .. 53	
Figure 4.2. History of MSER Laboratory Web page .. 54	
Figure 4.3. Sample Codes of MSER Laboratory Web page ... 55	
Figure 4.4. Math of MSER Laboratory Web page .. 56	
Figure 5.1 MSER Implementation and GUI in ExtendSim .. 59	
Figure 5.2 Main model of an M/M/1 queue in Arena with the MSER module included to

collect statistics on the waiting time in Service queue ... 64	
Figure 5.3 Details of the MSER calculation in the Arena .. 65	
Figure 5.4 M/M/1 Model in ProModel ... 67	
Figure 5.5 DLL Usage in ProModel ... 68	
Figure 6.1 Output and MSER Plot in R .. 74	
Figure 6.2 Output and MSER Plot in SAS .. 75	
Figure 6.3 Output and MSER Plot in Matlab ... 76	
Figure 6.4 Output and MSER Plot in Excel VBA .. 80	
Figure 6.5 Output Results in Console by C/C++ .. 89	
Figure 7.1 Hypothetical simulation output sequences illustrating one potential consequence

of an inadequate run length .. 93	
Figure 7.2 Hypothetical extensions of the simulation output sequences in Figure 7.1

illustrating further potential consequences of an inadequate run length 94	
Figure 7.3 Output for a representative replication of the first model 96	
Figure 7.4 95% confidence intervals for (a) the truncated means for run lengths n=10000

and batch sizes b=1, 5, 10 and (b) the sample standard deviation in the estimated means
for run lengths n=10000 and batch sizes b=1, 5, 10 ... 98	

v

Figure 7.5 Fits to the steady-state sampling distributions of the mean for 1000 replications
for run length n=10,000. Fits for all three batch sizes tested are nearly identical for
batch sizes b=1, 5, and 10 .. 99	

Figure 7.6 95% confidence intervals for (a) the MSER mean and (b) the standard deviation
in the MSER truncation point for run lengths n=10000 and batch sizes b=1, 5, 10 .. 99	

Figure 7.7 Scatterplots of the truncated mean vs. the number of observations truncated for
batch sizes b=1, 5, and 10 for run length n=10,000 ... 100	

Figure 7.8 Frequency distribution of the total number of observations truncated as a
function of batch size for batch sizes b=1, 5, and 10 for run length n=10,000 101	

Figure 7.9 Batched means and MSER statistic for the first 500 observations for replication
958 for batch sizes b=1, 5, and 10 for run length n=10,000 102	

Figure 7.10 Batch means and MSER statistic for the first 1500 observations for replication
958 for batch sizes b=10 and run length n=10,000 .. 103	

Figure 7.11 Estimated steady-state distribution (after truncation) for a single representative
replication for run length n=10,000, with uniform fit for batch size b=1 and normal fits
for batch sizes b=5 and 10 .. 104	

Figure 7.12 Scatterplots of the truncated mean vs. the number of observations truncated
batch sizes b=1, 5, and 10 for run lengths n=175, 200, 500, and 500 109	

Figure 7.13 Frequency distribution of the total number of observations truncated as a
function of batch size for batch sizes b=1, 5, and 10 for run lengths of n=175, 200,
500, 500 .. 110	

Figure 7.14 95% confidence intervals of the mean for the truncated mean output as a
function of batch size for batch sizes b=1, 5, and 10 for run lengths of n=175, 200, 300,
500 .. 111	

Figure 7.15 95% confidence intervals for the mean for the number of observations
truncated for batch sizes b=1, 5, and 10 for run lengths of n=175, 200, 300, 500 ... 112	

Figure 7.16 Representative Output, Overlapping Batch Mean, and MSER Statistic of
Model 1 (b= 10, 35, 75, and 150) ... 113	

Figure 7.17 95% confidence intervals for Model 1 on (a) the truncated mean for
overlapping and non-overlapping batches and (b) the standard deviation for
overlapping and non-overlapping batches .. 114	

Figure 7.18 Scatterplots of the truncated mean vs. the number of observations truncated for
OBM sizes b=10, 35, 75 and 150 for run length of n=500 for Model 1 (including
NOBM batch size of 10) .. 115	

Figure 7.19 Frequency distribution of the number of observations truncated as a function
of OBM sizes b=10, 35, 75, and 150 for run length of n=500 for Model 1 (including
NOBM batch size of 10) .. 115	

Figure 7.20 Representative Output of Waiting-Time in an M/M/1 with Traffic Intensity of
0.9 (n = 64000; Blue line: E(Wq)=81) .. 117	

Figure 7.21 95% confidence intervals for the mean and the truncated mean as a function of
batch size (b= 1, 5, and 10) and run length (n=1000, 2000, 4000, 8000, 16000, 32000,
and 64000) for Model 2 with traffic intensity of 0.9 (Theoretical mean of 81, Blue line)
 .. 119	

Figure 7.22 95% confidence intervals for the mean number of observations truncated as a
function of batch size (b= 1, 5, and 10) and run length (n=1000, 2000, 4000, 8000,
16000, 32000, and 64000) for Model 2 with traffic intensity of 0.9 120	

vi

Figure 7.23 Scatterplots of the truncated mean vs. the number of observations truncated for
batch sizes b=1, 5, and 10 for run length of n=1000, 2000, 4000, 8000, 16000, 32000,
and 64000 for Model 2 with traffic intensity of 0.9 ... 121	

Figure 7.24 Frequency distribution of the number of observations truncated as a function
of batch sizes b=1, 5, and 10 for run length of n=1000, 2000, 4000, 8000, 16000,
32000, and 64000 for Model 2 with traffic intensity of 0.9 123	

Figure 7.25 Example of M/M/1 with traffic intensity of 0.8 (n = 16000, Blue line: E(X))
 .. 124	

Figure 7.26 95% confidence intervals of the mean for the truncated mean output as a
function of batch size (b= 1, 5, and 10) and run length (n=1000, 2000, 4000, 8000, and
16,000) for Model 2 with traffic intensity of 0.80 (Theoretical mean of 32, Blue line)
 .. 124	

Figure 7.27 95% confidence intervals for the mean number of observations truncated as a
function of batch size (b= 1, 5, and 10) and run length (n= 1000, 2000, 4000, 8000,
and 16,000) for Model 2 with traffic intensity of 0.80 ... 125	

Figure 7.28 Scatterplots of the truncated mean vs. the number of observations truncated for
batch sizes b=1, 5, and 10 for run length of n=1000, 2000, 4000, 8000, and 16,000
Model 2 with traffic intensity of 0.80 .. 126	

Figure 7.29 Frequency distribution of the number of observations truncated as a function
of batch sizes b=1, 5, and 10 for run length of n=1000, 2000, 4000, 8000, and 16,000
for Model 2 with traffic intensity of 0.80 ... 128	

Figure 7.30 Example of M/M/1 with traffic intensity of 0.70 (n = 16000, Blue line: E(X))
 .. 129	

Figure 7.31 95% confidence intervals of the mean for the truncated mean output as a
function of batch size (b= 1, 5, and 10) and run length (n=1000, 2000, 4000, 8000, and
16,000) for Model 2 with traffic intensity of 0.70 (Theoretical mean of 16.33, Blue
line) ... 129	

Figure 7.32 95% confidence intervals for the mean number of observations truncated as a
function of batch size (b= 1, 5, and 10) and run length (n= 1000, 2000, 4000, 8000,
and 16,000) for Model 2 with traffic intensity of 0.70 ... 130	

Figure 7.33 Scatterplots of the truncated mean vs. the number of observations truncated for
batch sizes b=1, 5, and 10 for run length of n=1000, 2000, 4000, 8000, and 16,000
Model 2 with traffic intensity of 0.7 .. 131	

Figure 7.34 Frequency distribution of the number of observations truncated as a function
of batch sizes b=1, 5, and 10 for run length of n=1000, 2000, 4000, 8000, and 16,000
for Model 2 with traffic intensity of 0.70 ... 133	

Figure 7.35 Example of M/M/1 with traffic intensity of 0.60 (n = 16000, Blue line: E(X))
 .. 134	

Figure.7.36 95% confidence intervals of the mean for the truncated mean output as a
function of batch size (b= 1, 5, and 10) and run length (n=1000, 2000, 4000, 8000, and
16,000) for Model 2 with traffic intensity of 0.60 (Theoretical mean of 9, Blue line)
 .. 134	

Figure 7.37 95% confidence intervals for the mean number of observations truncated as a
function of batch size (b= 1, 5, and 10) and run length (n=1000, 2000, 4000, 8000, and
16,000) for Model 2 with traffic intensity of 0.60 ... 135	

vii

Figure 7.38 Scatterplots of the truncated mean vs. the number of observations truncated for
batch sizes b=1, 5, and 10 for run length of n=1000, 2000, 4000, 8000, and 16,000
Model 2 with traffic intensity of 0.60 .. 136	

Figure 7.39 Frequency distribution of the number of observations truncated as a function
of batch sizes b=1, 5, and 10 for run length of n=1000, 2000, 4000, 8000, and 16,000
for Model 2 with traffic intensity of 0.60 ... 138	

Figure 7.40 Correlation between truncated means and observations truncated as a function
of run length and traffic intensity ... 139	

Figure 7.41 Correlation between truncated means and observations truncated by different
traffic intensity (Run length of 16000) ... 140	

Figure 7.42 Correlation between truncated means and observations truncated by different
traffic intensity (Run length of 8000, 4000, 2000, and 100) 141	

Figure 7.43 Representative Output, Overlapping Batch Mean, and MSER Statistic of
Model 2 with traffic intensity of 0.90 (b= 10, 50, 100, and 200) 142	

Figure 7.44 95% confidence intervals for Model 3 on (a) the truncated mean for
overlapping and non-overlapping batches and (b) the standard deviation for
overlapping and non-overlapping batches .. 143	

Figure 7.45 Scatterplots of the truncated mean vs. the number of observations truncated for
OBM sizes b=10, 50, 100 and 200 for run length of n=64,000 with traffic intensity of
0.90 for Model 2 (including NOBM batch size of 10) ... 144	

Figure 7.46 Frequency distribution of the number of observations truncated as a function
of OBM sizes b=10, 50, 100, and 200 for run length of n=64,000 with traffic intensity
of 0.90 for Model 2 (including NOBM batch size of 10) .. 145	

Figure 7.47 95% confidence intervals for M/M/1 with traffic intensity of 0.90 about the
truncated mean for overlapping and non-overlapping batches (n = 1000, 2000, 4000,
8000, 16000, 32000, and 64000.) ... 148	

Figure 7.48 Output time series with traffic intensity of 0.90 with b =1 and n = 32,000 149	
Figure 7.49 Confidence interval for Mean and Standard Deviation, Scatter Plot for

Truncation points and Truncated Mean, Frequency Distribution of the Number of
Observations Truncated with Traffic Intensity of 0.90 with b =1, 5, and 10 and n =
64,000 and 32,000 .. 150	

Figure 7.50 Representative output for EAR(1) for run length n=500 and batch size b=1,
illustrating the dependency of the steady-state mean and rate of convergence on the
parameter for ={0.7, 0.8, 0.9, 0.99} ... 156	

Figure 7.51 Example of Model 3 with =0.99 (n = 16000, Brown line: E(X)) 158	
Figure 7.52 95% confidence intervals of the mean for the truncated mean output as a

function of batch size (b= 1, 5, and 10) and run length (n=100, 150, 300, 500, 1000,
2000, 4000, 8000, and 16,000) for Model 3 with =0.99 (Theoretical mean of 100,
Blue line) .. 160	

Figure 7.53 95% confidence intervals for the mean number of observations truncated as a
function of batch size (b= 1, 5, and 10) and run length (n=100, 150, 300, 500, 1000,
2000, 4000, 8000, and 16,000) for Model 3 with =0.99 .. 161	

Figure 7.54 Scatterplots of the truncated mean vs. the number of observations truncated for
batch sizes b=1, 5, and 10 for run length of n=100, 150, 300, 500, 1000, 2000, 4000,
8000, and 16,000 Model 3 with =0.99 ... 162	

viii

Figure 7.55 Frequency distribution of the number of observations truncated as a function
of batch sizes b=1, 5, and 10 for run length of n=100, 150, 300, 500, 1000, 2000, 4000,
8000, and 16,000 for Model 3 with of 0.99.. 164	

Figure 7.56 Example of EAR(1) with ϕ of 0.9 (n = 16000, Blue line: E(X)) 165	
Figure 7.57 95% confidence intervals of the mean for the truncated mean output as a

function of batch size (b= 1, 5, and 10) and run length (n=100, 150, 300, 500, 1000,
2000, 4000, 8000, and 16,000) for Model 3 with ϕ =0.90 (Theoretical mean of 10,
Blue line) .. 165	

Figure 7.58 95% confidence intervals for the mean number of observations truncated as a
function of batch size (b= 1, 5, and 10) and run length (n=100, 150, 300, 500, 1000,
2000, 4000, 8000, and 16,000) for Model 3 with =0.90 .. 166	

Figure 7.59 Scatterplots of the truncated mean vs. the number of observations truncated for
batch sizes b=1, 5, and 10 for run length of n=100, 150, 300, 500, 1000, 2000, 4000,
8000, and 16,000 Model 3 with =0.90 ... 167	

Figure 7.60 Frequency distribution of the number of observations truncated as a function
of batch sizes b=1, 5, and 10 for run length of n=100, 150, 300, 500, 1000, 2000, 4000,
8000, and 16,000 for Model 3 with of 0.90 .. 169	

Figure 7.61 Example of EAR(1) with of 0.8 (n = 16000, Green line: E(X)) 170	
Figure 7.62 95% confidence intervals of the mean for the truncated mean output as a

function of batch size (b= 1, 5, and 10) and run length (n=100, 150, 300, 500, 1000,
2000, 4000, 8000, and 16,000) for Model 3 with =0.80 (Theoretical mean of 5, Blue
line) ... 170	

Figure 7.63 95% confidence intervals for the mean number of observations truncated as a
function of batch size (b= 1, 5, and 10) and run length (n=100, 150, 300, 500, 1000,
2000, 4000, 8000, and 16,000) for Model 3 with =0.80 .. 171	

Figure 7.64 Scatterplots of the truncated mean vs. the number of observations truncated for
batch sizes b=1, 5, and 10 for run length of n=100, 150, 300, 500, 1000, 2000, 4000,
8000, and 16,000 Model 3 with =0.80 ... 172	

Figure 7.65 Frequency distribution of the number of observations truncated as a function
of batch sizes b=1, 5, and 10 for run length of n=100, 150, 300, 500, 1000, 2000, 4000,
8000, and 16,000 for Model 3 with of 0.80 .. 174	

Figure 7.66 Example of EAR(1) with ϕ of 0.7 (n = 16000, Blue line: E(X)) 175	
Figure 7.67 95% confidence intervals of the mean for the truncated mean output as a

function of batch size (b= 1, 5, and 10) and run length (n=100, 150, 300, 500, 1000,
2000, 4000, 8000, and 16,000) for Model 3 with =0.70 (Theoretical mean of 3.33,
Blue line) .. 175	

Figure 7.68 95% confidence intervals for the mean number of observations truncated as a
function of batch size (b= 1, 5, and 10) and run length (n=100, 150, 300, 500, 1000,
2000, 4000, 8000, and 16,000) for Model 3 with =0.70 .. 176	

Figure 7.69 Scatterplots of the truncated mean vs. the number of observations truncated for
batch sizes b=1, 5, and 10 for run length of n=100, 150, 300, 500, 1000, 2000, 4000,
8000, and 16,000 Model 3 with =0.70 ... 177	

Figure 7.70 Frequency distribution of the number of observations truncated as a function
of batch sizes b=1, 5, and 10 for run length of n=100, 150, 300, 500, 1000, 2000, 4000,
8000, and 16,000 for Model 3 with of 0.70 .. 179	

ix

Figure 7.71 Representative Output, Overlapping Batch Mean, and MSER Statistic of
Model 3 (b= 10, 50, 100, and 200) ... 180	

Figure 7.72 95% confidence intervals for Model 3 on (a) the truncated mean for
overlapping and non-overlapping batches and (b) the standard deviation for
overlapping and non-overlapping batches .. 181	

Figure 7.73 Scatterplots of the truncated mean vs. the number of observations truncated for
OBM sizes b=10, 50, 100 and 200 for run length of n=1000 with ϕ of 0.70 for Model
3 (including NOBM batch size of 10) .. 182	

Figure 7.74 Frequency distribution of the number of observations truncated as a function
of OBM sizes b=10, 50, 100, and 200 for run length of n=1000 with ϕ of 0.70 for
Model 3 (including NOBM batch size of 10) .. 182	

x

LIST OF TABLES

Table 2.1 Methods for Determining Start-up Periods (after Hoad et al. (2008)) 18	
Table 3.1 Properties of Warm-Up Period Control in Simio ... 43	
Table 7.1 95% confidence intervals for the mean and variance for the truncated mean

output as a function of batch size for batch sizes b=1, 5, and 10 for run length n=10,000
 .. 98	

Table 7.2 . 95% confidence intervals for the mean and variance for the number of
observations truncated for batch sizes b=1, 5, and 10 for run length n=10,000 99	

Table 7.3 Correlation between the truncated mean and the number of observations
truncated for batch sizes b=1, 5, and 10 for run length n=10,000. 101	

Table 7.4 Summary statistics for the steady-state data given in Figure 7.11. 105	
Table 7.5 95% confidence intervals for Model 1 on the truncated mean and the standard

deviation for overlapping and non-overlapping batches .. 114	
Table 7.6. Correlation between the truncated mean and the number of observations

truncated for OBM sizes b=10, 35, 75, 150 for run length of n=500 for Model 1 .. 116	
Table 7.7. Theoretical Waiting Time in Queue by Traffic Intensity 117	
Table 7.8 Correlation between the truncated mean and the number of observations

truncated for batch sizes b=1, 5, and 10 for run length of n=1000, 2000, 4000, 8000,
16000, 32000, and 64000 for Model 2 with traffic intensity of 0.9. 122	

Table 7.9 Correlation between the truncated mean and the number of observations
truncated for batch sizes b=1, 5, and 10 for run length of n=1000, 2000, 4000, 8000,
and 16,000 for Model 2 with traffic intensity of 0.80 .. 127	

Table 7.10 Correlation between the truncated mean and the number of observations
truncated for batch sizes b=1, 5, and 10 for run length of n=1000, 2000, 4000, 8000,
and 16,000 for Model 2 with traffic intensity of 0.70 .. 132	

Table 7.11 Correlation between the truncated mean and the number of observations
truncated for batch sizes b=1, 5, and 10 for run length of n=1000, 2000, 4000, 8000,
and 16,000 for Model 2 with traffic intensity of 0.60 .. 137	

Table 7.12 95% confidence intervals for Model 2 on the truncated mean and the standard
deviation for overlapping and non-overlapping batches .. 143	

Table 7.13 Correlation between the truncated mean and the number of observations
truncated for OBM sizes b=10, 50, 100, and 200 for run length of n=64,000 for Model
2 .. 145	

Table7.14 Confidence Intervals for M/M/1 with traffic intensity of 0.90 on the truncated
mean and the standard deviation for overlapping and non-overlapping batches with
traffic intensity of 0.90 (n = 1000, 2000, 4000, 8000, 16000, 32000, and 64000) .. 146	

Table 7.15 Correlation between the truncated mean and the number of observations
truncated for b=1, 5, and 10 for run length of n=32,000 with initial bias of 100 151	

Table 7.16 95% confidence intervals for Model 2 on the observation truncated and the
standard deviation for run length of n=32,000 with initial bias of 100 151	

Table 7.17 95% confidence intervals for Model 2 on the truncated mean and the standard
deviation for run length of n=32,000 with initial bias of 100 151	

xi

Table7.18 95% confidence intervals for Model 2 on the mean without truncation and the
standard deviation for run length of n=32,000 with initial bias of 100 152	

Table 7.19 Correlation between the truncated mean and the number of observations
truncated for b=1, 5, and 10 for run length of n=64,000 with initial bias of 100 152	

Table 7.20 95% confidence intervals for Model 2 on the observation truncated and the
standard deviation for run length of n=64,000 with initial bias of 100 152	

Table 7.21 95% confidence intervals for Model 2 on the truncated mean and the standard
deviation for run length of n=64,000 with initial bias of 100 152	

Table 7.22 95% confidence intervals for Model 2 on the mean without truncation and the
standard deviation for run length of n=64,000 with initial bias of 100 153	

Table 7.23 Expected Value of the Steady-State Mean as a function of 155	
Table 7.24 Expected -percent settling time as a function of and 157	
Table 7.25 Correlation between the truncated mean and the number of observations

truncated for batch sizes b=1, 5, and 10 for run length of n=100, 150, 300, 500, 1000,
2000, 4000, 8000, and 16,000 for Model 3 with =0.99.. 163	

Table 7.26 Correlation between the truncated mean and the number of observations
truncated for batch sizes b=1, 5, and 10 for run length of n=100, 150, 300, 500, 1000,
2000, 4000, 8000, and 16,000 for Model 3 with =0.90.. 168	

Table 7.27 Correlation between the truncated mean and the number of observations
truncated for batch sizes b=1, 5, and 10 for run length of n=100, 150, 300, 500, 1000,
2000, 4000, 8000, and 16,000 for Model 3 with =0.80.. 173	

Table 7.28 Correlation between the truncated mean and the number of observations
truncated for batch sizes b=1, 5, and 10 for run length of n=100, 150, 300, 500, 1000,
2000, 4000, 8000, and 16,000 for Model 3 with =0.70.. 178	

Table 7.29 95% confidence intervals for Model 3 on the truncated mean and the standard
deviation for overlapping and non-overlapping batches .. 181	

Table 7.30 Correlation between the truncated mean and the number of observations
truncated for OBM sizes b=10, 50, 100, and 200 for run length of n=16,000 with ϕ of
0.70 for Model 3 ... 183	

Table AII.1 Twenty Undergraduate Curricula of Simulation ... 209	

xii

Acknowledgement

The journey of my PhD study is finally heading towards the last train station. However,

this won’t be the end of my learning process but a start of a new journey. I believe my one

small step into the world of simulation is trivial, yet very meaningful for it will enlighten

a person to be like me and have courage to work hard with intelligent people at University

of Virginia.

I admit that my advisor, Prof. White Jr., is my first and final beacon in staying in the U.S.

Without his considerate support and help, I wouldn’t have come this far with only my

contribution in discrete event simulation. In addition, I won’t forget all the constructive

and encouraging comments and guidance from other committee members for my life at the

University of Virginia.

I would like to express my most sincere gratitude to my wife, Eun Hye Kwon, who has

fully supported and believed me both mentally and emotionally throughout this journey. I

also thank my son, Edward and daughter, Claire for understanding a busy father as well as

my parents and my parents-in-law encouraging my unexpected long journey.

xiii

Abstract

It is well known that the Mean Squared Error Rule (MSER) is an efficient and effective

method for mitigating initialization bias in the output analysis of steady-state, discrete-

event simulation. However, the application of this method in research and practice has been

delayed or misunderstood even by experienced simulation modelers. To address this issue,

we develop the MSER Laboratory—a permanent website that provides user-friendly

sample codes, as well as information needed to apply MSER intelligently. MSER modules

for three commercial software packages, and standalone MSER codes in five popular

programming languages, have been written, validated, and made publically available via

the Laboratory.

In addition, we use these codes to address open issues in the selection of the parameters

needed to apply MSER. These issues include the selection of the MSER truncation

threshold, batch size, and batching scheme (overlapping or non-overlapping batch means),

in conjunction with the determination of an initial run length for simulation replications.

Experiments are conducted using three test models that pose differing challenges for the

successful determination of a warm-up period. We confirm that, given adequate run

lengths, MSER is both effective and robust in all cases. We also illustrate various

consequences of foreshortened replications for each of the three models.

xiv

Executive Summary

This research addresses a practical shortcoming in the output analysis of non-terminating,

stochastic, discrete-event simulations (DES). Specifically, our concern is the application

of MSER, an algorithm for determining an optimal warm-up period when estimating the

steady-state mean of an output based on a sequence of simulated output values. It is

noteworthy that MSER:

 is proven to yield a near-optimal estimate (under mild assumptions) in the sense of

minimum mean-squared error (MSE) that cannot be improved upon a priori,

 is widely accepted in the academic literature as the preferred approach to mitigating

bias associated with the arbitrary specification of initial conditions,

 is presented in detail and recommended in the current editions of many standard

texts on DES, and

 is effective, efficient, robust, and intuitive.

In spite of these considerable merits, the application of MSER in practice appears far

from universal. We speculate the unaided application of MSER can be inconvenient and

potentially consuming of both analyst and computing time, especially when a large number

of output sequences must be initialized. An obvious solution is to imbed MSER in an

automated, dynamic, run-time procedure that requires minimal analyst interaction.

xv

However, the only reported effort to build MSER into a commercial simulation suite

(SIMUL8) led to the suggestion that there are significant barriers to implementation (Hoad

and Robinson, 2011). These include:

 the selection of run length,

 sequential data collection from multiple replications,

 output types associated with cumulative values and extrema, and

 data associated with entities.

Conventionally, MSER has been implemented as a data-driven postprocessor and, as

such, requires that an output sequence be simulated before application. There is no

guarantee that MSER will converge if the run length for this sequence is insufficient to

capture a useful trailing segment of steady-state behavior, even for a stable system.

Determination of an optimal warm-up period therefore is, in fact, confounded with problem

of determining an adequate run length, which is most often resolved only by trial and error.

In this research we demonstrate that in application MSER typically will flag instances

in which the run length is inadequate by truncating all (or at least a very large fraction) of

the output sequence to which it is applied. However, we further demonstrate that there are

pathological instances for which this is not the case. While Hoad et al. (2008) provide

useful guidance, determining an appropriate run length a priori remains an open and

perhaps intractable problem.

With this caveat, we demonstrate both theoretically and by application that the

remaining barriers are readily overcome. Specifically, we:

 cast estimation of an output mean as an iterative optimization problem from which

we derive the memory requirements for run-time implementation,

xvi

 develop runtime versions of MSER for ExtendSim (as a static library), Arena (as a

submodel), Promodel (as a DLL),

 develop MSER postprocessing codes in several popular programming languages,

including the open-source languages R and C/C++, as well as the proprietary

languages Matlab, SAS, and VBA, and

 create a prototype MSER Laboratory—a website to facilitate the distribution of

MSER codes and supporting research online available at

http://faculty.virginia.edu/MSER/.

MSER automation, the distribution of codes, and the creation of the Lab are principal

contributions of this research.

Additionally, during the course of this research we encountered multiple instances of a

perhaps obvious, but seemingly pervasive misconception regarding the application and

evaluation initialization procedures related to MSER. At least two alternative approaches

appear in the literature. The first applies MSER to individual output sequences, truncates

each sequence accordingly, calculates the truncated mean for each sequence, and then

averages the truncated means with weighting to estimate the steady-state mean. The

second determines the output sequences for multiple replications, averages these

sequences, applies MSER to the average sequence to determine a single warm-up period,

and then estimates the steady-state mean based on the average sequence truncated by this

period.

The first approach is preferred. MSER determines the optimal truncation point for the

specific output sequence to which it is applied and will return an optimal estimate of the

mean for each sequence when this exists. The second approach is almost certainly

xvii

suboptimal. There is no reason to believe that the truncation point for the average sequence

is optimal for each of the individual runs. The aggregate result is over-truncation for some

of the sequences and under-truncation for the remainder.

The second approach has led to misgivings regarding the efficacy of MSER. These

doubts surfaced most notably in Law (2015), who compares the average of the sample of

individual truncation points with a theoretical mean truncation point. He erroneously

concludes that MSER may not truncate an appropriately large number of observations.

Wang and Glynn (2014) offer an argument that is similarly flawed.

A further contribution of this research is to highlight and correct this misconception

with a set of three simple examples: (1) the response of a uniform white-noise process in

steady-state with a superimposed linearly-decreasing deterministic transient, (2) the delay

times in an M/M/1 queue, and (3) the response of an EAR(1) process. For these test cases

we show that, given adequate run lengths, the MSER estimate of the steady-state mean is

uncorrelated with the MSER-optimal truncation point and therefore the success of a

truncation procedure in terms of the accuracy of the estimate cannot be imputed from the

truncation point alone. Indeed, we show that even modest correlation is a symptom of

inadequate run lengths. We reiterate that the purpose of truncation is to determine the

warm-up period that yields the most accurate and precise estimate of the steady-state mean.

Other proposed measures of performance are at best irrelevant and at worse seriously

misleading.

We use these same examples to explore the sensitivity of the estimated mean to run

length n and to the choice of the MSER parameters b (batch size) and dmax (the maximum

acceptable optimal truncation point on the range of a given run length [0≤ dmax ≤n]). We

xviii

show that longer run lengths and smaller batch sizes in general better serve to find

acceptable truncation points in all models. For all experiments with sufficient runs lengths

and small batches, however, MSER is consistently effective in yielding near-optimal

truncation points, irrespective of the character of the response. For models with strong

negative or positive trends in the transient sequences, such as Models 1 and 3, MSER

remains highly effective even with relatively short runs for which dmax is greater than n/2,

a maximum threshold suggested in the literature. This is especially true for models in

which there is a sharp transition from the transient to the steady-state operating regimes,

such as Model 1.

Models that are characterized by oscillatory responses, including such regenerative

processes such as queues, represent the greatest challenge for MSER among the three test

cases. In particular, the specification of dmax becomes an issue. For long runs, the

proportion of runs that violate the dmax≤n/2 threshold is comparatively small and the

truncated mean and the truncation point are independent. MSER has ample data

representative of steady-state with which to work.

As n decreases, this is no longer the case. The number of violations increases

dramatically and the correlation becomes increasingly negative, even becoming significant

at =0.3 in the most extreme cases. This implies that smaller (biased) mean estimates are

associated with the greater truncation. Since the average error in the estimates seems

always to be negative when starting queuing systems from empty and idle, violations of

the threshold cause greater estimation error. Enforcing the stringent rule of n/2 improves

the estimates dramatically.

xix

Batching rarely improves MSER performance and, as might be guessed, is

contraindicated for short runs. We speculate (but do not attempt to confirm) that the

superior performance of MSER-5 reported in the literature is a consequence of the central

limit theorem and results from normalizing the geometric sampling distribution of mean

number in system for an M/M/1 queue, with the effect of improving coverage.

The batching scheme conventionally applied in MSER-b uses non-overlapping batches

each with batch size b. We also explored the application of overlapping batch means

(OBM) as an alternative, as suggested by Pasupathy and Schmeiser (2010), for a range of

alternative batch sizes. We find that with mild noise amplitudes, OBM tends to outperform

NOBM. However, the performance of OBM appears to be more sensitive to batch size and

simulation run lengths in comparison to NOBM.

This dissertation is organized as follows:

 Chapter 1: Introduction

 Chapter 2: Literature review

 Chapter 3: MSER Implementation Issues

 Chapter 4: MSER Laboratory

 Chapter 5: MSER implementation in commercial languages

 Chapter 6: MSER implementation in Post-Analysis Codes

 Chapter 7: Parameterization Issues, Analyses, and Results

 Chapter 8: Conclusion and future research

 References

 Appendix I: Arena MSER Submodel User’s Guide

xx

 Appendix II: Personal reflections on the importance of the warm-up problem and

undergraduate simulation curriculum survey

1

Chapter 1: Introduction

This research addresses a practical shortcoming in the output analysis of non-

terminating, stochastic, discrete-event simulations (DES). Specifically, our concern is the

application of MSER, an algorithm for determining an optimal warm-up period when

estimating the steady-state mean of an output based on a sequence of simulated output

values. In this chapter we briefly review the importance of stochastic simulation, the types

of simulation with respect to output analysis, the analysis of terminating and

nonterminating simulations, introduce the warm-up problem, and outline the research

issues and contributions.

1.1 The Importance and Ubiquity of Discrete-Event, Stochastic Simulation

Stochastic simulation has emerged as a critical tool for analysis, especially for complex

systems that reflect current sophisticated and interacting real-time technologies. While

developments in information technology and computer science promoted the use of

simulation in various fields of academia and industry, remarkable advances computing

power reduced the computational burdens in terms of both time and money. Students,

engineers, analysts, practitioners and decision-makers are more and more dependent upon

simulation because analytical solutions are rarely available for the design or

implementation of complex systems.

2

Simulation is widely applied in engineering, health, management, manufacturing,

service industries, public systems, and almost all systems imaginable (Fishman, 2001).

While simulation may be regarded as computational programming to replicate and imitate

a real system with a reasonable model based on succinct assumptions, stochastic simulation

more broadly is a computational sampling experiment and should be supported by sound

statistical notions (Law 2015). Statistical output analysis provides the foundation needed

to verify and validate the model simulating the system of interest.

1.2 Types of Simulation with Respect to Output Analysis

 With respect to output analysis, simulations largely can be categorized into two groups,

as shown in Figure 1.1: (1) terminating (or finite horizon) simulations and (2) non-

terminating (or infinite horizon) simulations. For terminating simulations, initial and

terminating run conditions are usually known (at least approximately) so that initial

transients are a part of the natural behavior under investigation. In contrast, for non-

terminating simulations, neither initial nor terminating conditions are specified and these

must be invented for analysis. Serial correlation in output observations can lead to

significant bias in performance estimators with a “poor” selection of initial conditions.

Understanding and mitigating such biases is essential.

3

Figure 1.1 Types of simulation (Law 2015)

1.3 The Analysis of Terminating Simulation Outputs

It is useful to think of a simulation as the transformation of input random variables U

into output random variables X, S: UX. The output of a simulation replication is a

sequence of observations, the (indexed) numbers {xi, i=1,2,…,n}. This sequence is a

realization of the time series {Xi, i=1,2,…,n}, where the distribution of each of the output

random variables is given by Fi(Xi| x0) = Pr(Xi< xi| x0) and x0 is the initial condition.

The basic assumptions of standard statistics are that observations are i.i.d. (independent

and identically distributed) and normally distributed (or that n is sufficiently large to invoke

the central limit theorem). In other words, all of the observations are drawn from the same

normal distribution

Fi(Xi| x0) = F(Xi| x0) i=1,2,…,n

Classification
w.r.t. output

analysis

Nonterminating
simulation

Steady-state
parameters

Steady-state
cycle

parameters

Other
parameters

Terminating
simulation

4

These assumptions are not met by observations within the series. First, the observations

typically are sequentially correlated and therefore not independent. Second, the transient

distributions Fi(Xi,| x0) typically are different for each observation index i and therefore the

observations are not identically distributed. Third, there is no guarantee that these

distributions are normal.

For terminating simulations, this difficulty is easily overcome. Each replication,

j=1,2,…,N, yields one observation of the statistic of interest Yj, such as the sample mean

n

i
ijj X

n
XY

1

1

Running N independent replications of the simulation yields a set observations drawn from

the sampling distribution for this statistic, {Yi, i=1,2,…,N}. These observations are i.i.d.

and therefore the mean across replications

is an unbiased estimator for the output statistic

Moreover, because the sampling distribution of Yj is approximately normal (by the central

limit theorem for sufficiently large N), the precision of the estimate of X can be estimated

as confidence interval by the standard formula

where the sample variance of Yj is an unbiased estimator for the variance of Yj

Y 1

N
Yj

j1

N

lim
N

Y E X X

Y tN1,1 /2

SN
2

N

5

.

Thus the basic assumptions of standard statistics are satisfied for summary statistics across

replications.

1.3 The Analysis of Nonterminating Simulation Outputs

The approach described above works because the transient response is the object of our

analysis for terminating simulations. This is not the case for nonterminating systems,

however, and performing independent replications alone is inadequate. For nonterminating

simulations, all of the observations within each replication must be drawn from the steady-

state distribution F(X)=Pr(X< x) otherwise the estimator for the statistic is biased. Because

F(X) is not independent of the initial conditions at the beginning, the difficulty posed is

variously referred to as the problem of the initial transient, the start-up problem, or the

warm-up problem.

While there are many proposed alternatives, the most common approach to resolving

the warm-up problem is based on the idea that the transient distributions converge to the

steady-state distribution as the index gets large

F(Xi| x0) F(X) as i .

As suggested in Figure 1.2, after some number of observations d, the transient distribution

is sufficiently close to the steady-state distribution to mitigate bias in the output statistic,

i.e.,

F(Xi| x0) F(X) i d+1.

lim
N

SN
2 Y

6

Figure 1.2 Example of transient and steady-state density functions (after Law 2015)

By allowing the simulation to “warm up”–-discarding all observations prior to Xd+1 within

the output series when computing the statistic—the problem can be overcome. On each

replication we observe the truncated sample mean

Yj,d X j,d
1

n d
Xi

id1

n

 . (1)

The warm-up problem then reduces to that of determining the best truncation point d for

each replication j. As a matter of convenience, very often a single, conservatively large

value of d is selected and used for all replications.

It should be noted that the requirement for convergence in distribution can be relaxed

in some cases. If our interest is estimating the steady-state mean, for example, it is

sufficient that the process is covariance stationary, i.e., that

7

(1) the mean exists niXE i ,,2,1

(2) the variance exists niXVar i ,,2,12 , and

(3) the autocovariance function of order r

,

is not a function of i.

In other words, the means and variances of all observations are constant and the correlation

between any two observations in the series depends only on the number of intervening

observations and not on the location of these points in the series.

For a covariance stationary process, it can be shown that the variance of the sample

mean (within-run) is

 (2)

where R(r) is the order r autocovariance function defined above (Pawlikowski, 1990). For

uncorrelated observations, R(r)=0 for all lags r>0, and therefore the variance reduces to the

standard formula for i.i.d. observations

. (3)

From this we can see that if the correlation is strong and positive, ignoring it will lead to

serious underestimation of the true variation.

R(r) cov(Xi, Xir) k, 0 r n1

1

2

1

(0) 2 1 ()
n

k

k
R k n

n
nX R

 22

1

(1/ˆ)
n

i
i

X x Xn n nn

8

1.5 The Locus of this Research

As will be discussed in Chapter 2, many alternative approaches to determining d have

been proposed. Until the introduction of the MSER algorithm (White and Minnox, 1994),

mitigating initialization bias in the mean was considered an open problem. All of the prior

approaches where found wanting for various reasons. Over the past two decades, however,

increasingly MSER has been accepted as a solution to the warm-up problem.

It is noteworthy that MSER:

 is proven to yield a near-optimal estimate (under mild assumptions) in the sense of

minimum mean-squared error (MSE) that cannot be improved upon a priori,

 is widely accepted in the academic literature as the preferred approach to mitigating

bias associated with the arbitrary specification of initial conditions,

 is presented in detail and recommended in the current editions of many standard

texts on DES, and

 is effective, efficient, robust, and intuitive.

In spite of these considerable merits, the application of MSER in practice appears far

from universal. We speculate the unaided application of MSER can be inconvenient and

potentially consuming of both analyst and computing time, especially when a large number

of output sequences must be initialized. An obvious solution is to imbed MSER in an

automated, dynamic, run-time procedure that requires minimal analyst interaction.

However, the only reported effort to build MSER into a commercial simulation suite

(SIMUL8) led to the suggestion that there are significant barriers to implementation (Hoad

and Robinson, 2011). These include:

 the selection of run length,

9

 sequential data collection from multiple replications,

 output types associated with cumulative values and extrema, and

 data associated with entities.

Conventionally, MSER is a data-driven postprocessor and, as such, requires that an

output sequence be simulated before application. There is no guarantee that MSER will

converge if the run length for this sequence is insufficient to capture a useful trailing

segment of steady-state behavior. Determination of an optimal warm-up period therefore

is in fact confounded with problem of determining an adequate run length, which is most

often resolved by trial and error.

In this research we demonstrate that in application MSER typically will flag instances

in which the run length is inadequate by truncating all (or at least a very large fraction) of

the output sequence to which it is applied. However, we further demonstrate that there are

pathological instances for which this is not the case. While Hoad et al. (2008) provide

useful guidance, determining an appropriate run length a priori remains an open and

perhaps intractable problem.

With this caveat, we demonstrate both analytically and by application that the

remaining barriers are readily overcome. Specifically, we:

 cast estimation of an output mean as an iterative optimization problem from which

we derive the memory requirements for run-time implementation (see the literature

review in Chapter 2),

 describe and resolve MSER implementation issues (Chapter 3)

10

 create a prototype MSER Laboratory (Chapter 4)—a website to facilitate the

distribution of MSER codes and supporting research online (available at

http://faculty.virginia.edu/MSER/).

 develop runtime versions of MSER in an ExtendSim static library, a Promodel

DLL, and an Arena submodel (Chapter 5), and

 develop MSER post-processing codes in several popular programming languages,

including the open-source languages R and C/C++, as well as the proprietary

languages Matlab, SAS, and VBA (Chapter 6).

Additionally, during the course of this research we encountered multiple instances of a

perhaps obvious, but seemingly pervasive, misconception regarding the application and

evaluation initialization procedures such as MSER. At least two alternative approaches

appear in the literature. The first applies MSER to individual output sequences, truncates

each sequence accordingly, calculates the truncated mean for each sequence, and then

averages the weighted truncated means to estimate the steady-state mean. The second

determines the output sequences for multiple replications, averages these sequences,

applies MSER to the average sequence to determine a single warm-up period, and then

estimates the steady-state mean based on the average sequence truncated by this period.

The first approach is preferred. MSER determines the optimal truncation point for the

specific output sequence to which it is applied and will return an optimal estimate of the

mean for each sequence. The second approach is almost certainly suboptimal. There is no

reason to believe that the truncation point for the average sequence is optimal for each of

the individual runs. The aggregate result is over-truncation for some of the sequences and

under-truncation for the remainder. A proof is provided.

11

The second approach has led to misgivings regarding the efficacy of MSER. These

doubts surfaced most notably in Law (2015), who compares the average of the sample of

individual truncation points with a theoretical mean average truncation point. He

erroneously concludes that MSER may not truncate an appropriately large number of

observations. Wang and Glynn (2014) offer an argument similarly flawed.

A further contribution of this research (see Chapter 7) is to highlight and correct his

misconception with a set of three simple examples: (1) the response of a uniform white-

noise process in steady-state with a superimposed linearly-decreasing deterministic

transient, (2) the delay times in an M/M/1 queue, and (3) the response of an EAR(1)

process. For these test cases, we show that the MSER estimate of the steady state mean is

uncorrelated with the MSER-optimal truncation point and therefore the success of a

truncation procedure in terms of the accuracy of the estimate cannot be imputed from the

truncation point alone. We reiterate that the purpose of truncation is to determine the

warm-up period that yields the most accurate and precise estimate of the steady-state mean.

Other proposed measures of performance are at best irrelevant and at worse seriously

misleading. Also in Chapter 7 we use these same examples to explore the sensitivity of the

estimate mean to run length n and to the choice of the MSER parameters b (batch size) and

dmax (the maximum acceptable optimal truncation point on the range of a given run length

[0≤ dmax ≤n]).

The final Chapter discusses the conclusions of this effort, together with potentially

useful directions for further research. A User’s Guide for application of the Arena

submodel is provided in the Appendix I. Appendix II includes an anecdotal case with some

12

personal reflections on the simulation enterprise and the importance of the warm-up

problem, as well as a survey of undergraduate simulation curricula.

1.6 Background: A Note on Smart Initialization

One of the strengths of MSER is that it demands only that an optimal truncation point

exists for a simulated model (i.e., stationary or weak convergence). In the past, some

researchers have suggested that truncating or deleting an initial data series is not the best

way to improve the estimate with respect to mean squared error (MSE). Blomqvist (1970),

Wilson and Pritsker (1978), Turnquist and Sussman (1977), and Grassmann (2009, 2011)

instead advocated the “smart” choice of an initial condition to mitigate biases and generate

a robust result.

However, it is rather difficult to search for an optimal starting point unless the

characteristics of simulation are known a priori. Do we still need to recognize the existence

of initialization bias? We firmly believe that the answer should be “yes”. We will be better

off by presuming almost every probabilistic non-terminating simulation has unavoidable

initialization bias, and then testing this presumption. Furthermore, consider the tradeoff

between precision and computational budget associated with truncation points. It is

common that more data will support a better analysis by obtaining a robust estimate of

descriptive statistics in output analysis. However, truncation clearly implies that less data

is available.

To compensate the loss of precision, faster analysis is possible with automated

truncation identification, rather than human intervention or post-analysis. This kind of

trade-off can be applied to the comparison between a batch means method and a

replication/deletion method. However, both methodologies can be performed well after we

13

find a right truncation point. We will mention the list of numerous approaches of truncating

initially biased data sets in the next section, but the explanation of each method cannot be

studied here unless the methods are closely related to the topic of MSER.

 We might think of another aspect to investigate the characteristic of transient states prior

to the steady-state in simulation output. In order to understand the path during the transient

period, artificial intervention during simulation would be desirable or feasible. If so, we

would like to monitor the differentiated simulation paths to an expected pre-specified

steady state or a newly designated steady state from the modification of simulation input

conditions.

14

Chapter 2: Literature Review

The start-up problem has been the subject of research and debate for over 60 years.

Early work by Morse (1955), Conway (1963), Tocher (1963), and Cohen (1982) proposed

heuristics for determining the presence and persistence of an initial transient in a simulation

output series. Pawlikowski (1990) reviewed eleven such rules and illustrated the strengths

and weaknesses of these different approaches. He distinguished between methods based on

the convergence of estimators for the sample mean and sample variance. The first set of

methods included those from Emshoff and Sission (1970), Fishman (1973), Wilson and

Pritsker (1978), Kelton and Law (1983), and Solomon (1983); the second set included those

from Billingsley (1968), Gordon (1969), Fishman (1971), and Schruben (1982, 1983).

 Pawlikowski’s comprehensive review subsequently has been updated by Hoad et al.

(2008) and by Pasupathy and Schmeiser (2010) to include newer approaches. The

interested reader is referred to these works. In the remainder of this chapter, therefore, we

focus on the literature directly related MSER.

2.1 MSER: Approach, Inception, and Development

At the University of Virginia (UVA), MSER was devised by Maclarnon (1990) and

called the Minimal Confidence interval Rule (MCR). White and Minnox (1994), White

(1995), White (1997), Rossetti et al. (1995), Spratt (1998), Cobb (2000), White et al.

15

(2000), and Franklin (2009) all improved and/or further tested the approach. We begin by

describing the MSER concept.

White and Minnox (1994) suggested that the optimal truncation should minimize the

half-width of the marginal confidence interval about the truncated sample mean. Given

the output of a simulation, a finite stochastic sequence {Xi, i=1,2,…,n}, they defined the

optimal truncation point as

 (4)

where is the z-score of standard normal distribution associated with a 100(1-)%

confidence interval. The marginal standard error in the mean of the reserved sequence (i.e.,

the sequence remaining after truncation) is

,
(5)

and the truncated sample mean is

 .

While recognizing that, for a correlated sequence, the sample standard deviation is

biased estimator of the steady-state standard deviation, they reasoned that this statistic

could be interpreted instead as capturing the homogeneity of a sequence—initial sequences

with larger sample standard deviations could be flagged as including transient

observations. Franklin and White (2008) subsequently confirmed this intuition.

For a preconditioned confidence level, is a constant and Eq. 4 reduces to

 / 2

0

* arg min
n d

z s d
d

n d

/ 2z

s(d)
Xi Xn,d 2

id1

n

n d 1

n

di
idi X

dn
X

1
,

1

/2z

16

d* argmin
nd0

1

n d 2 n d
X 2 n d Xn,d

2

id1

n

. (6)

For a given output sequence from one replication of simulation, (if it exists) minimizes

the constrained optimization problem in either Eq. (4) or Eq. (6). Thus, the truncation

algorithm has a simple interpretation and does not require the specification of unknown

parameter settings.

Spratt (1998) introduced MSER-b, using the means of batches of size k as output

variables to which MSER is applied. Batching prewhitens the output series, which is widely

believed to improve the visualization of a transient (Welch, 1981). The formula was the

same as Eq. (6), replacing Xi with Zj (White et al., 2000),

Z j 1 b Yb(j1)p

p1

b

 (7)

where { , j=1,…,m} represent a series of batch means each with the size of batches b, n

is the number of observations of Yi, and is the number of batches, where is a

maximum integer or floor function.

 Independent research outside of UVA has affirmed the effectiveness of MSER-5. For

example, Mahajan and Ingalls (2004) noted the efficiency and robustness of MSER-5. Oh

and Park (2006) compared their exponential variation rate (EVR) rule with MSER-5 and

acknowledged that the EVR only converged to the path of MSER-5. Bertoli, Casale, and

Serazzi (2007, 2009) implemented MSER-5 into their Java Modeling toolkit.

In the U.K., Hoad et al. (2008) performed a comprehensive and detailed survey on

start-up approaches, identifying over forty-six different methods as indicated in

*d

jZ

m n / k

17

Table 2.1. One of the key performance indicators was whether or not an approach

supported automation in order that it might be incorporated in commercial simulation

software. This requirement eliminated approaches requiring a priori specification of

unknown parameter settings. Among the remaining approaches, they found that MSER-5

performed exceptionally well on a wide variety of test cases. They concluded that MSER-

5 was consistently the best approach across the board, in terms of accuracy, robustness,

simplicity, and ease of automation.

 Franklin et al. (2009) demonstrated empirically that the effect of MSER is to

(approximately) minimize the mean-squared error (MSE) in the estimated sample mean,

which is a widely accepted criterion for a quality of a point estimate. This observation

subsequently was proven analytically (under mild assumptions) by Pasupathy and

Schmeiser (2010). White and Robinson (2010) reiterated the strength of MSER-5 with the

basic but fundamental example of an M/M/1 queue, while White and Franklin (2010)

demonstrated a parametric function which gives rise to a close-form solution accounting

for geometrically decaying bias of the AR(1) process. Sanchez and White (2011) identified

adjustments needed to account for differing sample sizes when applying MSER using a

replication/deletion approach for interval estimation of the steady-state mean.

The theoretical work undertaken by Pasupathy and Schmeiser (2010) represents an

important advance over previous empirical research. They verified analytically that the

MSER statistic is asymptotically proportional to the MSE and the minima of each tend to

lie close to the same truncation point. In a more recent presentation, Pasupathy and

Schmeiser (2014) demonstrated analytically that MSER outperforms even two ideal

18

methodologies (i.e., ideal deletion and optimal constant deletion) with uncertainty in output

analysis.

Table 2.1 Methods for Determining Start-up Periods (after Hoad et al. (2008))
Method Type Method

Graphical Simple Time Series Inspection
Ensemble (Batch) Average Plots
Cumulative-Mean Rule
Deleting-The-Cumulative-Mean Rule
CUSUM Plots
Welch’s Method
Variance Plots (or Gordon Rule)
Exponentially Weighted Moving Average Control Charts
Statistical Process Control Method (SPC)

Heuristic Ensemble (Batch) Average Plots with Schribner’s Rule
Conway Rue or Forward Data-Interval Rule
Modified Conway Rule or Backward Data-Interval Rule
Crossing-Of-The-Mean Rule
Autocorrelation Estimator Rule
Marginal Confidence Rule or Marginal Standard Error Rule (MSER)
Marginal Standard Error Rule m, (e.g. m = 5, MSER-5)
Telephone Network Rule
Relaxation Heuristics
Beck’s Approach for Cycle output
Tocher’s Cycle Rule
Kimbler’s Double exponential smoothing method
Euclidean Distance (ED) Method
Neural Networks (NN) Method

Statistical Goodness-Of-Fit Test
Algorithm for a Static Dataset (ASD)
Algorithm for a Dynamic Dataset (ADD)
Kelton and Law Regression Method
Glynn & Iglehart Bias Deletion Rule
Wavelet-based spectral method (WASSP)
Queueing approximations method (MSEASVT)
Chase Theory Method (methods M1 and M2)
Kalman Filter method
Randomization Tests For Initialization Bias

Initialization bias test Schruben’s Maximum Test (STS)
Schruben’s Modified Test
Optimal Test (Brownian bridge process)
Rank Test
Batch Means Based Tests – Max Test
Batch Mean Based Test – Batch Means Test
Batch Means Based Test – Area Test
Ockerman & Goldsman Students t-test Method
Ockerman & Goldsman (t-test) Compound Tests

Hybrid Pawlikowski’s Sequential Method
Scale Invariant Truncation Method

19

 In its original form (Eqns. 4 and 6), the MSER criterion suggests the choice of a

truncation point is the global minimum of the MSER statistic on n>d>0. (This choice we

shall denote as MSER-GM.) It was recommended in practice, however, that the choice of

a truncation point be constrained to the first half of the output sequence, d<n/2. (This choice

we shall denote as MSER-Half.) The reasoning was that, if a minimum is not found on

this interval, the run length is insufficiently long to provide a tight interval estimate,

possibly because the simulation is unstable and no suitable truncation point exists.

Pasupathy and Schmeiser (2014) proposed and tested two additional alternatives: the

leftmost local minimum of the MSER statistic (MSER-LLM) and the left-most local

minimum of the local minima of the MSER statistic (MSER-LLM2).

 They suggested that MSER-LLM was the best choice. However, their intention to use

the most left local minimum also confirmed the notion of checking the minimum value

prior to the first half of output series in MSER-Half when the sample size is enough to

obtain a steady-state mean estimate after preprocessing data from simulation with a

reasonable batch size. That is, the relationship among the truncation points is

bLLM bLLM 2 bGM (Pasupathy and Schmeiser, 2010), where bGM is the truncation point

that yields a globally minimum MSER statistic. After properly batching output and

generating a sufficient sample size, bLLM would be equivalent to bGM or bHalf.

2.2 Open Issues

The motivation for this research stems from a range of issues that have been raised

regarding various aspects of MSER. Insight on how to resolve these issues is the subject

of the subsequent chapters and a contribution of this research.

20

2.2.1 Implementation and automation

As noted in the Chapter 1, Hoad and Robinson (2008) explored the practical

implementation in commercial simulation software and Hoad et al. (2011) provided a

framework to automate an output analyzer incorporating the logic of MSER-5. They

identified four obstacles to implementation. However, as we demonstrate in this research,

these appear to be specific to limitations of the simulation software they employed

(SIMUL8, see Figure 2.1) and not innate difficulties caused by MSER-5.

Figure 2.1 Testing Module for identifying optimal truncation points in SIMUL8.

 The difficulties identified were:

(1) selection of the simulation run length selection,

(2) sequential data collection from multiple replications,

(3) output types associated with cumulative values and extrema,

(4) data associated with entities.

The first difficulty is fundamental in simulation (and sampling more generally) and not

unique to the question of automating a warm-up procedure for steady-state simulation. We

21

illustrate this difficulty specifically as it relates to MSER in Chapter 7 and acknowledge

the run-length selection remains an open and perhaps unavoidable problem. However, to

present this difficulty as an absolute barrier to automation is disingenuous, insomuch as it

denies the practicality and usefulness of any form of automated output analysis, which

clearly is not the case. With this caveat, in Chapters 5 and 6 we demonstrate both

theoretically and by application that the remaining barriers are readily overcome.

The second (and fourth) difficulties easily can be handled by storing vectors of raw

output data with time stamps. If the software application enables a modeler to save

variables of his/her interest, these issues should not be regarded as any obstacle. Visual

Logic Editor in SIMUL8 might also provide the functionality to export raw data after each

replication, or any state change, and exporting data or saving online output in memory

would alleviate the second issue. Moreover, MSER is best applied to individual output

sequences and there is no need to save within-run observations across replications (see

Section 2.4).

 The third difficulty arises in the desire to avoid malpractice by novice simulationists—

a difficulty that will never arise in a well-conceived output analysis. A cumulative statistic

 is derived from an underlying output sequence {Xi, i=1,2,…,n}, and it

is this latter sequence to which MSER is applied to determine a truncation point, not to the

former. The same is true of extrema.

2.2.2 Batch Size

Spratt (1998), White, Cobb, and Spratt (2000), and most recent papers advocate MSER-

b, which prewhitens the output sequence by creating averages of non-overlapping batches

{ 1, 2,: , }iY i n

22

of size b. Their empirical results suggest that MSER–5 is modestly better than MSER

without prewhitening. However, Pasupathy and Schmeiser (2010) note

that any one-size-fits-all preprocessing, however, leads to a contradiction: if the

preprocessed data are better in some sense, then why not preprocess the preprocessed

data? If preprocessing is to make sense, then its form needs to be based on an analysis

of the given data {X1,X2,...,Xn}. Another point is that the use of non-overlapping batches

is suboptimal to using overlapping batches, which leave no orphaned observations at

the end of the data series, which cause no graininess in the analysis, and which still

requires only O(n) computation.

Their logic appears unassailable and the question of an optimal batch size b, its

relationship to given data, and the overlapping batch means (OBM) approach will be

further explored in Chapter 7. Originally proposed by Meketon and Schmeiser (1984),

OBM replaces Equation (7) with

OBMk 1 b Ybp1

p1

b

 (8)

where {OBMk, k=1,…,(n-b+1)} represents a series of batch means for overlapping batches

of size b, where n is the number of observations of Yi. In general, the OBMk are highly

correlated. The correlation is accounted by computing the variance estimator as

))(1(

21

,
2

bnbn

XXb

S

bn

k
dk

OBM

(9)

and the (100-)% confidence interval as

2
21,, OBMfkn StX (10)

23

where tf is distributed Student-t distribution with f degrees of freedom (see Law, 2015).

In this regard, the literature on batch means also may provide some insights. The batch-

means method is aimed at mitigating serial correlation between output data in simulation

by batching the output data sequentially and using the means and of these batches in the

construction of interval estimates of the true steady-state mean. Schmeiser (1982)

investigated batch size effects. In other words, given a sequence in steady-state (after first

truncating any transient), how many batches are required and how wide must the batches

be in order to obtain an unbiased estimate to meet any prescribed condition for a simulation

model? Goldsman and Meketon (1986), Schmeiser and Song (1987), Song and Schmeiser

(1993, 1995), Song (1996), and Nelson (2011) have discussed the batch size effect and

optimality condition in batch mean methods.

2.3 Current Related Work

2.3.1 N-SKART

Comparatively recently, James Wilson and his students at North Carolina State

University have developed new truncation algorithms that appear to show modestly better

performance than MSER on select problem instances. These methods derive from WASP,

SBatch, and SKART, and include N-SKART, and MSER5Y (see Figure 2.2). In particular,

Mokashi et al. (2010) compared N-SKART to MSER in terms of performance criteria such

as the success rates of finding truncation points, the minimal MSE values, and confidence

interval coverage.

We do not pursue direct empirical comparisons with NSKART or MSER-5Y in this

research, at least in part because of the extreme complexity of these methods. We simply

24

note in passing that, where improvements over MSER were in fact demonstrated, the test

cases employed appear inherently unrealistic. Moreover, improvements were at best

marginal and required vastly greater computational effort. Further, their algorithm has an

innate weakness in that it does not detect any bias in the moving average of output series.

Figure 2.2 Output Analysis Tree for Wilson and Students

2.3.2 Potentially Insufficient Truncation

Recent work by Law (2015) and Wang and Glynn (2014) suggests that MSER may not

truncate an appropriate number of observations. Both studies apply theoretical constructs

that focus on the average truncation points that should be obtained given an infinite number

of replications. As demonstrated by White and Hwang (2015), this suggestion appears to

contradict both the theoretical results obtained by Pasupathy and Schmeiser (2010) and the

very substantial body of empirical evidence accumulated over the past twenty-five years.

Nevertheless the suggestion merits investigation and further discussion is undertaken

Chapter 7.

	
	
	
	
	
	

	

	

James Wilson

Emily Lada (2003,
2008)
(WASSP, SBatch)

Ali Tafazzoli
(2009)
(SKART, N-SKART)

Mokashi et al.
(2010)

Youserif (2011)

MSER-5Y

25

2.4 Optimal Analysis for the Mean of a Simulation Output

White (2012) demonstrates how output analysis can be formulated as a constrained

optimization problem. We include his formalism here because it not only provides a

notation for the overall problem, but also a means to determine memory requirements for

implementing MSER. The objective is to achieve an estimate of the mean for a simulation

output with a given precision using the least number of observations. We consider three

cases—terminating simulations, nonterminating simulations using the replication/deletion

approach, and nonterminating simulations using the batch means approach.

2.4.1 The terminating simulation problem

We are given user-defined values for:

 HW and , where HW is the maximum desired half-width of the 100(1-)%

confidence interval on the sample mean of the simulation output;

 r0, the initial number of replications; and

 R, the maximum number of replications.

The problem is then:

Find

where r is the number of replications required, such that

 (11)

min
r{r0,r1,}

 r

r R

26

. (12)

Here HW(r) is the estimated half-width derived from r replications,

 (13)

is the variance of mean of the sample means,

; j=0,1,2,…,r (14)

are the sample means, and

 (15)

is the grand mean.

Note that this optimization problem may be infeasible for a given choice of HW, , and R.

If this is the case, the user has the option of relaxing any or all of these three parameters,

i.e., increasing the number of replications and/or settling for a less precise estimate. Note

also that an estimate for the number of additional runs required at any stage i+1 is

(16)

If ri+1>R, then let ri+1=R. This is likely a more efficient approach than incrementing r by

a fixed amount. Note finally that the data required to solve this optimization problem is

essentially the r-dimensional array of sample means X j nj .

HW (r) tr1,1 /2

S2 r
r

 HW

S2 r 1

r 1
X j (nj) X r

j1

r

X j (nj)
1

nj

Xij

i1

nj

X(r) 1

r
X j (nj)

j1

r

ri1
HW (r)

HW

2

ri ri

27

2.4.2 The steady-state simulation problem: replication/deletion approach

This is the same as the terminating simulation problem, except that we must now

determine suitable initial and terminating conditions for each replication by solving a

second set of optimization problems. We are given user-defined values for HW, , R, and

 n0, the initial run length for each replication

 I, the MSER re-computation interval

 N, the maximum number of such intervals (corresponding to a tentative stopping

condition for a maximum run length of n0+NI)

For each replication j=1,…, r, first solve the following problem:

Find

 j
NInInnn

n
j 000 ,,,

min

where nj is the run length required on the jth replication, such that

 (17)

Here dj*(nj) is the MSER-optimal truncation point for replication j with run length

nj, where is the floor function,

 (18)

is the truncated sample variance, and

 (19)

dj *(nj) argmin
nj /k d0

Sj
2 nj, dj
nj dj

 nj / k

.

Sj
2 nj, dj 1

nj dj

Xij X j nj, dj 2

id j1

n0nj

X j (nj, dj)
1

nj dj

Xij

injdj1

nj

28

is the truncated sample mean.

Note that constraint Eq. (17) implies the existence of an optimal MSER truncation point

on the output series knnXXX /21 0
,,, . The best choice for k is unclear, but we have

achieved good results by requiring the truncation point to be within the first half of the

output time series, i.e., k=2.

Furthermore, note that failure to satisfy constraint Eq. (17) implies that the run length

is insufficient, or that the output is unstable. Without some insight into the nature of the

output, there is no way of knowing which is the case. If constraint Eq. (17) is not satisfied,

the user may choose to increase the value of N, or conclude the output is unstable and stop.

There is no need to evaluate constraints Eq. (11) and Eq. (12) if constraint Eq. (17) is not

satisfied.

Note also that when computing the confidence interval using this approach, one needs

to account for that fact that MSER will yield replications of unequal sample size. See

Sanchez, P. J., and White, K. P., Jr. (2011) for one approach this issue. If the desired HW

constraint is not achieved, additional runs may be attempted. Note finally that the data

required is the output time series X0, X1,…, Xn+n0. For time-persistent statistics, we can

construct this from the array of pairs{xi, ti}.

2.4.3 The steady-state simulation problem: batch means approach

This is the same as the replication/deletion problem, except that we must now

implement batching. By construction, r0=R=1, constraint Eq. (11) is automatically

29

satisfied, and the subscript j in constraint Eq. (17) is superfluous. Constraint Eq. (12) is

replaced by

 (12a)

where

 (20)

is the standard deviation of the batch means using B batches, given by

 (21)

Note that Arena has a well-documented algorithm for adjusting the batch size B as a

function of the run length that maintains 40>B>20. See Kelton et al. (2010, pp.326-327),

for the algorithm and rationale.

HW (n, d*) tnd*1,1 /2

SB
2 n / B, d *

n / B
 HW

SB
2 n d * / B 1

n d * / B
(Z j Z n d * / B

j1

nd* /B

Z j
1

B
Xi

i j1

jB

30

Chapter 3: MSER Implementation Issues

In this chapter we consider various options for implementing MSER truncation logic

within alternative software environments. Broadly, we distinguish between two such

options. One is to compute and update a truncation point while simulating a model (i.e.,

online analysis). The other is to analyze the output data obtained after simulating the model

(i.e., post-analysis).

With respect to online analysis, we distinguish between external and internal

implementation approaches. We provide an example of the external approach by outlining

development of a dynamic linked library (DLL) that performs MSER calculations. This

DLL can be called from within models built in Windows-based commercial languages such

as ProModel and MedModel. For internal implementations, we identify the software

development environments associated with a wide range of the most popular commercial

DES languages, including Arena, AutoMod, SIMUL8, ProModel (MedModel), FlexSim,

Simio, ExtendSim, and SimCAD. With respect to post-analysis, we review five different

languages in which we have written standalone programs in which we implement MSER:

R, C++, Matlab, SAS, and VBA.

This chapter provides background leading to several selective implementations. These

implementations were developed as part of this research and are distributed online via the

MSER Laboratory. The details of these implementations and the Lab are provided in

Chapters 4-6 and the Appendices.

31

3.1 Online Analysis

Using online analysis, MSER statistics are continuously updated during each

simulation run. These statistics are used to determine a truncation point following the logic

provided in Section 2.4. If such a point exists, the simulation terminates and output

statistics are reported, allowing comparison of the estimated steady-state mean and

corresponding confidence interval with and without truncation. If such a point does not

exist, this fact is reported instead. Online analysis can be implemented in two different

ways.

3.1.1 External Approach

DES software increasingly is extendable using external modules, such as dynamic

linked libraries (DLL) and Component Object Models (COM). In particular, on a Windows

operating system DLL’s have the flexibility to provide new functions and variables in order

to obtain intended simulation objectives (e.g., additional complex computation). A single

DLL can contain multiple new functions and multiple programs can share the same DLL.

We note, however, that DLL’s must be used with caution. Any modification to an existing

DLL must not adversely affect a previously linked application. Therefore, we need to

emphasize the careful documentation of the DLL. This is essential to maintain

programming intent and any logic to consist of inside functions. Without this practice, it is

difficult to use DLL across different applications, as a compiled file does not demonstrate

how it works or what it accomplishes.

32

3.1.1.1 How to build DLL linked with ProModel (MedModel)

ProModel (http://www.promodel.com/) has a function, XSUB(), which is used call

external DLL files. This command provides modelers with more versatile power to control

simulation models, such as performing a complex calculation separately without burdening

simulating a model. Furthermore, one standard and representative DLL will be portable to

additional simulation models. To use this feature, the modeler must know how to code

DLL files in a high-level programming language. The exemplar DLL file is written in

C/C++, but it can be written in other programming languages as well. Furthermore, its

portability will be very useful to be foster reusability continuously (ProModel, 2011).

Those who are new to Promodel and the usage of XSUB() can refer to the manual in

Promodel. However, this command is considered as an advanced option so that we would

like to explain general ideas here. One of the strengths of an XSUB() external subroutine

call is in enhancing the capability of ProModel through the users’ programming skills. That

is, as long as the programing language (i.e., C/C++, VB, and Pascal) is supportive, the logic

called with XSUB() enables a modeler to test every intention, such as complex file IO and

statistical analysis.

Its principal limitation is that, while XSUB() is being executed, the simulation is

temporarily halted so it is important that the computation inside the external subroutine

doesn’t take too long. A Windows 32-bit compiler must compile the logic inside the DLL

and a user must understand Windows platform knowledge.

The function representing the logic only takes one parameter, a void pointer (a generic

pointer). However, it may access multiple parameters through structure. That is why the

function should include a structure. This is a strict condition to implement a user’s

33

intention. In addition to MSER DLL in a following chapter, a basic example of DLL usage

is explained (ProModel, 2011).

Syntax:

XSUB(<file ID>, <ordinal function number> or <function name> {,

<parameter1>, <parameter2>...})

Example

XSUB(MSER, 1, 5) or XSUB(MSER_raw, “Log_B_of_Output”, 10, 5)

The components of the four elements in XSUB() are briefly explained in syntax. The

argument <file ID> is an identifier to build a simulation model and link its output with a

DLL file. Figure 3.1 shows how to designate a file ID and set up its type as DLL. When

DLL is ready, we need to specify it into “File Name”.

Figure 3.1 Example of DLL usage in ProModel

The argument <ordinal function number> or <function name> is used to set up which

function inside a DLL file becomes interactive with ProModel. As we build a DLL file,

multiple functions can be constructed to perform output analysis. For example, we want to

find a truncation point, MSER statistics, or a truncated mean value. If we build different

functions to compute them, we need to remember their order and then use the ordinal

34

number for relevant components of XSUB(). As an alternative, we can use the defined

names inside DLL for XSUB() components. The argument <parameters> is any set of input

values generated from ProModel to a DLL file. It will be passed to the function of DLL.

3.1.2 Internal Approach

The internal approach can be achieved in several different ways. First, the software

developer can incorporate MSER logic for release in a version upgrade. This clearly is the

best approach, but is limited by the ability and willingness of the software house to provide

internal developers’ time to create and test the upgrade. Second, a static library can be

written in a software language specific to the commercial simulation suite. This is the

second best approach, but at present is officially supported by only one software company,

ExtendSim. Third, a submodel or subprocess can be developed to compute the MSER

truncation point and associate statistics, such as in Arena. Such a submodel is reusable

given in-detail explanations of submodel inputs, outputs, and operation. We pursue the

second two approaches in Chapters 5.

3.1.2.1 Software development environments

The main purpose of this session is review how commercial DES are created and which

languages would be used in an internal approach. We include the most popular software

adopted in academia as well as industry. Most software environments are built on object-

oriented programming languages such as C++, C#, and Java. However, simulation-specific

languages also are employed (Arena, for example, is built in the simulation language

SIMAN, which itself was originally programmed in Fortran and then later reprogrammed

in C). We determined which development language has been used in each simulation suite

35

based on information in the suites’ users manuals. Where these manuals are inadequate to

make this determination, we also consulted each company’s job postings. As most of

software houses need to hire new programmers, we can infer which language is used for

specific simulation software. We list the languages for each simulation environment as

follows:

 Arena – SIMAN

 AutoMod – proprietary language

 SIMUL8 – proprietary language

 ProModel (MedModel) – MS Studio GUI and its proprietary language

 FlexSim – C++ based proprietary language

 Simio – C#

 ExtendSim – C-based proprietary language, ModL

 SimCAD – C#

All of these DES software applications run only on MS Windows OS (and the same is

true of all but a few agent-based simulation applications and open-source simulation

languages). That is why more and more simulation GUIs have adopted the Window’s

ribbon-style interfaces. Thus, we expect that a single versatile DLL in a single object-

oriented programming language to be usable across the majority of these environments.

3.1.2.2 Current Features for Dealing with the Start-up Problem

After understanding basic and fundamental structure of each software suite, we observe

different approaches to deal with a warm-up period across multiple simulation software

36

environments. We test Arena, AutoMod, SIMUL8, ProModel, FlexSim, Simio, and

SimCAD. Almost all of these have features for specifying a warm-up period during run

setup. The specifics for each language are summarized, as well as the corresponding

interface.

3.1.2.2.1 Arena

Arena (https://www.arenasimulation.com/) was originally developed by Dennis Pegden at

Systems Modeling Corporation and later acquired by Rockwell Software (Banks 1998;

Kelton et al., 2010). It is an extensible simulation and animation software package that

provides a complete simulation environment supporting all steps in a simulation study.

Arena combines the modeling power and flexibility of the SIMAN simulation language

with a GUI interface for drag-and-drop model building as well as simulation run animation.

In Arena, the warm-up period is defaulted to zero unless otherwise specified on the

“Replications Parameters” tab in “Run Setup” menu shown in Figure 3.2. Arena has a good

feature to take advantage of both replication/deletion and batch means approaches to

steady-state simulation by using “Initialize Between Replication”, a feature which is not

seen in other software by default.

37

Figure 3.2 Specifying Warm-up Period in Arena’s Run Setup Dialogue

3.1.2.2.2 AutoMod

AutoMod is a graphical simulation software environment providing true-to-scale 3D

simulation developed by Applied Materials (http://www.appliedmaterials.com/global-

services/automation-software/automod). Its application focuses on manufacturing and

distribution operations (i.e., semiconductor industry). AutoMod puts much importance on

output analysis and clearly promotes using replication/deletion method to compute its

confidence interval. Comprehensive explanations of determining warm-up period are

followed inside its manual—an entire chapter is devoted to addressing the warm-up

problem—which is a rare case among current simulation software manuals. The AutoMod

38

suite includes a companion program, AutoStat, designed specifically to implement Welch’s

procedure, in particular.

Figure 3.3 Warm-Up Period Determination in AutoMod

3.1.2.2.3 SIMUL8

SIMUL8 (http://www.simul8.com/) is a process-based DES that helps an analyst to

build high-level simulation model, widely adopted as a teaching language by educational

institutions in the UK. Like Arena, it has an option to specify warm-up period, as shown

in Figure 3.4. As shown in Figure 3.5, SIMUL8 also includes a routine to estimate the

number of simulation replications required to achieve a specified minimum precision in

specified output statistics (KPI’s). It is noteworthy that Hoad and Robinson (2011) relate

lessons learned in their effort to implement MSER in SIMUL8.

39

Figure 3.4 Warm-Up Period in SIMUL8

Figure 3.5 Output Analysis Support in SIMUL8

3.1.2.2.4 ProModel and MedModel

ProModel is an older DES suite that aims to provide insights on planning, designing,

and improving existing or new manufacturing, supply chain, and other discrete-event

40

systems. It also has a healthcare specialized version, MedModel. Its peculiar feature is the

incorporation of a location-based modeling approach that allows a user to calculate spatial

components simultaneously (e.g., travel distances of entities and resources). As

Figure 3.6 Specifying a Warm-Up Period in ProModel

shown in Figure 3.6, like most of the simulation software described, ProModel has an

option to set up a warm-up time at a given simulation clock time under the simulation

option window. Additionally, it allows specification of a warm-up period based on the

41

number of processed entities (e.g., WARMUP). Thus, it provides dual modes to control a

warm-up period.

3.1.2.2.5 FlexSim

FlexSim was founded in 1993 by Bill Nordgren (Co-Founder Promodel Corporation,

1988) along with Roger Hullinger and Cliff King. Its strength lies in 3D-modeling

capability. Most of the features inside FlexSim are similar to ProModel. It supports its own

language, Flexscript, as well as C++ when a modeler builds a simulation model. Figure

3.7 shows the dialog for setting a warm-up period in FlexSim

Figure 3.7 Specifying a Warm-Up Period in FlexSim

3.1.2.2.6 Simio

Developed in 2006 by Dennis Pegden, Arena users can easily adopt Simio. The major

difference is that Simio is a 3D object-based modeling environment simulation package

which is written in a C# and .NET environment (http://www.simio.com/products/ and

Simio Reference Guide). Compared to Arena, it helps a user to build 3D simulation models

easily. Its 3D library is directly linked with Google Warehouse and allows any relevant 3D

symbols to be added in a simulation model.

42

Most features in Arena also are available in Simio and, as shown in Figure 3.8, a warm-

up period is implemented in “Experiments” after building a model. The Experiment

Properties asks a user to determine a warm-up period as well as a confidence level. To

access this option, the user can select the “Navigation window” first and then choose

“Experiments”. To specify the warm-up period, Simio provides related properties of the

“Experiment” in Table 3.1.

Figure 3.8 Specifying a Warm-Up Period in Simio

43

Table 3.1 Properties of Warm-Up Period Control in Simio

Property
Valid
Entry

Description

Warm-up
Period

Real
By default, Simio removes the information before a warm-up
period in order to obtain an estimate unaffected by an initial
condition.

Default
Replications

Integer

This feature is useful to obtain results from multiple simulation
runs. It can specify the different replication numbers of each
different scenario. If a user does not change any value, the
default replication is 1.

Confidence
Level

90%,
95%,
98%,
99%

After running multiple replications, Simio will calculate
confidence interval of half-width statistics of average results
across replications.

3.1.2.2.7 ExtendSim

ExtendSim (http://www.extendsim.com/) has an open structure to help users modify its

library (Banks, 1998), a feature which attracts us to focus on this package in

implementation of an automatic MSER calculation. Additionally, the syntax of its

programming language, ModL, is very similar to C, and allows the modeler to save output

data in memory instead of a hard disk, facilitating faster computation time. As shown in

Figure 3.9, a warm-up period can be implemented in ExtendSim using the “Clear Statistics”

option in the statistics library.

3.1.2.2.8 SimCAD

SimCAD (https://www.createasoft.com/) is a DES environment that provides user-

friendly features to create a model. It advertises that even simulation novices can build a

model without spending a long time to figure it out. However, it appears that a user tends

to follow built-in functions exclusively. Even though it can foster model building, some

features do not reflect the notion of statistics or methodologies from systems engineering.

44

Figure 3.9 Warm-Up Period in ExtendSim using Clear Statistics under Statistics library

Furthermore, it does not clearly include a warm-up period as a basic option. We observed

that an application specialist in SimCAD did not know how to handle a warm-up period.

When we had a later conversation with a lead development engineer, he suggested how to

achieve the same functionality of a warm-up period. Apparently, it can deal with the warm-

up period, but requires the end user to write additional code. The SimCAD GUI is shown

in Figure 3.10.

45

Figure 3.10 GUI of SimCAD

46

3.2 Post analysis

Heretofore MSER logic has been implemented by individuals in custom-built, data-

driven postprocessors. In contrast to the Arena and ExtendSim online implementations

provided in Chapter 4, these codes operate on output sequences generated by prior

simulation runs, rather than continuously while simulating a model. Law (2015) provides

a notable example in his test applications of MSER. In these examples, Law imported

simulation output to an Excel spreadsheet developed by Katy Hoad of the University of

Warwick. This spreadsheet incorporates a VBA macro to perform all MSER calculations.

To promote more widespread adoption of MSER, we developed MSER codes in several

popular programming languages. These codes are given in Chapter 6 and also are available

online at the MSER Laboratory. Each code required us to implement logic using alternate

programming syntax and built-in functions. While run times varied on test cases, all of the

applications yielded identical results and the identical cases, as expected.

Five different applications were written: two in the open-source code applications, R

and C/C++, and three in the proprietary software applications, Matlab, SAS, and VBA.

Each implementation has its own strength of computing an optimal truncation point by

using the concept of an array, which makes these distinct from each other. Once we

understand the common workflow to calculate MSER, the difference in what language it

is written is minor. That is, we just need to know and exchange specific built-in functions

inside each and follow language specific syntax. Using these built-in functions may or may

not be efficient computationally. If the data sets are not large, however, the functions tend

to work better than using user-defined functions based on loop and conditional statements.

47

An overview of these computing languages is provided in the following section. We

describe each pertinent programming language or application to implement and run MSER

so it is useful to illustrate key features before accounting for syntax in different codes. The

following part will explain the history, background, and features from each programming

language.

3.2.1 R

R is known as a statistical computing language that supports publication-quality

graphics. Based on the S language, R is part of the GNU freeware project, an open source-

programming environment. Because it is freeware, more academic institutions tend to use

R rather than commercial alternatives. In addition, R can run on a wide variety of popular

operating systems such as Windows, Linux, and MacOS. User contributions to R enrich its

functionalities along with research development and it is very flexible to interact with other

languages such as C, C++, and FORTAN. Source: What is R?: Introduction to R

(http://www.r-project.org/)

3.2.2 C/C++

Dennis Ritchie created C in 1972 at Bell Laboratories and Bjarne Stroustrup developed

C++ in the early 1980s, also at Bell Laboratories. Among the programming languages

discussed here, C/C++ are the only languages to compile the code before running the logic.

Generally speaking, C++ is superset of C. Thus codes written in C can usually be

transported to C++(some exceptions exist). Both C and C++ demand very rigorous and

strict coding, but are very fast to execute (Prata, 2003 and 2005).

48

3.2.3 Matlab

As the name suggests, Matlab is useful to manipulate matrix operations for numerical

computations and visual representations. Matlab is intended to support technical

computing. It advertises that the mastery of its language, tools, and built-in functions can

help users obtain the results efficiently. We also witness that more and more engineers and

students areadopting this technical language. Source: Matlab primer

(http://www.mathworks.com/help/pdf_doc/matlab/getstart.pdf)

3.2.4 SAS

SAS is proprietary software to solve problems from real business to academic research. Its

exemplar tasks include file IO (data entry, retrieval, and management), ODS (output

delivery system for presentation of report and pertinent graphics), statistical and

mathematical analysis, and functionality for operations management/research problems

such as business planning, forecasting, decision, and others.

To perform MSER calculation, we use a specific module to support array and matrix

manipulation, SAS/IML (Interactive Matrix Language). This is a complete programming

language with a dynamic, interactive environment for programmers, statisticians,

researchers, and high-end analysts. After obtaining data or processed information, this

interactive language is designated for more complex and sophisticated analysis to explore

target data sets. Its user interface is similar to SAS, as well as Matlab. However, creating

one’s own SAS/IML modules becomes much easier than using SAS by itself. Every

49

application can be run either interactively or in batch. Furthermore, it can adopt R code via

the IML server. Source: SAS 9.3 Language Reference

(http://support.sas.com/documentation/cdl/en/lrcon/65287/PDF/default/lrcon.pdf) and

SAS/IML fact sheet

(http://www.sas.com/resources/factsheet/sas-iml-factsheet.pdf)

3.2.5 VBA

Excel, the spreadsheet included in MS Office, is equipped with the Visual Basic for

Applications (VBA) language. Whenever extra analysis or calculation cannot be performed

by built-in functions, VBA is the last source to count on. VBA is based on the Basic

programming language and relatively easy to learn. However, its speed of execution is

sacrificed for the stake of simplicity. VBA also supports an array format and its dynamic

properties can be used for the development of MSER inside Excel. When a user opens the

Excel workbook, the user can open Visual Basic Editor on the Developer Tab and build

various functions to meet the objectives of a modeler.

3.3 Merits of the alternative codes

In summary, needless to say, the application written in C/C++ is more error prone and

time consuming because we can only depend on their basic math library. In addition to this

effort, we have to define types of all variables with care. However, it is cost effective and

very fast to process long time series, which is a general benefit in high-level programming

language. VBA is a more user-friendly interface to interact with end users, but demands

more time to compute MSER statistics. We acknowledge that there might be room to

optimize code performance in Visual Basic as we just use VBA to compute MSER. Three

50

other applications will help whoever has some expertise or experiences among R, Matlab,

and SAS to be familiar with MSER logic. These three applications develop their own array

manipulation tools and use built-in functions to code MSER logic in simple ways. As long

as the user knows and uses the right functions, it would reduce the time and effort to write

applications with these.

51

Chapter 4. The MSER Laboratory

Ideally, simulationists from industry and the academy collaborate to keep abreast of

developments reported in the simulation literature. Commercial simulation software

continues to incorporate new research findings, but typically lags in the pace of adoption

because of the considerable investment required to revise current codes or to add new logic

in a current version of software. One of the main goals of this research is to spur the

implementation of MSER in commercial software and practical application.

To this end we have created a web-based laboratory that is an open and accessible

resource for those who are interested in improving, applying, and extending the use of

MSER. Included in the MSER Laboratory are (1) an archive of key research articles, (2)

a repository of MSER codes that may be freely downloaded, and (3) a set of concrete and

user-friendly examples that illustrate the application of these codes. The MSER Laboratory

is hosted at the University of Virginia at http://faculty.virginia.edu/MSER/.

We have observed that increasingly researchers are publishing their sample data sets as

well as their codes. However, it is not an easy task to decipher code written in a language

with which one is not familiar. That is why we facilitate the implementation of MSER in

well-known simulation software such as ExtendSim, Arena, and ProModel/MedModel (see

Chapter 5), as well provide MSER postprocessors in written in R, SAS, Matlab, VBA, and

C/C++ (see Chapter 6). We seek continuity of this beginning by maintaining an up-to-date

52

development in MSER from those who make progress. Furthermore, we appreciate

receiving any constructive comments to improve the quality of this site.

In this chapter we take a very brief guided tour through screen shots of the Lab as it

currently is configured, while additional details are provided in later chapters. The content

in this site gives the general idea of MSER (Figure 4.1), its history related to research

articles (Figure 4.2), sample codes as well as sample test sets (Figure 4.3) and the basic

math derivation of the MSER statistic (Figure 4.4).

These implementations in commercial simulation software are distinct from the

current, arbitrary warm-up determination because these:

 Determine a truncation point automatically

 Minimize unnecessary user input

 Provide figures and tables to support this determination

All information is downloadable by any interested users and the site will help researchers

exchange and update any new developments.

53

Figure 4.1. Introduction of MSER Laboratory Web page

54

Figure 4.2. History of MSER Laboratory Web page

55

Figure 4.3. Sample Codes of MSER Laboratory Web page

56

Figure 4.4. Math of MSER Laboratory Web page

57

Chapter 5. Implementation of MSER in Commercial Software

Before selecting appropriate simulation software suites, we must check whether the

software package can update the MSER-statistic in a designated way while it saves the

output to memory. After reviewing current discrete-event simulation software (see Chapter

3), we chose three representative software packages—ExtendSim, Arena, and ProModel—

with which we can calculate the MSER statistic online. In this Chapter we present examples

of the incorporation of MSER logic in the model process flow diagrams, together with the

corresponding source code or module structure needed to support implementation for each

of these languages.

5.1 ExtendSim Implementation

ExtendSim (originally named “Extend”), from Imagine That, Inc., is a general-purpose

software suite for continuous, discrete-event, and hybrid simulation (Banks 1998, Krahl

2012). After we confirmed its capability to store output data sets, we collaborated with

Dave Krahl at Imagine That and appreciated his efforts and time, even under his tight

schedule, on the creation of a MSER library in ExtendSim. The MSER algorithm is

implemented in ExtendSim’s C-based ModL language. Only minor modifications relating

to the user interface and variable initialization were required to convert the algorithm from

ANSII C to ModL. The MSER block is fully integrated into ExtendSim and can be used in

any ExtendSim model in the future.

58

The library collects data continuously from any relevant blocks and is designed to

compute a MSER statistic, a truncation point, and a mean estimate associated with the

truncation point. Another feature in this library includes the function to set up the

computing frequency via a user input. The default batch size is 5 and batch size can be

varied via setting different dialog parameters.

5.1.1 ExtendSim Process Flow

Figure 6.1 depicts a tandem queue model in ExtendSim, with the MSER module

included to collect statics on the waiting time in Queue 2 tied with the GUI for the MSER

calculator.

Create

R L

Queue 1
D F

Activ ity A

R L

W

Queue 2

D F

U

Activ ity B
MSER

9928

Exit

Right click and select

open structure to edit

ModL code

59

Figure 5.1 MSER Implementation and GUI in ExtendSim

5.1.2. ExtendSim Code

// called when a new value is sent to the MSER_Stat_In connector

on MSER_Stat_In

{

 if(NumObs + 1 >= StatArraySize)

 {

 StatArraySize += 1000;

 MakeArray(MSER_Stat_Array, StatArraySize); // add one more
element to the array

 DynamicDataTable(MyBlockNumber(), "MSER_Stat_tbl",
MSER_Stat_array); // attach the MSER_Stat_array to the dialog
data table

 }

 MSER_Stat_tbl[NumObs][0] = MSER_Stat_In; // record the
observation

 NumObs++; // increment the number of
observations

}

// If the dialog data is inconsistent for simulation, abort.

on checkdata

{

60

}

 GetSimulateMsgs(FALSE); // turns of the on Simulate
Message Handler... not needed in discrete event simulation models

}

// called at the end of the simulation

on FinalCalc

{

integer i;

real MSER_Stat_total;

 //

 // Loop through the MSER_Stat_array to calculate the average

 //

 MSER_Stat_total = 0.0;

 for(i=0;i<NumObs;i++)

 MSER_Stat_Total += MSER_Stat_tbl[i][0];

 MSER_stat_prm = MSER_Stat_Total/NumObs;

 CalcMSER();

}

on AbortSim_btn

{

 AbortAllSims();

}

// constant SIZE is 10000 /* SIZE will depend on the run length*/

// real newOutput[SIZE]; /*important to match input size with the
variable type*/

// SIZE should match the length of input file.

Procedure CalcMSER()

{

 integer i;

 integer b;

 integer batchNum;

61

 integer m; /*Batch output
length*/

 integer d, j;

 integer mser, d_final, n, k, threshold, j_final;

 real min_MSER;

 integer min_Index;

 integer ReportOutput;

 MakeArray(Sum, NumObs);

 MakeArray(MSER_array, NumObs);

 MakeArray(mean_array, NumObs);

 MakeArray(sumMean, NumObs);

 MakeArray(sum, NumObs);

 MakeArray(average, NumObs);

 MakeArray(squared_sum, NumObs);

 ReportOutput = FALSE;

 for (i = 0; i < NumObs; i++)

 {

 if (i == 0)

 {

 sum[i] = MSER_Stat_tbl[i][0];

 squared_sum[i] = sum[i]*sum[i];

 }

 else

 {

 sum[i] = sum[i-1]+MSER_Stat_tbl[i][0];

 squared_sum[i] = squared_sum[i-1] + sum[i]*sum[i];

 }

 average[i] = sum[i]/(i+1);

 }

// Batch mean generation part

 bigB = 20;

 n = NumObs;

 batchNum = floor(n/bigB);

 real interimSum;

 MakeArray(z, NumObs);

 for (m = 0; m < batchNum; m++)

62

 {

 interimSum = 0.0;

 for (b =0; b < bigB; b++)

 {

 interimSum += MSER_Stat_tbl[bigB*m + b][0];

 if (b == (bigB-1)){

 z[m] = interimSum/bigB;

 // printf("\t\t%f\n", z[m]);

 }

 }

 }

//before computing d and MSER-statistic, we need to store mean_array

 for (d = 0; d < batchNum; d++)

 {

 for (j = 0; j < batchNum; j++)

 {

 if (j+d >= batchNum)

 break;

 else

 {

 sumMean[d] += z[j+d];

 }

 }

 mean_array[d]= sumMean[d]/(batchNum - d + 1);

 }

//redefine run length n to batchNum;

 n = batchNum; /* run length of each
replication*/

 k = 2; /* try to find a truncation
within the first half of output series*/

 threshold = n/k;

 Makearray(sampleVariance, batchNum);

 Makearray(mserSum, batchNum);

 Makearray(MSER_array, batchNum);

 for(i=0;i<batchNum;i++)

 {

 sampleVariance[i] = 0;

 mserSum[i] = 0;

63

 MSER_array[i] = 0;

 }

 min_MSER = BLANK;

 for (d_final = 0; d_final < threshold; d_final++)

 {

 for (mser = 0; mser <= n; mser++)

 {

 if (mser + d_final > batchNum)

 break;

 else

 {

 mserSum[d_final] += (z[mser + d_final] - mean_array
[d_final]) * (z[mser + d_final] - mean_array [d_final]);

 }

 }

 sampleVariance[d_final] = mserSum[d_final]/(n - d_final - 1);

 MSER_array[d_final] = sampleVariance[d_final]/(n - d_final);

 if (MSER_array[d_final] < min_MSER || NoValue(min_MSER))

 {

 min_MSER = MSER_array[d_final];

 min_Index = d_final;

 }

 }

 {

 MSER_Statistic_prm = min_MSER;

 Min_Index_prm = min_Index;

 MSerOut = min_MSER;

 SendMsgToInputs(MSerOut);

 }

}

on CREATEBLOCK

{

 NumObsEvaluate_prm = 100;

}

5.2 Arena Submodel Implementation

64

Although it is desirable to develop MSER as a built-in function in Arena, as has done

in ExtendSim, we have as yet been unable to persuade Rockwell Software to invest in this

functionality. As an immediate alternative, we chose to implement the MSER calculation

logic inside an Arena submodel (Kelton, et al. 2010). This submodel is generic and can be

inserted in any Arena project. The MSER-optimal point can be calculated for any output

by assigning this attribute as the input to the MSER submodel.

5.2.1 Arena Process Flow

Figure 5.2 depicts an M/M/1 queue in Arena with a MSER submodel included to collect

statistics on the waiting time in queue defined in the “Service” process module. The wait

time in queue is assigned to an attribute before the corresponding entity enters the

submodel named “MSER Module”. In models more complex than this simple queue, we

can add copies of the submodel to compute MSER statistics for multiple attributes or

variables anywhere in the process flow. For instance, if a researcher wants to compute the

wait time in both queues in a tandem queue model, she/he needs to include these two

submodels, one for the output of each service process.

Figure 5.2 Main model of an M/M/1 queue in Arena with the MSER module included to
collect statistics on the waiting time in Service queue

M SER M oduleArriv al Serv ice

M/M/1 w ith traffic intensity of 0.9

Ex it

0
 0

0

65

Figure 5.3 Details of the MSER calculation in the Arena

66

5.2.2 Arena MSER Modules

Figure 5.3 shows the Arena process flow that implements the MSER computation.

Table 5.1 lists the global and local variables and arrays used by the submodel. The User’s

Guide in Appendix I provides more details and a fully worked-out example.

Table 5.1. Global, Local variables and Arrays

No. Variable (array) name Location of block Usage

1 v_Counter Index Record entity number

v_Counter + 1

2 v_X InterimData
Generation

Record entity wait time

3 v_X2 InterimData
Generation

Record (entity waiting time)2

4 v_inter_cumX InterimData
Generation

Holder for summation of v_X

5 v_inter_cumX2 InterimData Holder for summation of v_X2

6 v_Mean DataGeneration v_cumX(v_Counter)/v_Counter

7 v_ cumX DataGeneration v_inter_cumX(v_counter)

8 v_ cumX2 DataGeneration v_inter_cumX2(v_counter)

9 v_MSER_test MSER Without
Trucation

(v_cumX2(v_Counter) - v_Counter *
v_Mean(v_Counter) *
v_Mean(v_Counter))/ ((v_counter -
0) * (v_counter - 0))

10 StopRule End of Simulation

(Decision block)

Global variable to check the end of
simulation, 10000 that confirm

StopRule = v_Counter

11 v_Truncation Truncation Index v_Truncation + 1

12 v_MSER_final MSER WithTruncation ((v_cumX2(StopRule) -
v_cumX(v_Truncation)) - (StopRule
-v_Truncation) * v_Mean(StopRule)
* v_Mean(StopRule))/ ((StopRule -
v_Truncation) * (StopRule -
v_Truncation - 1))

5.3 Promodel/Medmodel Implementation

Promodel/Medmodel is equipped with a function call to use DLL so computing

additional statistic can be feasible as mentioned previously. We test M/M/1 with traffic

67

intensity of 0.9. As shown in Figure 5.4, this simple model consists of three nodes

representing entity arrival, processing, and exit, as well as a waiting queue for processing.

5.3.1 Promodel/Medmodel Process Flow

After compiling the DLL to compute MSER statistic, this file is listed in “External Files”

as “DLL”. It is saved in a working directory, or the model needs to be told the directory

where it is compiled. XSUB() uses Med.dll to compute MSER the statistic aDuration that

records time in system, as shown in Figure 5.5.

Figure 5.4 M/M/1 Model in ProModel

68

Figure 5.5 DLL Usage in ProModel

5.3.2 ProModel DLL Code

 * DLL.cpp *

 * Author: Sung Nam Hwang *

 * Topic: DLL of Promodel(Medmodel) to generate MSER *

 * Date: Dec. 16, 2013 */

#include "Med.h"

#include <cmath>

struct TEST_SUB_PARAMS

{

 double basic;

 //double time; If a modeler selects time weighted variable, this
variable needs to be redefined.

};

extern "C"

{

 double _export BatchTest (void *p)

 {

 static double batchOutput[100000] ;

 static double Batchsum = 0.0;

 static int b = 5; //batch size of 5

 static int j = 0; //batch output index

 static int m = 0; //execution index to
make batch output (i.e., m = 1 means the first raw output

 //m = 2 means the
second one and so on.

69

 static double holder = 0.0; //temporary value
holder

 static double test3 = 0.0; //temporary value
holder

 TEST_SUB_PARAMS * param;

 param = (TEST_SUB_PARAMS*) p; //type conversion
from void to TEST_SUB_PARAMS

 Batchsum += param->basic; //Add up the raw
outputs

 m +=1;

 if (m == b)

 {

 if (j == 0) //the first batch
output generation

 {

 batchOutput[j] = Batchsum/b; //batch output with
batch size of b

 m = 0; //after making one
batch output need to reset m for the next batch output

 j += 1; //increase the batch
output index for the next batch output

 }

 else //except the first
batch output generation

 {

 for (int _temp_ = 0; _temp_ < j; _temp_ ++)
 //automatic variable of _temp_

 {

 holder +=batchOutput[_temp_];

 }

 batchOutput[j] = (Batchsum - (holder * b))/b;

 m = 0;

 j +=1;

 holder = 0.0;

 }

 }

 //if the vector of batch output is created and reaches at a
certain number (i.e., j = 5)

 //Compute truncated mean of batch outputs such as average of z_0,
z_1, z_2, and so on

 static double trunBatchSum = 0.0;

70

 static double trunZ[20000]; // the size is determined by 100000/5

 static double SquaredmeanArray[20000]; // the same size as trunZ

 static double MSER[20000]; // the same size as trunZ

 static double temp = 0.0;

 static double min_MSER = 999999999.0;

 static int min_Index = 0;

if (j == 20000)

{

 trunBatchSum = Batchsum;// Another duplicate set of the sume of raw
output

// This is used for truncated mean of batch output

 for (int z = 0; z < 5; z++) // z is associated with batch size of 5

 {

 trunBatchSum -= batchOutput[z]*b;

 trunZ[z] = trunBatchSum/(b*(j-(z+1)));
 //DIVIDE BY THE RAW NUMBER of output instead of batchoutput

 for (int k = 0; k < 5-(z+1); k++)

 {

 temp += (batchOutput[k+z+1]-trunZ[z])*(batchOutput[k+z+1]-
trunZ[z]);

 SquaredmeanArray[z] = temp/(5-z-1);
 // need to assign an universal varialbe for 5

 MSER[z] = SquaredmeanArray[z]/(5-z);

 if (MSER[z] < min_MSER)

 {

 min_MSER = MSER[z];

 min_Index = z;

 }

 }

 temp = 0;

 }

}

 test3 = min_Index; //the result is okay and confirmed

 if (test3 <= 20000/2)

 {

 test3;//It means that the truncation point is located within
the first half

 } //of output series.

71

 else

 {

 test3 = 9999999; //Indicator that urges the more simulation
run to achieve steady state.

 }

 return test3;//the value indicates minimal truncation point.

 }

}

//Header file of DLL_MSER.cpp

#ifndef __MED_H__

#define __MED_H__

#include <windows.h>

#ifdef BUILD_DLL

#define _EXPORT __declspec(dllexport)

#else

#define DLL_EXPORT __declspec(dllimport)

#endif // BUILD_DLL

#ifdef __cplusplus

extern "C"

{

#endif

double _export BatchTest (void *p);

#ifdef __cplusplus

}

#endif

#endif

/* Promodel (Medmodel) code using xsub that execute dll*/

aDuration = clock() - aEnter

real endvalue

endValue = XSUB(TEST2, 1, aDuration)

72

Chapter 6. Implementation in Post Analysis Codes

The MSER Laboratory currently includes five post-analysis codes written in R, SAS,

Matlab, VBA, and C/C++. In this Chapter, we demonstrate the application of each of these

codes on a simple example. The corresponding outputs also are provided.

Each code reads data from a file (either Simple2.csv or simple2.txt). These data are

the output of one replication of a normal white noise process with superimposed

deterministic bias initialized at declining from 15 to 0 with a slope of -0.1. The batch size

is set at b=5 and the run length is n=10,000 observations. The results from all five

applications are identical. The sample mean without truncation is 0.106268, the MSER-

optimal truncated mean is -0.005395563, and the MSER truncation point is d*=30.

6.1. R Source Code

Set up a working directory

setwd("~/Documents/MSER") #change this working directory as your R and
data file are located

newOutput <- read.table("simple2.csv", sep = ",", header = F) #change
the input file name

Generating batch mean

Set up parameter for the array of batch mean

dataLength <- dim(newOutput)[1]

batchSize <- k <- 5

batchNumber <- floor(dataLength/batchSize)

batchMean = rep(0, batchNumber)

73

for (i in 1:batchNumber) {

 batchMean[i] = sum (newOutput [((i-1)*batchSize
+1):(i*batchSize),])/batchSize

}

MSER-Statistic

Generating placeholders for updating series

sampleMSE <- rep(0, batchNumber)

sampleMean <- rep(0, batchNumber)

batchMean2 <- batchMean^2

for (d in 1:batchNumber) {

 sampleMean[d] <- mean(batchMean[d: (length(batchMean))]);

 sampleMSE[d] =(sum(batchMean2[d: length(batchMean)])-(batchNumber-
d)*(sampleMean[d]^2))/((batchNumber - d)*(batchNumber - d - 1))

}

Find the minimal value of MSER statistic and the location

trun <- which(sampleMSE == min(sampleMSE[1:(batchNumber-batchSize)]))

sampleMSE[trun]

Plotting an initial raw data sets and MSER Graph including a
truncating point par(mfrow=c(1,2))

ts.plot(newOutput, ylab="Raw output")

ts.plot(sampleMSE[1:dataLength/batchSize], gpars=list(xlab="d",
ylab="MSER Statistic", lty=c(1:3)))

abline(v = trun, lty = 2, col = "red")

par(mfrow=c(1,1))

Raw mean vs. truncated mean and a truncating point

cat("mean without truncation: ", sampleMean[1], "\n")

cat("truncated mean: ", sampleMean[trun], "\n")

cat(“truncating point: ", trun, "\n")

cat(“minimal MSER: ", sampleMSE[trun], "\n")

74

Figure 6.1 Output and MSER Plot in R

6.2. The SAS Source Code

libname MSER 'C:\Users\Administrator\Documents\SAS';
proc import datafile='C:\Users\Administrator\Documents\SAS\simple2.txt'
dbms = dlm out = MSER.raw replace;

 delimiter =" ";

 getnames = no;
run;

proc iml;

use MSER.raw;

read all into check;

dataLength = nrow(check);

close MSER.raw;

* Batch mean generation;
k = 5;

batchSize = k;

batchNumber = floor(dataLength/batchSize);
batchMean = j(batchNumber, 1, 0);

/*do statement*/
do i = 1 to batchNumber;

 batchMean[i] = sum (check[((i-1)*batchSize +1) :
(i*batchSize)])/batchSize;

end;

/*MSER Statistic Generation*/
sampleMSE = j(batchNumber, 1, 0);

sampleMean = j(batchNumber, 1, 0);

75

batchMean2 = batchMean##2;

do d = 1 to batchNumber;

 sampleMean[d] = sum(batchMean[d: batchNumber])/(batchNumber-d+1);

 sampleMSE[d] =(sum(batchMean2[d: batchNumber])-(batchNumber-
d)*(sampleMean[d]**2))/((batchNumber - d)*(batchNumber - d - 1));

end;

minMSER = min(sampleMSE);

minIdx = sampleMSE[>:<]; /*loc(sampleMSE=min(sampleMSE))*/

print(minMSER);print(minIdx);

quit;

Figure 6.2 Output and MSER Plot in SAS

6.3. Matlab Source Code

% Read Raw Data of Simulation output with a text file

output = fopen('simple2.txt');

check = fscanf(output, '%f');

% Batch Mean Generation

dataLength = length(check); %Find out the run length of a
replication

b = 5; %Batch Size is five

batchSize = b;

batchNumber = floor(dataLength/batchSize); %Batch Number Calculation

batchMean = zeros(batchNumber); %initialize zero vectors to hold
batchmeans

 for i = 1:batchNumber

 batchMean(i) = sum(check(((i-
1)*batchSize+1):(i*batchSize)))/batchSize;

end

76

 % MSER-Statistic

sampleMSE = zeros(0, batchNumber);

sampleMean = zeros(0, batchNumber);

batchMean2 = batchMean.^2;

for d = 1:batchNumber

 sampleMean(d) = mean(batchMean(d:(length(batchMean))));

 sampleMSE(d) = (sum(batchMean2(d:length(batchMean)))...

 -(batchNumber - d)*(sampleMean(d)^2))/((batchNumber -
d)*(batchNumber - d - 1));

end

% Find a truncation point whose MSER statistic is minimum except the
last

% few output series. Consider one or two points to compute sample
variance.

% Thus, we need to exclude those erratic points.

trun = find(sampleMSE == min(sampleMSE(1:(batchNumber-batchSize))));

% Add a graph showing the trend of MSER statistics

% Match dimensions between x and y axis

plot(1:(batchNumber-batchSize), sampleMSE(1:batchNumber-batchSize));

title 'Truncation Point with Batch Mean';

xlabel 'Batch Numbers';

ylabel 'MSER Statistic';

hold all;

Figure 6.3 Output and MSER Plot in Matlab

6.4. VBA Source Code

Option Explicit

Option Base 1

Sub Main()

 Dim batchSize As Integer

 Dim dataLength As Long, batchNumber As Double

77

 Dim batchMean() As Double

 Dim Output As Range 'Using Set to define the range in Workbook here
but it will use a different way to define the size of data

 batchSize = InputBox("Batch Size?")

 MsgBox "You choose the batch size of " & batchSize

 'batchSize = 5

 'This part should be interactive as well as dynamic

 Output = Range("A1:A10000") 'This would change later to adopt the
data importing from Arena

 dataLength = Output.Rows.Count

 batchNumber = Round(dataLength / batchSize, 0)

 Call BatchMeanGen(batchNumber, Output, batchSize)

 'Call Something to generate summary statistics such as all
information shown in message boxes???

End Sub

Sub BatchMeanGen(batchNumber As Double, Output As Range, batchSize As
Integer)

 '

 'Batch Mean Output Generation

 'For i = 1 To batchNumber

 ' batchMean(i) = sum(Output((i-1)*batchSize +
1):(i*batchSize)))/batchSize; '

 '

 MsgBox "The number of Batch Mean Output is " & batchNumber

 'Step to assin Range to Array using dynamic allocation with Redim

 Dim Temp() As Object

 ReDim batchMean(batchNumber) As Double

 Temp = Output 'Assign the range of Output to the array of Temp

 Dim interimSum As Double

 Dim m As Long

 Dim b As Integer

 For m = 1 To batchNumber

 interimSum = 0

 For b = 1 To batchSize

 interimSum = interimSum + Temp(batchSize * (m - 1) + b, 1)

78

 If b = batchSize Then

 batchMean(m) = interimSum / batchSize

 End If

 Next b

 Next m

 'batchMean Generation is definitely correct

 Dim bNumber As Double

 Dim bMean() As Double

 bNumber = batchNumber

 bMean = batchMean

 Call MSERGen(bNumber, bMean())

End Sub

Sub MSERGen(batchNumber As Double, batchMean() As Double)

 'MSER Generation

 ReDim SampleMean(batchNumber) As Double, SampleMSE(batchNumber) As
Double

 Dim d As Double, j As Long

 ReDim meanArray(batchNumber) As Double

 '

 'check SampleMean and meanArray

 '

 For d = 1 To batchNumber

 SampleMean(d) = 0

 For j = 1 To batchNumber

 If (j + d - 1) > batchNumber Then 'Use (j+d-1) instead of
(j+d)

 Exit For

 Else

 SampleMean(d) = SampleMean(d) + batchMean(j + d - 1)

 End If

 Next j

 meanArray(d) = SampleMean(d) / (batchNumber - d + 1)

 Next d

 ' Let's consider For j = 1 To (batchNumber - d) in the future trial

 ' SampleMean and meanArray are correct

79

 Dim k As Integer, threshold As Long

 k = 2

 threshold = Round(batchNumber / k, 0)

 Dim min_MSER As Double

 ReDim sampleVariance(batchNumber) As Double

 ReDim mserSum(batchNumber) As Double

 ReDim MSER_array(batchNumber) As Double

 Dim min_Index As Double

 min_MSER = 999999999.0#

 Dim d_final As Double

 Dim mser As Long

 'd_final = 1

 For d_final = 1 To threshold

 For mser = 1 To batchNumber

 If (mser + d_final - 1) > batchNumber Then

 Exit For

 Else

 mserSum(d_final) = mserSum(d_final) + (batchMean(mser +
d_final - 1) - meanArray(d_final)) * (batchMean(mser + d_final - 1) -
meanArray(d_final))

 End If

 Next mser

 sampleVariance(d_final) = mserSum(d_final) / (batchNumber -
d_final - 1)

 MSER_array(d_final) = sampleVariance(d_final) / (batchNumber -
d_final)

 If MSER_array(d_final) < min_MSER Then

 min_MSER = MSER_array(d_final)

 min_Index = d_final

 End If

 Next d_final

 MsgBox "Minimum of MSER " & MSER

 MsgBox "The truncation point is " & (min_Index)

 MsgBox "Before truncatinig, we have a mean of " & meanArray(1)

 MsgBox "The trucated mean is " & meanArray(min_Index)

End Sub

80

Figure 6.4 Output and MSER Plot in Excel VBA

6.5. C Source Code

#include <stdio.h>

#include <math.h> /* To use floor function*/

#define SIZE 10000 /* SIZE will depend on the run length -- This is a
critical part to guarantee performance*/

double newOutput[SIZE]; /*important to match input size with the
variable type*/

double MSER_array[SIZE];

int B; /*Batch size*/

int n; /*Run length of each replication*/

double mean_array[SIZE];

double sumMean[SIZE];

// SIZE should match the length of input file.

void main()

{

 double newOutput[SIZE]; /*important to match input size with the
variable type*/

 // float m[SIZE];

 double sum[SIZE];

 double average[SIZE];

 double squared_sum[SIZE];

 int i;

 FILE *ifp; // This input file point is associated with batch
output.

 // Batch output from function from Batch.c or process
by Batch.c will be imported here.

// FILE *ofp;

81

 ifp = fopen("simple2.txt", "r"); /*any relevant output series:
Currently normal distribution with linearly decreasing bias*/

// ofp = fopen("out.txt", "w");

 for (i = 0; i < SIZE; i++)

 {

 fscanf (ifp, "%f", &newOutput[i]);

 //printf ("%.10f\n", newOutput[i]);

 if (i == 0)

 {

 sum[i] = newOutput[i];

 squared_sum[i] = sum[i] * sum[i];

 }

 else

 {

 sum[i] = sum[i-1]+newOutput[i];

 squared_sum[i] = squared_sum[i-1] + sum[i] * sum[i];

 }

 //printf("%f\n", sum[i]);

 average[i] = (double) sum[i]/(i+1);

 }

// printf ("\t%f\n", average[SIZE -1]);

// printf ("\t\t%f\n", squared_sum[SIZE -1]/SIZE);

//printf ("\t\t\t%f\n", squared_sum[SIZE-1]/SIZE);

 fclose (ifp);

 //fclose (ofp);

// Batch mean generation part

 int b;

 B = 5;

 n = SIZE;

 int batchNum = floor(n/B);

 int m; /*Batch output length*/

 printf("No of batches: %d\n", batchNum); /*to check function of
floor*/

 printf("Batch size: %d\n", B);

 /* batch mean output generation (i.e., z[1] = average of (x1,
x2, ... , x_batchSize))*/

82

 double z [batchNum];

 double interimSum;

 for (m = 0; m < batchNum; m++)

 {

 interimSum = 0.0;

 for (b =0; b < B; b++) /*Add indiviual output up to one batch
size and divide by the batch size*/

 {

 interimSum += newOutput[B*m + b];

 if (b == (B-1)){

 z[m] = interimSum/B;

 // printf("\t\t%f\n", z[m]);

 }

 }

 }

//before computing d and MSER-statistic, we need to store mean_array

// mean_array[0] = (z1 + z2 + ... + z_batchNum) divided by the number
of relevant samples

// mean_array[1] = (z2 + z3 + ...+ z_batchNum) ...

// mean_array[2] = (z3 + z4 + ... + z_batchNum) ...

 int d, j;

 for (d = 0; d < batchNum; d++)

 {

 for (j = 0; j < batchNum; j++)

 {

 if (j+d > batchNum)

 break;

 else

 {

 sumMean[d] += z[j+d];

 }

}

 mean_array[d]= sumMean[d]/(batchNum - d + 1);

 }

//redefine run length n to batchNum;

int mser, d_final, n, k, threshold; //, j_final;

n = batchNum; /* run length of each relication*/

k = 2; /* try to find a truncation within
the first half of output series*/

threshold = n/k;

83

double min_MSER;

double sampleVariance[batchNum];

double mserSum [batchNum];

double MSER_array [batchNum];

int min_Index;

min_MSER = 999999999.0;

for (d_final = 0; d_final < threshold; d_final++)

{

 for (mser = 0; mser <= n; mser++)

 {

 if (mser + d_final > batchNum)

 break;

 else

 {

 mserSum[d_final] += (z[mser + d_final] - mean_array
[d_final]) * (z[mser + d_final] - mean_array [d_final]);

 }

 }

 sampleVariance[d_final] = mserSum[d_final]/(n - d_final - 1);

 MSER_array[d_final] = sampleVariance[d_final]/(n - d_final);

 if (MSER_array[d_final] < min_MSER)

 {

 min_MSER = MSER_array[d_final];

 min_Index = d_final;

 //printf("%d\n", min_Index);

 }

}

printf("%s\n"," ");

printf("MSER statistics:\t%f\n", min_MSER);

printf("Truncation point:\t%d\n", min_Index);

double rawAverage;

double trunAverage;

rawAverage = mean_array[0];

trunAverage = mean_array[min_Index];

printf("Raw average:\t%f\n", rawAverage);

printf("Average after truncating:\t%f\n", trunAverage);

84

6.6. C++ Source Code

MSER2 Project(.cpp)

// MSER2.cpp : Defines the entry point for the console application.

//

#include "stdafx.h"

int _tmain(int argc, _TCHAR* argv[])

{

 return 0;

}

#include <stdio.h>

#include <math.h> /* To use floor function*/

#define SIZE 10000 /* SIZE will depend on the run length*/

float newOutput[SIZE]; /*important to match input size with the
variable type*/

float MSER_array[SIZE];

int bigB; /*Batch size*/

int n; /*Run length of each replication*/

float mean_array[SIZE];

float sumMean[SIZE];

// SIZE should match the length of input file.

void main()

{

 float newOutput[SIZE]; /*important to match input size with the
variable type*/

 // float m[SIZE];

 float sum[SIZE];

 float average[SIZE];

 float squared_sum[SIZE];

 int i;

FILE *ifp; // This input file point is associated with batch output.

 // Batch output from function from Batch.c or process
by Batch.c will be imported here.

// FILE *ofp;

 ifp = fopen("simple2.txt", "r"); /*any relevant output series:
Currently normal distribution with linearly decreasing bias*/

// ofp = fopen("out.txt", "w");

85

 for (i = 0; i < SIZE; i++)

 {

 fscanf (ifp, "%f", &newOutput[i]);

 //printf ("%.10f\n", n[i]);

 if (i == 0)

 {

 sum[i] = newOutput[i];

 squared_sum[i] = sum[i]*sum[i];

 }

 else

 {

 sum[i] = sum[i-1]+newOutput[i];

 squared_sum[i] = squared_sum[i-1] + sum[i]*sum[i];

 }

 //printf("%f\n", sum[i]);

 average[i] = (float) sum[i]/(i+1);

 }

// printf ("\t%f\n", average[SIZE -1]);

// printf ("\t\t%f\n", squared_sum[SIZE -1]/SIZE);

//printf ("\t\t\t%f\n", squared_sum[SIZE-1]/SIZE);

 fclose (ifp);

 //fclose (ofp);

// Batch mean generation part

 int b;

 bigB = 20;

 n = SIZE;

 int batchNum = floor((double) n/bigB);

 int m; /*Batch output length*/

 printf("No of batches: %d\n", batchNum); /*to check function of
floor*/

 printf("Batch size: %d\n", bigB);

 float z [SIZE];

 float interimSum;

 for (m = 0; m < batchNum; m++)

 {

86

 interimSum = 0.0;

 for (b =0; b < bigB; b++)

 {

 interimSum += newOutput[bigB*m + b];

 if (b == (bigB-1)){

 z[m] = interimSum/bigB;

 // printf("\t\t%f\n", z[m]);

 }

 }

 }

//before computing d and MSER-statistic, we need to store mean_array

 int d, j;

 for (d = 0; d < batchNum; d++)

 {

 for (j = 0; j < batchNum; j++)

 {

 if (j+d >= batchNum)

 break;

 else

 {

 sumMean[d] += z[j+d];

 }

 }

 mean_array[d]= sumMean[d]/(batchNum - d + 1);

 }

//redefine run length n to batchNum;

int mser, d_final, n, k, threshold, j_final;

n = batchNum; /* run length of each relication*/

k = 2; /* try to find a truncation within
the first half of output series*/

threshold = n/k;

float min_MSER;

float sampleVariance[SIZE];

float mserSum [SIZE];

float MSER_array [SIZE];

int min_Index;

87

min_MSER = 999999999.0;

for(i=0;i<SIZE;i++)

 mserSum[i] = 0.0;

for (d_final = 0; d_final < threshold; d_final++)

{

 // for (mser = 0; mser <= n; mser++)

 for (mser = 0; mser < n; mser++)

 {

 if (mser + d_final >= batchNum)

 break;

 else

 {

 mserSum[d_final] += (z[mser + d_final] - mean_array
[d_final]) * (z[mser + d_final] - mean_array [d_final]);

 }

 }

 sampleVariance[d_final] = mserSum[d_final]/(n - d_final - 1);

 MSER_array[d_final] = sampleVariance[d_final]/(n - d_final);

 if (MSER_array[d_final] < min_MSER)

 {

 min_MSER = MSER_array[d_final];

 min_Index = d_final;

 //printf("%d\n", min_Index);

 }

}

printf("%s\n"," ");

printf("MSER statistics:\t%f\n", min_MSER);

printf("Truncation point:\t%d\n", min_Index);

//printf("\t\t%f\n", MSER_array[100]);

}

stadfx.cpp

// stdafx.cpp : source file that includes just the standard includes

// MSER2.pch will be the pre-compiled header

// stdafx.obj will contain the pre-compiled type information

#include "stdafx.h"

// TODO: reference any additional headers you need in STDAFX.H

// and not in this file

88

Header files

stdafx.h

// stdafx.h : include file for standard system include files,

// or project specific include files that are used frequently, but

// are changed infrequently

//

#pragma once

#include "targetver.h"

#include <stdio.h>

#include <tchar.h>

// TODO: reference additional headers your program requires here

targetver.h

#pragma once

// The following macros define the minimum required platform. The
minimum required platform

// is the earliest version of Windows, Internet Explorer etc. that has
the necessary features to run

// your application. The macros work by enabling all features
available on platform versions up to and

// including the version specified.

// Modify the following defines if you have to target a platform prior
to the ones specified below.

// Refer to MSDN for the latest info on corresponding values for
different platforms.

#ifndef _WIN32_WINNT // Specifies that the minimum required
platform is Windows Vista.

#define _WIN32_WINNT 0x0600 // Change this to the appropriate value
to target other versions of Windows.

#endif

89

Figure 6.5 Output Results in Console by C/C++

90

Chapter 7. Parameterization Issues, Analyses, and Results

While MSER is widely accepted as the most robust approach to initializing steady-state

simulations, there remain a number of open questions regarding its application. These

include:

 the choice of simulation run length n,

 the choice of batch size b, and

 the maximum acceptable optimal truncation point dmax on the range of a given run

length [0≤ dmax ≤n]

 the incorporation of the overlapping batch means.

One purpose of this research is to provide insight on the relationships among these

parameters and guidance regarding their selection. To this end, we explore these

relationships empirically on a selection of test problems using a replication/deletion

analysis framework. We estimate the sampling distributions of the truncated means and

corresponding truncation points, test for correlation, and compare response surfaces for

varying batch sizes and run lengths. Before proceeding to the test problems, however, we

consider a fundamental and perhaps unresolvable difficulty inherent in choosing an

adequate run length (see White and Hwang, 2015).

7.1 Choosing the Run Length of a Nonterminating Simulation

While intuition may derive from the system being simulated and/or the purpose of the

simulation study, determining an appropriate run length for a nonterminating simulation

91

typically is a process of trial and error. Framed as an optimization problem in Chapter 2,

the global objective is to discover the number of observations needed to achieve both the

accuracy and precision desired in the estimated steady-state simulation outputs with the

minimum computing effort. For output series that are potentially nonstationary or cyclical,

run lengths must first and foremost be long enough to convince one that this is or is not the

case; for output series that are slow to converge in distribution, practical constraints on

time and computing budgets may necessitate settling for shorter run lengths and confidence

intervals wider than desired.

We distinguish between the two typical output analysis frameworks. If batch-means is

adopted for output analysis then the run length should be sufficient to provide a sample of

steady-state observations (after truncation sufficient to mediate initialization bias) large

enough to form nearly uncorrelated batch means yielding a desired level of confidence in

the grand mean. If replication/deletion is adopted, then each of the replication run lengths

should be adequate to guarantee that MSER can determine an appropriate truncation point.

In this case, the accuracy and precision of the estimate is a function of the number of

replications run. The interested reader should see Hoad, et al. (2007) for a review of the

literature and an empirical comparison of alternative procedures for determining the

number of replications required.

The replication/deletion framework provides the insights we seek regarding MSER

parameterization. MSER works by successively considering the leading observation xd in

the output series {xd, …, xn}, i.e., the sequence remaining after the initial d-1 observations

have been truncated. This observation is a candidate for deletion if the MSE in the estimate

of the steady-state mean decreases for the reserved sequence {xd+1, …, xn}. For MSER to

92

succeed in determining an optimal truncation point for any single replication, however, the

algorithm has to “see” enough of the steady-state response in the reserved sequence in order

to make a correct determination. We note that, symptomatically, as the sample size n-d

becomes small with continued truncation, the MSER statistic can behave erratically

(Rossetti, Delaney, and White, 1995; Spratt, 1998; and Hoad et al., 2008). In other words,

there is some shortest sequence {xdmax,…, xn} that is “sufficiently large and representative”

of a sample drawn from the steady-state distribution of Xt for use in determining a

truncation point.

If MSER determines that d*>dmax, then by construction the algorithm should return a

message that an optimal truncation point cannot be determined for the given output

sequence. In such cases the MSER statistic decreases over entire range [0, dmax], indicating

that the output sequence increases (in trend) or decreases over this same range. This will

be the case for one of two reasons. Either (1) the output is inherently unstable (such as a

queue with traffic intensity ρ≥1) and MSER will not converge irrespective of run length,

or (2) the process is stable, but the run length n is insufficient to achieve a detectable steady

state. Without addition computing, it is impossible to tell which is the case based on the

output alone.

To illustrate the inherent problem, consider output sequences for two different systems

given in Figure 7.1. First, consider run lengths of n≤500. The MSER statistic will have a

minimum value in the neighborhood of n for both Output A (Red) and Output B (Blue).

MSER therefore will fail to return a truncation point for either output.

93

Figure 7.1 Hypothetical simulation output sequences illustrating one potential consequence

of an inadequate run length

Second, consider run lengths of n≥500. MSER will still fail to return a truncation point

for Output A. However, if n is sufficiently large, MSER will return optimal truncation point

in the neighborhood of d*=500 for Output B. It is unlikely that MSER will find an optimal

truncation for values all values of n≥500 and the question is, “What is the minimum run

length n* such that MSER finds a correct truncation point for Output B?” This almost

certainly will depend on the unique properties of the specific output sequence under

consideration, most especially the degree of sequential correlation.

Now consider output sequences for two different systems given in Figure 7.2. These

are possible extensions of the outputs in Figure 7.1. Obviously, MSER will yield the same

results for run lengths n≤800. If n is sufficiently large, however, MSER will conclude (1)

that Output A (Red) has stabilized, and will return optimal truncation point in the

neighborhood of d*=800; and (2) Output B (Blue) is unstable and fail to return a truncation

point for this output. Again, the question of how large is sufficient to draw either

conclusion remains unclear.

94

Figure 7.2 Hypothetical extensions of the simulation output sequences in Figure 7.1
illustrating further potential consequences of an inadequate run length

From these examples we see that MSER can potentially change its determinations

regarding the location and the even the existence of a suitable truncation point depending

on the run length chosen. While in our experience Output B in the second example is a

pathological case, the conclusion remains that the performance of MSER depends on

choosing a sufficient run length. And without knowledge beyond the output sequences

alone, there are no guarantees that this is or is not the case.

7.2 Test Models and Results

We performed empirical tests with differing batch sizes to determine if any discernable

trends or correlations exist among mean estimates, truncation points, batch sizes, and run

lengths, using three different forms of output. These test outputs included (1) the response

of a uniform white-noise process in steady-state with a superimposed linearly-decreasing

deterministic transient, (2) the delay times in an M/M/1 queue, and (3) the response of an

EAR(1) process.

95

7.2.1 Model 1: Uniform Distribution with Superimposed Deterministic Bias

7.2.1.1 Model Description

The first test model is

for t=0, 1, …, n, where

150,0

150,,2,1,0,1501.0

t

tt
At

and

εt~UNIF(0,1)

This is a special case of the family of models variously explored by Cash et al. (1992),

Spratt (1998), White et al. (2000), and Hoad et al. (2008). As illustrated in Figure 7.3, the

model consists of two parts: (1) At, a deterministic, additive, initial transient that declines

linearly from 15 at 0 time units to 0 at 150 time units and (2) εt, a uniform white-noise

process in steady-state, i.e., observations sampled randomly from a uniform distribution

between zero and one. In steady state, Xt= εt so that E[Xt]=0.5 and VAR[Xt]=1/12.

We selected this model as the baseline for testing MSER performance because of its

transparency—the transient expires at t=150 and steady state comprises observations that

are positive recurrent on the continuous range εt [0,1]. These white-noise observations

are uncorrelated by definition and therefore the mean transient (White and Robinson,

2010) settles relatively quickly after truncation. Additionally, the state-transient sequence

At includes transient (nonrecurrent) observations on the discrete ranges and At [1.1, 1.2,

…, 15] for t < 140 and At [0, 0.1, 0.2, …, 1] [0,1] for t ≥ 150. Therefore, as apparent

Xt At t

96

in Figure 7.3, we can easily detect near-optimal truncation point d visually, somewhere on

the range d=t [140-150], depending on the values realized for the noise on this range for

any particular output sequence. Because the transient observations are linearly decreasing

(in trend), the probability that observations xt ≤1 for all t > d increases (in trend) from 0 to

1 as d increases on this range.

Figure 7.3 Output for a representative replication of the first model

It is important to note the MSER truncation point d* may differ from the “true”

truncation point (d=150 for this model). This is because MSER will retain observations

from the transient sequence, or delete observations from the steady-state sequence, if (and

only if) this improves the estimate in the sense of minimizing the MSE. Determining the

“true” truncation point is used as a performance criterion in several studies (see, for

example, Hoad et al. (2008) and Law (2015)), where failure to select the “true” truncation

point is viewed as a potential shortcoming of MSER—i.e., as “consistent underestimation

or overestimation of the true end of the initial. Clearly, this ignores the fact that MSER

97

leads to superior estimates in the sense of MSE by not selecting the “true” point (White

and Hwang, 2015).

7.2.1.2 Results: Batch size effects for long runs

To explore the combined effect of batching and run length on MSER performance, we

ran 1,000 independent replications of Model 1 with batch sizes b=1, 5, and 10. Initially,

we chose a run length of n=10,000 observations, noting that this run length should be

several orders of magnitude longer than the state-transient sequence regardless of the batch

size.

Table 7.1 and Figure 7.4 confirm the effectiveness of MSER truncation for the first

model in terms of both the accuracy and precision of the estimated steady-state mean.

While the confidence intervals for batch sizes of 5 and 10 do not quite cover the true mean,

all of the estimates are accurate to three significant figures. Note, also, that the small errors

in the estimates are all negative, while the biasing observations are greater than the steady-

state mean. From this we conclude that for this instance

(1) all batch sizes remove all of the transient observations, and

(2) estimation errors are an artifact of sampling after the biasing effect of the initial

transient has been removed.

As shown in Figure 7.5, the sampling distributions of the mean are nearly normal, as

predicted by the Central Limit Theorem, and nearly identical for all batch sizes. From this

we conclude that for this instance

(3) modest batching has no significant effect on the quality of estimates.

98

Table 7.1 95% confidence intervals for the mean and variance for the truncated mean
output as a function of batch size for batch sizes b=1, 5, and 10 for run length n=10,000

Truncated Mean Batch Size 1 Batch Size 5 Batch Size 10
Sample Mean 0.499825 0.499789 0.499777
Upper limit 0.500000 0.499965 0.499955
Lower limit 0.499649 0.499614 0.499602

Sample Std Dev 0.002850 0.002851 0.002829
Upper limit 0.002960 0.002961 0.002959
Lower limit 0.002711 0.002712 0.002711

Table 7.2 shows that the mean number of observations truncated (as distinct from the

number of batches truncated) is an increasing function of batch size. For batch size of b=1,

the mean truncation is between t=145 and t=150, as anticipated. For batch sizes of b=5

and 10, the means are modestly larger. These differences are statistically significant at the

95% confidence level with greater truncation for larger batches on average.

(a)

(b)

Figure 7.4 95% confidence intervals for (a) the truncated means for run lengths n=10000
and batch sizes b=1, 5, 10 and (b) the sample standard deviation in the estimated means for
run lengths n=10000 and batch sizes b=1, 5, 10

0.4994

0.4995

0.4996

0.4997

0.4998

0.4999

0.5

0.5001

b=1 b=5 b=10
0.00255

0.0026

0.00265

0.0027

0.00275

0.0028

0.00285

0.0029

0.00295

0.003

b=1 b=5 b=10

99

Figure 7.5 Fits to the steady-state sampling distributions of the mean for 1000 replications
for run length n=10,000. Fits for all three batch sizes tested are nearly identical for batch

sizes b=1, 5, and 10

Table 7.2 . 95% confidence intervals for the mean and variance for the number of
observations truncated for batch sizes b=1, 5, and 10 for run length n=10,000

Observations Truncated Batch Size 1 Batch Size 5 Batch Size 10

Sample Mean 146.9190 152.5950 157.8500

Upper limit 147.0289 155.2085 159.1441

Lower limit 146.8091 151.9817 156.5159

Sample Std Dev 1.7708 9.8858 21.1764

Upper limit 1.8520 10.5571 22.1477

Lower limit 1.6964 9.4688 20.2872

(a)

(b)

Figure 7.6 95% confidence intervals for (a) the MSER mean and (b) the standard deviation
in the MSER truncation point for run lengths n=10000 and batch sizes b=1, 5, 10

146

148

150

152

154

156

158

160

b=1 b=5 b=10
0

5

10

15

20

25

b=1 b=5 b=10

100

The scatter diagram in Figure 7.7, the frequency histogram in Figure 7.8, and the

correlation coefficients in Table 7.3 illustrate the relationship between the truncated means

and the corresponding total number of observations truncated. We conclude that for this

instance

(4) increasing batch sizes increases both the variance and spread of the truncated

observations, without systematically affecting the accuracy of the estimated mean,

(5) the mean estimate is uncorrelated with the number of observations truncated for

all the batch sizes, and

(6) the success of a truncation procedure in terms of the accuracy of the estimate

cannot be imputed from the truncation point alone.

Figure 7.7 Scatterplots of the truncated mean vs. the number of observations truncated for

batch sizes b=1, 5, and 10 for run length n=10,000

0.3

0.5

0.7

0.9

1.1

100 150 200 250 300 350 400

T
ru

n
ca

te
d

 M
ea

n

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

101

Figure 7.8 Frequency distribution of the total number of observations truncated as a

function of batch size for batch sizes b=1, 5, and 10 for run length n=10,000

Table 7.3 Correlation between the truncated mean and the number of observations
truncated for batch sizes b=1, 5, and 10 for run length n=10,000.

Linear Correlation Table Trunc Batch=1 Trunc Batch=5 Trunc Batch=10

Mean Batch=1 -0.054 -0.011 0.075

Mean Batch=5 -0.046 -0.015 0.072

 Mean Batch=10 -0.045 -0.014 0.076

As can be seen in Figure 7.8, increasing the batch size tends to increase the number of

observations truncated in part because of the increased granularity—with larger batches

there are fewer candidate truncation points to consider. But this trend also reflects the

difference between the “true” and MSER truncation points. To further explore, consider

output for replication 958. The MSER truncation points for batches of b=1, 5, and 10 are

d*=148, 190, and 590 respectively, where 590 is the largest truncation point observed

across all replications of with all batch sizes.

102

The batch means and MSER statistic for that replication are plotted against the first 500

observations in Figure 7.9. Figure 7.10 provides a closer look these data for b=10 on the

range t [100, 1500], i.e., batches 10 through 150. The mean for batch number 59 is

0.1524185, which is nearly 4 standard deviations below the steady-state mean. Given the

length of the reserved sequence for this truncation point (941 batches), MSER can improve

the estimate of the mean by deleting this observation.

Finally, we note that in general there are two effects of batching. First, the sequence is

whitened, decreasing any serial correlation in the batch means. Second, the sequence is

smoothed, altering the form of the steady-state distribution, decreasing any skew, and

making the resulting distribution more nearly normal. These effects are consequences of

the Central Limit Theorem.

Figure 7.9 Batched means and MSER statistic for the first 500 observations for replication
958 for batch sizes b=1, 5, and 10 for run length n=10,000

103

Figure 7.10 Batch means and MSER statistic for the first 1500 observations for replication
958 for batch sizes b=10 and run length n=10,000

For Model 1 specifically, the whitening effect is moot, since the steady-state sequences

are already white without batching. However, the second effect can be further

characterized. Remember that the batched output is the random variable

The X’s in this case are independent and identically distributed UNIF(0,1). Therefore the

sums Y are independent random variables from an Irwin-Hall distribution (also known as

the uniform sum distribution) of degree b with density function

 kyky
k

b

n
byf nkb

kY

 sgn1
)!1(2

1
);(1

0

Z j (1 / b) Xb(j1)pp1

b (1 / b)Yp

104

This random variable has support [0,b], mean b/2, variance b/12, and skew 0.

Scaling by the constant b, the distribution of the batched observations is therefore

 kyky
k

b

nb
bzf nkb

kZ

 sgn1
)!1(2

1
);(1

0

with support [0,1], mean 1/2, variance 1/12b, and skew 0. Note that the support, mean, and

skew are constant, while the variance is inversely proportional to the batch size. This

density function is a symmetric, piecewise-polynomial spline. Special cases include

UNIF(0,1) for b=1 and TRI(0,0.5,1) for b=2. As b increases, the distribution approximates

NORM(,). This is illustrated for replication 958 in Figure 7.11, which shows the

estimated steady-state distribution (after truncation), and Table 7.4, which provides

summary statistics, for b=1, 5, and 10.

Figure 7.11 Estimated steady-state distribution (after truncation) for a single representative
replication for run length n=10,000, with uniform fit for batch size b=1 and normal fits for
batch sizes b=5 and 10

1

2

1

12b

105

Table 7.4 Summary statistics for the steady-state data given in Figure 7.11.

 b=1 b=5 b=10
Mean 0.50246 0.50267 0.50511
Mode ≈0.85641 ≈0.55255 ≈0.48050
Median 0.50874 0.50217 0.50017
Std Dev 0.28949 0.12662 0.08857
Variance 0.085804 0.016055 0.007845
b*Var 0.085804 0.080165 0.078446
1/12 0.085555 0.085555 0.085555
Skewness -0.0271 -0.0582 0.1771
Kurtosis 1.7926 2.8118 2.8455

Interestingly, we can show that for this model the MSER statistic itself is independent

of the batch size and decreases linearly as a function of run length. Let nb=n/b be the

number of batches in the reserved sequence and let Varb=1/12b be the variance for this

sequence. The MSER statistic is then

MSER(n,b)= Varb/nb= (1/12b)/(n/b)=1/12n.

7.2.1.3 Results: Batch size effects for short runs

The preceding results suggest that mean estimates are both empirically and

theoretically insensitive to batch size for Model 1. These results are derived using a run

length that is several orders of magnitude longer than the state-transient sequence,

however, and one might anticipate that results for much shorter runs will differ. To explore

this intuition, we repeated the analysis with run lengths of n=175, 200, 300, and 500

observations.

106

Results are displayed in Figures 7.12-7.15. The overall effect of reducing runs lengths

is to rotate the centerline of the scatter plots from one that is essentially horizontal to one

that is increasingly vertical, implying an increasingly negative correlation between the

number of observations truncated and the run length. The average and spread of the

number of observations deleted both decrease; the average and spread of the estimated

steady-state mean both increase. The strength of this effect increases as the batch size

increases.

For n=500, the larger batch sizes continue to yield additional truncation beyond the

[140,150] range in some instances, for the same reasons illustrated earlier. The difference

is that the largest truncation points are now for b=5, instead of b=10.

For n=500 and n=200, the results are essentially identical. Nearly all of the truncation

points are on the anticipated range [140,150], none are less than 140, and comparatively

few are greater than 150. The smallest truncation points are now associated with the

largest batch sizes—a complete reversal from the results obtained with long runs. Indeed,

for b=5 almost all of the truncation points are 145 or 150; for b=10 the truncation point is

140 for all 1000 replications.

For n=175, the effects of very short sequences are most pronounced. The truncation

points for b=1 rarely exceed 150. For b=5 all of the truncation points are 145. For b=10

almost all are 140, with a very few at 150.

Note that for n=175 and b=10, all of the estimates suffer from the effect of bias, some

acutely. This is because algorithm sees very little data—a total of 17 batches, only two of

which are in steady state. Depending on the realization of the noise process, MSER bases

its estimate on either two or three batch means. For those few replications where a third

107

(nonrecurrant) observation is retained, estimates are about twice the steady-state mean. For

this combination of batching and run length, correlation between the truncation point and

error in the mean estimate is strongest, with greater truncation leading to greater error in

the mean estimates.

All of the effects noted are consequences of the relative weight MSER gives the sample

size of the reserved sequence (nb-d) and the residuals of the observations . For

larger samples, MSER is relatively less sensitive to the sample size; for small samples

MSER is relatively more sensitive to the sample size. Therefore, we conclude for Model

1 that

(1) to the degree that batching reduces the effective sample size, it is not

recommended for small samples and provides no discernable benefit for large

samples, and

(2) even with very little steady-state data, the MSER-indicated truncation points are

themselves very reasonable and indeed optimal in terms of the mean estimates

for most cases.

(3) the choice of dmax is a binding concern only if (n-d)/n is close to 1—the choice of

n is likely dominated by the need for estimates with acceptable accuracy and

precision.

Finally, and perhaps most importantly, all of the results above use all of the simulation

replications, which is equivalent to setting the maximum truncation point at dmax=n. What

happens if, instead, we impose the recommend threshold dmax=n/2 and discard replications

for which d*>dmax? We can see from the results that (1) for n=10,000 and 500, the

threshold has no effect on the results; (2) for n=300, however, a significant number of

(xt x)

108

replications are discarded for b=5 and 10; and (3) for n=200 and 175, all of the replications

will be discarded! We conclude that, for this model,

(4) the d*≤dmax=n/2 threshold provides significant protection against estimation

errors resulting from run lengths that are too short’ without over-truncation of

replications with adequate run lengths. For run lengths that are approximately the

same as ideal truncation point, however, the protection may be inadequate. A

modestly lower threshold would be preferred.

109

Figure 7.12 Scatterplots of the truncated mean vs. the number of observations truncated

batch sizes b=1, 5, and 10 for run lengths n=175, 200, 500, and 500

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

130 180

T
ru
n
ca
te
d
	M
ea
n

Observations	Truncated

Run	Length	n=500

Batch	Size	of	1 Batch	Size	of	5 Batch	Size	of	10

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

130 150 170 190

T
ru
n
ca
te
d
	M
ea
n

Observations	Truncated

Run	Length	n=300	

Batch	Size	of	1 Batch	Size	of	5 Batch	Size	of	10

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

130 150 170 190

T
ru
n
ca
te
d
	M
ea
n

Observations	Truncated

Run	Length	n=200	

Batch	Size	of	1 Batch	Size	of	5 Batch	Size	of	10

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

130 150 170 190

T
ru
n
ca
te
d
	M
ea
n

Observations	Truncated

Run	Length	n=175	

Batch	Size	of	1 Batch	Size	of	5 Batch	Size	of	10

110

Figure 7.13 Frequency distribution of the total number of observations truncated as a function of batch size for batch sizes b=1, 5,
and 10 for run lengths of n=175, 200, 500, 500

0
200
400
600
800
1000
1200

13
0

13
2

13
4

13
6

13
8

14
0

14
2

14
4

14
6

14
8

15
0

15
2

15
4

15
6

15
8

16
0

16
2

16
4

>1
65

N
u
m
b
er
	o
f	R
ep
li
ca
ti
on
s

Number	of	Observations	Truncated

Run	Length	n=500	

Batch	Size	of	1 Batch	Size	of	5 Batch	Size	of	10

0
200
400
600
800
1000
1200

13
0

13
2

13
4

13
6

13
8

14
0

14
2

14
4

14
6

14
8

15
0

15
2

15
4

15
6

15
8

16
0

16
2

16
4

>1
65

N
u
m
b
er
	o
f	R
ep
li
ca
ti
on
s

Number	of	Observations	Truncated

Run	Length	n=300	

Batch	Size	of	1 Batch	Size	of	5 Batch	Size	of	10

0
200
400
600
800
1000
1200

13
0

13
2

13
4

13
6

13
8

14
0

14
2

14
4

14
6

14
8

15
0

15
2

15
4

15
6

15
8

16
0

16
2

16
4

>1
65

N
u
m
b
er
	o
f	R
ep
li
ca
ti
on
s

Number	of	Observations	Truncated

Run	Length	n=200	

Batch	Size	of	1 Batch	Size	of	5 Batch	Size	of	10

0
200
400
600
800
1000
1200

13
0

13
2

13
4

13
6

13
8

14
0

14
2

14
4

14
6

14
8

15
0

15
2

15
4

15
6

15
8

16
0

16
2

16
4

>1
65

N
u
m
b
er
	o
f	R
ep
li
ca
ti
on
s

Number	of	Observations	Truncated

Run	Length	n=175	

Batch	Size	of	1 Batch	Size	of	5 Batch	Size	of	10

111

n = 175

n = 200

n = 300

n = 500

Figure 7.14 95% confidence intervals of the mean for the truncated mean output as a
function of batch size for batch sizes b=1, 5, and 10 for run lengths of n=175, 200, 300, 500

112

n = 175

n = 200

n = 300

n = 500

Figure 7.15 95% confidence intervals for the mean for the number of observations
truncated for batch sizes b=1, 5, and 10 for run lengths of n=175, 200, 300, 500

113

7.2.1.4 Results: Overlapping Batch Means

We applied OBM to Model 1 with run length n=500 for batch sizes b=10, 35, 75, and

150 observations. Figure 7.16 shows output for four representative replications, one at

each batch size. Table 7.5 and Figure 7.17(a) compares the 95% confidence intervals on

the truncated mean for each of the OBM estimates with the truncated mean for non-

overlapping approach with the single batch size b=10. All of the interval estimates cover

the expected value of 0.5. None of the differences among the mean estimates is significant

at the 0.05 level, however the results suggest that OBM may be the superior approach,

particularly for modestly sized batches. Model 1 simply isn’t challenging enough to draw

a definitive conclusion.

b = 10 b = 35

b = 75

b = 150

Figure 7.16 Representative Output, Overlapping Batch Mean, and MSER Statistic of Model
1 (b= 10, 35, 75, and 150)

114

Table 7.5 95% confidence intervals for Model 1 on the truncated mean and the standard
deviation for overlapping and non-overlapping batches

OBM NOBM

OBM b=10 OBM b=35 OBM b=75 OBM b=150 NOBM b=10

Sample Mean 0.50005 0.49993 0.49965 0.50028 0.49934

Upper limit 0.50104 0.50096 0.50071 0.50138 0.50082

Lower limit 0.49906 0.4989 0.4986 0.49919 0.49786

Sample Std D 0.01602 0.01661 0.017 0.01762 0.02383

Upper limit 0.01675 0.01737 0.01777 0.01843 0.02492

Lower limit 0.01534 0.01591 0.01628 0.01688 0.02283

(a)

(b)

Figure 7.17 95% confidence intervals for Model 1 on (a) the truncated mean for
overlapping and non-overlapping batches and (b) the standard deviation for overlapping
and non-overlapping batches

In contrast, Figure 7.17(b) compares the 95% confidence intervals on the standard

deviation in estimates for the same replications. While the differences among OBM

estimates are not significant, OBM outperforms the non-overlapping approach in all cases.

At least for this test case, OBM provides significantly greater precision in the estimate.

This reflects the considerably larger sample size afforded by overlapping batches.

0.497

0.498

0.499

0.5

0.501

0.502

OBM
b=10

OBM
b=35

OBM
b=75

OBM
b=150

NOBM
b=10

0.01

0.015

0.02

0.025

OBM
b=10

OBM
b=35

OBM
b=75

OBM
b=150

NOBM
b=10

115

Figure 7.18 Scatterplots of the truncated mean vs. the number of observations truncated for
OBM sizes b=10, 35, 75 and 150 for run length of n=500 for Model 1 (including NOBM batch
size of 10)

Figure 7.19 Frequency distribution of the number of observations truncated as a function of
OBM sizes b=10, 35, 75, and 150 for run length of n=500 for Model 1 (including NOBM batch
size of 10)

116

Table 7.6. Correlation between the truncated mean and the number of observations
truncated for OBM sizes b=10, 35, 75, 150 for run length of n=500 for Model 1

 Trunc Batch =10 Trunc Batch =35 Trunc Batch =75 Trun Batch = 150

Mean Batch = 10 -0.006655114 0.001668587 0.002054254 -0.177174472

Mean Batch = 35 0.000478214 -0.0644325 -0.087803961 -0.282730256

Mean Batch = 75 -0.003975614 -0.073941266 -0.156501886 -0.302717128

Mean Batch = 150 -0.027110964 -0.046266742 -0.076909778 -0.346795267

7.2.2 Model 2: Waiting Time in an M/M/1

The second test model is an M/M/1 queue where our interest is in estimating the mean

waiting-time in queue. This is the problem examined by Law (2015) and reexamined by

White and Hwang (2015). We used this second model to ascertain the performance of

MSER with the same batch sizes used in Model 1. In addition, we explored the sensitivity

of estimates to changes in traffic intensity, the quotient

where is arrival rate, is service rate, and the expected waiting time in queue is

.

The theoretical expected values of waiting time in queue for four different traffic

intensities are summarized in Table 7.7. Clearly, the autocorrelation of successive

observations of the waiting time is a function of the traffic intensity. For very low ,

customers typically arrive at an empty and idle queue and do not have to wait for service.

As the traffic intensity increases, customers experience increasingly longer waits on

average. For 1, the demand for service exceeds the supply, the queue is unstable, and

average waiting times become infinite. One might anticipate the effects of decreasing to

be similar to those encountered by increasing the run length n.

)(qWE

117

Table 7.7. Theoretical Waiting Time in Queue by Traffic Intensity
 Traffic Intensity

 0.6 0.7 0.8 0.9

Waiting Time in Queue 9 16.33 32 81

7.2.2.1 Results for Model 2 with traffic intensity of 0.90

Figure 7.20 Representative Output of Waiting-Time in an M/M/1 with Traffic Intensity of

0.9 (n = 64000; Blue line: E(Wq)=81)

Figure 7.20 provides a typical output series from M/M/1 queue with traffic intensity of

=0.9, initialized empty and idle (x0=0), for a run length of n=64,000. The output is said to

be regenerative, in that it comprises independent cycles each beginning with a customer

that experiences zero waiting. The system regenerates at when it returns to this same zero

state and a new cycle begins. The duration of each cycle is random, as is the peak waiting

time. Decreasing the traffic intensity will result in an increasing number of cycles and

generally shorter peak waiting times.

We begin our analysis with the application of MSER to Model 2 and explore the

combined impact of alternative batch sizes (b=1, 5, and 10) and run lengths (n=64,000,

32,000, 16,000, 8,000, 4,000, 2000, and 1,000). Our analysis follows the same steps

()

118

introduced in the analysis of Model 1. For M/M/1 with =0.9, Figure 7.21 compares the

confidence intervals on the sample means, Figure 7.22 compares the confidence intervals

on the MSER truncation points, Figure 7.23 compares scatterplots of the truncated mean

vs. the number of observations truncated, Table 7.8 provides the corresponding correlation

coefficients, and Figure 7.24 compares the frequency histograms of the number of

observations truncated.

Without truncation, the raw sample mean is 80.75 and insensitive to batch size. While

the raw estimate does not provide coverage, the absolute estimation error is less than 1%.

The truncated is mean 79.39 and also insensitive to batch size. While the truncated estimate

likewise does not provide coverage, the absolute estimation error is less than 2%. The

improvement result from truncation is very modest, but the difference in estimates is

statistically significant at =0.05.

As the run length deceases, the raw estimate decreases more slowly than the truncated

estimate. For run lengths of n=8,000 and below, the truncated means are exceptionally

poor and far worse than the raw estimates. In general, the number of observations truncated

decreases with as the run length decreases.

For the larger run lengths, we see that the mean estimates for this problem are quite good

without truncation. Truncation improves on these estimates only for n=64,000 and then

only very modestly. Truncation is contraindicated for smaller n. While there is negative

trend in the estimated mean for larger truncation points, the correlation is negligible, but

increasing in decreasing run length and increasing batch size.

119

n = 64000

n = 32000

n = 16000

n = 8000

n = 4000

n=2000

n = 1000

Figure 7.21 95% confidence intervals for the mean and the truncated mean as a function of
batch size (b= 1, 5, and 10) and run length (n=1000, 2000, 4000, 8000, 16000, 32000, and
64000) for Model 2 with traffic intensity of 0.9 (Theoretical mean of 81, Blue line)

40

50

60

70

80

90

MSER b
= 1

Raw b =
1

MSER b
= 5

Raw b =
5

MSER b
= 10

Raw b =
10

40

50

60

70

80

90

MSER b
= 1

Raw b =
1

MSER b
= 5

Raw b =
5

MSER b
= 10

Raw b =
10

40

50

60

70

80

90

MSER b
= 1

Raw b =
1

MSER b
= 5

Raw b =
5

MSER b
= 10

Raw b =
10

40

50

60

70

80

90

MSER b
= 1

Raw b =
1

MSER b
= 5

Raw b =
5

MSER b
= 10

Raw b =
10

40

50

60

70

80

90

MSER b
= 1

Raw b =
1

MSER b
= 5

Raw b =
5

MSER b
= 10

Raw b =
10

40

50

60

70

80

90

MSER b
= 1

Raw b =
1

MSER b
= 5

Raw b =
5

MSER b
= 10

Raw b =
10

40

50

60

70

80

90

MSER
b = 1

Raw b
= 1

MSER
b = 5

Raw b
= 5

MSER
b = 10

Raw b
= 10

120

n = 64000

n = 32000

n = 16000

n = 8000

n = 4000

n = 2000

n = 1000

Figure 7.22 95% confidence intervals for the mean number of observations truncated as a
function of batch size (b= 1, 5, and 10) and run length (n=1000, 2000, 4000, 8000, 16000,
32000, and 64000) for Model 2 with traffic intensity of 0.9

0

500

1000

1500

2000

2500

MSER b = 1 MSER b = 5 MSER b = 10
0

500

1000

1500

2000

2500

MSER b = 1 MSER b = 5 MSER b = 10
0

500

1000

1500

2000

2500

MSER b = 1 MSER b = 5 MSER b = 10

0

400

800

1200

1600

MSER b = 1 MSER b = 5 MSER b = 10
0

400

800

1200

1600

MSER b = 1 MSER b = 5 MSER b = 10
0

400

800

1200

1600

MSER b = 1 MSER b = 5 MSER b = 10

0

200

400

600

800

MSER b = 1 MSER b = 5 MSER b = 10

121

n = 64000

n=32000

n=16000

n=8000

n=4000

n=2000

n=1000

Figure 7.23 Scatterplots of the truncated mean vs. the number of observations truncated for
batch sizes b=1, 5, and 10 for run length of n=1000, 2000, 4000, 8000, 16000, 32000, and
64000 for Model 2 with traffic intensity of 0.9

122

Table 7.8 Correlation between the truncated mean and the number of observations truncated
for batch sizes b=1, 5, and 10 for run length of n=1000, 2000, 4000, 8000, 16000, 32000, and
64000 for Model 2 with traffic intensity of 0.9.

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch
= 1

-0.3053 -0.3019 -0.2748

Mean

Batch
= 5

-0.3043 -0.3084 -0.2809

Mean

Batch
= 10

-0.3003 -0.3044 -0.3170

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch
= 1

-0.3966 -0.3687 -0.3455

Mean

Batch
= 5

-0.4007 -0.4169 -0.3976

Mean

Batch
= 10

-0.3854 -0.4271 -0.4542

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch
= 1

-0.4969 -0.4433 -0.4129

Mean

Batch
= 5

-0.4701 -0.5512 -0.5107

Mean

Batch
= 10

-0.4570 -0.5315 -0.6101

n = 64000 n = 32000 n = 16000

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch
= 1

-0.6038 -0.5261 -0.4629

Mean

Batch
= 5

-0.5114 -0.6093 -0.5238

Mean

Batch
= 10

-0.4389 -0.5163 -0.6100

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch
= 1

-0.6189 -0.5190 -0.4686

Mean

Batch
= 5

-0.4419 -0.5714 -0.5130

Mean

Batch
= 10

-0.2854 -0.3969 -0.5295

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch
= 1

-0.3427 -0.3867 -0.4123

Mean

Batch
= 5

-0.3770 -0.4592 -0.4741

Mean

Batch
= 10

-0.3774 -0.4446 -0.5150

n = 8000 n = 4000 n = 2000

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch
= 1

-0.0820 -0.2141 -0.2591

Mean

Batch
= 5

-0.1102 -0.2270 -0.2725

Mean

Batch
= 10

-0.1215 -0.2397 -0.2805

n = 1000

123

n = 64000

n = 32000

n = 16000

n = 8000

n = 4000

n = 2000

n = 1000

Figure 7.24 Frequency distribution of the number of observations truncated as a function of batch sizes b=1, 5, and 10 for run length of
n=1000, 2000, 4000, 8000, 16000, 32000, and 64000 for Model 2 with traffic intensity of 0.9

0

200

400

600

800

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0
100
200
300
400
500
600
700

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0
100
200
300
400
500
600
700

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0

200

400

600

800

0 250 500 1000 2000 4000 8000

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0

200

400

600

0 250 500 1000 2000 4000

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0

200

400

600

0 250 500 1000 2000

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5

Batch Size of 10

0

200

400

600

0 250 500 <1000

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

124

7.2.2.2 Results for Model 2 with traffic intensity of 0.80

Figure 7.25 Example of M/M/1 with traffic intensity of 0.8 (n = 16000, Blue line: E(X))

n = 16000

n = 8000

n = 4000

n = 2000

n = 1000

Figure 7.26 95% confidence intervals of the mean for the truncated mean output as a
function of batch size (b= 1, 5, and 10) and run length (n=1000, 2000, 4000, 8000, and
16,000) for Model 2 with traffic intensity of 0.80 (Theoretical mean of 32, Blue line)

7

12

17

22

27

32

37

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
b = 10

7

12

17

22

27

32

37

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
b = 10

7

12

17

22

27

32

37

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
b = 10

7

12

17

22

27

32

37

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
b = 10

7

12

17

22

27

32

37

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
b = 10

125

n = 16000

n = 8000

n = 4000

n = 2000

n = 1000

Figure 7.27 95% confidence intervals for the mean number of observations truncated as a
function of batch size (b= 1, 5, and 10) and run length (n= 1000, 2000, 4000, 8000, and
16,000) for Model 2 with traffic intensity of 0.80

0

100

200

300

400

500

600

MSER b = 1 MSER b = 5 MSER b = 10
0

100

200

300

400

500

600

MSER b = 1 MSER b = 5 MSER b = 10
0

100

200

300

400

500

600

MSER b = 1 MSER b = 5 MSER b = 10

0

100

200

300

400

500

600

MSER b = 1 MSER b = 5 MSER b = 10
0

100

200

300

400

500

600

MSER b = 1 MSER b = 5 MSER b = 10

126

n = 16000

n=8000

n=4000

n=2000

n=1000

Figure 7.28 Scatterplots of the truncated mean vs. the number of observations truncated for
batch sizes b=1, 5, and 10 for run length of n=1000, 2000, 4000, 8000, and 16,000 Model 2
with traffic intensity of 0.80

127

Table 7.9 Correlation between the truncated mean and the number of observations truncated
for batch sizes b=1, 5, and 10 for run length of n=1000, 2000, 4000, 8000, and 16,000 for Model
2 with traffic intensity of 0.80

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch =
1

-0.2309 -0.2198 -0.1629

Mean

Batch =
5

-0.2305 -0.2509 -0.1892

Mean

Batch =
10

-0.2270 -0.2467 -0.2718

Trunc

Batch
=1

Trunc

Batch =5

Trunc

Batch
=10

Mean

Batch
= 1

-0.3575 -0.2954 -0.1696

Mean

Batch
= 5

-0.3339 -0.4310 -0.2472

Mean

Batch
= 10

-0.3162 -0.3654 -0.4741

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch
= 1

-0.5712 -0.3760 -0.3494

Mean

Batch
= 5

-0.4004 -0.5596 -0.4806

Mean

Batch
= 10

-0.3643 -0.4781 -0.5627

n = 16000 n = 8000 n = 4000

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch
= 1

-0.6450 -0.0322 -0.0362

Mean

Batch
= 5

0.0895 -0.7072 -0.6257

Mean

Batch
= 10

0.1010 -0.6245 -0.7147

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch =
1

-0.5840 -0.5342 -0.5021

Mean

Batch =
5

-0.5326 -0.6471 -0.6008

Mean

Batch =
10

-0.4800 -0.5831 -0.6486

n = 2000 n = 1000

128

n = 16000 n = 8000 n = 4000

n = 2000 n = 1000
Figure 7.29 Frequency distribution of the number of observations truncated as a function of batch sizes b=1, 5, and 10 for run length of
n=1000, 2000, 4000, 8000, and 16,000 for Model 2 with traffic intensity of 0.80

0

100

200

300

400

500

600

700

800

0 250 500 1000 2000 4000 8000

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0

100

200

300

400

500

600

700

800

0 250 500 1000 2000 4000 8000

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0

100

200

300

400

500

600

700

0 250 500 1000 2000 4000

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0

100

200

300

400

500

600

700

0 250 500 1000 2000

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0

100

200

300

400

500

600

0 250 500 <1000

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

129

7.2.2.3 Results for Model 2 with traffic intensity of 0.70

Figure 7.30 Example of M/M/1 with traffic intensity of 0.70 (n = 16000, Blue line: E(X))

n = 16000

n = 8000

n = 4000

n = 2000

n = 1000

Figure 7.31 95% confidence intervals of the mean for the truncated mean output as a
function of batch size (b= 1, 5, and 10) and run length (n=1000, 2000, 4000, 8000, and
16,000) for Model 2 with traffic intensity of 0.70 (Theoretical mean of 16.33, Blue line)

7

9

11

13

15

17

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
b = 10

7

9

11

13

15

17

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
b = 10

7

9

11

13

15

17

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
b = 10

7

9

11

13

15

17

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
b = 10

7

9

11

13

15

17

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
b = 10

130

n = 16000

n = 8000

n = 4000

n = 2000

n = 1000

Figure 7.32 95% confidence intervals for the mean number of observations truncated as a
function of batch size (b= 1, 5, and 10) and run length (n= 1000, 2000, 4000, 8000, and
16,000) for Model 2 with traffic intensity of 0.70

0
50

100
150
200
250
300
350
400
450

MSER b =
1

MSER b =
5

MSER b =
10

0
50

100
150
200
250
300
350
400
450

MSER b =
1

MSER b =
5

MSER b =
10

0
50

100
150
200
250
300
350
400
450

MSER b =
1

MSER b =
5

MSER b =
10

0
50

100
150
200
250
300
350
400
450

MSER b =
1

MSER b =
5

MSER b =
10

0
50

100
150
200
250
300
350
400
450

MSER b =
1

MSER b =
5

MSER b =
10

131

n = 16000

n=8000

n=4000

n=2000

n=1000

Figure 7.33 Scatterplots of the truncated mean vs. the number of observations truncated for
batch sizes b=1, 5, and 10 for run length of n=1000, 2000, 4000, 8000, and 16,000 Model 2
with traffic intensity of 0.7

132

Table 7.10 Correlation between the truncated mean and the number of observations
truncated for batch sizes b=1, 5, and 10 for run length of n=1000, 2000, 4000, 8000, and 16,000
for Model 2 with traffic intensity of 0.70

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch
= 1

-0.2111 -0.1440 -0.1260

Mean

Batch
= 5

-0.2043 -0.2309 -0.2020

Mean

Batch
= 10

-0.2032 -0.2288 -0.2547

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch
= 1

-0.2798 -0.1877 -0.0755

Mean

Batch
= 5

-0.2774 -0.3459 -0.2021

Mean

Batch
= 10

-0.2628 -0.3292 -0.3816

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch
= 1

-0.3720 -0.1779 -0.1079

Mean

Batch
= 5

-0.3015 -0.4755 -0.2573

Mean

Batch
= 10

-0.2865 -0.3195 -0.4833

n = 16000 n = 8000 n = 4000

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch
= 1

-0.5000 -0.2143 -0.1666

Mean

Batch
= 5

-0.3846 -0.7016 -0.5412

Mean

Batch
= 10

-0.3682 -0.5999 -0.7216

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch
= 1

-0.6094 -0.4215 -0.4041

Mean

Batch
= 5

-0.4924 -0.6921 -0.6256

Mean

Batch
= 10

-0.4924 -0.6921 -0.6256

n = 2000 n = 1000

133

n = 16000 n = 8000 n = 4000

n = 2000 n = 1000
Figure 7.34 Frequency distribution of the number of observations truncated as a function of batch sizes b=1, 5, and 10 for run length of n=1000, 2000, 4000,
8000, and 16,000 for Model 2 with traffic intensity of 0.70

0

100

200

300

400

500

600

700

800

0 250 500 1000 2000 4000 8000

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0

100

200

300

400

500

600

700

0 250 500 1000 2000 4000 8000

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0

100

200

300

400

500

600

700

0 250 500 1000 2000 4000

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0

100

200

300

400

500

600

700

0 250 500 1000 2000

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0

100

200

300

400

500

600

0 250 500 <1000

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

134

7.2.2.4 Results for Model 2 with traffic intensity of 0.60

Figure 7.35 Example of M/M/1 with traffic intensity of 0.60 (n = 16000, Blue line: E(X))

n = 16000

n = 8000

n = 4000

n = 2000

n = 1000

Figure.7.36 95% confidence intervals of the mean for the truncated mean output as a
function of batch size (b= 1, 5, and 10) and run length (n=1000, 2000, 4000, 8000, and
16,000) for Model 2 with traffic intensity of 0.60 (Theoretical mean of 9, Blue line)

7

7.5

8

8.5

9

9.5

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
b = 10

7

7.5

8

8.5

9

9.5

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
b = 10

7

7.5

8

8.5

9

9.5

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
b = 10

7

7.5

8

8.5

9

9.5

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
b = 10

7

7.5

8

8.5

9

9.5

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
b = 10

135

n = 16000

n = 8000

n = 4000

n = 2000

n = 1000

Figure 7.37 95% confidence intervals for the mean number of observations truncated as a
function of batch size (b= 1, 5, and 10) and run length (n=1000, 2000, 4000, 8000, and
16,000) for Model 2 with traffic intensity of 0.60

0

50

100
150

200

250
300

350

MSER b =
1

MSER b =
5

MSER b =
10

0

50

100
150

200

250
300

350

MSER b =
1

MSER b =
5

MSER b =
10

0

50

100
150

200

250
300

350

MSER b =
1

MSER b =
5

MSER b =
10

0
50

100

150
200

250

300

350

MSER b =
1

MSER b =
5

MSER b =
10

0
50

100

150
200

250

300

350

MSER b =
1

MSER b =
5

MSER b =
10

136

n = 16000

n=8000

n=4000

n=2000

n=1000

Figure 7.38 Scatterplots of the truncated mean vs. the number of observations truncated for
batch sizes b=1, 5, and 10 for run length of n=1000, 2000, 4000, 8000, and 16,000 Model 2
with traffic intensity of 0.60

137

Table 7.11 Correlation between the truncated mean and the number of observations
truncated for batch sizes b=1, 5, and 10 for run length of n=1000, 2000, 4000, 8000, and 16,000
for Model 2 with traffic intensity of 0.60

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch
= 1

-0.1597 -0.1056 -0.0320

Mean

Batch
= 5

-0.1599 -0.2199 -0.1122

Mean

Batch
= 10

-0.1553 -0.2128 -0.2509

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch
= 1

-0.2120 -0.1465 -0.0421

Mean

Batch
= 5

-0.2130 -0.2720 -0.1367

Mean

Batch
= 10

-0.1965 -0.2565 -0.3522

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch
= 1

-0.2819 -0.1425 -0.1271

Mean

Batch
= 5

-0.2939 -0.4185 -0.3418

Mean

Batch
= 10

-0.2920 -0.4008 -0.5182

n = 16000 n = 8000 n = 4000

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch
= 1

-0.4056 -0.1680 -0.0967

Mean

Batch
= 5

-0.3121 -0.6541 -0.4410

Mean

Batch
= 10

-0.2541 -0.5291 -0.7204

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch
= 1

-0.6309 -0.3548 -0.2981

Mean

Batch
= 5

-0.4903 -0.7493 -0.5802

Mean

Batch
= 10

-0.4631 -0.6305 -0.7329

n = 2000 n = 1000

138

n = 16000 n = 8000 n = 4000

n = 2000 n = 1000 n = 500
Figure 7.39 Frequency distribution of the number of observations truncated as a function of batch sizes b=1, 5, and 10 for run length of
n=1000, 2000, 4000, 8000, and 16,000 for Model 2 with traffic intensity of 0.60

0

100

200

300

400

500

600

700

800

0 250 500 1000 2000 4000 8000

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0

100

200

300

400

500

600

700

800

0 250 500 1000 2000 4000 8000

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0

100

200

300

400

500

600

700

800

0 250 500 1000 2000 4000

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0

100

200

300

400

500

600

700

0 250 500 1000 2000

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0

100

200

300

400

500

600

700

0 250 500 <1000

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

139

7.2.2.5 Result for Model 2: Simulation run length effect

With the traffic intensity the same, correlations are plotted against five different run

lengths in Figure 7.40 (note that for =0.9 the scale for run length differs from the other

panels to allow visualization). The grey bars denote approximate inflection points in these

graphs. For example, for traffic intensity =0.9, the correlations decreases monotonically

from n=8,000 to n=64,000 and then increases monotonically n=8,000 to n=1,000 for all

three batch sizes, with smaller batch sizes generally associated with lesser correlation for

all run lengths. As we saw for Model 1, insufficient run lengths appear to be associated

with increasing correlations. Because two traffic intensities require shorter run lengths to

converge to the steady-state mean, the bars move to the right as traffic intensities decrease.

=0.9

=0.8

=0.7 =0.6

Figure 7.40 Correlation between truncated means and observations truncated as a function
of run length and traffic intensity

140

7.2.2.6 Result for Model 2: Traffic intensity effect

We also consider how traffic intensities (i.e., 0.6, 0.7, 0.8 and 0.9) affect correlation while

the simulation length stays the same.

(1) n = 16000

Under the same condition of simulation lengths, correlations from the smaller traffic

intensities tend to become weaker. That is applicable for all three batch sizes tested.

Figure 7.41 Correlation between truncated means and observations truncated by different

traffic intensity (Run length of 16000)

(2) n = 8000, 4000, 2000, and 1000

The same patterns are shown in the case of n = 8000 compared to n = 16000. However, the

run lengths of 2000 and 1000 do not conform the same trends as the run lengths of 16000

and 8000, while n = 4000 shows mixed trends between the two groups where n is 16000

and 8000, vs. n is 2000 and 1000.

We note that the run lengths of 16000 and 8000 ascertain that the longer run length can

mitigate influences of traffic intensities except for traffic intensity of 0.9, regardless of batch

sizes. Thus, we can conclude that traffic intensity of 0.9 would benefit from increasing the

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0
0.6 0.7 0.8 0.9

n = 16000

Batch 1 Batch 5 Batch 10

141

run length. For the run lengths of 2000 and 1000, the correlations between truncated means

and observations truncated appear to be counterintuitive as the higher traffic intensity is

associated with the lower correlations. However, these trends might be true when long

waiting times are infrequently realized during the relatively short simulation runs in the

lower traffic intensity such as 0.6, 0.7, and 0.8. On the other hand, the traffic intensity of

0.9 might build up longer queues even for short runs.

Figure 7.42 Correlation between truncated means and observations truncated by different
traffic intensity (Run length of 8000, 4000, 2000, and 100)

7.2.2.7 Results: Overlapping Batch Means for M/M/1 with Traffic Intensity of 0.90.

We applied OBM to Model 2 with run length n=64000 with the highest traffic intensity

of 0.9 among M/M/1 models for batch sizes b=10, 50, 100, and 200 observation and Figure

7.43 shows four representative cases with original outputs, OBM, and MSER statistic. By

increasing batch sizes of OBM, we observed different trends among the four tested cases:

142

 Small batch size of 10: The result is almost identical to NOBM because the pre-

processed net output series takes closest resemblance for an original output

series.

 Batch sizes larger than 10 (i.e., 50, 100, and 200): Based on the results, the

difference from a theoretical mean value becomes apparent by increasing batch

sizes. This finding can be attributable to (1) regenerative cycles in M/M/1 and

(2) irregular peaks to influence multiple OBM. Impacts from any outliers in

waiting time can remain strong because OBM keeps using these values multiple

times compared to NOBM’s one usage and go property that any big or small

number can influence only one batch mean.

b = 10 b = 50

b = 100 b = 200

Figure 7.43 Representative Output, Overlapping Batch Mean, and MSER Statistic of Model
2 with traffic intensity of 0.90 (b= 10, 50, 100, and 200)

143

We summarize the confidence intervals of the mean estimates and truncation points in

Table 7.12 and Figure 7.44 that accounts for our finding. For Model 1 and 3 (following

section), OBM tends to outperform NOBM because both cases the output clearly converges

to certain mean estimates. However, Models 2 here provides another aspects to be

considered. As long as the output takes on a regenerative pattern, OBM might lead to a

wrong conclusion about mean estimate for testing models.

Table 7.12 95% confidence intervals for Model 2 on the truncated mean and the standard
deviation for overlapping and non-overlapping batches

OBM NOBM

OBM b=10 OBM b=50 OBM b=100 OBM b=200 NOBM b=10

Sample Mean 79.162030 76.821921 74.199907 74.199907 79.310097

Upper limit 79.635371 77.633984 75.211400 75.211400 79.736781

Lower limit 78.688690 76.009859 73.188415 73.188415 78.883414

Sample Std D 7.627800 13.086239 16.300019 16.300019 6.875926

Upper limit 7.977651 13.686444 17.047626 17.047626 7.191293

Lower limit 7.307526 12.536779 15.615620 15.615620 6.587222

(a)

(b)

Figure 7.44 95% confidence intervals for Model 3 on (a) the truncated mean for overlapping
and non-overlapping batches and (b) the standard deviation for overlapping and non-
overlapping batches

68

70

72

74

76

78

80

82

OBM
b = 10

OBM
b = 50

OBM
b = 100

OBM
b = 200

MSER
b = 10

0

2

4

6

8

10

12

14

16

18

OBM
b = 10

OBM
b = 50

OBM
b = 100

OBM
b = 200

MSER
b = 10

144

Figure 7.45 and 7.46 and Table 7.13 below reiterate the inefficiency of bigger OBM to

find accurate mean estimate and significant loss in output series is observed since truncation

points pass the first half even with run length of 64000. That is, “batch size of 200” indeed

uses less than 10% of total output and estimates quite smaller mean estimates.

Figure 7.45 Scatterplots of the truncated mean vs. the number of observations truncated for
OBM sizes b=10, 50, 100 and 200 for run length of n=64,000 with traffic intensity of 0.90 for
Model 2 (including NOBM batch size of 10)

145

Figure 7.46 Frequency distribution of the number of observations truncated as a function of
OBM sizes b=10, 50, 100, and 200 for run length of n=64,000 with traffic intensity of 0.90 for
Model 2 (including NOBM batch size of 10)

Table 7.13 Correlation between the truncated mean and the number of observations
truncated for OBM sizes b=10, 50, 100, and 200 for run length of n=64,000 for Model 2

 Trunc Batch =10 Trunc Batch =50 Trunc Batch =100 Trun Batch = 200

Mean Batch = 10 0.043 -0.053 -0.890 0.082

Mean Batch = 50 -0.198 -0.829 -0.299 -0.114

Mean Batch = 100 -0.120 -0.333 -0.890 0.017

Mean Batch = 200 -0.113 -0.210 -0.422 -0.914

As we observe, without applying d*<n/2 rule, the results for OBM have been deteriorated

compared to NOBM as well as raw output series without any truncation. Thus, we try to

capture the characteristics of truncations satisfying d*<n/2 rule for OBM and the results are

summarized in Table 7.14 and Figure 7.45. The disadvantage following this rule is that some

of replications need to be omitted to obtain mean estimates. First, the set of mean estimates

are tabulated according to different run lengths from n = 64000 to 1000. Short lengths of n

such as 1000, 2000, and 4000 do not show accuracy of means compared to NOBM estimates

but longer run lengths apparently show improved convergence to a theoretical estimate.

146

Table7.14 Confidence Intervals for M/M/1 with traffic intensity of 0.90 on the truncated
mean and the standard deviation for overlapping and non-overlapping batches with traffic
intensity of 0.90 (n = 1000, 2000, 4000, 8000, 16000, 32000, and 64000)

n =64000 OBM NOBM

Mean with truncation Batch Size of 10 Batch Size of 50 Batch Size of 100 Batch Size of 200 Batch Size of 10

Sample Mean 79.42 79.09 78.85 78.42 79.42

Upper limit 79.84 79.51 79.29 78.87 79.84

Lower limit 79.00 78.66 78.41 77.97 79.00

Sample Std Dev 6.77 6.68 6.67 6.53 6.77

Upper limit 7.09 6.98 6.98 6.83 7.08

Lower limit 6.49 6.40 6.39 6.25 6.49

n =32000 OBM NOBM

Mean with truncation Batch Size of 10 Batch Size of 50 Batch Size of 100 Batch Size of 200 Batch Size of 10

Sample Mean 78.28 77.73 77.22 76.55 78.37

Upper limit 78.85 78.32 77.84 77.22 78.93

Lower limit 77.71 77.13 76.59 75.89 77.80

Sample Std Dev 8.95 8.89 8.91 8.69 8.99

Upper limit 9.36 9.30 9.31 9.08 9.41

Lower limit 8.57 8.51 8.53 8.32 8.62

n = 16000 OBM NOBM

Mean with truncation Batch Size of 10 Batch Size of 50 Batch Size of 100 Batch Size of 200 Batch Size of 10

Sample Mean 76.64 76.16 75.82 75.98 76.72

Upper limit 77.47 77.07 76.80 77.07 77.53

Lower limit 75.82 75.25 74.84 74.89 75.91

Sample Std Dev 12.63 12.71 12.68 12.79 12.60

Upper limit 13.21 13.29 13.26 13.38 13.18

Lower limit 12.10 12.17 12.15 12.25 12.07

n =8000 OBM NOBM

Mean with truncation Batch Size of 10 Batch Size of 50 Batch Size of 100 Batch Size of 200 Batch Size of 10

Sample Mean 72.13 71.93 72.13 71.85 72.78

Upper limit 73.20 73.15 73.52 73.41 73.83

Lower limit 71.06 70.71 70.74 70.28 71.72

Sample Std Dev 15.48 15.30 15.63 15.90 15.84

Upper limit 16.19 16.00 16.34 16.63 16.56

Lower limit 14.83 14.65 14.97 15.23 15.17

147

n = 4000 OBM NOBM

Mean with truncation Batch Size of 10 Batch Size of 50 Batch Size of 100 Batch Size of 200 Batch Size of 10

Sample Mean 69.21 69.47 68.50 68.91 70.50

Upper limit 70.70 71.21 70.34 70.85 71.97

Lower limit 67.71 67.72 66.67 66.97 69.03

Sample Std Dev 20.39 20.87 20.32 20.15 21.50

Upper limit 21.33 21.83 21.25 21.08 22.48

Lower limit 19.53 20.00 19.47 19.31 20.59

n = 2000 OBM NOBM

Mean with truncation Batch Size of 10 Batch Size of 50 Batch Size of 100 Batch Size of 200 Batch Size of 10

Sample Mean 64.64 65.23 65.97 67.59 66.16

Upper limit 66.55 67.75 68.74 70.33 68.15

Lower limit 62.73 62.71 63.21 64.86 64.16

Sample Std Dev 24.71 27.95 28.78 28.11 27.06

Upper limit 25.84 29.24 30.10 29.39 28.30

Lower limit 23.67 26.78 27.57 26.93 25.93

n = 1000 OBM NOBM

Mean with truncation Batch Size of 10 Batch Size of 50 Batch Size of 100 Batch Size of 200 Batch Size of 10

Sample Mean 63.58 66.00 66.41 69.56 68.07

Upper limit 66.69 69.76 70.34 73.68 71.58

Lower limit 60.46 62.24 62.48 65.44 64.55

Sample Std Dev 39.52 42.39 43.35 47.31 44.58

Upper limit 41.33 44.33 45.34 49.47 46.63

Lower limit 37.86 40.61 41.53 45.32 42.71

148

n= 64000

n= 32000

n= 16000

n= 8000 n= 4000 n= 2000

n= 1000

Figure 7.47 95% confidence intervals for M/M/1 with traffic intensity of 0.90 about the
truncated mean for overlapping and non-overlapping batches (n = 1000, 2000, 4000, 8000,
16000, 32000, and 64000.)

74

75

76

77

78

79

80

OBM
b = 10

OBM
b = 50

OBM
b = 100

OBM
b = 200

MSER
b = 10

74

75

76

77

78

79

80

OBM
b = 10

OBM
b = 50

OBM
b = 100

OBM
b = 200

MSER
b = 10

74

75

76

77

78

79

80

OBM
b = 10

OBM
b = 50

OBM
b = 100

OBM
b = 200

MSER
b = 10

58

63

68

73

78

OBM
b = 10

OBM
b = 50

OBM
b = 100

OBM
b = 200

MSER
b = 10

58

63

68

73

78

OBM
b = 10

OBM
b = 50

OBM
b = 100

OBM
b = 200

MSER
b = 10

58

63

68

73

78

OBM
b = 10

OBM
b = 50

OBM
b = 100

OBM
b = 200

MSER
b = 10

58

63

68

73

78

OBM
b = 10

OBM
b = 50

OBM
b = 100

OBM
b = 200

MSER
b = 10

149

7.2.2.8 Results: Initialization Bias

To test the assertion that the errors in the output are the result of inadequate run lengths

and unrepresentative initial conditions (note that x0=0 is the mode of the steady-state

distribution and hardly representative!), we ran two more experiments. Each comprised 100

replications of Model 2 with traffic intensity of 0.9 and initial condition x0=100. We used

and compared three different batch sizes, b=1, 5, and 10, and two different run lengths,

n=64,000 and 32,000.

Figure 7.48 shows the output time series for one representative replication with b=1 and

n=32,000. Clearly, the initial condition results in a large initial spike in waiting times. Just

as clearly, MSER removes much or this entire initial spike.

Figure 7.48 Output time series with traffic intensity of 0.90 with b =1 and n = 32,000

In contrast to the prior experiments without initialization bias, MSER truncation

provides significantly improved estimates over those obtained without truncation in Figure

7.49. These results appear to be relatively insensitive to batch size (although smaller batches

appear to perform modestly better) and, again, the error in the estimates is relatively

uncorrelated to the MSER truncation points. The effect of run length is apparent and for

150

the longer runs coverage is achieved for every batch size. We speculate that this may be

attributable to the significant reduction in sample variance for longer runs.

95%
confidence
intervals on
the mean

95%
confidence
intervals on
Sample Std
Dev.

Scatterplots
indicting the
correlation
between
truncated mean
and truncation
point

Frequency
distribution

of the number
of observations
truncated

 n=64,000 n=32,000

Figure 7.49 Confidence interval for Mean and Standard Deviation, Scatter Plot for
Truncation points and Truncated Mean, Frequency Distribution of the Number of
Observations Truncated with Traffic Intensity of 0.90 with b =1, 5, and 10 and n = 64,000
and 32,000

151

Note that this example appears to suggest that “smart initialization” may not be the solution

to the warm-up problem that has been widely recommendation. The initial condition of

x0=100 certainly is much closer to the theoretical steady-state mean of 81 than x0=0 in the

prior examples. However, truncation is still required to eliminate the initial spike in waiting

times. The same would be true if we had made the very lucky guess of x0=81! Warm-up

appears to be required. In this instance smart initialization appears to suggest

foreknowledge of the entire steady-state distribution, in particular the mode, rather than the

steady state mean.

Table 7.15 Correlation between the truncated mean and the number of observations
truncated for b=1, 5, and 10 for run length of n=32,000 with initial bias of 100

Trunc Batch =1 Trunc Batch =5 Trunc Batch =10

Mean Batch = 1 -0.4147 -0.4050 -0.4050
Mean Batch = 5 -0.4308 -0.4232 -0.4233
Mean Batch = 10 -0.4308 -0.4232 -0.4233

Table 7.16 95% confidence intervals for Model 2 on the observation truncated and the
standard deviation for run length of n=32,000 with initial bias of 100

Truncation Point batch = 1 batch = 5 batch = 10

Sample Mean 2878.4400 2900.7000 2901.3000

Upper limit 3735.0552 3772.1267 3772.7876

Lower limit 2021.8248 2029.2733 2029.8124

Sample Std Dev 4317.1446 4391.7915 4392.0984

Upper limit 4515.1520 4593.2226 4593.5436

Lower limit 4135.8779 4207.3905 4207.6845

Table 7.17 95% confidence intervals for Model 2 on the truncated mean and the standard
deviation for run length of n=32,000 with initial bias of 100

Mean with truncation batch = 1 batch = 5 batch = 10

Sample Mean 78.036849 77.993410 77.992041

Upper limit 79.770945 79.725121 79.723891

Lower limit 76.302752 76.261699 76.260191

Sample Std Dev 8.739450 8.727426 8.728127

Upper limit 9.140288 9.127712 9.128446

Lower limit 8.372501 8.360982 8.361653

152

Table7.18 95% confidence intervals for Model 2 on the mean without truncation and the
standard deviation for run length of n=32,000 with initial bias of 100

Mean w/o truncation batch = 1 batch = 5 batch = 10

Sample Mean 94.087628 94.0876 94.0876

Upper limit 96.269303 96.2693 96.2693

Lower limit 91.905953 91.9060 91.9060

Sample Std Dev 10.995146 10.9951 10.9951

Upper limit 11.499442 11.4994 11.4994

Lower limit 10.533485 10.5335 10.5335

Table 7.19 Correlation between the truncated mean and the number of observations
truncated for b=1, 5, and 10 for run length of n=64,000 with initial bias of 100

Trunc Batch =1 Trunc Batch =5 Trunc Batch =10

Mean Batch = 1 -0.3940 -0.3588 -0.3491

Mean Batch = 5 -0.3811 -0.4295 -0.4191

Mean Batch = 10 -0.3782 -0.4269 -0.4268

Table 7.20 95% confidence intervals for Model 2 on the observation truncated and the
standard deviation for run length of n=64,000 with initial bias of 100

Truncation Point batch = 1 batch = 5 batch = 10

Sample Mean 2738.4600 2995.2500 3092.4000

Upper limit 3624.6425 3999.8582 4105.6587

Lower limit 1852.2775 1990.6418 2079.1413

Sample Std Dev 4466.1572 5062.9956 5106.5923

Upper limit 4670.9991 5295.2117 5340.8080

Lower limit 4278.6337 4850.4123 4892.1785

Table 7.21 95% confidence intervals for Model 2 on the truncated mean and the standard
deviation for run length of n=64,000 with initial bias of 100

Mean with truncation batch = 1 batch = 5 batch = 10

Sample Mean 79.395610 79.281469 79.243732

Upper limit 80.761263 80.670545 80.632182

Lower limit 78.029956 77.892394 77.855283

Sample Std Dev 6.882581 7.000622 6.997469

Upper limit 7.198253 7.321708 7.318410

Lower limit 6.593598 6.706682 6.703661

153

Table 7.22 95% confidence intervals for Model 2 on the mean without truncation and the
standard deviation for run length of n=64,000 with initial bias of 100

Mean w/o truncation batch = 1 batch = 5 batch = 10

Sample Mean 87.175809 87.1758 87.1758

Upper limit 88.607643 88.6076 88.6076

Lower limit 85.743975 85.7440 85.7440

Sample Std Dev 7.216117 7.2161 7.2161

Upper limit 7.547086 7.5471 7.5471

Lower limit 6.913129 6.9131 6.9131

7.2.2.9 Summary Results for Model 2

We chose this model initially because it allows comparison with the results obtained by

Law (2015) and by White and Hwang (2015) for long runs. This prior research addressed

the performance of MSER for a single batch size (b=5), single run length (n=65,000), and

single traffic intensity (=0.9) with respect to a range of different initial conditions {x0=0,

5, 10, 12, 15, 18, 20}. The results obtained by White and Hwang (2015) demonstrated that

truncation points and the error in the truncated mean estimates are essentially independent.

Further, while the mean estimates for this problem are quite good without truncation,

applying MSER-5 truncation modestly improves the accuracy of these estimates.

(1) The results obtained in the present research for n=64,000 and =0.9 are entirely

consistent with those reported earlier.

Our objective here was to explore the performance of MSER for a single initial condition,

empty and idle {x0=0}, with respect to alternative run lengths, batch sizes, and model traffic

154

intensities. We speculated the effects of decreasing to be similar to those encountered by

increasing the run length n.

(2) The results of our experiments suggest that this speculation is largely untrue and

decreasing traffic intensity cannot altogether compensate for short run lengths.

(3) The d*≤dmax=n/2 truncation rule likewise cannot altogether compensate for short

run lengths

For smaller run lengths and traffic intensities, MSER appears to overestimate the amount

truncation warranted, reducing the sample variance by truncating early regenerative cycles

with large peak waiting times while the MSER statistic is relatively less sensitive to the

accompanying reduction in sample size. The result is underestimation of the steady-state

mean.

In the final analysis, our analysis demonstrates that

(4) The difficulty in estimating the steady-state mean has little or nothing to do with bias

resulting from a poor choice of initial conditions for Model 2. The empty-and-idle

condition regenerates frequently, more frequently for lower traffic intensities and

smaller batches.

(5) The fundamental issue is determining an initial run length that is sufficiently long to

capture observations that, taken together, are representative of the steady-state

distribution.

(6) The new initial bias of x0=100 apparently vindicates the efficacy of MSER to detect

steady state mean(s) and truncation point(s) compared to smart initialization

approach.

155

7.2.3 Model 3: EAR(1)

The third test model is AR(1)

ttt XX 1

for t = 0, 1, …, n, with exponentially decaying error

where =1. This model differs from a typical AR(1) with normally distributed white noise

because the error term is exponentially distributed. It is stable if and only if

0 <1

For stable processes, the expected steady-mean is

Table 7.23 provides this expectation for parameter values ={0.7, 0.8, 0.9, 0.99}. Note that

the rate of convergence to steady state also depends , with the rate increasing in decreasing

. In terms of the average warm-up period required, therefore, we would anticipate that the

effect of decreasing is similar to that of increasing the run length n.

Table 7.23 Expected Value of the Steady-State Mean as a function of

 0.7 0.8 0.9 0.99

 3.33 5.00 10 100

Both of these dependencies are illustrated in Figure 7.50 for a run length of n=500. (Note

the scale for the ordinate in the panel for =0.99 differs from the other three panels, in order

to allow visualization.) In each panel, the response Xt is plotted in blue, while the expected

response

t ~ et

E X
1

1

E X

156

 11 tt XEXE

is plotted in red.

 =0.99

 =0.9

 =0.8

 =0.7

Figure 7.50 Representative output for EAR(1) for run length n=500 and batch size b=1,
illustrating the dependency of the steady-state mean and rate of convergence on the
parameter for ={0.7, 0.8, 0.9, 0.99}

Determining the “true” truncation point for this model is problematic. This is because

the process converges to steady state only in the limit. Which observation to choose as the

“true” truncation point is inherently subjective and open to second-guessing. In classical

control engineering, the point where the response is “close enough” to steady state is called

the settling time. The expected -percent settling time is implicitly defined by

157

Common choices for the settling time are observations at which the responses are within

5% and 2% of their steady-state values. Table 7.24 provides settling times as a function of

the parameter for a wide range of potential choices for .

Note that MSER is data driven and does not suffer from this ambiguity. On any

replication, the process is deemed to have settled into steady state when the MSER statistic

is minimized on the initial segment of observations. The expected settling time is

approximately the average of these individual settling times over a very large number of

replications. Note that this is the point argued by White and Hwang (2015) in response to

Law (2015).

Table 7.24 Expected -percent settling time as a function of and

 0.7 0.8 0.9 0.99
 9 14 29 299
 11 18 38 390
 13 21 44 459
0.1 20 31 66 688
0.01 26 42 88 917
0.001 33 52 110 1146

In this chapter we explore the sensitivity of the estimated steady-state mean and

truncation point with respect to the model parameter ={0.7, 0.8, 0.9, 0.99} for batch sizes

b={1, 5, 10} and eight different run lengths:

 long run lengths of n=16000, 8000, 4000

E X 100
100

E X 1

100

100

1

1

1

 100
100 1

158

 medium run lengths of n=2000, 1000

 short run lengths of n=500, 300, 150, 100

We distinguish among these categories of run length experimentally, based on coverage of

the mean by the truncated and/or raw 95% confidence intervals for =0.99.

7.2.3.1 Results for Model 3 with =0.99

Figure 7.51 shows the response of one of 1000 replications for =0.99 and n=16000.,

together with the expected mean .Visually, this output appears to settle into a

steady-state operating regime after approximately 300-400 observations after which

observations remain relatively stable about the mean. This corresponds to the traditional

choice of a 2% to 5% settling time as applied control engineering.

Figure 7.51 Example of Model 3 with =0.99 (n = 16000, Brown line: E(X))

By halving the run length sequentially, the relationships among the variables—run length,

batch size, and model parameter —and key metrics—means without truncation, truncated

means, truncation points, the correlation between truncated means and truncation points—

begin to emerge.

As can be seen in Figure 7.52, MSER yields superior estimates for all run lengths, with

the difference in accuracy increasing as the run lengths as the decrease. For the long runs

E X 100

159

(n=16000, 8000, 4000), both the MSER-truncated and the raw confidence intervals cover

the true mean. The comparatively large number of observations in steady state appears to

be sufficient to overwhelm the initial transient. For medium-length runs (n=2000, 1000),

only the MSER-truncated estimates provide coverage; for short-runs (n=500, 300, 150,

100), neither the MSER-truncated nor the raw confidence intervals cover the true mean. As

the run length continues to decline, the ranges of truncated means become wider and

estimation for every batch size increases.

This suggests that MSER needs to “see” at most 1000 observations on average in order

to provide coverage for this system. As shown in Figure 7.53, this is approximately three

times the length of the MSER-determined warm-up period. Batching is contraindicated

below about n=500 with larger batches on average yielding smaller estimates and greater

estimation error.

Larger batches are associated with greater truncation for every run length. The average

MSER truncation point is reasonably consistent across large runs, on range 250<d*<400, as

well as across medium-length runs, on the range 150<d*<300, and across short runs, on the

range 0<d*<200. Restricting the optimal truncation point to d*<n/2 does not consistently

appear to provide the desired indication that runs are too short to yield accurate estimates

on average. However, the same is not true when the restriction is applied on a replication-

by-replication basis, as recommended.

Figures 7.54 and Table 7.25 demonstrate that truncated mean estimates are relatively

independent of the observations truncated. For long runs, the correlation is essentially zero.

For medium and short runs, there appears to be a modest positive correlation, with the

160

magnitude of this correlation generally increasing as run length decreases. As is perhaps

intuitive, the shortest runs tend to induce greater truncation on average.

n = 16000

n = 8000

n = 4000

n = 2000

n = 1000

n=500

n = 300

n = 150

n = 100

Figure 7.52 95% confidence intervals of the mean for the truncated mean output as a function
of batch size (b= 1, 5, and 10) and run length (n=100, 150, 300, 500, 1000, 2000, 4000, 8000, and
16,000) for Model 3 with =0.99 (Theoretical mean of 100, Blue line)

0

20

40

60

80

100

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
b = 10

0

20

40

60

80

100

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
b = 10

0

20

40

60

80

100

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
b = 10

0

20

40

60

80

100

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
b = 10

0

20

40

60

80

100

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
b = 10

0

20

40

60

80

100

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
b = 10

0

20

40

60

80

100

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
b = 10

0

20

40

60

80

100

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
b = 10

0

20

40

60

80

100

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
 b =
10

161

n = 16000

n = 8000

n = 4000

n = 2000

n = 1000

n = 500

n = 300

n = 150

n = 100

Figure 7.53 95% confidence intervals for the mean number of observations truncated as a
function of batch size (b= 1, 5, and 10) and run length (n=100, 150, 300, 500, 1000, 2000,
4000, 8000, and 16,000) for Model 3 with =0.99

0

100

200

300

400

MSER
b = 1

MSER
b = 5

MSER
b = 10

0

100

200

300

400

MSER
b = 1

MSER
b = 5

MSER
b = 10

0

100

200

300

400

MSER
b = 1

MSER
b = 5

MSER
b = 10

0

100

200

300

400

MSER
b = 1

MSER
b = 5

MSER
b = 10

0

100

200

300

400

MSER
b = 1

MSER
b = 5

MSER
b = 10

0

100

200

300

400

MSER
b = 1

MSER
b = 5

MSER
b = 10

0

100

200

300

400

MSER
b = 1

MSER
b = 5

MSER
b = 10

0

100

200

300

400

MSER
b = 1

MSER
b = 5

MSER
b = 10

0

100

200

300

400

MSER
b = 1

MSER
b = 5

MSER
b = 10

162

n = 16000

n=8000

n=4000

n=2000

n=1000

n=500

n=300

n=150

n=100

Figure 7.54 Scatterplots of the truncated mean vs. the number of observations truncated for
batch sizes b=1, 5, and 10 for run length of n=100, 150, 300, 500, 1000, 2000, 4000, 8000, and
16,000 Model 3 with =0.99

163

Table 7.25 Correlation between the truncated mean and the number of observations truncated
for batch sizes b=1, 5, and 10 for run length of n=100, 150, 300, 500, 1000, 2000, 4000, 8000,
and 16,000 for Model 3 with =0.99

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch
= 1

-0.0527 -0.0557 -0.0163

Mean

Batch
= 5

-0.0424 -0.0558 -0.0167

Mean

Batch
= 10

-0.0278 -0.0393 -0.0155

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch
= 1

-0.0735 -0.0108 0.0453

Mean

Batch
= 5

-0.0427 -0.0175 0.0365

Mean

Batch
= 10

-0.0097 0.0248 0.0429

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch
= 1

-0.0458 0.1113 0.1575

Mean

Batch
= 5

0.0149 0.1157 0.1733

Mean

Batch
= 10

0.0255 0.1242 0.1687

n = 16000 n = 8000 n = 4000

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch
= 1

0.1117 0.1870 0.1989

Mean

Batch
= 5

0.1116 0.2078 0.2194

Mean

Batch
= 10

0.0812 0.1333 0.2168

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch
= 1

0.2822 0.2843 0.2641

Mean

Batch
= 5

0.1160 0.3102 0.2861

Mean

Batch
= 10

0.0348 0.1456 0.3094

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch
= 1

0.4864 0.3049 0.2182

Mean

Batch
= 5

0.1363 0.4254 0.3383

Mean

Batch
= 10

0.0348 0.2258 0.3924

n = 2000 n = 1000 n = 500

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch
= 1

0.5040 0.2615 0.1539

Mean

Batch
= 5

0.0708 0.4444 0.2953

Mean

Batch
= 10

-0.0267 0.2004 0.3906

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch
= 1

0.4771 0.1246 -0.0443

Mean

Batch
= 5

0.0104 0.4455 0.2406

Mean

Batch
= 10

-0.1133 0.1392 0.4748

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch
= 1

0.4557 0.1240 -0.0240

Mean

Batch
= 5

-0.0149 0.5077 0.1365

Mean

Batch
= 10

-0.0693 0.1651 0.3193

n = 300 n = 150 n = 100

164

n = 16000

n = 8000

n = 4000

n = 2000

n = 1000

n = 500

n = 300

n = 150

n = 100

Figure 7.55 Frequency distribution of the number of observations truncated as a function of batch sizes b=1, 5, and 10 for run length of
n=100, 150, 300, 500, 1000, 2000, 4000, 8000, and 16,000 for Model 3 with of 0.99

0
200
400
600
800

0 25 50 75 12
5

25
0

50
0

10
0

0
15

0
0

20
0

0
25

0
0

30
0

0
35

0
0

<
 4

00
0

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0
200
400
600
800

0 25 50 75 12
5

25
0

50
0

10
0

0
15

0
0

20
0

0
25

0
0

30
0

0
<

35
00

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0

200

400

600

800

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0

500

1000

N
um

be
r

of

R
ep

lic
at

io
ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0

500

1000

N
um

be
r

of

R
ep

lic
at

io
ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0

500

1000

N
um

be
r

of

R
ep

lic
at

io
ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0
200
400
600
800

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0

500

1000

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0
500

1000
1500

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

165

7.3.3.2 Results for Model 3 with =0.90

Figure 7.56 Example of EAR(1) with ϕ of 0.9 (n = 16000, Blue line: E(X))

n = 16000

n = 8000

n = 4000

n = 2000

n = 1000

n=500

n = 300

n = 150

n = 100

Figure 7.57 95% confidence intervals of the mean for the truncated mean output as a function
of batch size (b= 1, 5, and 10) and run length (n=100, 150, 300, 500, 1000, 2000, 4000, 8000,
and 16,000) for Model 3 with ϕ =0.90 (Theoretical mean of 10, Blue line)

8.8

9

9.2

9.4

9.6

9.8

10

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
 b = 10

8.8

9

9.2

9.4

9.6

9.8

10

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
 b = 10

8.8

9

9.2

9.4

9.6

9.8

10

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
 b = 10

8.8

9

9.2

9.4

9.6

9.8

10

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
 b = 10

8.8

9

9.2

9.4

9.6

9.8

10

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
 b = 10

8.8

9

9.2

9.4

9.6

9.8

10

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
 b = 10

8.8

9

9.2

9.4

9.6

9.8

10

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
 b = 10

8.8

9

9.2

9.4

9.6

9.8

10

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
 b = 10

8.8

9

9.2

9.4

9.6

9.8

10

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
 b = 10

166

n = 16000

n = 8000

n = 4000

n = 2000

n = 1000

n = 500

n = 300

n = 150

n = 100

Figure 7.58 95% confidence intervals for the mean number of observations truncated as a
function of batch size (b= 1, 5, and 10) and run length (n=100, 150, 300, 500, 1000, 2000, 4000,
8000, and 16,000) for Model 3 with =0.90

0

5

10

15

20

25

30

35

MSER b =
1

MSER b =
5

MSER b =
10

0

5

10

15

20

25

30

35

MSER b =
1

MSER b =
5

MSER b =
10

0

5

10

15

20

25

30

35

MSER b =
1

MSER b =
5

MSER b =
10

0

5

10

15

20

25

30

35

MSER b =
1

MSER b =
5

MSER b =
10

0

5

10

15

20

25

30

35

MSER b =
1

MSER b =
5

MSER b =
10

0

5

10

15

20

25

30

35

MSER b =
1

MSER b =
5

MSER b =
10

0

5

10

15

20

25

30

35

MSER b =
1

MSER b =
5

MSER b =
10

0

5

10

15

20

25

30

35

MSER b =
1

MSER b =
5

MSER b =
10

0

5

10

15

20

25

30

35

MSER b =
1

MSER b =
5

MSER b =
10

167

n = 16000

n=8000

n=4000

n=2000

n=1000

n=500

n=300

n=150

n=100

Figure 7.59 Scatterplots of the truncated mean vs. the number of observations truncated for
batch sizes b=1, 5, and 10 for run length of n=100, 150, 300, 500, 1000, 2000, 4000, 8000, and
16,000 Model 3 with =0.90

168

Table 7.26 Correlation between the truncated mean and the number of observations
truncated for batch sizes b=1, 5, and 10 for run length of n=100, 150, 300, 500, 1000, 2000,
4000, 8000, and 16,000 for Model 3 with =0.90

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch
= 1

0.0094 -0.0087 0.0276

Mean

Batch
= 5

0.0089 -0.0111 0.0261

Mean

Batch
= 10

0.0076 -0.0119 0.0198

Trunc

Batch
=1

Trunc

Batch =5

Trunc

Batch
=10

Mean

Batch
= 1

-0.0329 -0.0314 0.0107

Mean

Batch
= 5

-0.0328 -0.0467 -0.0026

Mean

Batch
= 10

-0.0327 -0.0468 -0.0032

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch =
1

-0.0277 -0.0166 0.0038

Mean

Batch
= 5

-0.0267 -0.0347 -0.0110

Mean

Batch
= 10

-0.0263 -0.0337 -0.0149

n = 16000 n = 8000 n = 4000

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch
= 1

-0.1249 -0.1247 -0.1125

Mean

Batch
= 5

-0.1251 -0.1220 -0.1107

Mean

Batch
= 10

-0.1152 -0.1134 -0.1121

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch =
1

-0.1194 -0.1071 -0.0355

Mean

Batch =
5

-0.1025 -0.1044 -0.0354

Mean

Batch =
10

-0.0457 -0.0442 -0.0344

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch =
1

-0.1609 -0.0987 -0.0565

Mean

Batch
= 5

-0.0776 -0.0945 -0.0507

Mean

Batch
= 10

-0.0460 -0.0417 -0.0418

n = 2000 n = 1000 n = 500

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch
= 1

-0.1213 -0.0715 -0.0633

Mean

Batch
= 5

-0.0001 -0.0528 -0.0731

Mean

Batch
= 10

0.0172 -0.0193 -0.0558

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch =
1

-0.1776 0.0518 0.2247

Mean

Batch =
5

0.0080 0.0640 0.2239

Mean

Batch =
10

0.0299 0.1226 0.3203

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch =
1

0.0356 0.1800 0.1167

Mean

Batch
= 5

0.1101 0.2034 0.1250

Mean

Batch
= 10

0.0835 0.1562 0.2702

n = 300 n = 150 n = 100

169

n = 16000

n = 8000

n = 4000

n = 2000

n = 1000

n = 500

n = 300

n = 150

n = 100

Figure 7.60 Frequency distribution of the number of observations truncated as a function of batch sizes b=1, 5, and 10 for run length of
n=100, 150, 300, 500, 1000, 2000, 4000, 8000, and 16,000 for Model 3 with of 0.90

0
200
400
600
800

1000

0 25 50 75 125 250 500 <
1000

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0
200
400
600
800

1000

0 25 50 75 125 250 500 <
1000

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0
200
400
600
800

1000

0 25 50 75 125 250 500 <
1000

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0

500

1000

0 25 50 75 125 250 500 <
1000

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0

500

1000

0 25 50 75 125 250 500 <
1000

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0

500

1000

0 25 50 75 125 250 500 <
1000

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0
200
400
600
800

1000

0 25 50 75 125 250 500 <
1000

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0
200
400
600
800

1000
1200

0 25 50 75 125 250 500 <
1000

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0

200

400

600

800

1000

0 25 50 75 125 250 500 <
1000N

u
m

b
e

r
o

f
R

e
p

lic
a

tio
n

s

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

170

7.3.3.3 Results for Model 3 with =0.80

Figure 7.61 Example of EAR(1) with of 0.8 (n = 16000, Green line: E(X))

n = 16000

n = 8000

n = 4000

n = 2000

n = 1000

n=500

n = 300

n = 150

n = 100

Figure 7.62 95% confidence intervals of the mean for the truncated mean output as a function
of batch size (b= 1, 5, and 10) and run length (n=100, 150, 300, 500, 1000, 2000, 4000, 8000,
and 16,000) for Model 3 with =0.80 (Theoretical mean of 5, Blue line)

4.65

4.7

4.75

4.8

4.85

4.9

4.95

5

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
b = 10

4.65

4.7

4.75

4.8

4.85

4.9

4.95

5

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
b = 10

4.65

4.7

4.75

4.8

4.85

4.9

4.95

5

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
b = 10

4.65

4.7

4.75

4.8

4.85

4.9

4.95

5

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
b = 10

4.65

4.7

4.75

4.8

4.85

4.9

4.95

5

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
b = 10

4.65

4.7

4.75

4.8

4.85

4.9

4.95

5

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
b = 10

4.65

4.7

4.75

4.8

4.85

4.9

4.95

5

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
b = 10

4.65

4.7

4.75

4.8

4.85

4.9

4.95

5

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
b = 10

4.65

4.7

4.75

4.8

4.85

4.9

4.95

5

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
b = 10

171

n = 16000

n = 8000

n = 4000

n = 2000

n = 1000

n = 500

n = 300

n = 150

n = 100

Figure 7.63 95% confidence intervals for the mean number of observations truncated as a
function of batch size (b= 1, 5, and 10) and run length (n=100, 150, 300, 500, 1000, 2000, 4000,
8000, and 16,000) for Model 3 with =0.80

0

5

10

15

20

MSER b =
1

MSER b =
5

MSER b =
10

0

5

10

15

20

MSER b =
1

MSER b =
5

MSER b =
10

0

5

10

15

20

MSER b =
1

MSER b =
5

MSER b =
10

0

5

10

15

20

MSER b =
1

MSER b =
5

MSER b =
10

0

5

10

15

20

MSER b =
1

MSER b =
5

MSER b =
10

0

5

10

15

20

MSER b =
1

MSER b =
5

MSER b =
10

0

5

10

15

20

MSER b =
1

MSER b =
5

MSER b =
10

0

5

10

15

20

MSER b =
1

MSER b =
5

MSER b =
10

0

5

10

15

20

MSER b =
1

MSER b =
5

MSER b =
10

172

n = 16000

n=8000

n=4000

n=2000

n=1000

n=500

n=300

n=150

n=100

Figure 7.64 Scatterplots of the truncated mean vs. the number of observations truncated for
batch sizes b=1, 5, and 10 for run length of n=100, 150, 300, 500, 1000, 2000, 4000, 8000, and
16,000 Model 3 with =0.80

173

Table 7.27 Correlation between the truncated mean and the number of observations
truncated for batch sizes b=1, 5, and 10 for run length of n=100, 150, 300, 500, 1000, 2000,
4000, 8000, and 16,000 for Model 3 with =0.80

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch
= 1

0.0519 0.0491 0.0431

Mean

Batch
= 5

0.0508 0.0419 0.0387

Mean

Batch
= 10

0.0509 0.0437 0.0338

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch
= 1

0.0245 0.0221 -0.0122

Mean

Batch
= 5

0.0237 0.0097 0.0024

Mean

Batch
= 10

0.0241 0.0165 -0.0233

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch
= 1

0.0023 0.0051 0.0102

Mean

Batch
= 5

0.0015 -0.0088 0.0004

Mean

Batch
= 10

0.0010 -0.0058 -0.0114

n = 16000 n = 8000 n = 4000

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch
= 1

-0.0264 -0.0447 -0.0443

Mean

Batch
= 5

-0.0302 -0.0799 -0.0725

Mean

Batch
= 10

-0.0272 -0.0725 -0.0736

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch
= 1

-0.0566 -0.0549 -0.0201

Mean

Batch
= 5

-0.0595 -0.0755 -0.0307

Mean

Batch
= 10

-0.0037 -0.0193 -0.0420

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch
= 1

-0.1855 -0.1398 -0.0686

Mean

Batch
= 5

-0.1211 -0.1418 -0.0677

Mean

Batch
= 10

-0.0647 -0.0736 -0.0439

n = 2000 n = 1000 n = 500

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch
= 1

-0.1854 -0.1782 -0.0958

Mean

Batch
= 5

-0.0969 -0.1531 -0.0767

Mean

Batch
= 10

-0.0268 -0.0685 -0.0344

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch
= 1

-0.3738 -0.1403 0.0159

Mean

Batch
= 5

-0.0987 -0.1463 0.0115

Mean

Batch
= 10

-0.0165 0.0275 0.0946

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch
= 1

-0.2847 -0.0222 0.0204

Mean

Batch
= 5

0.0231 -0.0132 0.0129

Mean

Batch
= 10

0.0452 0.0239 0.0474

n = 300 n = 150 n = 100

174

n = 16000

n = 8000

n = 4000

n = 2000

n = 1000

n = 500

n = 300

n = 150

n = 100

Figure 7.65 Frequency distribution of the number of observations truncated as a function of batch sizes b=1, 5, and 10 for run length of
n=100, 150, 300, 500, 1000, 2000, 4000, 8000, and 16,000 for Model 3 with of 0.80

0
200
400
600
800

1000

0 25 50 75 125 250 500 <
1000

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0
200
400
600
800

1000

0 25 50 75 125 250 500 <
1000

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0
200
400
600
800

1000

0 25 50 75 125 250 500 <
1000

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0

500

1000

0 25 50 75 125 250 500 <
1000

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0

500

1000

0 25 50 75 125 250 500 <
1000

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0

500

1000

0 25 50 75 125 250 500 <
1000

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0
200
400
600
800

1000

0 25 50 75 125 250 500 <
1000

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0
200
400
600
800

1000

0 25 50 75 125 250 500 <
1000

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0
200
400
600
800

1000
1200

0 25 50 75 125 250 500 <
1000

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

175

7.3.3.4 Results for Model 3 with =0.70

Figure 7.66 Example of EAR(1) with ϕ of 0.7 (n = 16000, Blue line: E(X))

n = 16000

n = 8000

n = 4000

n = 2000

n = 1000

n=500

n = 300

n = 150

n = 100

Figure 7.67 95% confidence intervals of the mean for the truncated mean output as a
function of batch size (b= 1, 5, and 10) and run length (n=100, 150, 300, 500, 1000, 2000,
4000, 8000, and 16,000) for Model 3 with =0.70 (Theoretical mean of 3.33, Blue line)

3.18

3.2

3.22

3.24

3.26

3.28

3.3

3.32

3.34

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
b = 10

3.18

3.2

3.22

3.24

3.26

3.28

3.3

3.32

3.34

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
b = 10

3.18

3.2

3.22

3.24

3.26

3.28

3.3

3.32

3.34

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
b = 10

3.18

3.2

3.22

3.24

3.26

3.28

3.3

3.32

3.34

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
b = 10

3.18

3.2

3.22

3.24

3.26

3.28

3.3

3.32

3.34

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
b = 10

3.18

3.2

3.22

3.24

3.26

3.28

3.3

3.32

3.34

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
b = 10

3.18

3.2

3.22

3.24

3.26

3.28

3.3

3.32

3.34

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
b = 10

3.18

3.2

3.22

3.24

3.26

3.28

3.3

3.32

3.34

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
b = 10

3.18

3.2

3.22

3.24

3.26

3.28

3.3

3.32

3.34

MSER
b = 1

Raw
b = 1

MSER
b = 5

Raw
b = 5

MSER
b = 10

Raw
b = 10

176

n = 16000

n = 8000

n = 4000

n = 2000

n = 1000

n = 500

n = 300

n = 150

n = 100

Figure 7.68 95% confidence intervals for the mean number of observations truncated as a
function of batch size (b= 1, 5, and 10) and run length (n=100, 150, 300, 500, 1000, 2000,
4000, 8000, and 16,000) for Model 3 with =0.70

0

5

10

15

20

MSER b =
1

MSER b =
5

MSER b =
10

0

5

10

15

20

MSER b =
1

MSER b =
5

MSER b =
10

0

5

10

15

20

MSER b =
1

MSER b =
5

MSER b =
10

0

5

10

15

20

MSER b =
1

MSER b =
5

MSER b =
10

0

5

10

15

20

MSER b =
1

MSER b =
5

MSER b =
10

0

2

4

6

8

10

12

MSER b =
1

MSER b =
5

MSER b =
10

0

2

4

6

8

10

12

MSER b =
1

MSER b =
5

MSER b =
10

0

2

4

6

8

10

12

MSER b =
1

MSER b =
5

MSER b =
10

0

2

4

6

8

10

12

MSER b =
1

MSER b =
5

MSER b =
10

177

n = 16000

n=8000

n=4000

n=2000

n=1000

n=500

n=300

n=150

n=100

Figure 7.69 Scatterplots of the truncated mean vs. the number of observations truncated for
batch sizes b=1, 5, and 10 for run length of n=100, 150, 300, 500, 1000, 2000, 4000, 8000, and
16,000 Model 3 with =0.70

178

Table 7.28 Correlation between the truncated mean and the number of observations
truncated for batch sizes b=1, 5, and 10 for run length of n=100, 150, 300, 500, 1000, 2000,
4000, 8000, and 16,000 for Model 3 with =0.70

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch
= 1

0.0533 0.0414 0.0544

Mean

Batch
= 5

0.0534 0.0320 0.0496

Mean

Batch
= 10

0.0549 0.0362 0.0445

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch
= 1

0.0322 0.0211 0.0171

Mean

Batch
= 5

0.0324 0.0108 0.0101

Mean

Batch
= 10

0.0353 0.0159 0.0046

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch
= 1

-0.0248 0.0189 0.0068

Mean

Batch
= 5

-0.0238 0.0025 -0.0054

Mean

Batch
= 10

-0.0196 0.0093 -0.0086

n = 16000 n = 8000 n = 4000

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch
= 1

-0.01590 0.00987 -0.01131

Mean

Batch
= 5

-0.01121 -0.01420 -0.02741

Mean

Batch
= 10

-0.01241 -0.00999 -0.04313

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch
= 1

-0.0489 -0.0357 -0.0050

Mean

Batch
= 5

-0.0433 -0.0707 -0.0243

Mean

Batch
= 10

0.0036 -0.0122 -0.0235

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch
= 1

-0.1123 -0.0845 -0.0460

Mean

Batch
= 5

-0.0980 -0.1320 -0.0551

Mean

Batch
= 10

-0.0548 -0.0555 -0.0396

n = 2000 n = 1000 n = 500

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch
= 1

-0.1889 -0.1540 -0.1375

Mean

Batch
= 5

-0.1520 -0.1642 -0.1320

Mean

Batch
= 10

-0.0862 -0.0812 -0.1175

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch
= 1

-0.4042 -0.1781 -0.0367

Mean

Batch
= 5

-0.1494 -0.1855 -0.0261

Mean

Batch
= 10

-0.0409 0.0120 -0.0015

Trunc

Batch
=1

Trunc

Batch
=5

Trunc

Batch
=10

Mean

Batch

= 1

-0.3479 -0.1125 -0.0772

Mean

Batch
= 5

-0.0362 -0.0818 -0.0866

Mean

Batch
= 10

0.0228 -0.0025 -0.0667

n = 300 n = 150 n = 100

179

n = 16000

n = 8000

n = 4000

n = 2000

n = 1000

n = 500

n = 300

n = 150

n = 100

Figure 7.70 Frequency distribution of the number of observations truncated as a function of batch sizes b=1, 5, and 10 for run length of

n=100, 150, 300, 500, 1000, 2000, 4000, 8000, and 16,000 for Model 3 with of 0.70

0
200
400
600
800

1000

0 25 50 75 125 250 500 <
1000

N
um

be
r

of

R
ep

lic
at

io
ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0
200
400
600
800

1000

0 25 50 75 125 250 500 <
1000

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0
200
400
600
800

1000

0 25 50 75 125 250 500 <
1000

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0
200
400
600
800

1000

0 25 50 75 125 250 500 <
1000

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0
200
400
600
800

1000

0 25 50 75 125 250 500 <
1000

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0
200
400
600
800

1000

0 25 50 75 125 250 500 <
1000

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0
200
400
600
800

1000

0 25 50 75 125 250 500 <
1000

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0
200
400
600
800

1000

0 25 50 75 125 250 500 <
1000

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0

500

1000

1500

0 25 50 75 125 250 500 <
1000

N
um

be
r

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

180

7.3.3.5 Results Using OBM for Model 3 with =0.70

We applied OBM to Model 3 with run length n=1000 for batch sizes b=10, 50, 100,

and 200 observations. Figure 7.71 shows output for four representative replications, one

at each batch size. Table 7.29 and Figure 7.72(a) compares the 95% confidence intervals

on the truncated mean for each of the OBM estimates with the truncated mean for non-

overlapping approach with the single batch size b=10. None of the interval estimates cover

the expected value of 3.33 except OBM b = 100 and NOBM. However, all the mean

estimates are within 0.3% of the theoretical mean and the differences among these

estimates are not statistically significant.

b = 10 b = 50

b = 100 b = 200

Figure 7.71 Representative Output, Overlapping Batch Mean, and MSER Statistic of Model
3 (b= 10, 50, 100, and 200)

181

Table 7.29 95% confidence intervals for Model 3 on the truncated mean and the standard
deviation for overlapping and non-overlapping batches

OBM NOBM

OBM b=10 OBM b=50 OBM b=100 OBM b=200 NOBM b=10

Sample Mean 3.322456 3.320894 3.323329 3.322423 3.325367

Upper limit 3.329200 3.327986 3.330414 3.329345 3.332040

Lower limit 3.315712 3.313801 3.316244 3.315501 3.318693

Sample Std D 0.108683 0.114299 0.114175 0.111547 0.107546

Upper limit 0.113668 0.119542 0.119412 0.116663 0.112479

Lower limit 0.104120 0.109500 0.109381 0.106863 0.103031

(a)

(b)

Figure 7.72 95% confidence intervals for Model 3 on (a) the truncated mean for overlapping
and non-overlapping batches and (b) the standard deviation for overlapping and non-
overlapping batches

Figure 7.73, 7.74, and Table 7.29 suggest an interesting finding of how OBM does act

compared to NOBM. As we see in Model 2, this approach keeps looking for the minimal

MSER statistic over d*<n/2 and this tendency causes violation of the half run rule. Thus,

imposing this rule for OBM should be recommended. In addition, OBM b=10 and NOBM

b=10 perform similar patterns as the pre-processed output from OBM follows NOBM’s

output trend.

3.3

3.305

3.31

3.315

3.32

3.325

3.33

3.335

OBM
b = 10

OBM
b = 50

OBM
b = 100

OBM
b = 200

MSER
b = 10

0.09

0.095

0.1

0.105

0.11

0.115

0.12

0.125

OBM
b = 10

OBM
b = 50

OBM
b = 100

OBM
b = 200

MSER
b = 10

182

Figure 7.73 Scatterplots of the truncated mean vs. the number of observations truncated for
OBM sizes b=10, 50, 100 and 200 for run length of n=1000 with ϕ of 0.70 for Model 3
(including NOBM batch size of 10)

Figure 7.74 Frequency distribution of the number of observations truncated as a function of
OBM sizes b=10, 50, 100, and 200 for run length of n=1000 with ϕ of 0.70 for Model 3
(including NOBM batch size of 10)

183

Table 7.30 Correlation between the truncated mean and the number of observations
truncated for OBM sizes b=10, 50, 100, and 200 for run length of n=16,000 with ϕ of 0.70 for
Model 3

 Trunc Batch =10 Trunc Batch =50 Trunc Batch =100 Trun Batch = 200

Mean Batch = 10 -0.105123784 0.024183645 -0.007825651 -0.041654617

Mean Batch = 50 0.005546592 -0.144419915 -0.01367133 -0.069917161

Mean Batch = 100 -0.062115342 0.031223516 -0.036393455 -0.036956424

Mean Batch = 200 -0.018985329 -0.022951969 -0.003507772 -0.103548868

184

Chapter 8. Conclusion and future research

One measure of the effectiveness of applied research on DES is the degree to which

research findings are incorporated into standard practice. A major purpose of our research

was to enhance the effectiveness of MSER in just this way. Two different approaches to

improving MSER accessibly were implemented and thoroughly tested.

The first was to integrate MSER logic in commercial simulation software in the form

of a static library, a DLL, and a submodel (subroutine); the second was to provide

standalone codes a variety of programming language to use as MSER post-analysis. After

extensive reviews, we chose the commercial simulation software ExtendSim,

ProModel/MedModel, and Arena to realize this first approach; we chose R, SAS, Matlab,

VBA, and C/C++ to implement the second.

To make these codes public and facilitate distribution, we created the MSER

Laboratory hosted at the University of Virginia. In addition to the sample codes, this web

site currently includes information on the mathematical and historical development of

MSER, as well as references into the literature. Our intention is to maintain and support

the continued development and expansion of the Lab.

In the future, we will explore modifications to the laboratory site which will make it

interactive, such that a warm-up period can be determined automatically simply by

importing a data set to be analyzed. We also intend to include codes in additional

programming languages, such as the scripting languages Python and Perl, as well as

185

incorporate useful suggestions and related research findings from the simulation

community. We are very anxious to work with developers of commercial simulation

software houses to incorporate MSER in future releases of their products, as we have done

previously with Dave Krahl at Imagine That (to whom we reiterate our sincere thanks and

appreciation). We also intend to pursue research to advance the MSER logic module,

particularly with regard to integrating MSER with the notion of automatic stopping rules.

The second major purpose of our research was to address a number of open questions

regarding MSER application and provide guidance in the selection of MSER parameters.

These include:

 the choice of simulation run length n,

 the choice of batch size b,

 the maximum acceptable optimal truncation point dmax on the range of a given run

length [0≤ dmax ≤n], and

 the incorporation of the overlapping batch means.

To this end we first develop a hypothetical case which demonstrated that MSER can

potentially change its determinations regarding the location and the even the existence of

a suitable truncation point depending on the run length chosen. We concluded that

performance of MSER does in fact depend fundamentally on choosing a sufficient run

length. Without knowledge beyond the output sequences alone, this choice remains an open

problem and the subject for future research.

To develop insight regarding the remaining questions, we tested MSER using non-

overlapping batch means (NOBM) with batch sizes of b= 1, 5, and 10 and selected run

lengths for three simulation models: (1) a uniform white noise process with superimposed

186

linearly decreasing bias, (2) the delay time in M/M/1 with four different traffic intensities,

and (3) EAR(1) with four different parameters. We also tested MSER using overlapping

batch means (OBM) with selected batch sizes run lengths.

We selected Model 1 as the baseline for testing MSER performance because of its

transparency—the range of optimal truncation points is clear, both visually and

analytically. We showed that for long runs:

(1) all batch sizes remove all of the transient observations,

(2) estimation errors are an artifact of sampling after the biasing effect of the initial

transient has been removed,

(3) modest batching has no significant effect on the quality of estimates, and

(4) the mean estimate is uncorrelated with the number of observations truncated for

all the batch sizes and the success of a truncation procedure in terms of the

accuracy of the estimate cannot be imputed from the truncation point alone.

For shorter runs, we showed conclusion (4) also holds. In addition:

(5) even with very little steady-state data, the MSER-indicated truncation points are

themselves very reasonable and indeed optimal in terms of the mean estimates for

most cases,

(6) increasing batch sizes increases both the variance and spread of the truncated

observations, without systematically affecting the accuracy of the estimated mean,

(7) to the degree that batching reduces the effective sample size, it is not recommended

for small samples and provides no discernable benefit for large samples,

187

(8) the choice of dmax is a binding concern only if (n-d)/n is close to 1—the choice of

n is likely dominated by the need for estimates with acceptable accuracy and

precision,

(9) the d*≤dmax=n/2 threshold provides significant protection against estimation errors

resulting from run lengths that are too short without over-truncation of replications

with adequate run lengths,

(10) for run lengths that are approximately the same as ideal truncation point, however,

the protection may be inadequate and a modestly lower threshold would be

preferred, and

(11) OBM outperforms the non-overlapping approach in all cases and OBM offers

significantly greater precision in the estimate.

We selected Model 2 because it allows comparison with the results obtained by Law

(2015) and by White and Hwang (2015) for long runs. The results obtained by White and

Hwang (2015) demonstrated that truncation points and the error in the truncated mean

estimates are essentially independent. Further that, while the mean estimates for this

problem are quite good without truncation, applying MSER-5 truncation modestly

improves the accuracy of these estimates.

Our objective here was to explore the performance of MSER for a single initial

condition, empty and idle {x0=0}, with respect to alternative run lengths, batch sizes, and

model traffic intensities. We found that:

(1) the results obtained in the present research for n=64,000 and =0.9 are entirely

consistent with those reported earlier.

188

(2) while we speculated that the effects of decreasing would be similar to those

encountered by increasing the run length n, the results of our experiments suggest

that this speculation is largely untrue and decreasing traffic intensity cannot

altogether compensate for short run length,

(3) the d*≤dmax=n/2 truncation rule likewise does not altogether compensate for short

run lengths, and

(4) for smaller run lengths and traffic intensities, MSER appears to overestimate the

amount of truncation warranted and underestimate the steady-state mean.

We speculate that conclusion (4) obtains because truncating early regenerative cycles

with large peak waiting times, when these exist, reduces the sample variance. Early in the

run, the MSER statistic is relatively less sensitive to the accompanying reduction in sample

size than to the reduction of sample variance. This speculation remains open for future

research.

In the final analysis, our research demonstrates that

(5) the difficulty in estimating the steady-state mean has little or nothing to do with bias

resulting from a poor choice of initial conditions for Model 2. The empty-and-idle

condition regenerates frequently, more frequently for lower traffic intensities and

smaller batches, and

(6) instead, the fundamental issue here is determining an initial run length that is

sufficiently long to capture observations that, taken together, are representative of

the steady-state distribution.

In other words,

189

(7) for regenerative processes with irregular cyclical outputs and inadequate run lengths,

MSER may suggest truncation points when truncation is contraindicated.

Future research might extend these results by testing the effect of alternate initial conditions

other than x0=0 or 100, where truncation is actually required to mitigate initialization bias.

We selected Model 3 because determining the “true” truncation point for this model is

problematic. Unlike Model 1, the process converges to steady state only in the limit and

which observation to choose as the “true” truncation point is inherently subjective. We

noted that MSER is data driven and does not suffer from this ambiguity. We also suggested

the expected -percent settling time as a measure for the degree of truncation.

We found that:

(1) MSER yields superior estimates for all run lengths, with the difference in accuracy

increasing as the run lengths as the decrease,

(2) restricting the optimal truncation point to d*<n/2 does not consistently appear to

provide the desired indication that runs are too short to yield accurate estimates on

average.

However, we speculate the same is not true when the threshold is applied on a replication-

by-replication basis, as recommended. This speculation warrants future research.

(3) Truncated mean estimates are relatively independent of the number of observations

truncated—for long runs, the correlation is essentially zero; for medium and short

runs, there appears to be a modest positive correlation, with the magnitude of this

correlation generally increasing as run length decreases. The shortest runs tend to

induce greater truncation on average, and

190

(4) NOBM provides better accuracy and precision at b=10.

It is unclear whether or not conclusion (4) holds for other batch sizes. Adding clarity on

the relative performance of OBM and NOBM is a potentially fruitful subject for future

research.

The conclusion consistently obtained in this research—that batching, in general, does

not improve estimates and can, in some instances, result in a loss of precision seemingly

contradicts a long-standing result in the literature (White, Cobb, and Spratt, 2000) but

agrees with Schmeiser’s discussion and recommendation

The MSER-5 is the most attractive general-purpose heuristic for mitigating the effects

of the startup problem evaluated in this research. It is the most sensitive rule in

detecting bias and the most consistent rule in mitigating its effects.

This result was obtained based using models not considered in the current research. Future

research should attempt to reproduce the results reported in the literature using the methods

developed in this research. Future research should also test MSER performance on

additional, more complex processes models, such as SS7 model examined by Law. The

MSER laboratory, we hope, will facilitate these future research efforts.

191

References

Applied Material, Introduction of Automod, accessed Aug. 19, 2016,
http://www.appliedmaterials.com/global-services/automation-software/automod

Arena Simulation Software, What is Simulation Software?, accessed Aug. 19, 2016,
https://www.arenasimulation.com/

Banks, J., (Editor), 1998, Handbook of Simulation: Principles, Methodology, Advances,
Applications, and Practice, Wiley

Bertoli, M., G. Casale, and G. Serazzi, 2007, The JMT Simulator for Performance
Evaluation of NonProduct-Form Queueing Networks. Proceedings of the
40thAnnual Simulation Symposium, pp. 3-10

Bertoli, M., G. Casale, and G. Serazzi, 2009, JMT: Performance Engineering Tools for
System Modeling. ACM Metrics Performance Evaluation Review, 36(4)10-15.

Billingsley, P., 1968, Convergence of Probability Measures. Wiley, New York.

Blomqvist, N., 1967, The Covariance Function of the M/G/1 Queueing system.
Skandinavisk Aktuarietidskrift, 6:157-174

Cash, C. R., D. G. Dippold, J. M. Long, B. L. Nelson, and W. P. Pollard., 1992, Evaluation
of tests for initial condition bias. In Proceedings of the 1992 Winter Simulation
Conference, ed. J. J. Swain, D. Goldsman, R. C. Crain, and J. R. Wilson, Institute of
Electrical and Electronics Engineers, Piscataway, NJ, 577-585

Cobb, M. J., 2000, Eliminating Initialization Bias while Controlling Simulation Run
Length, Master Thesis, Department of Systems and Information Engineering,
University of Virginia, Charlottesville, Virginia

Cohen, J. W., 1982, The Single Server Queue. North- Holland, Amsterdam

Conway, R. W., 1963, Some Tactical Problems in Digital Simulation, Management
Science, 10(1)47-61

CreateaSoft, SimCAD Process Simulator, accessed Aug. 20, 2016,
https://www.createasoft.com/

Emshoff, J. R., and R. L. Sission, 1970, Design and Use of Computer Simulation Models,
Macmillan, New York

Fishman, G.S., 1971, Estimating Sampling Size in Computing Simulation Experiments,
Management Science, 18(1)21-38

Fishman, G.S., 1973, Statistical analysis for queueing simulation, Management Science,
20:363-369

Fishman, G.S., 2001, Discrete-Event Simulation: Modeling, Programming, and Analysis,
Springer-Verlag, New York

Franklin, W. W., and K. P. White, Jr., 2008, Stationarity Tests and MSER-5: Exploring the
Intuition Behind Mean-Squared-Error-Reduction in Detecting and Correcting
Initialization Bias, Proceedings of the 2008 Winter Simulation Conference, 541-546

192

Franklin, W. W., K. P. White, Jr., and K. A. Hoad, 2009, Comparing Warm-up Methods
using Mean-Squared Error, Working paper, Department of Systems and Information,
University of Virginia, Charlottesville, VA. Available from the authors.

Franklin, W.W., 2009, The Theoretical Foundation of the MSER Algorithm, Ph.D.
Dissertation, Department of Systems and Information Engineering, University of
Virginia, Charlottesville, VA

Goldsman, D. and M.S. Meketon, 1986, A Comparison of Several Variance Estimators,
Tech. Report #J-85-12, School of ISyE, Georgia Tech, Atlanta.

Gordon, G., 1969, System Simulation, Prentice Hall PTR, Upper Saddle River, NJ

Grassmann, W.K., 2009, When, and when not to Use Warm-up Periods in Discrete Event
Simulation. SimuTools 2009, Rome, 1-6

Grassmann, W.K., 2011, Rethinking the Initialization Bias Problem in Steady-State
Discrete Event Simulation, Proceedings of the 2011 Winter Simulation Conference,
593-599

Hoad, K., and S. Robinson, 2011, Implementing Mser-5 in Commercial Simulation
Software and Its Wider Implications, Proceedings of the 2011 Winter Simulation
Conference, pp.495-503

Hoad, K., Robinson, S., and Davies, R., 2008, Automating Warm-up Length Estimation,
Proceedings of the 2008 Winter Simulation Conference, 532-540

Hoad, K., Robinson. S., and Davies, R., 2011, AutoSimOA: a framework for automated
analysis of simulation output, Journal of Simulation 5:9-24

Imagine That, Introduction of ExtendSim, accessed Aug. 20, 2016,
http://www.extendsim.com/

Kelton, W. D., and A. M. Law, 1983, A New Approach for Dealing with the Startup
Problem in Discrete Event Simulation, Naval Research Logistics Quarterly 30, pp.
641-658

Kelton, W. D., R. P. Sadowski, and N. Swets, 2010, Simulation with Arena, 5th edition,
McGraw-Hill, New York

Krahl, D., 2012, ExtendSim: a history of innovation, Proceedings of the Winter Simulation
Conference.

Lada, E. K., and J. R. Wilson, 2008, SBatch: A spaced batch means procedure for steady-
state simulation analysis. Journal of Simulation 2:170–185.

Lada, E.K., 2003, A wavelet-based procedure for steady-state simulation output analysis,
Ph.D Dissertation, available online via www.lib.ncsu.edu/theses/available/etd-
04032003-141616/unrestricted/etd.pdf

Law, M. A., 2015, Simulation Modeling and Analysis, 5th edition, McGraw-Hill, New
York

Mahajan, P. S., and R.G. Ingalls, 2004, Evaluation of methods used to detect warm-up
period in steady state simulation, Proceedings of the 2004 Winter Simulation
Conference, pp. 663-671

McClarnon, M. A., 1990, Detection of steady state in discrete event dynamic systems: An
analysis of heuristics. M.S. thesis, School of Engineering and Applied Science,

193

University of Virginia, Charlottesville, Virginia. Available from University of
Viginia Library, lib-lend@virginia.edu, 434–982–3094.

Meketon, M. S., and Schmeiser, B. W., 1984, Overlapping batch means: Something for
nothing? Proceedings of the 1984 Winter Simulation Conference, 227-230.

Mokashi, A. C., J. J. Tejada, S. Yousefi, T. Xu, J. R. Wilson, A. Tafazzoli, and N. M.
Steigher, 2010, Performance Comparison of MSER-5 and N-Skart on the Simulation
Start-up Problem, Proceedings of the 2010 Winter Simulation Conference, pp.971-
982

Morse, P. M., 1955, Stochastic properties of waiting lines. Operations Research, 3(3)
pp.1255-1261

Nelson, B.L., 2011, Thirty Years of Batch Size Effects, Proceedings in the 2011 Winter
Simulation Conference, 392-400

Nelson, B. 2013, Foundations and Methods of Stochastic Simulation: A First Course.
Springer Science, New York.

Pasupathy, R. and B. Schmeiser, 2010, The Initial Transient in State-State Point
Estimation: Contexts, A Bibliography, The MSE Criterion, and The MSER Statistic,
Proceedings of the 2010 Winter Simulation Conference, 184-197

Pasupathy, R., and B. Schmeiser. 2014. “MSER: Algorithms for the Initial-Transient
Problem.” Presented at the INFORMS Annual Meeting, 12 November

Pawliskowski, K., 1990, Steady-State Simulation of Queuing Processes: A Survey of
Problems and Solutions, ACM Computing Surveys, 22(2)123-170

Peng, L., and Q. Yao, 2003, Least Absolute Deviation Estimation for ARCH and GARCH
models, Biometria 90(4)967-975

Pollard, D., 1991, Asymptotics for least absolute deviation regression estimators,
Econometric Theory 7:186-199

ProModel, 2011, ProModel tutorial accessed via
https://www.promodel.com/solutionscafe/webinars/ProModel%202011%20Tutorial
/PM2011Tutorial.html

Rossetti, M. D., P. J. Delaney, and K. P. White, Jr. 1995, Generalizing the half-width
minimization heuristic for mitigating initialization bias, In Proceedings of
International Conference on Systems, Man, and Cybernetics. Piscataway, New
Jersey: Institute of Electrical and Electronics Engineers, Inc. pp. 212–216

Sanchez, P., and K.P. White, Jr. 2011, Interval Estimation Using Replication/Deletion and
MSER Truncation, Proceedings of the 2011 Winter Simulation Conference, 488-494

Schmeiser, B., 1982, Batch size effects in the analysis of simulation output, Operations
Research 30:556–568

Schmeiser. B., and W.T. Song., 1987, Correlation among estimators of the variance of the
sample mean. Proceedings of the Winter Simulation Conference, pp.309–317

Schruben, L.W., 1982, Detecting Initialization Bias in Simulation Output, Operation
Research 30(3)569-590

Schruben, L. W., 1983, Confidence interval estimation using standardized time series.
Operations research, 30:1090-1108

194

Simio Release 2 - Sprint 41 - July 21, 2010 to implement the research logic, accessed Aug.
20, 2016, http://www.simio.com/products/ and Simio Reference Guide

SIMUL8 Software, Simul8 Introduction, accessed Aug. 19, 2016, http://www.simul8.com/

Solomon, S. L., 1983, Simulation of Waiting-Line Systems. Prentice-Hall, Englewood
Cliffs, N.J.

Song, W. T., 1996, On the Estimation of Optimal Batch Sizes in the Analysis of Simulation
Output, European Journal of Operational Research, 88:304-319

Song, W. T., and B. Schmeiser, 1993, Variance of the Sample Mean: Properties and Graphs
of Quadratic-Form Estimators, Operations Research 41:501-517

Song, W.T., and B. Schmeiser, 1995, Optimal Mean-Squared-Error Batch Sizes,
Management Science 41:110–123.

Spratt, S. C., 1998, An Evaluation of Heuristics for the Startup Problem

Tafazzoli, A., 2009, Skart: A skewness- and autoregression-adjusted batch-means
procedure for simulation analysis. PhD Dissertation, Department of Industrial and
Systems Engineering, North Carolina State University, Raleigh, North Carolina.
Available via www.lib.ncsu.edu/theses/available/etd-01122009-
153054/unrestricted/etd.pdf [accessed March 3, 2012].

Tafazzoli, A., and J. R. Wilson, 2009, N-Skart: A Nonsequential Skewness-and
Autoregression-adjusted Batch-means Procedure for Simulation Analysis.
Proceedings of the 2009 Winter Simulation Conference, pp.652-662

Tocher, K. D.,1963, The Art of Simulation, English Universities Press

Turnquist, M. A., and J. M. Sussman, 1977, Toward Guidelines for Designing
Experiments in Queuing Simulation. Simulation, 28:137-144

Wang, R. J., and P. W. Glynn, 2014, On the Marginal Standard Error Rule and the
Testing of Initial Transient Deletion Methods, working paper, Department of
Management Science and Engineering, Stanford University. Stanford, CA. Accessed
30 April 2015. http://web.stanford.edu/~glynn/papers/2014/WangG14.pdf

Welch, P. D., 1981, On the Problem of the Initial Transient in Steady-State Simulation,
IBM Watson Research Center, Yorktown Heights, New York.

White, K. P., Jr. 1995, A simple rule for mitigating initialization bias in simulation output:
Comparative results. In Proceedings of the International Conference on Systems,
Man, and Cybernetics, Piscataway, New Jersey: Institute of Electrical and
Electronics Engineers, Inc., pp. 206–211.

White, K.P. Jr., 1997, An Effective Truncation Heuristic for Bias Reduction in Simulation
Output, Simulation 69(6),323-334

White, K. P., Jr., 2012, Optimal analysis for the mean of a simulation output, Department
of Systems and Information Engineering, University of Virginia, working paper

White, K. P. Jr., M. J. Cobb, and S. C. Spratt, 2000, A Comparison of Five Steady-State
Truncation Heuristics for Simulation, Proceedings of the 2000 Winter Simulation
Conference, pp.755-760

195

White, K. P. Jr., and W. W. Franklin, 2010, Parametric Expression For MSER with
Geometrically Decaying Bias, Proceedings of the 2010 Winter Simulation
Conference, 957- 964

White, K. P., Jr., and Hwang, S. N., 2015, Delay times in an M/M/1 queue: estimating the
sampling distribution for the MSER-truncated steady-state mean using
replication/deletion, Proceedings of the 2015 Winter Simulation Conference, pp.
493-504

White, K. P., and M. A. Minnox, 1994, Minimizing initialization bias in simulation output
using a simple heuristic. In Proceedings of International Conference on Systems,
Man, and Cybernetics, Piscataway, New Jersey: Institute of Electrical and
Electronics Engineers, Inc., pp. 215–220.

White, K. P., Jr., and S. Robinson, 2010, The initial transient problem (again), or why
MSER works, Journal of Simulation, 4(3)268-272

Wilson, J. R., and A. A. B. Pritsker, 1978, Evaluation of startup policies in simulation
experiments. Simulation, 31:79-89

Yousefi, S., 2011, MSER-5Y: An Improved Version of MSER-5 with Automatic
Confidence Interval Estimation, Master thesis, North Carolina State University,
Raleigh, NC

196

Appendix I. Arena MSER Submodel User Guide

This appendix provides guidance that will allow you to incorporate the purpose-built
MSER submodel in your Arena simulation model.

Variable definition

After building a model, you can choose entity’s attribute(s) of interest that are passed to a
Arena MSER submodel.

1. General simulation variables:
a. X: Attribute of interest (i.e., entity waiting time)
b. StopRule: User input to end simulation
c. Counter: Number of entities

2. MSER related variables: You need to define the following additional variables to

store temporary values and compute MSER statistics associated with each entity.
a. Truncation: Truncation index
b. MSER_test: MSER statistics without truncation
c. MSER_final: MSER statistics related to each truncation index
d. X2: Squared values of attribute X
e. inter_cumX: Summation of X associated with each entity

f. inter_cumX2: Summation of X2 associated with each entity

g. cumX: Storage for summation of X associated with each entity
h. cumX2: Storage for summation of X associated with each entity
i. Mean: Average value from the first X to the current one by dividing cumX

by Counter

To avoid confusion, all of variables are preceded with “v_” inside the Arena submodel
with the exception StopRule. Equations 2b and 2c are used to compute MSER statistic.

2b:

2c:

 00
11 1

2

CounterCounterXXCounterX
Counter

i
i

Counter

i

Counter

i
ii

 1
11 11

22

TruncationStopRuleTruncationStopRuleXXTruncationStopRuleXX
StopRule

i
i

StopRule

i

StopRule

i
i

truncation

i
ii

197

All required variables are listed in Table I.1. For example, if you were interested in entity
wait time, choose its wait time attribute as a global variable, v_X. In this table, the
“Location of block” column indicates where the corresponding variables are located in
building blocks in Arena model.

Table I.1. Global, Local variables and Arrays

No. Variable (array)
name

Location of block Usage

1 v_Counter Index Record entity number

v_Counter + 1

2 v_X InterimData
Generation

Record entity wait time

3 v_X2 InterimData
Generation

Record (entity waiting time)2

4 v_inter_cumX InterimData
Generation

Holder for summation of v_X

5 v_inter_cumX2 InterimData Holder for summation of v_X2

6 v_Mean DataGeneration v_cumX(v_Counter)/v_Counter

7 v_ cumX DataGeneration v_inter_cumX(v_counter)

8 v_ cumX2 DataGeneration v_inter_cumX2(v_counter)

9 v_MSER_test MSER Without
Truncation

(v_cumX2(v_Counter) -
v_Counter *
v_Mean(v_Counter) *
v_Mean(v_Counter))/
((v_counter - 0) * (v_counter -
0))

10 StopRule End of Simulation

(Decision block)

Global variable to check the
end of simulation, 10000 that
confirm

StopRule = v_Counter

11 v_Truncation Truncation Index v_Truncation + 1

12 v_MSER_final MSER

With Truncation

((v_cumX2(StopRule) -
v_cumX(v_Truncation)) -
(StopRule -v_Truncation) *
v_Mean(StopRule) *
v_Mean(StopRule))/
((StopRule - v_Truncation) *
(StopRule - v_Truncation - 1))

198

Run length control

As shown in Figure I.1, the global variable StopRule must be defined before running a
model. After assign a value to StopRule, such as 10000 entities, you need to use this
variable as the terminating condition on the Replication Parameters tab of the Arena Run
Setup menu.

Figure I.1. Setting the Simulation Length using the variable StopRule.

199

Usage of MSER Submodel

As an example, consider the case where the output of interest is the mean entity waiting-
time for an M/M/1 queue in steady state. When building the model, include the MSER
submodel as shown in Figure I.2.

Figure I.2. Main model for the example.

As shown in Figure I.3, the MSER submodel consists of three major parts: (1) Data
preprocessing, (2) MSER test generation, and (3) MSER statistics generation. The second
part is included simply to test whether or not the calculations are performed correctly and
can be ignored after completing the model.

200

Figure I.3. Submodel to compute MSER.

Data preprocessing uses three Assign modules to define variables and variable arrays that
reflect the previous variable definitions, as shown in Figure I.4.

Figure I.4. Data preprocessing in Submodel.

The Index Assign module increments the variable v_Counter by 1 as each entity passes
through the module, as shown in Figure I.5. This variable is used as an index into the
arrays in the next Assign module.

201

Figure I.5. Index incremented in an Assign module.

As shown in Figure I.6, the Interim Data Generation Assign module assigns values to the
elements of two variable arrays, X and X2, using V_Counter as the index into these
arrays. This module also assigns a value to the variable inter_cumX. These variables are
subsequently used to update the MSER statistic.

Figure I.6. Interim Data Generation Assignments.

As shown in Figure I.7, the Data Generation assignment module assigns three variable
arrays that also used to update the MSER statistic.

202

Figure I.7. Data Generation in Assignment.

As noted previously, this assignment shown in Figure I.8 is included to test whether or
not the calculations are performed correctly and can be removed after performing the test
satisfactorily.

Figure I.8. MSER without Truncation in Assignment.

Figure I.9 shows the core building blocks used to compute MSER statistics.

203

Figure I.9. MSER Statistics calculation in Submodel.

The decide module in Figure I.10 compares the value of the variable V_Counter to the
value of the variable StopRule to determine whether or not the stopping condition has
been met. If not, the entity exits the Arena MSER submodel.

Figure I.10. End of Simulation in Decision Node.

Once the stopping condition is met, the entity proceeds to the Truncation Index
assignment module shown in Figure I.11. Here the index variable v_Truncation is
incremented by 1.

204

Figure I. 11 Truncation Index in Assignment.

This decision node shown in Figure I.12 checks whether or not the half of simulation run
is completed.

Figure I.12. Half of Simulation in Decision Node.

If not, then the MSER statistics are calculated in the MSER With Truncation Assign
module as shown in Figure I.13. The logic in Equation 2c is incorporated in the New
Value field for the current truncation index to assign the value calculated for the MSER
statistic, an element of the global variable array v_MSER_final.

205

Figure I.13. MSER with Truncation in Assignment.

These values are written to an external file using a ReadWrite module shown in Figure
I.14.

Figure I.14. MSER_only in ReadWrite.

The internal Arena File name used here is identified with an operating-system file using
the File data module on the Advanced Process panel, as shown in Figure I.15. In this

206

example, the operating-system file is named MSER_array.csv and located in the same
folder in which the Arena model. The extension indicates this file is in csv format.

Figure I.15. Store MSER in File.

The file includes two columns, the first indicating the truncation index and the second the
corresponding value of the MSER statistic. The minimum value of the MSER statistic in
the second column is the optimal truncation point indicated by the corresponding
truncation index. See Figure I.16 as an example.

Figure I.16. MSER in File Representation (Optimal Truncation Point: Zero)

	

207

Appendix II. Personal reflections on the importance of the warm-up
problem and undergraduate simulation curriculum survey

II.1 Anecdotal case to emphasize the importance of warm-up period

Some of working professionals representing simulation specialists do not have in-depth

knowledge and fundamental understanding of discrete event simulation. In fact, they are

likely to build models based on a specific software environment. Thus, as long as its built-

in functionalities are enough to reflect key characteristics of the system, only potential

minor error might occur. For example, when a modeler sets up the travel distance of

moving resources, she or he should acknowledge the behavior of returning resources

imposed by some software application. However, we seldom see a simulation professional

using warm-up periods with a solid understanding.

II.2 Undergraduate curriculum survey

We reviewed the twenty curricula or handbooks in industrial or systems engineering

departments in the U.S. colleges. Thirteen out of twenty universities apparently mandate

undergraduates to take credits of simulation course for graduation. Six other universities

also describe simulation as a key methodology to learn before graduation. Even though one

school does not have undergraduate programs, that school provides simulation courses for

graduates. Most courses are 3 or 4 credits which are recommended to take during the third

year. Table AII.1 summarizes detailed information about the survey.

This requirement apparently emphasizes the importance and the difficulty of simulation

courses. However, this tendency does not guarantee those students taking simulation

208

classes to be confident in building complex and sophisticated models. First, it only takes

one semester to fulfill this credit. After finishing the course as a junior student, she or he

might lose the insight and lessons learned over time.

Second, they might have to re-learn using other specific simulation package after their

graduation if the worksite’s tool is different from what they learned. Third, with respect to

output analysis, its contents tend to be addressed near the end of the course. Sometimes,

students are overwhelmed by the last minute pressures while instructors might not have

enough time to provide in-depth lessons. These are the reasons that students and even

experienced modelers do not fully appreciate the criticality of analyzing output statistics.

Furthermore, most of simulation software applications provide 95 or 90% confidence

interval by merely clicking an option.

Additionally, simulation software training courses from software vendors consist of

two parts: Basic/introductory course and the following advanced course. The first course

usually provides the brief review of simulation methodology and teaches how to build

reasonable size models using built-in functions. Its major intents lie in familiarizing how

to use that specific software. By completing this course, the course taker will likely know

how to build relatively formulated models. However, they might fail to incorporate some

key ingredients of a problem.

As the beginners and intermediate modelers encounter more complex situations, they

will turn to their software vendors for additional support. These needs will urge them to

take an advanced course to learn how to use optimization add-ins and to code inside or

outside extensions. Both of these courses usually require two or three day boot camps,

209

TableAII.1 Twenty Undergraduate Curricula of Simulation

but they never exceed more than one week. Thus, less than two weeks and a semester

exposure to simulation is where college graduates start work as simulation analysts.

We also meet many simulation modelers whose backgrounds are not as industrial or

systems engineers. They just take two courses from software vendors and then learn the

methodologies further while they work. In fact, I have been somewhat surprised to witness

many mistakes and misusage even with simple built-in functions and add-ons. For instance,

one input analyzer (i.e., Stat:fit) indicates that there is no good fit for the collected data,

but the modeler just used the first distribution that was addressed. If she or he decides to

use it as a second best option after carefully comparing it with other distributions, it might

be acceptable even though this practice is not recommended. However, if the modeler just

chooses the first one listed out of input analyzer, this attitude should be remedied.

In addition, building a simulation model as a team is sometimes considered a norm, but

this process should be checked by another modeler. At least another input analyzer such as

Undergraduate No. of

Mandatory Credit

1 Columbia University (Fu Foundation) Yes 4

2 Cornell University Yes 4 http://www.orie.cornell.edu/orie/academics/undergraduate/requirements.cfm

3 Georgia Institute of Technology Yes 3 http://www.isye.gatech.edu/academics/undergraduate/courses/

4 Lehigh University (Rossin) Yes 3 http://www.lehigh.edu/ise/documents/IE%20Major%20Requirements%2009_10.pdf

5 North Carolina State University Yes 3 https://portalsp.acs.ncsu.edu/psp/EP91PRD/EMPLOYEE/PCS900PRD/c/NC_SSS_MENU.NC_AA_REQMNT_RPT.GBL

6 Northwestern University (McCormick) Yes 3 http://www.iems.northwestern.edu/docs/undergraduate/AY%2013‐14%20BSIE%20Degree%20Requirements.pdf

7 Purdue University‐West Lafayette Not clear 3 https://engineering.purdue.edu/IE/Academics/Undergrad/Curriculum

8 Stanford University Optional 3 http://exploredegrees.stanford.edu/schoolofengineering/managementscienceandengineering/#bachelorstext

9 Texas A&M University‐College Station (Look) Not clear 3 http://engineering.tamu.edu/industrial/academics/courses/course‐descriptions

10 University of Arkansas‐Fayetteville Yes 3 http://www.ineg.uark.edu/Undergrad_Handbook_Spring_20140423.pdf

11 University of California‐Berkeley Not clear 3 http://ieor.berkeley.edu/AcademicPrograms/Ugrad/Courses/index.htm

12 University of California‐Santa Barbara Not clear 3 http://engineering.ucsb.edu/current_undergraduates/pdf/00‐01Announce.pdf

13 University of Florida Yes 3 https://catalog.ufl.edu/ugrad/current/engineering/majors/industrial‐and‐systems‐engineering.aspx

14 University of Illinois‐Urbana‐Champaign Yes 3 http://provost.illinois.edu/programsofstudy/2014/fall/programs/undergrad/engin/ind_engin.html

15 University of Michigan‐Ann Arbor Yes 4 http://ioe.engin.umich.edu/degrees/ugrad/ugdocs/UndergradStudentGuide.2013.2014.pdf

16 University of Pittsburgh (Swanson) Yes 3 http://www.engineering.pitt.edu/Industrial/Undergraduate/Curriculum_Effective_as_of_Fall_2014/

17 University of Southern California (Viterbi) Not clear 3 http://ise.usc.edu/academics/undergrad/undergrad.htm

18 University of Texas‐Austin (Cockrell) No 0 No undergraduate program

19 University of Wisconsin‐‐Madison Yes 4 http://www.engr.wisc.edu/cmsdocuments/isye‐curriculum‐2014.pdf

20 Virginia Tech Yes 3 http://www.ise.vt.edu/UndergradProgram/ImportantDocuments/2013_14_UG_Handbook.pdf

SourceNo. School name

210

Expert:fit provides qualitative statements indicating that considering empirical distribution

or expertise knowledge is a better solution. However, some software just implement their

own function to assign input distributions that are seemingly workable but does not assure

proper fitting of input data. The reason why I address the cases of input analysis is that

while people believe they follow the standard and reliable steps to analyze input data, many

errors prevail. Thus, the right usage of output analysis must be strictly enforced as there is

no standard method across software environments. We will take a look at different

approaches to deal with warm-up period across multiple simulation software to apply

MSER methodology to their output analysis.

	Thesis_Dissertation Cover and Approval Pages
	Sung Nam Dissertation 2017_04_14_1
	Sung Nam Dissertation 2017_04_14

