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Abstract

Quantile regression, which is a valuable alternative to the commonly used Cox

proportional hazards model and accelerated failure time (AFT) model in survival

analysis, has been getting more attention recently due to its robustness and in-

terpretability. By allowing nonlinear relationship between survival time and risk

factors, we study a single index model for censored quantile regression, and employ

the B-spline approximation for estimation. To account for censoring, we consider

the redistribution-of-mass to obtain a weighted quantile regression estimator. In

addition, dimension reduction approach is adopted to deal with the “curse of dimen-

sionality”. Furthermore, we penalize the developed estimator for variable selection

purpose. The proposed methods are easy to implement using the existing weighted

linear quantile regression algorithm compared to available methods, and can be

generalized to multiple index models. The asymptotic properties of the developed

estimator are investigated and the estimator’s numerical performance is illustrated

in simulation studies. We also apply the proposed methods to Boston housing data

and kidney transplant study.
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Chapter 1

Introduction

1.1 Motivation

Kidney transplantation is a surgical procedure used to treat patients with end-stage

renal disease. Successful kidney transplantation is associated with prolonged sur-

vival, improved quality of life and healthcare cost savings when compared to dialysis.

There are two types of kidney donors, living donors and deceased donors. In 2014,

17107 kidney transplants took place in the US. Among them, 11570 came from

deceased donors and 5537 came from living donors (Organ Procurement and Trans-

plantation Network). However, the deficit between the number of the patients on

the waiting list for kidney transplantation and the availability of donor organs is in-

creasing in United States. By December 31, 2013, the kidney transplant waiting list

had 86965 candidates (dialysis patients only), while there were only 17600 kidney

transplants performed in 2013 (United States Renal Data System 2015 Annual Data

Report). The median waiting time for a patient’s first kidney transplant is 3.6 years

and could be longer depending on health, compatibility and availability of organs.

To combat this problem, the innovative use of the expanded criteria donor (ECD)
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kidneys was introduced (Port et al., 2002). Deceased donor kidneys are classified as

ECD if donors aged ≥ 60 years, or those aged between 50 and 59 years who meet at

least two of the criteria: serum creatinine > 1.5 mg/dL, death due to cerebrovascular

accident, or history of hypertension. In reality, some kidneys labelled as Standard

Criteria Donor (SCD) may have a reduced graft survival, while some ECD kidneys

might perform well. Therefore, instead of the simple dichotomized ECD/SCD cri-

teria, quantitative models are needed to give a more precise evaluation of the donor

kidney quality. An improvement over the binary ECD/SCD classification is the scor-

ing system developed by Nyberg et al. (2003). This system included five variables:

donor age, history of hypertension, creatinine clearance, cause of death and the

number of HLA-mismatches. Cadaver kidneys were stratified by cumulative donor

score: grade A, 0-9 points; grade B, 10-19; grade C, 20-29; and grade D, 30-39. A

higher score and grade reflected poorer organ quality. However, this scoring system

is not widely used in practice since it was not replicable in independent cohort (Lee

and Abramowicz, 2014).

As stated in Nyberg et al. (2005), a more precise index, which takes advan-

tage of the increasingly documented medical records including donor, recipient and

transplant information, is of great value. Rao et al. (2009) proposed the Kidney

Donor Risk Index (KDRI), which is a graft failure risk score that could capture

donor and transplant characteristics. It consists of a multivariable Cox proportional

hazards model, combined with stepwise selection. The model avoids categorization

and is based on the association between ten donor/recipient characteristics and the

graft survival. The KDRI is an easily applicable scoring system which provides

the clinicians with a guide to objectively assess the quality of the donor kidneys.

However, KDRI has some challenges. First, it does not allow heteroscedastic effect

of variables for higher/lower risk (shorter/longer survival time) patients. Secondly,
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the association between the graft survival and risk factors might be unknown and

non-linear. Thirdly, the essential problems for traditional stepwise selection such as

high bias, admirably summarized by Harrell (2001), remain for KDRI. Hence, new

models and methods of creating a new index, finding informative risk factors, are in

need to better match donor and recipient for improving survival time after kidney

transplantation. The method developed in this thesis could take into account of

the heteroscedastic effect of variables, the nonlinearity between survival and risk

factors, and variable selections. Moreover, this method can be used to estimate

different quantiles of the survival times and could provide a more complete picture

of transplantation for physicians.

1.2 Overview of Variable Selection

High dimensional data analysis is important and has been widely used in biomed-

ical studies. For example, tens of thousands of molecular expressions are poten-

tial predictors in microarray data; hundreds of thousands of single nucleotide poly-

morphisms (SNPs) are possibly associated with the clinical outcome of interest in

genome-wide association study (Fan and Lv, 2010). To deal with a large number of

covariates, a common biomedical approach is testing the association between each

covariate and the outcome of interest through a regression model; selecting a subset

of those covariates based on their significance, and using the selected covariates in

a multivariable regression model. This commonly used variable selection method in

biomedicine would be in great challenge when the number of covariates selected is

high for large datasets. Prediction accuracy and interpretation are two main draw-

backs for the above traditional regression analysis (Hastie et al., 2005). Another

widely used method in variable selection is stepwise regression methods. However,
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some essential problems with those methods remain and have been summarized in

Harrell (2001). First, the parameter estimation tends to have higher bias. Secondly,

p-values tend to be too low, due to multiple comparisons, and are difficult to correct.

Penalized regression methods, such as LASSO (Least Absolute Shrinkage and

Selection Operator) in Tibshirani (1996) and SCAD (Smoothly Clipped Absolute

Deviation) in Fan and Li (2001) have been developed to overcome the limitation of

traditional stepwise variable selection models when the number of covariates is large

in a linear regression model,

Y = Xβ + ε, (1.1)

where Y is an n× 1 vector and X is an n× p matrix. Linear regression is a widely

used method to study association between continuous outcome and covariates.

Penalized regression methods are able to accomplish variable selection and es-

timation simultaneously for model (1.1). The regression parameters are assumed

to be sparse with some components being zero, and the nonzero components indi-

cate which variables are informative. Relative to the maximum likelihood estimates,

penalized methods shrink the estimates of regression coefficients towards zero.

A general form of the penalized least squares is

1

2n
||Y −Xβ||2 +

p∑
j=1

pj(|βj|), (1.2)

where pj(| · |) is a penalty function that can take different forms. Two examples

are the L2 penalty pj(|θ|) = λ|θ|2 resulting in ridge regression, and the LASSO has

the L1 penalty pj(|θ|) = λ|θ|. A linear combination of the L1 and L2 penalties

is the Elastic Net, which enjoys a similar sparsity representation as LASSO, while

encouraging a grouping effect (Zou and Hastie, 2005). The continuous differentiable
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penalty function defined by the derivative

p′λ(θ) = λ{I(θ ≤ λ) + (aλ−θ)+
(a−1)λ

I(θ > λ)},

for some a > 2 and θ > 0, is the SCAD penalty, where pλ(0) = 0 and a ≈ 3.7 as

suggested by Bayesian risk analysis. The Minimax Concave Penalty (MCP, Zhang

2010) is defined as

p′λ(θ) = (aλ−θ)+
a

,

which translates the flat part of the derivative of SCAD to the origin. Zou (2006)

proposed a weighting scheme wj = |β̃j|−γ in the penalty function of LASSO, leading

to the adaptive LASSO. The above variable selection methods for linear models can

be extended to the single index models for quantile regression, which are described

in the next section.

1.3 Overview of Single Index Model in Quantile

Regression

Quantile regression has become a unified statistical methodology for estimating mod-

els of conditional quantile functions. By complementing the exclusive focus of least

squares regression on the conditional mean, quantile regression offers an alternative

strategy to examine how covariates can influence the location, scale and shape of the

entire response distribution (Koenker, 2005). Quantile regression is also a valuable

alternative to the commonly used Cox proportional hazards model and accelerated

failure time (AFT) model used in survival analysis (Koenker and Geling, 2001). For

example, in a cancer study, it is known that treatment will cause different impacts

among patients in lower or upper quantiles of the survival distribution. Physicians
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are interested in identifying treatment for more severe cases, i.e, lower quantiles,

while Cox and AFT models estimate covariate effects on the location only. In con-

trast, quantile regression directly links the quantiles of patients’ survival time to

their demographic and genomic profiles, allowing the covariates to exhibit different

impacts at different tails of the survival distribution.

The seminal work of Koenker and Bassett (1978) proposed the “check” loss

function to estimate the linear quantile regression model. Since then, a variety of

nonparametric methods, such as kernel based methods and spline smoothing meth-

ods, have been applied to accommodate nonlinear relationships; see for example, Yu

and Jones (1998), He and Shi (1994) and Koenker et al. (1994). However, the non-

parametric quantile regression with multivariable covariates is a difficult estimation

problem due to the “curse of dimensionality”. Another problem of nonparametric

quantile regression is that the estimated function can be difficult to visualize and in-

terpret with multivariable covariates. To reduce the dimensionality while retaining

much flexibility of a nonparametric model, a semiparametric single index model is

considered in this thesis. Single index models assume that the response of interest

depends on a linear combination of covariates through an unknown link function.

Many widely used parametric models such as linear model can be considered as spe-

cial cases of single index models. Single index models which are well motivated in

both econometrics and statistics, are applied to many objective functions, including

conditional mean and quantiles. For estimating the conditional mean in a single

index model, many methods exist, including the backfitting algorithm (Carroll et

al., 1997), the minimum average variance estimation (MAVE, Xia et al., 2002), the

penalized spline estimation (Yu and Ruppert, 2002), and the profile least squares

estimation (Liang et al., 2010). Moreover, Wu et al. (2010) proposed a modified

version of MAVE to estimate the conditional quantile in a single index model, and
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Kong and Xia (2012) modified the algorithm by adding a penalty term. Later, Alke-

nani and Yu (2013) and Lv et al. (2014) proposed the penalized quantile regression

in a single index model. Instead of the traditional kernel based methods, Zou and

Zhu (2014) proposed M-estimators for single index model using the spline based ap-

proach. Recently, Ma and He (2016) proposed the profile estimation with B-spline

for both quantile estimation and inference.

1.4 Introduction to Censored Quantile Regression

Censoring happens when patients withdraw from the study, or patients haven’t

experienced the event when the study ends. That is to say, instead of observing

the survival time Ti, we only observe the minimum of Ti and the censoring time

Ci, i.e., Yi = min(Ti, Ci). Censored quantile regression was first studied in Powell

(1984) and Powell (1986) for fixed censoring, where the censoring variables Ci are

known to all observations, even for those uncensored. However, censoring times are

not always known in most survival analysis. In this thesis, we will focus on random

censoring.

Several articles deal with quantile regression for randomly censored survival out-

comes. Ying et al. (1995) proposed a semiparametric estimation procedure for a

censored median regression model, assuming Ti and Ci are unconditionally indepen-

dent. Assuming that Ci is independent of both xi and Ti, Honore et al. (2002)

extended Powell’s approach to random censoring. Portnoy (2003) developed a novel

“recursive reweighting” scheme that generalizes the Kaplan-Meier estimator, with a

more relaxed assumption that Ti and Ci are independent given xi. Peng and Huang

(2008) proposed a martingale-based estimating procedure, which showed similar

performance to Portnoy (2003). Both approaches in Portnoy (2003) and Peng and



8

Huang (2008) rely on strong global assumption, that the conditional functionals at

lower quantiles are all linear when estimating the model at a given quantile level.

Wang and Wang (2009) adopted a similar redistribution of mass idea for linear quan-

tile regression, but estimated the censoring probability nonparametrically using the

local Kaplan-Meier method.

To the best of our knowledge, the literature on single index model for censored

quantile regression is very limited. Two unpublished manuscripts, Bücher et al.

(2014) and Christou and Akritas (2016), use similar inverse-probability-weighting

scheme to handle censored observations, but estimate the model using local linear

smoothing and nonlinear optimization, respectively.

In this thesis, we propose the estimation of single index model for the conditional

quantile function when the data is right censored. Comparing to current quantile

regression for censored outcomes, our approach relaxes the strong linear assumption

to the non-linear assumption with an unknown link function. As in Wang et al.

(2013), we also relax the stringent assumption that Ti and Ci are unconditionally

independent in Bücher et al. (2014). Our method adopts the redistribution of mass

idea of Efron (1967) to account for the censoring in quantile regression. Besides, the

B-spline approach is taken to estimate the link function nonparametrically, and a

weighted linear quantile regression is used to estimate the parametric index. What’s

more, in the presence of multiple covariates, penalized methods such as LASSO

(Tibshirani, 1996) and SCAD (Fan and Li, 2001) can be imposed to the developed

estimator to shrink some coefficients of the single index components to zeros for

selecting informative variables. Simulation studies are conducted to examine the

performance of proposed method and to compare it with existing methods. The

numerical outcomes show improved performance of our proposed approach across

different quantile levels and censoring percentages when the number of covariates is
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relatively large.

Compared to existing methods, our approach enjoys several distinctive advan-

tages. First, our method relaxes the stringent assumption that survival time and

censoring time are unconditionally independent in Bücher et al. (2014). Second,

our algorithm with B-spline approximation is computationally simple and easy to

implement, while Bücher et al. (2014) and Christou and Akritas (2016) estimate

the model with local linear approximation and nonlinear optimization. Finally, our

approach can achieve sparsity while both existing manuscripts only do estimation

without variable selection.

In Section 2, the proposed model is presented and unpenalized and penalized

estimators are developed, along with algorithm and computation. In Section 3, the

asymptotic properties of the proposed estimators are provided. Section 4 investi-

gates the finite sample performance of proposed methods through simulation studies,

and compares the results with existing methods. Boston housing data and kidney

transplant study are analyzed in Section 5 using the developed methods. The thesis

concludes with some discussion of future directions in Section 6. All technical proofs

are deferred to Chapter 7.
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Chapter 2

Model Setup and Estimation

2.1 Model Setup

Denote Ti as an uncensored survival outcome, xi as an observable p-dimensional

covariates, and Ci as a censoring variable for the ith subject with i = 1, ..., n.

In the proposed single index model, the τth conditional quantile of Ti given xi,

Qτ (Ti|xi) = inf{t : P (Ti ≤ t|xi) ≥ τ}, is expressed as

Qτ (Ti|xi) = gτ (x
T
i βτ ), (2.1)

where gτ (·) is an unknown smooth link function, βτ is a p-dimensional unknown

quantile coefficient vector on the unit sphere with ||βτ || = 1, and the first nonzero

element of βτ is assumed to be positive for identifiability (Lin and Kulasekera, 2007).

Without loss of generality, assuming β1 6= 0, the parameter space is

Θ = {βτ = (βτ1, ..., βτp) : ||βτ || = 1, βτ1 > 0}.
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In practice, we only observe (xi, Yi, ηi), where Yi = min(Ti, Ci) is the observed

censored response and ηi = I(Ti ≤ Ci) is the censoring indicator. When ηi = 1 for

all i, Yi = Ti are observed, and βτ is estimated by solving the following optimization

problem.

β̂ = arg min
g∈H,β∈Θ

E
[
ρτ
(
Y − g(XTβ)

)]
where ρτ (µ) = µ{τ − I(µ < 0)} is the “check” loss function (We omit τ in βτ and

gτ (·) for notational convenience).

Suppose {(xi, Yi), i = 1, 2..., n} is the sample, the minimization is as follows,

β̂ = arg min
g∈H,β∈Θ

n∑
i=1

ρτ
(
Yi − g(xTi β)

)
.

2.2 Single Index Model for Censored Quantile Re-

gression

2.2.1 Estimation of Re-distribution of Mass

In the censored quantile regression setting, the idea is to redistribute the probability

mass P (Ti > Ci|Ci, xi) of the censored cases to the right. Let F0(t|x) = P (T <

t|x) denote the cumulative distribution function (cdf) of T given x. Define π0i =

F0(Ci|xi) as the conditional probability for the ith subject not being censored. The

fundamental insight of redistribution of mass is that the derivative of ρτ (Ti−g(xTi β))

depends only on the signs of the residuals Ti− g(xTi β), and the mass at Ci for some

censored observations may be redistributed to any point above the data, for example,

(xi, Y
+∞) without altering the quantile fit. The coefficient β can be estimated by
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minimizing the following objective function,

L(β, g, w) =
n∑
i=1

{
wiρτ

(
Yi − g(xTi β)

)
+ (1− wi)ρτ

(
Y +∞ − g(xTi β)

)}
, (2.2)

where Y +∞ is sufficiently large to exceed g(xTi β) for all i, and

wi =


1 ηi = 1

0 ηi = 0 and F0(Ci|xi) > τ

τ−F0(Ci|xi)
1−F0(Ci|xi) ηi = 0 and F0(Ci|xi) ≤ τ

(2.3)

In (2.2), the weights wi are used to remove the estimation bias due to censoring.

Note that when C = +∞ (non-censored case), F0(C|xi) = 1, so wi = 1 for all

i. Similar assignment of the above weighting scheme can be found in Wang and

Wang (2009), Portnoy and Lin (2010) and Wang et al. (2013). Estimation of

quantile index at any τ depends on Ti only through the signs of the residuals, i.e.

I{[Ti − g(xTi β)] < 0}. Accordingly, the weights wi in (2.3) are assigned in the

following three scenarios.

• When ηi = 1, Yi = Ti < Ci and I{[Ti − g(xTi β)] < 0} is observed. Thus, the

observation (xi, Yi) is assigned weight 1, and the paired “pseudo” observation

(xi, Y
+∞) is not used.

• When ηi = 0, but Yi = Ci > g(xTi β), we immediately know Ti − g(xTi β) > 0,

and letting Ti = Y +∞ gives the same estimate. Thus, weight 0 is assigned to

(xi, Yi), and 1 to (xi, Y
+∞).

• When ηi = 0, but Yi = Ci < g(xTi β), Ti − g(xTi β) can be positive or negative.
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However,

E
{
I{[Ti − g(xTi β)] < 0}|Ti > Ci, Ci, xi

}
=

τ − F0(Ci|xi)
1− F0(Ci|xi)

.

Thus, weight τ−F0(Ci|xi)
1−F0(Ci|xi) is assigned to (xi, Yi), and 1− τ−F0(Ci|xi)

1−F0(Ci|xi) to (xi, Y
+∞).

In practice, the masses for redistribution, 1− π0i = 1− F0(Ci|xi) are unknown. As

in Wang and Wang (2009), we propose to use local Kaplan-Meier estimator when

the dimension of xi is low,

F̂ (t|x) = 1−
n∏
j=1

1− Bnj(x)
n∑
k=1

I(Yk ≥ Yj)Bnk(x)


ηj(t)

, (2.4)

where ηj(t) = I(Yj ≤ t, ηj = 1), Bnk(x) =
Kq(

x−xk
h

)
n∑
i=1

Kq(
x−xi
h

)
. In this thesis, we adopt the

commonly used product kernel function Kq(u1, ..., uq) =
∏q

i=1K(ui), where K(·) is

a univariate kernel function with bandwidth h.

2.2.2 Dimension Reduction Approach

The above estimator in (2.4) is only feasible when the covariates dimension p is

small, due to the “curse of dimensionality”. For large p, it can be estimated after

dimension reduction as in Wang et al. (2013). Dimension reduction estimates a set

of directions γi such that

Ti⊥⊥xi|(xTi γ1, ..., x
T
i γq). (2.5)

Censored sliced inverse regression (cSIR) in Li et al. (1999) and hazard minimum

average variance estimation (hMAVE) in Xia et al. (2010) can estimate those di-

rections with q � p in general. With (2.5), high-dimensional xi is replaced by its
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low-dimensional projection zi = (zi1, ..., ziq)
T with zij = xTi γj without losing regres-

sion information for Ti. The estimator (2.4) can then be applied to zi to estimate

wi, given that F0(t|xi) = F0(t|zi) implied by (2.5).

With the estimated weight, the objective function changes accordingly to

L(β, g, ŵ) =
n∑
i=1

{
ŵiρτ

(
Yi − g(xTi β)

)
+ (1− ŵi)ρτ

(
Y +∞ − g(xTi β)

)}
, (2.6)

where ŵi are the estimated redistribution of mass weights by replacing F0 with F̂

in w.

2.2.3 Estimation of the Unknown Link Function

The unknown link function g(·) is estimated by local linear approximation in Wu

et al. (2010), and Kong and Xia (2012). As in Zou and Zhu (2014), and Ma and

He (2016), we adopt the B-splines approximation g(xTβ) ≈ B(xTβ)θ due to faster

computation. Here, θ is the B-spline coefficients. Given the spline order r and a set

of quasi-uniform knots a = t0 < t1 < ... < ts < ts+1 = b, satisfying

max
0≤j≤s

|tj+1 − tj|/ min
0≤j≤s

|tj+1 − tj| ≤M

for some constant 0 < M < ∞, where s is the number of interior knots, the nor-

malized B-spline basis functions are denoted as B(u) = {Bj(u)}Jnj=1 with Jn = s+ r.

From the B-spline approximation, the objective function (2.4) can be written as

L(β, θ, ŵ) =
n∑
i=1

{
ŵiρτ

(
Yi −B(xTi β)θ)

)
+ (1− ŵi)ρτ

(
Y +∞ −B(xTi β)θ

)}
. (2.7)
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The estimator of g(u) at any point u is B(u)θ̂, where θ̂ is obtained by minimizing

(2.7).

2.3 Single Index Model with Variable Selection

When we apply the single index model in real data analysis, many irrelevant vari-

ables may be included in the model, making interpretation and prediction less favor-

able. As needed, variable selection method is adopted to select informative variables.

Here, we propose the penalized estimator β̂ by minimizing the following adaptive

LASSO (Zou, 2006) type penalized objective function

LAL(β, θ, ŵ) =L(β, θ, ŵ) + λ

p∑
j=1

|βj|
|β̃j|δ

=
n∑
i=1

{
ŵiρτ

(
Yi −B(xTi β)θ)

)
+ (1− ŵi)ρτ

(
Y +∞ −B(xTi β)θ

)}

+ λ

p∑
j=1

|βj|
|β̃j|δ

,

(2.8)

where β̃j is the jth element of the initial consistent estimator. Other forms of penalty

functions such as LASSO (Tibshirani, 1996) and SCAD (Fan and Li, 2001) can also

be applied here. In our implementation, we set β̃ as the unpenalized estimator and

δ = 2.
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2.4 Computation and Tuning

2.4.1 The Algorithm

Given the original observed data {(xi, ηi, Yi), i = 1, ..., n}, we define n pseudo paired

observations {(x1, η1, Y
+∞), ..., (xn, ηn, Y

+∞)}. After the calculation of weights ŵi,

we assign local weights ŵi to original data, while assign 1−ŵi to the pseudo data. In

the implementation, we set Y +∞ = 1000 max{|Y1|, ..., |Yn|}. The penalized objective

function can be optimized by the following iteration between β̃(l) and θ̂(l).

Step 1, Given β̃(l), obtain θ̂(l) by

min
θ

n∑
i=1

{
ŵiρτ

(
Yi −B(xTi β̃

(l))θ
)

+ (1− ŵi)ρτ
(
Y +∞ −B(xTi β̃

(l))θ
)}

,

Step 2, Given θ̂(l), g(xTi β) can be approximated by g(xTi β) ≈ g(xTi β̃
(l))+g′(xTi β̃

(l))xTi (β−

β̃(l)) = B(xTi β̃
(l))θ̂(l) +B′(xTi β̃

(l))θ̂(l)xTi (β − β̃(l)). Obtain β̂(l+1) by

min
β

n∑
i=1

{
ŵiρτ

(
Yi −B(xTi β̃

(l))θ̂(l) −B′(xTi β̃(l))θ̂(l)xTi (β − β̃(l))
)

+

(1− ŵi)ρτ
(
Y +∞ −B(xTi β̃

(l))θ̂(l) −B′(xTi β̃(l))θ̂(l)xTi (β − β̃(l))
)}

,

(2.9)

where B′(·) contains the derivatives of the B-spline basis functions in B(·).

Repeat Step 1 and Step 2 until convergence, output β̃, θ̂.
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Step 3, obtain the penalized estimator β̂ by solving

min
β

n∑
i=1

{
ŵiρτ

(
Yi −B(xTi β̃)θ̂ −B′(xTi β̃)θ̂xTi (β − β̃)

)
+

(1− ŵi)ρτ
(
Y +∞ −B(xTi β̃)θ̂ −B′(xTi β̃)θ̂xTi (β − β̃)

)}
+ λ

p∑
j=1

|βj|
|β̃j|δ

,

(2.10)

Finally, we estimate g(u) with B(u)θ̂.

Each step in the proposed algorithm can be solved using existing functions for

linear quantile regression in R package; this is advantageous to Bücher et al. (2014)

and Christou and Akritas (2016), which uses time consuming local linear approx-

imation or complicated nonlinear quantile regression algorithms. Compared with

local linear approximation in Kong and Xia (2012), Wu et al. (2010) and Bücher

et al. (2014), the proposed algorithm using B-spline is more than 20 times faster

in computing speed in the numerical studies. Another advantage of the proposed

method is to use existing penalized linear quantile estimator to select informative

variables in Step 3 for single index quantile regression model, while formulation

of the problem in Bücher et al. (2014) and Christou and Akritas (2016) does not

facilitate variable selection for quantiles.

2.4.2 Initial Value and Tuning Parameters

There are two main practical issues in the computation; one is the choice of initial

value, another is the selection of tuning parameters. Wu et al. (2010) used average

derivative estimator (ADE) of Chaudhuri et al. (1997) for uncensored data as initial

value. In our numerical experience, the estimation is not sensitive to the choice of
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initial values. Unless specified for comparison, we used (1, ..., 1) ∈ Rp as initial

value.

There are two types of tuning parameters: one is bandwidth h and number

of internal knots s, another is λ in the adaptive LASSO penalty. The B-spline

order r is usually fixed at 3 or 4 for quadratic or cubic splines. Our numerical

experience suggests that the performance of the proposed procedure is not sensitive

to the choice of h and s in some reasonable range. Similarly as in Wang and Wang

(2009) and Wang et al. (2013), we propose the K-fold cross validation criteria to

select the optimal pair of (h, s). In the cross validation, the data is divided into K

parts randomly with roughly equal sample size. For the kth part, k = 1, ..., K, we

estimate β̃, θ̂ based on the rest of K-1 parts of the data, and evaluate the quantile loss

CVk = ρτ (Yv−B(xTv β̃)θ̂) on uncensored data in the k-th part. Here, (xv, Yv) are the

uncensored data in the k-th part. Denoting CV (h, s) as the mean of CV1, ..., CVK ,

we select the optimal pair of (h, s) to minimize CV (h, s).

After selecting (h, s) by cross validation in the unpenalized objective function, we

use the commonly used Bayesian information criterion (BIC) type method in single

index model to choose the optimal λ (Wang et al., 2007; Lv et al., 2014; Ma and

He, 2016). The BIC-type criterion is defined as

BIC(λ) = log

(
1∑
ηi

∑
i:ηi=1

ρτ

(
yi −B(xTi β̂)θ̂

))
+
log(

∑
ηi)∑

ηi
df,

where β̂ is the penalized estimation using λ, and df is the number of non-zero

elements in β̂. The selected λ minimizes the above BIC-type criterion. In our

implementation, we use the 5-fold cross validation, B-spline order 3, with fourth

order kernel function (Müller, 1984) K(x) = 105
64

(1 − 5x2 + 7x4 − 3x6)I(|x| ≤ 1) in

simulation study and data analysis.
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Chapter 3

Asymptotics

3.1 Regularity Conditions

Before stating the main theoretical results, we define the following functions,

(i) 1− F0(t|x) = P (Ti > t|x), the survival function of Ti conditional on x.

(ii)1−M0(t|x) = P (Ci > t|x), the survival function of Ci conditional on x.

DenoteHϑ as the collection of functions on [a, b] such that the rth order derivative

satisfies the Holder condition of order ζ with ϑ = r+ ζ. In other words, there exists

a constant C0 such that

|φ(r)(u1)− φ(r)(u2)| ≤ C0|u1 − u2|ζ ,

for any φ ∈ Hϑ, and any a ≤ u1, u2 ≤ b. Let g̃(u, β) be the τ -th quantile function

of T given xTβ = u. Then we have g(xTβ0) = g̃(xTβ0, β0) with the true coefficient

β0. Also, we have Θ = {β = (β1, ..., βp)
T : ||β||2 = 1, β1 > 0}.

To establish the consistent and asymptotic results for the developed estimators,

we assume the following assumptions.
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Assumption 3.1.1. The density function of xTβ is positive and uniformly contin-

uous for β in a neighborhood of β0.

Assumption 3.1.2. Let F0(t|x) and M0(t|x) denote the cumulative distribution

functions of Ti and Ci conditional on x, respectively. The first derivatives of F0(t|x)

and M0(t|x) with respect to t, denoted as f0(t|x) and m0(t|x), are uniformly bounded

with respect to t and x. The F0(t|x) and M0(t|x) have bounded (uniformly in

t) second-order partial derivatives with respect to x. In addition, supt |F0(t|x′) −

F0(t|x)| = O(‖x′ − x‖), where ‖·‖ denotes the Euclidean norm.

Assumption 3.1.3. The random vector x is bounded in probability, has a bounded

density function, and E(xxT ) is a positive definite p× p matrix.

Assumption 3.1.4. There exists an effective dimension reduction (EDR) direction

γj ∈ Rqsuch that for any j = 1, ..., q, (i) γ̂j − γj = Op(n
−1/2); (ii) n−1/2(γ̂k − γk) =

n−1
∑n

i=1 dki, where dki are independent p-dimensional vectors with means zero and

finite variances.

Assumption 3.1.5. The univariate kernel function K(·) has a compact support. It

is a v-th order kernel function satisfying
∫
K(u)du = 1,

∫
K2(u)du ≤ ∞,

∫
ujK(u)du =

0 for j ≤ v and
∫
|u|vK(u)du ≤ ∞, and it is Lipschitz continuous of order v, where

v ≥ 2 is an integer.

Assumption 3.1.6. The conditional density function of Y (either T or C) given

X = x, fY (y|x) satisfies the Lipschitz condition of order 1, and fY (g̃(xTβ, β)|x) > 0

for β ∈ Θ.

Assumption 3.1.7. g̃(u, β) ∈ Hϑ for some ϑ > 3/2 and any β ∈ Θ.

The above assumptions are commonly used in literature and can be satisfied in

most applications. Assumption 3.1.1 was used in Wu et al. (2010) and Assumptions
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3.1.2 to 3.1.5 were assumed in Wang et al. (2013). Assumption 3.1.2 is to obtain

the asymptotic properties of the local Kaplan-Meier estimator. The boundedness

condition on x in Assumption 3.1.3 is for technical convenience. Assumption 3.1.1

and Assumption 3.1.3 also show the boundedness of density function on xTβ. As-

sumption 3.1.4 indicates the root-n consistency and asymptotic properties of the

estimated EDR direction. Assumption 3.1.5 shows that kernel function is vth or-

der, which depends on the dimensionality of q. Similar as in Ma and He (2016), the

Assumption 3.1.6 and Assumption 3.1.7 are used to help provide the asymptotic

normality.

3.2 Asymptotic Properties

Assume C and T are independent conditional on x, and set h = O(n−α) for some

α. For any positive numbers an and bn, an � bn means an
bn

= o(1).

Theorem 3.2.1. (Consistency) Under Assumptions 3.1.1-3.1.7, if Jn →∞, Jn � n

and 0 < α < min (1
q
, 1
v
), we have

||β̃ − β0||2 = op(1)

Recall Jn = s+ r, which is the dimension of the spline space for approximating

g(·). Theorem 3.2.1 states the consistency of the unpenalized estimator β̃. To

prepare for the asymptotic normality, we define

Γ =E

{[
E
[(
τ − F0(C|z)

)
I(F0(C|z) ≤ τ)m0(g(XTβ0))

]
+ E

[
(1−M0(T |x))f0

(
g(XTβ0)

)]]
g′2(XTβ0)X̃X̃T

}
,
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V =E

{(
E
[(τ − F0(C|z))2

1− F0(C|z)
I(F0(C|z) ≤ τ)ρ′2τ

(
C − g(xTβ0)

) ]
+ E

[
(1−M0(T |x)) ρ′2τ

(
T − g0(xTβ0)

) ])
g′2(XTβ0)X̃X̃T

}
,

X̃ = X − E∗(X|XTβ0),

E∗
(
X
∣∣XTβ0

)
=

E

{[
1−M0

(
g(XTβ0)

)]
f0

(
g(XTβ0)

)
X
∣∣∣XTβ0

}
E

{[
1−M0

(
g(XTβ0)

)]
f0

(
g(XTβ0)

)∣∣∣XTβ0

} .

Theorem 3.2.2. (Asymptotic normality) Under the Assumptions 3.1.1-3.1.7, if

max {(nlog(n))
1

3ϑ−1/2 , n
1

2ϑ+2} � Jn �
n1/4

log(n)5/4
and

1

2v
< α <

1

3q
,

and v > 3q
2

, we have

n1/2{β̃ − β0} D−→ N(0,Γ+V Γ+),

where Γ+ is the Moore-Penrose inverse of Γ.

The root-n consistency and asymptotic normality of the unpenalized estimator

are described in Theorem 3.2.2. When the data is noncensored, i.e., C = +∞, the

proposed estimator has the same asymptotic variance as in Wu et al. (2010) and Ma

and He (2016). Note that by definition of Γ, we have Γβ0 = 0, and Γ is a singular

matrix. Hence we need to use the Moore-Penrose inverse of Γ in Theorem 3.2.2.

Next we establish the asymptotic property of the penalized estimator β̂. Denote

A = {j : β0
j 6= 0} and Â = {j : β̂j 6= 0} as the true and estimated relevant sets of

variables.

Theorem 3.2.3. Under Assumptions 3.1.1-3.1.7, and λ/
√
n→ 0, λn

δ
2
−1 →∞, we
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have

(i).P
(
Â = A

)
→ 1, as n→∞.

(ii).
√
n(β̂1

A − β1
A)

D→ N(0,Γ+
1 V1Γ+

1 ),

where β̂1
A denotes the subvector consisting of all the non-zero elements in A, and

β1
A is the true non-zero subvector of β0. Γ1 and V1 are defined as in Γ and V in

Theorem 3.2.2 with β0 replaced by β1
A.

The property of penalized estimator β̂ is shown in Theorem 3.2.3 with assump-

tions on the tuning parameter. Numerically, we can re-estimate the non-zero coef-

ficients in β̂ by minimizing the unpenalized objective function, due to the selection

consistency in Theorem 3.2.1. Similar strategies are adopted in Wang et al. (2013)

and Ma and He (2016).
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Chapter 4

Simulation

Data in this section is generated from models commonly used in the literature. On

the whole, our method performs relatively well compared with existing methods. We

performed 100 repetitions for all the models with different sample sizes, censoring

percentages and quantiles levels. The performance of estimation is examined by

mean squared error (MSE).

In Model 1, our proposed unpenalized method is compared with the method in

Bücher et al. (2014) and Christou and Akritas (2016). As a special case of proposed

method, the uncensored method also achieves small mean squared error (MSE) in

Model 2, in comparison with methods in Wu et al. (2010) and Ma and He (2016). In

Model 3, quantile coefficient varies with quantile levels. Our penalized approach can

select variables with heteroscedasticity effectively in this model, even with relatively

high percent of censoring.
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4.1 Model 1: Location Model

The set up for this simulation study follows Model 1 of Bücher et al. (2014) and

Christou and Akritas (2016),

Ti = exp(xTi β
0) + εi, xi = (xi,1, xi,2), (4.1)

where xij is i.i.d from Unif(0, 1), for i = 1, ..., n and j = 1, 2, ε is i.i.d standard

exponential, β0 = (1, 2), and Yi = min(Ti, Ci), with Ci from exponential distribution

with parameter ς, independent of xi and εi. Here, ς = 0.047 yields about 25%

censoring, and ς = 0.120 yields about 50% censoring. Note that the τth conditional

of Ti given xi is exp(xTi β
0)− log(1− τ).

Table 4.1 compares the mean and standard error of the estimated β0 by the pro-

posed method with ones in Bücher et al. (2014) and Christou and Akritas (2016),

for n=400 in 100 generated data sets. BGK denotes the estimator of Bücher et

al. (2014), CA denotes the estimator from Christou and Akritas (2016), while CN

denotes our proposed unpenalized method. Also, we rescale the first component

estimate as 1, and only report the result for the second component estimation β2

(whose true value is 2). Moreover, the BGK results are based on 10% trimming,

as used in their paper due to convergence issue; while both CA and CN report

untrimmed results. The comparison shows that the proposed method CN outper-

forms BGK in both bias and standard error (even with untrimmed results), and has

comparable bias but smaller standard error compared with CA.

Figure 4.1 illustrates the performance of the estimator for the link function

g̃(u, β̃) over the estimated linear combination u, where u = xT β̃. From the compar-

ison of “True” and “Estimated”, we can see that the estimated link function with
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Table 4.1: The average and standard error (in parenthesis) of estimating β2 = 2 for
different quantiles and censoring percentage based on n=400, 100 runs in Model 1.

Avg. Cens Methods τ = 0.1 τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.9

25% BGK 2.13 (0.58) 2.54 (0.23) 2.50 (0.22) 2.63 (0.26) 4.18 (2.03)

CA 2.03 (0.24) 2.02 (0.21) 1.99 (0.21) 2.03 (0.45) 2.12 (0.74)

CN 2.00 (0.04) 1.99 (0.06) 2.00 (0.09) 2.01 (0.16) 1.98 (0.28)

50% BGK 2.81 (0.30) 2.58 (0.16) 2.55 (0.17) 2.71 (0.41) 217.20 (894.51)

CA 2.01 (0.16) 2.01 (0.16) 1.97 (0.27) 2.02 (0.48) 2.19 (0.79)

CN 1.99 (0.04) 1.99 (0.07) 1.98 (0.11) 1.98 (0.22) 1.96 (0.90)

estimated β̃ is very close to the true link function g(xTβ0) = exp(xTβ0) with true

coefficient β0.

Overall, our unpenalized methods (CN) performed better than BGK and CA

with less bias and variation at different quantile levels and censoring percentages.

Besides, the proposed method is very robust; even for relatively high percent of

censoring, high quantile levels can also be estimated with reasonable variation.

4.2 Model 2: Sine-bump Model

A sine-bump model as specified below, is considered. The same model is used for

mean regression (Carroll et al, 1997), and for quantile regression without censoring

(Wu et al., 2010; Ma and He, 2016),

Ti = sin{π(xTi β
0)− A

C − A
}+ 0.1εi, xi = (xi,1, ..., xi,3), (4.2)



27

Figure 4.1: Comparison of link function versus linear combination for 50% censor-
ing and τ = 0.25 result in Model 1. Here, “True” means the true link function
versus true linear combination (xTβ0); while “Estimated” indicates the estimated
link function over estimated linear combination (xT β̃).
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where A =
√

3/2−1.645/
√

12, C =
√

3/2+1.645/
√

12, xij are i.i.d from Unif(0, 1),

for i = 1, ..., n and j = 1, 2, 3.

First, we compare our methods (NC means data without censoring, CN means

data with 15% censored observations) with the method in Wu et al. (2010), named

WYY. As in their model, we specify the true coefficient β0 = (1, 1, 1)/
√

3, and

εi ∼ N(0, 1). We observe Yi = min(Ti, Ci), where Ci ∼ Unif(−2, 15) yielding about

15% censoring. From Table 4.2, we can see our method performs better than the

WYY for data without censoring (NC), and results with 15% censoring (CN) is

comparable to the WYY.

Table 4.2: The bias, standard error, and mean squared error (MSE) of estimation
based on n=200, τ = 0.5, 100 runs, with the initial value (1, 2, 0)/

√
5, true value

(1, 1, 1)/
√

3 and ε ∼ N(0, 1) in Model 2. Here, WYY denotes the kernel method
estimation from Wu et al. (2010), NC means data without censoring, CN means
15% data with censoring.

Methods Estimate β1 β2 β3

WYY Bias -0.00210 0.00509 -0.00366
se 0.01515 0.01583 0.01577

MSE 0.00023 0.00028 0.00026
NC Bias 0.00051 0.00022 -0.00116

se 0.01157 0.01395 0.01306
MSE 0.00013 0.00019 0.00017

CN Bias -0.00064 0.00150 -0.00138
se 0.01374 0.01422 0.01446

MSE 0.00019 0.00020 0.00021

We also compared our method with the profile and backfitting non-censored

methods in Ma and He (2016). In their model, the true coefficient β0 = (3, 2, 1)/
√

14

and two distributions for ε are considered: t distribution with 3 degree of freedom,

and Laplace distribution. Here, Ci ∼ Unif(−2, 7.5) yielding about 15% censoring,

PR denotes the profile estimation, BA means backfitting estimator, NC means data

without censoring, CN means 15% data with censoring. From Table 4.3, we can see
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NC works similar as PR and is better than BA in MSE, and censored result CN is

also comparable to NC, PR and BA. For Laplace distribution, BA has one outlier of

estimation (0.2245, 0.2491, 0.9167), which is circled in yellow from Figure 4.2. BA

tends to have outliers due to convergence issue, which is also discussed in Ma and

He (2016).

Table 4.3: The bias, standard error, and mean squared error (MSE) estimation
based on n=200, τ = 0.5, 100 simulations, with the initial value (1, 3, 6)/

√
46 in

Model 2. Here, PR denotes the profile estimation, BA means backfitting estimator,
NC denotes data without censoring, CN means 15% data with censoring.

Distribution Methods Estimate β1 β2 β3

Laplace PR Bias 0.0012 -0.0014 -0.0018
se 0.0093 0.0144 0.0132

MSE 0.0001 0.0002 0.0002
BA Bias -0.0026 -0.0047 0.0023

se 0.0502 0.0320 0.0667
MSE 0.0025 0.0010 0.0045

NC Bias -0.0016 0.0020 -0.0001
se 0.0099 0.0142 0.0141

MSE 0.0001 0.0002 0.0002
CN Bias -0.0015 0.0020 -0.0006

se 0.0108 0.0157 0.0160
MSE 0.0001 0.0002 0.0003

T(3) PR Bias 0.0030 -0.0042 -0.0019
se 0.0121 0.0177 0.0147

MSE 0.0002 0.0003 0.0002
BA Bias 0.0040 -0.0046 -0.0041

se 0.0125 0.0178 0.0141
MSE 0.0002 0.0003 0.0002

NC Bias 0.0011 -0.0015 -0.0015
se 0.0121 0.0167 0.0140

MSE 0.0001 0.0003 0.0002
CN Bias 0.0006 -0.0013 -0.0008

se 0.0137 0.0199 0.0177
MSE 0.0002 0.0004 0.0003

The boxplot in Figure 4.2 shows that BA tends to have some outlying points for
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Laplace distribution, while PR, CN and NC work quite well. The simulation results

indicate for the special case without censoring, the proposed NC can work similar

as PR, and is better than BA. What’s more, the 15% censored result CN also work

satisfactorily well in Model 2.

Figure 4.2: Boxplots of coefficient estimates for n=200, τ = 0.5, initial value
(1, 3, 6)/

√
46, 100 runs, different error distributions in Model 2. Here, PR denotes

the profile estimation, BA means backfitting estimator, NC denotes data without
censoring, CN means 15% data with censoring. Note, the true standardized coef-
ficients are β0 = (0.8018, 0.5345, 0.2673). The yellow circle is the outlier (0.2245,
0.2491, 0.9167) from BA.
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4.3 Model 3: Varying Coefficient Model

Model 3 has similar setting as in Wang et al. (2013), but the linear quantile regres-

sion was extended to non linear quantile regression in the single index model.

Ti = exp{1 + 1.5xi1 + 0.7xi2 + xi3− 0.5xi4 + (1 + γxx4)εi}, xi = (xi,1, ..., xi,p), (4.3)

where xij are i.i.d ∼ Unif(−1, 1), for i = 1, ..., n and j = 1, ..., p and ε are i.i.d

standard normal with p=10. We set γ = −0.742, so that the quantile coefficients

are β0.25=(1.5, 0.7, 1, 0, ..., 0), and β0.5=(1.5, 0.7, 1, -0.5, 0, ..., 0). Under this het-

eroscedastic model, the covariate xi4 has different impacts on the quantiles of the

conditional distribution of T. We observe Yi = min(Ti, Ci), where Ci ∼ Unif(0, 48)

yielding about 15% censoring, and Ci ∼ Unif(0, 18) indicating about 30% censor-

ing, and Ci ∼ Unif(0, 8.5) about 45% censoring. In this model, the dimension of

covariates is relatively large, so we use cSIR (Li et al., 1999) to estimate the dimen-

sion reduction indexes, as well as the dimension q by the sequential chi square test.

In both Table 4.4 and 4.5, we report the results with the true q=2 and the estimated

q̂ by cSIR.

Table 4.4 summarizes the estimation performance in terms of MSE for different

quantile levels, sample sizes and average percentages of censoring. Here, the Oracle

estimator is obtained by using the proposed unpenalized method under the true

model, i.e, with the first three covariates at τ = 0.25 and the first four covariates at

τ = 0.5. We can see that the results based on the estimated q̂ are very similar to

that based on the true q. As sample size increases, the MSEs become smaller, and

closer to the Oracle estimators. As the percentage of censoring increases, the MSEs

are larger. Overall, the MSEs of proposed method are relatively small, indicating a
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good performance of estimation. Also, from the boxplot in Figure 4.3, the majority

of estimation values are around the true coefficient, which shows good performance

of estimation in heteroscedastic model.

Moreover, in Table 4.5, we can see the good performance of variable selection

with relatively large OP and TP, small FP. Here, TP denotes the average number

of relevant variables that are correctly selected. FP denotes the average number

of irrelevant variables that are incorrectly selected. OP denotes the percentage of

times that the true model is correctly selected. As n increases from 500 to 800,

TP and OP increase and FP decrease. Also, as the average percentage of censoring

increases, the variable selection becomes more difficult. Besides, estimation and

variable selection at τ = 0.5 are usually better than at τ = 0.25 when censoring is

well below 50%, which is widely seen in the quantile regression literature.
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Figure 4.3: Boxplots of first four coefficient estimates for n=800, av-
erage 15% censoring for different quantiles based on 100 runs in Model
3. Note, the true standardized coefficients for lower quantiles are β0.25 =
(0.7756, 0.3620, 0.5171, 0, 0, 0, 0, 0, 0, 0), and for median quantiles are β0.5 =
(0.7509, 0.3504, 0.5006,−0.2503, 0, 0, 0, 0, 0, 0).



34

Table 4.4: The mean squared error (× 100) of estimation for none zero quantile
coefficients based on 100 runs in Model 3. The “Oracle” estimator is obtained by
using the proposed unpenalized method under the true model. q̂ and q=2 denote
the estimated/ true number of index. Note, the true standardized coefficients for
lower quantiles are β0.25 = (0.7756, 0.3620, 0.5171, 0, 0, 0, 0, 0, 0, 0), and for median
quantiles are β0.5 = (0.7509, 0.3504, 0.5006,−0.2503, 0, 0, 0, 0, 0, 0).

τ = 0.25 τ = 0.5
β1 β2 β3 β1 β2 β3 β4

n=500, 15% censoring
Oracle 0.18 0.36 0.26 0.16 0.31 0.36 0.61
q̂ 0.28 0.59 0.45 0.24 0.55 0.43 0.84
q=2 0.29 0.58 0.43 0.24 0.54 0.43 1.10

n=500, 30% censoring
Oracle 0.15 0.43 0.32 0.14 0.28 0.25 1.03
q̂ 0.28 0.59 0.58 0.50 0.47 0.51 2.08
q=2 0.26 0.67 0.53 0.24 0.44 0.36 2.17

n=500, 45% censoring
Oracle 0.15 0.38 0.27 0.12 0.32 0.24 1.51
q̂ 0.77 1.10 1.05 4.13 2.09 2.57 7.72
q=2 0.22 0.74 0.43 0.26 0.66 0.28 4.18

n=800, 15% censoring
Oracle 0.10 0.18 0.21 0.09 0.21 0.18 0.37
q̂ 0.13 0.31 0.31 0.15 0.27 0.27 0.60
q=2 0.13 0.32 0.31 0.14 0.30 0.26 0.58

n=800, 30% censoring
Oracle 0.08 0.19 0.18 0.08 0.17 0.14 0.77
q̂ 0.17 0.37 0.37 0.16 0.28 0.20 1.74
q=2 0.16 0.34 0.35 0.17 0.27 0.21 2.06

n=800, 45% censoring
Oracle 0.09 0.24 0.20 0.10 0.18 0.14 1.08
q̂ 0.21 0.53 0.39 1.40 1.23 2.34 4.98
q=2 0.20 0.52 0.36 0.20 0.28 0.18 3.58
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Table 4.5: The variable selection results for Model 3 with different censoring, sample
size and quantile levels. TP denotes the average number of relevant variables that
are correctly selected. FP denotes the average number of irrelevant variables that
are incorrectly selected. OP denotes he percentage of times that the true model is
correctly selected. q̂ denotes the estimated number of index.

n Avg. Cens τ TP(q̂) FP(q̂) OP(q̂) TP FP OP
500 15% 0.25 3.00 0.48 0.71 3.00 0.51 0.70

0.50 3.95 0.31 0.74 3.90 0.28 0.73
30% 0.25 3.00 0.64 0.62 3.00 0.64 0.63

0.50 3.79 0.26 0.65 3.76 0.09 0.70
45% 0.25 2.99 1.47 0.40 3.00 0.76 0.56

0.50 3.72 2.39 0.33 3.40 0.09 0.38
800 15% 0.25 3.00 0.31 0.77 3.00 0.29 0.78

0.50 3.97 0.12 0.90 3.98 0.10 0.92
30% 0.25 3.00 0.56 0.66 3.00 0.56 0.65

0.50 3.87 0.14 0.80 3.83 0.05 0.80
45% 0.25 3.00 0.71 0.61 3.00 0.55 0.68

0.50 3.77 1.43 0.48 3.52 0.02 0.50
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Chapter 5

Real Data Application

5.1 Boston Housing Data

We fit the single index for censored quantile regression model to the Boston housing

data, available in the R package MASS. The data contains 506 observations of 14

variables. The response variable is MEDV, and the other 13 variables are predic-

tors. A detailed description can be found in Table 5.1. There are several papers that

have analyzed this data, e.g., Harrison and Rubinfeld (1978), Doksum and Samarov

(1995) and Fan and Huang (2005). We follow previous studies and take the loga-

rithmic transformations on TAX and LSTAT. One noteworthy feature is that the

dependent variable is right censored. That is, the values of MEDV that are larger

than 50000 have been recorded as 50000 for 16 out of 506 subjects. Thus, modeling

on the conditional quantiles is more appropriate than modeling of conditional mean,

see Wu et al. (2010) and Kong and Xia (2012). But both of the above methods

ignore the censoring of the response.

Each conditional quantile with censoring is modeled by a single index model with

variable selection. By using the dimension reduction approach, we get the estimated
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Table 5.1: Description of Variables in Boston Housing Data.

Variable Description
CRIM per capita crime rate by town
ZN proportion of residential land zoned for lots over 25,000 sq.ft.
INDUS proportion of non-retail business acres per town
CHAS Charles River dummy variable (= 1 if tract bounds river; 0 otherwise)
NOX nitrogen oxides concentration (parts per 10 million)
RM average number of rooms per dwelling
AGE proportion of owner-occupied units built prior to 1940
DIS weighted mean of distances to five Boston employment centers
RAD index of accessibility to radial highways
TAX full-value property-tax rate per $10,000
PTRATIO pupil-teacher ratio by town
BLACK 1000(Bk − 0.63)2 where Bk is the proportion of blacks by town
LSTAT lower status of the population (percent)
MEDV median value of owner-occupied homes in $1000

number of dimension q̂ = 3. Then the estimated 10th, 25th, 50th, 75th and 90th

quantiles are listed in Table 5.2. We can see that different quantiles may have

different important variable lists. For τ = 0.1, CRIM, NOX, RM and LSTAT are

selected, and additional DIS and PTRATIO are selected when τ = 0.25. Moreover,

additional CHAS, RAD and BLACK are picked for τ = 0.5 than τ = 0.25. For

τ = 0.75 and τ = 0.9, they select the same sets of variables, but the coefficients

are different, and even the signs of AGE are different. Overall, CRIM, NOX, RM

and LSTAT are important to housing price for all quantiles, which is a consistent

conclusion compared with previous studies.

As houses in higher price range are usually targeted by people with higher in-

come, it’s beneficial to study the consumption behavior of people from different

income groups to examine how the coefficients of covariates vary as the quantile

level changes. In this data, we can see CRIM, NOX and LSTAT have negative ef-

fects on house prices, while the influence of RM is positive. Also, for lower income
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Table 5.2: Estimation and Selection Results for Different Quantiles in Boston Hous-
ing Data.

Variable τ = 0.1 τ = 0.25 τ = 0.5 τ = 0.75 τ = 0.9
CRIM -0.056 -0.114 -0.043 -0.006 -0.006
ZN 0.000 0.000 0.000 0.001 0.002
INDUS 0.000 0.000 0.000 0.006 0.002
CHAS 0.000 0.000 0.066 0.007 0.014
NOX -0.891 -0.757 -0.841 -0.962 -0.882
RM 0.341 0.462 0.308 0.036 0.072
AGE 0.000 0.000 0.000 -0.001 0.002
DIS 0.000 -0.159 -0.253 -0.269 -0.451
RAD 0.000 0.000 0.018 0.009 0.014
log(TAX) 0.000 0.000 0.000 0.000 0.000
PTRATIO 0.000 -0.012 -0.046 -0.022 -0.017
BLACK 0.000 0.000 0.001 0.000 0.000
log(LSTAT) -0.295 -0.436 -0.354 -0.019 -0.115

population (τ = 0.1 or τ = 0.25), only few variables are taken into consideration of

purchasing homes. On the other hand, for higher income population (τ = 0.75 or

τ = 0.9), many factors are in their consideration, choosing 11 out of 13 variables.

For the median income population (τ = 0.5), they consider reasonable amount of

variables.

5.2 Kidney Transplant Study

As mentioned in the motivation, the relentless growth in the size of the kidney

transplant on waiting list accentuates the importance and urgency to develop an

innovative and accurate tool to quantify the relative risk of kidney graft failure

associated with various combination of donor characteristics as well as related infor-

mation including transplant factors. Port et al. (2002) introduced expanded criteria

donor (ECD) to relieve this problem, and it has been reported that kidney trans-
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plants from ECD donors have at least 70% greater risk of graft failure than those

from the lower risk Standard Criteria Donor (SCD) donors. However, the ECD

and SCD dichotomy only utilizes a few donor characteristics including age, serum

creatinine, history of hypertension and history of stroke.

An improvement over the ECD/SCD dichotomy is the scoring system devel-

oped by Nyberg et al. (2003). The system included five variables: donor age,

history of hypertension, creatinine clearance, cause of death and the number of

HLA-mismatches. This scoring system is not widely used in practice since it’s not

replicable in independent cohort (Lee and Abramowicz, 2014).

Rao et al. (2009) proposed a continous kidney donor risk index (KDRI) for de-

ceased donor kidneys, combining donor and transplant variables to quantify graft

failure risk. Using the data between 1995 and 2005 from the Scientific Registry

of Transplant Recipients (SRTR), they analyzed 69440 first-time, kidney-only, de-

ceased donor adult transplants by Cox regression adjusted for recipient factors. The

proposed KDRI included 14 donor and transplant factors associated with graft fail-

ure. Although KDRI is a useful decision-making tool at the time of the deceased

donor kidney offer, there is still room for improvement as discussed in Motivation

section. For example, the risk factors may be different or have different effects

on the patients with shorter survival, compared to patients with longer survival.

Hence, we applied the proposed single index model for censored quantile regression,

analyzing the same data obtained from the Scientific Registry of Transplant Recipi-

ents (SRTR). Moreover, random forest was performed as benchmark to evaluate the

importance of selected variables.

Following the idea of Rao et al. (2009), we consider 47128 deceased donor trans-

plants took place between October 1, 1987 and September 30, 1997 from the SRTR

data by applying the same exclusion criterion. Particularly, after excluding missing
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values, we are interested in a subset where Donor’s age is over 50. It consists of

7321 deceased donor transplant where 3767 of them had experienced the event, the

graft failure. The graft failure is defined as return to dialysis, retransplant or death.

From Figure 5.1, we can tell that the distribution of observed survival time (blue

line is the smoothing density curve) is quite skewed to the right. So we preferred the

quantile regression since the traditional mean regression may not be appropriate.

Figure 5.1: The Distribution of Time to Graft Failure (Days) in Kidney Transplant

Additionally, similar sets of variables were used in our single index model as in

Rao et al. (2009). Donor and transplant factors were donor age (DONAGE), race

(DONRACE), gender (DONGENDER), cause of death (DONCOD), organ sharing

(DONORG). Recipient factors included age (RECAGE), height (RECHGT), weight



41

(RECWGT), race (RECRACE), gender (RECGENDER), Hepatitis C Virus posi-

tivity (RECHCV). The summary statistics for the above factors are summarized in

the Table 5.3.

Table 5.3: Summary statistics

Source Variable Mean (SE) or Percentage
Donor Age 57.59 (5.84)

Race (black) 6.08%
Gender (female) 54.51%
Cause of Death (stroke) 75.29%
Organ Sharing 26.59%

Recipient Age 45.97 (12.65)
Height (cm) 170.40 (10.78)
Weight (kg) 74.45 (18.10)
Race (black) 26.97%
Gender (female) 38.87%
Hepatitis C Virus 2.88%

We used the dimension reduction approach (cSIR) from Li et al. (1999) to get

the estimated dimension q̂ = 2. Continuous variables are standardized to have zero

mean and one standard deviation. The selection results for different quantiles are

in the Table 5.4. For relatively high risk patients (τ = 0.25), Donor’s age, race

(black), cause of death (stroke), recipient’s weight and race (black) are negatively

associated with survival time, while Recipient’s age has positive influence. But for

median survival time patients (τ = 0.5), cause of death (stroke) is not selected any

more. The influence of Donor’s race and Recipient’s age is larger, while the effect of

Donor’s age, Recipient’s weight and race are smaller. For both quantiles, Donor’s

gender, organ sharing, and Recipient’s height, gender and Hepatitis C virus are not

important in terms of survival time. We also plot the estimation of link function

for both lower and median quantile levels in Figure 5.2. The shape of link function

is non-linear and is different for lower and median quantile levels, which is also
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Table 5.4: The variable selection results for kidney transplant study with different
quantile levels.

Source Variable τ = 0.25 τ = 0.5
Donor Age -0.233 -0.225

Race (black) -0.811 -0.869
Gender (female) 0.000 0.000
Cause of Death (stroke) -0.070 0.000
Organ Sharing 0.000 0.000

Recipient Age 0.118 0.146
Height (cm) 0.000 0.000
Weight (kg) -0.058 -0.040
Race (black) -0.516 -0.414
Gender (female) 0.000 0.000
Hepatitis C Virus 0.000 0.000

the advantages over the traditional linear models. Also, the overall trend of link

function is increasing for both index of quantile levels. That is to say, higher index

will indicate longer survival time.

To evaluate the importance of selected predictors, we compare our results with

the variance importance scores from Random Forest methods (Breiman, 2001). In

every bootstrapped sample i (i = 1, ..., b, b is the number of bootstraps), we save

the cases not used in the bootstrap sample (“out-of-bag”, OOB cases) and calculate

an estimated OOB error ei. After randomly permuting the values in the mth of

p variables (m is the number of randomly selected variables in each split) in the

OOB cases, we calculate the OOB error fi again. Then we subtract the two OOB

errors fi − ei for all the bootstrapped data. The average of this number over all

bootstrapped random forest trees is the raw importance score for mth variable.

Ishwaran et al. (2007) extended the random forest for the survival outcome. The

importance scores for all variables are summarized in the Table 5.5 and Figure 5.3.

The results from Random Forest are pretty consistent with that from our approach.
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Figure 5.2: The estimation of link function for lower quantile with τ = 0.25 and
median quantile with τ = 0.5.

Our selected variables such as Donor age, race, and Recipient age, race and weight

have the higher importance scores. Our method is favored over random forest since

it can select important variables for different quantiles and indicate the direction

of effect for better interpretation. Random forest, however, is a black box machine

learning technique, lacking interpretation and needing shrinkage to achieve variable

selection.



44

Table 5.5: The variable importance scores from random forest for survival outcome.
The larger the score, the more important it is.

Variable Importance Description
RECAGE 0.0110 Recipient age
RECRACE 0.0090 Recipient race
DONAGE 0.0066 Donor age
RECWGT 0.0019 Recipient weight
RECHGT 0.0018 Recipient height
DONRACE 0.0014 Donor race
RECGENDER 0.0005 Recipient gender
DONORG 0.0000 Donor organ sharing
RECHCV 0.0000 Recipient Hepatitis c virus
DONGENDER 0.0000 Donor gender
DONCOD -0.0007 Donor cause of death

Figure 5.3: Variable importance from random forest
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Chapter 6

Conclusion and Discussion

In this thesis, we proposed a single index model for censored quantile regression that

can reduce dimension and deal with censored outcomes effectively. The B-spline

was used to approximate the unknown link function in the model and redistribu-

tion of mass approaches were adopted to deal with censoring. Dimension reduction

approaches were adopted to reduce the dimension to alleviate “curse of dimension-

ality” for computing the redistributed mass. Moreover, variable selection methods,

such as adaptive LASSO, were performed to select the informative variables while

estimating the model simultaneously. The performance of proposed methods was

evaluated by simulation studies, and compared with existing methods. Both the the-

oretical and numerical results show that the proposed methods perform satisfactory

for censored data. Our proposed method can be transformed to a linear quantile

regression problem so that many existing linear quantile regression algorithms can

be used for efficient estimation; this is advantageous to Bücher et al. (2014) and

Christou and Akritas (2016), which uses time consuming local linear approxima-

tion or complicated nonlinear quantile regression algorithms. Another advantage of

our proposed method is that it uses the penalized linear quantile estimator to se-
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lect informative variables for single index quantile regression model, while existing

methods in Bücher et al. (2014) and Christou and Akritas (2016) do not facilitate

variable selection for quantiles.

Some interesting future directions could be further investigated.

• The thesis focuses on the model specification and estimation with variable

selection. It is still an open question to do statistical inference after variable

selection in single index quantile regression model. We might borrow the

ideas from the mean regression literature for statistical inference after variable

selection. Wasserman and Roeder (2009) proposed a two-stage procedure for

valid inference. In their method, the data is randomly divided into two equal

parts: training and testing datasets. In the training data, penalized regression

is used to select informative variables on the first stage. In the testing data,

ordinary least squares is applied to compute standard errors and p-values for

the selected variables in the first stage. A drawback of the single-split method

is that the result may depend on how the data is split. To overcome this,

Meinshausen et al. (2012) suggested multi-split method, which repeats the

single-split multiple times, and obtains the empirical distribution of the p-

values. Also, Lockhart et al. (2014) proposed the covariance test statistic to

test the significance of the predictor variable that enters the current LASSO

model.

• We assume that data has a fixed dimension p as n increases in the single in-

dex quantile regression model. If the number of covariates grows with sample

size, challenges arise in two parts: the estimation of unknown link function

g(·) with growing dimension, and the properties of the dimension reduction

methods for quantile regression with growing dimension. Fan and Peng (2004)
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proposed the variable selection procedures for parametric models via noncon-

cave penalized likelihood with a diverging number of parameters. The oracle

property of the penalized likelihood estimators has also been established. Lam

and Fan (2008) explored the profile likelihood estimation and inference for the

generalized varying coefficient partially linear model with growing number of

predictors. In the framework of single index model, Zhu and Zhu (2009) stud-

ied the nonconcave penalized inverse regression method with diverging number

of predictors. The asymptotic normality was achieved and confidence interval

can be constructed for the estimated index. In the single index quantile regres-

sion model, additional work is needed when the number of variables increases

with n.

• It is also natural to extend our methods in single index models to multiple

index models. That is, the βτ ∈ Rp×d can have multiple dimension with d ≥ 1

in the model (2.3). There are a lot of work on multiple index models in mean

regression, but very limited in the quantile regression. In the mean regression,

there are three classes of methods available for estimating the column space

of β: the inverse regression based methods, the nonparametric methods and

the semiparametric methods. The origin of inverse regression is an ingenious

idea of reversing the relation between the response variable and the covariates

(SIR, Li et al., 1991; Duan and Li, 1991). The most original nonparametric

method is the minimum average variance estimation method (MAVE, Xia et

al., 2002). The semiparametric methods from Ma and Zhu (2012) involve

writing down the likelihood of one observation, recognizing that the essential

problem of dimension reduction is equivalent to that of parameter estimation

in the presence of nuisance components, and taking advantage of the influence
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function structure to avoid estimating all the nuisance components. In the

quantile regression framework, we may apply our nonparametric method to

the multiple index models.
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Chapter 7

Technical Proofs

In this chapter, we first derive the proofs of Theorem 3.2.1 to Theorem 3.2.3 in

Chapter 3. Then, we present and prove nine lemmas that are used in the proofs of

three main theorems.

7.1 Proof of Theorems

Proof of Theorem 3.2.1

Denote

L̂∗τn(β) =1/n
n∑
i=1

{
τ − F̂ (Ci|ẑi)
1− F̂ (Ci|ẑi)

I
(
Ti > Ci, F̂ (Ci|ẑi) ≤ τ

)
ρτ

(
Ci −B(XT

i β)θ̃
)

+ I(Ti ≤ Ci)ρτ

(
Ti −B(XT

i β)θ̃
)

+

[
I(Ti > Ci)−

τ − F̂ (Ci|ẑi)
1− F̂ (Ci|ẑi)

I
(
Ti > Ci, F̂ (Ci|ẑi) ≤ τ

)]
ρτ

(
Y +∞ −B(XT

i β)θ̃
)}

,
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L∗τn(β) =
1

n

n∑
i=1

{
τ − F0(Ci|z0i)

1− F0(Ci|z0i)
I (Ti > Ci, F0(Ci|z0i) ≤ τ) ρτ

(
Ci −B(XT

i β)θ̃
)

+ I(Ti ≤ Ci)ρτ

(
Ti −B(XT

i β)θ̃
)

+
[
I(Ti > Ci)−

τ − F0(Ci|z0i)

1− F0(Ci|z0i)
I (Ti > Ci, F0(Ci|z0i)) ≤ τ)

]
ρτ

(
Y +∞ −B(XT

i β)θ̃
)}

,

L̃∗τ (β) =
1

n

n∑
i=1

{
τ − F0(Ci|z0i)

1− F0(Ci|z0i)
I (Ti > Ci, F0(Ci|z0i) ≤ τ) ρτ

(
Ci − g̃(XT

i β, β)
)

+ I(Ti ≤ Ci)ρτ
(
Ti − g̃(XT

i β, β)
)

+

[
I(Ti > Ci)−

τ − F0(Ci|z0i)

1− F0(Ci|z0i)
I (Ti > Ci, F0(Ci|z0i)) ≤ τ)

]
ρτ
(
Y +∞ − g̃(XT

i β, β)
)}

,

and

L∗τ (β) = E

{
τ − F0(C|z0)

1− F0(C|z0)
I (T > C, F0(C|z0) ≤ τ) ρτ

(
C − g̃(XTβ, β)

)
+ I(T ≤ C)ρτ

(
T − g̃(XTβ, β)

)
+

[
I(T > C)− τ − F0(C|z0)

1− F0(C|z0)
I (T > C, F0(C|z0)) ≤ τ)

]
ρτ
(
Y +∞ − g̃(XTβ, β)

)}
.

Assume β̃ is the minimizer of L̂∗τn(β), then P{L̂∗τn(β̃) ≤ L̂∗τn(β0)} = 1. Then for

any open set S(β0) that includes β0,

P{L̂∗τn(β̃) ≤ L̂∗τn(β0)}

=P{L̂∗τn(β̃) ≤ L̂∗τn(β0), and β̃τ ∈ S(β0)}+ P{L̂∗τn(β̃τ ) ≤ L̂∗τn(β0), and β̃τ ∈ Θ \ S(β0)}

≤P{β̃τ ∈ S(β0)}+ P{infβ∈Θ\S(β0)L̂
∗
τn(β) ≤ L̂∗τn(β0)}.
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If we can prove that

P{infβ∈Θ\S(β0)L̂
∗
τn(β) ≤ L̂∗τn(β0)} → 0,

then β̃ must be in any open set S(β0), so that β̃ is a consistent estimator of β0 with

probability approaching 1.

P

{
infβ∈Θ\S(β0)L̂

∗
τn(β) ≤ L̂∗τn(β0)

}
= P

{
infβ∈Θ\S(β0)

[
L̂∗τn(β)− L∗τn(β) + L∗τn(β)− L̃∗τ (β) + L̃∗τ (β)− L∗τ (β) + L∗τ (β)

]
≤ L̂∗τn(β0)

}
≤ P

{
infβ∈Θ\S(β0)

[
L̂∗τn(β)− L∗τn(β)

]
+ infβ∈Θ\S(β0)

[
L∗τn(β)− L̃∗τ (β)

]
+ infβ∈Θ\S(β0)

[
L̃∗τ (β)− L∗τ (β)

]
+ L∗τ (β

0)− L∗τn(β0) ≤ L∗τ (β
0)− infβ∈Θ\S(β0)L

∗
τ (β)

}
≤ P

{
supβ∈Θ\S(β0)

∣∣L̂∗τn(β)− L∗τn(β)
∣∣+ supβ∈Θ\S(β0)

∣∣L∗τn(β)− L̃∗τ (β)
∣∣

+ supβ∈Θ\S(β0)

∣∣L̃∗τ (β)− L∗τ (β)
∣∣+
∣∣L∗τ (β0)− L∗τn(β0)

∣∣ ≥ infβ∈Θ\S(β0)L
∗
τ (β)− L∗τ (β0)

}
Since β0 is the unique minimizer of L∗τ (β), then for every open set S(β0), there exists

ε > 0 such that infβ∈Θ\S(β0)L
∗
τ (β) − L∗τ (β0) > ε. It’s sufficient to prove, for every

ε > 0,

(i). P
{
supβ∈Θ\S(β0)

∣∣L̂∗τn(β)− L∗τn(β)
∣∣ > ε

}
−→0,

(ii). P
{
supβ∈Θ\S(β0)

∣∣L∗τn(β)− L̃∗τ (β)
∣∣ > ε

}
−→0,

(iii). P
{
supβ∈Θ\S(β0)

∣∣L̃∗τ (β)− L∗τ (β)
∣∣ > ε

}
−→0,

(iv). P
{∣∣L∗τ (β0)− L∗τn(β0)

∣∣ > ε
}
−→0.
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To verify (i), we have the following,

L̂∗τn(β)− L∗τn(β)

=1/n
n∑
i=1

[
τ − F̂ (C|ẑ)

1− F̂ (C|ẑ)
I
(
F̂ (C|ẑ) ≤ τ, Ti > Ci

)
− τ − F0(C|z0)

1− F0(C|z0)
I (F0(C|z0) ≤ τ, Ti > Ci)

]
[
ρτ (Ci −B(XT

i β)θ̃)− ρτ (Y +∞ −B(XT
i β)θ̃)

]
.

For∣∣∣∣∣
(
τ − F̂
1− F̂

I
(
F̂ ≤ τ

)
− τ − F0

1− F0

I (F0 ≤ τ)

)∣∣∣∣∣
= I

(
F̂ ≤ τ, F0 ≤ τ

) (1− τ)|F̂ − F0|
(1− F̂ )(1− F0)

+ I(F̂ < τ < F0)
1− τ
1− F0

+ I(F0 < τ < F̂ )
1− τ
1− F̂

≤ |F̂ − F0|
1− τ

+ I(F̂ < τ < F0) + I(F0 < τ < F̂ )

then we have

E

[
sup

||F̂−F0||H≤εn
I(F0 < τ < F̂ )

]
≤ P (F0 < τ < F0 + εn) = M

(
F−1

0 (τ)
)
−M

(
F−1

0 (τ − εn)
)
≤ c·εn.

Together with Lemma 7.2.9, we can have the following,

|L̂∗τn(β)− L∗τn(β)| ≤ Op

(
{ log n

nhq
}1/2 + hv

)
.

Under the condition that 0 < α < 1
q

when h = O(n−α), then

supβ∈Θ\S(β0)

∣∣L̂∗τn(β)− L∗τn(β)
∣∣ ≤ op(1).
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To prove (ii), from Lemma 7.2.4,

supβ∈Θ\S(β0)

∣∣L∗τn(β)− L̃∗τ (β)
∣∣

=supβ∈Θ\S(β0)

∣∣∣∣∣ 1n
n∑
i=1

[
ρτ (Ti − g̃n(XT

i β, β))− ρτ (Ti − g̃(XT
i β, β))

]
I(Ti ≤ Ci)

+
τ − F0(Ci|z0i)

1− F0(Ci|z0i)
I(Ti > Ci, F0(Ci|z0i))

[
ρτ (Ci − g̃n(XT

i β, β))− ρτ (Ci − g̃(XT
i β, β))

]
+
[
I(Ti > Ci)−

τ − F0(Ci|z0i)

1− F0(Ci|z0i)
I(Ti > Ci, F0(Ci|z0i))

]
τ
[
g̃n(XT

i β, β)− g̃(XT
i β, β)

]∣∣∣∣∣
≤supβ∈Θ\S(β0)

3

n

n∑
i=1

∣∣∣g̃n(XT
i β, β)− g̃(XT

i β, β)
∣∣∣ = op(1).

The proof of (iii),

P
{
supβ∈Θ\S(β0)

∣∣L̃∗τ (β)− L∗τ (β)
∣∣ > ε

}
−→0

is followed by the uniform consistency theorem in Andrew (1987).

To get (iv), by Lemma 7.2.4, we have L∗τn(β0) − L̃∗τn(β0) = op(1). Also by the

weak law of large number, L̃∗τ (β
0) − L∗τn(β0) = op(1). Again, from (i), under the

condition that 0 < α < min (1
q
, 1
v
), we know, |L̂∗τn(β)− L∗τn(β)| ≤ op(1). Then

∣∣L∗τ (β0)−L̂∗τn(β0)
∣∣ ≤ ∣∣L̂∗τn(β0)−L∗τn(β0)

∣∣+∣∣L∗τn(β0)−L̃∗τ (β0)
∣∣+∣∣L̃∗τ (β0)−L∗τ (β0)

∣∣ = op(1).

Thus, the Theorem 3.2.1 is obtained.

Proof of Theorem 3.2.2:

Since we know from Lemma 7.2.2,

√
n{β̃F0,γ0 − β0} D−→ N(0,Γ+V Γ+),
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then if we can prove
√
n

(
β̃F0,γ0 − β̃

)
= op(1),

then it’s complete.

From Lemma 7.2.2, we know
ˆ̂
bτ,n = β̃F0,γ0 − β0, and

ˆ̂
bτ,n − b̃τ,n = op(n

−1/2). Then

similarly, then we have
ˆ̂
b∗τ,n − b̃∗τ,n = op(n

−1/2), if
ˆ̂
b∗τ,n = β̃ − β0. Note that

b̃τ,n = −(Γn + ξnI)−1Ωn,

b̃∗τ,n = −(Γ̂n + ξnI)−1Ω̂n,

where

Ωn =− 1

n

n∑
i=1

{
τ − F0(Ci|z0i)

1− F0(Ci|z0i)
I(Ti > Ci, F0(Ci|z0i) ≤ τ)ρ′τ (Ci − g(xTi β

0))

+ I(Ti ≤ Ci)ρ
′
τ (Ti − g(xTi β

0))

+
[
ET (M(t|x))− EC(1− F0(Ci|z0i))

τ − F0(Ci|z0i)

1− F0(Ci|z0i)

]
τ

}
g′(xTi β

0)x̃i,

Ω̂n = − 1

n

n∑
i=1

{
τ − F̂ (Ci|ẑi)
1− F̂ (Ci|ẑi)

I(Ti > Ci, F̂ (Ci|ẑi)) ≤ τ)ρ′τ (Ci − g(xTi β
0))

+ I(Ti ≤ Ci)ρ
′
τ (Ti − g(xTi β

0))

+
[
ET (M(t|x))− EC(1− F0(Ci|z0i))

τ − F̂ (Ci|ẑi)
1− F̂ (Ci|ẑi)

]
τ

}
g′(xTi β

0)x̃i,

Γn =
1

n

n∑
i=1

{
ET

[
(1−M(Ti|x))f0

(
g(xTi β

0)
)]

+ EC

[
(τ − F0(Ci|z0i))I(F0(Ci|z0i ≤ τ))m0(g(xTi β

0))
]}

[g′(xTi β
0)]2x̃ix̃

T
i ,
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Γ̂n =
1

n

n∑
i=1

{
ET

[
(1−M(Ti|x))f0

(
g(xTi β

0)
)]

+ EC

[
(1− F0(Ci|z0i))

τ − F̂ (Ci|ẑi)
1− F̂ (Ci|ẑi)

I(F̂ (Ci|ẑi) ≤ τ))m0(g(xTi β
0))
]}

[g′(xTi β
0)]2x̃ix̃

T
i ,

The following is to prove that b̃τ,n − b̃∗τ,n = op(n
−1/2), then the proof is trivial.

b̃τ,n − b̃∗τ,n = −(Γn + ξnI)−1Ωn + (Γ̂n + ξnI)−1Ω̂n

= −(Γn + ξnI)−1Ωn + (Γn + ξnI)−1Ω̂n − (Γn + ξnI)−1Ω̂n + (Γ̂n + ξnI)−1Ω̂n

= (Γn + ξnI)−1(Ω̂n − Ωn) + [(Γ̂n + ξnI)−1 − (Γn + ξnI)−1]Ω̂n

We get the above rate by the following,

Ω̂n − Ωn

=
1

n

n∑
i=1

g′(xTi β
0)x̃i

{
EC(1− F0(Ci|z0i))

[τ − F0(Ci|z0i)

1− F0(Ci|z0i)
− τ − F̂ (Ci|ẑi)

1− F̂ (Ci|ẑi)

]
τ+

[τ − F0(Ci|z0i)

1− F0(Ci|z0i)
I(Ti > Ci, F0(Ci|z0i) ≤ τ)

− τ − F̂ (Ci|ẑi)
1− F̂ (Ci|ẑi)

I(Ti > Ci, F̂ (Ci|ẑi)) ≤ τ)
]
ρ′τ (Ci − g(xTi β

0))

}
=

1

n

n∑
i=1

{[τ − F0

1− F0

I(Ti > Ci, F0 ≤ τ)− τ − F̂
1− F̂

I(Ti > Ci, F̂ ≤ τ)
]
ρ′τ (Ci − g(xTi β

0))+

EC

[ F̂ − F0

1− F̂

]
τ(1− τ)

}
g′(xTi β

0)x̃i
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Using the same technique in Theorem 3.2.1, we have

∣∣∣∣∣
(
τ − F̂
1− F̂

I
(
F̂ ≤ τ

)
− τ − F0

1− F0

I (F0 ≤ τ)

)∣∣∣∣∣
= I

(
F̂ ≤ τ, F0 ≤ τ

) (1− τ)|F̂ − F0|
(1− F̂ )(1− F0)

+ I(F̂ < τ < F0)
1− τ
1− F0

+ I(F0 < τ < F̂ )
1− τ
1− F̂

≤ |F̂ − F0|
1− τ

+ I(F̂ < τ < F0) + I(F0 < τ < F̂ ),

Here, we insert the linear representation of F̂ −F0 in Lemma 7.2.9 (ii) and applying

the Taylor extension, we obtain Ω̂n − Ωn = 1
n

∑n
i=1 φi + Op({ logn

nhq
}3/4 + hv) where

φi =, and ξ is defined in Lemma 7.2.9. Here φi are independent random variables

with mean zero. Thus, under the condition that 1
2v
< α < 1

3q
, we have

Ω̂n − Ωn = Op({
log n

nhq
}3/4 + hv) = Op(n

−1/2).

By using the techniques that

[(Γ̂n + ξnI)−1 − (Γn + ξnI)−1] = −(Γ̂n + ξnI)−1(Γ̂n − Γn)(Γn + ξnI)−1

And we know that

Γ̂n − Γn =
1

n

n∑
i=1

{
EC

[
(1− F0)

(τ − F0

1− F0

I(Ti > Ci, F0 ≤ τ)− τ − F̂
1− F̂

I(Ti > Ci, F̂ ≤ τ)
)

m0(g(xTi β
0))
]}

[g′(xTi β
0)]2x̃ix̃

T
i

=Op(n
−1/2).
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Also, we know Γ̂n,Γn, Ω̂n,Ωn are all Op(1). Thus, we can prove

b̃τ,n − b̃∗τ,n = op(n
−1/2).

So the proof of Theorem 3.2.2 is complete.

Proof of Theorem 3.2.3:

Let û =
√
n(β̂−β0), and from the proof of Theorem 3.2.2, û minimizes the following

Q̂n(u) =
1

2
uT Γ̂nu+ Ω̂T

nu+ op(1)

+

p∑
j=1

λn√
n|β̃j|r

√
n

(
|β∗j +

uj√
n
| − |β∗j |

)
,

where Γ̂n and Ω̂n defined in the proof of Theorem 3.2.2.

If β∗j 6= 0, then |β̃∗j |r
P→ |β∗j |r, and

√
n
(
|β∗j +

uj√
n
| − |β∗j |

)
P→ ujsgn(β∗j ). By Slusky’s

Theorem, and λn/
√
n→ 0, we have λn√

n|β̃j |r
√
n
(
|β∗j +

uj√
n
| − |β∗j |

)
P→ 0.

If β∗j = 0, then
√
n
(
|β∗j +

uj√
n
| − |β∗j |

)
= |uj|, and

√
nβ̃j = Op(1),

we have λn√
n|β̃j |r

= λn√
n
nr/2|
√
nβ̃j|−r →∞. Thus, by Slusky’s Theorem,

Q̂n(u)→ L(u) =


1
2
uT Γ̂nu+ Ω̂T

nu, if uj = 0,∀j 6∈ A

∞, otherwise

Since Q̂n(u) is convex and L(u) has a unique minimizer. Following the epi-convergence

results of Geyer (1994) and Knight and Fu (2000), we can prove the asymptotic nor-

mality.

Now we prove the consistency part. ∀j ∈ A, the asymptotic normality indi-

cates that β̂j
P→ β∗j , then P (j ∈ Â) → 1. Hence it is suffices to show that

∀j 6∈ A, P (j ∈ Â) → 0. Follow the similar proof in Theorem 2 in Wang et al.

(2013), suppose there exists a k ∈ Ac, such that |β̂k| 6= 0. Denote β̂∗ as a vector

constructed by replacing β̂k with 0 in β. Note that |ρτ (a) − ρτ (b)| ≤ |a − b| and
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0 ≤ wi ≤ 1, then for large enough n, we have

L(β̂, ŵ)− L(β̂∗, ŵ) =
∑
i

{
ŵi

[
ρτ (Yi −B(xTi β̂)θ)− ρτ (Yi −B(xTi β̂

∗)θ)
]

+ (1− ŵi)
[
ρτ (Y

+∞ −B(xTi β̂)θ)− ρτ (Y +∞ −B(xTi β̂
∗)θ)

]}
+ λn

β̂k

|β̃k|r

≥− 2
∑
i

θ‖xi‖ · |β̂k|+ λn
β̂k

|β̃k|r
> 0,

where the last inequality holds as
∑

j

∑
i ‖xij‖ ≤ 2

∑
j

∑
i ‖x‖ = Op(n) by Assump-

tion 3, and λn
n|β̃k|r

≥ n
r
2
−1λn → ∞. It contradicts the fact that L(β̂, ŵ) ≤ L(β̂∗, ŵ).

Then ∀j 6∈ A, P (j ∈ Â)→ 0, thus we have P
(
Â = A

)
→ 1, as n→∞.

7.2 Lemmas

The following nine lemmas are used in the proof of main theorems.

Lemma 7.2.1. Under assumptions 3.1.1-3.1.7, if Jn →∞, Jn � n, we have

√
n{β̃F0,γ0 − β0} D−→ N(0,Γ+V Γ+),

where Γ and V are defined in Theorem 3.2.2, and β̃F0,γ0 is the estimator of β̃ with

substituting true F0 and γ0.

Proof of Lemma 7.2.1:
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Let

L̃∗τn(β) =
1

n

n∑
i=1

{
τ − F0(Ci|z0i)

1− F0(Ci|z0i)
I (Ti > Ci, F0(Ci|z0i) ≤ τ) ρτ

(
Ci −B(XT

i β)˜̃θ
)

+I(Ti ≤ Ci)ρτ

(
Ti −B(XT

i β)˜̃θ
)

+
[
I(Ti > Ci)−

τ − F0(Ci|z0i)

1− F0(Ci|z0i)
I (Ti > Ci, F0(Ci|z0i) ≤ τ)

]
ρτ

(
Y +∞ −B(XT

i β)˜̃θ
)}

,

where ˜̃βτ is the minimizer of E{Lτn(θ, β)}. Denote Dτn(b) = L∗τn(β0 + b)−L∗τn(β0),

and D̃τn(b) = L̃∗τn(β0 + b) − L̃∗τn(β0), and
ˆ̂
β be the minimizer of L∗τn(β). First

of all, standardization doesn’t change the minimization. That’s to say, if we set

β̃∗τ =
ˆ̂
βτ

|| ˆ̂βτ ||2
, then β̃∗τ is the minimizer of L∗τn(β). In the following, we will show that

√
n||β̃∗τ − β0||2 = Op(1) and

√
n(β̃∗τ − β0) is asymptotic normal.

STEP 1 , Decompose β̃∗τ = aτnβ
0 + s∗τn such that η ⊥ β0, ||η||2 = 1, a2

τn + s∗2τn = 1.

Note that β̃∗τ is a consistent estimator of β0, then |aτn−1| = op(1), s∗τn = op(1), aτn =√
1− s∗2τn. Then a−1

τn β̂τ = β0 + sτnη, where sτn = a−1
τns
∗
τn. Next, we will show

sτn = Op(n
−1/2), which implies that s∗τnOp(n

−1/2) and 1 − aτn = 1 −
√

1− s∗2τn =√
s∗2τn1 +

√
1− s∗2τn = O(s∗2τn) = Op(n

−1), then

||β̃τ − β0||2 =
√

(1− aτn)2 + s∗2τn = Op(n
−1/2).

Denote
ˆ̂
βτ = a−1

τn β̃τ , then
ˆ̂
bτ =

ˆ̂
βτ − β0 = sτnη, so

ˆ̂
bτ minimizes Dτn(b). Write

cn(b) = (1 +
√
n||b||2)−1

√
nb,

Ωn =− 1

n

n∑
i=1

{
τ − F0(Ci|z0i)

1− F0(Ci|z0i)
I(Ti > Ci, F0(Ci|z0i) ≤ τ)ρ′τ (Ci − g(xTi β

0))

+ I(Ti ≤ Ci)ρ
′
τ (Ti − g(xTi β

0))

+
[
ET (M(t|x))− EC(1− F0(Ci|z0i))

τ − F0(Ci|z0i)

1− F0(Ci|z0i)

]
τ

}
g′(xTi β

0)x̃i,
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Γn =
1

n

n∑
i=1

{
ET

[
(1−M(Ti|x))f0

(
g(xTi β

0)
)]

+ EC

[
(τ − F0(Ci|z0i))I(F0(Ci|z0i ≤ τ))m0(g(xTi β

0))
]}

[g′(xTi β
0)]2x̃ix̃

T
i ,

Apply the weak law of large numbers to cTn (
ˆ̂
bτn)
√
nΩn, we have

cTn (
ˆ̂
bτn)
√
nΩn = Op

{[
cTn (

ˆ̂
bτn)E(X̃X̃T )cTn (

ˆ̂
bτn)

]1/2
}

= Op

{
||cTn (

ˆ̂
bτn)||2

}
,

since E(X̃X̃T ) is bounded from infinity by that X is distributed on a compact set.

From Lemma 7.2.8 and Lemma 7.2.9, we have

Dτn(
ˆ̂
bτn) = Ωn

ˆ̂
bτn+

1

2
ˆ̂
bTτnΓn

ˆ̂
bτn+op(n

−1/2||ˆ̂bτn||2)+Op

(
(log(n))

Jn
n
||ˆ̂bτn||1/22

)
+op(n

−1).

Since 2n−1/2||ˆ̂bτn||2 ≤ n−1 + ||ˆ̂bτn||22, then

2log(n)
Jn
n
||ˆ̂bτn||1/22 ≤||ˆ̂bτn||2J2

n/n[log(n)]2+2/10 + n−1[log(n)]−2/10

≤0.5||ˆ̂bτn||22J4
nn
−1[log(n)]4+6/10 + 0.5n−1[log(n)]−2/10 + n−1[log(n)]−5/4

=o(1)||ˆ̂bτn||22 + o(n−1).

By the assumption Jn << n1/4[log(n)]−5/4, then

Dτn(
ˆ̂
bτn) = Ωn

ˆ̂
bτn +

1

2
ˆ̂
bTτnΓn

ˆ̂
bτn + op(1)||ˆ̂bτn||22 + op(n

−1).

By definition of
ˆ̂
bτn, we have Dτn(

ˆ̂
bτn) ≤ 0. Multiply both sides of above by n(1 +
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√
n||ˆ̂bτn||−2

2 ), we have

cTn (
ˆ̂
bτn)
√
nΩn(1 +

√
n||ˆ̂bτn||2)−1 +

1

2
cTn (

ˆ̂
bτn)Ωncn(

ˆ̂
bτn) + op(1) + op(1)(1 +

√
n||ˆ̂bτn||−2

2 ) ≤ 0.

Let nk be a subsequence that
√
nksτnk−→∞, then we have ||cnk(

ˆ̂
bτnk)||2 � 1, so that

cTnk(
ˆ̂
bτnk)

√
nkΩnk(1 +

√
nk||ˆ̂bτnk ||2)−1 = op(1). By condition (C2) and (C3), we have

cTnk(
ˆ̂
bτnk)Γcnk(

ˆ̂
bτnk) = op(1).

Since
ˆ̂
bτn = sτnη, then cTnk(

ˆ̂
bτnk)Γcnk(

ˆ̂
bτnk) = (1 +

√
nk|sτ,nk |)−2nks

2
τnk
ηTΓη > 0.

It’s a contradiction. Thus,
√
n|sτn| = Op(1), which indicates sτn = Op(n

−1/2). So,

√
n||β̃∗τ − β0||2 = Op(1).

STEP 2 , Since ||ˆ̂bτn||2 = Op(n
−1/2), then we can write Dτn(

ˆ̂
bτn) as

Dτn(
ˆ̂
bτn) =

ˆ̂
bTτnΩn +

1

2
ˆ̂
bTτn(Γn + ξnI)

ˆ̂
bτn + op(n

−1),

for any ξn = o(1) and ξn 6∈ σ(Γn), where σ(Γn) is the spectrum of a square matrix

Γn. Then (Γn + ξnI)−1 exists. Define

D∗τn(b) = bTΩn +
1

2
bT (Γn + ξnI)b,

then b̃τn = −(Γn + ξnI)−1Ωn minimizes D∗τn(b). Moreover, ||b̃τn||2 = Op(n
−1/2). Let

α1n, ..., αrn be the distinct eigenvalues of Γn, then Γn =
∑r

i=1 αinsin, where sin are

the eigenvectors of Γn. Then

lim
x→∞

(Γn + ξnI)−1 = lim
x→∞

r∑
i=1

(αin + ξn)−1sin = lim
x→∞

r∑
i=1

α−1
in sin = lim

x→∞
Γ+
n = Γ+.
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By central limit theorem, as n−→∞, then
√
nb̃τn−→N(0,Γ+V Γ+). The Γ and V

are defined in Theorem 3.2.2.

Recall that a−1
τn β̃τ = β0 +

ˆ̂
bτn and 1− aτn = Op(n

−1), if we can prove that

||ˆ̂bτn − b̃τn||2 = op(n
−1/2),

then by Slusky’s Theorem, we will have
√
n(β̃τ − β0)−→N(0,Γ+V Γ+). So the

following is to prove that ||ˆ̂bτn− b̃τn||2 = op(n
−1/2). If there exists a subsequence nk

such that
ˆ̂
bτnk − b̃τnk = vkn

−1/2
k unk , where vk � 1 and unk is a unit vector. Since

D∗τnk(b) is convex, then for 0 < l < vk and l � vk, we have

(1− l

vk
)D∗τnk(b̃τnk) +

l

vk
D∗τnk(

ˆ̂
bτnk) ≥ D∗τnk(b̃τnk +

l

vk
(
ˆ̂
bτnk)) = D∗τnk(b̃τnk + ln

−1/2
k unk),

then

l

vk
[D∗τnk(

ˆ̂
bτnk)−D∗τnk(b̃τnk)] ≥ D∗τnk(b̃τnk + ln

−1/2
k unk)−D∗τnk(b̃τnk).

Since D∗τnk(
ˆ̂
bτnk)−D∗τnk(b̃τnk) = Dτnk(

ˆ̂
bτnk)−Dτnk(b̃τnk) + op(n

−1
k ), then

nk

[
D∗τnk(

ˆ̂
bτnk)−D∗τnk(b̃τnk)

]
= nk

[
Dτnk(

ˆ̂
bτnk)−Dτnk(b̃τnk)

]
+ o(1)

≥ nk
vk
l

[
D∗τnk(b̃τnk + ln

−1/2
k unk)−D∗τnk(b̃τnk)

]
+ o(1)

=
vk
l
nk(ln

1/2
k unk)

T (Γnk + ξnkI)(ln
1/2
k unk) + o(1)

≥ Cvklu
T
nk

Γnkunk ,

with probability approaching 1, where C is some constant. Similarly, decompose

unk = h1nkβ
0 + h2nkη, where η is unit vector and orthogonal to β0. Then β0Tunk =
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h1nk . Since
ˆ̂
bτnk = sτnη, then

β0Tunk = vk−1nk1/2vkn
−1/2β0Tunk = vk−1nk1/2β

0T (
ˆ̂
bτnk−b̃τnk) = −v−1

k n
1/2
k β0T b̃τnk = h1nk .

Also, we have with probability approaching 1, V ar(n
1/2
k β0T b̃τnk)−→β0TΓ+V Γ+β0.

Since Γβ0 = 0, β0 is an eigenvector of Γ and orthogonal to other eigenvectors of Γ,

then Γ+β0 = 0. Therefore, n
1/2
k β0T b̃τnk = op(1), which implies that h1nk = op(1).

Then h2
2nk

= 1− op(1), hence with probability approaching 1,

nk

[
D∗τnk(

ˆ̂
bτnk)−D∗τnk(b̃τnk)

]
≥ Cvklu

T
nk

Γnkunk = Cvklh
2
2nk
ηTΓnkη > 0

This contradicts with the fact that
ˆ̂
bτnk minimizes Dτnk(b), thus ||ˆ̂bτn − b̃τn||2 =

op(n
−1/2).

Lemma 7.2.2. Under Assumption 3.1.1 , and (logn)Jn � n, then for β ∈ Θ,

sup
1≤j,j′≤Jn

∣∣∣∣∣1/n
n∑
i=1

Bj(X
T
i β)Bj′(X

T
i β)− E

[
Bj(X

T
i β)Bj′(X

T
i β)

]∣∣∣∣∣ = Oa.s

(√
log(n)/(nJn)

)

Lemma 7.2.2 can be proved by Bernstein’s inequality given in Bosq (1998).

Lemma 7.2.3. Under Assumption 3.1.1, there exists constants 0 < c1 ≤ C1 < ∞,

such that for sufficiently large n and for any j, j′, for β ∈ Θ,

c1J
−1
n ≤ λmin

[
E
{
B(XT

i β)B(XT
i β)T

}]
≤ λmax

[
E
{
B(XT

i β)B(XT
i β)T

}]
≤ C1J

−1
n ,

where λmin and λmax denote the minimal and maximal eigenvalues of matrix.

Lemma 7.2.3 can be derived from Theorem 5.4.2 from DeVore and Lorentz

(1993).
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Lemma 7.2.4. Under Assumptions 3.1.6 and 3.1.7, if Jn → ∞, and J2l+1
n � n,

then for l = 0, 1,

supβ∈Θ

{
1/n

n∑
i=1

[
g̃(l)
n (XT

i β, β)− g̃(l)(XT
i β, β)

]2}
= Op

(
J−2(ζ−l)
n + J2l+1

n /n
)

Proof of Lemma 7.2.4:

First, by Corollary of Schumaker (1981), for any given β ∈ Θ, there exists θ0
τ (β) ∈

RJn such that g0
τ (µ, β) = B(µ)T θ0

τ (β) ∈ Hτ and

sup
µ∈[a0,b0]

|Rτ (µ, β)| = sup
µ∈[a0,b0]

|g̃τ (µ, β)− g0
τ (µ, β)| ≤ |C̃m(β)|J−rn ,

where the continuous function C̃m(β) depends on the m and C0 in the Holder con-

dition. Let Y ∗i (β) = Yi − g̃τ (XT
i β, β) + Rτ (X

T
i β, β), where Rτ (µ, β) = g̃τ (µ, β) −

g0
τ (µ, β). Then Lτn(θτ , β) can be rewritten as

Lτn(θτ , β) =
1

n

n∑
i=1

{
ρτ

(
Y ∗i (β)−B(XT

i β)T
(
θτ − θ0

τ (β)
))}

.

DefineDτn(θτ , β) = 1
n

∑n
i=1Dτn,i(θτ , β) = Lτn(θτ , β)− 1

n

∑n
i=1 ρτ

(
Y ∗i (β)

)
, and g̃

(l)
τn(µ, β) =

B(j)(µ)
T
θ̃τ (β), with θ̃τ (β) obtained by minimizing Lτn(θ, β). From Lemma 3.2 of

He and Shi (1994), for Ln � Jnn
−1/2 + J

−r+1/2
n , we have

P

{
sup

||θτ−θ0τ (β)||2=Ln

Jn
n

∣∣∣∣Dτn(θτ , β)− E
(
Dτn(θτ , β)|U(β)

)
+

1

n

n∑
i=1

B(XT
i β)T

(
θτ − θ0

τ (β)
)

+
{τ − F0(Ci|z0i)

1− F0(Ci|z0i)
I (Ti > Ci, F0(Ci|z0i) ≤ τ) (τ − I(Ci < g̃(XT

i β, β))

+I(Ti ≤ Ci)
[
τ − I(Ti < g̃(XT

i β, β))
]

+
[
I(Ti > Ci)−

τ − F0(Ci|z0i)

1− F0(Ci|z0i)

]
τ
}∣∣∣∣ ≥ ε

}
−→0
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Secondly, for any ε > 0, there is a sufficiently large C = Cε such that

P

{
J−1
n inf
||θτ−θ0τ (β)||2=Ln

E
(
Dτn(θτ , β)|U(β)

)
− C 1

n

n∑
i=1

∣∣∣∣B(XT
i β)T

(
θτ − θ0

τ (β)
)

{τ − F0(Ci|z0i)

1− F0(Ci|z0i)
I (Ti > Ci, F0(Ci|z0i) ≤ τ) (τ − I(Ci < g̃(XT

i β, β))

+I(Ti ≤ Ci)
[
τ − I(Ti < g̃(XT

i β, β))
]

+
[
I(Ti > Ci)−

τ − F0(Ci|z0i)

1− F0(Ci|z0i)

]
τ
}∣∣∣∣ > 1

}
> 1− ε

By Bernstein’s inequality, we have

sup
β∈Θ

1

n

n∑
i=1

∣∣∣∣B(XT
i β)T

(
θτ − θ0

τ (β)
){τ − F0(Ci|z0i)

1− F0(Ci|z0i)
I (Ti > Ci, F0(Ci|z0i) ≤ τ)

(τ − I(Ci < g̃(XT
i β, β)) + I(Ti ≤ Ci)

[
τ − I(Ti < g̃(XT

i β, β))
]

+
[
I(Ti > Ci)−

τ − F0(Ci|z0i)

1− F0(Ci|z0i)

]
τ
}∣∣∣∣

=op(1)

Then we have

P

{
inf

||θτ−θ0τ (β)||2=Ln

Dτn(θτ , β) > 0, for all β ∈ Θ

}
> 1− ε.

By definition of Dτn(θτ , β), Corollary 25 from Eggleston (1958), then

P

{
inf

||θτ−θ0τ (β)||2≥Ln

1

n

n∑
i=1

{
ρτ

(
Y ∗i (β)−B(XT

i β)T
(
θτ − θ0

τ (β)
))}

> n−1

n∑
i=1

ρτ

(
Y ∗i (β)

)
, for all β ∈ Θ

}
> 1− ε

It implies that P

{
sup
θτ∈Θ
||θτ − θ0

τ (β)||2 ≤ Ln

}
> 1 − ε. Then by Lemma 7.2.2 and



66

Lemma 7.2.3, and above statement, we have with probability approaching 1,

supβ∈Θ

{
1/n

n∑
i=1

[
g̃τn(XT

i β, β)− g̃τ (XT
i β, β)

]2}

≤2supβ∈Θ

{
1/n

n∑
i=1

[
g̃τn(XT

i β, β)− g0
τ (X

T
i β, β)

]2}

+ 2supβ∈Θ

{
1/n

n∑
i=1

[
g0
τ (X

T
i β, β)− g̃τ (XT

i β, β)
]2}

� J−1
n supβ∈Θ||θτ − θ0

τ (β)||22 +O(J−2r
n )

= Op

(
J−2(r−l)
n + J2l+1

n /n
)

And the result for l = 1 follows from above and using the techniques in Zhou and

Wolfe (2000) for spline derivative estimation.

Lemma 7.2.5. Under the same assumptions of Theorem 3.2.2, then,

sup1≤i≤n

∣∣∣∣∣B(XT
i β

0)T
∂ ˜̃θτ (β

0)

∂β
+
[
g(1)
τ (XT

i β
0)E(XT

i |XT
i β

0)
]∣∣∣∣∣

=Op

(
J1−ζ
n + J−1

n + (log(n))1/2J1/2
n n−1/2

)
Proof of Lemma 7.2.5:

Since ˜̃θτ (β) is the minimizer of E(L∗τn(θτ , β)|X), where

L∗τn(θτ , β)

=
1

n

n∑
i=1

{
I(Ti ≤ Ci)

[
ρτ
(
Ti −B(XT

i β)θτ
)
− ρτ (Ti)

]
+
τ − F0

1− F0

I(Ti > Ci, F0 ≤ τ)
[
ρτ
(
Ci −B(XT

i β)θτ
)
− ρτ (Ci)

]
−
[
I(Ti > Ci)−

τ − F0

1− F0

I(Ti > Ci, F0 ≤ τ)
]
τB(XT

i β)θτ

}
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With the identity given in Knight (1998) that

ρτ (s− t)− ρτ (s) = t{I(s ≤ 0)− τ}+

∫ t

0

{I(s ≤ x)− I(s ≤ 0)}dx,

we have

L∗τn(θτ , β)

=
1

n

n∑
i=1

{
I(Ti ≤ Ci)

[ ∫ B(XT
i β)θτ

0

I(Ti ≤ t)dt− τB(XT
i β)θτ

]
+
τ − F0

1− F0

I(Ti > Ci, F0 ≤ τ)
[ ∫ B(XT

i β)θτ

0

I(Ci ≤ t)dt− τB(XT
i β)θτ

]
−
[
I(Ti > Ci)−

τ − F0

1− F0

I(Ti > Ci, F0 ≤ τ)
]
τB(XT

i β)θτ

}
=

1

n

n∑
i=1

{
I(Ti ≤ Ci)

∫ B(XT
i β)θτ

0

I(Ti ≤ t)dt

+
τ − F0

1− F0

I(Ti > Ci, F0 ≤ τ)

∫ B(XT
i β)θτ

0

I(Ci ≤ t)dt

− τB(XT
i β)θτ

}

Then we have

E{L∗τn(θτ , β)|X}

=
1

n

n∑
i=1

{∫ B(XT
i β)θτ

0

∫ t

−∞

[
(1−M0(u|Xi))f0(u|Xi) + (τ − F0(u|Xi))

+m0(u|Xi)
]
dudt

− τB(XT
i β)θτ

}
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Since that ˜̃θτ (β) is the minimizer of E{L∗τn(θτ , β)|X} for given β, then

0 =
∂E{L∗τn(θτ , β)|X}

∂θτ
|
θτ=

˜̃
θτ (β)

=
1

n

n∑
i=1

B(XT
i β)

{∫ B(XT
i β)θτ

−∞

[
(1−M0(u|Xi))f0(u|Xi) + (τ − F0(u|Xi))

+m0(u|Xi)
]
du− τ

}

Since ∂E{L∗τn(θτ ,β)|X}
∂θτ

is differentiable to θτ and β, and

∂2E{L∗τn(θτ , β)|X}
∂θτ∂θTτ

|
θτ=

˜̃
θτ (β)

=
1

n

n∑
i=1

B(XT
i β)BT (XT

i β)
[
(1−M0(u|Xi))f0(u|Xi) + (τ − F0(u|Xi))

+m0(u|Xi)
]∣∣∣∣∣
B(XT

i β)θτ

6=0,

by Implicit Function Theorem, we can find the ∂
˜̃
θτ (β0)
∂βTτ

through the following equa-

tion.

0 =
∂2E

{
L∗τn(˜̃θτ (β

0), β0)|X
}

∂θτ∂βT

= ∆1 + ∆2 + ∆3
∂ ˜̃θτ (β

0)

∂βT
,
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where

∆1 =
1

n
B(1)(XT

i β
0)XT

i ·
n∑
i=1

{∫ B(XT
i β

0)
˜̃
θτ (β0)

−∞

[
(1−M0(u|Xi))f0(u|Xi) + (τ − F0(u|Xi))

+m0(u|Xi)
]
du− τ

}
,

∆2 = B(1)(XT
i β

0)˜̃θτ (β
0)XT

i ·

1

n

n∑
i=1

B(XT
i β

0)
[
(1−M0(u|Xi))f0(u|Xi) + (τ − F0(u|Xi))

+m0(u|Xi)
]∣∣∣
u=B(XT

i β
0)

˜̃
θτ (β0)

,

∆3 = BT (XT
i β

0)·

1

n

n∑
i=1

B(XT
i β

0)
[
(1−M0(u|Xi))f0(u|Xi) + (τ − F0(u|Xi))

+m0(u|Xi)
]∣∣∣
u=B(XT

i β
0)

˜̃
θτ (β0)

.

Then we have

∂ ˜̃θτ (β
0)

∂βT
= −∆−1

3 (∆1 + ∆2).

Since we have that

sup
u∈[a0,b0]

∣∣∣B(u)˜̃θτ (β
0)− gτ (u)

∣∣∣ = Op(J
−r
n ),

sup
u∈[a0,b0]

∣∣∣B(1)(u)˜̃θτ (β
0)− g(1)

τ (u)
∣∣∣ = Op(J

1−r
n )

then

sup
1≤i≤n

{∫ B(XT
i β

0)
˜̃
θτ (β0)

−∞

[
(1−M0(u|Xi))f0(u|Xi) + (τ − F0(u|Xi))

+m0(u|Xi)
]
du− τ

}
=Op(J

−r
n ).
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Moreover, by the Bernstein’s inequality, we can prove that

sup
j,k

1

n

n∑
i=1

∣∣∣∣B(1)(XT
i β

0)XT
ik

∣∣∣∣ = Op(1),

sup
j,k

1

n

n∑
i=1

∣∣∣∣B(XT
i β

0)XT
ik

∣∣∣∣ = Op(J
−1
n ).

Denote that

∆4 = g(1)
τ (XT

i β
0)XT

i ·

1

n

n∑
i=1

B(XT
i β

0)
[
(1−M0(u|Xi))f0(u|Xi) + (τ − F0(u|Xi))

+m0(u|Xi)
]∣∣∣
u=gτ (XT

i β
0)
,

∆5 = BT (XT
i β

0)·

1

n

n∑
i=1

B(XT
i β

0)
[
(1−M0(u|Xi))f0(u|Xi) + (τ − F0(u|Xi))

+m0(u|Xi)
]∣∣∣
u=gτ (XT

i β
0)

The above results imply that

|∆1| ≤ Op(J
−r
n ),

|∆2 −∆4| ≤ Op(J
−r
n ).

Hence, we have

|∆1 + ∆2 −∆4| = Op(J
−r
n ).

Therefore, by the above results, we have the following,

∣∣∣∂ ˜̃θτ (β
0)

∂βT
−∆−1

5 ∆4

∣∣∣ ≤ ‖∆3‖−1
∞ · |∆1 + ∆2 −∆4|+ ‖∆−1

3 −∆−1
5 ‖∞ · |∆4|

=Op(Jn)Op(J
−r
n ) +Op(J

2
n)Op(J

−r
n )Op(J

−1
n ) = Op(J

1−r
n ).
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Define Ê∗
(
g

(1)
τ (XT

i β
0)XT

i

∣∣XT
i β

0
)

= BT (XT
i β

0)[∆−1
4 ∆5], which is the B-spline esti-

mator of g
(1)
τ (XT

i β
0)E∗

(
XT
i

∣∣XT
i β

0
)

, where

E∗
(
XT
i

∣∣XT
i β

0
)

=

E

{[
1−M0

(
gτ (X

T
i β

0)
)]
f0

(
gτ (X

T
i β

0)
)
Xi

∣∣∣XT
i β

0

}
E

{[
1−M0

(
gτ (XT

i β
0)
)]
f0

(
gτ (XT

i β
0)
)∣∣∣XT

i β
0

} .

By Lemmas 7.2.2 and 7.2.3, one has

λmax

[ 1

n

n∑
i=1

f0(gτ (X
T
i β

0)|Xi)B(XT
i β

0)B(XT
i β

0)T
]−1

= Op(Jn),

where λmax(A) means the largest eigenvalue of the matrix A. Hence,

sup
1≤i≤n

∣∣∣∣∣B(XT
i β

0)T
∂ ˜̃θτ (β

0)

∂βT
−
{
− Ê∗

(
g(1)
τ (XT

i β
0)XT

i

∣∣XT
i β

0
)}∣∣∣∣∣

−1

= Op(J
1−r
n ).

Moreover, by Assumption 7.2.8, we have

sup
1≤i≤n

∣∣∣∣∣Ê∗(g(1)
τ (XT

i β
0)XT

i

∣∣XT
i β

0
)
− g(1)

τ (XT
i β

0)Ê∗
(
XT
i

∣∣XT
i β

0
)∣∣∣∣∣

= Op(J
−1
n + (log n)1/2J1/2

n n−1/2).

Combine above two, we can prove the Lemma 7.2.5.

Lemma 7.2.6. Under the same assumptions of Theorem 3.2.2, we have,

supβ∈Θ|| ˜̃θτ (β)− θ0
τ (β)||2 = Op(J

1/2−r
n )

Proof of Lemma 7.2.6
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Since ˜̃θτ (β) minimizes E{Lτn(θτ , β)|X}, then for any β ∈ Φ, we have

E{Lτn(˜̃θτ (β), β)|X} ≤ E{Lτn(θτ (β), β)|X}.

That’s to say,

1

n

n∑
i=1

E

{
I(Ti ≤ Ci)

[
ρτ
(
Ti −B(XT

i β)˜̃θτ (β)
)]

+
τ − F0

1− F0

I(Ti > Ci, F0 ≤ τ)
[
ρτ
(
Ci −B(XT

i β)˜̃θτ (β)
)]

+
[
I(Ti > Ci)−

τ − F0

1− F0

I(Ti > Ci, F0 ≤ τ)
]
ρτ
(
Y +∞ −B(XT

i β)˜̃θτ (β)
)}

≤ 1

n

n∑
i=1

E

{
I(Ti ≤ Ci)

[
ρτ
(
Ti −B(XT

i β)θ0
τ (β)

)]
+
τ − F0

1− F0

I(Ti > Ci, F0 ≤ τ)
[
ρτ
(
Ci −B(XT

i β)θ0
τ (β)

)]
+
[
I(Ti > Ci)−

τ − F0

1− F0

I(Ti > Ci, F0 ≤ τ)
]
ρτ
(
Y +∞ −B(XT

i β)θ0
τ (β)

)}

By the definition of g̃(XT
i β, β), we can have

1

n

n∑
i=1

E

{
I(Ti ≤ Ci)

[
ρτ
(
Ti − g̃τ (XT

i β, β)
)]

+
τ − F0

1− F0

I(Ti > Ci, F0 ≤ τ)
[
ρτ
(
Ci − g̃τ (XT

i β, β)
)]

+
[
I(Ti > Ci)−

τ − F0

1− F0

I(Ti > Ci, F0 ≤ τ)
]
ρτ
(
Y +∞ − g̃τ (XT

i β, β)
)}

≤ 1

n

n∑
i=1

E

{
I(Ti ≤ Ci)

[
ρτ
(
Ti −B(XT

i β)˜̃θτ (β)
)]

+
τ − F0

1− F0

I(Ti > Ci, F0 ≤ τ)
[
ρτ
(
Ci −B(XT

i β)˜̃θτ (β)
)]

+
[
I(Ti > Ci)−

τ − F0

1− F0

I(Ti > Ci, F0 ≤ τ)
]
ρτ
(
Y +∞ −B(XT

i β)˜̃θτ (β)
)}
.
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By the above result and supβ∈Θ
1
n

∑n
i=1E

{
g̃τ (X

T
i β, β)−B(XT

i β)θ0
τ (β)

}2

≤ CJ−2r
n ,

then for some constant 0 < C <∞,

sup
β∈Θ

1

n

n∑
i=1

E
{
g̃τ (X

T
i β, β)−B(XT

i β)˜̃θτ (β)
}2

≤ CJ−2r
n .

Therefore,

sup
β∈Θ

1

n

n∑
i=1

{
B(XT

i β)θ0
τ (β)−B(XT

i β)˜̃θτ (β)
}2

≤ Op(J
−2r
n ).

By the above result and Lemma 7.2.3, with probability 1 that

c1J
−1
n ≤ λmin

[
1

n

n∑
i=1

{
B(XT

i β)B(XT
i β)T

}]
≤ λmax

[
1

n

n∑
i=1

{
B(XT

i β)B(XT
i β)T

}]
≤ C1J

−1
n ,

we have

supβ∈Θ|| ˜̃θτ (β)− θ0
τ (β)||2 = Op(J

1/2−r
n )

Lemma 7.2.7. Under the same assumptions of Theorem 3.2.2, we have,

supb∈N0

∣∣∣∣||b||−1
2

{
D̃τn(b)−

[
Ωnb+

1

2
bT (Γn + ξ1I)b

]}∣∣∣∣ = op(n
−1/2)

where ξ1 = op(1) uniformly in b ∈ N0.

Proof of Lemma 7.2.7

First, define N0 = {b ∈ Rp : ||b||2 ≤ ξn} for any sequence of positive numbers

ξn = o(1). For the proof of following two lemmas, the arguments involving o(·),

op(·), O(·) and Op(·) hold in b ∈ N0 uniformly. Let T ∗i = Ti − ˜̃gn(xTi β
0, β0) and

C∗i = Ci − ˜̃gn(xTi β
0, β0), where ˜̃gn(xTi β

0, β0) = B(xTi β)˜̃θτ (β).
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Define

ψτn(b) =
1

n

n∑
i=1

ψτn,i(b)

=
1

n

n∑
i=1

{
D̃τn,i(b)− E

[
D̃τn,i(b)

∣∣∣X]
+ bI(Ti ≤ Ci)

[
ρ(1)
τ (T ∗i )

∂ ˜̃gn(XT
i β

0, β0)

∂βT
− E

(
ρ(1)
τ (T ∗i )

∂ ˜̃gn(XT
i β

0, β0)

∂βT

∣∣∣X)]
+ b

τ − F0

1− F0

I(Ti ≥ Ci, F0 ≤ τ)
[
ρ(1)
τ (C∗i )

∂ ˜̃gn(XT
i β

0, β0)

∂βT
− E

(
ρ(1)
τ (C∗i )

∂ ˜̃gn(XT
i β

0, β0)

∂βT

∣∣∣X)]}.
Here, D̃τn(b) = L̃∗τn(β0 + b)− L̃∗τn(β0). First, we want to show that

(i) sup
b∈N0

(
||b||−1

2 |ψτn(b)|
)

= op(n
−1/2),

(ii) sup
b∈N0

||b||−1
2

∣∣∣∣∣ 1n
n∑
i=1

E
[
D̃τn,i(b)

∣∣∣X]− 1

2
bTΓnb

− 1

n

n∑
i=1

bI(Ti ≤ Ci)
[
F0

(
˜̃gn(XT

i β
0, β0)|X

)
− τ
][∂ ˜̃gn(XT

i β
0, β0)

∂βT

]
− 1

n

n∑
i=1

b
τ − F0

1− F0

I(Ti ≥ Ci, F0 ≤ τ)
[
M0

(
˜̃gn(XT

i β
0, β0)|X

)
− τ
][∂ ˜̃gn(XT

i β
0, β0)

∂βT

]∣∣∣∣∣ = ξ1 = o(1)

(iii) sup
b∈N0

{
||b||−1

2

∣∣∣∣∣ 1n
n∑
i=1

b
{
I(Ti ≤ Ci)ρ

(1)
τ (T ∗i )

[∂ ˜̃gn(XT
i β

0, β0)

∂βT

]
+
τ − F0

1− F0

I(Ti ≥ Ci, F0 ≤ τ)ρ(1)
τ (C∗i )

[∂ ˜̃gn(XT
i β

0, β0)

∂βT

]
− Tnb

∣∣∣∣∣
}

= dn = op(n
−1/2)

Combine the above three results (i), (ii) and (iii), then

sup
b∈N0

∣∣∣∣∣||b||−1
2

{
D̃τn(b)−

[
Ωnb+

1

2
bT (Γn + ξ1I)b

]} ∣∣∣∣∣ ≤ sup
b∈N0

(||b||−1
2 |ψτn(b)|)+dn = op(n

−1/2)
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Hence, the Lemma 7.2.7 is proved. First, let us prove (i). Let

ri(β
0, b) = ˜̃gn(XT

i (β0 + b), β0 + b)− ˜̃gn(XT
i β

0, β0),

by Assumptions, we have

sup
X

∣∣∣∣∣ri(β0, b)−
[∂ ˜̃gn(XT

i β
0, β0)

∂βT

]
b

∣∣∣∣∣ ≤ c0||b||22.

We also know that sup1≤i≤n

∣∣∣∣∣B(1)(XT
i β)T ˜̃θτ (β

0) − g
(1)
n (XT

i β
0)

∣∣∣∣∣ = Op(J
1−r
n ), from

Lemma 7.2.5, we can have

sup
1≤i≤n

∣∣∣∂ ˜̃gn(XT
i β

0, β0)

∂βT
− g(1)

n (XT
i β

0)X̃i
T
∣∣∣

= sup
1≤i≤n

∣∣∣B(1)(XT
i β

0)T ˜̃θτ (β
0)XT

i +B(XT
i β

0)T
∂ ˜̃θτ (β

0)

∂βT

− g(1)
n (XT

i β
0)Xi

T + g(1)
n (XT

i β
0)E∗(Xi

T |XT
i β

0)
∣∣∣

≤ sup
1≤i≤n

∣∣∣B(1)(XT
i β

0)T ˜̃θτ (β
0)− g(1)

n (XT
i β

0)
∣∣∣∣∣∣Xi

∣∣∣
+ sup

1≤i≤n

∣∣∣B(XT
i β

0)T
∂ ˜̃θτ (β

0)

∂βT
+ g(1)

n (XT
i β

0)E∗(Xi
T |XT

i β
0)
∣∣∣

=Op((log n)1/2J1/2
n n−1/2 + J1−r

n +N−1
n ).

By the above two results, then with probability approaching 1,

sup
1≤i≤n

∣∣∣ri(β0, b)− g(1)
n (XT

i β
0)X̃T

i b
∣∣∣

≤ sup
1≤i≤n

∣∣∣[∂ ˜̃gn(XT
i β

0, β0)

∂βT

]
b− g(1)

n (XT
i β

0)X̃T
i b
∣∣∣+ c0||b||22

≤c1((log n)1/2J1/2
n n−1/2 + J1−r

n +N−1
n )||b||2 + c0||b||22,
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for constant c1 > 0. Then for constant c2 > 0, we have with probability approaching

1,

sup
1≤i≤n

∣∣∣ri(β0, b) ≤ c2||b||2.

Denote

∆n,i(b) =
τ − F0

1− F0

I(Ti ≥ Ci, F0 ≤ τ)
[
ρτ
(
Ci −B(XT

i (β0 + b))T ˜̃θτ (β
0 + b)

)
− ρτ

(
Ci −B(XT

i β
0, β0)T ˜̃θτ (β

0)
)

+ ρ(1)
τ (C∗i )

∂ ˜̃gn(XT
i β

0, β0)

∂βT

]
+I(Ti ≤ Ci)

[
ρτ
(
Ti −B(XT

i (β0 + b)b)T ˜̃θτ (β
0 + b)

)
− ρτ

(
Ti −B(XT

i β
0, β0)T ˜̃θτ (β

0)
)

+ ρ(1)
τ (T ∗i )

∂ ˜̃gn(XT
i β

0, β0)

∂βT

]
+τ
[
I(Ti ≤ Ci)−

τ − F0

1− F0

I(Ti ≥ Ci, F0 ≤ τ)
]

[
B(XT

i (β0 + b))T ˜̃θτ (β
0 + b)

)
−B(XT

i β
0, β0)T ˜̃θτ (β

0)
)]

Then by definition of φτn,i(b), we know φτn,i(b) = ∆n,i(b) − E(∆n,i(b)|X). With

probability approaching 1, we have

sup
1≤i≤n

E

{[
||b||−1

2 ∆n,i(b)
]2∣∣∣X} ≤ c3||b||2 ≤ c3δn,
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for constant c3 > 0. So, we can have the following,

sup
1≤i≤n

E

{[
||b||−1

2 φτn,i(b)
]2∣∣∣X}

= sup
1≤i≤n

E

{[
||b||−1

2

(
∆n,i(b)− E

(
∆n,i(b)|X

))]2∣∣∣X}

≤2 sup
1≤i≤n

E

{[
||b||−1

2 ∆n,i(b)
]2∣∣∣X}+ 2 sup

1≤i≤n

∣∣∣∣E[||b||−1
2 ∆n,i(b)

∣∣X]∣∣∣∣2
≤2 sup

1≤i≤n
E

{[
||b||−1

2 ∆n,i(b)
]2∣∣∣X}+ 2 sup

1≤i≤n

∣∣∣∣E[||b||−1
2 ∆n,i(b)

∣∣X]∣∣∣∣2
≤4 sup

1≤i≤n
E

{[
||b||−1

2 ∆n,i(b)
]2∣∣∣X} ≤ c4δn

Also, E[φτn,i(b)|X] = 0. Then for i 6= j,

E
[
φτn,i(b)φτn,j(b)|X

]
= E

{[
∆n,i(b)−E

(
∆n,i(b)|X

)][
∆n,j(b)−E

(
∆n,j(b)|X

)]∣∣∣X} = 0

Also, for some constant c5 > 0, we have sup1≤i≤n ||b||−1
2 |∆n,i(b)| ≤ (1 + τ)c0||b||2 +

2||b||−1
2 sup1≤i≤n |ri(β0, b)| ≤ c5. By Bernstein’s inequality in Bosq (1998), for 0 <

ζ < 1/2, there exists positive constant c6, c7, such that P
{
||b||−1

2 |φτn(b)| > c6n
1/2ξ

1/2−ζ
n /n

}
≤

2 exp
{
− c7 min(ξ−2ζ

n , n1/2ξ
1/2−ζ
n )

}
. Then,

sup
1≤i≤n

||b||−1
2 |φτn(b)| = Op(n

−1/2ξ1/2−ζ
n ) = op(n

−1/2).
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Secondly, let’s prove (ii). From the identify in Knight (1998), we have

1

n

n∑
i=1

E{D̃τn,i(b)|X}

=
1

n

n∑
i=1

{
τ − F0

1− F0

I(Ti ≥ Ci, F0 ≤ τ)
[ ∫ ri(β

0,b)

0

F0

{
˜̃gτn(XT

i β
0, β0) + t|Xt

}
dt− τ

n

n∑
i=1

ri(β
0, b)

]
+ I(Ti ≤i)

[ ∫ ri(β
0,b)

0

M0

{
˜̃gτn(XT

i β
0, β0) + t|Xi

}
dt− τ

n

n∑
i=1

ri(β
0, b)

]
− τ
[
I(Ti ≤ Ci)−

τ − F0

1− F0

I(Ti ≥ Ci, F0 ≤ τ)
]

[
B(XT

i (β0 + b))T ˜̃θτ (β
0 + b)−B(XT

i β
0, β0)T ˜̃θτ (β

0)
]}

By the Lipschitz condition of f0(t|Xi) and m0(t|Xi), with probability approaching

1, for positive constants c8, c9, we have

sup
b∈N0

||b||−2
2 sup

1≤i≤n

∣∣∣∣∣
∫ ri(β

0,b)

0

F0

{
˜̃gτn(XT

i β
0, β0) + t|Xi

}
dt

−
[
F0

{
˜̃gτn(XT

i β
0, β0)|Xi

}
ri(β

0, b) +
1

2
f0

{
˜̃gτn(XT

i β
0, β0)|Xi

}
r2
i (β

0, b)

]∣∣∣∣ ≤ c8ξn

sup
b∈N0

||b||−2
2 sup

1≤i≤n

∣∣∣∣∣
∫ ri(β

0,b)

0

M0

{
˜̃gτn(XT

i β
0, β0) + t|Xi

}
dt

−
[
M0

{
˜̃gτn(XT

i β
0, β0)|Xi

}
ri(β

0, b) +
1

2
m0

{
˜̃gτn(XT

i β
0, β0)|Xi

}
r2
i (β

0, b)

]∣∣∣∣ ≤ c9ξn
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Then we have

sup
b∈N0

||b||−2
2

1

n

∣∣∣∣ n∑
i=1

E{D̃τn,i(b)|X}

− 1

n

n∑
i=1

I(Ti ≤ Ci)

{
ri(β

0, b)
[
F0

{
˜̃gτn(XT

i β
0, β0)|Xi

}
− τ
]

+
1

2
f0

{
˜̃gτn(XT

i β
0, β0)|Xi

}
r2
i (β

0, b)

}

− 1

n

n∑
i=1

1

n

n∑
i=1

{
τ − F0

1− F0

I(Ti ≥ Ci, F0 ≤ τ)

{
ri(β

0, b)
[
M0

{
˜̃gτn(XT

i β
0, β0)|Xi

}
− τ
]

+
1

2
m0

{
˜̃gτn(XT

i β
0, β0)|Xi

}
r2
i (β

0, b)

}∣∣∣∣ ≤ c10ξn

By the result that supX

∣∣∣∣∣ri(β0, b)−
[
∂ ˜̃gn(XT

i β
0,β0)

∂βT

]
b

∣∣∣∣∣ ≤ c0||b||22, and sup1≤i≤n |˜̃gτn(XT
i β

0, β0)−

gτ (X
T
i β

0)| = Op(J
−r
n ), with probability approaching 1,

sup
b∈N0

||b||−2
2

∣∣∣∣ sup
1≤i≤n

[
ri(β

0, b)− ∂ ˜̃gτn(XT
i β

0, β0)

∂βT

][
F0

{
˜̃gτn(XT

i β
0, β0)|Xi

}
− τ
]∣∣∣∣ ≤ c11J

−r
n

and

sup
b∈N0

||b||−2
2

∣∣∣∣ sup
1≤i≤n

[
ri(β

0, b)− ∂ ˜̃gτn(XT
i β

0, β0)

∂βT

][
M0

{
˜̃gτn(XT

i β
0, β0)|Xi

}
− τ
]∣∣∣∣ ≤ c12J

−r
n

Also,

sup
b∈N0

||b||−2
2

1

n

∣∣∣∣ n∑
i=1

I(Ti ≤ Ci)
1

2

[
f0

{
˜̃gτn(XT

i β
0, β0)|Xi

}
r2
i (β

0, b)

− f0(gτ (X
T
i β

0))[g(1)
τ (XT

i β
0)]2bT X̃iX̃i

T
b
]
− 1

n

n∑
i=1

1

n

n∑
i=1

1

2

[
f0

{
˜̃gτn(XT

i β
0, β0)|Xi

}
r2
i (β

0, b)

−m0(gτ (X
T
i β

0))[g(1)
τ (XT

i β
0)]2bT X̃iX̃i

T
b
]

+
1

2
m0

{
˜̃gτn(XT

i β
0, β0)|Xi

}
r2
i (β

0, b)

∣∣∣∣
≤ c13J

−r
n + c14

(
(log n)1/2J1/2

n n−1/2 + J1−r
n + J−1

n

)
+ c15ξn



80

Thus, the ξ1 from (ii) would be c10ξn+c11J
−r
n +c12J

−r
n +c13J

−r
n +c14

(
(log n)1/2J

1/2
n n−1/2+

J1−r
n + J−1

n

)
+ c15ξn = o(1).

Thirdly, we want to show (iii), which is dn = op(n
−1/2). Decompose

1

n

n∑
i=1

ρ(1)
τ (T ∗i )

∂ ˜̃gτn(XT
i β

0, β0)

∂βT
b− 1

n

n∑
i=1

[
τ − I(Ti < gτ (X

T
i β

0))
]
g(1)
τ (XT

i β
0)X̃T

i b

= (Π1 + Π2 + Π3)T b

where

Π1 =
1

n

n∑
i=1

[
τ − I(Ti < gτ (X

T
i β

0))
][∂ ˜̃gτn(XT

i β
0, β0)

∂βT
− g(1)

τ (XT
i β

0)X̃i

]
,

Π2 =
1

n

n∑
i=1

{
ρ(1)
τ (T ∗i )−

[
τ − I(Ti < gτ (X

T
i β

0))
]}
g(1)
τ (XT

i β
0)X̃i,

Π3 =
1

n

n∑
i=1

{
ρ(1)
τ (T ∗i )−

[
τ −I(Ti < gτ (X

T
i β

0))
]}[∂ ˜̃gτn(XT

i β
0, β0)

∂βT
−g(1)

τ (XT
i β

0)X̃i

]
.

Similarly, decompose

1

n

n∑
i=1

ρ(1)
τ (C∗i )

∂ ˜̃gτn(XT
i β

0, β0)

∂βT
b− 1

n

n∑
i=1

[
τ − I(Ci < gτ (X

T
i β

0))
]
g(1)
τ (XT

i β
0)X̃T

i b

= (Π4 + Π5 + Π6)T b

where

Π4 =
1

n

n∑
i=1

[
τ − I(Ci < gτ (X

T
i β

0))
][∂ ˜̃gτn(XT

i β
0, β0)

∂βT
− g(1)

τ (XT
i β

0)X̃i

]
,

Π5 =
1

n

n∑
i=1

{
ρ(1)
τ (C∗i )−

[
τ − I(Ci < gτ (X

T
i β

0))
]}
g(1)
τ (XT

i β
0)X̃i,
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Π6 =
1

n

n∑
i=1

{
ρ(1)
τ (C∗i )−

[
τ−I(Ci < gτ (X

T
i β

0))
]}[∂ ˜̃gτn(XT

i β
0, β0)

∂βT
−g(1)

τ (XT
i β

0)X̃i

]
.

It’s sufficient to show that Pj = op(n
−1/2) for j = 1, ..., 6. The proof can be found

in Ma and He (2016), Page S.15 - S.17. Then

dn ≤
∣∣∣ sup
b∈N0

||b||−1
2 I(T ≤ C)(Π1 + Π2 + Π3)T b

∣∣∣
+
∣∣∣ sup
b∈N0

||b||−1
2

τ − F0

1− F0

I(T ≥ C,F0 ≤ τ)(Π4 + Π5 + Π6)T b
∣∣∣

≤ ||Π1 + Π2 + Π3||2 + ||Π4 + Π5 + Π6||2

= op(n
1/2)

Thus, the Lemma 7.2.7 is proved.

Lemma 7.2.8. Under the conditions of Theorem 3.2.2, we have,

supb∈N0

∣∣∣Dτn(b)− D̃τn(b) + ξ2||b||2 + ξ3||b||1/22

∣∣∣ = op(n
−1)

where ξ2 = op(n
1/2) and ξ3 = Op ((logn)Jn/n) uniformly in b ∈ N0.

Proof of Lemma 7.2.8

The result of Lemma 7.2.8 will be proved if we can show the followings,

(i) sup
b∈N0

∣∣∣E{Dτn(b)|X
}
− E

{
D̃τn(b)|X

}
+ δ2||b||2 + δ3||b||1/22

∣∣∣ = op(n
−1)

where δ2 = op(n
−1/2) and δ3 = Op

(
(log(n))Jnn

−1
)

uniformly in b ∈ N0, and

(ii) sup
b∈N0

∣∣∣Dτn(b)− D̃τn(b)− E
{
Dτn(b)|X

}
+ E

{
D̃τn(b)|X

}
+ δ∗2||b||2 + δ∗3||b||

1/2
2

∣∣∣ = op(n
−1)

where δ∗2 = op(n
−1/2) and δ∗3 = Op

(
(log(n))Jnn

−1
)

uniformly in b ∈ N0. We will
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show the result of (i), while the (ii) can be obtained similarly. Since ˜̃θτ (β) is the

minimizer of E{Lτn(θ, β)|X}, then set ∂E{Lτn(θ,β)|X}
∂θ

= 0. We have the following,

1

n

n∑
i=1

E

{
τ − F0

1− F0

I(T ≥ C,F0 ≤ τ)ρ(1)
τ (Ci −B(XT

i β)T ˜̃θτ (β))

+I(Ti ≤ Ci)ρ
(1)
τ (Ti −B(XT

i β)T ˜̃θτ (β))

+
[
I(Ti > Ci)−

τ − F0

1− F0

I(T ≥ C,F0 ≤ τ)
]
B(XT

i β)
∣∣∣X} = 0

Then by Taylor expansion,

E
{
Lτn(θ, β)|X

}
− E

{
Lτn(˜̃θτ (β), β)|X

}
=− 1

n

n∑
i=1

τ − F0

1− F0

I(T ≥ C,F0 ≤ τ)

{
E
[
ρ(1)
τ (Ci −B(XT

i β)T ˜̃θτ (β))B(XT
i β)T (θ − ˜̃θτ (β))

∣∣∣]−
1

2
m0

(
B(XT

i β)T θ∗τ (β)|Xi

)
(θ − ˜̃θτ (β))TB(XT

i β)B(XT
i β)T (θ − ˜̃θτ (β))

}
− 1

n

n∑
i=1

I(Ti ≤ Ci)

{
E
[
ρ(1)
τ (Ti −B(XT

i β)T ˜̃θτ (β))B(XT
i β)T (θ − ˜̃θτ (β))

∣∣∣]−
1

2
f0

(
B(XT

i β)T θ∗τ (β)|Xi

)
(θ − ˜̃θτ (β))TB(XT

i β)B(XT
i β)T (θ − ˜̃θτ (β))

}
=

1

2n

n∑
i=1

{
I(Ti ≤ Ci)f0

(
B(XT

i β)T θ∗τ (β)|Xi

)
(θ − ˜̃θτ (β))TB(XT

i β)B(XT
i β)T (θ − ˜̃θτ (β))+

τ − F0

1− F0

I(T ≥ C,F0 ≤ τ)m0

(
B(XT

i β)T θ∗τ (β)|Xi

)
(θ − ˜̃θτ (β))TB(XT

i β)B(XT
i β)T (θ − ˜̃θτ (β))

}

where θ∗τ (β) is between θ and ˜̃θτ (β). By the Lipschitz continuity of f0(·|Xi) and

m0(·|Xi), then

∣∣∣∣f0

(
B(XT

i β)T θ∗τ (β)|Xi

)
− f0

(
g̃τ (X

T
i β, β)θ∗τ (β)|Xi

)∣∣∣∣
≤ c1

(
||B(XT

i β)||2||θ0(β)− ˜̃θ(β)||2
)

+R1(XT
i β, β)
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and,

∣∣∣∣m0

(
B(XT

i β)T θ∗τ (β)|Xi

)
−m0

(
g̃τ (X

T
i β, β)θ∗τ (β)|Xi

)∣∣∣∣
≤ c2

(
||B(XT

i β)||2||θ0(β)− ˜̃θ(β)||2
)

+R2(XT
i β, β)

for some positive constants c1, c2. Hence for Ln � Jnn
−1/2,

sup
β∈Θ,|| ˜̃θτ (β)−θ||2≤Ln

∣∣∣∣∣E{Lτn(θ, β)|X
}
− E

{
Lτn(˜̃θτ (β), β)|X

}
−

1

2n

n∑
i=1

{
I(Ti ≤ Ci)f0

(
B(XT

i β)T θ∗τ (β)|Xi

)
(θ − ˜̃θτ (β))TB(XT

i β)B(XT
i β)T (θ − ˜̃θτ (β))−

τ − F0

1− F0

I(T ≥ C,F0 ≤ τ)m0

(
B(XT

i β)T θ∗τ (β)|Xi

)
(θ − ˜̃θτ (β))TB(XT

i β)B(XT
i β)T (θ − ˜̃θτ (β))

}∣∣∣∣∣
= O

(
Jnn

−1(Jnn
−1/2 + J−rn )

)
= o(n−1)

Moreover, by Lemma 7.2.6, we know

sup
β∈Θ
||θ̃τ (β)− ˜̃θτ (β)||2 = Op(Jnn

−1/2).

Since Lτn(˜̃θτ (β), β) = L̃∗τn(β) and Lτn(θ̃τ (β), β) = L∗τn(β), then

sup
β∈Θ

∣∣∣E[L∗τn(β)|X]− E[L̃∗τn(β)|X]− 1

2
Πn(β)

∣∣∣ = op(n
−1).

Since Dτn(b) = L∗τn(β0 + b)−L∗τn(β0) and D̃τn(b) = L̃∗τn(β0 + b)− L̃∗τn(β0), then we

have

sup
β∈Θ

∣∣∣E[Dτn(b)|X]− E[D̃τn(b)|X]− 1

2
[Πn(β0 + b)− Πn(β0)]

∣∣∣ = op(n
−1).
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Follow the procedure in Ma and He (2016) Page S.19 - S.20, we can show that

Πn(β0 + b)− Πn(β0) = op(n
1/2)||b||2 +Op((log n)Jn/n)||b||1/22 .

Thus, the proof of Lemma 7.2.8 is complete.

Lemma 7.2.9. Suppose Assumptions 3.1.1-3.1.5 hold, then for any q ≥ 1,

(i)

||F̂−F0||H = sup
t

sup
x
|F̂ (t|x̂)−F0(t|x)| = sup

t
sup
z
|F̂ (t|ẑ)−F0(t|z0)| = Op

(
{ log n

nhq
}1/2 + hv

)
,

(ii)

F̂ (t|z)− F0(t|z) =
n∑
j=1

Bnj(z)ξ(Yj, ηj, t, z) +Op({
log n

nhq
}3/4 + hv), a.s.

where,

ξ(Y, η, t, z) = {1− F0(t|z)}
[
−
∫ min(Y,t)

0

f0(s|z){1− F0(s|z)}−2{1−G(s|z)}−1ds

+I(Y ≤ t, η = 1){1− F0(Y |z)}−1{1−G(Y |z)}−1

]
.

The Lemma 7.2.9 comes from Lemma 1 of Wang et al. (2013).
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