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Abstract 

It is well known that the Mean Squared Error Rule (MSER) is an efficient and effective 

method for mitigating initialization bias in the output analysis of steady-state, discrete-

event simulation. However, the application of this method in research and practice has been 

delayed or misunderstood even by experienced simulation modelers.  To address this issue, 

we develop the MSER Laboratory—a permanent website that provides user-friendly 

sample codes, as well as information needed to apply MSER intelligently.  MSER modules 

for three commercial software packages, and standalone MSER codes in five popular 

programming languages, have been written, validated, and made publically available via 

the Laboratory.  

In addition, we use these codes to address open issues in the selection of the parameters 

needed to apply MSER.  These issues include the selection of the MSER truncation 

threshold, batch size, and batching scheme (overlapping or non-overlapping batch means), 

in conjunction with the determination of an initial run length for simulation replications.  

Experiments are conducted using three test models that pose differing challenges for the 

successful determination of a warm-up period.  We confirm that, given adequate run 

lengths, MSER is both effective and robust in all cases. We also illustrate various 

consequences of foreshortened replications for each of the three models. 
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Executive Summary 

This research addresses a practical shortcoming in the output analysis of non-terminating, 

stochastic, discrete-event simulations (DES).  Specifically, our concern is the application 

of MSER, an algorithm for determining an optimal warm-up period when estimating the 

steady-state mean of an output based on a sequence of simulated output values.  It is 

noteworthy that MSER: 

 is proven to yield a near-optimal estimate (under mild assumptions) in the sense of 

minimum mean-squared error (MSE) that cannot be improved upon a priori, 

 is widely accepted in the academic literature as the preferred approach to mitigating 

bias associated with the arbitrary specification of initial conditions, 

 is presented in detail and recommended in the current editions of many standard 

texts on DES, and 

 is effective, efficient, robust, and intuitive. 

In spite of these considerable merits, the application of MSER in practice appears far 

from universal.  We speculate the unaided application of MSER can be inconvenient and 

potentially consuming of both analyst and computing time, especially when a large number 

of output sequences must be initialized.   An obvious solution is to imbed MSER in an 

automated, dynamic, run-time procedure that requires minimal analyst interaction.   
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However, the only reported effort to build MSER into a commercial simulation suite 

(SIMUL8) led to the suggestion that there are significant barriers to implementation (Hoad 

and Robinson, 2011).  These include: 

 the selection of run length, 

 sequential data collection from multiple replications,  

 output types associated with cumulative values and extrema, and 

 data associated with entities. 

Conventionally, MSER has been implemented as a data-driven postprocessor and, as 

such, requires that an output sequence be simulated before application.  There is no 

guarantee that MSER will converge if the run length for this sequence is insufficient to 

capture a useful trailing segment of steady-state behavior, even for a stable system.  

Determination of an optimal warm-up period therefore is, in fact, confounded with problem 

of determining an adequate run length, which is most often resolved only by trial and error.   

In this research we demonstrate that in application MSER typically will flag instances 

in which the run length is inadequate by truncating all (or at least a very large fraction) of 

the output sequence to which it is applied.  However, we further demonstrate that there are 

pathological instances for which this is not the case.  While Hoad et al. (2008) provide 

useful guidance, determining an appropriate run length a priori remains an open and 

perhaps intractable problem.    

With this caveat, we demonstrate both theoretically and by application that the 

remaining barriers are readily overcome.  Specifically, we: 

 cast estimation of an output mean as an iterative optimization problem from which 

we derive the memory requirements for run-time implementation,   
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 develop runtime versions of MSER for ExtendSim (as a static library), Arena (as a 

submodel), Promodel (as a DLL),  

 develop MSER postprocessing codes in several popular programming languages, 

including the open-source languages R and C/C++, as well as the proprietary 

languages Matlab, SAS, and VBA, and 

 create a prototype MSER Laboratory—a website to facilitate the distribution of 

MSER codes and supporting research online available at 

http://faculty.virginia.edu/MSER/. 

MSER automation, the distribution of codes, and the creation of the Lab are principal 

contributions of this research. 

Additionally, during the course of this research we encountered multiple instances of a 

perhaps obvious, but seemingly pervasive misconception regarding the application and 

evaluation initialization procedures related to MSER.  At least two alternative approaches 

appear in the literature.  The first applies MSER to individual output sequences, truncates 

each sequence accordingly, calculates the truncated mean for each sequence, and then 

averages the truncated means with weighting to estimate the steady-state mean.  The 

second determines the output sequences for multiple replications, averages these 

sequences, applies MSER to the average sequence to determine a single warm-up period, 

and then estimates the steady-state mean based on the average sequence truncated by this 

period. 

The first approach is preferred.  MSER determines the optimal truncation point for the 

specific output sequence to which it is applied and will return an optimal estimate of the 

mean for each sequence when this exists.  The second approach is almost certainly 
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suboptimal.  There is no reason to believe that the truncation point for the average sequence 

is optimal for each of the individual runs.  The aggregate result is over-truncation for some 

of the sequences and under-truncation for the remainder.   

The second approach has led to misgivings regarding the efficacy of MSER.  These 

doubts surfaced most notably in Law (2015), who compares the average of the sample of 

individual truncation points with a theoretical mean truncation point.  He erroneously 

concludes that MSER may not truncate an appropriately large number of observations.  

Wang and Glynn (2014) offer an argument that is similarly flawed. 

A further contribution of this research is to highlight and correct this misconception 

with a set of three simple examples: (1) the response of a uniform white-noise process in 

steady-state with a superimposed linearly-decreasing deterministic transient, (2) the delay 

times in an M/M/1 queue, and (3) the response of an EAR(1) process.  For these test cases 

we show that, given adequate run lengths, the MSER estimate of the steady-state mean is 

uncorrelated with the MSER-optimal truncation point and therefore the success of a 

truncation procedure in terms of the accuracy of the estimate cannot be imputed from the 

truncation point alone.  Indeed, we show that even modest correlation is a symptom of 

inadequate run lengths. We reiterate that the purpose of truncation is to determine the 

warm-up period that yields the most accurate and precise estimate of the steady-state mean.  

Other proposed measures of performance are at best irrelevant and at worse seriously 

misleading.  

We use these same examples to explore the sensitivity of the estimated mean to run 

length n and to the choice of the MSER parameters b (batch size) and dmax (the maximum 

acceptable optimal truncation point on the range of a given run length [0≤ dmax ≤n]).  We 
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show that longer run lengths and smaller batch sizes in general better serve to find 

acceptable truncation points in all models.  For all experiments with sufficient runs lengths 

and small batches, however, MSER is consistently effective in yielding near-optimal 

truncation points, irrespective of the character of the response.  For models with strong 

negative or positive trends in the transient sequences, such as Models 1 and 3, MSER 

remains highly effective even with relatively short runs for which dmax is greater than n/2, 

a maximum threshold suggested in the literature.  This is especially true for models in 

which there is a sharp transition from the transient to the steady-state operating regimes, 

such as Model 1.  

Models that are characterized by oscillatory responses, including such regenerative 

processes such as queues, represent the greatest challenge for MSER among the three test 

cases.  In particular, the specification of dmax becomes an issue.  For long runs, the 

proportion of runs that violate the dmax≤n/2 threshold is comparatively small and the 

truncated mean and the truncation point are independent.  MSER has ample data 

representative of steady-state with which to work.  

As n decreases, this is no longer the case.  The number of violations increases 

dramatically and the correlation becomes increasingly negative, even becoming significant 

at =0.3 in the most extreme cases.  This implies that smaller (biased) mean estimates are 

associated with the greater truncation.  Since the average error in the estimates seems 

always to be negative when starting queuing systems from empty and idle, violations of 

the threshold cause greater estimation error.  Enforcing the stringent rule of n/2 improves 

the estimates dramatically. 
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Batching rarely improves MSER performance and, as might be guessed, is 

contraindicated for short runs.  We speculate (but do not attempt to confirm) that the 

superior performance of MSER-5 reported in the literature is a consequence of the central 

limit theorem and results from normalizing the geometric sampling distribution of mean 

number in system for an M/M/1 queue, with the effect of improving coverage. 

The batching scheme conventionally applied in MSER-b uses non-overlapping batches 

each with batch size b.  We also explored the application of overlapping batch means 

(OBM) as an alternative, as suggested by Pasupathy and Schmeiser (2010), for a range of 

alternative batch sizes. We find that with mild noise amplitudes, OBM tends to outperform 

NOBM. However, the performance of OBM appears to be more sensitive to batch size and 

simulation run lengths in comparison to NOBM.  

This dissertation is organized as follows:  

 Chapter 1: Introduction 

 Chapter 2: Literature review 

 Chapter 3: MSER Implementation Issues 

 Chapter 4: MSER Laboratory 

 Chapter 5: MSER implementation in commercial languages 

 Chapter 6: MSER implementation in Post-Analysis Codes 

 Chapter 7: Parameterization Issues, Analyses, and Results 

 Chapter 8: Conclusion and future research 

 References 

 Appendix I: Arena MSER Submodel User’s Guide 



xx 

 Appendix II: Personal reflections on the importance of the warm-up problem and   

undergraduate simulation curriculum survey 
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Chapter 1: Introduction 

 
This research addresses a practical shortcoming in the output analysis of non-

terminating, stochastic, discrete-event simulations (DES).  Specifically, our concern is the 

application of MSER, an algorithm for determining an optimal warm-up period when 

estimating the steady-state mean of an output based on a sequence of simulated output 

values.  In this chapter we briefly review the importance of stochastic simulation, the types 

of simulation with respect to output analysis, the analysis of terminating and 

nonterminating simulations, introduce the warm-up problem, and outline the research 

issues and contributions. 

1.1 The Importance and Ubiquity of Discrete-Event, Stochastic Simulation  

 

Stochastic simulation has emerged as a critical tool for analysis, especially for complex 

systems that reflect current sophisticated and interacting real-time technologies. While 

developments in information technology and computer science promoted the use of 

simulation in various fields of academia and industry, remarkable advances computing 

power reduced the computational burdens in terms of both time and money.  Students, 

engineers, analysts, practitioners and decision-makers are more and more dependent upon 

simulation because analytical solutions are rarely available for the design or 

implementation of complex systems.  
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Simulation is widely applied in engineering, health, management, manufacturing, 

service industries, public systems, and almost all systems imaginable (Fishman, 2001).   

While simulation may be regarded as computational programming to replicate and imitate 

a real system with a reasonable model based on succinct assumptions, stochastic simulation 

more broadly is a computational sampling experiment and should be supported by sound 

statistical notions (Law 2015).  Statistical output analysis provides the foundation needed 

to verify and validate the model simulating the system of interest.  

 

1.2 Types of Simulation with Respect to Output Analysis 

 

 With respect to output analysis, simulations largely can be categorized into two groups, 

as shown in Figure 1.1: (1) terminating (or finite horizon) simulations and (2) non-

terminating (or infinite horizon) simulations. For terminating simulations, initial and 

terminating run conditions are usually known (at least approximately) so that initial 

transients are a part of the natural behavior under investigation. In contrast, for non-

terminating simulations, neither initial nor terminating conditions are specified and these 

must be invented for analysis. Serial correlation in output observations can lead to 

significant bias in performance estimators with a “poor” selection of initial conditions.  

Understanding and mitigating such biases is essential.   
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Figure 1.1 Types of simulation (Law 2015) 
 

1.3 The Analysis of Terminating Simulation Outputs 

 

It is useful to think of a simulation as the transformation of input random variables U 

into output random variables X, S: UX.  The output of a simulation replication is a 

sequence of observations, the (indexed) numbers {xi, i=1,2,…,n}.  This sequence is a 

realization of the time series {Xi, i=1,2,…,n}, where the distribution of each of the output 

random variables is given by Fi(Xi| x0) = Pr(Xi< xi| x0) and x0 is the initial condition. 

The basic assumptions of standard statistics are that observations are i.i.d. (independent 

and identically distributed) and normally distributed (or that n is sufficiently large to invoke 

the central limit theorem).  In other words, all of the observations are drawn from the same 

normal distribution 

Fi(Xi| x0) = F(Xi| x0)  i=1,2,…,n 

Classification  
w.r.t. output 

analysis

Nonterminating
simulation

Steady-state 
parameters

Steady-state 
cycle 

parameters

Other 
parameters

Terminating 
simulation
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These assumptions are not met by observations within the series.  First, the observations 

typically are sequentially correlated and therefore not independent.  Second, the transient 

distributions Fi(Xi,| x0) typically are different for each observation index i and therefore the 

observations are not identically distributed. Third, there is no guarantee that these 

distributions are normal. 

For terminating simulations, this difficulty is easily overcome.  Each replication, 

j=1,2,…,N, yields one observation of the statistic of interest Yj, such as the sample mean 





n

i
ijj X

n
XY

1

1
 

Running N independent replications of the simulation yields a set observations drawn from 

the sampling distribution for this statistic, {Yi, i=1,2,…,N}.  These observations are i.i.d. 

and therefore the mean across replications 

 

is an unbiased estimator for the output statistic 

 

Moreover, because the sampling distribution of Yj is approximately normal (by the central 

limit theorem for sufficiently large N), the precision of the estimate of X  can be estimated 

as confidence interval by the standard formula 

 

where the sample variance of Yj is an unbiased estimator for the variance of Yj 

Y  1

N
Yj

j1

N
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N
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. 

Thus the basic assumptions of standard statistics are satisfied for summary statistics across 

replications.  

 

1.3 The Analysis of Nonterminating Simulation Outputs 

 

The approach described above works because the transient response is the object of our 

analysis for terminating simulations.  This is not the case for nonterminating systems, 

however, and performing independent replications alone is inadequate.  For nonterminating 

simulations, all of the observations within each replication must be drawn from the steady-

state distribution F(X)=Pr(X< x) otherwise the estimator for the statistic is biased. Because 

F(X) is not independent of the initial conditions at the beginning, the difficulty posed is 

variously referred to as the problem of the initial transient, the start-up problem, or the 

warm-up problem. 

While there are many proposed alternatives, the most common approach to resolving 

the warm-up problem is based on the idea that the transient distributions converge to the 

steady-state distribution as the index gets large  

F(Xi| x0)  F(X) as i  . 

 

As suggested in Figure 1.2, after some number of observations d, the transient distribution 

is sufficiently close to the steady-state distribution to mitigate bias in the output statistic, 

i.e.,  

F(Xi| x0)  F(X)  i  d+1. 

lim
N

SN
2 Y
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Figure 1.2 Example of transient and steady-state density functions (after Law 2015) 

 

By allowing the simulation to “warm up”–-discarding all observations prior to Xd+1 within 

the output series when computing the statistic—the problem can be overcome. On each 

replication we observe the truncated sample mean  

Yj,d  X j,d 
1

n d
Xi

id1

n

 . (1) 

 

The warm-up problem then reduces to that of determining the best truncation point d for 

each replication j.  As a matter of convenience, very often a single, conservatively large 

value of d is selected and used for all replications. 

It should be noted that the requirement for convergence in distribution can be relaxed 

in some cases.  If our interest is estimating the steady-state mean, for example, it is 

sufficient that the process is covariance stationary, i.e., that 
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(1) the mean exists   niXE i ,,2,1   

(2) the variance exists   niXVar i ,,2,12  , and 

(3) the autocovariance function of order r  

 

, 

 

is not a function of i. 

 

In other words, the means and variances of all observations are constant and the correlation 

between any two observations in the series depends only on the number of intervening 

observations and not on the location of these points in the series. 

For a covariance stationary process, it can be shown that the variance of the sample 

mean (within-run) is  

 (2) 

 

where R(r) is the order r autocovariance function defined above (Pawlikowski, 1990).  For 

uncorrelated observations, R(r)=0 for all lags r>0, and therefore the variance reduces to the 

standard formula for i.i.d. observations 

. (3) 

 

From this we can see that if the correlation is strong and positive, ignoring it will lead to 

serious underestimation of the true variation.   
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1.5 The Locus of this Research 

 

As will be discussed in Chapter 2, many alternative approaches to determining d have 

been proposed.  Until the introduction of the MSER algorithm (White and Minnox, 1994), 

mitigating initialization bias in the mean was considered an open problem.  All of the prior 

approaches where found wanting for various reasons. Over the past two decades, however, 

increasingly MSER has been accepted as a solution to the warm-up problem.  

It is noteworthy that MSER: 

 is proven to yield a near-optimal estimate (under mild assumptions) in the sense of 

minimum mean-squared error (MSE) that cannot be improved upon a priori, 

 is widely accepted in the academic literature as the preferred approach to mitigating 

bias associated with the arbitrary specification of initial conditions, 

 is presented in detail and recommended in the current editions of many standard 

texts on DES, and 

 is effective, efficient, robust, and intuitive. 

In spite of these considerable merits, the application of MSER in practice appears far 

from universal.  We speculate the unaided application of MSER can be inconvenient and 

potentially consuming of both analyst and computing time, especially when a large number 

of output sequences must be initialized.   An obvious solution is to imbed MSER in an 

automated, dynamic, run-time procedure that requires minimal analyst interaction.   

However, the only reported effort to build MSER into a commercial simulation suite 

(SIMUL8) led to the suggestion that there are significant barriers to implementation (Hoad 

and Robinson, 2011).  These include: 

 the selection of run length, 
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 sequential data collection from multiple replications,  

 output types associated with cumulative values and extrema, and 

 data associated with entities. 

Conventionally, MSER is a data-driven postprocessor and, as such, requires that an 

output sequence be simulated before application.  There is no guarantee that MSER will 

converge if the run length for this sequence is insufficient to capture a useful trailing 

segment of steady-state behavior.  Determination of an optimal warm-up period therefore 

is in fact confounded with problem of determining an adequate run length, which is most 

often resolved by trial and error.   

In this research we demonstrate that in application MSER typically will flag instances 

in which the run length is inadequate by truncating all (or at least a very large fraction) of 

the output sequence to which it is applied.  However, we further demonstrate that there are 

pathological instances for which this is not the case.  While Hoad et al. (2008) provide 

useful guidance, determining an appropriate run length a priori remains an open and 

perhaps intractable problem.   

With this caveat, we demonstrate both analytically and by application that the 

remaining barriers are readily overcome.  Specifically, we: 

 cast estimation of an output mean as an iterative optimization problem from which 

we derive the memory requirements for run-time implementation (see the literature 

review in Chapter 2),   

 describe and resolve MSER implementation issues (Chapter 3) 
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 create a prototype MSER Laboratory (Chapter 4)—a website to facilitate the 

distribution of MSER codes and supporting research online (available at 

http://faculty.virginia.edu/MSER/).  

 develop runtime versions of MSER in an ExtendSim static library, a Promodel 

DLL, and an Arena submodel (Chapter 5), and 

 develop MSER post-processing codes in several popular programming languages, 

including the open-source languages R and C/C++, as well as the proprietary 

languages Matlab, SAS, and VBA (Chapter 6).  

Additionally, during the course of this research we encountered multiple instances of a 

perhaps obvious, but seemingly pervasive, misconception regarding the application and 

evaluation initialization procedures such as MSER.  At least two alternative approaches 

appear in the literature.  The first applies MSER to individual output sequences, truncates 

each sequence accordingly, calculates the truncated mean for each sequence, and then 

averages the weighted truncated means to estimate the steady-state mean.  The second 

determines the output sequences for multiple replications, averages these sequences, 

applies MSER to the average sequence to determine a single warm-up period, and then 

estimates the steady-state mean based on the average sequence truncated by this period. 

The first approach is preferred.  MSER determines the optimal truncation point for the 

specific output sequence to which it is applied and will return an optimal estimate of the 

mean for each sequence.  The second approach is almost certainly suboptimal.  There is no 

reason to believe that the truncation point for the average sequence is optimal for each of 

the individual runs.  The aggregate result is over-truncation for some of the sequences and 

under-truncation for the remainder.  A proof is provided. 
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The second approach has led to misgivings regarding the efficacy of MSER.  These 

doubts surfaced most notably in Law (2015), who compares the average of the sample of 

individual truncation points with a theoretical mean average truncation point.  He 

erroneously concludes that MSER may not truncate an appropriately large number of 

observations.  Wang and Glynn (2014) offer an argument similarly flawed. 

A further contribution of this research (see Chapter 7) is to highlight and correct his 

misconception with a set of three simple examples: (1) the response of a uniform white-

noise process in steady-state with a superimposed linearly-decreasing deterministic 

transient, (2) the delay times in an M/M/1 queue, and (3) the response of an EAR(1) 

process.  For these test cases, we show that the MSER estimate of the steady state mean is 

uncorrelated with the MSER-optimal truncation point and therefore the success of a 

truncation procedure in terms of the accuracy of the estimate cannot be imputed from the 

truncation point alone.  We reiterate that the purpose of truncation is to determine the 

warm-up period that yields the most accurate and precise estimate of the steady-state mean.  

Other proposed measures of performance are at best irrelevant and at worse seriously 

misleading. Also in Chapter 7 we use these same examples to explore the sensitivity of the 

estimate mean to run length n and to the choice of the MSER parameters b (batch size) and 

dmax (the maximum acceptable optimal truncation point on the range of a given run length 

[0≤ dmax ≤n]).  

The final Chapter discusses the conclusions of this effort, together with potentially 

useful directions for further research.  A User’s Guide for application of the Arena 

submodel is provided in the Appendix I.  Appendix II includes an anecdotal case with some 
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personal reflections on the simulation enterprise and the importance of the warm-up 

problem, as well as a survey of undergraduate simulation curricula.  

1.6 Background: A Note on Smart Initialization  

One of the strengths of MSER is that it demands only that an optimal truncation point 

exists for a simulated model (i.e., stationary or weak convergence). In the past, some 

researchers have suggested that truncating or deleting an initial data series is not the best 

way to improve the estimate with respect to mean squared error (MSE). Blomqvist (1970), 

Wilson and Pritsker (1978), Turnquist and Sussman (1977), and Grassmann (2009, 2011) 

instead advocated the “smart” choice of an initial condition to mitigate biases and generate 

a robust result.   

However, it is rather difficult to search for an optimal starting point unless the 

characteristics of simulation are known a priori. Do we still need to recognize the existence 

of initialization bias?  We firmly believe that the answer should be “yes”.  We will be better 

off by presuming almost every probabilistic non-terminating simulation has unavoidable 

initialization bias, and then testing this presumption. Furthermore, consider the tradeoff 

between precision and computational budget associated with truncation points. It is 

common that more data will support a better analysis by obtaining a robust estimate of 

descriptive statistics in output analysis. However, truncation clearly implies that less data 

is available.  

To compensate the loss of precision, faster analysis is possible with automated 

truncation identification, rather than human intervention or post-analysis. This kind of 

trade-off can be applied to the comparison between a batch means method and a 

replication/deletion method. However, both methodologies can be performed well after we 
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find a right truncation point. We will mention the list of numerous approaches of truncating 

initially biased data sets in the next section, but the explanation of each method cannot be 

studied here unless the methods are closely related to the topic of MSER.  

 We might think of another aspect to investigate the characteristic of transient states prior 

to the steady-state in simulation output. In order to understand the path during the transient 

period, artificial intervention during simulation would be desirable or feasible. If so, we 

would like to monitor the differentiated simulation paths to an expected pre-specified 

steady state or a newly designated steady state from the modification of simulation input 

conditions.  
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Chapter 2: Literature Review 

 

The start-up problem has been the subject of research and debate for over 60 years.  

Early work by Morse (1955), Conway (1963), Tocher (1963), and Cohen (1982) proposed 

heuristics for determining the presence and persistence of an initial transient in a simulation 

output series.  Pawlikowski (1990) reviewed eleven such rules and illustrated the strengths 

and weaknesses of these different approaches. He distinguished between methods based on 

the convergence of estimators for the sample mean and sample variance.  The first set of 

methods included those from Emshoff and Sission (1970), Fishman (1973), Wilson and 

Pritsker (1978), Kelton and Law (1983), and Solomon (1983); the second set included those 

from Billingsley (1968), Gordon (1969), Fishman (1971), and Schruben (1982, 1983).  

 Pawlikowski’s comprehensive review subsequently has been updated by Hoad et al. 

(2008) and by Pasupathy and Schmeiser (2010) to include newer approaches.  The 

interested reader is referred to these works. In the remainder of this chapter, therefore, we 

focus on the literature directly related MSER.  

2.1 MSER: Approach, Inception, and Development 

At the University of Virginia (UVA), MSER was devised by Maclarnon (1990) and 

called the Minimal Confidence interval Rule (MCR).  White and Minnox (1994), White 

(1995), White (1997), Rossetti et al. (1995), Spratt (1998), Cobb (2000), White et al. 
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(2000), and Franklin (2009) all improved and/or further tested the approach.  We begin by 

describing the MSER concept.  

White and Minnox (1994) suggested that the optimal truncation should minimize the 

half-width of the marginal confidence interval about the truncated sample mean.  Given 

the output of a simulation, a finite stochastic sequence {Xi, i=1,2,…,n}, they defined the 

optimal truncation point as  

 (4) 

where is the z-score of standard normal distribution associated with a 100(1-)% 

confidence interval.  The marginal standard error in the mean of the reserved sequence (i.e., 

the sequence remaining after truncation) is  

, 
(5) 

and the truncated sample mean is  

 .  
 

While recognizing that, for a correlated sequence, the sample standard deviation is 

biased estimator of the steady-state standard deviation, they reasoned that this statistic 

could be interpreted instead as capturing the homogeneity of a sequence—initial sequences 

with larger sample standard deviations could be flagged as including transient 

observations. Franklin and White (2008) subsequently confirmed this intuition. 

For a preconditioned confidence level, is a constant and Eq. 4 reduces to  
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. (6) 

For a given output sequence from one replication of simulation,  (if it exists) minimizes 

the constrained optimization problem in either Eq. (4) or Eq. (6). Thus, the truncation 

algorithm has a simple interpretation and does not require the specification of unknown 

parameter settings.  

Spratt (1998) introduced MSER-b, using the means of batches of size k as output 

variables to which MSER is applied. Batching prewhitens the output series, which is widely 

believed to improve the visualization of a transient (Welch, 1981). The formula was the 

same as Eq. (6), replacing Xi with Zj (White et al., 2000),  

Z j  1 b  Yb( j1)p

p1

b

  (7) 

where { , j=1,…,m} represent a series of batch means each with the size of batches b, n 

is the number of observations of Yi, and is the number of batches, where is a 

maximum integer or  floor function.  

 Independent research outside of UVA has affirmed the effectiveness of MSER-5.  For 

example, Mahajan and Ingalls (2004) noted the efficiency and robustness of MSER-5. Oh 

and Park (2006) compared their exponential variation rate (EVR) rule with MSER-5 and 

acknowledged that the EVR only converged to the path of MSER-5.  Bertoli, Casale, and 

Serazzi (2007, 2009) implemented MSER-5 into their Java Modeling toolkit.  

In the U.K., Hoad et al. (2008) performed a comprehensive and detailed survey on 

start-up approaches, identifying over forty-six different methods as indicated in 

*d

jZ

m  n / k    



 
 

17

Table 2.1. One of the key performance indicators was whether or not an approach 

supported automation in order that it might be incorporated in commercial simulation 

software. This requirement eliminated approaches requiring a priori specification of 

unknown parameter settings.  Among the remaining approaches, they found that MSER-5 

performed exceptionally well on a wide variety of test cases. They concluded that MSER-

5 was consistently the best approach across the board, in terms of accuracy, robustness, 

simplicity, and ease of automation.   

  Franklin et al. (2009) demonstrated empirically that the effect of MSER is to 

(approximately) minimize the mean-squared error (MSE) in the estimated sample mean, 

which is a widely accepted criterion for a quality of a point estimate.  This observation 

subsequently was proven analytically (under mild assumptions) by Pasupathy and 

Schmeiser (2010). White and Robinson (2010) reiterated the strength of MSER-5 with the 

basic but fundamental example of an M/M/1 queue, while White and Franklin (2010) 

demonstrated a parametric function which gives rise to a close-form solution accounting 

for geometrically decaying bias of the AR(1) process.  Sanchez and White (2011) identified 

adjustments needed to account for differing sample sizes when applying MSER using a 

replication/deletion approach for interval estimation of the steady-state mean. 

The theoretical work undertaken by Pasupathy and Schmeiser (2010) represents an 

important advance over previous empirical research. They verified analytically that the 

MSER statistic is asymptotically proportional to the MSE and the minima of each tend to 

lie close to the same truncation point. In a more recent presentation, Pasupathy and 

Schmeiser (2014) demonstrated analytically that MSER outperforms even two ideal 
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methodologies (i.e., ideal deletion and optimal constant deletion) with uncertainty in output 

analysis.  

Table 2.1 Methods for Determining Start-up Periods (after Hoad et al. (2008)) 
Method Type Method 

Graphical Simple Time Series Inspection 
Ensemble (Batch) Average Plots 
Cumulative-Mean Rule 
Deleting-The-Cumulative-Mean Rule 
CUSUM Plots 
Welch’s Method 
Variance Plots (or Gordon Rule) 
Exponentially Weighted Moving Average Control Charts 
Statistical Process Control Method (SPC) 

Heuristic Ensemble (Batch) Average Plots with Schribner’s Rule 
Conway Rue or Forward Data-Interval Rule 
Modified Conway Rule or Backward Data-Interval Rule 
Crossing-Of-The-Mean Rule 
Autocorrelation Estimator Rule 
Marginal Confidence Rule or Marginal Standard Error Rule (MSER) 
Marginal Standard Error Rule m, (e.g. m = 5, MSER-5) 
Telephone Network Rule 
Relaxation Heuristics 
Beck’s Approach for Cycle output 
Tocher’s Cycle Rule 
Kimbler’s Double exponential smoothing method 
Euclidean Distance (ED) Method 
Neural Networks (NN) Method 

Statistical Goodness-Of-Fit Test 
Algorithm for a Static Dataset (ASD) 
Algorithm for a Dynamic Dataset (ADD) 
Kelton and Law Regression Method 
Glynn & Iglehart Bias Deletion Rule 
Wavelet-based spectral method (WASSP) 
Queueing approximations method (MSEASVT) 
Chase Theory Method (methods M1 and M2) 
Kalman Filter method 
Randomization Tests For Initialization Bias 

Initialization bias test Schruben’s Maximum Test (STS) 
Schruben’s Modified Test 
Optimal Test (Brownian bridge process) 
Rank Test 
Batch Means Based Tests – Max Test 
Batch Mean Based Test – Batch Means Test 
Batch Means Based Test – Area Test 
Ockerman & Goldsman Students t-test Method 
Ockerman & Goldsman (t-test) Compound Tests 

Hybrid Pawlikowski’s Sequential Method 
Scale Invariant Truncation Method 

 



 
 

19

 In its original form (Eqns. 4 and 6), the MSER criterion suggests the choice of a 

truncation point is the global minimum of the MSER statistic on n>d>0. (This choice we 

shall denote as MSER-GM.)  It was recommended in practice, however, that the choice of 

a truncation point be constrained to the first half of the output sequence, d<n/2. (This choice 

we shall denote as MSER-Half.)  The reasoning was that, if a minimum is not found on 

this interval, the run length is insufficiently long to provide a tight interval estimate, 

possibly because the simulation is unstable and no suitable truncation point exists. 

Pasupathy and Schmeiser (2014) proposed and tested two additional alternatives: the 

leftmost local minimum of the MSER statistic (MSER-LLM) and the left-most local 

minimum of the local minima of the MSER statistic (MSER-LLM2). 

 They suggested that MSER-LLM was the best choice. However, their intention to use 

the most left local minimum also confirmed the notion of checking the minimum value 

prior to the first half of output series in MSER-Half when the sample size is enough to 

obtain a steady-state mean estimate after preprocessing data from simulation with a 

reasonable batch size. That is, the relationship among the truncation points is 

bLLM  bLLM 2  bGM  (Pasupathy and Schmeiser, 2010), where bGM is the truncation point 

that yields a globally minimum MSER statistic.  After properly batching output and 

generating a sufficient sample size, bLLM would be equivalent to bGM or bHalf. 

2.2  Open Issues 

The motivation for this research stems from a range of issues that have been raised 

regarding various aspects of MSER. Insight on how to resolve these issues is the subject 

of the subsequent chapters and a contribution of this research. 
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2.2.1  Implementation and automation 

As noted in the Chapter 1, Hoad and Robinson (2008) explored the practical 

implementation in commercial simulation software and Hoad et al. (2011) provided a 

framework to automate an output analyzer incorporating the logic of MSER-5. They 

identified four obstacles to implementation. However, as we demonstrate in this research, 

these appear to be specific to limitations of the simulation software they employed 

(SIMUL8, see Figure 2.1) and not innate difficulties caused by MSER-5. 

 

Figure 2.1 Testing Module for identifying optimal truncation points in SIMUL8. 

 

 The difficulties identified were:  

(1) selection of the simulation run length selection, 

(2) sequential data collection from multiple replications, 

(3) output types associated with cumulative values and extrema, 

(4) data associated with entities. 

The first difficulty is fundamental in simulation (and sampling more generally) and not 

unique to the question of automating a warm-up procedure for steady-state simulation.  We 
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illustrate this difficulty specifically as it relates to MSER in Chapter 7 and acknowledge 

the run-length selection remains an open and perhaps unavoidable problem. However, to 

present this difficulty as an absolute barrier to automation is disingenuous, insomuch as it 

denies the practicality and usefulness of any form of automated output analysis, which 

clearly is not the case. With this caveat, in Chapters 5 and 6 we demonstrate both 

theoretically and by application that the remaining barriers are readily overcome.   

The second (and fourth) difficulties easily can be handled by storing vectors of raw 

output data with time stamps. If the software application enables a modeler to save 

variables of his/her interest, these issues should not be regarded as any obstacle. Visual 

Logic Editor in SIMUL8 might also provide the functionality to export raw data after each 

replication, or any state change, and exporting data or saving online output in memory 

would alleviate the second issue. Moreover, MSER is best applied to individual output 

sequences and there is no need to save within-run observations across replications (see 

Section 2.4). 

 The third difficulty arises in the desire to avoid malpractice by novice simulationists—

a difficulty that will never arise in a well-conceived output analysis.  A cumulative statistic 

 is derived from an underlying output sequence {Xi, i=1,2,…,n},   and it 

is this latter sequence to which MSER is applied to determine a truncation point, not to the 

former.  The same is true of extrema.  

 

2.2.2  Batch Size 

Spratt (1998), White, Cobb, and Spratt (2000), and most recent papers advocate MSER-

b, which prewhitens the output sequence by creating averages of non-overlapping batches 

{ 1, 2,: , }iY i n
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of size b.  Their empirical results suggest that MSER–5 is modestly better than MSER 

without prewhitening. However, Pasupathy and Schmeiser (2010) note 

that any one-size-fits-all preprocessing, however, leads to a contradiction: if the 

preprocessed data are better in some sense, then why not preprocess the preprocessed 

data? If preprocessing is to make sense, then its form needs to be based on an analysis 

of the given data {X1,X2,...,Xn}. Another point is that the use of non-overlapping batches 

is suboptimal to using overlapping batches, which leave no orphaned observations at 

the end of the data series, which cause no graininess in the analysis, and which still 

requires only O(n) computation. 

Their logic appears unassailable and the question of an optimal batch size b, its 

relationship to given data, and the overlapping batch means (OBM) approach will be 

further explored in Chapter 7.  Originally proposed by Meketon and Schmeiser (1984), 

OBM replaces Equation (7) with 

OBMk  1 b  Ybp1

p1

b

  (8) 

where {OBMk, k=1,…,(n-b+1)} represents a series of batch means for overlapping batches 

of size b, where n is the number of observations of Yi.  In general, the OBMk are highly 

correlated.  The correlation is accounted by computing the variance estimator as 

 
))(1(

21

,
2

bnbn

XXb

S

bn

k
dk

OBM 







 
(9) 

and the (100-)% confidence interval as 

2
21,, OBMfkn StX   (10) 
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where tf is distributed Student-t distribution with f degrees of freedom (see Law, 2015).  

In this regard, the literature on batch means also may provide some insights. The batch-

means method is aimed at mitigating serial correlation between output data in simulation 

by batching the output data sequentially and using the means and of these batches in the 

construction of interval estimates of the true steady-state mean.  Schmeiser (1982) 

investigated batch size effects. In other words, given a sequence in steady-state (after first 

truncating any transient), how many batches are required and how wide must the batches 

be in order to obtain an unbiased estimate to meet any prescribed condition for a simulation 

model? Goldsman and Meketon (1986), Schmeiser and Song (1987), Song and Schmeiser 

(1993, 1995), Song (1996), and Nelson (2011) have discussed the batch size effect and 

optimality condition in batch mean methods.  

2.3 Current Related Work 

2.3.1 N-SKART 

Comparatively recently, James Wilson and his students at North Carolina State 

University have developed new truncation algorithms that appear to show modestly better 

performance than MSER on select problem instances.  These methods derive from WASP, 

SBatch, and SKART, and include N-SKART, and MSER5Y (see Figure 2.2).  In particular, 

Mokashi et al. (2010) compared N-SKART to MSER in terms of performance criteria such 

as the success rates of finding truncation points, the minimal MSE values, and confidence 

interval coverage.   

We do not pursue direct empirical comparisons with NSKART or MSER-5Y in this 

research, at least in part because of the extreme complexity of these methods.  We simply 
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note in passing that, where improvements over MSER were in fact demonstrated, the test 

cases employed appear inherently unrealistic.  Moreover, improvements were at best 

marginal and required vastly greater computational effort. Further, their algorithm has an 

innate weakness in that it does not detect any bias in the moving average of output series.  

 

 

Figure 2.2 Output Analysis Tree for Wilson and Students 

 

2.3.2 Potentially Insufficient Truncation 

 

Recent work by Law (2015) and Wang and Glynn (2014) suggests that MSER may not 

truncate an appropriate number of observations. Both studies apply theoretical constructs 

that focus on the average truncation points that should be obtained given an infinite number 

of replications.  As demonstrated by White and Hwang (2015), this suggestion appears to 

contradict both the theoretical results obtained by Pasupathy and Schmeiser (2010) and the 

very substantial body of empirical evidence accumulated over the past twenty-five years. 

Nevertheless the suggestion merits investigation and further discussion is undertaken 

Chapter 7.  
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2.4 Optimal Analysis for the Mean of a Simulation Output 

 

White (2012) demonstrates how output analysis can be formulated as a constrained 

optimization problem.  We include his formalism here because it not only provides a 

notation for the overall problem, but also a means to determine memory requirements for 

implementing MSER.  The objective is to achieve an estimate of the mean for a simulation 

output with a given precision using the least number of observations.  We consider three 

cases—terminating simulations, nonterminating simulations using the replication/deletion 

approach, and nonterminating simulations using the batch means approach. 

 

2.4.1 The terminating simulation problem 

 

We are given user-defined values for: 

 

 HW and , where HW is the maximum desired half-width of the 100(1-)% 

confidence interval on the sample mean of the simulation output; 

 r0, the initial number of replications; and 

 R, the maximum number of replications.  

 

The problem is then: 

 

Find 

 

 

where r is the number of replications required, such that 

 

 (11) 

 

min
r{r0,r1,}

 r

r  R
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. (12) 

 

Here HW(r) is the estimated half-width derived from r replications, 

 (13) 

is the variance of mean of the sample means,  

 

;  j=0,1,2,…,r (14) 

 

are the sample means, and 

 

 (15) 

is the grand mean. 

 

Note that this optimization problem may be infeasible for a given choice of HW, , and R.  

If this is the case, the user has the option of relaxing any or all of these three parameters, 

i.e., increasing the number of replications and/or settling for a less precise estimate.  Note 

also that an estimate for the number of additional runs required at any stage i+1 is 

 
(16) 

 

If ri+1>R, then let ri+1=R.  This is likely a more efficient approach than incrementing r by 

a fixed amount.  Note finally that the data required to solve this optimization problem is 

essentially the r-dimensional array of sample means X j nj   . 
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2.4.2  The steady-state simulation problem: replication/deletion approach 

 

This is the same as the terminating simulation problem, except that we must now 

determine suitable initial and terminating conditions for each replication by solving a 

second set of optimization problems.  We are given user-defined values for HW, , R, and 

 n0, the initial run length for each replication 

 I, the MSER re-computation interval 

 N, the maximum number of such intervals (corresponding to a tentative stopping 

condition for a maximum run length of n0+NI) 

 

For each replication j=1,…, r, first solve the following problem: 

 

Find 

  j
NInInnn

n
j  000 ,,,

min


 

 
where nj is the run length required on the jth replication, such that  

 

 (17) 

 

Here dj*(nj) is the MSER-optimal truncation point for replication j with run length 

nj, where  is the floor function, 

 (18) 

  

is the truncated sample variance, and 

 

 (19) 

dj *(nj ) argmin
nj /k d0

Sj
2 nj, dj 
nj  dj












 nj / k 

. 

Sj
2 nj, dj   1

nj  dj

Xij  X j nj, dj  2

id j1

n0nj



X j (nj, dj ) 
1

nj  dj

Xij

injdj1

nj





 
 

28

 

is the truncated sample mean. 

 

Note that constraint Eq. (17) implies the existence of an optimal MSER truncation point 

on the output series  knnXXX /21 0
,,,  . The best choice for k is unclear, but we have 

achieved good results by requiring the truncation point to be within the first half of the 

output time series, i.e.,  k=2.  

Furthermore, note that failure to satisfy constraint Eq. (17) implies that the run length 

is insufficient, or that the output is unstable.  Without some insight into the nature of the 

output, there is no way of knowing which is the case.  If constraint Eq. (17) is not satisfied, 

the user may choose to increase the value of N, or conclude the output is unstable and stop.  

There is no need to evaluate constraints Eq. (11) and Eq. (12) if constraint Eq. (17) is not 

satisfied. 

Note also that when computing the confidence interval using this approach, one needs 

to account for that fact that MSER will yield replications of unequal sample size.  See 

Sanchez, P. J., and White, K. P., Jr. (2011) for one approach this issue.  If the desired HW 

constraint is not achieved, additional runs may be attempted.  Note finally that the data 

required is the output time series X0, X1,…, Xn+n0.  For time-persistent statistics, we can 

construct this from the array of pairs{xi, ti}.  

 

2.4.3  The steady-state simulation problem: batch means approach 

 

This is the same as the replication/deletion problem, except that we must now 

implement batching.  By construction, r0=R=1, constraint Eq. (11) is automatically 
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satisfied, and the subscript j in constraint Eq. (17) is superfluous.  Constraint Eq. (12) is 

replaced by 

 (12a) 

 

where  

 (20) 

 

 

is the standard deviation of the batch means using B batches, given by 

 (21) 

 

Note that Arena has a well-documented algorithm for adjusting the batch size B as a 

function of the run length that maintains 40>B>20. See Kelton et al. (2010, pp.326-327), 

for the algorithm and rationale. 
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Chapter 3:  MSER Implementation Issues 

 

In this chapter we consider various options for implementing MSER truncation logic 

within alternative software environments.  Broadly, we distinguish between two such 

options.  One is to compute and update a truncation point while simulating a model (i.e., 

online analysis).  The other is to analyze the output data obtained after simulating the model 

(i.e., post-analysis).   

With respect to online analysis, we distinguish between external and internal 

implementation approaches. We provide an example of the external approach by outlining 

development of a dynamic linked library (DLL) that performs MSER calculations.  This 

DLL can be called from within models built in Windows-based commercial languages such 

as ProModel and MedModel.  For internal implementations, we identify the software 

development environments associated with a wide range of the most popular commercial 

DES languages, including Arena, AutoMod, SIMUL8, ProModel (MedModel), FlexSim, 

Simio, ExtendSim, and SimCAD.  With respect to post-analysis, we review five different 

languages in which we have written standalone programs in which we implement MSER: 

R, C++, Matlab, SAS, and VBA. 

This chapter provides background leading to several selective implementations. These 

implementations were developed as part of this research and are distributed online via the 

MSER Laboratory.  The details of these implementations and the Lab are provided in 

Chapters 4-6 and the Appendices. 
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3.1 Online Analysis 

Using online analysis, MSER statistics are continuously updated during each 

simulation run. These statistics are used to determine a truncation point following the logic 

provided in Section 2.4.  If such a point exists, the simulation terminates and output 

statistics are reported, allowing comparison of the estimated steady-state mean and 

corresponding confidence interval with and without truncation.  If such a point does not 

exist, this fact is reported instead.  Online analysis can be implemented in two different 

ways.    

 

3.1.1 External Approach 

DES software increasingly is extendable using external modules, such as dynamic 

linked libraries (DLL) and Component Object Models (COM). In particular, on a Windows 

operating system DLL’s have the flexibility to provide new functions and variables in order 

to obtain intended simulation objectives (e.g., additional complex computation). A single 

DLL can contain multiple new functions and multiple programs can share the same DLL.  

We note, however, that DLL’s must be used with caution.  Any modification to an existing 

DLL must not adversely affect a previously linked application.  Therefore, we need to 

emphasize the careful documentation of the DLL. This is essential to maintain 

programming intent and any logic to consist of inside functions. Without this practice, it is 

difficult to use DLL across different applications, as a compiled file does not demonstrate 

how it works or what it accomplishes.  
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3.1.1.1 How to build DLL linked with ProModel (MedModel) 
 

ProModel (http://www.promodel.com/) has a function, XSUB( ), which is used call 

external DLL files. This command provides modelers with more versatile power to control 

simulation models, such as performing a complex calculation separately without burdening 

simulating a model.  Furthermore, one standard and representative DLL will be portable to 

additional simulation models. To use this feature, the modeler must know how to code 

DLL files in a high-level programming language. The exemplar DLL file is written in 

C/C++, but it can be written in other programming languages as well. Furthermore, its 

portability will be very useful to be foster reusability continuously (ProModel, 2011).  

Those who are new to Promodel and the usage of XSUB( ) can refer to the manual in 

Promodel.  However, this command is considered as an advanced option so that we would 

like to explain general ideas here.  One of the strengths of an XSUB( ) external subroutine 

call is in enhancing the capability of ProModel through the users’ programming skills. That 

is, as long as the programing language (i.e., C/C++, VB, and Pascal) is supportive, the logic 

called with XSUB() enables a modeler to test every intention, such as complex file IO and 

statistical analysis.  

Its principal limitation is that, while XSUB() is being executed, the simulation is 

temporarily halted so it is important that the computation inside the external subroutine 

doesn’t take too long. A Windows 32-bit compiler must compile the logic inside the DLL 

and a user must understand Windows platform knowledge.  

The function representing the logic only takes one parameter, a void pointer (a generic 

pointer). However, it may access multiple parameters through structure. That is why the 

function should include a structure. This is a strict condition to implement a user’s 
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intention. In addition to MSER DLL in a following chapter, a basic example of DLL usage 

is explained (ProModel, 2011).  

Syntax:  

XSUB(<file ID>, <ordinal function number> or <function name> {, 

<parameter1>, <parameter2>...}) 

Example 

XSUB(MSER, 1,  5) or XSUB(MSER_raw, “Log_B_of_Output”, 10, 5) 

 

The components of the four elements in XSUB() are briefly explained in syntax. The 

argument <file ID> is an identifier to build a simulation model and link its output with a 

DLL file. Figure 3.1 shows how to designate a file ID and set up its type as DLL. When 

DLL is ready, we need to specify it into “File Name”. 

 

Figure 3.1 Example of DLL usage in ProModel 

 

The argument <ordinal function number> or <function name> is used to set up which 

function inside a DLL file becomes interactive with ProModel. As we build a DLL file, 

multiple functions can be constructed to perform output analysis. For example, we want to 

find a truncation point, MSER statistics, or a truncated mean value. If we build different 

functions to compute them, we need to remember their order and then use the ordinal 
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number for relevant components of XSUB(). As an alternative, we can use the defined 

names inside DLL for XSUB() components. The argument <parameters> is any set of input 

values generated from ProModel to a DLL file. It will be passed to the function of DLL.  

3.1.2 Internal Approach 

The internal approach can be achieved in several different ways.  First, the software 

developer can incorporate MSER logic for release in a version upgrade.  This clearly is the 

best approach, but is limited by the ability and willingness of the software house to provide 

internal developers’ time to create and test the upgrade.  Second, a static library can be 

written in a software language specific to the commercial simulation suite.  This is the 

second best approach, but at present is officially supported by only one software company, 

ExtendSim.  Third, a submodel or subprocess can be developed to compute the MSER 

truncation point and associate statistics, such as in Arena. Such a submodel is reusable 

given in-detail explanations of submodel inputs, outputs, and operation.  We pursue the 

second two approaches in Chapters 5. 

 

3.1.2.1 Software development environments 
 

The main purpose of this session is review how commercial DES are created and which 

languages would be used in an internal approach. We include the most popular software 

adopted in academia as well as industry.  Most software environments are built on object-

oriented programming languages such as C++, C#, and Java. However, simulation-specific 

languages also are employed (Arena, for example, is built in the simulation language 

SIMAN, which itself was originally programmed in Fortran and then later reprogrammed 

in C). We determined which development language has been used in each simulation suite 
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based on information in the suites’ users manuals.  Where these manuals are inadequate to 

make this determination, we also consulted each company’s job postings. As most of 

software houses need to hire new programmers, we can infer which language is used for 

specific simulation software.  We list the languages for each simulation environment as 

follows: 

 Arena – SIMAN 

 AutoMod – proprietary language 

 SIMUL8 – proprietary language 

 ProModel (MedModel) – MS Studio GUI and its proprietary language  

 FlexSim – C++ based proprietary language 

 Simio – C#  

 ExtendSim – C-based proprietary language, ModL 

 SimCAD – C# 

All of these DES software applications run only on MS Windows OS (and the same is 

true of all but a few agent-based simulation applications and open-source simulation 

languages). That is why more and more simulation GUIs have adopted the Window’s 

ribbon-style interfaces. Thus, we expect that a single versatile DLL in a single object-

oriented programming language to be usable across the majority of these environments.  

 

3.1.2.2 Current Features for Dealing with the Start-up Problem 
 

After understanding basic and fundamental structure of each software suite, we observe 

different approaches to deal with a warm-up period across multiple simulation software 
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environments. We test Arena, AutoMod, SIMUL8, ProModel, FlexSim, Simio, and 

SimCAD. Almost all of these have features for specifying a warm-up period during run 

setup.  The specifics for each language are summarized, as well as the corresponding 

interface.  

3.1.2.2.1 Arena  
 

Arena (https://www.arenasimulation.com/) was originally developed by Dennis Pegden at 

Systems Modeling Corporation and later acquired by Rockwell Software (Banks 1998; 

Kelton et al., 2010).  It is an extensible simulation and animation software package that 

provides a complete simulation environment supporting all steps in a simulation study. 

Arena combines the modeling power and flexibility of the SIMAN simulation language 

with a GUI interface for drag-and-drop model building as well as simulation run animation.   

In Arena, the warm-up period is defaulted to zero unless otherwise specified on the 

“Replications Parameters” tab in “Run Setup” menu shown in Figure 3.2. Arena has a good 

feature to take advantage of both replication/deletion and batch means approaches to 

steady-state simulation by using “Initialize Between Replication”, a feature which is not 

seen in other software by default.  
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Figure 3.2 Specifying Warm-up Period in Arena’s Run Setup Dialogue 

 

3.1.2.2.2 AutoMod  
 

AutoMod is a graphical simulation software environment providing true-to-scale 3D 

simulation developed by Applied Materials (http://www.appliedmaterials.com/global-

services/automation-software/automod). Its application focuses on manufacturing and 

distribution operations (i.e., semiconductor industry).  AutoMod puts much importance on 

output analysis and clearly promotes using replication/deletion method to compute its 

confidence interval. Comprehensive explanations of determining warm-up period are 

followed inside its manual—an entire chapter is devoted to addressing the warm-up 

problem—which is a rare case among current simulation software manuals.  The AutoMod 
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suite includes a companion program, AutoStat, designed specifically to implement Welch’s 

procedure, in particular.  

 

Figure 3.3 Warm-Up Period Determination in AutoMod 

 

3.1.2.2.3 SIMUL8  
 

SIMUL8 (http://www.simul8.com/) is a process-based DES that helps an analyst to 

build high-level simulation model, widely adopted as a teaching language by educational 

institutions in the UK.  Like Arena, it has an option to specify warm-up period, as shown 

in Figure 3.4.  As shown in Figure 3.5, SIMUL8 also includes a routine to estimate the 

number of simulation replications required to achieve a specified minimum precision in 

specified output statistics (KPI’s).  It is noteworthy that Hoad and Robinson (2011) relate 

lessons learned in their effort to implement MSER in SIMUL8.  
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Figure 3.4 Warm-Up Period in SIMUL8 
 

 

 

Figure 3.5 Output Analysis Support in SIMUL8 

 

3.1.2.2.4 ProModel and MedModel  
 

ProModel is an older DES suite that aims to provide insights on planning, designing, 

and improving existing or new manufacturing, supply chain, and other discrete-event 
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systems. It also has a healthcare specialized version, MedModel.  Its peculiar feature is the 

incorporation of a location-based modeling approach that allows a user to calculate spatial 

components simultaneously (e.g., travel distances of entities and resources).  As 

 

 

 

Figure 3.6 Specifying a Warm-Up Period in ProModel 

 

shown in Figure 3.6, like most of the simulation software described, ProModel has an 

option to set up a warm-up time at a given simulation clock time under the simulation 

option window.  Additionally, it allows specification of a warm-up period based on the 
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number of processed entities (e.g., WARMUP). Thus, it provides dual modes to control a 

warm-up period. 

 

3.1.2.2.5 FlexSim  
 

FlexSim was founded in 1993 by Bill Nordgren (Co-Founder Promodel Corporation, 

1988) along with Roger Hullinger and Cliff King. Its strength lies in 3D-modeling 

capability. Most of the features inside FlexSim are similar to ProModel. It supports its own 

language, Flexscript, as well as C++ when a modeler builds a simulation model.  Figure 

3.7 shows the dialog for setting a warm-up period in FlexSim 

 

Figure 3.7 Specifying a Warm-Up Period in FlexSim 

 

3.1.2.2.6 Simio  

Developed in 2006 by Dennis Pegden, Arena users can easily adopt Simio. The major 

difference is that Simio is a 3D object-based modeling environment simulation package 

which is written in a C# and .NET environment (http://www.simio.com/products/ and 

Simio Reference Guide). Compared to Arena, it helps a user to build 3D simulation models 

easily. Its 3D library is directly linked with Google Warehouse and allows any relevant 3D 

symbols to be added in a simulation model. 
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Most features in Arena also are available in Simio and, as shown in Figure 3.8, a warm-

up period is implemented in “Experiments” after building a model. The Experiment 

Properties asks a user to determine a warm-up period as well as a confidence level. To 

access this option, the user can select the “Navigation window” first and then choose 

“Experiments”.  To specify the warm-up period, Simio provides related properties of the 

“Experiment” in Table 3.1. 

 

Figure 3.8 Specifying a Warm-Up Period in Simio 
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Table 3.1 Properties of Warm-Up Period Control in Simio 

Property 
Valid 
Entry 

Description 

Warm-up 
Period 

Real 
By default, Simio removes the information before a warm-up 
period in order to obtain an estimate unaffected by an initial 
condition.  

Default 
Replications 

Integer 

This feature is useful to obtain results from multiple simulation 
runs. It can specify the different replication numbers of each 
different scenario. If a user does not change any value, the 
default replication is 1.  

Confidence 
Level 

90%, 
95%, 
98%,  
99% 

After running multiple replications, Simio will calculate 
confidence interval of half-width statistics of average results 
across replications.  

 

3.1.2.2.7 ExtendSim  
 

ExtendSim (http://www.extendsim.com/) has an open structure to help users modify its 

library (Banks, 1998), a feature which attracts us to focus on this package in 

implementation of an automatic MSER calculation. Additionally, the syntax of its 

programming language, ModL, is very similar to C, and allows the modeler to save output 

data in memory instead of a hard disk, facilitating faster computation time.  As shown in 

Figure 3.9, a warm-up period can be implemented in ExtendSim using the “Clear Statistics” 

option in the statistics library. 

3.1.2.2.8 SimCAD  
 

SimCAD (https://www.createasoft.com/) is a DES environment that provides user-

friendly features to create a model. It advertises that even simulation novices can build a 

model without spending a long time to figure it out. However, it appears that a user tends 

to follow built-in functions exclusively. Even though it can foster model building, some 

features do not reflect the notion of statistics or methodologies from systems engineering.  
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Figure 3.9 Warm-Up Period in ExtendSim using Clear Statistics under Statistics library 

 

Furthermore, it does not clearly include a warm-up period as a basic option. We observed 

that an application specialist in SimCAD did not know how to handle a warm-up period. 

When we had a later conversation with a lead development engineer, he suggested how to 

achieve the same functionality of a warm-up period. Apparently, it can deal with the warm-

up period, but requires the end user to write additional code. The SimCAD GUI is shown 

in Figure 3.10. 
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Figure 3.10 GUI of SimCAD 
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3.2 Post analysis 

 

Heretofore MSER logic has been implemented by individuals in custom-built, data-

driven postprocessors. In contrast to the Arena and ExtendSim online implementations 

provided in Chapter 4, these codes operate on output sequences generated by prior 

simulation runs, rather than continuously while simulating a model.  Law (2015) provides 

a notable example in his test applications of MSER.  In these examples, Law imported 

simulation output to an Excel spreadsheet developed by Katy Hoad of the University of 

Warwick.  This spreadsheet incorporates a VBA macro to perform all MSER calculations.   

To promote more widespread adoption of MSER, we developed MSER codes in several 

popular programming languages.  These codes are given in Chapter 6 and also are available 

online at the MSER Laboratory. Each code required us to implement logic using alternate 

programming syntax and built-in functions. While run times varied on test cases, all of the 

applications yielded identical results and the identical cases, as expected.  

Five different applications were written: two in the open-source code applications, R 

and C/C++, and three in the proprietary software applications, Matlab, SAS, and VBA. 

Each implementation has its own strength of computing an optimal truncation point by 

using the concept of an array, which makes these distinct from each other. Once we 

understand the common workflow to calculate MSER, the difference in what language it 

is written is minor. That is, we just need to know and exchange specific built-in functions 

inside each and follow language specific syntax. Using these built-in functions may or may 

not be efficient computationally. If the data sets are not large, however, the functions tend 

to work better than using user-defined functions based on loop and conditional statements. 
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An overview of these computing languages is provided in the following section. We 

describe each pertinent programming language or application to implement and run MSER 

so it is useful to illustrate key features before accounting for syntax in different codes. The 

following part will explain the history, background, and features from each programming 

language. 

3.2.1 R 

 

R is known as a statistical computing language that supports publication-quality 

graphics. Based on the S language, R is part of the GNU freeware project, an open source-

programming environment. Because it is freeware, more academic institutions tend to use 

R rather than commercial alternatives.  In addition, R can run on a wide variety of popular 

operating systems such as Windows, Linux, and MacOS. User contributions to R enrich its 

functionalities along with research development and it is very flexible to interact with other 

languages such as C, C++, and FORTAN. Source: What is R?: Introduction to R 

(http://www.r-project.org/) 

3.2.2 C/C++ 

 

Dennis Ritchie created C in 1972 at Bell Laboratories and Bjarne Stroustrup developed 

C++ in the early 1980s, also at Bell Laboratories.  Among the programming languages 

discussed here, C/C++ are the only languages to compile the code before running the logic. 

Generally speaking, C++ is superset of C. Thus codes written in C can usually be 

transported to C++(some exceptions exist). Both C and C++ demand very rigorous and 

strict coding, but are very fast to execute (Prata, 2003 and 2005). 
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3.2.3 Matlab 

 

As the name suggests, Matlab is useful to manipulate matrix operations for numerical 

computations and visual representations. Matlab is intended to support technical 

computing.  It advertises that the mastery of its language, tools, and built-in functions can 

help users obtain the results efficiently. We also witness that more and more engineers and 

students areadopting this technical language.  Source: Matlab primer 

(http://www.mathworks.com/help/pdf_doc/matlab/getstart.pdf) 

3.2.4 SAS 

 

SAS is proprietary software to solve problems from real business to academic research. Its 

exemplar tasks include file IO (data entry, retrieval, and management), ODS (output 

delivery system for presentation of report and pertinent graphics), statistical and 

mathematical analysis, and functionality for operations management/research problems 

such as business planning, forecasting, decision, and others. 

To perform MSER calculation, we use a specific module to support array and matrix 

manipulation, SAS/IML (Interactive Matrix Language).  This is a complete programming 

language with a dynamic, interactive environment for programmers, statisticians, 

researchers, and high-end analysts. After obtaining data or processed information, this 

interactive language is designated for more complex and sophisticated analysis to explore 

target data sets. Its user interface is similar to SAS, as well as Matlab.  However, creating 

one’s own SAS/IML modules becomes much easier than using SAS by itself. Every 



49 
 
 

application can be run either interactively or in batch. Furthermore, it can adopt R code via 

the IML server. Source: SAS 9.3 Language Reference   

(http://support.sas.com/documentation/cdl/en/lrcon/65287/PDF/default/lrcon.pdf) and  

SAS/IML fact sheet  

(http://www.sas.com/resources/factsheet/sas-iml-factsheet.pdf) 

3.2.5 VBA 

 

Excel, the spreadsheet included in MS Office, is equipped with the Visual Basic for 

Applications (VBA) language. Whenever extra analysis or calculation cannot be performed 

by built-in functions, VBA is the last source to count on. VBA is based on the Basic 

programming language and relatively easy to learn. However, its speed of execution is 

sacrificed for the stake of simplicity. VBA also supports an array format and its dynamic 

properties can be used for the development of MSER inside Excel. When a user opens the 

Excel workbook, the user can open Visual Basic Editor on the Developer Tab and build 

various functions to meet the objectives of a modeler.  

3.3 Merits of the alternative codes 

In summary, needless to say, the application written in C/C++ is more error prone and 

time consuming because we can only depend on their basic math library. In addition to this 

effort, we have to define types of all variables with care. However, it is cost effective and 

very fast to process long time series, which is a general benefit in high-level programming 

language. VBA is a more user-friendly interface to interact with end users, but demands 

more time to compute MSER statistics. We acknowledge that there might be room to 

optimize code performance in Visual Basic as we just use VBA to compute MSER. Three 
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other applications will help whoever has some expertise or experiences among R, Matlab, 

and SAS to be familiar with MSER logic. These three applications develop their own array 

manipulation tools and use built-in functions to code MSER logic in simple ways. As long 

as the user knows and uses the right functions, it would reduce the time and effort to write 

applications with these. 
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Chapter 4.  The MSER Laboratory 

 

Ideally, simulationists from industry and the academy collaborate to keep abreast of 

developments reported in the simulation literature. Commercial simulation software 

continues to incorporate new research findings, but typically lags in the pace of adoption 

because of the considerable investment required to revise current codes or to add new logic 

in a current version of software.  One of the main goals of this research is to spur the 

implementation of MSER in commercial software and practical application.  

To this end we have created a web-based laboratory that is an open and accessible 

resource for those who are interested in improving, applying, and extending the use of 

MSER.  Included in the MSER Laboratory are (1) an archive of key research articles, (2) 

a repository of MSER codes that may be freely downloaded, and (3) a set of concrete and 

user-friendly examples that illustrate the application of these codes.  The MSER Laboratory 

is hosted at the University of Virginia at http://faculty.virginia.edu/MSER/. 

We have observed that increasingly researchers are publishing their sample data sets as 

well as their codes. However, it is not an easy task to decipher code written in a language 

with which one is not familiar. That is why we facilitate the implementation of MSER in 

well-known simulation software such as ExtendSim, Arena, and ProModel/MedModel (see 

Chapter 5), as well provide MSER postprocessors in written in R, SAS, Matlab, VBA, and 

C/C++ (see Chapter 6).  We seek continuity of this beginning by maintaining an up-to-date 
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development in MSER from those who make progress. Furthermore, we appreciate 

receiving any constructive comments to improve the quality of this site. 

In this chapter we take a very brief guided tour through screen shots of the Lab as it 

currently is configured, while additional details are provided in later chapters.  The content 

in this site gives the general idea of MSER (Figure 4.1), its history related to research 

articles (Figure 4.2), sample codes as well as sample test sets (Figure 4.3) and the basic 

math derivation of the MSER statistic (Figure  4.4).  

These implementations in commercial simulation software are distinct from the 

current, arbitrary warm-up determination because these: 

 Determine a truncation point automatically 

 Minimize unnecessary user input  

 Provide figures and tables to support this determination 

All information is downloadable by any interested users and the site will help researchers 

exchange and update any new developments. 
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Figure 4.1. Introduction of MSER Laboratory Web page 
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Figure 4.2. History of MSER Laboratory Web page 
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Figure 4.3. Sample Codes of MSER Laboratory Web page 
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Figure 4.4. Math of MSER Laboratory Web page 
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Chapter 5.  Implementation of MSER in Commercial Software 

Before selecting appropriate simulation software suites, we must check whether the 

software package can update the MSER-statistic in a designated way while it saves the 

output to memory.  After reviewing current discrete-event simulation software (see Chapter 

3), we chose three representative software packages—ExtendSim, Arena, and ProModel—

with which we can calculate the MSER statistic online. In this Chapter we present examples 

of the incorporation of MSER logic in the model process flow diagrams, together with the 

corresponding source code or module structure needed to support implementation for each 

of these languages. 

5.1 ExtendSim Implementation 

ExtendSim (originally named “Extend”), from Imagine That, Inc., is a general-purpose 

software suite for continuous, discrete-event, and hybrid simulation (Banks 1998, Krahl 

2012). After we confirmed its capability to store output data sets, we collaborated with 

Dave Krahl at Imagine That and appreciated his efforts and time, even under his tight 

schedule, on the creation of a MSER library in ExtendSim.  The MSER algorithm is 

implemented in ExtendSim’s C-based ModL language. Only minor modifications relating 

to the user interface and variable initialization were required to convert the algorithm from 

ANSII C to ModL. The MSER block is fully integrated into ExtendSim and can be used in 

any ExtendSim model in the future. 
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The library collects data continuously from any relevant blocks and is designed to 

compute a MSER statistic, a truncation point, and a mean estimate associated with the 

truncation point. Another feature in this library includes the function to set up the 

computing frequency via a user input. The default batch size is 5 and batch size can be 

varied via setting different dialog parameters.   

5.1.1 ExtendSim Process Flow 

 

Figure 6.1 depicts a tandem queue model in ExtendSim, with the MSER module 

included to collect statics on the waiting time in Queue 2 tied with the GUI for the MSER 

calculator.  
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Figure 5.1 MSER Implementation and GUI in ExtendSim 

5.1.2.  ExtendSim Code 

 
          

 

// called when a new value is sent to the MSER_Stat_In connector 

 

on MSER_Stat_In 

{ 

 if(NumObs + 1 >= StatArraySize) 

  { 

  StatArraySize += 1000; 

  MakeArray(MSER_Stat_Array, StatArraySize); // add one more 
element to the array 

  DynamicDataTable(MyBlockNumber(), "MSER_Stat_tbl", 
MSER_Stat_array);  // attach the MSER_Stat_array to the dialog 
data table 

  } 

 MSER_Stat_tbl[NumObs][0] = MSER_Stat_In; // record the 
observation 

 NumObs++;     // increment the number of 
observations 

  

} 

 

// If the dialog data is inconsistent for simulation, abort. 

on checkdata 

{ 
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}  

            

  

 GetSimulateMsgs(FALSE);   // turns of the on Simulate 
Message Handler... not needed in discrete event simulation models 

} 

 

// called at the end of the simulation  

 

on FinalCalc 

{ 

integer i; 

real MSER_Stat_total; 

 

 // 

 // Loop through the MSER_Stat_array to calculate the average 

 // 

  

 MSER_Stat_total = 0.0; 

 

 for(i=0;i<NumObs;i++) 

  MSER_Stat_Total += MSER_Stat_tbl[i][0]; 

   

 MSER_stat_prm = MSER_Stat_Total/NumObs; 

  

 CalcMSER(); 

} 

 

 

on AbortSim_btn 

{ 

 AbortAllSims(); 

} 

 

 

// constant SIZE is 10000 /* SIZE will depend on the run length*/ 

// real newOutput[SIZE];  /*important to match input size with the 
variable type*/ 

// SIZE should match the length of input file. 

 

Procedure CalcMSER() 

{ 

    integer i; 

    integer b; 

    integer batchNum; 
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    integer m;                                      /*Batch output 
length*/ 

    integer d, j; 

 integer mser, d_final, n, k, threshold, j_final; 

 real min_MSER; 

 integer min_Index; 

 integer ReportOutput; 

 

 MakeArray(Sum, NumObs); 

 MakeArray(MSER_array, NumObs); 

 MakeArray(mean_array, NumObs); 

 MakeArray(sumMean, NumObs); 

 MakeArray(sum, NumObs); 

 MakeArray(average, NumObs); 

 MakeArray(squared_sum, NumObs); 

 ReportOutput = FALSE; 

 

    for (i = 0; i < NumObs; i++) 

    { 

 

        if (i == 0) 

        { 

        sum[i] = MSER_Stat_tbl[i][0]; 

        squared_sum[i] = sum[i]*sum[i]; 

        } 

 

        else 

        { 

            sum[i] = sum[i-1]+MSER_Stat_tbl[i][0]; 

            squared_sum[i] = squared_sum[i-1] + sum[i]*sum[i]; 

        } 

 

        average[i] =  sum[i]/(i+1); 

    } 

 

// Batch mean generation part 

 

    bigB = 20; 

    n = NumObs; 

    batchNum = floor(n/bigB); 

    real interimSum; 

     

    MakeArray(z, NumObs); 

 

    for (m = 0; m < batchNum; m++) 
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    { 

        interimSum = 0.0; 

        for (b =0; b < bigB; b++) 

        { 

            interimSum += MSER_Stat_tbl[bigB*m + b][0]; 

 

            if (b == (bigB-1)){ 

                z[m] = interimSum/bigB; 

               // printf("\t\t%f\n", z[m]); 

            } 

        } 

    } 

 

//before computing d and MSER-statistic, we need to store mean_array 

 

    for (d = 0; d < batchNum; d++) 

    { 

        for (j = 0; j < batchNum; j++) 

        { 

            if (j+d >= batchNum) 

            break; 

            else 

            { 

                sumMean[d] += z[j+d]; 

            } 

 

        } 

        mean_array[d]= sumMean[d]/(batchNum - d + 1); 

    } 

 

//redefine run length n to batchNum; 

 n = batchNum;                     /* run length of each 
replication*/ 

 k = 2;                            /* try to find a truncation 
within the first half of output series*/ 

 threshold = n/k; 

 

 Makearray(sampleVariance, batchNum); 

 Makearray(mserSum, batchNum); 

 Makearray(MSER_array, batchNum); 

  

 for(i=0;i<batchNum;i++) 

  { 

  sampleVariance[i] = 0; 

  mserSum[i] = 0; 
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  MSER_array[i] = 0; 

  } 

  

 min_MSER = BLANK; 

  

 for (d_final = 0; d_final < threshold; d_final++) 

 { 

     for (mser = 0; mser <= n; mser++) 

     { 

         if (mser + d_final > batchNum) 

             break; 

         else 

         { 

             mserSum[d_final] += (z[mser + d_final] - mean_array 
[d_final]) * (z[mser + d_final] - mean_array [d_final]); 

         } 

     } 

  

     sampleVariance[d_final] = mserSum[d_final]/(n - d_final - 1); 

     MSER_array[d_final] = sampleVariance[d_final]/(n - d_final); 

  

     if (MSER_array[ d_final ] < min_MSER || NoValue(min_MSER)) 

     { 

         min_MSER = MSER_array[d_final]; 

         min_Index = d_final; 

     } 

 } 

     { 

     MSER_Statistic_prm = min_MSER; 

     Min_Index_prm = min_Index; 

     MSerOut = min_MSER; 

     SendMsgToInputs(MSerOut); 

     } 

} 

 

on CREATEBLOCK 

{ 

 NumObsEvaluate_prm = 100; 

} 

 

5.2 Arena Submodel Implementation 
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Although it is desirable to develop MSER as a built-in function in Arena, as has done 

in ExtendSim, we have as yet been unable to persuade Rockwell Software to invest in this 

functionality.  As an immediate alternative, we chose to implement the MSER calculation 

logic inside an Arena submodel (Kelton, et al. 2010). This submodel is generic and can be 

inserted in any Arena project.  The MSER-optimal point can be calculated for any output 

by assigning this attribute as the input to the MSER submodel.  

5.2.1 Arena Process Flow 

 

Figure 5.2 depicts an M/M/1 queue in Arena with a MSER submodel included to collect 

statistics on the waiting time in queue defined in the “Service” process module.  The wait 

time in queue is assigned to an attribute before the corresponding entity enters the 

submodel named “MSER Module”.  In models more complex than this simple queue, we 

can add copies of the submodel to compute MSER statistics for multiple attributes or 

variables anywhere in the process flow.  For instance, if a researcher wants to compute the 

wait time in both queues in a tandem queue model, she/he needs to include these two 

submodels, one for the output of each service process.   

 

Figure 5.2 Main model of an M/M/1 queue in Arena with the MSER module included to 
collect statistics on the waiting time in Service queue
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Figure 5.3 Details of the MSER calculation in the Arena 
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5.2.2  Arena MSER Modules 

 

Figure 5.3 shows the Arena process flow that implements the MSER computation. 

Table 5.1 lists the global and local variables and arrays used by the submodel.  The User’s 

Guide in Appendix I provides more details and a fully worked-out example. 

Table 5.1. Global, Local variables and Arrays 

No. Variable (array) name Location of block Usage 

1 v_Counter Index Record entity number 

v_Counter + 1 

2 v_X InterimData 
Generation 

Record entity wait time 

3 v_X2 InterimData 
Generation 

Record (entity waiting time)2  

4 v_inter_cumX InterimData 
Generation 

Holder for summation of v_X 

5 v_inter_cumX2 InterimData Holder for summation of v_X2 

6 v_Mean DataGeneration v_cumX(v_Counter)/v_Counter 

7 v_ cumX DataGeneration v_inter_cumX(v_counter) 

8 v_ cumX2 DataGeneration v_inter_cumX2(v_counter) 

9 v_MSER_test MSER Without 
Trucation 

(v_cumX2(v_Counter) - v_Counter * 
v_Mean(v_Counter) * 
v_Mean(v_Counter))/ ((v_counter - 
0) * (v_counter - 0)) 

10 StopRule End of Simulation 

(Decision block) 

Global variable to check the end of 
simulation, 10000 that confirm 

StopRule = v_Counter 

11 v_Truncation Truncation Index v_Truncation  + 1 

12 v_MSER_final MSER WithTruncation ((v_cumX2(StopRule) - 
v_cumX(v_Truncation)) - (StopRule 
-v_Truncation) * v_Mean(StopRule) 
* v_Mean(StopRule))/ ((StopRule - 
v_Truncation) * (StopRule - 
v_Truncation - 1)) 

 

5.3 Promodel/Medmodel Implementation 

 

Promodel/Medmodel is equipped with a function call to use DLL so computing 

additional statistic can be feasible as mentioned previously. We test M/M/1 with traffic 
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intensity of 0.9. As shown in Figure 5.4, this simple model consists of three nodes 

representing entity arrival, processing, and exit, as well as a waiting queue for processing.  

5.3.1 Promodel/Medmodel Process Flow 

 

After compiling the DLL to compute MSER statistic, this file is listed in “External Files” 

as “DLL”.  It is saved in a working directory, or the model needs to be told the directory 

where it is compiled.  XSUB() uses Med.dll to compute MSER the statistic  aDuration that 

records time in system, as shown in Figure 5.5.  

 

 

 
Figure 5.4 M/M/1 Model in ProModel 
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Figure 5.5 DLL Usage in ProModel 

 

5.3.2 ProModel DLL Code 
 

 * DLL.cpp                            * 

 * Author: Sung Nam Hwang                    * 

 * Topic: DLL of Promodel(Medmodel) to generate MSER           * 

 * Date: Dec. 16, 2013                     */ 

 

 

#include "Med.h" 

#include <cmath> 

 

struct TEST_SUB_PARAMS 

{ 

    double basic; 

    //double time; If a modeler selects time weighted variable, this 
variable needs to be redefined. 

}; 

 

extern "C" 

{ 

    double _export BatchTest (void *p) 

    { 

        static double batchOutput[100000] ; 

        static double Batchsum = 0.0; 

        static int b = 5;                 //batch size of 5 

        static int j = 0;                       //batch output index 

        static int m = 0;                       //execution index to 
make batch output (i.e., m = 1 means the first raw output 

                                                //m = 2 means the 
second one and so on. 
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        static double holder = 0.0;             //temporary value 
holder 

        static double test3 = 0.0;       //temporary value 
holder 

 

        TEST_SUB_PARAMS * param; 

        param = (TEST_SUB_PARAMS*) p;    //type conversion 
from void to TEST_SUB_PARAMS 

 

        Batchsum += param->basic;       //Add up the raw 
outputs 

 

        m +=1; 

 

        if (m == b) 

           { 

               if (j == 0)                      //the first batch 
output generation 

               { 

                   batchOutput[j] = Batchsum/b; //batch output with 
batch size of b 

                   m = 0;                       //after making one 
batch output need to reset m for the next batch output 

                   j += 1;                      //increase the batch 
output index for the next batch output 

               } 

               else                             //except the first 
batch output generation 

               { 

                   for (int _temp_ = 0; _temp_ < j; _temp_ ++)
 //automatic variable of _temp_ 

                   { 

      holder +=batchOutput[_temp_]; 

                   } 

                   batchOutput[j] = (Batchsum - (holder * b))/b; 

                   m = 0; 

                   j +=1; 

                   holder = 0.0; 

               } 

           } 

 

 //if the vector of batch output is created and reaches at a 
certain number (i.e., j = 5) 

 //Compute truncated mean of batch outputs such as average of z_0, 
z_1, z_2, and so on 

 

    static double trunBatchSum = 0.0; 
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    static double trunZ[20000];  // the size is determined by 100000/5 

    static double SquaredmeanArray[20000]; // the same size as trunZ 

    static double MSER[20000];             // the same size as trunZ 

    static double temp = 0.0; 

    static double min_MSER = 999999999.0; 

    static int min_Index = 0; 

 

if (j == 20000) 

{ 

    trunBatchSum = Batchsum;// Another duplicate set of the sume of raw 
output 

// This is used for truncated mean of batch output 

 

    for (int z = 0; z < 5; z++) // z is associated with batch size of 5 

    { 

        trunBatchSum -= batchOutput[z]*b; 

        trunZ[z] = trunBatchSum/(b*(j-(z+1)));      
 //DIVIDE BY THE RAW NUMBER of output instead of batchoutput 

 

        for (int k = 0; k < 5-(z+1); k++) 

        { 

            temp += (batchOutput[k+z+1]-trunZ[z])*(batchOutput[k+z+1]-
trunZ[z]); 

 

            SquaredmeanArray[z] = temp/(5-z-1);     
 // need to assign an universal varialbe for 5 

            MSER[z] = SquaredmeanArray[z]/(5-z); 

 

            if (MSER[z] < min_MSER) 

            { 

                min_MSER = MSER[z]; 

                min_Index = z; 

            } 

        } 

        temp = 0; 

 

    } 

 

} 

        test3 = min_Index;    //the result is okay and confirmed 

        if (test3 <= 20000/2) 

        { 

           test3;//It means that the truncation point is located within 
the first half 

        }      //of output series. 
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        else 

        { 

            test3 = 9999999; //Indicator that urges the more simulation 
run to achieve steady state. 

        } 

 

    return test3;//the value indicates minimal truncation point. 

    } 

} 

 

//Header file of DLL_MSER.cpp 

#ifndef __MED_H__ 

#define __MED_H__ 

 

#include <windows.h> 

 

#ifdef BUILD_DLL 

#define _EXPORT __declspec(dllexport) 

#else 

#define DLL_EXPORT __declspec(dllimport) 

#endif // BUILD_DLL 

 

 

#ifdef __cplusplus 

extern "C" 

{ 

#endif 

 

double _export BatchTest (void *p); 

 

#ifdef __cplusplus 

} 

#endif 

 

#endif 

 

 

/* Promodel (Medmodel) code using xsub that execute dll*/ 

 

aDuration = clock() - aEnter 

 

real endvalue 

endValue = XSUB(TEST2, 1, aDuration) 
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Chapter 6. Implementation in Post Analysis Codes 

 

The MSER Laboratory currently includes five post-analysis codes written in R, SAS, 

Matlab, VBA, and C/C++.  In this Chapter, we demonstrate the application of each of these 

codes on a simple example.  The corresponding outputs also are provided. 

Each code reads data from a file (either Simple2.csv or simple2.txt).  These data are 

the output of one replication of a normal white noise process with superimposed 

deterministic bias initialized at declining from 15 to 0 with a slope of -0.1.  The batch size 

is set at b=5 and the run length is n=10,000 observations. The results from all five 

applications are identical.  The sample mean without truncation is 0.106268, the MSER-

optimal truncated mean is -0.005395563, and the MSER truncation point is d*=30. 

 

6.1. R Source Code  

 
# Set up a working directory 

setwd("~/Documents/MSER") #change this working directory as your R and 
data file are located 

newOutput <- read.table("simple2.csv", sep = ",", header = F) #change 
the input file name  

 

# Generating batch mean 

# Set up parameter for the array of batch mean                        
               

dataLength <- dim(newOutput)[1] 

batchSize <- k <- 5 

batchNumber <- floor(dataLength/batchSize) 

 

batchMean = rep(0, batchNumber) 
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for ( i in 1:batchNumber) { 

  batchMean[i] = sum (newOutput [((i-1)*batchSize 
+1):(i*batchSize),])/batchSize 

} 

 

# MSER-Statistic                                                        

# Generating placeholders for updating series 

sampleMSE <- rep(0, batchNumber) 

sampleMean <- rep(0, batchNumber) 

batchMean2 <- batchMean^2 

 

for ( d in 1:batchNumber) { 

  sampleMean[d] <- mean(batchMean[d: (length(batchMean))]); 

  sampleMSE[d] =(sum(batchMean2[d: length(batchMean)])-(batchNumber- 
d)*(sampleMean[d]^2))/((batchNumber - d)*(batchNumber - d - 1)) 

} 

 

# Find the minimal value of MSER statistic and the location 

trun <- which(sampleMSE == min(sampleMSE[1:(batchNumber-batchSize)])) 

sampleMSE[trun] 

 

# Plotting an initial raw data sets and MSER Graph including a 
truncating point                           par(mfrow=c(1,2)) 

ts.plot(newOutput, ylab="Raw output") 

ts.plot(sampleMSE[1:dataLength/batchSize], gpars=list(xlab="d", 
ylab="MSER Statistic", lty=c(1:3))) 

abline(v  = trun, lty = 2, col = "red") 

par(mfrow=c(1,1)) 

 

# Raw mean vs. truncated mean and a truncating point 

cat("mean without truncation: ", sampleMean[1], "\n") 

cat("truncated mean: ", sampleMean[trun], "\n") 

cat(“truncating point: ", trun, "\n") 

cat(“minimal MSER: ", sampleMSE[trun], "\n") 
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Figure 6.1 Output and MSER Plot in R 

 

6.2. The SAS Source Code  

 
libname MSER 'C:\Users\Administrator\Documents\SAS'; 
proc import datafile='C:\Users\Administrator\Documents\SAS\simple2.txt' 
dbms = dlm out = MSER.raw replace; 

 delimiter =" "; 

 getnames = no; 
run; 

 
proc iml; 

use MSER.raw; 

read all into check; 

dataLength = nrow(check); 

close MSER.raw; 

 

* Batch mean generation; 
k = 5; 

batchSize = k; 

batchNumber = floor(dataLength/batchSize); 
batchMean = j(batchNumber, 1, 0); 

/*do statement*/ 
do i = 1 to batchNumber; 

 batchMean[i] = sum (check[((i-1)*batchSize +1) : 
(i*batchSize)])/batchSize; 

end; 

/*MSER Statistic Generation*/ 
sampleMSE = j(batchNumber, 1, 0); 

sampleMean = j(batchNumber, 1, 0); 
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batchMean2 = batchMean##2; 

do  d = 1 to batchNumber; 

 sampleMean[d] = sum(batchMean[d: batchNumber])/(batchNumber-d+1);  

   sampleMSE[d] =(sum(batchMean2[d: batchNumber])-(batchNumber- 
d)*(sampleMean[d]**2))/((batchNumber - d)*(batchNumber - d - 1)); 

end; 

minMSER = min(sampleMSE); 

minIdx = sampleMSE[>:<]; /*loc(sampleMSE=min(sampleMSE))*/ 

 

print(minMSER);print(minIdx); 

 
quit; 

 

 
 

Figure 6.2  Output and MSER Plot in SAS  

 

6.3. Matlab Source Code  

 
% Read Raw Data of Simulation output with a text file 

output = fopen('simple2.txt'); 

check = fscanf(output, '%f'); 

% Batch Mean Generation 

dataLength = length(check);     %Find out the run length of a 
replication 

b = 5;                         %Batch Size is five 

batchSize = b; 

batchNumber = floor(dataLength/batchSize); %Batch Number Calculation 

batchMean = zeros(batchNumber); %initialize zero vectors to hold 
batchmeans 

 for i = 1:batchNumber  

  batchMean(i) = sum(check(((i-
1)*batchSize+1):(i*batchSize)))/batchSize; 

end 
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 % MSER-Statistic                                                                   

sampleMSE = zeros(0, batchNumber); 

sampleMean = zeros(0, batchNumber); 

batchMean2 = batchMean.^2; 

for d = 1:batchNumber  

  sampleMean(d) = mean(batchMean(d:(length(batchMean)))); 

  sampleMSE(d) = (sum(batchMean2(d:length(batchMean)))... 

      -(batchNumber - d)*(sampleMean(d)^2))/((batchNumber - 
d)*(batchNumber - d - 1)); 

end 

% Find a truncation point whose MSER statistic is minimum except the 
last  

% few output series. Consider one or two points to compute sample 
variance. 

% Thus, we need to exclude those erratic points. 

trun = find(sampleMSE == min(sampleMSE(1:(batchNumber-batchSize)))); 

% Add a graph showing the trend of MSER statistics 

% Match dimensions between x and y axis 

plot(1:(batchNumber-batchSize), sampleMSE(1:batchNumber-batchSize)); 

title 'Truncation Point with Batch Mean'; 

xlabel 'Batch Numbers'; 

ylabel 'MSER Statistic'; 

hold all; 

 
Figure 6.3 Output and MSER Plot in Matlab 

6.4. VBA Source Code  

Option Explicit 

Option Base 1 

 

Sub Main() 

    Dim batchSize As Integer 

    Dim dataLength As Long, batchNumber As Double 
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    Dim batchMean() As Double 

    Dim Output As Range 'Using Set to define the range in Workbook here 
but it will use a different way to define the size of data 

 

    batchSize = InputBox("Batch Size?") 

    MsgBox "You choose the batch size of " & batchSize 

    'batchSize = 5 

 

    'This part should be interactive as well as dynamic 

    Output = Range("A1:A10000") 'This would change later to adopt the 
data importing from Arena 

 

    dataLength = Output.Rows.Count 

    batchNumber = Round(dataLength / batchSize, 0) 

 

    Call BatchMeanGen(batchNumber, Output, batchSize) 

    'Call Something to generate summary statistics such as all 
information shown in message boxes??? 

 

End Sub 

 

Sub BatchMeanGen(batchNumber As Double, Output As Range, batchSize As 
Integer) 

    ' 

    'Batch Mean Output Generation 

    'For i = 1 To batchNumber 

    '    batchMean(i) = sum(Output((i-1)*batchSize + 
1):(i*batchSize)))/batchSize; ' 

    ' 

 

    MsgBox "The number of Batch Mean Output is " & batchNumber 

 

    'Step to assin Range to Array using dynamic allocation with Redim 

    Dim Temp() As Object 

    ReDim batchMean(batchNumber) As Double 

    Temp = Output   'Assign the range of Output to the array of Temp 

 

    Dim interimSum As Double 

    Dim m As Long 

    Dim b As Integer 

 

    For m = 1 To batchNumber 

        interimSum = 0 

        For b = 1 To batchSize 

            interimSum = interimSum + Temp(batchSize * (m - 1) + b, 1) 
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            If b = batchSize Then 

                batchMean(m) = interimSum / batchSize 

            End If 

        Next b 

    Next m 

 

    'batchMean Generation is definitely correct 

 

    Dim bNumber As Double 

    Dim bMean() As Double 

 

    bNumber = batchNumber 

    bMean = batchMean 

 

    Call MSERGen(bNumber, bMean()) 

 

End Sub 

 

Sub MSERGen(batchNumber As Double, batchMean() As Double) 

    'MSER Generation 

    ReDim SampleMean(batchNumber) As Double, SampleMSE(batchNumber) As 
Double 

 

    Dim d As Double, j As Long 

    ReDim meanArray(batchNumber) As Double 

    ' 

    'check SampleMean and meanArray 

    ' 

    For d = 1 To batchNumber 

        SampleMean(d) = 0 

        For j = 1 To batchNumber 

            If (j + d - 1) > batchNumber Then   'Use (j+d-1) instead of 
(j+d) 

                Exit For 

            Else 

                SampleMean(d) = SampleMean(d) + batchMean(j + d - 1) 

            End If 

        Next j 

        meanArray(d) = SampleMean(d) / (batchNumber - d + 1) 

    Next d 

 

    ' Let's consider For j = 1 To (batchNumber - d) in the future trial 

    ' SampleMean and meanArray are correct 

 

 



79 
 
 
    Dim k As Integer, threshold As Long 

    k = 2 

    threshold = Round(batchNumber / k, 0) 

 

    Dim min_MSER As Double 

    ReDim sampleVariance(batchNumber) As Double 

    ReDim mserSum(batchNumber) As Double 

    ReDim MSER_array(batchNumber) As Double 

    Dim min_Index As Double 

 

    min_MSER = 999999999.0# 

 

    Dim d_final As Double 

    Dim mser As Long 

 

    'd_final = 1 

 

    For d_final = 1 To threshold 

        For mser = 1 To batchNumber 

            If (mser + d_final - 1) > batchNumber Then 

                Exit For 

            Else 

                mserSum(d_final) = mserSum(d_final) + (batchMean(mser + 
d_final - 1) - meanArray(d_final)) * (batchMean(mser + d_final - 1) - 
meanArray(d_final)) 

            End If 

        Next mser 

 

        sampleVariance(d_final) = mserSum(d_final) / (batchNumber - 
d_final - 1) 

        MSER_array(d_final) = sampleVariance(d_final) / (batchNumber - 
d_final) 

 

        If MSER_array(d_final) < min_MSER Then 

            min_MSER = MSER_array(d_final) 

            min_Index = d_final 

        End If 

    Next d_final 

 

    MsgBox "Minimum of MSER " & MSER 

    MsgBox "The truncation point is " & (min_Index) 

    MsgBox "Before truncatinig, we have a mean of " & meanArray(1) 

    MsgBox "The trucated mean is " & meanArray(min_Index) 

 

End Sub 
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Figure 6.4 Output and MSER Plot in Excel VBA 

6.5. C Source Code  

#include <stdio.h> 

#include <math.h>  /* To use floor function*/ 

#define SIZE 10000 /* SIZE will depend on the run length -- This is a 
critical part to guarantee performance*/ 

 

double newOutput[SIZE];  /*important to match input size with the 
variable type*/ 

double MSER_array[SIZE]; 

int B;                          /*Batch size*/ 

int n;                          /*Run length of each replication*/ 

double mean_array[SIZE]; 

double sumMean[SIZE]; 

// SIZE should match the length of input file. 

 

void main() 

{ 

    double newOutput[SIZE];  /*important to match input size with the 
variable type*/ 

 //   float m[SIZE]; 

    double sum[SIZE]; 

    double average[SIZE]; 

    double squared_sum[SIZE]; 

    int i; 

 

    FILE *ifp;  // This input file point is associated with batch 
output. 

                // Batch output from function from Batch.c or process 
by Batch.c will be imported here. 

//    FILE *ofp; 
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    ifp = fopen("simple2.txt", "r"); /*any relevant output series: 
Currently normal distribution with linearly decreasing bias*/ 

//    ofp = fopen("out.txt", "w"); 

 

    for (i = 0; i < SIZE; i++) 

    { 

        fscanf (ifp, "%f", &newOutput[i]); 

        //printf ("%.10f\n", newOutput[i]); 

 

        if (i == 0) 

        { 

        sum[i] = newOutput[i]; 

        squared_sum[i] = sum[i] * sum[i]; 

        } 

 

        else 

        { 

            sum[i] = sum[i-1]+newOutput[i]; 

            squared_sum[i] = squared_sum[i-1] + sum[i] * sum[i]; 

        } 

 

        //printf("%f\n", sum[i]); 

        average[i] = (double) sum[i]/(i+1); 

    } 

//   printf ("\t%f\n", average[SIZE -1]); 

//   printf ("\t\t%f\n", squared_sum[SIZE -1]/SIZE); 

 

//printf ("\t\t\t%f\n", squared_sum[SIZE-1]/SIZE); 

    fclose (ifp); 

    //fclose (ofp); 

 

// Batch mean generation part 

 

    int b; 

    B = 5; 

    n = SIZE; 

    int batchNum = floor(n/B); 

    int m;                                      /*Batch output length*/ 

 

    printf("No of batches:    %d\n", batchNum); /*to check function of 
floor*/ 

    printf("Batch size:       %d\n", B); 

 

    /* batch mean output generation (i.e., z[1] = average of (x1, 
x2, ... , x_batchSize))*/ 
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    double z [batchNum]; 

    double interimSum; 

 

    for (m = 0; m < batchNum; m++) 

    { 

        interimSum = 0.0; 

        for (b =0; b < B; b++) /*Add indiviual output up to one batch 
size and divide by the batch size*/ 

        { 

            interimSum += newOutput[B*m + b]; 

 

            if (b == (B-1)){ 

                z[m] = interimSum/B; 

               // printf("\t\t%f\n", z[m]); 

            } 

        } 

    } 

//before computing d and MSER-statistic, we need to store mean_array 

// mean_array[0] = (z1 + z2 + ... + z_batchNum) divided by the number 
of relevant samples 

// mean_array[1] =      (z2 + z3 + ...+ z_batchNum) ... 

// mean_array[2] =           (z3 + z4 + ... + z_batchNum) ... 

 

    int d, j; 

 

    for (d = 0; d < batchNum; d++) 

    { 

        for (j = 0; j < batchNum; j++) 

        { 

            if (j+d > batchNum) 

            break; 

            else 

            { 

                sumMean[d] += z[j+d]; 

            } 

} 

        mean_array[d]= sumMean[d]/(batchNum - d + 1); 

    } 

//redefine run length n to batchNum; 

 

int mser, d_final, n, k, threshold; //, j_final; 

n = batchNum;                     /* run length of each relication*/ 

k = 2;                            /* try to find a truncation within 
the first half of output series*/ 

threshold = n/k; 
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double min_MSER; 

double sampleVariance[batchNum]; 

double mserSum [batchNum]; 

double MSER_array [batchNum]; 

int min_Index; 

 

min_MSER = 999999999.0; 

 

for (d_final = 0; d_final < threshold; d_final++) 

{ 

    for (mser = 0; mser <= n; mser++) 

    { 

        if (mser + d_final > batchNum) 

            break; 

        else 

        { 

            mserSum[d_final] += (z[mser + d_final] - mean_array 
[d_final]) * (z[mser + d_final] - mean_array [d_final]); 

        } 

    } 

 

    sampleVariance[d_final] = mserSum[d_final]/(n - d_final - 1); 

    MSER_array[d_final] = sampleVariance[d_final]/(n - d_final); 

 

    if (MSER_array[ d_final ] < min_MSER) 

    { 

        min_MSER = MSER_array[d_final]; 

        min_Index = d_final; 

        //printf("%d\n", min_Index); 

    } 

} 

printf("%s\n"," "); 

printf("MSER statistics:\t%f\n", min_MSER); 

printf("Truncation point:\t%d\n", min_Index ); 

 

double rawAverage; 

double trunAverage; 

 

rawAverage = mean_array[0]; 

trunAverage = mean_array[min_Index]; 

 

printf("Raw average:\t%f\n", rawAverage); 

printf("Average after truncating:\t%f\n", trunAverage);  
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6.6. C++ Source Code  

 

MSER2 Project(.cpp) 

 

// MSER2.cpp : Defines the entry point for the console application. 

// 

 

#include "stdafx.h" 

 

int _tmain(int argc, _TCHAR* argv[]) 

{ 

 return 0; 

} 

 

#include <stdio.h> 

#include <math.h>  /* To use floor function*/ 

#define SIZE 10000 /* SIZE will depend on the run length*/ 

 

float newOutput[SIZE];  /*important to match input size with the 
variable type*/ 

float MSER_array[SIZE]; 

int bigB;                          /*Batch size*/ 

int n;                          /*Run length of each replication*/ 

float mean_array[SIZE]; 

float sumMean[SIZE]; 

// SIZE should match the length of input file. 

 

void main() 

{ 

    float newOutput[SIZE];  /*important to match input size with the 
variable type*/ 

 //   float m[SIZE]; 

    float sum[SIZE]; 

    float average[SIZE]; 

    float squared_sum[SIZE]; 

    int i; 

 

FILE *ifp;  // This input file point is associated with batch output. 

                // Batch output from function from Batch.c or process 
by Batch.c will be imported here. 

//    FILE *ofp; 

 

    ifp = fopen("simple2.txt", "r"); /*any relevant output series: 
Currently normal distribution with linearly decreasing bias*/ 

//    ofp = fopen("out.txt", "w"); 
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    for (i = 0; i < SIZE; i++) 

    { 

        fscanf (ifp, "%f", &newOutput[i]); 

        //printf ("%.10f\n", n[i]); 

 

        if (i == 0) 

        { 

        sum[i] = newOutput[i]; 

        squared_sum[i] = sum[i]*sum[i]; 

        } 

 

        else 

        { 

            sum[i] = sum[i-1]+newOutput[i]; 

            squared_sum[i] = squared_sum[i-1] + sum[i]*sum[i]; 

        } 

 

        //printf("%f\n", sum[i]); 

        average[i] = (float) sum[i]/(i+1); 

    } 

//   printf ("\t%f\n", average[SIZE -1]); 

//   printf ("\t\t%f\n", squared_sum[SIZE -1]/SIZE); 

 

//printf ("\t\t\t%f\n", squared_sum[SIZE-1]/SIZE); 

    fclose (ifp); 

    //fclose (ofp); 

 

// Batch mean generation part 

 

    int b; 

    bigB = 20; 

    n = SIZE; 

    int batchNum = floor((double) n/bigB); 

    int m;                                      /*Batch output length*/ 

 

    printf("No of batches:    %d\n", batchNum); /*to check function of 
floor*/ 

    printf("Batch size:       %d\n", bigB); 

 

    float z [SIZE]; 

    float interimSum; 

 

    for (m = 0; m < batchNum; m++) 

    { 
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        interimSum = 0.0; 

        for (b =0; b < bigB; b++) 

        { 

            interimSum += newOutput[bigB*m + b]; 

 

            if (b == (bigB-1)){ 

                z[m] = interimSum/bigB; 

               // printf("\t\t%f\n", z[m]); 

            } 

        } 

    } 

 

//before computing d and MSER-statistic, we need to store mean_array 

 

    int d, j; 

 

    for (d = 0; d < batchNum; d++) 

    { 

        for (j = 0; j < batchNum; j++) 

        { 

            if (j+d >= batchNum) 

            break; 

            else 

            { 

                sumMean[d] += z[j+d]; 

            } 

 

        } 

        mean_array[d]= sumMean[d]/(batchNum - d + 1); 

    } 

 

//redefine run length n to batchNum; 

 

int mser, d_final, n, k, threshold, j_final; 

n = batchNum;                     /* run length of each relication*/ 

k = 2;                            /* try to find a truncation within 
the first half of output series*/ 

threshold = n/k; 

 

float min_MSER; 

float sampleVariance[SIZE]; 

float mserSum [SIZE]; 

float MSER_array [SIZE]; 

int min_Index; 
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min_MSER = 999999999.0; 

 

for(i=0;i<SIZE;i++) 

    mserSum[i] = 0.0; 

 

for (d_final = 0; d_final < threshold; d_final++) 

{ 

 //   for (mser = 0; mser <= n; mser++) 

   for (mser = 0; mser < n; mser++) 

    { 

        if (mser + d_final >= batchNum) 

            break; 

        else 

        { 

            mserSum[d_final] += (z[mser + d_final] - mean_array 
[d_final]) * (z[mser + d_final] - mean_array [d_final]); 

        } 

    } 

 

    sampleVariance[d_final] = mserSum[d_final]/(n - d_final - 1); 

    MSER_array[d_final] = sampleVariance[d_final]/(n - d_final); 

 

    if (MSER_array[ d_final ] < min_MSER) 

    { 

        min_MSER = MSER_array[d_final]; 

        min_Index = d_final; 

        //printf("%d\n", min_Index); 

    } 

} 

 

printf("%s\n"," "); 

printf("MSER statistics:\t%f\n", min_MSER); 

printf("Truncation point:\t%d\n", min_Index ); 

//printf("\t\t%f\n", MSER_array[100]); 

} 

 

stadfx.cpp 

// stdafx.cpp : source file that includes just the standard includes 

// MSER2.pch will be the pre-compiled header 

// stdafx.obj will contain the pre-compiled type information 

 

#include "stdafx.h" 

 

// TODO: reference any additional headers you need in STDAFX.H 

// and not in this file 
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Header files 

stdafx.h 

// stdafx.h : include file for standard system include files, 

// or project specific include files that are used frequently, but 

// are changed infrequently 

// 

 

#pragma once 

#include "targetver.h" 

#include <stdio.h> 

#include <tchar.h> 

 

// TODO: reference additional headers your program requires here 

targetver.h 

#pragma once 

 

// The following macros define the minimum required platform.  The 
minimum required platform 

// is the earliest version of Windows, Internet Explorer etc. that has 
the necessary features to run  

// your application.  The macros work by enabling all features 
available on platform versions up to and  

// including the version specified. 

 

// Modify the following defines if you have to target a platform prior 
to the ones specified below. 

// Refer to MSDN for the latest info on corresponding values for 
different platforms. 

#ifndef _WIN32_WINNT            // Specifies that the minimum required 
platform is Windows Vista. 

#define _WIN32_WINNT 0x0600     // Change this to the appropriate value 
to target other versions of Windows. 

#endif 
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Figure 6.5 Output Results in Console by C/C++
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Chapter 7.  Parameterization Issues, Analyses, and Results 

 

While MSER is widely accepted as the most robust approach to initializing steady-state 

simulations, there remain a number of open questions regarding its application.  These 

include:  

 the choice of simulation run length n, 

 the choice of batch size b, and 

 the maximum acceptable optimal truncation point dmax on the range of a given run 

length [0≤ dmax ≤n] 

 the incorporation of the overlapping batch means. 

One purpose of this research is to provide insight on the relationships among these 

parameters and guidance regarding their selection.  To this end, we explore these 

relationships empirically on a selection of test problems using a replication/deletion 

analysis framework.  We estimate the sampling distributions of the truncated means and 

corresponding truncation points, test for correlation, and compare response surfaces for 

varying batch sizes and run lengths.  Before proceeding to the test problems, however, we 

consider a fundamental and perhaps unresolvable difficulty inherent in choosing an 

adequate run length (see White and Hwang, 2015). 

7.1 Choosing the Run Length of a Nonterminating Simulation 

While intuition may derive from the system being simulated and/or the purpose of the 

simulation study, determining an appropriate run length for a nonterminating simulation 
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typically is a process of trial and error.  Framed as an optimization problem in Chapter 2, 

the global objective is to discover the number of observations needed to achieve both the 

accuracy and precision desired in the estimated steady-state simulation outputs with the 

minimum computing effort.  For output series that are potentially nonstationary or cyclical, 

run lengths must first and foremost be long enough to convince one that this is or is not the 

case; for output series that are slow to converge in distribution, practical constraints on 

time and computing budgets may necessitate settling for shorter run lengths and confidence 

intervals wider than desired.  

We distinguish between the two typical output analysis frameworks.  If batch-means is 

adopted for output analysis then the run length should be sufficient to provide a sample of 

steady-state observations (after truncation sufficient to mediate initialization bias) large 

enough to form nearly uncorrelated batch means yielding a desired level of confidence in 

the grand mean.  If replication/deletion is adopted, then each of the replication run lengths 

should be adequate to guarantee that MSER can determine an appropriate truncation point.  

In this case, the accuracy and precision of the estimate is a function of the number of 

replications run.  The interested reader should see Hoad, et al. (2007) for a review of the 

literature and an empirical comparison of alternative procedures for determining the 

number of replications required.   

The replication/deletion framework provides the insights we seek regarding MSER 

parameterization.  MSER works by successively considering the leading observation xd in 

the output series {xd, …, xn}, i.e., the sequence remaining after the initial d-1 observations 

have been truncated. This observation is a candidate for deletion if the MSE in the estimate 

of the steady-state mean decreases for the reserved sequence {xd+1, …, xn}.  For MSER to 
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succeed in determining an optimal truncation point for any single replication, however, the 

algorithm has to “see” enough of the steady-state response in the reserved sequence in order 

to make a correct determination. We note that, symptomatically, as the sample size n-d 

becomes small with continued truncation, the MSER statistic can behave erratically 

(Rossetti, Delaney, and White, 1995; Spratt, 1998; and Hoad et al., 2008).  In other words, 

there is some shortest sequence {xdmax,…, xn} that is “sufficiently large and representative” 

of a sample drawn from the steady-state distribution of Xt for use in determining a 

truncation point. 

If MSER determines that d*>dmax, then by construction the algorithm should return a 

message that an optimal truncation point cannot be determined for the given output 

sequence.  In such cases the MSER statistic decreases over entire range [0, dmax], indicating 

that the output sequence increases (in trend) or decreases over this same range.  This will 

be the case for one of two reasons.  Either (1) the output is inherently unstable (such as a 

queue with traffic intensity ρ≥1) and MSER will not converge irrespective of run length, 

or (2) the process is stable, but the run length n is insufficient to achieve a detectable steady 

state. Without addition computing, it is impossible to tell which is the case based on the 

output alone. 

To illustrate the inherent problem, consider output sequences for two different systems 

given in Figure 7.1.  First, consider run lengths of n≤500. The MSER statistic will have a 

minimum value in the neighborhood of n for both Output A (Red) and Output B (Blue).  

MSER therefore will fail to return a truncation point for either output.   
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Figure 7.1 Hypothetical simulation output sequences illustrating one potential consequence 

of an inadequate run length 

  

Second, consider run lengths of n≥500.  MSER will still fail to return a truncation point 

for Output A. However, if n is sufficiently large, MSER will return optimal truncation point 

in the neighborhood of d*=500 for Output B.  It is unlikely that MSER will find an optimal 

truncation for values all values of n≥500 and the question is, “What is the minimum run 

length n* such that MSER finds a correct truncation point for Output B?”  This almost 

certainly will depend on the unique properties of the specific output sequence under 

consideration, most especially the degree of sequential correlation. 

Now consider output sequences for two different systems given in Figure 7.2.  These 

are possible extensions of the outputs in Figure 7.1.  Obviously, MSER will yield the same 

results for run lengths n≤800.  If n is sufficiently large, however, MSER will conclude (1) 

that Output A (Red) has stabilized, and will return optimal truncation point in the 

neighborhood of d*=800; and (2) Output B (Blue) is unstable and fail to return a truncation 

point for this output.  Again, the question of how large is sufficient to draw either 

conclusion remains unclear.  
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Figure 7.2 Hypothetical extensions of the simulation output sequences in Figure 7.1 
illustrating further potential consequences of an inadequate run length 

 

From these examples we see that MSER can potentially change its determinations 

regarding the location and the even the existence of a suitable truncation point depending 

on the run length chosen. While in our experience Output B in the second example is a 

pathological case, the conclusion remains that the performance of MSER depends on 

choosing a sufficient run length. And without knowledge beyond the output sequences 

alone, there are no guarantees that this is or is not the case.   

7.2  Test Models and Results 

We performed empirical tests with differing batch sizes to determine if any discernable 

trends or correlations exist among mean estimates, truncation points, batch sizes, and run 

lengths, using three different forms of output.  These test outputs included (1) the response 

of a uniform white-noise process in steady-state with a superimposed linearly-decreasing 

deterministic transient, (2) the delay times in an M/M/1 queue, and (3) the response of an 

EAR(1) process.  
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7.2.1 Model 1: Uniform Distribution with Superimposed Deterministic Bias 

 

7.2.1.1 Model Description 
 

The first test model is 

 

for t=0, 1, …, n, where 

 








150,0

150,,2,1,0,1501.0

t

tt
At


 

and 

εt~UNIF(0,1)

 
This is a special case of the family of models variously explored by Cash et al. (1992), 

Spratt (1998), White et al. (2000), and Hoad et al. (2008).  As illustrated in Figure 7.3, the 

model consists of two parts: (1) At, a deterministic, additive, initial transient that declines 

linearly from 15 at 0 time units to 0 at 150 time units and (2) εt, a uniform white-noise 

process in steady-state, i.e., observations sampled randomly from a uniform distribution 

between zero and one.  In steady state, Xt= εt so that E[Xt]=0.5 and VAR[Xt]=1/12. 

We selected this model as the baseline for testing MSER performance because of its 

transparency—the transient expires at t=150 and steady state comprises observations that 

are positive recurrent on the continuous range εt  [0,1]. These white-noise observations 

are uncorrelated by definition and therefore the mean transient (White and Robinson, 

2010) settles relatively quickly after truncation.  Additionally, the state-transient sequence 

At includes transient (nonrecurrent) observations on the discrete ranges and At  [1.1, 1.2, 

…, 15] for t < 140 and At  [0, 0.1, 0.2, …, 1]  [0,1] for t ≥ 150. Therefore, as apparent 

Xt  At t
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in Figure 7.3, we can easily detect near-optimal truncation point d visually, somewhere on 

the range d=t [140-150], depending on the values realized for the noise on this range for 

any particular output sequence.  Because the transient observations are linearly decreasing 

(in trend), the probability that observations xt ≤1 for all t > d increases (in trend) from 0 to 

1 as d increases on this range. 

 

Figure 7.3 Output for a representative replication of the first model 

 

It is important to note the MSER truncation point d* may differ from the “true” 

truncation point (d=150 for this model). This is because MSER will retain observations 

from the transient sequence, or delete observations from the steady-state sequence, if (and 

only if) this improves the estimate in the sense of minimizing the MSE.  Determining the 

“true” truncation point is used as a performance criterion in several studies (see, for 

example, Hoad et al. (2008) and Law (2015)), where failure to select the “true” truncation 

point is viewed as a potential shortcoming of MSER—i.e., as “consistent underestimation 

or overestimation of the true end of the initial.  Clearly, this ignores the fact that MSER 
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leads to superior estimates in the sense of MSE by not selecting the “true” point (White 

and Hwang, 2015). 

 

7.2.1.2 Results: Batch size effects for long runs 
 

To explore the combined effect of batching and run length on MSER performance, we 

ran 1,000 independent replications of Model 1 with batch sizes b=1, 5, and 10.  Initially, 

we chose a run length of n=10,000 observations, noting that this run length should be 

several orders of magnitude longer than the state-transient sequence regardless of the batch 

size.   

Table 7.1 and Figure 7.4 confirm the effectiveness of MSER truncation for the first 

model in terms of both the accuracy and precision of the estimated steady-state mean.  

While the confidence intervals for batch sizes of 5 and 10 do not quite cover the true mean, 

all of the estimates are accurate to three significant figures. Note, also, that the small errors 

in the estimates are all negative, while the biasing observations are greater than the steady-

state mean.  From this we conclude that for this instance 

(1) all batch sizes remove all of the transient observations, and 

(2) estimation errors are an artifact of sampling after the biasing effect of the initial 

transient has been removed.   

As shown in Figure 7.5, the sampling distributions of the mean are nearly normal, as 

predicted by the Central Limit Theorem, and nearly identical for all batch sizes.  From this 

we conclude that for this instance 

(3) modest batching has no significant effect on the quality of estimates.   
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Table 7.1 95% confidence intervals for the mean and variance for the truncated mean 
output as a function of batch size for batch sizes b=1, 5, and 10 for run length n=10,000 

    

Truncated Mean Batch Size 1 Batch Size 5 Batch Size 10 
Sample Mean 0.499825 0.499789 0.499777 
Upper limit 0.500000 0.499965 0.499955 
Lower limit 0.499649 0.499614 0.499602 

Sample Std Dev 0.002850 0.002851 0.002829 
Upper limit 0.002960 0.002961 0.002959 
Lower limit 0.002711 0.002712 0.002711 

 

Table 7.2 shows that the mean number of observations truncated (as distinct from the 

number of batches truncated) is an increasing function of batch size.  For batch size of b=1, 

the mean truncation is between t=145 and t=150, as anticipated.  For batch sizes of b=5 

and 10, the means are modestly larger.  These differences are statistically significant at the 

95% confidence level with greater truncation for larger batches on average. 

 

(a) 

 

(b) 

 

Figure 7.4 95% confidence intervals for (a) the truncated means for run lengths n=10000 
and batch sizes b=1, 5, 10 and (b) the sample standard deviation in the estimated means for 
run lengths n=10000 and batch sizes b=1, 5, 10 
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Figure 7.5 Fits to the steady-state sampling distributions of the mean for 1000 replications 
for run length n=10,000.  Fits for all three batch sizes tested are nearly identical for batch 

sizes b=1, 5, and 10 

 

Table 7.2 .  95% confidence intervals for the mean and variance for the number of 
observations truncated for batch sizes b=1, 5, and 10 for run length n=10,000 

Observations Truncated Batch Size 1 Batch Size 5 Batch Size 10 

Sample Mean 146.9190 152.5950 157.8500 

Upper limit 147.0289 155.2085 159.1441 

Lower limit 146.8091 151.9817 156.5159 

Sample Std Dev 1.7708 9.8858 21.1764 

Upper limit 1.8520 10.5571 22.1477 

Lower limit 1.6964 9.4688 20.2872 
 

 

(a) 

 

(b) 

Figure 7.6 95% confidence intervals for (a) the MSER mean and (b) the standard deviation 
in the MSER truncation point for run lengths n=10000 and batch sizes b=1, 5, 10 
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The scatter diagram in Figure 7.7, the frequency histogram in Figure 7.8, and the 

correlation coefficients in Table 7.3 illustrate the relationship between the truncated means 

and the corresponding total number of observations truncated. We conclude that for this 

instance 

(4) increasing batch sizes increases both the variance and spread of the truncated 

observations, without systematically affecting the accuracy of the estimated mean,  

(5) the mean estimate is uncorrelated with the number of observations truncated for 

all the batch sizes, and 

(6) the success of a truncation procedure in terms of the accuracy of the estimate 

cannot be imputed from the truncation point alone. 

 
Figure 7.7 Scatterplots of the truncated mean vs. the number of observations truncated for 

batch sizes b=1, 5, and 10 for run length n=10,000 
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Figure 7.8 Frequency distribution of the total number of observations truncated as a 

function of batch size for batch sizes b=1, 5, and 10 for run length n=10,000 

 

 
Table 7.3 Correlation between the truncated mean and the number of observations 
truncated for batch sizes b=1, 5, and 10 for run length n=10,000. 

Linear Correlation Table Trunc Batch=1 Trunc Batch=5 Trunc Batch=10 

Mean Batch=1 -0.054 -0.011 0.075 

Mean Batch=5 -0.046 -0.015 0.072 

  Mean Batch=10 -0.045 -0.014 0.076 

 

As can be seen in Figure 7.8, increasing the batch size tends to increase the number of 

observations truncated in part because of the increased granularity—with larger batches 

there are fewer candidate truncation points to consider.  But this trend also reflects the 

difference between the “true” and MSER truncation points. To further explore, consider 

output for replication 958. The MSER truncation points for batches of b=1, 5, and 10 are 

d*=148, 190, and 590 respectively, where 590 is the largest truncation point observed 

across all replications of with all batch sizes.  
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The batch means and MSER statistic for that replication are plotted against the first 500 

observations in Figure 7.9. Figure 7.10 provides a closer look these data for b=10 on the 

range t  [100, 1500], i.e., batches 10 through 150.  The mean for batch number 59 is 

0.1524185, which is nearly 4 standard deviations below the steady-state mean.  Given the 

length of the reserved sequence for this truncation point (941 batches), MSER can improve 

the estimate of the mean by deleting this observation. 

Finally, we note that in general there are two effects of batching.  First, the sequence is 

whitened, decreasing any serial correlation in the batch means.  Second, the sequence is 

smoothed, altering the form of the steady-state distribution, decreasing any skew, and 

making the resulting distribution more nearly normal.  These effects are consequences of 

the Central Limit Theorem.  

 

   

Figure 7.9 Batched means and MSER statistic for the first 500 observations for replication 
958 for batch sizes b=1, 5, and 10 for run length n=10,000 
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Figure 7.10 Batch means and MSER statistic for the first 1500 observations for replication 
958 for batch sizes b=10 and run length n=10,000 

 

For Model 1 specifically, the whitening effect is moot, since the steady-state sequences 

are already white without batching.  However, the second effect can be further 

characterized.  Remember that the batched output is the random variable 

 

The X’s in this case are independent and identically distributed UNIF(0,1). Therefore the 

sums Y are independent random variables from an Irwin-Hall distribution (also known as 

the uniform sum distribution) of degree b with density function  
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This random variable has support [0,b], mean b/2, variance b/12, and skew 0.  

Scaling by the constant b, the distribution of the batched observations is therefore 

     kyky
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with support [0,1], mean 1/2, variance 1/12b, and skew 0. Note that the support, mean, and 

skew are constant, while the variance is inversely proportional to the batch size.   This 

density function is a symmetric, piecewise-polynomial spline. Special cases include 

UNIF(0,1) for b=1 and TRI(0,0.5,1) for b=2. As b increases, the distribution approximates 

NORM( , ).  This is illustrated for replication 958 in Figure 7.11, which shows the 

estimated steady-state distribution (after truncation), and Table 7.4, which provides 

summary statistics, for b=1, 5, and 10. 

 

   

Figure 7.11 Estimated steady-state distribution (after truncation) for a single representative 
replication for run length n=10,000, with uniform fit for batch size b=1 and normal fits for 
batch sizes b=5 and 10 
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Table 7.4 Summary statistics for the steady-state data given in Figure 7.11. 

 b=1 b=5 b=10 
Mean 0.50246 0.50267 0.50511 
Mode ≈0.85641 ≈0.55255 ≈0.48050 
Median 0.50874 0.50217 0.50017 
Std Dev 0.28949 0.12662 0.08857 
Variance 0.085804 0.016055 0.007845 
b*Var 0.085804 0.080165 0.078446 
1/12 0.085555 0.085555 0.085555 
Skewness -0.0271 -0.0582 0.1771 
Kurtosis 1.7926 2.8118 2.8455 

 

Interestingly, we can show that for this model the MSER statistic itself is independent 

of the batch size and decreases linearly as a function of run length.  Let nb=n/b be the 

number of batches in the reserved sequence and let Varb=1/12b be the variance for this 

sequence. The MSER statistic is then 

MSER(n,b)= Varb/nb= (1/12b)/(n/b)=1/12n. 

 

7.2.1.3 Results: Batch size effects for short runs 
 

The preceding results suggest that mean estimates are both empirically and 

theoretically insensitive to batch size for Model 1.  These results are derived using a run 

length that is several orders of magnitude longer than the state-transient sequence, 

however, and one might anticipate that results for much shorter runs will differ.  To explore 

this intuition, we repeated the analysis with run lengths of n=175, 200, 300, and 500 

observations.   
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Results are displayed in Figures 7.12-7.15.  The overall effect of reducing runs lengths 

is to rotate the centerline of the scatter plots from one that is essentially horizontal to one 

that is increasingly vertical, implying an increasingly negative correlation between the 

number of observations truncated and the run length.  The average and spread of the 

number of observations deleted both decrease; the average and spread of the estimated 

steady-state mean both increase.  The strength of this effect increases as the batch size 

increases. 

For n=500, the larger batch sizes continue to yield additional truncation beyond the 

[140,150] range in some instances, for the same reasons illustrated earlier.  The difference 

is that the largest truncation points are now for b=5, instead of b=10. 

For n=500 and n=200, the results are essentially identical.  Nearly all of the truncation 

points are on the anticipated range [140,150], none are less than 140, and comparatively 

few are greater than 150.  The smallest truncation points are now associated with the 

largest batch sizes—a complete reversal from the results obtained with long runs. Indeed, 

for b=5 almost all of the truncation points are 145 or 150; for b=10 the truncation point is 

140 for all 1000 replications.  

For n=175, the effects of very short sequences are most pronounced.  The truncation 

points for b=1 rarely exceed 150.  For b=5 all of the truncation points are 145.  For b=10 

almost all are 140, with a very few at 150.   

Note that for n=175 and b=10, all of the estimates suffer from the effect of bias, some 

acutely. This is because algorithm sees very little data—a total of 17 batches, only two of 

which are in steady state.  Depending on the realization of the noise process, MSER bases 

its estimate on either two or three batch means.  For those few replications where a third 
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(nonrecurrant) observation is retained, estimates are about twice the steady-state mean. For 

this combination of batching and run length, correlation between the truncation point and 

error in the mean estimate is strongest, with greater truncation leading to greater error in 

the mean estimates.  

All of the effects noted are consequences of the relative weight MSER gives the sample 

size of the reserved sequence (nb-d) and the residuals of the observations .  For 

larger samples, MSER is relatively less sensitive to the sample size; for small samples 

MSER is relatively more sensitive to the sample size.  Therefore, we conclude for Model 

1 that 

(1) to the degree that batching reduces the effective sample size, it is not 

recommended for small samples and provides no discernable benefit for large 

samples, and  

(2) even with very little steady-state data, the MSER-indicated truncation points are 

themselves very reasonable and indeed optimal in terms of the mean estimates 

for most cases. 

(3) the choice of dmax is a binding concern only if (n-d)/n is close to 1—the choice of 

n is likely dominated by the need for estimates with acceptable accuracy and 

precision. 

Finally, and perhaps most importantly, all of the results above use all of the simulation 

replications, which is equivalent to setting the maximum truncation point at dmax=n.  What 

happens if, instead, we impose the recommend threshold dmax=n/2 and discard replications 

for which d*>dmax?  We can see from the results that (1) for n=10,000 and 500, the 

threshold has no effect on the results; (2) for n=300, however, a significant number of 

(xt  x )
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replications are discarded for b=5 and 10; and (3) for n=200 and 175, all of the replications 

will be discarded!  We conclude that, for this model, 

(4) the d*≤dmax=n/2 threshold provides significant protection against estimation 

errors resulting from run lengths that are too short’ without over-truncation of 

replications with adequate run lengths. For run lengths that are approximately the 

same as ideal truncation point, however, the protection may be inadequate.  A 

modestly lower threshold would be preferred. 
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Figure 7.12 Scatterplots of the truncated mean vs. the number of observations truncated 

batch sizes b=1, 5, and 10 for run lengths n=175, 200, 500, and 500 
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Figure 7.13 Frequency distribution of the total number of observations truncated as a function of batch size for batch sizes b=1, 5, 
and 10 for run lengths of  n=175, 200, 500, 500 
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n = 175 

   

n = 200 

   

n = 300 

   

n = 500 

   
Figure 7.14 95% confidence intervals of the mean for the truncated mean output as a 
function of batch size for batch sizes b=1, 5, and 10 for run lengths of n=175, 200, 300, 500 
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n = 175 

   

n = 200 

   

n = 300 

   

n = 500 

   
Figure 7.15 95% confidence intervals for the mean for the number of observations 
truncated for batch sizes b=1, 5, and 10 for run lengths of n=175, 200, 300, 500 
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7.2.1.4 Results: Overlapping Batch Means 
 

We applied OBM to Model 1 with run length n=500 for batch sizes b=10, 35, 75, and 

150 observations.  Figure 7.16 shows output for four representative replications, one at 

each batch size.  Table 7.5 and Figure 7.17(a) compares the 95% confidence intervals on 

the truncated mean for each of the OBM estimates with the truncated mean for non-

overlapping approach with the single batch size b=10.  All of the interval estimates cover 

the expected value of 0.5.  None of the differences among the mean estimates is significant 

at the 0.05 level, however the results suggest that OBM may be the superior approach, 

particularly for modestly sized batches.  Model 1 simply isn’t challenging enough to draw 

a definitive conclusion. 

b = 10 b = 35 

  
 

b = 75 

 

b = 150 

  
Figure 7.16 Representative Output, Overlapping Batch Mean, and MSER Statistic of Model 
1 (b= 10, 35, 75, and 150) 
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Table 7.5 95% confidence intervals for Model 1 on the truncated mean and the standard 
deviation for overlapping and non-overlapping batches 

  
OBM NOBM 

OBM b=10 OBM b=35 OBM b=75 OBM b=150 NOBM b=10 

Sample Mean 0.50005 0.49993 0.49965 0.50028 0.49934 

Upper limit 0.50104 0.50096 0.50071 0.50138 0.50082 

Lower limit 0.49906 0.4989 0.4986 0.49919 0.49786 

Sample Std D 0.01602 0.01661 0.017 0.01762 0.02383 

Upper limit 0.01675 0.01737 0.01777 0.01843 0.02492 

Lower limit 0.01534 0.01591 0.01628 0.01688 0.02283 
 

 

 

(a) 
 

(b) 

Figure 7.17 95% confidence intervals for Model 1 on (a) the truncated mean for 
overlapping and non-overlapping batches and (b) the standard deviation for overlapping 
and non-overlapping batches 

 

In contrast, Figure 7.17(b) compares the 95% confidence intervals on the standard 

deviation in estimates for the same replications.  While the differences among OBM 

estimates are not significant, OBM outperforms the non-overlapping approach in all cases.  

At least for this test case, OBM provides significantly greater precision in the estimate.  

This reflects the considerably larger sample size afforded by overlapping batches.  
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Figure 7.18 Scatterplots of the truncated mean vs. the number of observations truncated for 
OBM sizes b=10, 35, 75 and 150 for run length of n=500 for Model 1 (including NOBM batch 
size of 10) 

 

 

Figure 7.19 Frequency distribution of the number of observations truncated as a function of 
OBM sizes b=10, 35, 75, and 150 for run length of n=500 for Model 1 (including NOBM batch 
size of 10) 
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Table 7.6. Correlation between the truncated mean and the number of observations 
truncated for OBM sizes b=10, 35, 75, 150 for run length of n=500 for Model 1 

  Trunc Batch =10 Trunc Batch =35 Trunc Batch =75 Trun Batch = 150 

Mean Batch = 10 -0.006655114 0.001668587 0.002054254 -0.177174472 

Mean Batch = 35 0.000478214 -0.0644325 -0.087803961 -0.282730256 

Mean Batch = 75 -0.003975614 -0.073941266 -0.156501886 -0.302717128 

Mean Batch = 150 -0.027110964 -0.046266742 -0.076909778 -0.346795267 

 

7.2.2 Model 2: Waiting Time in an M/M/1 

 

The second test model is an M/M/1 queue where our interest is in estimating the mean 

waiting-time in queue.  This is the problem examined by Law (2015) and reexamined by 

White and Hwang (2015). We used this second model to ascertain the performance of 

MSER with the same batch sizes used in Model 1.  In addition, we explored the sensitivity 

of estimates to changes in traffic intensity, the quotient  

  

where  is arrival rate, is service rate, and the expected waiting time in queue is 

. 

The theoretical expected values of waiting time in queue for four different traffic 

intensities are summarized in Table 7.7.  Clearly, the autocorrelation of successive 

observations of the waiting time is a function of the traffic intensity. For very low , 

customers typically arrive at an empty and idle queue and do not have to wait for service.  

As the traffic intensity increases, customers experience increasingly longer waits on 

average.  For 1, the demand for service exceeds the supply, the queue is unstable, and 

average waiting times become infinite.  One might anticipate the effects of decreasing  to 

be similar to those encountered by increasing the run length n.   


 

 

 



)( qWE
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Table 7.7. Theoretical Waiting Time in Queue by Traffic Intensity 
 Traffic Intensity  

 0.6 0.7 0.8 0.9 

Waiting Time in Queue  9 16.33 32 81 

 

 

7.2.2.1 Results for Model 2 with traffic intensity of 0.90 
 

 
Figure 7.20 Representative Output of Waiting-Time in an M/M/1 with Traffic Intensity of 

0.9 (n = 64000; Blue line: E(Wq)=81) 
 

Figure 7.20 provides a typical output series from M/M/1 queue with traffic intensity of 

=0.9, initialized empty and idle (x0=0), for a run length of n=64,000. The output is said to 

be regenerative, in that it comprises independent cycles each beginning with a customer 

that experiences zero waiting. The system regenerates at when it returns to this same zero 

state and a new cycle begins. The duration of each cycle is random, as is the peak waiting 

time.  Decreasing the traffic intensity will result in an increasing number of cycles and 

generally shorter peak waiting times. 

We begin our analysis with the application of MSER to Model 2 and explore the 

combined impact of alternative batch sizes (b=1, 5, and 10) and run lengths (n=64,000, 

32,000, 16,000, 8,000, 4,000, 2000, and 1,000).  Our analysis follows the same steps 

( )
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introduced in the analysis of Model 1.  For M/M/1 with =0.9, Figure 7.21 compares the 

confidence intervals on the sample means, Figure 7.22 compares the confidence intervals 

on the MSER truncation points, Figure 7.23 compares scatterplots of the truncated mean 

vs. the number of observations truncated, Table 7.8 provides the corresponding correlation 

coefficients, and Figure 7.24 compares the frequency histograms of the number of 

observations truncated. 

Without truncation, the raw sample mean is 80.75 and insensitive to batch size.  While 

the raw estimate does not provide coverage, the absolute estimation error is less than 1%.  

The truncated is mean 79.39 and also insensitive to batch size.  While the truncated estimate 

likewise does not provide coverage, the absolute estimation error is less than 2%.   The 

improvement result from truncation is very modest, but the difference in estimates is 

statistically significant at =0.05.  

As the run length deceases, the raw estimate decreases more slowly than the truncated 

estimate.  For run lengths of n=8,000 and below, the truncated means are exceptionally 

poor and far worse than the raw estimates.  In general, the number of observations truncated 

decreases with as the run length decreases.  

For the larger run lengths, we see that the mean estimates for this problem are quite good 

without truncation.  Truncation improves on these estimates only for n=64,000 and then 

only very modestly.  Truncation is contraindicated for smaller n.  While there is negative 

trend in the estimated mean for larger truncation points, the correlation is negligible, but 

increasing in decreasing run length and increasing batch size.   
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n = 64000 

 
n = 32000 

 
n = 16000 

 
n = 8000 

 
n = 4000 

 
n=2000 

 
n = 1000 

 

 

 

Figure 7.21 95% confidence intervals for the mean and the truncated mean as a function of 
batch size (b= 1, 5, and 10) and run length (n=1000, 2000, 4000, 8000, 16000, 32000, and 
64000) for Model 2 with traffic intensity of 0.9 (Theoretical mean of 81, Blue line) 
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n = 64000 

 
n = 32000 

 
n = 16000 

 
n = 8000 

 
n = 4000 

 
n = 2000 

 
n = 1000 

 

 

 

 

Figure 7.22 95% confidence intervals for the mean number of observations truncated as a 
function of batch size (b= 1, 5, and 10) and run length (n=1000, 2000, 4000, 8000, 16000, 
32000, and 64000) for Model 2 with traffic intensity of 0.9 
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n = 64000 

 

n=32000 

 

n=16000 

 
n=8000 

 
n=4000 

 
n=2000 

 
n=1000 

  

Figure 7.23 Scatterplots of the truncated mean vs. the number of observations truncated for 
batch sizes b=1, 5, and 10 for run length of n=1000, 2000, 4000, 8000, 16000, 32000, and 
64000 for Model 2 with traffic intensity of 0.9  

 
 

 



122 
 

Table 7.8 Correlation between the truncated mean and the number of observations truncated 
for batch sizes b=1, 5, and 10 for run length of n=1000, 2000, 4000, 8000, 16000, 32000, and 
64000 for Model 2 with traffic intensity of 0.9. 

 
 

Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

-0.3053 -0.3019 -0.2748 

Mean  

Batch 
= 5 

-0.3043 -0.3084 -0.2809 

Mean  

Batch 
= 10 

-0.3003 -0.3044 -0.3170 

 

 
Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

-0.3966 -0.3687 -0.3455 

Mean  

Batch 
= 5 

-0.4007 -0.4169 -0.3976 

Mean  

Batch 
= 10 

-0.3854 -0.4271 -0.4542 

 

 
Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

-0.4969 -0.4433 -0.4129 

Mean  

Batch 
= 5 

-0.4701 -0.5512 -0.5107 

Mean  

Batch 
= 10 

-0.4570 -0.5315 -0.6101 

 

n = 64000 n = 32000 n = 16000 
 

Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

-0.6038 -0.5261 -0.4629 

Mean  

Batch 
= 5 

-0.5114 -0.6093 -0.5238 

Mean  

Batch 
= 10 

-0.4389 -0.5163 -0.6100 

 

 
Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

-0.6189 -0.5190 -0.4686 

Mean  

Batch 
= 5 

-0.4419 -0.5714 -0.5130 

Mean  

Batch 
= 10 

-0.2854 -0.3969 -0.5295 

 

 
Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

-0.3427 -0.3867 -0.4123 

Mean  

Batch 
= 5 

-0.3770 -0.4592 -0.4741 

Mean  

Batch 
= 10 

-0.3774 -0.4446 -0.5150 

 

n = 8000 n = 4000 n = 2000 
 

Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

-0.0820 -0.2141 -0.2591 

Mean  

Batch 
= 5 

-0.1102 -0.2270 -0.2725 

Mean  

Batch 
= 10 

-0.1215 -0.2397 -0.2805 

 

  

n = 1000   
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n = 64000 

 
n = 32000 

 
n = 16000 

 
n = 8000 

 
n = 4000 

 
n = 2000 

 
n = 1000 

  

Figure 7.24 Frequency distribution of the number of observations truncated as a function of batch sizes b=1, 5, and 10 for run length of 
n=1000, 2000, 4000, 8000, 16000, 32000, and 64000 for Model 2 with traffic intensity of 0.9 
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7.2.2.2 Results for Model 2 with traffic intensity of 0.80 

 
Figure 7.25 Example of M/M/1 with traffic intensity of 0.8 (n = 16000, Blue line: E(X))  

 

 
n = 16000 

 
n = 8000 

 
n = 4000 

 
n = 2000 

 
n = 1000 

 

 

Figure 7.26 95% confidence intervals of the mean for the truncated mean output as a 
function of batch size (b= 1, 5, and 10) and run length (n=1000, 2000, 4000, 8000, and 
16,000) for Model 2 with traffic intensity of 0.80 (Theoretical mean of 32, Blue line) 
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n = 16000 

 
n = 8000 

 
n = 4000 

 
n = 2000 

 
n = 1000 

 

Figure 7.27 95% confidence intervals for the mean number of observations truncated as a 
function of batch size (b= 1, 5, and 10) and run length (n= 1000, 2000, 4000, 8000, and 
16,000) for Model 2 with traffic intensity of 0.80 
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n = 16000 
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n=1000 

 

 

Figure 7.28 Scatterplots of the truncated mean vs. the number of observations truncated for 
batch sizes b=1, 5, and 10 for run length of n=1000, 2000, 4000, 8000, and 16,000 Model 2 
with traffic intensity of 0.80  
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Table 7.9 Correlation between the truncated mean and the number of observations truncated 
for batch sizes b=1, 5, and 10 for run length of n=1000, 2000, 4000, 8000, and 16,000 for Model 
2 with traffic intensity of 0.80 

 
 

Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch = 
1 

-0.2309 -0.2198 -0.1629 

Mean  

Batch = 
5 

-0.2305 -0.2509 -0.1892 

Mean  

Batch = 
10 

-0.2270 -0.2467 -0.2718 

 

 
Trunc  

Batch 
=1 

Trunc  

Batch =5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

-0.3575 -0.2954 -0.1696 

Mean  

Batch 
= 5 

-0.3339 -0.4310 -0.2472 

Mean  

Batch 
= 10 

-0.3162 -0.3654 -0.4741 

 

 
Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

-0.5712 -0.3760 -0.3494 

Mean  

Batch 
= 5 

-0.4004 -0.5596 -0.4806 

Mean  

Batch 
= 10 

-0.3643 -0.4781 -0.5627 

 

n = 16000 n = 8000 n = 4000 
 

Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

-0.6450 -0.0322 -0.0362 

Mean  

Batch 
= 5 

0.0895 -0.7072 -0.6257 

Mean  

Batch 
= 10 

0.1010 -0.6245 -0.7147 

 

 
Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch = 
1 

-0.5840 -0.5342 -0.5021 

Mean  

Batch = 
5 

-0.5326 -0.6471 -0.6008 

Mean  

Batch = 
10 

-0.4800 -0.5831 -0.6486 

 

 

n = 2000 n = 1000  
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n = 16000 n = 8000 n = 4000 

  

 

n = 2000 n = 1000  
Figure 7.29 Frequency distribution of the number of observations truncated as a function of batch sizes b=1, 5, and 10 for run length of 
n=1000, 2000, 4000, 8000, and 16,000 for Model 2 with traffic intensity of 0.80  
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7.2.2.3 Results for Model 2 with traffic intensity of 0.70 

 
Figure 7.30 Example of M/M/1 with traffic intensity of 0.70 (n = 16000, Blue line: E(X)) 
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Figure 7.31 95% confidence intervals of the mean for the truncated mean output as a 
function of batch size (b= 1, 5, and 10) and run length (n=1000, 2000, 4000, 8000, and 
16,000) for Model 2 with traffic intensity of 0.70 (Theoretical mean of 16.33, Blue line) 
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n = 16000 

 
n = 8000 
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n = 2000 

 
n = 1000 

 

Figure 7.32 95% confidence intervals for the mean number of observations truncated as a 
function of batch size (b= 1, 5, and 10) and run length (n= 1000, 2000, 4000, 8000, and 
16,000) for Model 2 with traffic intensity of 0.70 
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Figure 7.33 Scatterplots of the truncated mean vs. the number of observations truncated for 
batch sizes b=1, 5, and 10 for run length of n=1000, 2000, 4000, 8000, and 16,000 Model 2 
with traffic intensity of 0.7 
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Table 7.10 Correlation between the truncated mean and the number of observations 
truncated for batch sizes b=1, 5, and 10 for run length of n=1000, 2000, 4000, 8000, and 16,000 
for Model 2 with traffic intensity of 0.70 

 
 

Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

-0.2111 -0.1440 -0.1260 

Mean  

Batch 
= 5 

-0.2043 -0.2309 -0.2020 

Mean  

Batch 
= 10 

-0.2032 -0.2288 -0.2547 

 

 
Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

-0.2798 -0.1877 -0.0755 

Mean  

Batch 
= 5 

-0.2774 -0.3459 -0.2021 

Mean  

Batch 
= 10 

-0.2628 -0.3292 -0.3816 

 

 
Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

-0.3720 -0.1779 -0.1079 

Mean  

Batch 
= 5 

-0.3015 -0.4755 -0.2573 

Mean  

Batch 
= 10 

-0.2865 -0.3195 -0.4833 

 

n = 16000 n = 8000 n = 4000 
 

Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

-0.5000 -0.2143 -0.1666 

Mean  

Batch 
= 5 

-0.3846 -0.7016 -0.5412 

Mean  

Batch 
= 10 

-0.3682 -0.5999 -0.7216 

 

 
Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

-0.6094 -0.4215 -0.4041 

Mean  

Batch 
= 5 

-0.4924 -0.6921 -0.6256 

Mean  

Batch 
= 10 

-0.4924 -0.6921 -0.6256 

 

 

n = 2000 n = 1000  
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n = 16000 n = 8000 n = 4000 

  

 

n = 2000 n = 1000  
Figure 7.34 Frequency distribution of the number of observations truncated as a function of batch sizes b=1, 5, and 10 for run length of n=1000, 2000, 4000, 
8000, and 16,000 for Model 2 with traffic intensity of 0.70 
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7.2.2.4 Results for Model 2 with traffic intensity of 0.60 

 
Figure 7.35 Example of M/M/1 with traffic intensity of 0.60 (n = 16000, Blue line: E(X)) 

 

 
n = 16000 

 
n = 8000 

 
n = 4000 

 
n = 2000 

 
n = 1000 

 

Figure.7.36 95% confidence intervals of the mean for the truncated mean output as a 
function of batch size (b= 1, 5, and 10) and run length (n=1000, 2000, 4000, 8000, and 
16,000) for Model 2 with traffic intensity of 0.60 (Theoretical mean of 9, Blue line) 
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n = 16000 

 
n = 8000 

 
n = 4000 

 
n = 2000 

 
n = 1000 

 

 

Figure 7.37 95% confidence intervals for the mean number of observations truncated as a 
function of batch size (b= 1, 5, and 10) and run length (n=1000, 2000, 4000, 8000, and 
16,000) for Model 2 with traffic intensity of 0.60 
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n = 16000 

 

n=8000 

 

n=4000 

 
n=2000 

 
n=1000 

 

Figure 7.38 Scatterplots of the truncated mean vs. the number of observations truncated for 
batch sizes b=1, 5, and 10 for run length of n=1000, 2000, 4000, 8000, and 16,000 Model 2 
with traffic intensity of 0.60  
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Table 7.11 Correlation between the truncated mean and the number of observations 
truncated for batch sizes b=1, 5, and 10 for run length of n=1000, 2000, 4000, 8000, and 16,000 
for Model 2 with traffic intensity of 0.60 

 
 

Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

-0.1597 -0.1056 -0.0320 

Mean  

Batch 
= 5 

-0.1599 -0.2199 -0.1122 

Mean  

Batch 
= 10 

-0.1553 -0.2128 -0.2509 

 

 
Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

-0.2120 -0.1465 -0.0421 

Mean  

Batch 
= 5 

-0.2130 -0.2720 -0.1367 

Mean  

Batch 
= 10 

-0.1965 -0.2565 -0.3522 

 

 
Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

-0.2819 -0.1425 -0.1271 

Mean  

Batch 
= 5 

-0.2939 -0.4185 -0.3418 

Mean  

Batch 
= 10 

-0.2920 -0.4008 -0.5182 

 

n = 16000 n = 8000 n = 4000 
 

Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

-0.4056 -0.1680 -0.0967 

Mean  

Batch 
= 5 

-0.3121 -0.6541 -0.4410 

Mean  

Batch 
= 10 

-0.2541 -0.5291 -0.7204 

 

 
Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

-0.6309 -0.3548 -0.2981 

Mean  

Batch 
= 5 

-0.4903 -0.7493 -0.5802 

Mean  

Batch 
= 10 

-0.4631 -0.6305 -0.7329 

 

 

n = 2000 n = 1000  
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n = 16000 n = 8000 n = 4000 

  

 

n = 2000 n = 1000 n = 500 
Figure 7.39 Frequency distribution of the number of observations truncated as a function of batch sizes b=1, 5, and 10 for run length of 
n=1000, 2000, 4000, 8000, and 16,000 for Model 2 with traffic intensity of 0.60 
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7.2.2.5 Result for Model 2: Simulation run length effect 
 

With the traffic intensity the same, correlations are plotted against five different run 

lengths in Figure 7.40 (note that for =0.9 the scale for run length differs from the other 

panels to allow visualization).  The grey bars denote approximate inflection points in these 

graphs.  For example, for traffic intensity =0.9, the correlations decreases monotonically 

from n=8,000 to n=64,000 and then increases monotonically n=8,000 to n=1,000 for all 

three batch sizes, with smaller batch sizes generally associated with lesser correlation for 

all run lengths.  As we saw for Model 1, insufficient run lengths appear to be associated 

with increasing correlations.  Because two traffic intensities require shorter run lengths to 

converge to the steady-state mean, the bars move to the right as traffic intensities decrease.  

 

=0.9 

 

=0.8 

 

=0.7 =0.6 

Figure 7.40 Correlation between truncated means and observations truncated as a function 
of run length and traffic intensity   
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7.2.2.6 Result for Model 2: Traffic intensity effect 
 

We also consider how traffic intensities (i.e., 0.6, 0.7, 0.8 and 0.9) affect correlation while 

the simulation length stays the same. 

(1) n = 16000 

Under the same condition of simulation lengths, correlations from the smaller traffic 

intensities tend to become weaker. That is applicable for all three batch sizes tested. 

 
Figure 7.41 Correlation between truncated means and observations truncated by different 

traffic intensity (Run length of 16000) 

 

(2) n = 8000, 4000, 2000, and 1000 

The same patterns are shown in the case of n = 8000 compared to n = 16000. However, the 

run lengths of 2000 and 1000 do not conform the same trends as the run lengths of 16000 

and 8000, while n = 4000 shows mixed trends between the two groups where n is 16000 

and 8000, vs. n is 2000 and 1000.  

We note that the run lengths of 16000 and 8000 ascertain that the longer run length can 

mitigate influences of traffic intensities except for traffic intensity of 0.9, regardless of batch 

sizes. Thus, we can conclude that traffic intensity of 0.9 would benefit from increasing the 
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run length. For the run lengths of 2000 and 1000, the correlations between truncated means 

and observations truncated appear to be counterintuitive as the higher traffic intensity is 

associated with the lower correlations. However, these trends might be true when long 

waiting times are infrequently realized during the relatively short simulation runs in the 

lower traffic intensity such as 0.6, 0.7, and 0.8. On the other hand, the traffic intensity of 

0.9 might build up longer queues even for short runs.  

 

  

  

Figure 7.42 Correlation between truncated means and observations truncated by different 
traffic intensity (Run length of 8000, 4000, 2000, and 100) 

 
7.2.2.7 Results: Overlapping Batch Means for M/M/1 with Traffic Intensity of 0.90. 
 

We applied OBM to Model 2 with run length n=64000 with the highest traffic intensity 

of 0.9 among M/M/1 models for batch sizes b=10, 50, 100, and 200 observation and Figure 

7.43 shows four representative cases with original outputs, OBM, and MSER statistic.   By 

increasing batch sizes of OBM, we observed different trends among the four tested cases: 
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 Small batch size of 10: The result is almost identical to NOBM because the pre-

processed net output series takes closest resemblance for an original output 

series. 

 Batch sizes larger than 10 (i.e., 50, 100, and 200): Based on the results, the 

difference from a theoretical mean value becomes apparent by increasing batch 

sizes. This finding can be attributable to (1) regenerative cycles in M/M/1 and 

(2) irregular peaks to influence multiple OBM. Impacts from any outliers in 

waiting time can remain strong because OBM keeps using these values multiple 

times compared to NOBM’s one usage and go property that any big or small 

number can influence only one batch mean. 

  
b = 10 b = 50 

  

  
b = 100 b = 200 

Figure 7.43 Representative Output, Overlapping Batch Mean, and MSER Statistic of Model 
2 with traffic intensity of 0.90 (b= 10, 50, 100, and 200) 
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We summarize the confidence intervals of the mean estimates and truncation points in 

Table 7.12 and Figure 7.44 that accounts for our finding. For Model 1 and 3 (following 

section), OBM tends to outperform NOBM because both cases the output clearly converges 

to certain mean estimates. However, Models 2 here provides another aspects to be 

considered. As long as the output takes on a regenerative pattern, OBM might lead to a 

wrong conclusion about mean estimate for testing models.  

Table 7.12 95% confidence intervals for Model 2 on the truncated mean and the standard 
deviation for overlapping and non-overlapping batches 

  
OBM NOBM 

OBM b=10 OBM b=50 OBM b=100 OBM b=200 NOBM b=10 

Sample Mean 79.162030 76.821921 74.199907 74.199907 79.310097 

Upper limit 79.635371 77.633984 75.211400 75.211400 79.736781 

Lower limit 78.688690 76.009859 73.188415 73.188415 78.883414 

Sample Std D 7.627800 13.086239 16.300019 16.300019 6.875926 

Upper limit 7.977651 13.686444 17.047626 17.047626 7.191293 

Lower limit 7.307526 12.536779 15.615620 15.615620 6.587222 

 

 

 

(a) 
 

(b) 

Figure 7.44 95% confidence intervals for Model 3 on (a) the truncated mean for overlapping 
and non-overlapping batches and (b) the standard deviation for overlapping and non-
overlapping batches 
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Figure 7.45 and 7.46 and Table 7.13 below reiterate the inefficiency of bigger OBM to 

find accurate mean estimate and significant loss in output series is observed since truncation 

points pass the first half even with run length of 64000. That is, “batch size of 200” indeed 

uses less than 10% of total output and estimates quite smaller mean estimates.  

 

Figure 7.45 Scatterplots of the truncated mean vs. the number of observations truncated for 
OBM sizes b=10, 50, 100 and 200 for run length of n=64,000 with traffic intensity of 0.90 for 
Model 2 (including NOBM batch size of 10) 
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Figure 7.46 Frequency distribution of the number of observations truncated as a function of 
OBM sizes b=10, 50, 100, and 200 for run length of n=64,000 with traffic intensity of 0.90 for 
Model 2 (including NOBM batch size of 10) 

 

Table 7.13 Correlation between the truncated mean and the number of observations 
truncated for OBM sizes b=10, 50, 100, and 200 for run length of n=64,000 for Model 2 

  Trunc Batch =10 Trunc Batch =50 Trunc Batch =100 Trun Batch = 200 

Mean Batch = 10 0.043 -0.053 -0.890 0.082 

Mean Batch = 50 -0.198 -0.829 -0.299 -0.114 

Mean Batch = 100 -0.120 -0.333 -0.890 0.017 

Mean Batch = 200 -0.113 -0.210 -0.422 -0.914 

 

As we observe, without applying d*<n/2 rule, the results for OBM have been deteriorated 

compared to NOBM as well as raw output series without any truncation. Thus, we try to 

capture the characteristics of truncations satisfying d*<n/2 rule for OBM and the results are 

summarized in Table 7.14 and Figure 7.45. The disadvantage following this rule is that some 

of replications need to be omitted to obtain mean estimates.  First, the set of mean estimates 

are tabulated according to different run lengths from n = 64000 to 1000. Short lengths of n 

such as 1000, 2000, and 4000 do not show accuracy of means compared to NOBM estimates 

but longer run lengths apparently show improved convergence to a theoretical estimate.  
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Table7.14 Confidence Intervals for M/M/1 with traffic intensity of 0.90 on the truncated 
mean and the standard deviation for overlapping and non-overlapping batches with traffic 
intensity of 0.90 (n = 1000, 2000, 4000, 8000, 16000, 32000, and 64000) 

n =64000 OBM NOBM 

Mean with truncation Batch Size of 10 Batch Size of 50 Batch Size of 100 Batch Size of 200 Batch Size of 10 

Sample Mean 79.42 79.09 78.85 78.42 79.42 

Upper limit 79.84 79.51 79.29 78.87 79.84 

Lower limit 79.00 78.66 78.41 77.97 79.00 

Sample Std Dev 6.77 6.68 6.67 6.53 6.77 

Upper limit 7.09 6.98 6.98 6.83 7.08 

Lower limit 6.49 6.40 6.39 6.25 6.49 

 
n =32000 OBM NOBM 

Mean with truncation Batch Size of 10 Batch Size of 50 Batch Size of 100 Batch Size of 200 Batch Size of 10 

Sample Mean 78.28 77.73 77.22 76.55 78.37 

Upper limit 78.85 78.32 77.84 77.22 78.93 

Lower limit 77.71 77.13 76.59 75.89 77.80 

Sample Std Dev 8.95 8.89 8.91 8.69 8.99 

Upper limit 9.36 9.30 9.31 9.08 9.41 

Lower limit 8.57 8.51 8.53 8.32 8.62 

 
n = 16000 OBM NOBM 

Mean with truncation Batch Size of 10 Batch Size of 50 Batch Size of 100 Batch Size of 200 Batch Size of 10 

Sample Mean 76.64 76.16 75.82 75.98 76.72 

Upper limit 77.47 77.07 76.80 77.07 77.53 

Lower limit 75.82 75.25 74.84 74.89 75.91 

Sample Std Dev 12.63 12.71 12.68 12.79 12.60 

Upper limit 13.21 13.29 13.26 13.38 13.18 

Lower limit 12.10 12.17 12.15 12.25 12.07 

 
n =8000 OBM NOBM 

Mean with truncation Batch Size of 10 Batch Size of 50 Batch Size of 100 Batch Size of 200 Batch Size of 10 

Sample Mean 72.13 71.93 72.13 71.85 72.78 

Upper limit 73.20 73.15 73.52 73.41 73.83 

Lower limit 71.06 70.71 70.74 70.28 71.72 

Sample Std Dev 15.48 15.30 15.63 15.90 15.84 

Upper limit 16.19 16.00 16.34 16.63 16.56 

Lower limit 14.83 14.65 14.97 15.23 15.17 
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n = 4000 OBM NOBM 

Mean with truncation Batch Size of 10 Batch Size of 50 Batch Size of 100 Batch Size of 200 Batch Size of 10 

Sample Mean 69.21 69.47 68.50 68.91 70.50 

Upper limit 70.70 71.21 70.34 70.85 71.97 

Lower limit 67.71 67.72 66.67 66.97 69.03 

Sample Std Dev 20.39 20.87 20.32 20.15 21.50 

Upper limit 21.33 21.83 21.25 21.08 22.48 

Lower limit 19.53 20.00 19.47 19.31 20.59 

 
n = 2000 OBM NOBM 

Mean with truncation Batch Size of 10 Batch Size of 50 Batch Size of 100 Batch Size of 200 Batch Size of 10 

Sample Mean 64.64 65.23 65.97 67.59 66.16 

Upper limit 66.55 67.75 68.74 70.33 68.15 

Lower limit 62.73 62.71 63.21 64.86 64.16 

Sample Std Dev 24.71 27.95 28.78 28.11 27.06 

Upper limit 25.84 29.24 30.10 29.39 28.30 

Lower limit 23.67 26.78 27.57 26.93 25.93 

 
n = 1000 OBM NOBM 

Mean with truncation Batch Size of 10 Batch Size of 50 Batch Size of 100 Batch Size of 200 Batch Size of 10 

Sample Mean 63.58 66.00 66.41 69.56 68.07 

Upper limit 66.69 69.76 70.34 73.68 71.58 

Lower limit 60.46 62.24 62.48 65.44 64.55 

Sample Std Dev 39.52 42.39 43.35 47.31 44.58 

Upper limit 41.33 44.33 45.34 49.47 46.63 

Lower limit 37.86 40.61 41.53 45.32 42.71 

 

 

 

 

 



148 
 

 

n= 64000 

 

n= 32000 

 

n= 16000 

n= 8000 n= 4000 n= 2000 

n= 1000 

  

Figure 7.47 95% confidence intervals for M/M/1 with traffic intensity of 0.90 about the 
truncated mean for overlapping and non-overlapping batches (n = 1000, 2000, 4000, 8000, 
16000, 32000, and 64000.)  
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7.2.2.8 Results: Initialization Bias  
 

To test the assertion that the errors in the output are the result of inadequate run lengths 

and unrepresentative initial conditions (note that x0=0 is the mode of the steady-state 

distribution and hardly representative!), we ran two more experiments.  Each comprised 100 

replications of Model 2 with traffic intensity of 0.9 and initial condition x0=100. We used 

and compared three different batch sizes, b=1, 5, and 10, and two different run lengths, 

n=64,000 and 32,000.  

Figure 7.48 shows the output time series for one representative replication with b=1 and 

n=32,000.  Clearly, the initial condition results in a large initial spike in waiting times.  Just 

as clearly, MSER removes much or this entire initial spike. 

 
Figure 7.48 Output time series with traffic intensity of 0.90 with b =1 and n = 32,000 

 

In contrast to the prior experiments without initialization bias, MSER truncation 

provides significantly improved estimates over those obtained without truncation in Figure 

7.49.  These results appear to be relatively insensitive to batch size (although smaller batches 

appear to perform modestly better) and, again, the error in the estimates is relatively 

uncorrelated to the MSER truncation points.  The effect of run length is apparent and for 
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the longer runs coverage is achieved for every batch size.  We speculate that this may be 

attributable to the significant reduction in sample variance for longer runs.  

95% 
confidence 
intervals on 
the mean 

  

95% 
confidence 
intervals on 
Sample Std 
Dev. 

  

Scatterplots 
indicting the 
correlation 
between 
truncated mean 
and truncation 
point 

  

Frequency 
distribution  

of the number  
of observations 
truncated 

  

 n=64,000 n=32,000 

Figure 7.49 Confidence interval for Mean and Standard Deviation, Scatter Plot for 
Truncation points and Truncated Mean, Frequency Distribution of the Number of 
Observations Truncated with Traffic Intensity of 0.90 with b =1, 5, and 10 and n = 64,000 
and 32,000  
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Note that this example appears to suggest that “smart initialization” may not be the solution 

to the warm-up problem that has been widely recommendation.  The initial condition of 

x0=100 certainly is much closer to the theoretical steady-state mean of 81 than x0=0 in the 

prior examples.  However, truncation is still required to eliminate the initial spike in waiting 

times.  The same would be true if we had made the very lucky guess of x0=81!  Warm-up 

appears to be required.  In this instance smart initialization appears to suggest 

foreknowledge of the entire steady-state distribution, in particular the mode, rather than the 

steady state mean. 

Table 7.15 Correlation between the truncated mean and the number of observations 
truncated for b=1, 5, and 10 for run length of n=32,000 with initial bias of 100 

 
Trunc Batch =1 Trunc Batch =5 Trunc Batch =10 

Mean Batch = 1 -0.4147 -0.4050 -0.4050 
Mean Batch = 5 -0.4308 -0.4232 -0.4233 
Mean Batch = 10 -0.4308 -0.4232 -0.4233 

 
Table 7.16 95% confidence intervals for Model 2 on the observation truncated and the 
standard deviation for run length of n=32,000 with initial bias of 100 

Truncation Point batch = 1 batch = 5 batch = 10 

Sample Mean 2878.4400 2900.7000 2901.3000 

Upper limit 3735.0552 3772.1267 3772.7876 

Lower limit 2021.8248 2029.2733 2029.8124 

Sample Std Dev 4317.1446 4391.7915 4392.0984 

Upper limit 4515.1520 4593.2226 4593.5436 

Lower limit 4135.8779 4207.3905 4207.6845 
 
Table 7.17 95% confidence intervals for Model 2 on the truncated mean and the standard 
deviation for run length of n=32,000 with initial bias of 100 

Mean with truncation batch = 1 batch = 5 batch = 10 

Sample Mean 78.036849 77.993410 77.992041 

Upper limit 79.770945 79.725121 79.723891 

Lower limit 76.302752 76.261699 76.260191 

Sample Std Dev 8.739450 8.727426 8.728127 

Upper limit 9.140288 9.127712 9.128446 

Lower limit 8.372501 8.360982 8.361653 
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Table7.18 95% confidence intervals for Model 2 on the mean without truncation and the 
standard deviation for run length of n=32,000 with initial bias of 100 

Mean w/o truncation batch = 1 batch = 5 batch = 10 

Sample Mean 94.087628 94.0876 94.0876 

Upper limit 96.269303 96.2693 96.2693 

Lower limit 91.905953 91.9060 91.9060 

Sample Std Dev 10.995146 10.9951 10.9951 

Upper limit 11.499442 11.4994 11.4994 

Lower limit 10.533485 10.5335 10.5335 

 
Table 7.19 Correlation between the truncated mean and the number of observations 
truncated for b=1, 5, and 10 for run length of n=64,000 with initial bias of 100 

 
Trunc Batch =1 Trunc Batch =5 Trunc Batch =10 

Mean Batch = 1 -0.3940 -0.3588 -0.3491 

Mean Batch = 5 -0.3811 -0.4295 -0.4191 

Mean Batch = 10 -0.3782 -0.4269 -0.4268 

 
Table 7.20 95% confidence intervals for Model 2 on the observation truncated and the 
standard deviation for run length of n=64,000 with initial bias of 100 

Truncation Point batch = 1 batch = 5 batch = 10 

Sample Mean 2738.4600 2995.2500 3092.4000 

Upper limit 3624.6425 3999.8582 4105.6587 

Lower limit 1852.2775 1990.6418 2079.1413 

Sample Std Dev 4466.1572 5062.9956 5106.5923 

Upper limit 4670.9991 5295.2117 5340.8080 

Lower limit 4278.6337 4850.4123 4892.1785 

 
Table 7.21 95% confidence intervals for Model 2 on the truncated mean and the standard 
deviation for run length of n=64,000 with initial bias of 100 

Mean with truncation batch = 1 batch = 5 batch = 10 

Sample Mean 79.395610 79.281469 79.243732 

Upper limit 80.761263 80.670545 80.632182 

Lower limit 78.029956 77.892394 77.855283 

Sample Std Dev 6.882581 7.000622 6.997469 

Upper limit 7.198253 7.321708 7.318410 

Lower limit 6.593598 6.706682 6.703661 



153 
 

 

 

 

 

 
Table 7.22 95% confidence intervals for Model 2 on the mean without truncation and the 
standard deviation for run length of n=64,000 with initial bias of 100 

Mean w/o truncation batch = 1 batch = 5 batch = 10 

Sample Mean 87.175809 87.1758 87.1758 

Upper limit 88.607643 88.6076 88.6076 

Lower limit 85.743975 85.7440 85.7440 

Sample Std Dev 7.216117 7.2161 7.2161 

Upper limit 7.547086 7.5471 7.5471 

Lower limit 6.913129 6.9131 6.9131 

 

7.2.2.9 Summary Results for Model 2 

We chose this model initially because it allows comparison with the results obtained by 

Law (2015) and by White and Hwang (2015) for long runs. This prior research addressed 

the performance of MSER for a single batch size (b=5), single run length (n=65,000), and 

single traffic intensity (=0.9) with respect to a range of different initial conditions {x0=0, 

5, 10, 12, 15, 18, 20}.  The results obtained by White and Hwang (2015) demonstrated that 

truncation points and the error in the truncated mean estimates are essentially independent.  

Further, while the mean estimates for this problem are quite good without truncation, 

applying MSER-5 truncation modestly improves the accuracy of these estimates.    

(1) The results obtained in the present research for n=64,000 and =0.9 are entirely 

consistent with those reported earlier.   

Our objective here was to explore the performance of MSER for a single initial condition, 

empty and idle {x0=0}, with respect to alternative run lengths, batch sizes, and model traffic 
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intensities.  We speculated the effects of decreasing  to be similar to those encountered by 

increasing the run length n.   

(2) The results of our experiments suggest that this speculation is largely untrue and 

decreasing traffic intensity cannot altogether compensate for short run lengths. 

(3) The d*≤dmax=n/2 truncation rule likewise cannot altogether compensate for short 

run lengths 

For smaller run lengths and traffic intensities, MSER appears to overestimate the amount 

truncation warranted, reducing the sample variance by truncating early regenerative cycles 

with large peak waiting times while the MSER statistic is relatively less sensitive to the 

accompanying reduction in sample size.  The result is underestimation of the steady-state 

mean. 

In the final analysis, our analysis demonstrates that  

(4) The difficulty in estimating the steady-state mean has little or nothing to do with bias 

resulting from a poor choice of initial conditions for Model 2.  The empty-and-idle 

condition regenerates frequently, more frequently for lower traffic intensities and 

smaller batches.   

(5) The fundamental issue is determining an initial run length that is sufficiently long to 

capture observations that, taken together, are representative of the steady-state 

distribution. 

(6) The new initial bias of x0=100 apparently vindicates the efficacy of MSER to detect 

steady state mean(s) and truncation point(s) compared to smart initialization 

approach.  
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7.2.3 Model 3: EAR(1)  

 

The third test model is AR(1)  

ttt XX   1  

for t = 0, 1, …, n, with exponentially decaying error  

 

 

where =1.  This model differs from a typical AR(1) with normally distributed white noise 

because the error term is exponentially distributed.  It is stable if and only if  

0 <1 

For stable processes, the expected steady-mean is  

 

Table 7.23 provides this expectation for parameter values ={0.7, 0.8, 0.9, 0.99}.  Note that 

the rate of convergence to steady state also depends , with the rate increasing in decreasing 

. In terms of the average warm-up period required, therefore, we would anticipate that the 

effect of decreasing  is similar to that of increasing the run length n.   

Table 7.23 Expected Value of the Steady-State Mean as a function of  

  
 0.7 0.8 0.9 0.99 

 3.33 5.00 10 100 

 

Both of these dependencies are illustrated in Figure 7.50 for a run length of n=500. (Note 

the scale for the ordinate in the panel for =0.99 differs from the other three panels, in order 

to allow visualization.)  In each panel, the response Xt is plotted in blue, while the expected 

response   

t ~ et

E X 
1

1



E X 
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    11  tt XEXE   

is plotted in red. 

 

 

 

 

 
 =0.99 

 
 =0.9 

 
 =0.8 

 
 =0.7 

Figure 7.50 Representative output for EAR(1) for run length n=500 and batch size b=1, 
illustrating the dependency of the steady-state mean and rate of convergence on the 
parameter for ={0.7, 0.8, 0.9, 0.99} 

 

Determining the “true” truncation point for this model is problematic.  This is because 

the process converges to steady state only in the limit.  Which observation to choose as the 

“true” truncation point is inherently subjective and open to second-guessing.  In classical 

control engineering, the point where the response is “close enough” to steady state is called 

the settling time.  The expected -percent settling time  is implicitly defined by 
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Common choices for the settling time are observations at which the responses are within 

5% and 2% of their steady-state values.  Table 7.24 provides settling times as a function of 

the parameter  for a wide range of potential choices for . 

Note that MSER is data driven and does not suffer from this ambiguity.  On any 

replication, the process is deemed to have settled into steady state when the MSER statistic 

is minimized on the initial segment of observations.  The expected settling time is 

approximately the average of these individual settling times over a very large number of 

replications.  Note that this is the point argued by White and Hwang (2015) in response to 

Law (2015). 

Table 7.24 Expected -percent settling time  as a function of  and  
  
 0.7 0.8 0.9 0.99 
 9 14 29 299 
 11 18 38 390 
 13 21 44 459 
0.1 20 31 66 688 
0.01 26 42 88 917 
0.001 33 52 110 1146 

 

 

In this chapter we explore the sensitivity of the estimated steady-state mean and 

truncation point with respect to the model parameter ={0.7, 0.8, 0.9, 0.99} for batch sizes 

b={1, 5, 10} and eight different run lengths:  

 long run lengths of n=16000, 8000, 4000 

E X   100
100

E X 1


100 

100

1

1








1

 100
100 1 
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 medium run lengths of n=2000, 1000 

 short run lengths of n=500, 300, 150, 100 

We distinguish among these categories of run length experimentally, based on coverage of 

the mean by the truncated and/or raw 95% confidence intervals for =0.99. 

7.2.3.1 Results for Model 3 with =0.99 
 

Figure 7.51 shows the response of one of 1000 replications for =0.99 and n=16000., 

together with the expected mean .Visually, this output appears to settle into a 

steady-state operating regime after approximately 300-400 observations after which 

observations remain relatively stable about the mean.  This corresponds to the traditional 

choice of a 2% to 5% settling time as applied control engineering. 

 

 
Figure 7.51 Example of Model 3 with =0.99 (n = 16000, Brown line: E(X))  

 

By halving the run length sequentially, the relationships among the variables—run length, 

batch size, and model parameter —and key metrics—means without truncation, truncated 

means, truncation points, the correlation between truncated means and truncation points—

begin to emerge. 

As can be seen in Figure 7.52, MSER yields superior estimates for all run lengths, with 

the difference in accuracy increasing as the run lengths as the decrease. For the long runs 

E X 100
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(n=16000, 8000, 4000), both the MSER-truncated and the raw confidence intervals cover 

the true mean.  The comparatively large number of observations in steady state appears to 

be sufficient to overwhelm the initial transient.  For medium-length runs (n=2000, 1000), 

only the MSER-truncated estimates provide coverage; for short-runs (n=500, 300, 150, 

100), neither the MSER-truncated nor the raw confidence intervals cover the true mean.  As 

the run length continues to decline, the ranges of truncated means become wider and 

estimation for every batch size increases.  

This suggests that MSER needs to “see” at most 1000 observations on average in order 

to provide coverage for this system.  As shown in Figure 7.53, this is approximately three 

times the length of the MSER-determined warm-up period.  Batching is contraindicated 

below about n=500 with larger batches on average yielding smaller estimates and greater 

estimation error.   

Larger batches are associated with greater truncation for every run length.  The average 

MSER truncation point is reasonably consistent across large runs, on range 250<d*<400, as 

well as across medium-length runs, on the range 150<d*<300, and across short runs, on the 

range 0<d*<200.  Restricting the optimal truncation point to d*<n/2 does not consistently 

appear to provide the desired indication that runs are too short to yield accurate estimates 

on average.  However, the same is not true when the restriction is applied on a replication-

by-replication basis, as recommended. 

Figures 7.54 and Table 7.25 demonstrate that truncated mean estimates are relatively 

independent of the observations truncated. For long runs, the correlation is essentially zero.  

For medium and short runs, there appears to be a modest positive correlation, with the 
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magnitude of this correlation generally increasing as run length decreases. As is perhaps 

intuitive, the shortest runs tend to induce greater truncation on average. 

 

 

 
n = 16000 

 
n = 8000 

 
n = 4000 

 
n = 2000 

 
n = 1000 

 
n=500 

 
n = 300 

 
n = 150 

 
n = 100 

Figure 7.52 95% confidence intervals of the mean for the truncated mean output as a function 
of batch size (b= 1, 5, and 10) and run length (n=100, 150, 300, 500, 1000, 2000, 4000, 8000, and 
16,000) for Model 3 with =0.99 (Theoretical mean of 100, Blue line) 
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n = 16000 

 
n = 8000 

 
n = 4000 

 
n = 2000 

 
n = 1000 

 
n = 500 

 
n = 300 

 
n = 150 

 
n = 100 

Figure 7.53 95% confidence intervals for the mean number of observations truncated as a 
function of batch size (b= 1, 5, and 10) and run length (n=100, 150, 300, 500, 1000, 2000, 
4000, 8000, and 16,000) for Model 3 with =0.99 
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n = 16000 

 

n=8000 

 

n=4000 

 
n=2000 

 
n=1000 
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n=100 

Figure 7.54 Scatterplots of the truncated mean vs. the number of observations truncated for 
batch sizes b=1, 5, and 10 for run length of n=100, 150, 300, 500, 1000, 2000, 4000, 8000, and 
16,000 Model 3 with =0.99 
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Table 7.25 Correlation between the truncated mean and the number of observations truncated 
for batch sizes b=1, 5, and 10 for run length of n=100, 150, 300, 500, 1000, 2000, 4000, 8000, 
and 16,000 for Model 3 with =0.99 

  
 

Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

-0.0527 -0.0557 -0.0163 

Mean  

Batch 
= 5 

-0.0424 -0.0558 -0.0167 

Mean  

Batch 
= 10 

-0.0278 -0.0393 -0.0155 

 

 
Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

-0.0735 -0.0108 0.0453 

Mean  

Batch 
= 5 

-0.0427 -0.0175 0.0365 

Mean  

Batch 
= 10 

-0.0097 0.0248 0.0429 

 

 
Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

-0.0458 0.1113 0.1575 

Mean  

Batch 
= 5 

0.0149 0.1157 0.1733 

Mean  

Batch 
= 10 

0.0255 0.1242 0.1687 

 

n = 16000 n = 8000 n = 4000 
 

Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

0.1117 0.1870 0.1989 

Mean  

Batch 
= 5 

0.1116 0.2078 0.2194 

Mean  

Batch 
= 10 

0.0812 0.1333 0.2168 

 

 
Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

0.2822 0.2843 0.2641 

Mean  

Batch 
= 5 

0.1160 0.3102 0.2861 

Mean  

Batch 
= 10 

0.0348 0.1456 0.3094 

 

 
Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

0.4864 0.3049 0.2182 

Mean  

Batch 
= 5 

0.1363 0.4254 0.3383 

Mean  

Batch 
= 10 

0.0348 0.2258 0.3924 

 

n = 2000 n = 1000 n = 500 
 

Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

0.5040 0.2615 0.1539 

Mean  

Batch 
= 5 

0.0708 0.4444 0.2953 

Mean  

Batch 
= 10 

-0.0267 0.2004 0.3906 

 

 
Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

0.4771 0.1246 -0.0443 

Mean  

Batch 
= 5 

0.0104 0.4455 0.2406 

Mean  

Batch 
= 10 

-0.1133 0.1392 0.4748 

 

 
Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

0.4557 0.1240 -0.0240 

Mean  

Batch 
= 5 

-0.0149 0.5077 0.1365 

Mean  

Batch 
= 10 

-0.0693 0.1651 0.3193 

 

n = 300 n = 150 n = 100 
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n = 16000 

 
n = 8000 
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n = 300 

 
n = 150 

 
n = 100 

Figure 7.55 Frequency distribution of the number of observations truncated as a function of batch sizes b=1, 5, and 10 for run length of 
n=100, 150, 300, 500, 1000, 2000, 4000, 8000, and 16,000 for Model 3 with   of 0.99 
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7.3.3.2 Results for Model 3 with =0.90 

 
Figure 7.56 Example of EAR(1) with ϕ of 0.9 (n = 16000, Blue line: E(X)) 

 
 

 
n = 16000 

 
n = 8000 

 
n = 4000 

 
n = 2000 

 
n = 1000 

 
n=500 

 
n = 300 

 
n = 150 

 
n = 100 

Figure 7.57 95% confidence intervals of the mean for the truncated mean output as a function 
of batch size (b= 1, 5, and 10) and run length (n=100, 150, 300, 500, 1000, 2000, 4000, 8000, 
and 16,000) for Model 3 with ϕ =0.90 (Theoretical mean of 10, Blue line) 
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Figure 7.58 95% confidence intervals for the mean number of observations truncated as a 
function of batch size (b= 1, 5, and 10) and run length (n=100, 150, 300, 500, 1000, 2000, 4000, 
8000, and 16,000) for Model 3 with =0.90 
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Figure 7.59 Scatterplots of the truncated mean vs. the number of observations truncated for 
batch sizes b=1, 5, and 10 for run length of n=100, 150, 300, 500, 1000, 2000, 4000, 8000, and 
16,000 Model 3 with =0.90 
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Table 7.26 Correlation between the truncated mean and the number of observations 
truncated for batch sizes b=1, 5, and 10 for run length of n=100, 150, 300, 500, 1000, 2000, 
4000, 8000, and 16,000 for Model 3 with =0.90 

 
Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

0.0094 -0.0087 0.0276 

Mean  

Batch 
= 5 

0.0089 -0.0111 0.0261 

Mean  

Batch 
= 10 

0.0076 -0.0119 0.0198 

 

 
Trunc  

Batch 
=1 

Trunc  

Batch =5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

-0.0329 -0.0314 0.0107 

Mean  

Batch 
= 5 

-0.0328 -0.0467 -0.0026 

Mean  

Batch 
= 10 

-0.0327 -0.0468 -0.0032 

 

 
Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch = 
1 

-0.0277 -0.0166 0.0038 

Mean  

Batch 
= 5 

-0.0267 -0.0347 -0.0110 

Mean  

Batch 
= 10 

-0.0263 -0.0337 -0.0149 

 

n = 16000 n = 8000 n = 4000 
 

Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

-0.1249 -0.1247 -0.1125 

Mean  

Batch 
= 5 

-0.1251 -0.1220 -0.1107 

Mean  

Batch 
= 10 

-0.1152 -0.1134 -0.1121 

 

 
Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch = 
1 

-0.1194 -0.1071 -0.0355 

Mean  

Batch = 
5 

-0.1025 -0.1044 -0.0354 

Mean  

Batch = 
10 

-0.0457 -0.0442 -0.0344 

 

 
Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch = 
1 

-0.1609 -0.0987 -0.0565 

Mean  

Batch 
= 5 

-0.0776 -0.0945 -0.0507 

Mean  

Batch 
= 10 

-0.0460 -0.0417 -0.0418 

 

n = 2000 n = 1000 n = 500 
 

Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

-0.1213 -0.0715 -0.0633 

Mean  

Batch 
= 5 

-0.0001 -0.0528 -0.0731 

Mean  

Batch 
= 10 

0.0172 -0.0193 -0.0558 

 

 
Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch = 
1 

-0.1776 0.0518 0.2247 

Mean  

Batch = 
5 

0.0080 0.0640 0.2239 

Mean  

Batch = 
10 

0.0299 0.1226 0.3203 

 

 
Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch = 
1 

0.0356 0.1800 0.1167 

Mean  

Batch 
= 5 

0.1101 0.2034 0.1250 

Mean  

Batch 
= 10 

0.0835 0.1562 0.2702 

 

n = 300 n = 150 n = 100 
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Figure 7.60 Frequency distribution of the number of observations truncated as a function of batch sizes b=1, 5, and 10 for run length of 
n=100, 150, 300, 500, 1000, 2000, 4000, 8000, and 16,000 for Model 3 with  of 0.90 
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7.3.3.3 Results for Model 3 with =0.80 
 

 
Figure 7.61 Example of EAR(1) with  of 0.8 (n = 16000, Green line: E(X)) 
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Figure 7.62 95% confidence intervals of the mean for the truncated mean output as a function 
of batch size (b= 1, 5, and 10) and run length (n=100, 150, 300, 500, 1000, 2000, 4000, 8000, 
and 16,000) for Model 3 with =0.80 (Theoretical mean of 5, Blue line)  
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Figure 7.63 95% confidence intervals for the mean number of observations truncated as a 
function of batch size (b= 1, 5, and 10) and run length (n=100, 150, 300, 500, 1000, 2000, 4000, 
8000, and 16,000) for Model 3 with =0.80 
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Figure 7.64 Scatterplots of the truncated mean vs. the number of observations truncated for 
batch sizes b=1, 5, and 10 for run length of n=100, 150, 300, 500, 1000, 2000, 4000, 8000, and 
16,000 Model 3 with =0.80 
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Table 7.27 Correlation between the truncated mean and the number of observations 
truncated for batch sizes b=1, 5, and 10 for run length of n=100, 150, 300, 500, 1000, 2000, 
4000, 8000, and 16,000 for Model 3 with =0.80 

 
 

Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

0.0519 0.0491 0.0431 

Mean  

Batch 
= 5 

0.0508 0.0419 0.0387 

Mean  

Batch 
= 10 

0.0509 0.0437 0.0338 

 

 
Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

0.0245 0.0221 -0.0122 

Mean  

Batch 
= 5 

0.0237 0.0097 0.0024 

Mean  

Batch 
= 10 

0.0241 0.0165 -0.0233 

 

 
Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

0.0023 0.0051 0.0102 

Mean  

Batch 
= 5 

0.0015 -0.0088 0.0004 

Mean  

Batch 
= 10 

0.0010 -0.0058 -0.0114 

 

n = 16000 n = 8000 n = 4000 
 

Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

-0.0264 -0.0447 -0.0443 

Mean  

Batch 
= 5 

-0.0302 -0.0799 -0.0725 

Mean  

Batch 
= 10 

-0.0272 -0.0725 -0.0736 

 

 
Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

-0.0566 -0.0549 -0.0201 

Mean  

Batch 
= 5 

-0.0595 -0.0755 -0.0307 

Mean  

Batch 
= 10 

-0.0037 -0.0193 -0.0420 

 

 
Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

-0.1855 -0.1398 -0.0686 

Mean  

Batch 
= 5 

-0.1211 -0.1418 -0.0677 

Mean  

Batch 
= 10 

-0.0647 -0.0736 -0.0439 

 

n = 2000 n = 1000 n = 500 
 

Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

-0.1854 -0.1782 -0.0958 

Mean  

Batch 
= 5 

-0.0969 -0.1531 -0.0767 

Mean  

Batch 
= 10 

-0.0268 -0.0685 -0.0344 

 

 
Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

-0.3738 -0.1403 0.0159 

Mean  

Batch 
= 5 

-0.0987 -0.1463 0.0115 

Mean  

Batch 
= 10 

-0.0165 0.0275 0.0946 

 

 
Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

-0.2847 -0.0222 0.0204 

Mean  

Batch 
= 5 

0.0231 -0.0132 0.0129 

Mean  

Batch 
= 10 

0.0452 0.0239 0.0474 

 

n = 300 n = 150 n = 100 
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Figure 7.65 Frequency distribution of the number of observations truncated as a function of batch sizes b=1, 5, and 10 for run length of 
n=100, 150, 300, 500, 1000, 2000, 4000, 8000, and 16,000 for Model 3 with  of 0.80 
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7.3.3.4 Results for Model 3 with =0.70 

 
Figure 7.66 Example of EAR(1) with ϕ of 0.7 (n = 16000, Blue line: E(X)) 
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Figure 7.67 95% confidence intervals of the mean for the truncated mean output as a 
function of batch size (b= 1, 5, and 10) and run length (n=100, 150, 300, 500, 1000, 2000, 
4000, 8000, and 16,000) for Model 3 with =0.70 (Theoretical mean of 3.33, Blue line) 
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Figure 7.68 95% confidence intervals for the mean number of observations truncated as a 
function of batch size (b= 1, 5, and 10) and run length (n=100, 150, 300, 500, 1000, 2000, 
4000, 8000, and 16,000) for Model 3 with =0.70 
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Figure 7.69 Scatterplots of the truncated mean vs. the number of observations truncated for 
batch sizes b=1, 5, and 10 for run length of n=100, 150, 300, 500, 1000, 2000, 4000, 8000, and 
16,000 Model 3 with =0.70 
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Table 7.28 Correlation between the truncated mean and the number of observations 
truncated for batch sizes b=1, 5, and 10 for run length of n=100, 150, 300, 500, 1000, 2000, 
4000, 8000, and 16,000 for Model 3 with =0.70 

 
 

Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

0.0533 0.0414 0.0544 

Mean  

Batch 
= 5 

0.0534 0.0320 0.0496 

Mean  

Batch 
= 10 

0.0549 0.0362 0.0445 

 

 
Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

0.0322 0.0211 0.0171 

Mean  

Batch 
= 5 

0.0324 0.0108 0.0101 

Mean  

Batch 
= 10 

0.0353 0.0159 0.0046 

 

 
Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

-0.0248 0.0189 0.0068 

Mean  

Batch 
= 5 

-0.0238 0.0025 -0.0054 

Mean  

Batch 
= 10 

-0.0196 0.0093 -0.0086 

 

n = 16000 n = 8000 n = 4000 
 

Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

-0.01590 0.00987 -0.01131 

Mean  

Batch 
= 5 

-0.01121 -0.01420 -0.02741 

Mean  

Batch 
= 10 

-0.01241 -0.00999 -0.04313 

 

 
Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

-0.0489 -0.0357 -0.0050 

Mean  

Batch 
= 5 

-0.0433 -0.0707 -0.0243 

Mean  

Batch 
= 10 

0.0036 -0.0122 -0.0235 

 

 
Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

-0.1123 -0.0845 -0.0460 

Mean  

Batch 
= 5 

-0.0980 -0.1320 -0.0551 

Mean  

Batch 
= 10 

-0.0548 -0.0555 -0.0396 

 

n = 2000 n = 1000 n = 500 
 

Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

-0.1889 -0.1540 -0.1375 

Mean  

Batch 
= 5 

-0.1520 -0.1642 -0.1320 

Mean  

Batch 
= 10 

-0.0862 -0.0812 -0.1175 

 

 
Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch 
= 1 

-0.4042 -0.1781 -0.0367 

Mean  

Batch 
= 5 

-0.1494 -0.1855 -0.0261 

Mean  

Batch 
= 10 

-0.0409 0.0120 -0.0015 

 

 
Trunc  

Batch 
=1 

Trunc  

Batch 
=5 

Trunc  

Batch 
=10 

Mean  

Batch  

= 1 

-0.3479 -0.1125 -0.0772 

Mean  

Batch 
= 5 

-0.0362 -0.0818 -0.0866 

Mean  

Batch 
= 10 

0.0228 -0.0025 -0.0667 

 

n = 300 n = 150 n = 100 
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n = 16000 

 
n = 8000 

 
n = 4000 

 
n = 2000 

 
n = 1000 

 
n = 500 

 
n = 300 

 
n = 150 

 
n = 100 

Figure 7.70 Frequency distribution of the number of observations truncated as a function of batch sizes b=1, 5, and 10 for run length of 

n=100, 150, 300, 500, 1000, 2000, 4000, 8000, and 16,000 for Model 3 with  of 0.70 

0
200
400
600
800

1000

0 25 50 75 125 250 500 <
1000

N
um

be
r 

of
 

R
ep

lic
at

io
ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0
200
400
600
800

1000

0 25 50 75 125 250 500 <
1000

N
um

be
r 

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0
200
400
600
800

1000

0 25 50 75 125 250 500 <
1000

N
um

be
r 

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0
200
400
600
800

1000

0 25 50 75 125 250 500 <
1000

N
um

be
r 

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0
200
400
600
800

1000

0 25 50 75 125 250 500 <
1000

N
um

be
r 

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0
200
400
600
800

1000

0 25 50 75 125 250 500 <
1000

N
um

be
r 

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0
200
400
600
800

1000

0 25 50 75 125 250 500 <
1000

N
um

be
r 

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0
200
400
600
800

1000

0 25 50 75 125 250 500 <
1000

N
um

be
r 

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10

0

500

1000

1500

0 25 50 75 125 250 500 <
1000

N
um

be
r 

of
 R

ep
lic

at
io

ns

Number of Observations Truncated

Batch Size of 1 Batch Size of 5 Batch Size of 10





180 
 

7.3.3.5 Results Using OBM for Model 3 with =0.70 
 

We applied OBM to Model 3 with run length n=1000 for batch sizes b=10, 50, 100, 

and 200 observations.  Figure 7.71 shows output for four representative replications, one 

at each batch size.  Table 7.29 and Figure 7.72(a) compares the 95% confidence intervals 

on the truncated mean for each of the OBM estimates with the truncated mean for non-

overlapping approach with the single batch size b=10.  None of the interval estimates cover 

the expected value of 3.33 except OBM b = 100 and NOBM.  However, all the mean 

estimates are within 0.3% of the theoretical mean and the differences among these 

estimates are not statistically significant.  

  
b = 10 b = 50 

  

  
b = 100 b = 200 

Figure 7.71 Representative Output, Overlapping Batch Mean, and MSER Statistic of Model 
3 (b= 10, 50, 100, and 200) 
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Table 7.29 95% confidence intervals for Model 3 on the truncated mean and the standard 
deviation for overlapping and non-overlapping batches 

 

  
OBM NOBM 

OBM b=10 OBM b=50 OBM b=100 OBM b=200 NOBM b=10 

Sample Mean 3.322456 3.320894 3.323329 3.322423 3.325367 

Upper limit 3.329200 3.327986 3.330414 3.329345 3.332040 

Lower limit 3.315712 3.313801 3.316244 3.315501 3.318693 

Sample Std D 0.108683 0.114299 0.114175 0.111547 0.107546 

Upper limit 0.113668 0.119542 0.119412 0.116663 0.112479 

Lower limit 0.104120 0.109500 0.109381 0.106863 0.103031 

 

 

 

(a) 
 

(b) 

Figure 7.72 95% confidence intervals for Model 3 on (a) the truncated mean for overlapping 
and non-overlapping batches and (b) the standard deviation for overlapping and non-
overlapping batches 

 

Figure 7.73, 7.74, and Table 7.29 suggest an interesting finding of how OBM does act 

compared to NOBM. As we see in Model 2, this approach keeps looking for the minimal 

MSER statistic over d*<n/2 and this tendency causes violation of the half run rule. Thus, 

imposing this rule for OBM should be recommended. In addition, OBM b=10 and NOBM 

b=10 perform similar patterns as the pre-processed output from OBM follows NOBM’s 

output trend.  

3.3
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Figure 7.73 Scatterplots of the truncated mean vs. the number of observations truncated for 
OBM sizes b=10, 50, 100 and 200 for run length of n=1000 with ϕ of 0.70 for Model 3 
(including NOBM batch size of 10) 

 

 

 

Figure 7.74 Frequency distribution of the number of observations truncated as a function of 
OBM sizes b=10, 50, 100, and 200 for run length of n=1000 with ϕ of 0.70 for Model 3 
(including NOBM batch size of 10) 
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Table 7.30 Correlation between the truncated mean and the number of observations 
truncated for OBM sizes b=10, 50, 100, and 200 for run length of n=16,000 with ϕ of 0.70 for 
Model 3 

  Trunc Batch =10 Trunc Batch =50 Trunc Batch =100 Trun Batch = 200 

Mean Batch = 10 -0.105123784 0.024183645 -0.007825651 -0.041654617 

Mean Batch = 50  0.005546592 -0.144419915 -0.01367133 -0.069917161 

Mean Batch = 100 -0.062115342 0.031223516 -0.036393455 -0.036956424 

Mean Batch = 200 -0.018985329 -0.022951969 -0.003507772 -0.103548868 
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Chapter 8.  Conclusion and future research 

 

One measure of the effectiveness of applied research on DES is the degree to which 

research findings are incorporated into standard practice.  A major purpose of our research 

was to enhance the effectiveness of MSER in just this way.  Two different approaches to 

improving MSER accessibly were implemented and thoroughly tested. 

The first was to integrate MSER logic in commercial simulation software in the form 

of a static library, a DLL, and a submodel (subroutine); the second was to provide 

standalone codes a variety of programming language to use as MSER post-analysis. After 

extensive reviews, we chose the commercial simulation software ExtendSim, 

ProModel/MedModel, and Arena to realize this first approach; we chose R, SAS, Matlab, 

VBA, and C/C++ to implement the second.   

To make these codes public and facilitate distribution, we created the MSER 

Laboratory hosted at the University of Virginia.  In addition to the sample codes, this web 

site currently includes information on the mathematical and historical development of 

MSER, as well as references into the literature.  Our intention is to maintain and support 

the continued development and expansion of the Lab.   

In the future, we will explore modifications to the laboratory site which will make it 

interactive, such that a warm-up period can be determined automatically simply by 

importing a data set to be analyzed.  We also intend to include codes in additional 

programming languages, such as the scripting languages Python and Perl, as well as 
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incorporate useful suggestions and related research findings from the simulation 

community.  We are very anxious to work with developers of commercial simulation 

software houses to incorporate MSER in future releases of their products, as we have done 

previously with Dave Krahl at Imagine That (to whom we reiterate our sincere thanks and 

appreciation).  We also intend to pursue research to advance the MSER logic module, 

particularly with regard to integrating MSER with the notion of automatic stopping rules.  

The second major purpose of our research was to address a number of open questions 

regarding MSER application and provide guidance in the selection of MSER parameters.  

These include:  

 the choice of simulation run length n, 

 the choice of batch size b,  

 the maximum acceptable optimal truncation point dmax on the range of a given run 

length [0≤ dmax ≤n], and 

 the incorporation of the overlapping batch means. 

To this end we first develop a hypothetical case which demonstrated that MSER can 

potentially change its determinations regarding the location and the even the existence of 

a suitable truncation point depending on the run length chosen. We concluded that 

performance of MSER does in fact depend fundamentally on choosing a sufficient run 

length. Without knowledge beyond the output sequences alone, this choice remains an open 

problem and the subject for future research.   

To develop insight regarding the remaining questions, we tested MSER using non-

overlapping batch means (NOBM) with batch sizes of b= 1, 5, and 10 and selected run 

lengths for three simulation models: (1) a uniform white noise process with superimposed 



186 
 

linearly decreasing bias, (2) the delay time in M/M/1 with four different traffic intensities, 

and (3) EAR(1) with four different parameters. We also tested MSER using overlapping 

batch means (OBM) with selected batch sizes run lengths. 

We selected Model 1 as the baseline for testing MSER performance because of its 

transparency—the range of optimal truncation points is clear, both visually and 

analytically.  We showed that for long runs: 

(1) all batch sizes remove all of the transient observations,  

(2) estimation errors are an artifact of sampling after the biasing effect of the initial 

transient has been removed,   

(3) modest batching has no significant effect on the quality of estimates, and 

(4) the mean estimate is uncorrelated with the number of observations truncated for 

all the batch sizes and the success of a truncation procedure in terms of the 

accuracy of the estimate cannot be imputed from the truncation point alone. 

For shorter runs, we showed conclusion (4) also holds.  In addition: 

(5) even with very little steady-state data, the MSER-indicated truncation points are 

themselves very reasonable and indeed optimal in terms of the mean estimates for 

most cases, 

(6) increasing batch sizes increases both the variance and spread of the truncated 

observations, without systematically affecting the accuracy of the estimated mean,  

(7) to the degree that batching reduces the effective sample size, it is not recommended 

for small samples and provides no discernable benefit for large samples,  
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(8) the choice of dmax is a binding concern only if (n-d)/n is close to 1—the choice of 

n is likely dominated by the need for estimates with acceptable accuracy and 

precision,  

(9) the d*≤dmax=n/2 threshold provides significant protection against estimation errors 

resulting from run lengths that are too short without over-truncation of replications 

with adequate run lengths, 

(10) for run lengths that are approximately the same as ideal truncation point, however, 

the protection may be inadequate and a modestly lower threshold would be 

preferred, and 

(11) OBM outperforms the non-overlapping approach in all cases and OBM offers 

significantly greater precision in the estimate. 

We selected Model 2 because it allows comparison with the results obtained by Law 

(2015) and by White and Hwang (2015) for long runs. The results obtained by White and 

Hwang (2015) demonstrated that truncation points and the error in the truncated mean 

estimates are essentially independent.  Further that, while the mean estimates for this 

problem are quite good without truncation, applying MSER-5 truncation modestly 

improves the accuracy of these estimates.    

Our objective here was to explore the performance of MSER for a single initial 

condition, empty and idle {x0=0}, with respect to alternative run lengths, batch sizes, and 

model traffic intensities. We found that: 

 

(1) the results obtained in the present research for n=64,000 and =0.9 are entirely 

consistent with those reported earlier.   
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(2) while we speculated that the effects of decreasing  would be similar to those 

encountered by increasing the run length n, the results of our experiments suggest 

that this speculation is largely untrue and decreasing traffic intensity cannot 

altogether compensate for short run length,  

(3) the d*≤dmax=n/2 truncation rule likewise does not  altogether compensate for short 

run lengths, and 

(4) for smaller run lengths and traffic intensities, MSER appears to overestimate the 

amount of truncation warranted and underestimate the steady-state mean. 

We speculate that conclusion (4) obtains because truncating early regenerative cycles 

with large peak waiting times, when these exist, reduces the sample variance.  Early in the 

run, the MSER statistic is relatively less sensitive to the accompanying reduction in sample 

size than to the reduction of sample variance.  This speculation remains open for future 

research. 

In the final analysis, our research demonstrates that  

(5) the difficulty in estimating the steady-state mean has little or nothing to do with bias 

resulting from a poor choice of initial conditions for Model 2.  The empty-and-idle 

condition regenerates frequently, more frequently for lower traffic intensities and 

smaller batches, and   

(6) instead, the fundamental issue here is determining an initial run length that is 

sufficiently long to capture observations that, taken together, are representative of 

the steady-state distribution. 

In other words,  
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(7) for regenerative processes with irregular cyclical outputs and inadequate run lengths, 

MSER may suggest truncation points when truncation is contraindicated. 

Future research might extend these results by testing the effect of alternate initial conditions 

other than x0=0 or 100, where truncation is actually required to mitigate initialization bias. 

 

We selected Model 3 because determining the “true” truncation point for this model is 

problematic.  Unlike Model 1, the process converges to steady state only in the limit and 

which observation to choose as the “true” truncation point is inherently subjective.  We 

noted that MSER is data driven and does not suffer from this ambiguity. We also suggested 

the expected -percent settling time as a measure for the degree of truncation. 

We found that: 

 

(1) MSER yields superior estimates for all run lengths, with the difference in accuracy 

increasing as the run lengths as the decrease, 

(2) restricting the optimal truncation point to d*<n/2 does not consistently appear to 

provide the desired indication that runs are too short to yield accurate estimates on 

average.   

However, we speculate the same is not true when the threshold is applied on a replication-

by-replication basis, as recommended.  This speculation warrants future research. 

(3) Truncated mean estimates are relatively independent of the number of observations 

truncated—for long runs, the correlation is essentially zero; for medium and short 

runs, there appears to be a modest positive correlation, with the magnitude of this 

correlation generally increasing as run length decreases. The shortest runs tend to 

induce greater truncation on average, and  
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(4) NOBM provides better accuracy and precision at b=10. 

 

It is unclear whether or not conclusion (4) holds for other batch sizes.  Adding clarity on 

the relative performance of OBM and NOBM is a potentially fruitful subject for future 

research.  

The conclusion consistently obtained in this research—that batching, in general, does 

not improve estimates and can, in some instances, result in a loss of precision seemingly 

contradicts a long-standing result in the literature (White, Cobb, and Spratt, 2000) but 

agrees with Schmeiser’s discussion and recommendation 

The MSER-5 is the most attractive general-purpose heuristic for mitigating the effects 

of the startup problem evaluated in this research.  It is the most sensitive rule in 

detecting bias and the most consistent rule in mitigating its effects. 

This result was obtained based using models not considered in the current research.  Future 

research should attempt to reproduce the results reported in the literature using the methods 

developed in this research. Future research should also test MSER performance on 

additional, more complex processes models, such as SS7 model examined by Law.  The 

MSER laboratory, we hope, will facilitate these future research efforts. 
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Appendix I. Arena MSER Submodel User Guide 

This appendix provides guidance that will allow you to incorporate the purpose-built 
MSER submodel in your Arena simulation model. 

 

Variable definition 

After building a model, you can choose entity’s attribute(s) of interest that are passed to a 
Arena MSER submodel.  

1. General simulation variables: 
a. X: Attribute of interest (i.e., entity waiting time) 
b. StopRule: User input to end simulation 
c. Counter: Number of entities 

 
2. MSER related variables: You need to define the following additional variables to 

store temporary values and compute MSER statistics associated with each entity.  
a. Truncation: Truncation index 
b. MSER_test: MSER statistics without truncation 
c. MSER_final: MSER statistics related to each truncation index 
d. X2: Squared values of attribute X 
e. inter_cumX: Summation of X associated with each entity 

f. inter_cumX2: Summation of X2 associated with each entity 

g. cumX: Storage for summation of X associated with each entity  
h. cumX2: Storage for summation of X associated with each entity  
i. Mean: Average value from the first X to the current one by dividing cumX 

by Counter 

To avoid confusion, all of variables are preceded with “v_” inside the Arena submodel 
with the exception StopRule.  Equations 2b and 2c are used to compute MSER statistic. 
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2c:  

 

 

    00
11 1

2 







  

 

CounterCounterXXCounterX
Counter

i
i

Counter

i

Counter

i
ii

      1
11 11

22 







  

 

TruncationStopRuleTruncationStopRuleXXTruncationStopRuleXX
StopRule

i
i

StopRule

i

StopRule

i
i

truncation

i
ii



197 
 

All required variables are listed in Table I.1. For example, if you were interested in entity 
wait time, choose its wait time attribute as a global variable, v_X.  In this table, the 
“Location of block” column indicates where the corresponding variables are located in 
building blocks in Arena model.  

 
Table I.1. Global, Local variables and Arrays 

No. Variable (array) 
name 

Location of block Usage 

1 v_Counter Index Record entity number 

v_Counter + 1 

2 v_X InterimData 
Generation 

Record entity wait time 

3 v_X2 InterimData 
Generation 

Record (entity waiting time)2  

4 v_inter_cumX InterimData 
Generation 

Holder for summation of v_X 

5 v_inter_cumX2 InterimData Holder for summation of v_X2 

6 v_Mean DataGeneration v_cumX(v_Counter)/v_Counter 

7 v_ cumX DataGeneration v_inter_cumX(v_counter) 

8 v_ cumX2 DataGeneration v_inter_cumX2(v_counter) 

9 v_MSER_test MSER Without 
Truncation 

(v_cumX2(v_Counter) - 
v_Counter * 
v_Mean(v_Counter) * 
v_Mean(v_Counter))/ 
((v_counter - 0) * (v_counter - 
0)) 

10 StopRule End of Simulation 

(Decision block) 

Global variable to check the 
end of simulation, 10000 that 
confirm 

StopRule = v_Counter 

11 v_Truncation Truncation Index v_Truncation  + 1 

12 v_MSER_final MSER  

With Truncation 

((v_cumX2(StopRule) - 
v_cumX(v_Truncation)) - 
(StopRule -v_Truncation) * 
v_Mean(StopRule) * 
v_Mean(StopRule))/ 
((StopRule - v_Truncation) * 
(StopRule - v_Truncation - 1)) 
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Run length control 

As shown in Figure I.1, the global variable StopRule must be defined before running a 
model. After assign a value to StopRule, such as 10000 entities, you need to use this 
variable as the terminating condition on the Replication Parameters tab of the Arena Run 
Setup menu. 

 

 
Figure I.1. Setting the Simulation Length using the variable StopRule.  
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Usage of MSER Submodel 

As an example, consider the case where the output of interest is the mean entity waiting-
time for an M/M/1 queue in steady state. When building the model, include the MSER 
submodel as shown in Figure I.2. 

 
Figure I.2. Main model for the example. 

 

As shown in Figure I.3, the MSER submodel consists of three major parts: (1) Data 
preprocessing, (2) MSER test generation, and (3) MSER statistics generation. The second 
part is included simply to test whether or not the calculations are performed correctly and 
can be ignored after completing the model.  
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Figure I.3. Submodel to compute MSER. 

 

Data preprocessing uses three Assign modules to define variables and variable arrays that 
reflect the previous variable definitions, as shown in Figure I.4. 

 

 
Figure I.4.  Data preprocessing in Submodel. 

 

The Index Assign module increments the variable v_Counter by 1 as each entity passes 
through the module, as shown in Figure I.5. This variable is used as an index into the 
arrays in the next Assign module. 
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Figure I.5.  Index incremented in an Assign module. 

 

 

As shown in Figure I.6, the Interim Data Generation Assign module assigns values to the 
elements of two variable arrays, X and X2, using V_Counter as the index into these 
arrays.  This module also assigns a value to the variable inter_cumX. These variables are 
subsequently used to update the MSER statistic. 

 

 
Figure I.6. Interim Data Generation Assignments. 

 

As shown in Figure I.7, the Data Generation assignment module assigns three variable 
arrays that also used to update the MSER statistic. 



202 
 

 
Figure I.7.  Data Generation in Assignment. 

 

As noted previously, this assignment shown in Figure I.8 is included to test whether or 
not the calculations are performed correctly and can be removed after performing the test 
satisfactorily. 

 

 
Figure I.8. MSER without Truncation in Assignment. 

 

Figure I.9 shows the core building blocks used to compute MSER statistics.  
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Figure I.9.  MSER Statistics calculation in Submodel. 

 

The decide module in Figure I.10 compares the value of the variable V_Counter to the 
value of the variable StopRule to determine whether or not the stopping condition has 
been met.  If not, the entity exits the Arena MSER submodel. 

 
Figure I.10. End of Simulation in Decision Node. 

 

Once the stopping condition is met, the entity proceeds to the Truncation Index 
assignment module shown in Figure I.11.  Here the index variable v_Truncation is 
incremented by 1.   
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Figure I. 11 Truncation Index in Assignment. 

 

This decision node shown in Figure I.12 checks whether or not the half of simulation run 
is completed.   

 
Figure I.12.  Half of Simulation in Decision Node. 

 

If not, then the MSER statistics are calculated in the MSER With Truncation Assign 
module as shown in Figure I.13. The logic in Equation 2c is incorporated in the New 
Value field for the current truncation index to assign the value calculated for the MSER 
statistic, an element of the global variable array v_MSER_final. 
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Figure I.13.  MSER with Truncation in Assignment. 

 

These values are written to an external file using a ReadWrite module shown in Figure 
I.14.  

 
Figure I.14. MSER_only in ReadWrite. 

 

The internal Arena File name used here is identified with an operating-system file using 
the File data module on the Advanced Process panel, as shown in Figure I.15. In this 
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example, the operating-system file is named MSER_array.csv and located in the same 
folder in which the Arena model.  The extension indicates this file is in csv format. 

 
Figure I.15. Store MSER in File. 

 

The file includes two columns, the first indicating the truncation index and the second the 
corresponding value of the MSER statistic.  The minimum value of the MSER statistic in 
the second column is the optimal truncation point indicated by the corresponding 
truncation index. See Figure I.16 as an example.  

 

 
 

 
Figure I.16. MSER in File Representation (Optimal Truncation Point: Zero)  
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Appendix II. Personal reflections on the importance of the warm-up 
problem and   undergraduate simulation curriculum survey 

II.1 Anecdotal case to emphasize the importance of warm-up period 

Some of working professionals representing simulation specialists do not have in-depth 

knowledge and fundamental understanding of discrete event simulation. In fact, they are 

likely to build models based on a specific software environment. Thus, as long as its built-

in functionalities are enough to reflect key characteristics of the system, only potential 

minor error might occur. For example, when a modeler sets up the travel distance of 

moving resources, she or he should acknowledge the behavior of returning resources 

imposed by some software application. However, we seldom see a simulation professional 

using warm-up periods with a solid understanding.  

II.2 Undergraduate curriculum survey 

We reviewed the twenty curricula or handbooks in industrial or systems engineering 

departments in the U.S. colleges. Thirteen out of twenty universities apparently mandate 

undergraduates to take credits of simulation course for graduation. Six other universities 

also describe simulation as a key methodology to learn before graduation. Even though one 

school does not have undergraduate programs, that school provides simulation courses for 

graduates. Most courses are 3 or 4 credits which are recommended to take during the third 

year. Table AII.1 summarizes detailed information about the survey.  

This requirement apparently emphasizes the importance and the difficulty of simulation 

courses. However, this tendency does not guarantee those students taking simulation 
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classes to be confident in building complex and sophisticated models. First, it only takes 

one semester to fulfill this credit. After finishing the course as a junior student, she or he 

might lose the insight and lessons learned over time. 

Second, they might have to re-learn using other specific simulation package after their 

graduation if the worksite’s tool is different from what they learned. Third, with respect to 

output analysis, its contents tend to be addressed near the end of the course. Sometimes, 

students are overwhelmed by the last minute pressures while instructors might not have 

enough time to provide in-depth lessons. These are the reasons that students and even 

experienced modelers do not fully appreciate the criticality of analyzing output statistics. 

Furthermore, most of simulation software applications provide 95 or 90% confidence 

interval by merely clicking an option.  

Additionally, simulation software training courses from software vendors consist of 

two parts: Basic/introductory course and the following advanced course. The first course 

usually provides the brief review of simulation methodology and teaches how to build 

reasonable size models using built-in functions. Its major intents lie in familiarizing how 

to use that specific software. By completing this course, the course taker will likely know 

how to build relatively formulated models. However, they might fail to incorporate some 

key ingredients of a problem.  

As the beginners and intermediate modelers encounter more complex situations, they 

will turn to their software vendors for additional support. These needs will urge them to 

take an advanced course to learn how to use optimization add-ins and to code inside or 

outside extensions. Both of these courses usually require two or three day boot camps,  
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TableAII.1 Twenty Undergraduate Curricula of Simulation 

 

 

but they never exceed more than one week. Thus, less than two weeks and a semester 

exposure to simulation is where college graduates start work as simulation analysts.  

We also meet many simulation modelers whose backgrounds are not as industrial or 

systems engineers. They just take two courses from software vendors and then learn the 

methodologies further while they work. In fact, I have been somewhat surprised to witness 

many mistakes and misusage even with simple built-in functions and add-ons. For instance, 

one input analyzer (i.e., Stat:fit) indicates that there is no good fit for the collected data, 

but the modeler just used the first distribution that was addressed. If she or he decides to 

use it as a second best option after carefully comparing it with other distributions, it might 

be acceptable even though this practice is not recommended. However, if the modeler just 

chooses the first one listed out of input analyzer, this attitude should be remedied.  

In addition, building a simulation model as a team is sometimes considered a norm, but 

this process should be checked by another modeler. At least another input analyzer such as 

Undergraduate No. of 

Mandatory Credit

1 Columbia University (Fu Foundation) Yes 4

2 Cornell University Yes  4 http://www.orie.cornell.edu/orie/academics/undergraduate/requirements.cfm

3 Georgia Institute of Technology Yes 3 http://www.isye.gatech.edu/academics/undergraduate/courses/

4 Lehigh University (Rossin) Yes 3 http://www.lehigh.edu/ise/documents/IE%20Major%20Requirements%2009_10.pdf

5 North Carolina State University Yes 3 https://portalsp.acs.ncsu.edu/psp/EP91PRD/EMPLOYEE/PCS900PRD/c/NC_SSS_MENU.NC_AA_REQMNT_RPT.GBL

6 Northwestern University (McCormick) Yes 3 http://www.iems.northwestern.edu/docs/undergraduate/AY%2013‐14%20BSIE%20Degree%20Requirements.pdf

7 Purdue University‐West Lafayette Not clear 3 https://engineering.purdue.edu/IE/Academics/Undergrad/Curriculum

8 Stanford University Optional 3 http://exploredegrees.stanford.edu/schoolofengineering/managementscienceandengineering/#bachelorstext

9 Texas A&M University‐College Station (Look) Not clear 3 http://engineering.tamu.edu/industrial/academics/courses/course‐descriptions

10 University of Arkansas‐Fayetteville Yes 3 http://www.ineg.uark.edu/Undergrad_Handbook_Spring_20140423.pdf

11 University of California‐Berkeley Not clear 3 http://ieor.berkeley.edu/AcademicPrograms/Ugrad/Courses/index.htm

12 University of California‐Santa Barbara Not clear 3 http://engineering.ucsb.edu/current_undergraduates/pdf/00‐01Announce.pdf

13 University of Florida Yes 3 https://catalog.ufl.edu/ugrad/current/engineering/majors/industrial‐and‐systems‐engineering.aspx

14 University of Illinois‐Urbana‐Champaign Yes 3 http://provost.illinois.edu/programsofstudy/2014/fall/programs/undergrad/engin/ind_engin.html

15 University of Michigan‐Ann Arbor Yes  4 http://ioe.engin.umich.edu/degrees/ugrad/ugdocs/UndergradStudentGuide.2013.2014.pdf

16 University of Pittsburgh (Swanson) Yes 3 http://www.engineering.pitt.edu/Industrial/Undergraduate/Curriculum_Effective_as_of_Fall_2014/

17 University of Southern California (Viterbi) Not clear 3 http://ise.usc.edu/academics/undergrad/undergrad.htm

18 University of Texas‐Austin (Cockrell) No 0 No undergraduate program

19 University of Wisconsin‐‐Madison Yes 4 http://www.engr.wisc.edu/cmsdocuments/isye‐curriculum‐2014.pdf

20 Virginia Tech Yes 3 http://www.ise.vt.edu/UndergradProgram/ImportantDocuments/2013_14_UG_Handbook.pdf

SourceNo. School name



210 
 

Expert:fit provides qualitative statements indicating that considering empirical distribution 

or expertise knowledge is a better solution. However, some software just implement their 

own function to assign input distributions that are seemingly workable but does not assure 

proper fitting of input data. The reason why I address the cases of input analysis is that 

while people believe they follow the standard and reliable steps to analyze input data, many 

errors prevail. Thus, the right usage of output analysis must be strictly enforced as there is 

no standard method across software environments. We will take a look at different 

approaches to deal with warm-up period across multiple simulation software to apply 

MSER methodology to their output analysis. 
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