

Table of Content

Abstract 3
1. Introduction 5

1.1 Problem Statement 5
1.2 Contributions 6

2. Related Work 7
3. System Design 8

3.1 System Requirements 9
3.2 Wireframes 10
3.3 Sample Code 14
3.4 Sample Tests 17
3.5 Code Coverage 20
3.6 Installation Instructions 21

4. Results 28
5. Conclusions 29
6. Future Work 30
7. References 31

 2

Abstract

Medella is a corporate wellness application for distributing wellness related content to

employees of all enrolled businesses. Companies are able to sign-up to use Medella, which will

give their employees the ability to create accounts with access to all the content that the Medella

business team has curated for them. Various mediums of content will be used including videos,

quizzes, newsletters and blogs. The scalability of this system is much greater than the client's

current system as it removes the need to maintain a manually kept list of 30 or so companies and

what is being provided to each. Another aspect of Medella’s scalability is its ability to track

information about engagement with all content. This tracking is done for both the type of media

as well as the tags associated with a piece of content. Thus, Medella business team members are

able to see what content users interact with the most in order to fine tune what content they

provide in the future. Companies that have a history of engaging with certain mediums and tags

can be provided more of that content. On top of this, if a user interacts with a certain tag, they

have all content sent to that tag put into their personal archive in the future, regardless of whether

or not it is sent to their business. Personalization thus extends even further than just company to

company and even varies from user to user. Therefore, one of the biggest takeaways of this

project is that scalability does not have to come with a sacrifice of personalization in corporate

wellness applications.

 Throughout the development process, the Medella business team team has adhered to

agile principles, holding standups every class period and holding a bi-weekly meeting with the

client. Using these agile methodologies has allowed us as a development team to keep up with a

changing customer vision. An initial set of requirements was found over the course of several

meetings with the customer but as time has gone on this has shifted. Even into this spring

 3

semester the customer has mentioned possible shifts in the direction of the project that would

dramatically change the line of business Medella would eventually be placed into upon release.

Rather than starting over, we have been attempting to set the product up for this transition for

whomever begins work on it next. Using the agile development method made this all possible.

 4

1. Introduction

1.1 Problem Statement

Healthcare and insurance are major costs for American businesses. In 2019, the average

cost of a company-provided family insurance plan surpassed $20,000 a year, and continues to

rise (Matthews, 2019). Currently, our customer is a consultant for various companies, for which

he manually creates and tracks content. People in these companies must be manually added to

email lists, which can take up to 5 minutes. Creating newsletters is also very time consuming, as

the customer must find content and cut/paste into a template; this process can take more than an

hour to complete. Since the number of companies our customer can manually work with is

limited, he does most of his tracking in a spreadsheet.

Our new web application, Medella, is a health and wellness platform aimed towards

creating a standardized way of solving this problem of healthcare costs through education.

Through sending users health and wellness educational content, Medella will help these users

lead healthier lifestyles, which in turn will help businesses spend less on the healthcare of their

employees. By creating a standardized method for adding businesses and users and for creating

content and newsletters, we hope to vastly increase the scalability of our customer’s past work.

We also plan to make it easier for our customer to track businesses and content by adding a

dashboard to the website.

 5

1.2 Contributions

We succeeded in building a web application which acts as a platform to educate

employees on caring for their health. This project was proposed by our client who works as a

consultant with human resources departments for businesses. We created an entirely new tool

which our client and registered businesses can use to sign up users who can then be sent quizzes,

newsletters, blog posts, and videos by the application’s admin team. Other than employees

attached to an employer, individual users can also peruse the website to view content and register

if they are interested. By building a unified platform, we have made it easier for businesses to

spread health awareness and knowledge to their employees.

Users can track their own health knowledge by viewing their scores on the quizzes they

have taken and seeing how the scores change over time. This information is also available to

businesses, so they can evaluate the health knowledge of their employee base as a whole.

Information sent to users can be further tailored by sending content to specific businesses or to

specific interest groups that users can subscribe to. This further enables users to customize their

health education experience.

 6

2. Related Work

One existing workplace health product is a mobile-first platform called Limeade ONE.

Each company can use Limeade’s generic platform that uses a gamified approach involving

assessments, pulse surveys, and rewards (Limeade). While Limeade provides a variety of

services, these overcomplicate what started out as a simple corporate wellness application, and

thus the platform has a steep learning curve. Users must now spend time learning to navigate the

various features. Furthermore, using Limeade requires knowledge of its file-sharing system,

Sharepoint. This makes it more complex for businesses to set up and maintain the platform

(Desai & S, 2019).

 Our product will serve as a platform with which the Medella team, employers, and users

can interact. Users can register for the platform through their employer or independently. The

Medella team will be able to create blog posts, upload videos, create quizzes, and write

newsletters through forms within the application. Quizzes can include questions such as “How

many hours of sleep should you get everyday?” and newsletters can include links to previously

created content. Each type of content can be tagged with a topic, which users can subscribe to

through their profile page. Medella employees will be able to send these posts to users based on

their employer or subscribed tags. Medella’s advantages over Limeade include its simplicity, as

well as the ability to register as an independent user not associated with a business. These

features will make Medella an inclusive platform that everyone can use.

 7

3. System Design

Medella is an online platform that aims to educate users about health and wellness

through various forms of media. The overall goal of this project is to enable users to think about

incorporating healthy habits in their everyday lives by sending out daily newsletters, blogs,

quizzes, and videos. There are three different types of users on this platform: Medella

administrators, business administrators, and users. Medella administrators create content,

monitor engagement from each business, register businesses, and register business

administrators. Business administrators register individual users with their corporation, view

employee information, and track employee quiz results. Users can view educational content

created by Medella administrators, take quizzes, subscribe to different topics, and update their

email preferences. These users can be registered either with a business or individually without a

business.

Medella was developed using Django, a Python web framework. This framework was

chosen because it is widely used and thus has good community support. Django also has many

packages that are easily integrated with the project. In addition, most of the team members had

experience programming with Django, so using this framework greatly reduced the time needed

to learn how to use it. This project also uses the MIT license, which is a permissive free software

license. Users can use software with the MIT license free of charge without restriction. In

addition, users are free to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the software without restriction. The MIT license also states that there is no warranty

for the software.

 8

3.1 System Requirements

Gathering system requirements allows developers and customers to ensure that they have

the same expectations for the project. These requirements also serve as a guidance for developers

to follow while completing the project. Below is a list of our system requirements:

Minimum Requirements - complete in Fall 2019

• Businesses, employees, and the Medella team should be able to securely log in.

• The Medella team should be able to create quizzes and blog posts.

• Employees should be able to click on quiz links, view questions, submit answers, and

receive a score after submission.

• The Medella team should be able to view aggregate and individual results for each quiz

• Businesses should be able to view aggregated results for each quiz.

• The Medella team should be able to input YouTube links into a form to display them in

users’ content feeds.

• Employees should be able to watch videos through the platform.

• The Medella team should be able to send emails to employees to inform them of relevant

content.

• Employees should be able to opt out of receiving all information from Medella.

• Users should be able to view a page with a mission statement and contact information

when going to the webpage without a log-in.

 9

Desired and Stretch Requirements - complete in Spring 2020

• The Medella team should be able to use a newsletter builder form to add text, images, and

links to health-related topics to newsletters, as well as publish the newsletters to

employees.

• Employees should be able to view previous quiz submissions.

• The Medella team should be able to track clicks by users and businesses on the website in

order to monitor user engagement.

• Employees should be able to opt out of receiving only one type of content (quizzes,

blogs, videos, newsletters etc.)

• The Medella team should be able to send content to users that are subscribed to specific

topics or tags.

3.2 Wireframes

Wireframes are critical during the initial phases of web and mobile design because they

focus attention on the basic functionality, layout, and navigation for an interface without the

complication of incorporating color theory, images, and other detailed content. They also help to

improve the communication between developers and clients throughout the design process by

identifying design priorities before implementation. Many of our wireframes have changed since

first created because of suggestions and new information from the customer. We have included

both the old and new wireframes below.

The landing page is the first page the user will see when they visit the website. It displays

Medella’s mission statement and the company's contact information.

 10

Figure 3.2.1

The login page and register page are built into one view. You have the option to register

or login on the same page while viewing the mission statement and contact info.

Figure 3.2.2

Originally, when we were planning on receiving more cost data there was a plan to

include a company dashboard page. This has since been removed due to difficulties in getting

data to be used. Below is the original wireframe.

 11

Figure 3.2.3

Our creation feature for quizzes, blogs, newsletters, and videos changed. There is now

one “create” button on the navbar which takes users to a tabbed interface where they can select

what type of content they want to create. This makes it easier to access other creation forms.

Original Wireframes Updated Wireframes

Figure 3.2.3

Figure 3.2.4

The quiz creation form (Figure 3.2.4) includes the same elements as before, but is organized in a
cleaner fashion. It also has a survey question option and tags.

 12

Figure 3.2.5

Figure 3.2.6

The new blog design removed Categories and Keywords and replaced them with Tags. (Figure
3.2.6)

Figure 3.2.7

Figure 3.2.8

The new video design (Figure 3.2.8) removed Categories and Keywords and replaced them with
Tags. We also removed the video preview and added a Title field.

Figure 3.2.9

Figure 3.2.10

The newsletter creation form (Figure 3.2.10) now includes additional input fields. First off, there
has been a subject field added like in the blog creation form. There are also dropdown menus for
adding links to relevant blogs, quizzes, and videos. Finally, we added the ability to add tags to
newsletters.

 13

Figure 3.2.11

“Take Quiz” (Figure 3.2.11) remains the same since we are still using TypeForm. A

TypeForm quiz that has been created is directly embedded into the page.

3.3 Sample Code

Part of our project involves working with the Typeform platform to build and host

quizzes for users. Typeform is a software for building online forms and surveys which can be

embedded in web pages. It comes with an API that allows users to construct Typeform forms

autonomously by sending JSONs to certain URL endpoints. For our project, we need to take

input from a custom-built form, construct the proper JSON, and send the JSON to Typeform in

an API call. We wrote a wrapper tool to make this easier.

The code to create the API call from the input:

 14

Figure 3.3.1

The code shown in Figure 3.3.1 makes use of the wrapper class TypeFormBuilder and its

method add_question, which appends a new question to the JSON it is constructing for the

API call.

 15

Figure 3.3.2

Figure 3.3.3

The code for add_question is shown in Figures 3.3.2-3.3.3.

 16

3.4 Sample Tests

Testing allows software to be proven functional. 100% code coverage cannot guarantee a

system will be bug free, but tests will be able to prevent some bugs and thus prove some level of

adequacy in the system. Extensive testing gives a sense of security that when using this platform

as it shows that work has been done to ensure it is designed well. The system has not been

thrown together haphazardly with no regard for how it will actually function. On top of this,

writing tests makes developers think about all the ways that their code could possibly be broken.

It forces consideration of all the different conditional paths through the system which can lead to

bugs being found before they become a problem in production.

 The reason that this last piece is important is the drastic increase in cost associated with

fixing bugs in production as opposed to development. Implementing solutions after a project has

been put into production will be exponentially more expensive than implementing a solution

during development. Therefore, testing should be done early and often in an attempt to prevent

problems later on in the software’s lifecycle. Clients who are aware of this idea will also be

much more comfortable paying for software that has been thoroughly tested. It gives a sense of

security for their own investments in the long term.

In the remaining part of this subsection, we provide some sample tests from our testing

suite followed by brief explanations of their function.

 17

 Figure 3.4.1

This test shown in Figure 3.4.1 creates a business admin for the business “Medella”.

Again, the first thing that has to be done is log-in as a medella admin (lines 67-68). After that a

registration token is generated for the user to use to become a business admin (lines 71-72).

Typically this would be a link sent out in an email. However, for testing purposes it is instead

just pulled from the database. Then, the POST request of info that would be input by the new

user for creating their new business admin account is created (lines 73-81) and finally submitted

(line 84). The url is generated using the token that was grabbed from the database beforehand.

The last statement is used to make sure that a business admin, defined by access level 4, actually

exists in the database with the information passed in through the previous POST request.

 18

Figure 3.4.2

Figure 3.4.2 shows a test case that looks at the functionality regarding viewing a specific

quiz embedded in the web page. Specifically, for a quiz with an ID not recognized in the

database, the page should display an error message. Lines 462-464 are finding an admin user and

constructing an HTTP request with the user. Line 466 creates a fake quiz ID that will not be

recognized in the database. Lines 468-475 make the response to the quiz page, retrieve the

resulting page HTML, and verify that the error message appears in the HTML.

Figure 3.4.3

 19

The test shown in Figure 3.4.3 is used in order to ensure content will be made visible to

employees in their own archive page after it has been sent to them. To do this, first the dispatch

process is simulated in lines 191-192. That is, rather than using the send email functionality of

the application, an entry is manually inserted into the table responsible for tracking what has

been sent out to different users. Then, when the response for loading the archive is received it is

ensured that only the quiz that has been sent to the current user is loaded on line 199.

3.5 Code Coverage

 In order to perform code coverage as a team we have used coverage.py. This is designed

for python programs and is a simple python package that can be installed in one of two ways.

Either using pip install coverage or using sudo apt-get install python-

coverage depending on what OS you are running. From there, all that is necessary is to run

the testing suite using the newly added command coverage run. Thus, the complete

command for creating a code coverage report will be coverage run manage.py test.

Once that completes, a basic report can be generated in the terminal using coverage report

or a more detailed report displaying for each line whether or not it is included in a test using

coverage html. This second option will create a folder containing an index.html file that

will allow for easy viewing of every file in the project and its current code coverage. Using this

tool, coverage of the project is currently at 99%.

 20

3.6 Installation Instructions

How to create and configure an AWS Instance

1. Go to aws.amazon.com

2. Register an account with Amazon AWS

3. Log into the AWS console and provision an EC2 instance

a. In Step 1 (Choose AMI), search for “Ubuntu Server 18.04 LTS (HVM), SSD

Volume Type” as the AMI. Keep the 64-bit (x86) option selected.

b. In Step 2 (Choose Instance Type), select at least a T2-small instance (you may

have to use a larger instance depending on the number of users)

c. In Step 3 (Configure Instance Details), check Protect against accidental

termination

d. In Step 4 (Add Storage), change the Size to at least 30 GiB

e. In Step 6 (Configure Security Group), keep “create a new security group”

selected. You may want to change the name of the security group to something

you can remember. Make a note of the Security Group name

f. Click Review and Launch, and Launch the Instance

g. Create a new key pair and name it

i. Download the Key Pair and make a note of the file location. You will need

to remember the file location to access the VM later.

4. While you wait for the instance to boot, go back to the EC2 homepage and click

“Security Groups” which should be located in the “Resources” box. Go to the security

group you just created and add the following inbound rules:

a. HTTP for port 80

 21

b. Custom TCP Rule for port 8000 (for testing only, could be deleted after

 installation is complete)

c. HTTPS for port 443

d. SSH for port 22 (this one should already be there)

5. Click save

How to connect to the AWS Instance

1. Go to the EC2 homepage and click “Running Instances.” If the status checks says “2/2

checks”, you can connect. If it still says “initializing,” wait until the status changes to

“2/2 checks.”

2. Open the command line

a. On Windows, type cmd into the Start Menu

b. On MacOS, open the Terminal

3. Navigate to the directory where you downloaded the Key Pair

4. In the browser, right click on the Instance in the AWS Console, click Connect, and follow

the instructions given on the page to connect to the instance

5. On the “Connect” page, make a note of your public DNS. It should look something like

ec2-3-20-161-168.us-east-2.compute.amazonaws.com

 22

How to set up mysql on the EC2 Instance

1. Connect to the EC2 instance

2. Run sudo apt-get update

3. Run sudo apt-get install mysql-server

4. Log into the mysql server by running sudo mysql -u root

5. Update the password for the root (most privileged user) by running ALTER USER

‘root’@’localhost’ IDENTIFIED WITH mysql_native_password BY

‘new-password’; where new-password is the new password

6. Exit the mysql terminal by running quit

7. Restart the service by running sudo service mysql restart

8. Log into the mysql server again by running mysql -u root -p

a. It will prompt you for the password you just set

9. Create a new user to use in the Django app. We are using ‘medella’ for the username and

‘capstone’ for the password. Run CREATE USER ‘medella’@’localhost’

IDENTIFIED BY ‘capstone’;

10. Grant all privileges to the newly created user by running GRANT ALL PRIVILEGES

ON * . * TO ‘medella’@’localhost’;

11. Flush the privileges for the changes to take effect by running FLUSH PRIVILEGES;

12. Exit the mysql terminal by running quit

13. Log into the mysql server with the new user account mysql -u medella -p. It will

prompt you for the password you set earlier (capstone)

14. Create a new database for the Django app to use by running CREATE DATABASE

medella_db;

 23

a. Note: the name of the database must be ‘medella_db’ in order for the Django app

to correctly connect to the database backend. You could also change this in the

settings.py file of the Django app for a new database name.

15. Because our Django app stores strings in UTF-8 instead of the default format specified by

MySQL, change the character set of the database by running ALTER DATABASE

medella_db CHARACTER SET utf8 COLLATE utf8_general_ci;

16. Exit the mysql terminal by running quit

17. Install the mysql-config package by running sudo apt-get install

libmysqlclient-dev

How to install the Django app on the EC2 Instance

1. Connect to the EC2 instance

2. Open the terminal and run sudo apt-get update

3. Then run sudo apt-get install python3-pip

4. Run sudo pip3 install --upgrade pip

5. Run wget --no-check-certificate

'https://docs.google.com/uc?export=download&id=1mowMydljuqB

Elsbih236gLRAcBFJk88o' -O medella.zip

a. Alternatively, you can download the zip file from

https://drive.google.com/open?id=1mowMydljuqBElsbih236gLRAcBFJk88o and

transfer it to the VM if you wish

6. Unzip the zip file

a. Run sudo apt install unzip

b. Run unzip medella.zip

 24

7. Run cd medella/

8. Run cd src/

9. Run pip3 install -r requirements-travis.txt

10. Run cd medella/

11. Open settings.py by running nano settings.py

12. Scroll to the ALLOWED_HOSTS (should be around line 28)

a. Add your EC2’s public DNS to this list (this can be found when you right click on

your instance in the AWS console and click “Connect”)

b. Save (Ctrl-X, y, enter)

6. Run cd .. (navigate back into medella/src/)

7. Run python3 manage.py migrate

8. Run python3 manage.py createsuperuser

a. Use whatever username and password you like, we use “admin” and “admin”

b. Run ./runserver.sh and the website will start running in approximately 1

minute

i.If you get an error that says “Permission denied”, run chmod 777 runserver.sh to change

the permissions before running the executable

a. Go to <public DNS>:8000, in our case it is http://ec2-3-20-161-168.us-east-

2.compute.amazonaws.com:8000/

 25

How to set up a Typeform API key and integrate it into the service

1. Install and set up the project

2. Go to https://www.typeform.com/

3. Click “Sign up” to register an account

4. Log in at https://developer.typeform.com/

5. In the upper right-hand corner, click “Settings”

6. On the left, under “Profile,” click “Personal tokens” and click the option “Generate a new

token,” use full scope

7. The character string returned is the API key. Go to tokens.py

(medella/src/main/tokens.py) in the installed project and set the variable

typeform_token to the API key

8. Note that Typeform’s free tier has a limited number of API requests per month. If you are

a student, you can use the GitHub Student Developer Pack in order to get a free 1-year

trial of Typeform’s professional tier. It may take a few days for verification to process.

How to set up a Youtube API key and integrate it into the service

1. Install and set up the project

2. Go to https://console.developers.google.com/apis/credentials and sign in with your

Google account

3. Click “Create a project” on the right hand side, and then click “Create” with the default

project options

4. Then, at the top of the page click “Create Credentials,” and then click “API Key”

5. Copy this key, and then navigate to tokens.py (medella/src/main/tokens.py) in the

installed project

 26

6. Set the variable youtube_token to the copied key

 27

4. Results

The resulting system met all of the customer’s minimum and desired requirements.

Beforehand, the customer did not have an automated way to consult with businesses to educate

the health of their employees and had to perform those tasks by hand. The automated system

allows multiple users to register themselves on the service, and the Medella admin user will be

able to disperse content to many users at once. This offers a big advantage in scale, as the

customer can reach a large audience much more easily and multiple companies can onboard

themselves into the service at once. Other stakeholders, such as businesses that register for the

service, will be able to keep their employees educated about their health through access to the

content sent out by the Medella admins instead of finding the content themselves. They can also

have Medella admins send their employees quizzes on topics that the business wants to educate

its employees about. On the employee users’ end, they will be able to follow tags that customize

the kinds of content that users are more interested in. This allows them to tailor content to their

specific wellness needs. They can also use quizzes as a metric to gauge their wellness

knowledge.

 In terms of the functionality itself, the customer will be able to carry out tasks more

efficiently. For example, one of our key features is the ability to create a newsletter and to send it

to users. Our customer’s old process consisted of copying and pasting content into a template and

emailing it out manually, which can take anywhere from 30 to 60 minutes. With the new process,

the customer builds the newsletter on our platform and clicks a button to send it to all users

following a specific tag or business. At most, this will take 20 minutes to achieve.

 In terms of tracking the users’ engagement with the sent out content, this was never able

to be accurately tracked until now. Since our customer’s old process consisted of manually

 28

emailing newsletters, blogs, etc., there was no way to check who was actually reading which

emails. With the system we have built, our customer can now view breakdowns of the

engagement with different kinds of content Medella will send out, allowing the company to

figure out which kinds of content the users prefer. This information is now available at a glance

by viewing the home dashboard, and provides far more feedback than sending out emails

could. The dashboard breaks engagement down by company as well as the type of content (quiz,

blog, and video), allowing our customer to see which companies prefer which type of content. In

the future, the engagement will also be broken down by category, providing a more detailed

dashboard and allowing the content that is being sent out to be more finely tuned.

5. Conclusions

Building the Medella platform showed us the power of technology in impacting people’s

lives on a larger scale. Before Medella, our customer was attempting to decrease health insurance

costs on his own. By working with smaller companies, our customer would send wellness

information to individual employees, which was time-consuming and tedious. With our new web

application, our customer will have a standardized way of creating and distributing this

information, exponentially increasing the impact of his work. Our customer will also have a

simpler way to see consolidated information of all of the companies he is helping, which will

increase efficiency in deciding where to focus his efforts. Hopefully, with the ability to access an

increased number of people and companies, our customer will be able to help improve the health

and decrease the health insurance costs for a number of people across the country.

 29

6. Future Work

Future work on this project may include health insurance cost tracking for businesses.

Business administrators should be able to track the costs of certain healthcare areas (such as

diabetes, cardiology, etc.) through the company’s health insurance. These administrators can

choose to send content about these topics to their employees. Over time, business administrators

can see the changes in insurance costs as a measure of the impact that Medella has had on their

employees’ well-being.

Additionally, this project may be expanded by tailoring content to each individual user’s

interests in more refined ways. Currently, Medella subscribes users to a tag if they view related

content at least once. However, this is not the most accurate way to gauge a user’s interest in a

topic. Future work on Medella may include using more complex algorithms to determine a

specific user’s interests. This may encourage users to use Medella’s online platform more

frequently when they see more content that appeals to them.

 30

7. References

Desai, N., & S, A. (2019, February 20). Limeade ONE Reviews 2019. Retrieved from

g2.com/products/limeade-one/reviews.

Limeade. (n.d.). Retrieved October 11, 2019, from https://limeade.com/.

Mathews, A. W. (2019, September 25). Cost of Employer-Provided Health Coverage Passes

$20,000 a Year. Wall Street Journal. https://www.wsj.com/articles/cost-of-employer-

provided-health-coverage-passes-20-000-a-year-11569429000.

