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Abstract

The transmission of hospital-acquired Carbapenem-resistant Enterobacteriaceae (CRE) is a

serious and growing problem in hospitals worldwide. Carbapenem - the antibiotic typically

used as a last resort to fight bacterial infections - is being rendered useless against some

strains of bacteria that cause high rates of mortality among critically ill patients. Previous

research of CRE found that traditional patient-to-patient transmission can only account for

20 percent of transmission of this bacteria in hospital settings and it is unknown through what

means the remaining 80 percent of cases are transmitted. Recent e↵orts to better understand

other means of transmission found identical genomes of CRE in patient sinks as was found in

cultures collected from patients, indicating that environmental reservoirs could be playing

a larger role in transmission than was first realized. This study uses clinical data from a

major U.S. hospital to evaluate imputation methods for understanding CRE presence in sinks

between known cultures and uses the selected imputation method as the response variable

in modeling sink positivity over time as a factor of positive patient presence, use of clinical

interventions, and sink characteristics. This study found that an ad hoc imputation method

based on expert knowledge provided the best representation of sink positivity. Modeling

results indicated that the cumulative presence of positive patients in the same room as a sink,

the distance from the patient bed to the sink, and sink design are significant predictors of

sink positivity.
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Introduction

The spread of hospital-acquired antibiotic-resistant bacteria is a serious and growing problem.

The Center for Disease Control and Prevention (CDC) estimate that more than two million

people are sickened each year with antibiotic-resistant infections resulting in at least 23,000

deaths[1]. Of the many bacteria that are growing in drug resistance, there is particular

concern with gram-negative pathogens as they are becoming increasingly resistant to nearly

all drugs, including Carbapenems. Carbapenems are widely considered to be the strongest

class of antibiotic in use today and are typically administered as a last resort in treating

gram-negative infections[1]. Because of their resistance to the strongest antibiotics available,

infections caused by Carbapenem-resistant Enterobacteriaceae (CRE), most commonly found

in a patient’s gastrointestinal tract, are di�cult to treat and can result in death[2]. Though

spread of these bacteria is currently limited to hospital facilities, if not controlled, it is likely

that these bacteria could begin to spread to the outside community [1].

A large healthcare facility in the United States has been tracking low-level spread of

a nosocomial Carbapenem-resistant Enterobacteriaceae pathogen since August of 2007.

Approximately 450 patients have been colonized with the CRE pathogen since 2007 and more

cases are identified weekly. Traditionally, understanding and tracking of hospital acquired

infections focused on infected and colonized patients acting as reservoirs of transmission

between uncolonized patients and hospital workers. However, it has become increasingly

recognized that non-patient reservoirs within the hospital setting may play a larger role in the

transmission of drug resistant pathogens than was first realized[3]. In this case, traditional

epidemiological transmission (person-to-person) can only account for 20 to 30 percent of the

transmission, and it is unknown how the other 70 to 80 percent of patients are acquiring the

CRE pathogen[4].

Since discovery of this low-level occurrence, active surveillance of all patients was instituted
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and strict contact precautions were emplaced for patients who revealed a positive culture for

the bacteria. Additionally, large-scale cleaning, disinfecting, sterilization, replacement, and

limited-use interventions were conducted, but only had temporary success in reducing the

spread of the bacteria and not eradicating it as hoped. The rate of transmission has remained

steady - without significant growth - over the past 5 years with approximately 70 new cases

identified each year. Recent e↵orts to understand transmission of the waterborne bacteria

led hospital epidemiologists to begin sampling wet surfaces including patient sinks, toilets,

and hoppers for the CRE pathogen. Sampling found identical genomes in samples of patients

as was found in the sinks, indicating that sinks - or other environmental factors- could be

acting as reservoirs for transmission[5]. Beginning in September of 2013, nearly 3500 samples

of sink drains, sink p-traps, toilets, hoppers, and other wet surfaces have been collected

periodically throughout the hospital looking for the presence of CRE. Manpower and financial

constraints limited the frequency and volume of samples taken over time. Understanding

what is occurring between samples would provide a more complete picture of the lifecycle of

this bacteria in sinks and if its’ presence in sinks is indicative of a relationship between the

sink and positive patients.
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Literature Review

2.1 Risk Factors

Independent studies of similar occurrences in hospitals in Brazil and Greece indicated that

the Intensive Care Units (ICUs) were the source of most transmission [6][7]. The Brazilian

study found that factors associated with severity of illness, such as age and use of mechanical

ventilation, were the primary risk factors for acquiring CRE [7]. The study in Greece found

that duration of previous hospitalization and the existence of multiple chronic diseases to

be primary risk factors[6]. Another outbreak of CRE at the Tisch Hospital at New York

Medical Center found 24 infected patients in intensive care units (ICUs) over the course of

a year. Similar to other outbreaks, risk factors for infection during this outbreak included

prolonged hospital stay, a stay in the ICU, and ventilator usage. Principal nosocomial

reservoirs that were reported included contaminated medical equipment, hands of hospital

sta↵, and gastrointestinal tracts of patients[8].

2.2 Environmental Reservoirs

In a study of an outbreak at Dandenong Hospital in Melbourne, Australia, CRE was found

in patient and provider hand washing sinks. A series of interventions and cleaning of sinks

and sink traps were conducted, but CRE reemerged within days. The study was inconclusive

about whether the sinks were definitively acting as the source of transmission, but the

resistance of the organism in a wet environment is cause for concern and further investigation

of this and other environmental reservoirs[9]. Additionally, a study at Deventer Hospital

in the Netherlands conducted a prospective study that cultured sinks and patients over a

20-week period and identified 4 patients who became colonized with identical bacteria as was
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previously found in the sinks[10]. This study also discussed the use of a self-disinfecting sink

to successfully halt further spread of bacteria. However, in both cases, interventions were

only found to be temporarily e↵ective indicating the need for better understanding of the

lifecycle of these organism and the role of the environment in their spread.

2.3 Imputation in Epidemiology

There exist many approaches to handling missing data, specific to the public health sciences

field, such as ad hoc approaches of last observation carried forward and mean value replacement

as well as other more computationally expensive methods like multiple imputation[11][12].

Regardless of method used, there is increased interest in the details of imputation and authors

stress the importance of proper description within research in order to better understand the

outcomes and to assist other researchers in furthering their use of imputation methods[11].

Though there is much literature on imputation of predictor variables, there is less guidance

on the imputation of the dependent variable as we aim to do in this study. Researchers are

hesitant to impute response variables as it is like “treating unknown outcomes as though

they are known”[13]. However, using only cases with the dependent variable in tact can lead

to bias, loss in overall sample size, and ultimately loss of information. In an article about

handling missing data, the author stresses that while more robust statistical software is now

available to researchers, it is still crucial to utilize expert knowledge of a data set or issue to

ensure that the imputation methods and results make sense and are an accurate reflection of

what is occurring[14].

2.4 Previous Research

Previous research and analysis of the current data only utilized a small portion of the data,

from January of 2014 to April of 2014, to predict the outcomes of whether a patient would

or would not acquire CRE based on patient data and some environmental data. Consistent
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environmental sampling was only conducted during this short time frame which resulted in

the modeling of only 19 of 407 positive cases in the data set. The results of these research

e↵orts indicated that evidence was not conclusive that patient sinks played any role in the

transmission of CRE. However, this research did indicate that there was some correlational

between the environment and a patient’s likelihood of acquiring CRE and indicated the

need for further evaluation with a larger dataset of environmental samples and smaller time

interval[15].
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Problem and Objectives

3.1 Problem Description

Patients at a major healthcare system are acquiring an highly drug-resistant bacteria, CRE,

through unknown means. Infections caused by CRE are virtually untreatable by antibiotics

and can lead to death among some of the most ill patients. Traditional patient-to-patient

transmission cannot account for all cases of transmission. Routine culturing of sinks in

the hospital have found CRE bacteria in p-trap and drains of sinks and even the strongest

interventions have been unsuccessful in eradicating the bacteria from environmental reservoirs.

Limited and inconsistent sampling of environmental reservoirs leave a gap in knowledge of its

presence in sinks over time and the relationship of sinks to positive patients.

3.2 Objective, Metrics, and Potential Impact

3.2.1 Objective

The objective of this research is two fold -

• develop an imputation method that provides an accurate representation of bacterial presence

in sinks between known samples of data.

• develop a predictive model for whether a sink will test positive for the CRE pathogen

based on presence of colonized patients in the same room as the sink, emplacement of

clinical interventions in sinks, and the physical characteristics of the sink.
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3.2.2 Metrics

• Imputation Methods: Feature selection will be conducted using stepwise regression with

Akaike information criterion (AIC). We will use analysis of variance (ANOVA) with

chi-squared (�2) test to confirm the correct features were selected. Methods will be

measured based on their improvement to baseline prediction accuracy using 10-fold

cross validation (CV).

• Modeling: Feature selection will be conducted similarly to the method for imputations -

stepwise regression with AIC and �

2 ANOVA. Models will be accessed based on AIC,

analysis of diagnostic plots, overall prediction accuracy from 10-fold cross validation,

and Receiver operating characteristic (ROC) curve comparison.

3.2.3 Impact

Developing an imputation method for bacterial presence between known samples will provide

valuable insight into the growth and movement of the bacteria throughout sinks in the

hospital. Additionally, the ability to complete a data set of environmental testing allows for

the capability for it to be included in other models, such as patient risk modeling, that will

provide a more comprehensive predictive capability. In modeling the presence of CRE in

sinks, this research aims to understand what factors contribute to sink positivity. Knowledge

gain in both capacities will lead to better understanding the role of environmental reservoirs

in the spread of the bacteria and could be used to support changes to hospital policy and

procedures that ultimately aid in the containment or eradication of the bacteria from the

hospital.
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Data

4.1 Data and Cleaning

4.1.1 Positive Patient Data

Positive patient data included a de-identified list of 444 patients from between August 2007

and September 2015 who were tested for CRE and had a positive culture at any time during

their admittance to the hospital. Data points included the initial date of admittance, the first

date of positive culture, and date, time, and location of all bed movements throughout the

hospital for all admittances to the hospital. Bed movement data for a patient was removed

for any time period before their positive culture date. Bed movement data was rolled up to

the day and room level. If the patient spent any length of time in a room on a given day,

then the entire day was considered to be a positive day. Additionally, the data provided

included information on what bed in a room that the patient occupied. For this analysis, we

considered all beds in a given room to be the same room.

4.1.2 Environmental Data

Environmental data includes 3420 positive and negative swab and liquid samples from sink

drains and sink p-traps in patient rooms, bathrooms, anterooms, alcoves, sta↵ bathrooms,

locker rooms, kitchens, and sta↵ lounges for floors 3-8 in the hospital. Samples were collected

between September of 2013 and September of 2015. Cultures were collected using clinical

swabs that are applied to the interior wall of the sink drain. Water samples from p-traps

were collected utilizing IV tubing that was lowered through the drain hole to collect water.

Samples are processed in a microbiology lab over a 3-day period allowing for growth of
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bacteria and further identification of specific organism found. This type of sampling has an

estimated 90 percent sensitivity for identifying CRE organisms[4].

Figure 4.1: Bar plot of total samples by unit, Sample Dataset

One of the main issues with the environmental data provided is inconsistency in the

sampling. Samples taken vary by week, by location, by sampling technician, and testing

technician. Sampling frequency varied from weekly at some points to only quarterly or

singular at others. Additionally, while positive samples had more refinement on their location

- patient sink vs. bathroom sink, and p-trap vs. drain - negative samples lacked the same

level of detail. Conversations with hospital epidemiology revealed that when samples were

taken in a unit - regardless of outcome - all sinks in the unit were sampled and samples for

both drain and p-traps were always taken[4]. Using this information and blueprints (as seen

in Figures 4.2 and 4.3) we were able to manually impute locations for both positive and

negative samples. If at any point we were unable to definitively determine the location from

which the sample was taken, the observation was removed from the data set.

For the purpose of this analysis, we examined samples at the sink level. In some cases,

a sample from drain of a sink may be positive while the p-trap may be negative, or vice

versa. For these cases, if any sample of a sink on a given day was positive, the sink was

annotated as a positive sink for that day. Additionally, the focus of this research was to

examine the movement of bacteria from patients to sinks. Due to this scope and the lack of
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Figure 4.2: Hospital floor plan, 3rd floor, rooms without patient sinks

other supporting data points for other sink types, samples for non-patient sinks, such as sta↵

lounge rooms and kitchens were removed. Samples for which no sink characteristics were

provided were also removed. Of the given 3420 test samples, 1907 samples were retained for

modeling purposes. Upon consolidating p-trap and drain samples to a single sink result, 967

results remained for 166 patient and patient bathroom sinks over a period of 740 days.

4.1.3 Sink and Room Characteristics

A series of 26 attributes were manually collected describing the physical characteristics of

the sink, surrounding countertop area, faucet, exposed piping, and the presence of other wet

areas such as showers, hoppers, and toilets. The distance of the patient bed to the sink is
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Figure 4.3: Hospital floor plan, 3rd floor, rooms with patient sinks

also provided. A full description of characteristics can be found in Table 4.2

4.1.4 Interventions

Dates and Units of any clinical interventions were provided. It was verified that all sinks in a

given unit were held to an intervention during the days given. Interventions included the

replacement of pipes, the closure of the unit to all patients, and cleaning and disinfecting

interventions as seen in Table 4.1.
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Table 4.1: Interventions

Unit Rooms Begin Date End Date Intervention
5 STBICU All 12/10/13 2/10/14 Unit closed to patients.

All sink p-traps replaced.
Overflows removed from sinks.
Unit reopened on end date.

4 TCV West All 12/10/13 2/10/14 Overflows removed from sinks
5 STBICU All 2/28/14 4/18/14 Weekly sink treatment/flushing with bleach,

hydrogen peroxide, and ozone.
3 MICU West All 3/14/14 4/18/14 Weekly sink treatment/flushing with bleach,

hydrogen peroxide, and ozone.
3 MICU West All 4/25/14 5/10/14 Weekly sink treatment/flushing with bleach,

hydrogen peroxide, and ozone.
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Table 4.2: Sink Variable Description

Variable Type Description Levels or Units
Bowl.Material categorical material of sink bowl “stainless steel”, “porcelain”, “corian”
Bowl.Shape categorical shape of sink bowl “kidney”, “oval”,“knob”
Faucet.Type categorical type of faucet “auto”, “paddle”
Counter categorical presence of counter “yes”, “no”
Countertop.Material categorical material of countertop “black corian”, “copper”, “corian”
Counter.Length numeric length of countertop inches (24.5 - 71.5)
Aerator categorical presence of aerator “yes”,“no”
Drain.Cover categorical presence of drain cover “yes”,“no”
LidDrain.Type categorical type of lid or drain “empty”, “grate”, “fan”
Overflow categorical presence of overflow “yes”,“no”
Overflow.Location categorical location of overflow “back”, “front”, “no”
Overflow.Number numeric number of overflows count (0-2)
p.trap categorical type of p-trap “normal”, “handicap”, “inaccessible”
F.to.D.Distance numeric fauce to drain distance inches (7.75 to 40)
Bowl.Size.X numeric width of sink bowl inches(12-45)
Bowl.Size.Y numeric length of sink bowl inches(8.5-26.5)
Bowl.Size.Z numeric depth of sink bowl inches(4-24)
P.Trap.Material categorical material of p-trap “stainless steel”, “pvc”, “inaccessible”
Top.to.P.trap.D categorical distance from drain to p-trap inches(0-19.5)
Water.Hit.Drain. categorical does water hit the drain directly “yes”, “no”
Dialysis.Faucet categorical presence of dialysis faucet “yes”, “no”
Toilet categorical presence of toilet in room w/sink “yes”, “no”
Hopper categorical presence of hopper in room w/sink “yes”, “no”
Floor.Drain numeric number of floor drains count(0-2)
Shower categorical presence of shower in room w/sink “yes”, “no”
SinkBedDis numeric distance from bed to sink feet(4-14)
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Imputation Methodology and Results

5.1 Cases, Feature Extraction, and Feature Selection

5.1.1 Cases

For the purpose of this analysis, our dataset was converted to a sink-day format that includes

a record for each sink and each day during the given time period. We defined our positive

(“1”) population as the set of sink-days for which a known positive culture was found as

detailed in section 4.1.2. We define our negative (“0”) population as the set of sink-days for

which a known negative culture was found. We use the table below to describe the sink-days

for both the sample data set and the modeling data set. However, the sample data set uses

only known values while the modeling data set uses the full set of imputed data.

Table 5.1: Variables in the Sink-Day Data Format

Variable Range Description
Room unique ID for hospital room repeated across all records pertaining

to a given room
Sink “PT” “BR” identified patient or bathroom sink for

given room
Day 09-16-2013 to 09-25-2015 repeated across all sinks
Event Indicator “1” = positive indicates whether sink tested positive

“0” = negative or negative for CRE

5.1.2 Feature Extraction

Using bed movement data, we created variables Lag0, Lag1, Lag2, and Lag3 that annotated

whether on the given day, a positive patient moved through the room. The lag number

corresponds to the time. For example, Lag0 would annotate time=present. On the given day,
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for the given sink, a binary response of “1” was annotated if a positive patient moved through

the room. Similarly, Lag3 annotates that 3 days prior to the given date, for the given sink, a

binary response of “1” annotated if a positive patient moved through the room. Similarly,

CumSum7 and CumSum14 were created to show the cumulative number of days in the past

7 or 14 days respectively that a positive patient was in the given room with the given sink.

In a similar fashion as the Lag variables created, Intervention0, Intervention1, Intervention2,

and Intervention3 were created to annotate whether at the given time (present day to 3

days prior) if there was an intervention in place in the given sink. Multiple Correspondence

Analysis of sink characteristics revealed many levels of multicollinearity. For this reason, all

sink characteristics were combined together and 25 unique sinks designs were found. Upon

further analysis, it was found that the di↵erence between some sinks were likely due to human

error when measuring distances. Therefore, if measurements of a single distance was the only

di↵erence between two otherwise identical sinks and were within 1 unit of each other, they

were combined to create a single sink design. The distance from the sink to the bed was

retained as an individual feature as it was a characteristic of the room. The resulting 16 sink

designs can be found in the appendix. Description of extracted variables can be found in

Table 5.2.

15



Table 5.2: Extracted Variable Description

Variable Type Description Levels or Units
Unit categorical unit of hospital “3 MICU North”, “3 MICU West”,

“4 TCV North”, “5 STBICU”,
“6N/NIMU”

PTBR categorical patient (PT) or bathroom sink (BR) “PT”,“BR”
Lag0 categorical presence of positive patient for sink/day at time t=0 “0”,“1”
Lag1 categorical presence of positive patient at time t-1 “0”,“1”
Lag2 categorical presence of positive patient at time t-2 “0”,“1”
Lag3 categorical presence of positive patient at time t-3 “0”,“1”
Intervention0 categorical intervention in place at time t=0 “0”,“1”
Intervention1 categorical intervention in place at time t-1 “0”,“1”
Intervention2 categorical intervention in place at time t-2 “0”,“1”
Intervention3 categorical intervention in place at time t-3 “0”,“1”
CumSum7 numeric cumulative number of positive patients in 7 days prior count (0-7)
CumSum14 numeric cumulative number of positive patients in 14 days prior count (0-14)
SinkDesign categorical sink design based on unique values from sink variable description 25 designs “A-Y”
SinkBedDis numeric measurement of distance from sink to bed feet (4-14)
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5.1.3 Feature Selection

We first began feature selection by conducting a stepwise regression, in the forward and

backward directions, of the given and extracted features. Stepwise regression, using Akaike

information criterion (AIC) as the evaluation measure eliminated the following factors.

Factors shown as strikethrough where eliminated and those shown without strikethrough

were retained. The beginning AIC for all variables was 609.78 and ending AIC was 596.2.

Factors were confirmed by using a sequential chi-squared test of analysis of variance of the

addition of evaluation measures. Factors retained by the stepwise regression were statistically

significant at a p-value of less than .001 indicating that the sequential inclusion of each

additional variable provided information gain to the final model. The chi-squared test was

conducted for factors eliminated by stepwise regression and found that the variables were

statistically significant at p-values greater than .001 and therefore provided no additional

gain to the model. Table 5.3 provides an outline of the resulting features and their resulting

chi-squared value.

Table 5.3: Stepwise and Chi-Squared Test Results

Stepwise Chi-Squared Test Results
Unit 2.2e-16
PTBR .247
Lag0 .379
Lag1 .218
Lag2 .490
Lag3 .465
Intervention0 .245
Intervention1 .072
Intervention2 3.14e-04
Intervention3 .654
CumSum7 .410
CumSum14 2.2e-16
SinkDesign 1.21e-07
SinkBedDis .178

Throughout model building, we identified some multicolinearity between Sink Design and
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other predictors which would result in no coe�cients being given. We determined that all

bathroom sinks (BR) in the dataset are of Sink Design “STUV”. Therefore, we removed the

variable “PTBR” from further model with the understanding that this distinction was already

represented in the Sink Design attribute. Additionally, we determined that Sink Design “BC”

is only in Unit 3 MICU West. We did not remove either variable from consideration as there

were many other levels in each of these variables. However, we were mindful of this issue

when analyzing coe�cients in our models.

5.2 Methodology

Missing data is a frequent issue in epidemiological and health sciences research. While most

modeling techniques would simply call for the removal of incomplete cases, doing so can cause

bias and loss of information[16]. Standard methods for imputation such as k-nearest neighbor,

last observation carried forward, or mean value can also lead to bias and are not e↵ective

in handling categorical variables[11]. These methods are also typically used to address one

of the three types of missing data - missing completely at random, missing at random, and

missing not a random. In this case, we see all three types of missing data present in 1 variable.

And not just 1 predictor variable, but in this case, the response variable, adding to di�culty

of using traditional imputation methods. Additionally, imputation is typically used for filling

in a few missing values with the help of many present values. In our case, missing values

far outnumber present values. For these reason, we chose to examine 2 ad hoc imputation

methods as well as 2 regularly practiced methods.

For the purpose of imputation, we consider each sink to be it’s own time series object.

Methods described below are implemented on each sink over the period of 740 days resulting

in a value for each sink-day that will be used later in modeling.
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5.2.1 Linear Method

The 2nd method we examined was a linear probability. As stated in the background, in most

cases, once a sink was tested positive, it stayed positive until some type of intervention was

emplaced. Sinks were retested after the intervention and samples were annotated as negative.

However, at various time points following a previous negative sample, a sink was determined

to have gone positive again. Given this information we used a linear imputation for time

between a negative and positive sample annotating the probability of the sink testing positive

linearly increasing between 0 and 1. We carried the last observation forward from a positive

sample until the day before a negative sample (see plot) to accurately describe emplacement

of an intervention. Time between two like observations were filled in with the consistent

observation (negative or positive). The result of this method was a numeric probability

between 0 and 1.

5.2.2 Midpoint Method

The first method we considered is straightforward. At some point between a negative and

positive observation (or a positive and negative observation), the sink transitioned from

negative to positive (or positive to negative). Therefore, time between known samples was

divided in half and the value of the 1st observation was carried forward to the half way point

and the value of the next observation was carried backward to the halfway point creating a

step function over the time series. Time between consistent samples (negative to negative

or positive to positive) was carried forward. Tails on the front end were carried backward

from the 1st known observation and tails on the back end were carried forward from the last

observation to the end of the time period. The result of this method was a binary response

for all observations.
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5.2.3 Logistic Regression

Lastly, using all of the given information, we conducted a logistic regression of the given

variables and predicted a response. The model was trained based on the Sample data frame

and predicted on the missing values in the full data frame. The response represents the

probability (between 0 and 1) of the sink-day being positive based on all variables available.

We replaced predicted values with known values.

5.2.4 Multiple Imputation - MICE

Using the MICE (Multivariate Imputation by Chained Equations) package in R, we conducted

a univariate multiple imputation of 5 iterations on 5 data sets and the output was a binary

response based on a logistic regression of all other known and complete variables[17].

Figure 5.1 depicts the known values (red) and the predicted values with each imputation

methods (blue - Linear, green - Midpoint, purple - Logistic Regression, black - Multiple

Imputation ).

Figure 5.1: Example plot of Imputation Methods for Patient Sink in Room 5188
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Table 5.4: Imputation Analysis Variable Description

Variable (X5) Description
Mid3 imputed data at time t-3 (3 days prior to date) using Midpoint method
Line3 imputed data at time t-3 (3 days prior to date) using Linear method
LogReg3 imputed data at time t-3 (3 days prior to date) using Logistic Regresion method
Mice3 imputed data at time t-3(3 days prior to date) using MICE method
Mid7 imputed data at time t-7 (7 days prior to date) using Midpoint method
Line7 imputed data at time t-7 (7 days prior to date) using Linear method
LogReg7 imputed data at time t-7 (7 days prior to date) using Logistic Regression method
Mice7 imputed data at time t-7 (7 days prior to date) using MICE method
Mid15 imputed data at time t-15 (15 days prior to date) using Midpoint method
Line15 imputed data at time t-15 (15 days prior to date) using Linear method
LogReg15 imputed data at time t-15 (15 days prior to date) using Logistic Regression method
Mice15 imputed data at time t-15 (15 days prior to date) using MICE method
Past.30 binary (”0”,”1”) for presence of positive sink culture in the past 30 days
Past.60 binary (”0”,”1”) for presence of positive sink culture in the past 60 days
Past.90 binary (”0”,”1”) for presence of positive sink culture in the past 90 days

5.2.5 Analysis

Using the 3 imputation methods, we utilized our Sample data frame consisting of 967 known

positive samples to test our imputation methods. We began by evaluating a simple generalized

linear model (logistic regression) of the given samples as a response to the extracted and

selected features in Table 5.3. gt annotates the probability of the a positive sink given the set

of predictor variables.

gt = �0 + �1X1 + �2X2 + �3X3 + �4X4 (5.1)

log

Pr(Y = 1)

1� Pr(Y = 1)
= �0 + �1(Unit) + �2(CumSum14) (5.2)

+ �3(SinkDesign) + �4(Intervention2)

Next, we sequentially add in an imputed value from each method at t-3 (3 days prior to

sink-day), t-7 (7 days prior to sink-day), and t-15 (15 days prior to sink-day) to determine
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which imputation method provided the most increase in the prediction accuracy of the sink

based on 10-fold cross validation.

gt = �0 + �1X1 + �2X2 + �3X3 + �4X4 + �5X5 (5.3)

log

Pr(Y = 1)

1� Pr(Y = 1)
= �0 + �1(Unit) + �2(CumSum14) (5.4)

+ �3(SinkDesign) + �4(Intervention2) + �5(Imputed Value)

As a method of comparison, we also created a known variable at 3 di↵erent time intervals

that annotated (“0” or “1”) whether in the past 30, 60, and 90 days a sink had a positive

culture. In the same manner as above, this variable was sequentially included in the model

and evaluated based on 10-fold cross validation accuracy.

5.3 Results

We find that regardless of time interval, the Midpoint imputation method provides the most

boost to our accuracy of prediction of positive sink compared to the baseline (without any

imputed values). However, it is also interesting that the addition of the Past.30 variable

(which is not imputed) increased the accuracy of the model significantly as well. Given the

improved results, we will include this variable as a predictor in modeling of the imputed

dataset.

Table 5.5: Imputation Method Accuracy Results

Method t-3 t-7 t-15
Linear 82.4% 79.9% 78.1%
Midpoint 98.2% 86.1% 80.5%
Logistic Regression 69.7% 72.0% 70.4%
Mice 71.2% 71.0% 71.3%
Baseline (no imputation) 70.4%
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Table 5.6: Look-back Accuracy

Variable Accuracy
Past.30 83.9%
Past.60 80.7%
Past.90 79.1%

Though the focus of this portion of this thesis was to determine that best imputation

method for environmental sampling, it is also interesting that during feature selection, the

model was reduced to only 4 data points - unit, cumulative number of positive patients

having stayed in the room 14 days prior prior to the culture, sink design, and whether an

intervention had been implemented in the last 2 days. Further discussion of these factors is

included in the modeling results section.
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Modeling Methodology and Results

6.1 Cases, Feature Extraction, and Feature Selection

Using the Midpoint imputation as the response variable, the non-imputed variable - Past.30,

and the original set of features, a new dataset was created for modeling. The dataset

consisted of 81,858 complete cases using the same sink-day format as described in Chapter 5.

A breakdown of the positive and negative samples can be found in Figure 6.1.

Similar to the method utilized for the Sample dataframe, stepwise regression was used

for feature selection and confirmed using sequential testing of the ANOVA using the �

2 test.

As a reference for comparison, both sets of features are shown below. We would expect the

features selected to be di↵erent between models, else there is no value added in completing

an imputation model. The argument for imputing values is to account for any bias that may

be eliminated by only using complete cases, as in the Sample dataframe.

Table 6.1: Stepwise and Chi-Squared Test Results

Sample Dataframe Imputed Dataframe
Stepwise Results Chi-Squared Test Results Stepwise Results Chi-Squared Test Results
Unit 2.2e-16 Unit 2.2e-16
Lag0 .379 Lag0 2.2e-16
Lag1 .218 Lag1 .623
Lag2 .490 Lag2 .245
Lag3 .465 Lag3 .594
Intervention0 .245 Intervention0 2.2e-16
Intervention1 .072 Intervention1 .072
Intervention2 3.14e-04 Intervention2 .916
Intervention3 .654 Intervention3 2.6e-13
CumSum7 .410 CumSum7 2.2e-16
CumSum14 2.2e-16 CumSum14 2.2e-16
SinkDesign 1.21e-07 SinkDesign 2.2e-16
SinkBedDis .178 SinkBedDis 2.2e-16

Past.30 2.2e-16
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6.2 Methodology

Using glm() package in R, we began with a simple logistic model using all variables and

selected variables on the imputed data set. For this model we established the intercept as

Unit 6N/NIMU, Sink Design F, and ”0” for all other categorical and numerical variables. As

shown below in figure 6.1, Unit 6N/NIMU reflects primarily negative samples making it a

good base case for comparison. Similarly, SinkDesign “F” has the least number represented

in the model, as shown in Figure 6.2, so it was made the base case (intercept)[18].

Figure 6.1: Bar plot of samples by Unit, Imputed Dataset

Figure 6.2: Bar plot of samples by Sink Design, Imputed Dataset
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We also conducted a stepwise regression of all possible interactions of the selected variables.

Lastly, we examined a classification machine learning technique, random forest, to examine

feature importance and assess accuracy. We compared all 4 models by looking at AIC (when

available) and accuracy of prediction based on 10-fold cross validation.

6.3 Results

6.3.1 Logistic Regression Modeling

Diagnostic plots for models utilizing all variables, stepwise selected variables, and interaction

of selected variables are shown below. There is little di↵erence between both the diagnostic

plots and accuracy of the model with all variables and the model with variables selected via

stepwise regression. This indicates that there are many variables within the current data

frame that are not significant predictors of sink positivity and were therefore removed during

stepwise regression. Though the overall accuracy of the interactions model only increased by

1%, we can see from the diagnostic plot below that there is significant improvement of the

goodness of fit from the model with all variables and the model with variables selected via

stepwise regression. Figure 6.5 shows more evenly distributed residual vs. predictor plot and

significant improvement to the number of observations located above Cook’s distance in both

the standardized leverages plot and the total cases plot.
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Figure 6.3: diagnostic plots for model with all variables

Figure 6.4: diagnostic plots for model with variables from stepwise regression
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Figure 6.5: diagnostic plots for model with interaction of variables from selected variables

Additionally, the receiver operating characteristic (ROC) curve is shown for all 3 models

in Figure 6.6. The ROC curve is a graphical representation of the true positive rate against

the false positive rate. As suspected, the ROC curve for the model with all predictor variables

is the same as the curve with variables selected from stepwise regression. The ROC curve for

the interactions model lays slightly higher than that of the other two models indicating that

it performs better in determining positivity of sinks.
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Figure 6.6: ROC Curve for all 3 models

Table 6.2 shows the AIC and accuracy of all 3 models. Accuracy was assessed using

10-fold cross validation. Using both selection criteria (AIC) and accuracy, as well as visual

inspection of the diagnostic plots and ROC curves, the interactions model clearly performs

the best of the 3 logistic regression techniques explored in this study.

Table 6.2: Model Results

Model AIC Accuracy
All Variables Model 79318 74.1%
Stepwise Variables Model 79308 74.2%
Interactions from Stepwise Variables Model 77617 75.2%

6.3.2 Random Forest

As a method of comparison, we also examined a popular classification machine learning

techniques to further examine which variables are important in the prediction of sink positivity
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and to determine if classification of this nature can produce more accurate results. We trained

a random forest model, with 500 trees and max nodes of 3 on 75% of the data and used

the remaining 25% as our testing set. The resulting random forest produced an accuracy of

75.1%. Table 6.3 describes the Mean Decrease Accuracy (MDA) factor Mean Decrease Gini

(MDG) factor for each variable. MDA is a measure of how much inclusion of the predictor

in the model reduces the classification error. MDG is a measure of the average number of

times the variable was used to split a tree node. Figure 6.7 is a graphical representation of

variables importance based on both MDA and MDG factors as described above.

Table 6.3: Variable Importance for Random Forest

Variable MDA
Unit 48.0
Lag0 18.9
Lag1 17.2
Lag2 13.1
Lag3 15.3
Intervention0 27.8
Intervention1 20.8
Intervention2 22.2
Intervention3 28.4
CumSum7 23.0
CumSum14 31.5
SinkDesign 30.3
SinkBedDis 18.9
Past.30 40.6

MDA = Mean Decrease Accuracy, a measure of
how much inclusion of this predictor in the model
reduces classification error
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Figure 6.7: Variable Importance for Random Forest

As shown below, our Random Forest Model performed the best in classifying sink positivity

with accuracy of 75.1%.

Table 6.4: Model Results

Model AIC Accuracy
All Variables Model 79318 74.1%
Stepwise Variables Model 79308 74.2%
Interactions from Stepwise Variables Model 77617 75.2%
Random Forest 75.1%
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Conclusions, Limitations, and Future

Work

7.1 Conclusions

Though each model identified a slightly di↵erent set of variables that were significant or

important in the prediction of sink positivity, there are a few factors that remained consistent

throughout - unit, an intervention at times between 0 and 3 days before positive culture

(Intervention0 or Intervention3), the cumulative sum of patients having been in the room

in the 14 day to the positive culture (CumSum14), presence of a positive culture within 30

days prior (Past.30), sink design (SinkDesign), and distance from patient bed to the sink

(SinkBedDis). It is consistent with expert knowledge of this issue specific to the hospital that

unit would play a major role in the spread of the bacteria. Coe�cients fir all Units except

the intercept (Unit 6N/NIMU) were positive indicating that sinks in any other unit than

6N/NIMU have a significant higher odds of being positive. Resulting negative coe�cients for

interventions at time zero and time t-2 indicate that the odds of a sink testing positive for

the CRE bacteria decrease with the presence of an intervention. This is again consistent with

expert knowledge that interventions temporarily decreased the presence of the bacteria, but it

would reappear soon after. Additionally, we found that for each unit increase in the distance

between the patient bed and sink (measured in feet) there was a 10% decrease in the odds

of the sink being positive. We would expect this to be true showing that the further away

the patient is from the sink, the less likely that the bacteria is to be in the sink. Perhaps

the most interesting finding was the strong correlation between the cumulative number of

patients present in the same room as the sink and the odds of the sink testing positive for the

bacteria. Our best regression model indicated that the odds of a positive culture increased
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15% percent for every day that a patient was present in the room prior to the positive culture.

Interestingly, the presence of positive patients 1,2, and 3 days prior to a positive culture had

very little e↵ect on the overall adds, it was the cumulative presence of patients that had the

most e↵ect. This finding supports the hypothesis that CRE bacteria is transmitting from the

patient to the sink. Additionally, with SinkDesign“F” modeled as the intercept, all remaining

coe�cients for SinkDesign were negative indicating that the odds of the sink being positive

were negative compared to that of SinkDesign “F”. Further analysis of the SinkDesign“F”

found that this particular sink was associated with the patient sink found in from 5196. It is

the only sink of its type in our data set. Further analysis of this SinkDesign and room is

warranted to determine if this is simply an outlier or a mode of transmission that should be

considered to be more vulnerable to transmission than others.

Throughout the course of this work, many other forms of regression and classification

modeling were considered in a e↵ort to increase accuracy and fit of the model. We examined

transformation of numerical predictors, mixed e↵ect models, and other ensemble methods

like boosting. However, in all cases, accuracy remained consistent with the results presented -

around 74 to 75% accuracy. As shown here, even random forest machine learning technique,

only made a slight improvement to the regression techniques used. This leads us to believe

that we have reached a maximum capacity for predicting the outcome of a positive sink with

the current variables used.

Additionally, we found a false negative rate of 13.5% where our models predicted that the

sink was not positive when, in fact, it was. Further analysis of these specific cases show that

nearly 80% of those cases had no presence of positive patients at any time in the previous

14 days prior to the positive culture, no interventions emplaced in the previous 3 days, and

no positive culture in the previous 30 days. These findings indicate that perhaps there is

another mode of transmission that is unrelated to the presence of patients in the room.

Upon presenting these findings to hospital epidemiology, they confirmed that an additional

hypothesis was the movement of the bacteria was retrograde through piping from other
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positive sinks. An additional element that could be added to further explore this hypothesis

is the distance and structure of piping between sinks.

7.2 Limitations and Future Work

7.2.1 Data Collection

Though much work has been done to collect the most accurate and up-to-date information

regarding patient movement and cultures, much of the collection for this specific bacteria is

done by hand and is QAQCed (quality assured/quality controlled) by a single entity. With

so few positive patients (approximately 450 out of 15,000 patients per year), the addition or

subtraction of a single patient from the positive patient pool could have a significant impact

on the outcome of modeling.

Additionally, it has been identified through individual patient record review that for

some positive patients, incomplete bed movement data was provided. Manpower and time

constraints prevent review of all 450 positive patient records, but future analysis will require

more refined analysis of patient movement in order to more fully understand the impact of a

positive patient on the positivity of sinks.

Though the environmental data provided fine-grain detail of sink characteristics, it did

not include other environmental factors that could be evaluated in further modeling. Items

such as distance from patient beds to sinks, presence of hand sanitizing dispensers, and other

medical equipment are not currently included in the model. This analysis has shown that

there is a relationship between the environment, patients, and the spread of this bacteria

and therefore warrants further examination of other environmental reservoirs that could be

playing a role in its spread.

We would also recommend taking a further look into the interventions that were emplaced

in units throughout the time period. Information was provided to us that interventions

were emplaced for said units at said times. However, upon speaking with professionals who
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emplaced interventions, it was determined that some sinks were annotated as ’control’ sinks

and no intervention was emplaced. Further detail about which sinks and which interventions

were emplaced could assist in further understanding the spread of the bacteria and improving

prediction results of the models explored in this research.

Most importantly, we recommend a steady and consistent testing protocol of sinks and

environmental reservoirs in the hospital. Routine testing and consistent testing procedures

will go a long way in assisting further researchers in understanding the movement of this

bacteria through environmental reservoirs and provide for the ability to develop a true

validations set for testing of our imputation methods and models. If financial and human

resources are limited, I would recommend weekly sampling of at least 3 sinks in each unit,

preferably at least one known positive sink and one known negative sink in each unit. I would

also recommend including room 5196 in routine sampling.

7.2.2 Imputation Methods

Though the midpoint method proved to be the most accurate reflection of the presence of

the bacteria over time, it is limited by the number of samples provided. For some sinks, only

3 total samples were collected in 2 years time making a large gap between samples. With

such a large gap between samples, there is a high chance for error in predicting positivity. As

discussed above, more routine and frequent sampling would improve not only this methodology,

but also the overall understanding of the bacteria’s movement over time.

Also, our literature review has revealed many di↵erent imputation methods that could

be explored that would further refine our understanding of the spread of the bacteria. For

the purpose of this analysis, the assumption was made that an intervention of some sort

had to have been implemented in order for sink to go from a positive culture to a negative

culture and this was reflected in the linear regression imputation. However, in some cases, an

intervention could have simply been that the sink was put out of use by patients and sta↵.

Therefore, for these specific cases, a linear or logistic imputation from a positive to a negative
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sample may more accurately reflect the probability of a positive sink culture. Additionally, as

variables and data are more refined as described above, a reevaluation of a logistic regression

of positivity may provide a more accurate picture and ultimately a better prediction.

7.2.3 Validation Set

For the purpose of determining our best imputation method, we used cross validation across

the entire Sample dataframe to determine which imputation method provided the most gain

to our overall prediction accuracy. Ideally we would have liked to have tested our imputation

methods on a completely separate validation set. There is currently work being done on

patient risk and we could potentially test various imputation methods in these models to

determine which provides the most gain to their modeling. Additionally, this is an ongoing

project with continuing data collection. Due to the limitation of data available at the time,

our time period only stretches until September 2015. We could use an additional data set

with samples and supporting predictors for a time period after September 2015 in order to

confirm our findings.

7.2.4 Modeling

There is much that can be done to further this work. It is clear that there is a relationship

between the environment and the spread or CRE within the hospital setting. While we

have provided convincing evidence that bacteria are moving from patient to sink within the

hospital, there is much work that still needs to be done to confirm whether the sink is acting

as a transmission reservoir back to the patient. Further analysis of exact genome found in

sinks and in patients would further help us to understand not only the movement of the

bacteria but the metamorphosis of genomes throughout environmental reservoirs.
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Table 7.1: Variable Significance by Model

Variables Stepwise All Variables Stepwise Interactions
Intercept - 6N/NIMU, SinkDesignF, 0
Unit - 3 MICU North
Unit - 3 MIU West
Unit - 4 TCV North
Unit - 5 STBICU
Lag0 ***
Lag1
Lag2
Lag2
Intervention0 ***
Intervention1
Intervention2
Intervention3 *** ***
CumSum7 *
CumSum14 ***
SinkDesign ”A” *** ***
SinkDesign ”BC”
SinkDesign ”D” *** ***
SinkDesign ”E” *** ***
SinkDesign ”OPQ” ***
SinkDesign ”R” *** ***
SinkDesign ”STUV” *** ***
SinkBedDis ***
Past.30 ***
SinkBedDis:Intervention0 ***
SinkBedDis:Intervention3 *
SinkBedDis:CumSum14 *
Intervention0:Intervention3 ***
Intervention0:CumSum14 **
Intervention3:Past.30 ***
Intervention3:SinkDesign“A” *
CumSum7:Past.30 ***
CumSum14:Past.30 ***
CumSum14:SinkDesign“OPQ” ***

“***” = p-value less than .001, “**”= p-value less than .01, “*”=p-value less than.05
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Table 2: Sink Design

Sink 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Design
“A” C K A Y B 41.5 Y N G N N 0 N 15.5 21 13.5 7 SS 10 Y Y N Y 0 N
“BC” C K A Y P 24.5 Y N G Y B 1 N 14 20 13.5 6.5 SS 10 Y N N Y 0 N
“D” C K A Y P 29.5 Y N G N N 0 N 14 20 13.5 6 SS 7.5 Y Y N N 0 N
“E” C K A Y P 41.5 Y N G N N 0 N 15.5 21 13.5 7 SS 10 Y Y N Y 0 N
“F” C J A Y P 71.5 Y N G N N 0 N 14 20 13.5 6 SS 8 Y Y N N 0 N
“GH” C O P Y P 29 N N G Y F 1 N 16.5 21 15 7 SS 8.5 Y N N N 0 N
“I” C O P Y P 53 N N G Y F 1 N 16.5 18.5 15 7.5 SS 10 N N N N 0 N
“J” C O P Y P 71 Y N G Y F 1 N 16.5 18.5 15 7.5 SS 10 N N N N 0 N
“KN” C O P Y P 72 N N G Y F 1 N 16.5 18.5 15 7.5 SS 9 N N N N 0 N
“LM” C O P Y P 73 N N G Y F 1 N 16.5 21 15 7 SS 9.5 Y N N N 0 N
“OPQ” C O P Y C 29 N N G Y F 1 N 13.5 17 13.5 6 I 0 Y N N N 0 N
“R” C O P Y C 29.5 N N G Y F 1 H 13.5 17 13.5 6.5 SS 11 Y N N N 0 N

“STUV” C O P Y C 59.5 N N G Y F 1 H 13 15 11 6.5 SS 10.5 Y N Y N 2 Y
“W” C R P Y C 46.5 N Y F N N 0 N 21 18 16 8 SS 10.5 N N N N 0 N
“X” C R P Y C 73 N Y F N N 0 N 19 16 18 8.5 SS 12 Y N N N 0 N
“Y” C R P Y C 73 N Y F N N 0 N 20.5 18 16 8.5 SS 7 N N N N 0 N

Legend: 1(C=corian), 2(K=kidney, J=knob, O=oval, R=rectangle), 3(A=Auto, P=paddle), 5(B=black corian, P=copper, C=corian),
9(G=grate, F=front), 11(F=front, B=back, N=no), 13(H=handicap, N=normal), 18(SS=stainless steel, I=inaccessable), else(Y=yes,
N=no)
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