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Abstract

Quantile regression, which is a valuable alternative to the commonly used Cox
proportional hazards model and accelerated failure time (AFT) model in survival
analysis, has been getting more attention recently due to its robustness and in-
terpretability. By allowing nonlinear relationship between survival time and risk
factors, we study a single index model for censored quantile regression, and employ
the B-spline approximation for estimation. To account for censoring, we consider
the redistribution-of-mass to obtain a weighted quantile regression estimator. In
addition, dimension reduction approach is adopted to deal with the “curse of dimen-
sionality”. Furthermore, we penalize the developed estimator for variable selection
purpose. The proposed methods are easy to implement using the existing weighted
linear quantile regression algorithm compared to available methods, and can be
generalized to multiple index models. The asymptotic properties of the developed
estimator are investigated and the estimator’s numerical performance is illustrated
in simulation studies. We also apply the proposed methods to Boston housing data

and kidney transplant study.
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Chapter 1

Introduction

1.1 Motivation

Kidney transplantation is a surgical procedure used to treat patients with end-stage
renal disease. Successful kidney transplantation is associated with prolonged sur-
vival, improved quality of life and healthcare cost savings when compared to dialysis.
There are two types of kidney donors, living donors and deceased donors. In 2014,
17107 kidney transplants took place in the US. Among them, 11570 came from
deceased donors and 5537 came from living donors (Organ Procurement and Trans-
plantation Network). However, the deficit between the number of the patients on
the waiting list for kidney transplantation and the availability of donor organs is in-
creasing in United States. By December 31, 2013, the kidney transplant waiting list
had 86965 candidates (dialysis patients only), while there were only 17600 kidney
transplants performed in 2013 (United States Renal Data System 2015 Annual Data
Report). The median waiting time for a patient’s first kidney transplant is 3.6 years
and could be longer depending on health, compatibility and availability of organs.

To combat this problem, the innovative use of the expanded criteria donor (ECD)



kidneys was introduced (Port et al., 2002). Deceased donor kidneys are classified as
ECD if donors aged > 60 years, or those aged between 50 and 59 years who meet at
least two of the criteria: serum creatinine > 1.5 mg/dL, death due to cerebrovascular
accident, or history of hypertension. In reality, some kidneys labelled as Standard
Criteria Donor (SCD) may have a reduced graft survival, while some ECD kidneys
might perform well. Therefore, instead of the simple dichotomized ECD/SCD ecri-
teria, quantitative models are needed to give a more precise evaluation of the donor
kidney quality. An improvement over the binary ECD/SCD classification is the scor-
ing system developed by Nyberg et al. (2003). This system included five variables:
donor age, history of hypertension, creatinine clearance, cause of death and the
number of HLA-mismatches. Cadaver kidneys were stratified by cumulative donor
score: grade A, 0-9 points; grade B, 10-19; grade C, 20-29; and grade D, 30-39. A
higher score and grade reflected poorer organ quality. However, this scoring system
is not widely used in practice since it was not replicable in independent cohort (Lee
and Abramowicz, 2014).

As stated in Nyberg et al. (2005), a more precise index, which takes advan-
tage of the increasingly documented medical records including donor, recipient and
transplant information, is of great value. Rao et al. (2009) proposed the Kidney
Donor Risk Index (KDRI), which is a graft failure risk score that could capture
donor and transplant characteristics. It consists of a multivariable Cox proportional
hazards model, combined with stepwise selection. The model avoids categorization
and is based on the association between ten donor /recipient characteristics and the
graft survival. The KDRI is an easily applicable scoring system which provides
the clinicians with a guide to objectively assess the quality of the donor kidneys.
However, KDRI has some challenges. First, it does not allow heteroscedastic effect

of variables for higher/lower risk (shorter/longer survival time) patients. Secondly,



the association between the graft survival and risk factors might be unknown and
non-linear. Thirdly, the essential problems for traditional stepwise selection such as
high bias, admirably summarized by Harrell (2001), remain for KDRI. Hence, new
models and methods of creating a new index, finding informative risk factors, are in
need to better match donor and recipient for improving survival time after kidney
transplantation. The method developed in this thesis could take into account of
the heteroscedastic effect of variables, the nonlinearity between survival and risk
factors, and variable selections. Moreover, this method can be used to estimate
different quantiles of the survival times and could provide a more complete picture

of transplantation for physicians.

1.2 Overview of Variable Selection

High dimensional data analysis is important and has been widely used in biomed-
ical studies. For example, tens of thousands of molecular expressions are poten-
tial predictors in microarray data; hundreds of thousands of single nucleotide poly-
morphisms (SNPs) are possibly associated with the clinical outcome of interest in
genome-wide association study (Fan and Lv, 2010). To deal with a large number of
covariates, a common biomedical approach is testing the association between each
covariate and the outcome of interest through a regression model; selecting a subset
of those covariates based on their significance, and using the selected covariates in
a multivariable regression model. This commonly used variable selection method in
biomedicine would be in great challenge when the number of covariates selected is
high for large datasets. Prediction accuracy and interpretation are two main draw-
backs for the above traditional regression analysis (Hastie et al., 2005). Another

widely used method in variable selection is stepwise regression methods. However,



some essential problems with those methods remain and have been summarized in
Harrell (2001). First, the parameter estimation tends to have higher bias. Secondly,
p-values tend to be too low, due to multiple comparisons, and are difficult to correct.

Penalized regression methods, such as LASSO (Least Absolute Shrinkage and
Selection Operator) in Tibshirani (1996) and SCAD (Smoothly Clipped Absolute
Deviation) in Fan and Li (2001) have been developed to overcome the limitation of
traditional stepwise variable selection models when the number of covariates is large

in a linear regression model,

Y =XpB+e, (1.1)

where Y is an n X 1 vector and X is an n X p matrix. Linear regression is a widely
used method to study association between continuous outcome and covariates.
Penalized regression methods are able to accomplish variable selection and es-
timation simultaneously for model (1.1). The regression parameters are assumed
to be sparse with some components being zero, and the nonzero components indi-
cate which variables are informative. Relative to the maximum likelihood estimates,
penalized methods shrink the estimates of regression coefficients towards zero.

A general form of the penalized least squares is

1 p
%HY—Xﬁ\F*’ZPj(WjD» (1.2)

j=1
where p;(| - |) is a penalty function that can take different forms. Two examples
are the Ly penalty p;(|6]) = \|6]? resulting in ridge regression, and the LASSO has
the L, penalty p;(|f]) = A|f]. A linear combination of the L; and L, penalties
is the Elastic Net, which enjoys a similar sparsity representation as LASSO, while

encouraging a grouping effect (Zou and Hastie, 2005). The continuous differentiable



penalty function defined by the derivative

Pa(0) = MI(0 < N) +2=2e1(6 > M)},

(a—

for some a > 2 and 6 > 0, is the SCAD penalty, where p)(0) = 0 and a ~ 3.7 as

suggested by Bayesian risk analysis. The Minimax Concave Penalty (MCP, Zhang
2010) is defined as

ph(6) = 250,

a

which translates the flat part of the derivative of SCAD to the origin. Zou (2006)
proposed a weighting scheme w; = | Bj | =7 in the penalty function of LASSO, leading
to the adaptive LASSO. The above variable selection methods for linear models can
be extended to the single index models for quantile regression, which are described

in the next section.

1.3 Overview of Single Index Model in Quantile
Regression

Quantile regression has become a unified statistical methodology for estimating mod-
els of conditional quantile functions. By complementing the exclusive focus of least
squares regression on the conditional mean, quantile regression offers an alternative
strategy to examine how covariates can influence the location, scale and shape of the
entire response distribution (Koenker, 2005). Quantile regression is also a valuable
alternative to the commonly used Cox proportional hazards model and accelerated
failure time (AFT) model used in survival analysis (Koenker and Geling, 2001). For
example, in a cancer study, it is known that treatment will cause different impacts

among patients in lower or upper quantiles of the survival distribution. Physicians



are interested in identifying treatment for more severe cases, i.e, lower quantiles,
while Cox and AFT models estimate covariate effects on the location only. In con-
trast, quantile regression directly links the quantiles of patients’ survival time to
their demographic and genomic profiles, allowing the covariates to exhibit different
impacts at different tails of the survival distribution.

The seminal work of Koenker and Bassett (1978) proposed the “check” loss
function to estimate the linear quantile regression model. Since then, a variety of
nonparametric methods, such as kernel based methods and spline smoothing meth-
ods, have been applied to accommodate nonlinear relationships; see for example, Yu
and Jones (1998), He and Shi (1994) and Koenker et al. (1994). However, the non-
parametric quantile regression with multivariable covariates is a difficult estimation
problem due to the “curse of dimensionality”. Another problem of nonparametric
quantile regression is that the estimated function can be difficult to visualize and in-
terpret with multivariable covariates. To reduce the dimensionality while retaining
much flexibility of a nonparametric model, a semiparametric single index model is
considered in this thesis. Single index models assume that the response of interest
depends on a linear combination of covariates through an unknown link function.
Many widely used parametric models such as linear model can be considered as spe-
cial cases of single index models. Single index models which are well motivated in
both econometrics and statistics, are applied to many objective functions, including
conditional mean and quantiles. For estimating the conditional mean in a single
index model, many methods exist, including the backfitting algorithm (Carroll et
al., 1997), the minimum average variance estimation (MAVE, Xia et al., 2002), the
penalized spline estimation (Yu and Ruppert, 2002), and the profile least squares
estimation (Liang et al., 2010). Moreover, Wu et al. (2010) proposed a modified

version of MAVE to estimate the conditional quantile in a single index model, and



Kong and Xia (2012) modified the algorithm by adding a penalty term. Later, Alke-
nani and Yu (2013) and Lv et al. (2014) proposed the penalized quantile regression
in a single index model. Instead of the traditional kernel based methods, Zou and
Zhu (2014) proposed M-estimators for single index model using the spline based ap-
proach. Recently, Ma and He (2016) proposed the profile estimation with B-spline

for both quantile estimation and inference.

1.4 Introduction to Censored Quantile Regression

Censoring happens when patients withdraw from the study, or patients haven’t
experienced the event when the study ends. That is to say, instead of observing
the survival time T;, we only observe the minimum of 7; and the censoring time
C;, ie., Y; = min(T;, C;). Censored quantile regression was first studied in Powell
(1984) and Powell (1986) for fixed censoring, where the censoring variables C; are
known to all observations, even for those uncensored. However, censoring times are
not always known in most survival analysis. In this thesis, we will focus on random
censoring.

Several articles deal with quantile regression for randomly censored survival out-
comes. Ying et al. (1995) proposed a semiparametric estimation procedure for a
censored median regression model, assuming 7; and C; are unconditionally indepen-
dent. Assuming that C; is independent of both x; and T;, Honore et al. (2002)
extended Powell’s approach to random censoring. Portnoy (2003) developed a novel
“recursive reweighting” scheme that generalizes the Kaplan-Meier estimator, with a
more relaxed assumption that T; and C; are independent given z;. Peng and Huang
(2008) proposed a martingale-based estimating procedure, which showed similar

performance to Portnoy (2003). Both approaches in Portnoy (2003) and Peng and



Huang (2008) rely on strong global assumption, that the conditional functionals at
lower quantiles are all linear when estimating the model at a given quantile level.
Wang and Wang (2009) adopted a similar redistribution of mass idea for linear quan-
tile regression, but estimated the censoring probability nonparametrically using the
local Kaplan-Meier method.

To the best of our knowledge, the literature on single index model for censored
quantile regression is very limited. Two unpublished manuscripts, Biicher et al.
(2014) and Christou and Akritas (2016), use similar inverse-probability-weighting
scheme to handle censored observations, but estimate the model using local linear
smoothing and nonlinear optimization, respectively.

In this thesis, we propose the estimation of single index model for the conditional
quantile function when the data is right censored. Comparing to current quantile
regression for censored outcomes, our approach relaxes the strong linear assumption
to the non-linear assumption with an unknown link function. As in Wang et al.
(2013), we also relax the stringent assumption that 7; and C; are unconditionally
independent in Biicher et al. (2014). Our method adopts the redistribution of mass
idea of Efron (1967) to account for the censoring in quantile regression. Besides, the
B-spline approach is taken to estimate the link function nonparametrically, and a
weighted linear quantile regression is used to estimate the parametric index. What’s
more, in the presence of multiple covariates, penalized methods such as LASSO
(Tibshirani, 1996) and SCAD (Fan and Li, 2001) can be imposed to the developed
estimator to shrink some coefficients of the single index components to zeros for
selecting informative variables. Simulation studies are conducted to examine the
performance of proposed method and to compare it with existing methods. The
numerical outcomes show improved performance of our proposed approach across

different quantile levels and censoring percentages when the number of covariates is



relatively large.

Compared to existing methods, our approach enjoys several distinctive advan-
tages. First, our method relaxes the stringent assumption that survival time and
censoring time are unconditionally independent in Biicher et al. (2014). Second,
our algorithm with B-spline approximation is computationally simple and easy to
implement, while Biicher et al. (2014) and Christou and Akritas (2016) estimate
the model with local linear approximation and nonlinear optimization. Finally, our
approach can achieve sparsity while both existing manuscripts only do estimation
without variable selection.

In Section 2, the proposed model is presented and unpenalized and penalized
estimators are developed, along with algorithm and computation. In Section 3, the
asymptotic properties of the proposed estimators are provided. Section 4 investi-
gates the finite sample performance of proposed methods through simulation studies,
and compares the results with existing methods. Boston housing data and kidney
transplant study are analyzed in Section 5 using the developed methods. The thesis
concludes with some discussion of future directions in Section 6. All technical proofs

are deferred to Chapter 7.
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Chapter 2

Model Setup and Estimation

2.1 Model Setup

Denote T; as an uncensored survival outcome, z; as an observable p-dimensional
covariates, and C; as a censoring variable for the ith subject with ¢ = 1,...,n.
In the proposed single index model, the 7th conditional quantile of T; given z;,

Q,(Ti|z;) = inf{t : P(T; < t|z;) > 7}, is expressed as

Q- (Tilas) = g-(x7 B-), (2.1)

where ¢,(-) is an unknown smooth link function, 3, is a p-dimensional unknown
quantile coefficient vector on the unit sphere with ||3;|| = 1, and the first nonzero
element of 3, is assumed to be positive for identifiability (Lin and Kulasekera, 2007).

Without loss of generality, assuming 3, # 0, the parameter space is

O = {67' = (5717 ~--aﬁ7’p) : H/BTH = 17ﬁ7‘1 > 0}
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In practice, we only observe (z;,Y;,n;), where Y; = min(7;,C;) is the observed
censored response and n; = I(T; < C;) is the censoring indicator. When n; = 1 for
all 7, Y; = T; are observed, and 3, is estimated by solving the following optimization

problem.

B =arg min F[p- (Y - g(X"5))]

where p, () = p{T — I(1x < 0)} is the “check” loss function (We omit 7 in 3, and
g-(+) for notational convenience).

Suppose {(z;,Y;),i = 1,2...,n} is the sample, the minimization is as follows,

-~

6 = arg min ZPT (Y; - g($?ﬁ)) :
=1

geEH,EO

2.2 Single Index Model for Censored Quantile Re-

gression

2.2.1 Estimation of Re-distribution of Mass

In the censored quantile regression setting, the idea is to redistribute the probability
mass P(T; > C;|C;, ;) of the censored cases to the right. Let Fy(tlx) = P(T <
t|z) denote the cumulative distribution function (cdf) of T' given x. Define my; =
Fy(C;|x;) as the conditional probability for the ith subject not being censored. The
fundamental insight of redistribution of mass is that the derivative of p,(T;—g(z! 3))
depends only on the signs of the residuals T; — g(z! 3), and the mass at C; for some
censored observations may be redistributed to any point above the data, for example,

(x;, YT°°) without altering the quantile fit. The coefficient 5 can be estimated by
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minimizing the following objective function,

L(B.g.w Z {wip, (Vi — g(@T) + (1 —wp, (V> = gaTB)},  (22)
where Y7 is sufficiently large to exceed g(z!3) for all i, and

1 ni=1
w; =4 0 n; = 0 and Fo(Cjlx;) > 7 (2.3)

T—Fo(Cjlx;
17F§ECZ~||$3 ni = 0 and Fo(Cilz;) <7

In (2.2), the weights w; are used to remove the estimation bias due to censoring.
Note that when C' = +o00 (non-censored case), Fo(Clx;) = 1, so w; = 1 for all
7. Similar assignment of the above weighting scheme can be found in Wang and
Wang (2009), Portnoy and Lin (2010) and Wang et al. (2013). Estimation of
quantile index at any 7 depends on T; only through the signs of the residuals, i.e.
H{[T; — g(zFB)] < 0}. Accordingly, the weights w; in (2.3) are assigned in the

following three scenarios.

e Whenn; = 1,Y; =T, < C; and I{[T; — g(xI'B)] < 0} is observed. Thus, the
observation (z;,Y;) is assigned weight 1, and the paired “pseudo” observation

2;, Y 7°°) is not used.
(i,

e When 7; = 0, but Y; = C; > g(«7 8), we immediately know T; — g(z!'3) > 0,
and letting T; = Y+°° gives the same estimate. Thus, weight 0 is assigned to

(x;,Y:), and 1 to (x;, Y ).

e When 1, =0, but Y; = C; < g(x7 8), T; — g(z'B) can be positive or negative.
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However,

T — F()(Clll‘l)
E{I{[T; — g(z'B)] < O}|T; > C;, Cy, 2} = ——— 1
([T, - g75)] < 0} I (e
Thus, weight % is assigned to (z;,Y;), and 1 — % to (z;, Y.

In practice, the masses for redistribution, 1 — mp; = 1 — Fo(Cj|x;) are unknown. As
in Wang and Wang (2009), we propose to use local Kaplan-Meier estimator when

the dimension of x; is low,

n; (t)

n

. B,
F(tle)=1-]]41- = () : (2.4)
j=1 > 1Yy > Y})Buk()
k=1
where 7;(t) = I(Y; < t,n; = 1), Bui(x) = Kl 1y this thesis, we adopt the
> Kq(51)
i=1
commonly used product kernel function Ky (us,...,u,) = [[{_; K(u;), where K(-) is

a univariate kernel function with bandwidth A.

2.2.2 Dimension Reduction Approach

The above estimator in (2.4) is only feasible when the covariates dimension p is
small, due to the “curse of dimensionality”. For large p, it can be estimated after
dimension reduction as in Wang et al. (2013). Dimension reduction estimates a set
of directions ~; such that

Tilla;|(x] yiy ey T ) (2.5)

Censored sliced inverse regression (cSIR) in Li et al. (1999) and hazard minimum
average variance estimation (hMAVE) in Xia et al. (2010) can estimate those di-

rections with ¢ < p in general. With (2.5), high-dimensional z; is replaced by its
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low-dimensional projection z; = (21, ..., zig)" with z;; = 7, without losing regres-
sion information for 7;. The estimator (2.4) can then be applied to z; to estimate
w;, given that Fy(t|z;) = Fy(t|z;) implied by (2.5).

With the estimated weight, the objective function changes accordingly to

n

L(B,g9.%) =) {wim — 9@l ) + (1= d)p, (Y™ — g(a]5)) } (2:6)
i=1
where w; are the estimated redistribution of mass weights by replacing Fy with F

in w.

2.2.3 Estimation of the Unknown Link Function

The unknown link function ¢(-) is estimated by local linear approximation in Wu
et al. (2010), and Kong and Xia (2012). As in Zou and Zhu (2014), and Ma and
He (2016), we adopt the B-splines approximation g(2? ) ~ B(2?3)0 due to faster
computation. Here, 6 is the B-spline coefficients. Given the spline order r and a set
of quasi-uniform knots a =ty < t; < ... <ty < ts11 = b, satisfying

max [tj41 — 4]/ min [t — 6] < M

for some constant 0 < M < oo, where s is the number of interior knots, the nor-
malized B-spline basis functions are denoted as B(u) = {B;(u) ;-];1 with J, = s+r.

From the B-spline approximation, the objective function (2.4) can be written as

n

L(5,6,0) =Y {w,o (i = BT B)8)) + (1 — ii)p, (Y = BT 8)9) } (2.7)

i=1
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The estimator of g(u) at any point u is B(u)f, where 6 is obtained by minimizing

(2.7).

2.3 Single Index Model with Variable Selection

When we apply the single index model in real data analysis, many irrelevant vari-
ables may be included in the model, making interpretation and prediction less favor-
able. As needed, variable selection method is adopted to select informative variables.
Here, we propose the penalized estimator B by minimizing the following adaptive

LASSO (Zou, 2006) type penalized objective function

Lar(B,0,0) = )+ )\Z ||§]‘5
= {wp (Yi = B(a{ )0)) + (1 — @i)p, (Y™ — B(a] 8)f) } (2.8)
151
* AZ 10

where Bj is the jth element of the initial consistent estimator. Other forms of penalty
functions such as LASSO (Tibshirani, 1996) and SCAD (Fan and Li, 2001) can also
be applied here. In our implementation, we set B as the unpenalized estimator and

0 =2.
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2.4 Computation and Tuning

2.4.1 The Algorithm

Given the original observed data {(z;,n;,Y;),i = 1,...,n}, we define n pseudo paired
observations {(z1,m1,Y "), ..., (Xn, M, Y ) }. After the calculation of weights wy,
we assign local weights w; to original data, while assign 1—w; to the pseudo data. In
the implementation, we set Y7 = 1000 max{|Y;|, ..., |[¥»|}. The penalized objective
function can be optimized by the following iteration between S® and o0,

Step 1, Given 8", obtain o0 by
m@iniz1 {107;,07 <Yi — B(:UiTB(Z))Q) + (1 —wy)pr <Y+°O — B(xiTB(l))Q)} :

Step 2, Given 0", g(x7 ) can be approximated by g(278) ~ g(zL ) +¢/ (2T D) zT (-
B0 = BT A0 + BT F0)60LT(5 — 30). Obtain A by

min ) {wp (Y: = Bl 880 - B (al30)80T (5 - BV) ) +
i=1 (2.9)

(U)o (7 = Bl 3000 — BT 30007 (5~ ) |

where B'(-) contains the derivatives of the B-spline basis functions in B().

Repeat Step 1 and Step 2 until convergence, output 3, 6.
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Step 3, obtain the penalized estimator B by solving
. A - T ~0 N - ’ T ~_ A T _ ~
mn 3 {ig, (vi - BT - B paT (0 - 7)) +
(Lo, (Y4~ BEIRD - BGTAITG-5) | @10

P
1351
A5

j=1

~

Finally, we estimate g(u) with B(u)#.

Each step in the proposed algorithm can be solved using existing functions for
linear quantile regression in R package; this is advantageous to Biicher et al. (2014)
and Christou and Akritas (2016), which uses time consuming local linear approx-
imation or complicated nonlinear quantile regression algorithms. Compared with
local linear approximation in Kong and Xia (2012), Wu et al. (2010) and Biicher
et al. (2014), the proposed algorithm using B-spline is more than 20 times faster
in computing speed in the numerical studies. Another advantage of the proposed
method is to use existing penalized linear quantile estimator to select informative
variables in Step 3 for single index quantile regression model, while formulation
of the problem in Biicher et al. (2014) and Christou and Akritas (2016) does not

facilitate variable selection for quantiles.

2.4.2 Initial Value and Tuning Parameters

There are two main practical issues in the computation; one is the choice of initial
value, another is the selection of tuning parameters. Wu et al. (2010) used average
derivative estimator (ADE) of Chaudhuri et al. (1997) for uncensored data as initial

value. In our numerical experience, the estimation is not sensitive to the choice of
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initial values. Unless specified for comparison, we used (1,...,1) € RP as initial
value.

There are two types of tuning parameters: one is bandwidth h and number

of internal knots s, another is A in the adaptive LASSO penalty. The B-spline
order r is usually fixed at 3 or 4 for quadratic or cubic splines. Our numerical
experience suggests that the performance of the proposed procedure is not sensitive
to the choice of h and s in some reasonable range. Similarly as in Wang and Wang
(2009) and Wang et al. (2013), we propose the K-fold cross validation criteria to
select the optimal pair of (h,s). In the cross validation, the data is divided into K
parts randomly with roughly equal sample size. For the kth part, £k =1,..., K, we
estimate 83, 6 based on the rest of K-1 parts of the data, and evaluate the quantile loss
CVi = p+ (Y, — B(2X)0) on uncensored data in the k-th part. Here, (z,,Y,) are the
uncensored data in the k-th part. Denoting C'V'(h, s) as the mean of CV;,...,CVk,
we select the optimal pair of (h,s) to minimize CV(h, s).
After selecting (h, s) by cross validation in the unpenalized objective function, we
use the commonly used Bayesian information criterion (BIC) type method in single
index model to choose the optimal A (Wang et al., 2007; Lv et al., 2014; Ma and
He, 2016). The BIC-type criterion is defined as

BIC() =tog (zlm > o (y - B(:c?@ﬁ)) + logz(:%df,

i:nizl

where B is the penalized estimation using A\, and df is the number of non-zero
clements in 3. The selected A\ minimizes the above BIC-type criterion. In our
implementation, we use the 5-fold cross validation, B-spline order 3, with fourth
order kernel function (Miiller, 1984) K(z) = 22(1 — 5z% + 7z* — 32%)I(|z| < 1) in

simulation study and data analysis.
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Chapter 3

Asymptotics

3.1 Regularity Conditions

Before stating the main theoretical results, we define the following functions,
(i) 1 — Fy(t|z) = P(T; > t|x), the survival function of 7; conditional on x.
(ii)1 — My(t|z) = P(C; > t|z), the survival function of C; conditional on z.
Denote Hy as the collection of functions on [a, b] such that the 7 order derivative
satisfies the Holder condition of order { with ¥ = r 4 (. In other words, there exists

a constant Cj such that
6 (u1) — ¢ (uz)| < Colur — us|,

for any ¢ € Hy, and any a < ug,us < b. Let g(u,3) be the 7-th quantile function
of T given 273 = u. Then we have g(z73°) = (27 3°, 3°) with the true coefficient
B°. Also, we have © = { = (b1, ..., 5,)" : ||8]l2 =1, B1 > 0}.

To establish the consistent and asymptotic results for the developed estimators,

we assume the following assumptions.
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Assumption 3.1.1. The density function of ' 3 is positive and uniformly contin-

wous for B in a neighborhood of 3°.

Assumption 3.1.2. Let Fy(t|z) and My(t|x) denote the cumulative distribution
functions of T; and C; conditional on x, respectively. The first derivatives of Fy(t|x)
and My(t|x) with respect to t, denoted as fo(t|x) and mo(t|x), are uniformly bounded
with respect to t and z. The Fy(t|z) and My(t|z) have bounded (uniformly in
t) second-order partial derivatives with respect to x. In addition, sup, |Fo(t|z") —

Fy(tlz)| = O(||2" — z||), where ||| denotes the Euclidean norm.

Assumption 3.1.3. The random vector x is bounded in probability, has a bounded

density function, and E(zx™) is a positive definite p X p matriz.

Assumption 3.1.4. There exists an effective dimension reduction (EDR) direction
v; € Risuch that for any j =1,...,q, (i) %5 — v; = Op(n™Y2); (i) n™Y2(3 — ) =
nt Z?:l dy;, where dy; are independent p-dimensional vectors with means zero and

finite variances.

Assumption 3.1.5. The univariate kernel function K(-) has a compact support. It
is a v-th order kernel function satisfying [ K (u)du =1, [ K*(u)du < oo, [u! K (u)du
0 for j <wv and [ |u]"K(u)du < oo, and it is Lipschitz continuous of order v, where

v > 218 an integer.

Assumption 3.1.6. The conditional density function of Y (either T or C) given
X ==z, fy(y|z) satisfies the Lipschitz condition of order 1, and fy(g(x*j3,)|x) > 0

for B € ©.
Assumption 3.1.7. §(u, ) € Hy for some 9 > 3/2 and any € ©.

The above assumptions are commonly used in literature and can be satisfied in

most applications. Assumption 3.1.1 was used in Wu et al. (2010) and Assumptions
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3.1.2 to 3.1.5 were assumed in Wang et al. (2013). Assumption 3.1.2 is to obtain
the asymptotic properties of the local Kaplan-Meier estimator. The boundedness
condition on x in Assumption 3.1.3 is for technical convenience. Assumption 3.1.1
and Assumption 3.1.3 also show the boundedness of density function on z73. As-
sumption 3.1.4 indicates the root-n consistency and asymptotic properties of the
estimated EDR direction. Assumption 3.1.5 shows that kernel function is vth or-
der, which depends on the dimensionality of ¢. Similar as in Ma and He (2016), the
Assumption 3.1.6 and Assumption 3.1.7 are used to help provide the asymptotic

normality.

3.2 Asymptotic Properties

Assume C' and T are independent conditional on z, and set h = O(n™®) for some

a. For any positive numbers a,, and b,, a, < b, means Z—: =o(1).

Theorem 3.2.1. (Consistency) Under Assumptions 3.1.1-8.1.7, if J,, — o0, J, < n

and 0 < o < min (%, 1), we have
18 = 812 = 0p(1)

Recall J, = s + r, which is the dimension of the spline space for approximating
g(:). Theorem 3.2.1 states the consistency of the unpenalized estimator 5. To

prepare for the asymptotic normality, we define

r :E{ {E[(T — F(C12)I(Fo(C2) < mmo(g(XT )]

+E[(1= My(Tho) fy (g(XTﬁ()))Hg'2<XT@°>Xf<T},
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Vv :E{ <E[(7—1:P;0((CC«’||'ZZ))) I[(Fy(Clz) < 1)p2 (C = g(z"B%)) }

VB [ (1= Mo(T|x)) o2 (T = go(2" 8%)) Dﬂx%%iﬁﬂ},
X =X - E(X|XT3%,

E{ 1= Mo(g(XT8) | o (g(XTBO))X\XTBO}

E*(X|X"B") = |
(x]x7) £ [t - anotxrm)] slatoxmom | xrn )

Theorem 3.2.2. (Asymptotic normality) Under the Assumptions 3.1.1-3.1.7, if

1 ni/4 1 1
maz {(nlog(n))-172 nwr} < J, < Tog(n)o/ and 5y SO 3g

and v > %, we have

!B~ 5} = N(O.TTVTY),
where I'" is the Moore-Penrose inverse of I.

The root-n consistency and asymptotic normality of the unpenalized estimator
are described in Theorem 3.2.2. When the data is noncensored, i.e., C' = +o0, the
proposed estimator has the same asymptotic variance as in Wu et al. (2010) and Ma
and He (2016). Note that by definition of T', we have I'f° = 0, and T' is a singular
matrix. Hence we need to use the Moore-Penrose inverse of I' in Theorem 3.2.2.

Next we establish the asymptotic property of the penalized estimator 3. Denote
A={j:p) #0} and A ={j:f3; # 0} as the true and estimated relevant sets of

variables.

Theorem 3.2.3. Under Assumptions 3.1.1-3.1.7, and \/\/n — 0, sl 00, we



23
have

(1).P (fle) — 1, as n — oo.

(i1)-v/n(BY — BY) 2 N(0,TFVir),

where ,3}4 denotes the subvector consisting of all the non-zero elements in A, and
BY is the true non-zero subvector of B°. Ty and V; are defined as in T and V in

Theorem 3.2.2 with 8° replaced by BY.

The property of penalized estimator B is shown in Theorem 3.2.3 with assump-
tions on the tuning parameter. Numerically, we can re-estimate the non-zero coef-
fi