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Abstract

The development of novel remote sensing techniques, based on interferometric synthetic

aperture RADAR (InSAR), currently allows for millimetric precision measurements of Earth

surface deformation over time. One of the major challenges posed by these techniques, known

as persistent scatterer interferometry (PSI), is the inherent sparsity of the data resulting

from the RADAR scatterer selection process.

In this work we present an automated image analysis framework aimed at the detection

of model-defined spatiotemporal features within sparse point cloud datasets, and we show

how this framework can be tailored to the early detection of hazardous geophysical features

within InSAR-derived data. In particular, we developed a spatiotemporal model describing

the evolution of subsiding features, we verified its validity by using discrete element method

simulations, and applied it, within our framework, to the early detection of sinkholes.

The ground truth dataset, used to develop the spatiotemporal model, was obtained by

imaging a sinkhole prone area for a period of 70 months. The relevance of this dataset for our

research is due to the fact that it contains four active features of which one (W1) collapsed

before the data was taken, and one (W2) collapsed after the data was taken providing ground

truth measurements.
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We first approached the detection as a graph segmentation problem. By assigning each

PSI scatterer within the ground truth dataset to a vertex and enforcing connectivity by

the Delaunay triangulation, we obtained a graph that reflected the local neighborhood

relationship. We then constructed an edge-weighting function designed to favor low weights

for edges traversing boundaries of regions displaying signs of subsidence. The segmentation

resulting from the application of the min-cut algorithm to this graph captured 27% and 94%

of the collapsed area of W1 and W2 respectively.

Since we had at our disposal the time series of the displacements of each scatterer, we

expanded our approach to leverage this information by developing a model-based spatiotem-

poral detection method. The parameters regulating the behavior of the model were used

to generate a multidimensional parameter space that was then scanned with user-defined

resolution. At each point, a spatiotemporal template was reconstructed based on the original

model and the currently selected parameters. This template was used to analyze the point

cloud dataset for regions with matching behavior. This method provided an improvement by

identifying as high risk 52.6% and 81.6% of the collapsed area of W1 and W2 respectively

against the values of 37.5% and 17.6% obtained from the graph cut approach. We also

applied this method to a 40× 40 km2 area of interest located in western Virginia. The ground

validation on a subset of the detected features showed that 78% of the locations presented

strong evidence of subsidence.

To improve on the computational burden imposed by the direct application of this

exploration method with complex models over large datasets, we developed an activity

detection approach where large datasets were subdivided into smaller blocks. The average

and standard deviation of the displacements of the scatterers contained in each block were
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used as elements of each block feature vector. Outliers in the feature space, corresponding to

actively subsiding regions, were identified using their Mahalanobis distance. When applied

to the ground truth dataset this screening method provided a ×15 increase in the detection

speed while still maintaining accurate results. To further reduce the impact of larger datasets

and complex models, we introduced a second screening stage, based on the evaluation of the

normalized mutual information between model and data, to pinpoint the location of features

requiring full spatiotemporal analysis.

Finally, to leverage the inherent sparsity of the PSI data, we took advantage of the tools

provided by the emerging field of graph signal processing and developed a graph-based scale

space analysis approach that provided results comparable to those obtained by previous

methods.



All that is gold does not glitter,
Not all those who wander are lost;

The old that is strong does not wither,
Deep roots are not reached by the frost.

J.R.R. Tolkien
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Chapter 1

Introduction and technical

background

1.1 Motivation

Every year the U.S. Department of Transportation spends several millions of dollars to

perform repairs to the infrastructure damaged by geophysical phenomena such as sinkholes

and landslides [1]. The sudden and often unpredictable nature of these events is the main

cause of the high repair costs and the disruption of the regular flow on the transportation

network. In 1991, the Committee on Ground Failure Hazards Mitigation Research within

the Division of Natural Hazard Mitigation of the Commission on Engineering and Technical

Systems of the National Research Council published a report titled Mitigating Losses from

Land Subsidence in the United States [2]. In this report it was stated that:

”More than 44,000 km2 of land in 45 states in the United States have been lowered

by the type of subsidence considered in this report.

1



1.1 Motivation 2

[. . .] about 18 percent of the conterminous United States is underlain by cavernous

limestone, gypsum, salt, or marble and is locally susceptible to catastrophic collapse

into sinkholes.

Annual costs from resulting flooding and structural damage exceed $125 million.”

Figure 1.1: Cumulative subsidence damage caused by sinkhole. Time periods on which estimates
are based vary by State, and costs are not converted to constant dollars. Data not available for
Puerto Rico, U.S. Virgin Islands, and Pacific Territories. (From [3] with the permission of FEMA)

In 1997, the Federal Emergency Management Agency (FEMA) released a report titled

Multi-Hazard Identification and Risk Assessment [3] where it summarized the results of the

1991 report with a chart (Fig. 1.1) describing the cumulative repair costs for damages caused

by sinkholes in the United States.

In the same report it was stated that:

”Landslides occur in every State [. . .]. According to a 1985 study, roughly 40

percent of the U.S. population is exposed to direct and indirect effects of landslides.
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Landslides have damaged or destroyed roads, railroads, pipelines, electrical and

telephone lines, mines, oil wells, buildings, canals, sewers, bridges, dams, seaports,

airports, forests, parks, and farms. [. . .] The best estimate of annual losses

resulting from landslides in the United States are 25 to 50 lives and $1 to $2 billion

in property damage.”

(a) (b)

Figure 1.2: (a) Landslide potential based on adverse formations associated with past landslide
activity. (b) Landslide incidence and susceptibility in the conterminous United States. Data not
available for Alaska, Hawaii, Puerto Rico, U.S. Virgin Islands, and Pacific Territories. (From [3]
with the permission of FEMA)

This was clearly summarized in the report by two charts (Fig. 1.2) displaying the potential

and incidence of landslides.

Although sinkholes and landslide are caused by fundamentally different underlying geo-

physical phenomena, they have in common the fact that they both result in the movements

of the Earth’s surface. In this work, we present our contribution to the development of

early detection techniques, applicable to subsidence events, based on the use of novel remote

sensing RADAR products capable of identifying minute changes in ground elevation.

Until recently, the main mitigation approaches have included careful mapping of areas

known to be prone to subsidence phenomena, followed by expensive and time consuming
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geophysical inspection techniques [4] such as ground penetrating radar [5], cone-penetrometer

tests [6], standard penetration tests [7], and electrical resistivity tests [8]. Although these

techniques can provide very detailed information about the ground structure and its changes

over time, they are very labor intensive and extremely localized in nature thus seldom used

as a routine surveying approach but rather for analysis once subsidence has been detected [9].

Starting in the early 1990s, mainly due to the deployment of the European Remote

Sensing (ERS) constellation (see section A.1: European remote sensing satellites (ERS)) by

the European Space Agency (ESA), civilian projects have been allowed increased access to

synthetic aperture RADAR (SAR) instrumentation spawning the development of advanced

imaging techniques such as interferometric SAR (InSAR).

There are several examples of successful applications of SAR and InSAR. The Office of

Federal Lands Highway1 successfully conducted several studies at the Cedar Pass area of

Badlands National Park in South Dakota [10], Cimarron and Mesa Verde Slides in Colorado,

Prosser Slide in Washington State [11], and the Amphitheatre Point Slide in California [12]

using InSAR to detect ground deformations and identify specific areas requiring further

ground-based surveys. Scientists at the U.S. Geological Survey routinely use InSAR to

help correlate ground movements with seismic events and to detect fault zones as well

as deformations due to volcanic activity [13]. InSAR has proved successful in long-term

monitoring of ground subsidence in Sicily [14], where the phenomenon was eventually traced

back to aquifer depletion through excessive groundwater extraction. Another InSAR analysis,

relating hydrocarbon reservoir volumetric strain to pressure depletion, was applied to the

1The office of Federal Lands Highway (FLH) is part of the US Department of Transportation (USDOT),
Federal Highway Administration. The primary purpose of the FLH is to provide financial resources and
technical assistance for a coordinated program of public roads that service the transportation needs of Federal
and Indian lands.
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extensive oil and gas fields in Oman with approximately 500 producer wells [15]. Here,

the study of the horizontal and vertical components of the detected bowlshaped ground

deformation areas provided indication of subsurface heterogeneity leading to detection of

fault lines. The InSAR approach was also found to be suitable for monitoring wetlands in

Floridas Everglades [16]. Here, the analysis of X-band (8-12 GHz) data from the TerraSAR-X

satellite provided an indication of surface water level variations with accuracy of two to four

centimeters. In a recent study conducted over sinkhole-prone regions at Wink and Daisetta

in Texas, a combination of gravimetry and radar interferometry was used and the results

indicated fair level of agreement between the two techniques [17] [18]. Another recent study

[19] presented results of the use of InSAR for subsidence detection in the Carlsbad mining

district (New Mexico). The results were obtained by applying differential InSAR (DInSAR)

techniques to compare the phase between two images taken on July 2005 and March 2006.

The transportation community has shown a growing interest in the potential application

of these techniques to the routine monitoring of key infrastructure features and their adjacent

land corridor. These areas are often the point of origin of significant safety hazards to

highway and railway operations [20] and the detection and analysis of precursory motion could

identify potential landslides and sinkholes, reducing the maintenance costs2 by allowing local

Department of Transportation (DOT) to schedule preemptive maintenance and consolidation

works. The limited occurrence of emergency repairs would result in lower prices for raw

materials, increased safety for the public, and reduced disruption to the general traffic.

Because of this growing interest, the U.S. DOT Research and Innovative Technology

2Brian Bruckno, Virginia Department of Transportation research geologist, stated that just in central
Virginia more than $1.2 M was spent in 2011 for the remediation of sinkholes and landslide with any single
event costing in excess of $25 k (personal communication, March 2013).
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Administration (RITA) has funded several projects focusing on the use of remote sensing

techniques to monitor the condition of the transportation network. In particular, the National

Consortia on Remote Sensing in Transportation within the Commercial Remote Sensing

& Spatial Information Technologies program consists of university-based research groups,

including the Virginia Image and Video Analysis laboratory at the University of Virginia,

leaders in the development of products and tools based on remote sensing technologies.

Within this framework, we will present here our contributions that were developed under

the sponsorship of RITA and in collaboration with the Virginia Center for Transportation

Innovation and Research and TRE Canada Inc. (a subsidiary of Tele-Rilevamento Europa)

the world leader company in ground deformation monitoring services with InSAR technology.

In particular, we will present a set of algorithms that, by making use of the last generation of

interferometric products, capable of resolution down to the millimeter level, generate maps

identifying locations where displacements of the Earth’s surface conform to a predefined

spatiotemporal model.

1.2 Monitoring Earth’s surface movements

Topographic maps have been the main way to represent local and global elevation for

thousands of years [21]. In the past decades, with the advent of digital techniques, elevation

data have been recorded in the form of digital elevation model (DEM)3.

3DEM is a generic name for both digital terrain model (DTM) and digital surface model (DSM) with the
former being a representation of the bare ground elevation and the latter including the height of any object
present on the surface.
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Before the development of remote sensing techniques, DEMs were mainly obtained thanks

to measurements in the field. These long and painstaking campaigns were conducted while

dealing with difficult logistics, safety concerns, and limited resources. As a result, often

the collected data did not cover wide areas, the spatial sampling was not dense enough to

provide detailed information about the topography, and campaigns were seldom repeated

to evaluate ground deformation over time. Once radio detection and ranging (RADAR)

instrumentation became available to the scientific community as a remote sensing tool, it

sparked, over the last two decades, the development of new high resolution techniques. Today,

we have the capability of mapping large regions (hundreds of square kilometers) with very

high spatial resolution (few square meters), while measuring elevation with sub-meter and

surface deformations with millimeter accuracy.

In order to generate the DEM of a region of interest, it is necessary to obtain three pieces

of information:

� an accurate map of the observed scene allowing easy identification of the objects present

within the imaged region

� high resolution measurements of the location of the objects in the scene with respect to

a reference point (typically the measuring instrument)

� the exact location of the reference point with respect to a geographic coordinate system

(geo-referencing)

In the rest of the chapter, we describe the basic concepts of RADAR and how new RADAR

techniques were developed to address the requirements listed above. Starting from synthetic

aperture RADAR (SAR) (see section 1.3.3: Synthetic Aperture Radar (SAR)), capable of
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acquiring high resolution two-dimensional maps, through interferometric SAR (InSAR) (see

section 1.3.4: Interferometric SAR (InSAR)), adding the third dimension and allowing the

generation of DEMs, we will conclude with differential InSAR (see section 1.3.5: Differential

InSAR (DInSAR)) and persistent scattering (see section 1.3.6: Permanent Scatterer InSAR

(PSInSAR) and SqueeSAR) techniques, providing the capability of measuring DEM changes

over time.

1.3 RADAR for remote sensing applications

1.3.1 RADAR basics

The fundamental idea behind RADAR was born in the late nineteenth century when interfer-

ence was observed, due to a passing ship, while wireless signals were being transmitted [22].

It did not take long to develop the idea further for imaging purposes: coherent narrow-band

radiation was pulsed in a specific direction and the time required for the echo to return

measured, providing the detection and ranging capabilities.

While optical instrumentation relies on sunlight to reach Earth and illuminate a scene

of interest, one of the main characteristics making RADAR attractive is that it provides its

own illumination. Furthermore, when a scene is illuminated by sunlight, only the amplitude

of the scattered light can be used as source of information about the imaged scene. This

is because there is no fixed (in space or in time) phase relationship between the different

infinitesimal sources of light within the Sun. On the contrary, a RADAR transmitter provides

a coherent signal. In this case, both amplitude and phase delay information are available in
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Figure 1.3: RADAR resolutions. The highlighted area is know as the resolution cell which represents
the resolution unit of a pulsed RADAR system: two objects within the same resolution cell cannot
be distinguished. (Adapted from [23] and reproduced by permission from Author G. Richard Curry,
Radar System Performance Modeling, Second Edition, Norwood, MA: Artech House, Inc., 2005.
©2005 by Artech House, Inc.)

the return signals, allowing the development of the interferometric techniques on which SAR,

InSAR, and the derived products we used in our research are based. Moreover, RADAR

systems are typically operated at longer centimeter wavelengths that can easily penetrate

clouds making for an attractive instrument that can be used at any time and almost in any

weather condition.

In a RADAR system, a transmitter emits radio waves powerful enough that measurable

amounts of radio energy are reflected from scattering objects back to a receiver, typically

located at the same site as the transmitter (monostatic configuration). Considering the basic

RADAR system illustrated in Fig. 1.3, we can define three directions: range, elevation and

azimuth. Range is the direction of propagation of the RADAR waves (indicated by the

dashed line). The distance of an object in this direction is called range and indicated as R.

Elevation is the angle between a plane tangent to the Earth’s surface at the location of the

RADAR transmitter and the range direction and it is indicated as φE. The azimuth direction
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Figure 1.4: Illustration of RADAR pulse transmission, reception and ambiguity case.

(not illustrated) is defined as the angle between a reference direction in the tangent plane

previously described and the range direction. These three coordinates are used to identify

the spatial position of an object with respect to the known location of the RADAR system.

The fundamental process by which a RADAR measures the distance of an object is the

evaluation of time delays. In the most basic design, a radio frequency source is connected to

an antenna and emits a periodic sequence, of period Tp, of square pulses each of length τp.

The period is know as pulse repetition interval (PRI) and its inverse (fr) as pulse repetition

frequency (PRF). These values are important in determining the maximum unambiguous

range which is the maximum range at which a target can be located: Ru = cTp/2 = c/2fr,

where c is the speed of light in the medium. These concepts are summarized in Fig. 1.4

where we show two examples of echoes received from both an unambiguous and an ambiguous

target (located at a distance larger than Ru). In the case of the unambiguous target, each

echo is received before the following pulse is transmitted allowing for the correct evaluation
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of the distance. In the ambiguous case, the echo from the ”blue” pulse is received a time ∆a

after the transmission of the ”red” pulse. Without other means to discriminate, the RADAR

system will naturally interpret this echo as a response to the ”red” pulse and associate it to

an object closer than in reality. This ambiguity is commonly resolved by using a technique

where the echoes obtained from observation made with several different pulse repetition

frequencies are compared [24].

The maximum range defined by Ru does not take into consideration the actual physical

dependencies of the transmitted power, the scattering characteristics of the target, its distance,

and the sensitivity of the RADAR receiving systems. These properties are captured in what

is known as the radar (range) equation which, in its most general form, can be written as4:

R = 4

√
PtG2λ2σ

(4π)3Pr
(1.1)

where Pt is the peak transmitted power, G is the antenna gain (a measure of how focused

the transmitted power is in the elevation and azimuth direction), λ is the operating radar

wavelength, and σ is the radar cross section (defined as the ratio between the power reflected

from the target back to the radar (Pr) to the power density incident on the target).

If we identify with Prmin the minimum detectable signal power, then the maximum radar

range Rmax can be expressed as:

Rmax = 4

√
PtG2λ2σ

(4π)3Prmin
(1.2)

4For a detailed derivation see [25]
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For monostatic pulse RADAR systems, where receiver and transmitter are co-located,

there exists also a minimal measuring range which represents the minimum distance at

which an object can be detected. This is due to the fact that monostatic systems cannot

receive while they are transmitting a pulse and require a recovery time (τr) to switch from

transmitting to receiving. Because of this, the RADAR is effectively blind to return signals

from targets closer than Rmin = c(τp + τr)/2.

When a target is within the minimum and maximum range limits, it is possible to evaluate

its range R from the interval of time ∆t elapsed between the pulse transmission and the

echo reception: R = c∆t/2. In practical terms, the range corresponding to a certain delay is

about 150 m for each microsecond of delay and, given the single pixel nature of a RADAR,

the identification of the location in the azimuth and elevation directions is obtained from the

actual orientation of the antenna.

Resolution

One of the key features of DEM is their resolution expressed as the minimum size of the

ground element for which an elevation value is provided. This can be linked directly to the

resolution of the instrument used to acquire the data. In particular, range and azimuth

resolution are critical, in SAR systems, to generate precise maps that can, in turn, be used

to obtain high quality DEM.

In the previously described RADAR system, we can define three resolutions, one for each

direction. Together, these three values form what is known as resolution cell that, for a given

RADAR systems, represents the minimum resolution unit (Fig. 1.3) with the implication

that two objects cannot be distinguished if they are within the same resolution cell.
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In order to differentiate between two targets separated in the range direction, a basic

pulsed RADAR has to be able to completely receive the pulse echo from the closest one

before being reached by the echo from the other. In other words, two echoes cannot not

overlap. In this case, the achievable resolution is given by:

∆R = cτp/2 = c/2B (1.3)

where ∆R is the range resolution, τp is the transmitted pulse duration, and B = 1/τp

is the bandwidth of the RADAR system. The last relationship shows that higher range

resolutions can be achieved by either decreasing the pulse duration or, equivalently, increasing

the bandwidth. On the other hand, the average transmitted power, one of the key factors

determining the signal to noise ratio (SNR) of the returned echoes, is given by the product

of the pulse duration and its peak power. To maintain the desired return SNR, required

to provide reliable detection and reduced false alarm rates, it would then be desirable to

use longer pulses (or increase the peak power) while preserving the desired range resolution.

Generating high peak powers at the high frequencies used in RADAR systems can be

challenging. Two techniques known as matched filter [26][27], and pulse compression [25] were

developed to allow the use of longer pulses while still achieving the desired range resolution.

A matched filter system is designed to search for a known signal within another one by

evaluating the cross-correlation between the two. In the case of a RADAR system, the cross-

correlation is computed between a replica of the transmitted pulse and the signal received

during the inter-pulse period. This is typically achieved by performing the convolution of the

received signal with the time-inverted complex conjugate version of the transmitted one. The
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main advantage of this technique is that it maximizes the SNR at the filter output when the

input can be characterized as a scaled version of the original signal corrupted by additive

white gaussian noise (AWGN).

For a signal, we can write the response of the matched filter as:

g(t) =

∫ +∞

−∞
s∗(t′ − t)s(t′)dt′ (1.4)

where s(t) represents the received signal shifted, for ease of notation, to be centered at

the echo delay time (∆t). This equation is a special case of the ambiguity function which

represents the output of a matched filter in the presence of Doppler shift (here ignored) in

case of returns from a moving target [28].

The equivalent formulation in the frequency domain is given by:

g(t) =

∫ +∞

−∞
|S(f)|2 exp(−j2πft)df (1.5)

where S(f) is the spectrum of the signal, and f is the frequency.

The output of the matched filter is maximized at the time when an echo of the transmitted

pulse is received. Although the maximum occurs at a given instant, providing the location

of an object in the range direction, the actual resolution (ability to distinguish between

two subsequent echoes) is determined by the width5 of the power peak (the time width of

|g(t)|2) which corresponds to the effective width of the received pulse (τc) at the output of

the matched filter receiver.

5The width is usually measured as the full width at half maximum - or 3dB-point - of the corresponding
power peak.
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Let us consider the response of this system when using two different type of pulses:

s(t) = a(t) exp(j2πfct) (1.6)

s(t) = a(t) exp[j2π(fct+Kt2/2)] (1.7)

where fc is the carrier frequency of the signal, t is the time, K is a constant, both amplitudes

a(t) = 1 are considered constant, and the functions are defined over the interval |t| ≤ τp/2.

The signal represented by (1.6) is a burst of duration τp at the RADAR carrier frequency.

The response to this signal can be calculated from (1.4) to be g(t) = τp(1−|t/τp|) exp(j2πfct)

with t ≤ τp. In this case, |g(t)|2 is a quadratic function of width given by τc = τp and the

resolution is determined by the actual time width of the transmitted pulse.

The second equation (1.7) represents a signal where the frequency is linearly increasing (or

decreasing depending on the sign of K) with time. This type of signal is known as chirp and

K is called the chirp rate. One of the characteristics of a chirp is that the frequency spectrum

is approximately a top-hat function of width (bandwidth) B = |K|τp. In this case, from (1.5),

we can see that the response of the matched filter is g(t) = Kτp sinc(Kτp) exp(j2πfct) with a

width of τc = 1/B = 1/|K|τp.

The ratio between the actual duration of the pulse (τp) and the width at the output of

the matched filter (τc) is known as the compression ratio and is given by τpB which, in the

case of chirp signals, reduces to |K|τ 2p .

The use of matched filter receivers, not only provides the maximum available SNR in case

of AWGN (effectively increasing the range of the system), but also decouples the pulse length

from the achievable range resolution (effectively linking it to the bandwidth of the system).
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As an example consider COSMO-SkyMed (see section A.2: COSMO-SkyMed), the satellite

constellation providing the data for our research. The SAR instrument operates at a center

frequency of fc = 9.6 GHz (X-band) and can achieve chirp bandwidths up to 400 MHz

(spotlight mode), obtaining a maximum theoretical range resolution of 0.5 m while using

pulses τp with width between 30µs and 80µs. Without pulse compression, the best achievable

resolution in the range direction would be 1.5 km.

We have described how RADAR systems can achieve high range resolution. As we will

see later, this is one of the two main coordinates used by SAR satellites to generate maps of

the ground. The second coordinate, azimuth, will be identified by the direction of motion of

the satellite. For the rest of this section, and in the following two, we are going to analyze

the developments that allowed SAR instruments to achieve high resolution in this coordinate.

If we consider the system depicted in Fig. 1.3, assuming a rectangular antenna of sizes Wa

in the elevation and La in the azimuth direction, the corresponding Fraunhofer (diffraction-

limited)6 angular (θE/A) and arc (WθE/A) resolutions are given by7:

θE ∝
λ

Wa

WθE = RθE ∝ R
λ

Wa

(1.8)

θA ∝
λ

La
WθA = RθA ∝ R

λ

La
(1.9)

where R is the distance in the range direction (slant range distance), and λ is the operating

center wavelength of the RADAR. These angular resolutions define what is know as RADAR

6Satellite-based RADAR systems are typically operating in the Fraunhofer region which is characterized
by W 2/Lλ� 1, where W is the largest aperture size, λ is the operating wavelength, and L is the distance
from the aperture. In the case of COSMO-SkyMed: W = 5.7 m, λ = 3.125 cm, and L = 619.6 km with a
resulting ratio of 0.00168.

7A multiplicative factor of 0.886 is necessary if the standard 3dB-point (half power) is considered in the
definition of beamwidth
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beamwidth and, together with (1.3), they define the RADAR resolution cell (Fig. 1.3).

Modern RADAR antennae have better performance than simple rectangular apertures

providing either higher directivity D and much narrower beamwidth (ΩA = 4π/D) or, as in

the case of COSMO-SkyMed active antenna, steerable capabilities while maintaining near

optimal performance [29][30]. Nevertheless, the basic principle of inverse proportionality

between antenna size and resolution stands.

For a given antenna geometry, the size of the on-ground spatial resolution element (pixel)

scales linearly with its distance from the antenna. In visible and infrared systems, where

the wavelengths are of the order of 10−7 − 10−5 m, it is possible to achieve good resolutions

even with modest size apertures on spaceborne instruments. In the case of RADAR systems,

where the wavelengths are of the order of centimeters, this is not the case: to achieve the

same spatial resolution of an optical system, the required aperture size would be hundreds of

times larger, quickly becoming unfeasible.

As we will describe next, antenna synthesis techniques can be used to overcome this

obstacle and provide good resolution, independent of the RADAR altitude, with reasonably

sized antennas.

1.3.2 Side-Looking Airborne/real-Aperture RADAR (SLAR)

The first major breakthrough in the use of RADAR for ground monitoring was the development

of the side-looking airborne/real-aperture RADAR (SLAR) which consisted in a RADAR

system mounted on the side of an airplane.

In SLAR systems, the RADAR is typically pointed perpendicularly to the flight path
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Figure 1.5: SLAR geometry. (Adapted from [28] with the permission of John Wiley & Sons, Inc.)
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(sometimes the beam can be pointed forward or backward, in this case the angle between the

center-beam and broadside is called the squint angle). The viewing direction is determined

by the look angle (γ) which, in systems flying close enough to the surface (where Earth’s

curvature can be ignored), is considered identical to the incidence angle (η) (Fig. 1.5). In

this configuration (often indicated as strip-map mode), the area imaged by a single pulse of

the SLAR (also known as the footprint) is the projection of the antenna beam (WθE ,WθA)

onto the ground and is given by (Wg,WθA), with

Wg =
WθE

cos η
≈ λRm

Wa cos η
(1.10)

WθA = RmθA ≈
λRm

La
(1.11)

where Wg is the ground projection of WθE (known as the swath width), and Rm is the

midswath slant range (distance from the RADAR to the projection of the beam peak).

As the RADAR moves along in the azimuth direction, the footprint covers a swath of

ground of width Wg and of a length that depends on the duration of the acquisition8. Within

this swath, the resolution in azimuth and ground range are given respectively by WθA and by

∆Rg =
∆R

sin η
=

c

2B sin η
(1.12)

SLAR systems provided quite an improvement over existing ground mapping techniques,

allowing the coverage of large regions with good resolution in the range direction. Nevertheless,

8In the early days of SLAR, mapping was cleverly obtained by recording the amplitude of the RADAR
return on a photographic film where the advancement of the film was synchronized with the flight progression
(azimuth direction) while the range direction was synchronized with the pulse delay [31].
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the major limitation of such systems was due to the azimuth resolution which still directly

depended on the physical size of the antenna and the wavelength of the RADAR. With

resolutions of the order of tens of meters, when used from a low flying aircraft, if implemented

with typical values for wavelength, antenna size, and range distance from space-borne systems,

SLAR would give azimuth resolutions on the order of tens of kilometers: too coarse for most

scientific requirements. For example, in the case of COSMO-SkyMed [32], with Wa = 1.4 m,

La = 5.7 m, R ≈ 620 km, λ = 3.125 cm, and η = 38◦, the theoretical size of the footprint

would be Wg ≈ 18 km, which is actually artificially broadened to ∼ 40 km to allow uniform

illumination of the ground in the range direction, and WθA ≈ 3.4 km. In order to achieve an

azimuth resolution similar to the one obtained from an aircraft, the requirements imposed on

the azimuth dimensions of the space-borne antenna would be, once again, impractical.

The final step in ground resolution was achieved by implementing antenna aperture

synthesis. This technique, at the basis of SAR, allows to obtain meter resolution images with

modest size space-borne antennas. Again using COSMO-SkyMed satellites as an example,

the actual SAR resolution for single-look complex images in strip-mode can be as low as

Wg = 3 m, and WθA = 3 m with an antenna size of W = 5.7 m. Using advance synthesis

technique - as in spot mode - where the antenna keeps tracking a localized area as the satellite

moves in the azimuth direction, it is possible, for COSMO-SkyMed to achieve a resolution on

ground of 50 cm.
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Figure 1.6: Intuitive approach to SAR azimuth resolution.

1.3.3 Synthetic Aperture Radar (SAR)

The ability of modern satellite RADAR systems to provide high resolution DEMs and track

their changes over time (which is one of the key components at the basis of our research) can

be tracked back to the development of SAR. The capability of this technology to image large

regions with high resolution has been known since the early 50s when Carl Wiley observed a

one-to-one correspondence between the azimuth coordinate of a target and the Doppler shift

of the return signal9.

Before analyzing the details on how SAR systems achieve azimuth resolution theoretically

equal to half the along-track (azimuth) size of the RADAR antenna (La/2), lets consider an

intuitive approach.

9Carl Atwood Wiley is credited with being the first ”[. . .] to have joined the aperture synthesis and
image reconstruction techniques of radio astronomers with the techniques of microwave radiometry to achieve
improved passive RADAR imaging.” [33]. After successful experiments on what he called Doppler RADAR
Beam Sharpening, he filed for a patent on August 13th, 1954 but the patent was placed under secrecy order
for 11 years until it was finally granted on July 20th, 1965. [34]
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As the platform carrying the RADAR moves along its track at a constant velocity, it emits

a series of pulses according to the system PRF. Each pulse illuminates a footprint given by

(1.10) and (1.11). Considering Fig. 1.6, we can look at each received echo as creating a virtual

antenna with the location determined by the platform velocity Vs and the PRF. A target at a

certain position along the azimuth direction will be illuminated by several pulses as long as it

is within the diffraction-limited beamwidth of the RADAR antenna (WθA). This is equivalent

to saying that the target is ”simultaneously” imaged by N virtual antennae (one for each

pulse). The SAR processing achieves this ”simultaneousness” by electronically synchronizing

the echoes, effectively turning the N virtual antennae in a single synthesized antenna of length

Lsynth = WθA ≈ RmθA ≈ Rmλ/La. If we now consider the diffraction-limited resolution of an

antenna of this length, we can evaluate the theoretical azimuth resolution of the SAR system:

δx ≈ Rmλ/2Lsynth ≈ La/2 (where the factor 2 in the denominator is required because of the

signal round-trip). One of the amazing consequences of this result is that, to the first order,

the resolution is independent from the distance between the RADAR and the imaged scene.

At the heart of SAR processing is the fact that two stationary targets, placed at two

different angles with respect to the RADAR, will have two different velocities with respect to

the moving platform and these velocities will change in a well determined manner over time.

Considering Fig. 1.7, a target at along-track (azimuth) distance x from the RADAR will

exhibit a Doppler shift equal to [35]:

fd =
2Vs sin θ

λ
≈ 2Vsx

λR
(1.13)

where Vs is the velocity of the RADAR platform, θ is the angle between broadside and the
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Figure 1.7: SAR azimuth resolution. (Adapted from [28] with the permission of John Wiley & Sons,
Inc.)

target, and R is the slant range distance of the target. Inverting (1.13), we can observe that,

as long as two objects are within the beam of the RADAR antenna (θA), the along-track

resolution (δx) depends on the precision with which the Doppler frequency shift can be

measured:

δx =
λR

2Vs
δfd (1.14)

In general, the resolution to which the frequency of a periodic signal can be measured

(resolution bandwidth) is proportional to the inverse of the period during which the signal

is observed. In this specific case, the period during which the target is present within WθA

(Fig. 1.6) is T = 1/δfd = λR/LaVs which, substituted in (1.14), gives the theoretical limit of

δx = La/2.
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Figure 1.8: SAR focused azimuth resolution. (Adapted from [28] with the permission of John Wiley
& Sons, Inc.)

This simplified derivation is not entirely correct since it is obtained under the assumption

that a point target presents a constant Doppler shift for the entire time it is present within

WθA . In reality, the target will exhibit a range of frequency shifts (Doppler bandwidth) while

traversing the antenna beam. To account for this, we can only use the previous approximation

for the time when the Doppler shift can be considered constant, which reduces the available

integration interval to T = (
√
λR/2)/Vs [28] resulting, when substituted in (1.14), in what is

known as the unfocused SAR azimuth resolution: δx =
√
λR/2.

Unfocused COSMO-SkyMed would obtain an azimuth resolution of δx = 98.4 m which is

a vast improvement over the diffraction limited value but still far from the theoretical limit

(δx = 3 m for an antenna size of La = 5.7 m).

The last step towards achieving the theoretical SAR resolution limit is to account for the

entire Doppler shift. Following Fig. 1.8, we can describe the distance R between a SAR system,

moving at constant speed Vs along a straight track, and a fixed target as R = R0 + ∆R0

where R0 is the minimum approach distance. We can also see that R2 = R2
0 + (x− x0)2 and,
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in the approximation that |x− x0| � R0 (which is true for a typical antenna beamwidth in

satellite systems), the distance between the radar and the target can be written as a Taylor

series expansion assuming, without loss of generality, that x0 = 0:

R ≈ R0 +
x2

2R0

+ · · · (1.15)

As the platform travels in the azimuth direction, the phase for the pulse round-trip can

be written as [36]:

φ(x) = −4πR(x)

λ
≈ −4π

λ

(
R0 +

x2

2R0

+ · · ·
)

(1.16)

from which we can evaluate the change of frequency as

1

2π

dφ(x)

dx
= − 2

λR0

x (1.17)

The signal described by (1.16) and (1.17) can be interpreted as a chirp in the azimuth

domain (x) with rate K = −2/λR0. We can then apply pulse compression and matched filter

techniques: the reference function to use as correlation template is the expected Doppler

frequency behavior and the ”uncompressed pulse” is the length of the synthesized array: the

length over which the target is illuminated by the radar (WθA). The output of the azimuth

processor, the equivalent of the compressed pulse, provides the final azimuth resolution:

δx =
1

|K|WθA

=
λR0

2

La
λR0

=
La
2

(1.18)
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Ambiguities and distortions

From (1.18), it would seem that the azimuth resolution could be increased indefinitely by

reducing the size of the RADAR antenna in the azimuth direction. This is obviously not the

case. Size of antenna, azimuth resolution, and swath size are interrelated through the PRF

(fr).

To achieve the highest azimuth resolution, the SAR system has to sample the change in

phase, related to the change in position, with a frequency higher than the Doppler bandwidth.

Using (1.13) and observing Fig. 1.6, we can write this requirement as frmin > 2VsθA/λ =

2Vs/La. This limit, also known as azimuth ambiguity, states that, in order to provide adequate

sampling for the Doppler shift, it is necessary to emit a pulse at least each time the platform

moves by half the azimuth antenna size. This value regulates the minimum requirement for

the PRF10.

To avoid range ambiguities, only one pulse can be impinging on the ground at any given

time. Assuming that the spatial length of the pulse (cτp) is much shorter than the difference

between the far and near ranges (RF − RN) (Fig. 1.5), this requirement translates into

frmax < c/2Ws, where Ws is the swath width projected in the direction of the incident

RADAR beam. This poses a maximum limit to the PRF and links it to the swath size: the

higher the PRF, the higher the azimuth resolution, the smaller the swath size.

10For an interesting analysis of different requirements leading to the same result for azimuth ambiguity see
[37]
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(a) (b) (c) (d)

Figure 1.9: Example of possible SLAR and SAR distortions. From left to right we can see: (a)
slant-range compression (the bottom part of the images shows the distorted image on top of the
corrected one), (b) foreshortening, (c) layover, and (d) shadowing [38]. (With the permission of
Natural Resources Canada (NRC). Reproduction has not been produced in affiliation with, or with
the endorsement of, NRC.)

If we choose frmin < fr < frmax , we can combine the two previously described requirements

into a constraint on the RADAR antenna size by noting that Ws = Wg sin η and using (1.11):

Aa = WaLa >
4VsλRm tan η

c
(1.19)

Even if fr is chosen to remove range and azimuth ambiguities, there are still others that

cannot be resolved with a single SAR measurement.

If we consider the looking geometry of a SLAR or SAR system (Fig. 1.5), it becomes

apparent that several types of distortions affect the reconstructed image, potentially degrading

the quality of the derived DEM. The main reason behind these distortions is the projection

of the imaged scene in the azimuth/slant-range plane of the RADAR.
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Every image is affected by the slant-range scale distortion (Fig. 1.9(a)) that causes a

change of scaling as the imaged region moves from the close to the far range with respect

to RADAR system. This error can be considered as a systematic error and can be removed

during the geo-referencing correction since the imaging geometry is known.

More severe errors are those due to the relief displacement of the imaged scene (which is

what we would like to measure in order to generate a DEM). In this case, the projection in

the azimuth/slant-range plane results in distortions that cannot be corrected, and even in

loss of data.

Foreshortening occurs when the RADAR images tilted structures. In the example

illustrated in Fig. 1.9(b), although points C and D are in different geographical locations,

due to the inclination with respect to the look angle, they are reached by the RADAR pulse

simultaneously. When projected in the image plane, the corresponding points C’ and D’ will

be considered at the same range distance. Due to the increased return signal, foreshortened

regions will appear brighter than average in the RADAR image. Further inclination of imaged

object toward the RADAR results in a phenomenon known as layover (Fig. 1.9(c)). In this

case, the tip of the object (B) is imaged closer to the RADAR than the actual base. When

the slope behind the tip of the imaged object is steeper than the slant angle, shadowing can

be observed (Fig. 1.9(d)). In this extreme case, the shadowed area is not reached by RADAR

signals resulting dark in the reconstructed image.
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1.3.4 Interferometric SAR (InSAR)

Foreshortening and layover are both symptoms of the elevation ambiguity intrinsic in SAR

systems: two targets at the same azimuth and range distance cannot be resolved. As we

will see, this is the main reason why DEM cannot be generated from a single SAR image. A

solution to this problem came with the development of a technique known as interferometric

SAR (InSAR).

Before InSAR was developed, the only retained information, after forming the SAR image,

was amplitude. The idea of considering also the measured phase came in the early 70s when

RADAR interferometry was first used to map Venus surface reflectivity using two Earth-based

antennae [39]. Few years later, a similar approach was implemented in a SLAR system by

adding a second receiving antenna aboard an aircraft. The two antennae were positioned

approximately vertically with respect to the ground and normal to the slant-range direction

[31]. RADAR pulses were emitted by one of the antennae and the echoes received by both11.

A plot of the phase difference between the two received signals provided a graph where

interference fringes could be directly correlated to the relative echo delays between the two

antennae, in turn determined by the difference in elevation within the imaged scene.

InSAR is based on the fundamental idea behind interferometry: to compare the differences

in the phase information between two complex signals. In each SAR image, every pixel

(ground resolution element, typically a few tens of square meters in size or less) has an overall

phase response that depends on the coherent superposition of several elemental responses

generated by each of the scatterers present within its area, the distance of the pixel from

11This observing configuration is known as standard mode in contrast to the ping-pong configuration where
antennae transmit and then receive a pulse in turn. For satellite systems, most of the times, the latter is the
typical configuration since the two interfering images are taken by the same satellite at two consecutive times.
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Figure 1.10: InSAR imaging geometry.

the satellite, and atmospheric phase delays. If two images are acquired within a short time

interval, from different vantage points, and registered with each other, the difference in phase

can be calculated and, together with the satellite attitude information relative to the two

acquisitions, used to evaluate the position of each pixel with respect to the satellite [40].

With the added capability of measuring the elevation of each pixel, InSAR has become

one of the most commonly used techniques in the generation of DEMs.

To better explain this imaging process, consider the simplified configuration illustrated in

Fig. 1.10, where a slice is taken in the azimuth direction (considered perpendicular to the

page).

Two targets (A and B) are at the same range and azimuth coordinates with respect

to antenna 1, thus indistinguishable. When a second image is taken by antenna 2 from a
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different viewing angle, it is possible to relate the elevation of each pixel to the difference in

phase between the two SAR images using the distance between the two satellites (known

as interferometric baseline). In particular, the elevation of a target (h) can be calculated as

h = H0 − R0 cos γ, where H0 is the altitude of the RADAR system, R0 is the range of the

target measured by antenna 1, and γ is the look angle for the target that can be derived

from ∆R = Bx sin γ−By cos γ = B sin(γ−α), where Bx and By (the orthogonal components

of the baseline B) and α (the angle that the baseline makes with respect to an horizontal

reference plane) depend on the geometry of the two observations, and ∆R is the difference

in the target range as measured by the two antennae. Finally the difference in phase (∆φ),

obtained by multiplying the second SAR image by the complex conjugate of the first, can be

used, with (1.16), to evaluate ∆R:

∆R = − λ

4π
∆φ (1.20)

where the factor of 4π is used in the case of ping-pong (or repeated-track) measurements and

2π in the case of standard interferometry.

From this discussion we can see that, as the baseline increases, a given change in elevation

will produce a higher change of phase. In other words, the longer the baseline, the higher

the resolution in phase hence the precision in the elevation measurement. This is nicely

summarized by the altitude of ambiguity [41]: ha = λR sin γ/2Bn, where Bn is the normal

baseline (the component of the baseline perpendicular to the range direction). This is the
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altitude difference that generates an interferometric phase change12 of 2π within a range

resolution element.

There is a limit to the maximum baseline that can be used since, as the normal baseline is

increased, the phase change within a ground resolution element increases and the contributions

from the elemental scatterers within the pixel start to cancel out reducing the overall coherence

of the measured phase component. This phenomenon, known as spatial baseline decorrelation,

is one of the potential problems affecting InSAR images [42] and can be understood by

considering the fact that the phase in an interferogram is defined modulo-2π (an integer

number of RADAR wavelengths).

The ambiguity introduced by this phase wrapping has to be removed before the elevation

can be calculated. This is done in a process known as phase unwrapping, one of the critical

steps in the production of InSAR images [43], and is based on the ability to relate the phases

of neighboring pixels to each other in order to reconstruct the expected continuous phase

change. As the coherence is decreased, the ability to trace the phase relationship between

adjacent pixels is reduced accordingly. For very large baselines, the images become completely

decorrelated and interferometric reconstruction is no longer possible.

It is worth mentioning that other sources of decorrelation exist: rotational decorrelation

caused by imaging a scene with different squint angles, and temporal decorrelation that occurs

in repeated-track interferometry when two images are taken, not only from different vantage

points, but also at different times. In this case, if the time interval between two acquisitions

is significant, the pixels themselves might have changed their scattering characteristics, such

12The phase change is assumed to be due exclusively to the change in elevation and is evaluated after
removal of the term induced by observation geometry (orbital fringes) and after projection of the interferogram
from the azimuth-range plane to the local Earth’s surface ellipsoid (interferogram flattening).
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as in the case of seasonal changes in vegetation, or snow, coverage [42].

1.3.5 Differential InSAR (DInSAR)

In the previous few sections we have briefly described the fundamentals of RADAR and

how this technology was developed into spaceborne SAR, that is now routinely used to

generate high resolution complex images of large regions in a short time. We then focused on

how interferometric processing added a third dimension to the imaged scenes allowing the

generation of high quality DEMs.

Since the main focus of our research is to develop image processing techniques aimed at

detecting changes in elevation indicative of the initial stages of potential geohazards, in the

remaining sections of this chapter we are going to present recent advances in SAR image

processing that lead to the development of new products that can provide measurement of

elevation changes down to millimeter level accuracy.

In 1993, an article in Nature displayed for the first time the changes in the Earth’s surface

due to the Landers earthquake in California [44]. This focused the interest of the scientific

community on the potential of a new technique that became known as differential InSAR

(DInSAR).

Similarly to InSAR, two-pass DInSAR uses two SAR images, taken at different times (for

example before and after the Landers earthquake13), to generate an interferogram which, as

we have previously shown, contains all the information necessary to reconstruct a DEM of

the region. The interferogram is then compared to a synthetic one generated from an existing

13This technique has also been successfully used to measure the effects of several recent devastating
earthquakes: Haiti [45], L’Aquila [46], and Fukushima [47].
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pre-event DEM obtained from external sources. The artificial interferogram is generated

using the same satellite geometry under which the SAR images were acquired. This step is

necessary to insure the removal of the interferometric fringes, due to the observation geometry,

during the final differencing operation. The resulting differential interferogram contains the

phase signature due to the changes in elevation [48] that, after the phase unwrapping step,

can be used with (1.20) to evaluated the actual displacement.

If a DEM is not readily available or the resolution is not acceptable, the three-pass

technique can be used. In this case, three different SAR images are acquired and one is

chosen to serve as reference (master). After the two slaves are co-registered with the master,

they are used to generate two interferograms. If any elevation change has occurred between

the acquisition times, it will show in their difference [49].

These differential techniques have been used to monitor minute changes in dams, ground

displacement due to underground excavations, glacier motion, coastline erosion, underground

water extraction, and are routinely used to monitor the deformation due to changes in size in

the calderas of volcanoes [50]. An example of this particular application is shown if Fig. 1.11.

To underline the importance of InSAR as a remote sensing technique, in 2004 JPL/NASA

hosted a workshop with, among others, the goal of identifying the possible applications and

benefits of satellite-based InSAR techniques. Between the several identified potentials was

topography and ground deformation. The report evaluated at $6.8 billion (yr.2000 USD) the

yearly societal cost worldwide due to landslides and land subsidence alone (with a share of

$2.2 billion for the United States) and estimated the potential yearly saving accruing from

InSAR use to be $1.4billion ($430 million for the United States).
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Figure 1.11: Example of two-pass DInSAR. (a) The amplitude image of an Single Look Complex
(SLC) SAR image acquired on 4 October 1995 by the ERS-1 satellite over Peulik Volcano, Alaska.
(b) The phase image of the SAR image acquired on 4 October 1995. (c) The phase image of an SLC
SAR image acquired on 9 October 1997 by the ERS-2 satellite over Peulik Volcano, Alaska. The
amplitude image is similar to that in (a) and therefore is not shown. (d) An original interferogram
formed by differencing the phase values of two co-registered SAR images (b) and (c). The resulting
interferogram contains fringes produced by the differing viewing geometries, topography, any
atmospheric delays, and surface deformation. (e) An interferogram simulated to represent the
topographic contribution in the original interferogram (d). (f) A topography-removed interferogram
that was produced by subtracting the interferogram in (e) from the original interferogram in (d).
The concentric pattern indicates approximately 17 cm of uplift centered on the southwest flank of
Peulik Volcano, Alaska, which occurred during an aseismic inflation episode from October 1996 to
September 1998. Each interferometric fringe (full-color cycle) represents 360◦ of phase change (or
2.83 cm of range change between the ground and the satellite). (From [50] with permission from the
American Society for Photogrammetry & Remote Sensing, Bethesda, Maryland, www.asprs.org).

1.3.6 Permanent Scatterer InSAR (PSInSAR) and SqueeSAR

One of the major problem with interferometric images is decorrelation [42]. As we have

already discussed, imaging baselines and acquisition intervals can affect spatial and temporal

correlation. On the other hand, these parameters are often controllable by either accurately
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selecting existing images from a historical database, or carefully defining the satellite attitude

parameters for the observation run.

One unpredictable source of phase error is due to atmospheric inhomogeneities [51], in

particular, to the turbulent motion of water vapor masses [52]. These errors are typically

characterized by slow varying phase delays, known as atmospheric phase screen (APS),

superimposed on each SAR image [19] [53].

The InSAR image construction process, described in the previous section, can be extended

to make use of many SAR images of a given scene with a technique known as multi-pass

interferometry [54]. This approach begins with what became known as SAR stack, a large

number of SAR images of the same scene acquired over time, processed to produced an

InSAR stack. The processing of several images yields a dramatic reduction in the speckle14

and not only provides a measurement of the overall change occurred during the measurement,

but also the series of partial changes between stack elements. Unfortunately, the introduction

of atmospheric delays can result in severe long spatial wavelength distortions within the stack

corrupting the final deformation measurements.

APS distortions can be quite large and are the main limitation to the achievement of

the high resolution differential measurement required to characterize ground motion and

identify conditions precursory to the development of geohazards. In order to limit these

distortions, a set of new techniques, generally know as persistent scatterer interferometry

(PSI or PSInSAR), were developed [55] where the density of measurement points is traded

for precision.

14Speckle (noise) occurs with coherent radiation when the smallest resolution element is much larger than
the wavelength of the radiation being scattered from the element. In this case, the measured signal is the
superposition of all the scattering events occurring within the element itself and the final amplitude can vary
from zero to their sum giving rise to the ”granular” effect observed in SAR images.
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The fundamental idea takes advantage of the fact that, while APS distortions show a

strong spatial correlation within a single SAR image, they are not correlated from one image

to the next in the stack whereas targets subject to motion show strong correlation in time

(across the stack).

In general, the local coherence between two SAR images (I1 and I2) is defined as the

absolute value of the complex cross-correlation coefficient (γ(x)) estimated over a small

azimuth-range window (Wx) around each pixel (x):

γ(x) =

∣∣∣∣∣ 〈I1I∗2 〉Wx√
〈|I1|2〉Wx〈|I2|2〉Wx

∣∣∣∣∣ (1.21)

where the angled brackets represent averaging over window Wx defined at the pixel location

x. This is evaluated after the known phase components due to observation geometry and

known terrain elevation are estimated and removed [40].

A coherence close to unity can be related to a low phase dispersion and is indicative of

better traceability of the pixel phase behavior over time that, in turn, allows to discriminate

between the phase contributions due to the APS and those due to the actual displacement.

The extraction of permanent/persistent scatterers (PS) begins with the selection of a stack

of SAR images of a given scene and their registration to a single master chosen from the stack

itself. The master image is identified by maximizing the expected coherence of the final InSAR

stack [56]. During the registration process, the single SAR images are also radiometrically

normalized to allow direct comparison of the amplitude returns. This is required because

registration is followed by an amplitude analysis aimed at the selection of PS candidates:

pixels in the SAR images for which the ratio between the mean µA and the standard deviation
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σA of the time-series of the amplitude values is large. These pixels correspond to locations

of high coherence and the ratio value, known as the amplitude dispersion index (DA) is an

indicator of the phase stability: σφ ∼= σA/µA = DA [55].

The SAR stack is then corrected for phase components, due to the local topography, using

an existing DEM, or one generated by the techniques previously described [53]. Each of the

resulting images is then used, in conjunction with the master, to compute an InSAR stack

with the phase difference of the i-th element of the stack (φ(i)) given, for each pixel, by [41]:

φ(i) =
4π

λ
ri + α(i) + n+ εi (1.22)

where ri is the possible motion of the target in the range direction, α(i) is the APS phase

contribution, n is a general decorrelation white noise term, and εi is the phase error due to

potential inaccuracies in the DEM evaluation and depends linearly on the normal component

of the baseline (B
(i)
n ) used to generate the i-th entry in the stack.

The first term on the right side of equation (1.22) is dependent on the actual pixel motion

and can be written as:

4π

λ
ri =

4π

λ
viTi + µ (1.23)

where vi is the unknown component of velocity of the target in the range direction for the

i-th frame15, Ti is the time interval between the acquisition of the master and the i-th slave

image in the stack, and µ is a term due to possible motion not considered by the model

15Although the assumption of linearity for the target motion simplifies the problem, it is not required to
converge to a solution and approaches allowing for different motion models have been developed [57].
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(linear in this case). Substituting in (1.22) we obtain the general formulation:

φ(i) =
4π

λ
viTi + µ+ α(i) + n+ εi (1.24)

The approach taken by PSInSAR is to evaluate the different phase components exclusively

on the grid generated by the PS candidates [58]. With this approach, for each entry i in the

stack, we can write the phase difference between two candidate PS (l and m) as:

∆φ
(i)
lm =

4π

λ
Ti∆vlm + ∆εlm + µ+ α(i) + n (1.25)

where ∆vlm is the mean relative velocity, εlm is the relative elevation error proportional to

the orthogonal component of the baseline for the i-th interferogram in the stack (εlm ∝ B
(i)
n )

[59], and ∆w
(i)
lm = µ+ α(i) + n is the phase residue.

This system of N equations in two unknowns (∆vlm and ∆εlm) is not linear because of

the phase wrapping that occurs in InSAR images.

If we consider that ∆εlm can be estimated from the slope of ∆φ
(i)
lm as a function of the

normal component of the baseline B
(i)
n and ∆vlm from the slope of ∆φ

(i)
lm as a function of

time Ti, then the solution can be found as a maximization problem for the overall coherence

(γlm), limited to those PS candidates which are close enough that the phase error introduced
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by their phase residue is less than π:

|γlm| =

∣∣∣∣∣ 1

N

N∑
i=1

exp(j∆w
(i)
lm)

∣∣∣∣∣ (1.26)

∆w
(i)
lm = ∆φ

(i)
lm −

4π

λ
Ti∆vlm −∆εlm = µ+ α(i) + n (1.27)

|∆w(i)
lm| < π (1.28)

Once the estimation has been carried out for all the possible combination of PS candidates

satisfying the distance constraint, the APS is evaluated at the location of the PS candidates

as:

α(i) = ∆φ
(i)
lm −

4π

λ
Ti∆vlm + ∆εlm (1.29)

interpolated, and removed from each SAR image in the stack [60].

This process can be repeated iteratively: select PS candidates based on their coherence

values, eliminate the atmospheric phase contributions, and repeat until no more PSs are

detected. As a result, if the SAR stack contains 45 or more images, it is possible to obtain a

set of discrete permanent scatterer locations where the DEM can be evaluated with sub-meter

accuracy and the history of change in elevation measured with millimetric precision for each

time interval available in the original stack (see section B.1: Precision of data).

PSs identify pixels that display strong coherence and high phase stability under a wide

range of imaging angles and baselines over the whole period during which they are observed.

These pixels are often characterized by the presence of a strong sub-pixel point-scatterers

providing strong retro-reflection (back-scattering) properties almost unaffected by spatial

and temporal decorrelation. These types of targets are often associated with man-made or
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(a) (b)

Figure 1.12: Comparison between (a) PSInSAR and (b) SqueeSAR when applied to a low populated
area (near Winkler, Texas) (see section 2.2.2: The Winkler sinkholes (Wink Sinks)). The two images
are showing the average scatterer velocity obtained by processing 22 images acquired between June
3, 1992 and February 21, 1998 by the ERS satellites 1 and 2. (Courtesy of TRE-Canada.)

exposed rock structures.

In rural areas, where most miles of the road network that can be affected by geophysical

events are located, PSs are quite sparse. The SqueeSAR technique was developed to increase

the density of scatterers for some of these regions [61].

In SqueeSAR, the concept of coherence is extended to the spatial domain: pixels, none

showing strong enough individual temporal coherence to be classified as PS but displaying

strong coherent behavior both spatially and temporally as an ensemble, are grouped in regions

(with an associated effective area) and identified by a single scatterer placed in the center of

mass of the region and called distributed scatterer (DS).

The basic process by which SqueeSAR includes and extends PSInSAR is by searching

the spatiotemporal neighborhood of each pixel within the SAR stack for a statistically

homogeneous region. If we define r(x) = {ri(x)}i=1,...,N as the vector of the complex reflectivity
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of a pixel x, measured for each image in the SAR stack, then two pixels x1 and x2 are defined

statistically homogeneous if the null hypothesis that r(x1) and r(x2) are drawn from the same

probability distribution function cannot be disproved to a certain level of significance [61].

This approach identifies pixels containing a permanent scatterer as individual one-dimensional

temporal vectors whereas large areas of pixels exhibiting similar spatiotemporal reflectivity

characteristics (the distributed scatterers) are grouped together. DSs are then combined into

a single scatterer and, together with PSs, are processed by the PSInSAR algorithm described

above.

When a stack of SAR images is processed using SqueeSAR, the resulting dataset is a

non-uniform spatiotemporal point cloud dataset. In Fig. 1.12 we show an example of one

time slice of such dataset where (a) illustrates the result of processing the SAR stack with

PSInSAR whereas (b) shows the result of SqueeSAR. This dataset was generated over a

scarcely populated area (an oil-field from early 1900) near Winkler, Texas (see section 2.2.2:

The Winkler sinkholes (Wink Sinks)). These types of arid regions are ideal for the application

of the SqueeSAR technique.

1.4 Summary

Reports by federal and state organizations and news broadcasts are a constant reminder

of how expensive the outcomes of subsidence and landslides can be. The main goal of

our research is to provide early detection of such events with a specific focus towards the

transportation infrastructure.

To understand how remote sensing technology can be implemented to support the goal of
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our research, we described how RADAR has evolved during the years to become one of the main

tools capable of providing high resolution measurements of Earth’s surface from spaceborne

SAR instrumentation. We illustrated how interferometric techniques helped in the removal

of inherent ambiguities in the SAR images, allowing measurement of the surface elevation

and the production of high quality DEMs. We then examined differential interferometric

techniques developed to measure changes in elevation over time and how unpredictable

atmospheric phase contributions limited the achievable displacement measurement resolution.

Finally we described the latest differential interferometric products, PSInSAR and SqueeSAR,

which, by focusing the processing of SAR stacks on a subset of strong coherent scatterers,

can remove atmospheric contributions and provide displacement time series for each of these

points with resolutions down to the millimeter level. The dataset produced by SqueeSAR is a

non-uniformly sampled, spatiotemporal point cloud and is the starting point of our analysis.

In the next chapter we will identify the phenomenon we are trying to detect and the

methodology we used to derive a model that describes its spatiotemporal behavior. In the

following chapters we will then delineate, discuss and compare the techniques we developed

to detect such a model within the point cloud datasets.



Chapter 2

Modeling

2.1 Introduction

In the previous chapter we presented a brief history of how RADAR systems became the

preferred technology to produce high resolution digital elevation models. We also described

the newest interferometric techniques, based on the analysis of the phase stability of scatterers,

and showed how these approaches can provide historical series of ground displacements with

accuracies in the millimeter range. The goal of our work is to develop techniques to detect

the early developmental stages of geohazards, potentially dangerous for the transportation

infrastructure, within the point cloud datasets produced by these interferometric techniques.

In order to detect a feature within a signal, it is necessary to have a template, or model,

of the of feature itself. In 1977 Tukey defined as exploratory data analysis a collection of

techniques used to gain insight into data, uncover underlying structures, generate hypothesis,

detect anomalies, and identify important measurements [62]. In our case, the data consist

of a spatiotemporal point cloud dataset and, as underlying structure, we concentrated on

44
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the detection and characterization of sinkholes because, differently from landslides and

other similar geohazards, where the location of the event is identifiable (slopes), sinkholes

occurrence is not predictable and requires both localization and characterization to be

performed simultaneously.

In this chapter we will briefly describe the reasons behind the subsidence phenomenon and,

in particular, we will analyze how sinkholes develop. We will then show how, starting from

a SqueeSAR dataset, providing ground truth information about sinkhole morphology (see

section 2.2.2: The Winkler sinkholes (Wink Sinks)), we developed a spatiotemporal model to

serve as template for the detection techniques that we will illustrate in the following chapters.

We will also provide a verification of the model by showing the results of four simulations of

the development of different types of sinkholes and how the proposed model responds to each

of them.

2.2 Subsidence and sinkholes

Due to their widespread occurrence, subsidence phenomena in karst terrain have been largely

analyzed by the scientific community [63] [64]. Most of the existing approaches are aimed at

the cataloging and characterization of already formed sinkholes [65] [66] [67] or the evaluation

of risk maps derived from a probabilistic analysis of the location and frequency of existing

occurrences [68] [69] and do not provide an evolutionary model for early sinkhole development.

Some works have analyzed single sinkholes by evaluating the probability of collapse of an

existing feature based on its specific characteristics [70], or with the development of few

models aimed at the evaluation of the final overall maximum vertical displacement [71] or at
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the forecast of the potential final size in karst terrain [72].

2.2.1 Morphology

The term karst refers to a specific topography where the carbonate bedrock has undergone a

dissolution process leaving a porous landscape strongly coupled with an efficient underground

drainage system. These types of terrains are often associated with well defined structures

such as sinkholes, dry valleys, and cave systems with associated springs.

Figure 2.1: Dissolution process for carbonate rocks
[73]. (Courtesy of the U.S. Geological Survey)

Carbonate rocks are defined as rocks con-

taining more than 50% by weight of carbon-

ate minerals (although typical value are often

found to be above 90% [64]) which is a gen-

eral term referring to any mineral containing

the carbonate ion CO2−
3 . Most of carbonate

rocks present in karst terrains are made of

calcite (CaCO3) (also known as limestone)

and dolomite (CaMg(CO3)2), with calcite

being the major component.

The main process behind the formation of karst terrain is the dissolution of the carbonate

bedrock. As rain falls through the atmosphere and the soil, water (H2O) combines with the

soluble carbon dioxide (CO2) creating carbonic acid (H2CO3). Carbonic acid flows through

the cover sediment and reaches the carbonate bedrock where it interacts with the limestone

and dolomite dissolving them into Magnesium and Calcium ions (Mg2+ and Ca2+) and
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bicarbonate (HCO−3 ) leaving behind the typical karst features (Fig. 2.1):

H2O + CO2 
 H2CO3 (2.1)

CaCO3 +H2CO3 
 Ca2+ + 2HCO−3 (2.2)

CaMg(CO3)2 + 2H2CO3 
 Ca2+ +Mg2+ + 4HCO−3 (2.3)

One interesting point to note is that reaction (2.2) and (2.3) are in equilibrium with (2.1).

Because of this, an increase of available CO2 in the atmosphere causes an increase of carbonic

acid thus accelerating the dissolution of the carbonate bedrock.

Although every karst terrain possesses individual characteristics, engineering and geology

literature contains a large number of attempts to characterize sinkholes based on the formation

mechanism and the material which fails and subsides [63][64]. The six generally recognized

categories (dissolution, collapse, caprock, dropout, suffosion, and buried) can be further

grouped in three major types.

Dissolution sinkholes

In the case of dissolution sinkholes (Fig. 2.2), the rain water, rendered slightly acidic by

the carbonic acid, percolates through the naturally occurring porosity of the carbonate soil

slowly eroding it. As small depressions starts developing on the surface of the bedrock,

erosion becomes more accentuated where water accumulates further increasing the dissolution

process.
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Figure 2.2: Dissolution sinkholes [73]. (Courtesy
of the U.S. Geological Survey)

If present, the thin overlying soil will mir-

ror the underlying bedrock surface. In other

dissolution typologies, the joint of disconti-

nuities in the bedrock will be widened due

to the progressive dissolution creating a sec-

ondary porosity that can be eventually filled

by sediment. This process typically results

in the formation of gentle rolling hills and

depressions possibly punctuated by rock pin-

nacles due to local tectonic folding [74].

Cover-subsidence sinkholes

Figure 2.3: Cover-subsidence sinkholes [73]. (Cour-
tesy of the U.S. Geological Survey)

Cover-subsidence sinkholes (Fig. 2.3) are sim-

ilar to dissolution sinkholes with the differ-

ence that the layer on top of the carbonate

bedrock is much thicker and mostly com-

posed of low cohesion granular material with

high sand content. The acidic water per-

colates through the top soil reaching the

limestone layer where the dissolution pro-

cess starts. As crevasses start forming, the

material from the top layers settles in the newly created spaces. As the process continues,

more and more material settles originating a growing surface depression.



2.2 Subsidence and sinkholes 49

The morphology of cover-subsidence and dissolution sinkholes is generally slow and

progressive and sudden collapse not very common [74].

Cover-collapse sinkholes

Figure 2.4: Cover-collapse sinkholes [73]. (Cour-
tesy of the U.S. Geological Survey)

One of the most dangerous type of sinkhole

is the cover-collapse (Fig. 2.4). With this

morphology, a thick layer of highly cohesive

material lays on top of a limestone bedrock.

With time, acidic water infiltration starts to

dissolve the carbonate rock and sediments

from the cohesive layer slowly fill the new

space. As this process continues, the top

layer gets eroded forming an thinning arching

structure. As the cavity slowly progresses upwards the top layer narrows to the point where

the strain due to the weight of the ceiling itself is such that the tensile stress is reached.

Collapse in such circumstances can be immediate as we will see in the case of the Wink Sinks

[74].

2.2.2 The Winkler sinkholes (Wink Sinks)

Although subsidence is a natural occurring phenomenon, there are several human activities

that over the years have caused widespread events. Studies have shown that, for example,
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inelastic compaction1 has irreversibly altered the aquifer systems of 12 states causing large

subsidence events such as the largest human alteration of Earth’s surface that occurred in

San Joaquin Valley, California where, between 1925 and 1975, more than 5,200 square miles

witnessed a subsidence in excess of 30 cm with a peak of 9 m near Mendota, CA [75]. More

impressive, due to their catastrophic appearance, are ”man-made” cover-collapse sinkholes

[76].

Figure 2.5: Upward propagating cover-collapse
sinkholes [73]. (Courtesy of the U.S. Geological
Survey)

The Wink Sinks refer to a group of sink-

holes that developed in an area of Winkler

County closed to Wink, Texas as final stage

of a upward migrating dissolution cavity that

originally developed more than 400 m under-

ground [77]. The development of the cavity

was probably caused by an imperfect plug-

ging, applied to an oil well abandoned in the

1920s, that allowed for the circulation of wa-

ter along the well shaft. As the water reached soluble regions, the dissolution process started

creating the original cavity.

Over time this developed according to the process previously described effectively creating

an upward migrating cavity (Fig. 2.5) that resulted in the collapse of one of the sinkholes

(Wink 1) in June 1980 and the second (Wink 2) in May 2002. Two more regions, Wink 4

and Wink 3, located respectively next to and south of Wink 2, are still developing.

1Inelastic compaction occurs when, due to prolonged water extraction, the weight of the overlying rocks is
no longer balanced by the porous-fluid pressure. Once this hydrostatic equilibrium is altered, the ground is
compacted, effectively removing available volume from the aquifer. This process is irreversible [73].
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Figure 2.6: Pointcloud representing the average
subsidence velocity overlapped to an aerial of the
interested area. Highlighted are the areas inter-
ested by the four subsidence phenomena. The
reference point is identified in light green towards
the bottom right corner.

The relevance of this 55 km2 area to our

project is due to the fact that one of the

training dataset, that we purchased from

TRE Canada to start the developments of

the detection algorithm (see chapter 3: De-

tection), was obtained by imaging this area

for a period of about 69 months between June

1992 and February 1998: after the collapse

of Wink 1 but before the collapse of Wink

2 (see section B.2: Wink Sinks). The ac-

quisition campaign conducted by the ERS

satellites (see section A.1: European remote

sensing satellites (ERS)) provided a stack

of 22 SAR images that were processed with

the SqueeSAR algorithm resulting in a sparse, non-uniformly sampled point cloud dataset

consisting of 93,513 points between permanent and distributed scatterers.

In Fig. 2.6 we show this point cloud dataset overlapped to the Wink Sink area. Each point

represents a scatterer and is colored according to the average subsidence velocity (the point

towards the bottom right corner, identified by the light green marker, is the reference point).

Within this imaged area the four different regions interested by the subsidence phenomena

are clearly visible.

Due to the timing between the acquisition and the collapse of Wink 2, this data is

extremely important for our research since it can be considered ground truth and used to
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Figure 2.7: Three temporal samples of the scatterers displacement over the Wink Sinks region. The
samples provide the measured displacement after 1, 16 and 70 months past the first acquisition.
Visible in the aerial layer are the actual collapsed region of Wink 1 (left) and Wink 2 (center).

verify the effectiveness of the algorithms we developed.

2.3 The model

All the described sinkhole types have the common feature that the region affected by the

subsidence process is much larger than the region where a visible sinkhole eventually develops.

Even in the case of cover-collapse, usually forecasting evidence such as fissures, cracks and

distortions typically appears before and on a larger area than the one eventually affected by

the collapsing of the cave ceiling (Fig. 2.7). Because of this observation, we decided to start
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analyzing the spatiotemporal behavior of the Wink Sinks data over larger regions surrounding

the actual sinkholes.

Figure 2.8: Construction of displacement profile
(top) based on data relative to a circular area sur-
rounding Wink 2 for a single time frame (bottom).
Dark markers represent scatterer affected by the
largest displacement while blue/green those af-
fected by the smallest. (From [78] ©2013 Taylor
and Francis)

We defined a circular area around each

of the regions presenting strong subsidence

features. The center was selected as the in-

terpolated maximum subsidence based on

the average velocity field. Within these re-

gions, we defined a set of concentric annuli

(5 m apart) that were used to bin the dis-

placement data. For each one of the rings, a

single average displacement value was calcu-

lated and used to construct the displacement

profile (Fig. 2.8).

Preliminary analysis of the observed profile behavior for the Wink Sinks, especially Wink

2 and Wink 3 where the density of the scatterers was higher, suggested a strong Gaussian

behavior. This is consistent with the transverse deformations observed in underground

tunneling operations, where the vertical displacement of soft ground over the subsurface

void is found to be well approximated by d(x) = d0 exp(−x2/2x2i ), where x is the transverse

distance from the tunnel centerline, d0 is the maximum settlement, and xi = Kz, where z is

the depth of the tunnel, and K a constant that can be assumed to be 0.5 for cohesive and

0.25 for granular soils [79] [80] [81].

We repeated the binning of the data for each available time interval and plotted the results

in temporal order (Fig. 2.9). The profiles seemed to preserve the Gaussian behavior over time
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(a) (b) (c)

(d) (e) (f)

Figure 2.9: Different view of the profile stacks for Wink 2 (top) and Wink 3 (bottom): (a, d)
spatiotemporal stack; (b, e) temporal evolution; (c, f) spatial evolution. (From [78] ©2013 Taylor
and Francis)

and the changes within each of the bins (representing the concentric average displacement)

showed strong linear amplitude behavior.

The general formulation for a two-dimensional elliptical Gaussian function, where the

parameters might be time-dependent, is given by

gp(x, y, t) = At exp
{
−
[
at(x− x0)2 + 2bt(x− x0)(y − y0) + ct(y − y0)2

]}
(2.4)

where p is the parameter vector defined as p = [At, (at, bt, ct), (x0, y0)], At is the time

changing amplitude of the Gaussian, (x0, y0) its center (considered fixed in time), and

(at, bt, ct) define time-varying orientation and ratio between the two elliptical axes2. The

2For (2.4) to represent a two-dimensional Gaussian, the matrix defined by
[
at bt
bt ct

]
has to be positive-definite.
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latter can be defined as a function of the two main standard deviations (σ2
x,t and σ2

y,t) and

the counterclockwise angle with respect to the x axis (θt) by setting

at =
cos2(θt)

2σ2
x,t

+
sin2(θt)

2σ2
y,t

(2.5)

bt =
sin(2θt)

4σ2
x,t

− sin(2θt)

4σ2
y,t

(2.6)

ct =
sin2(θt)

2σ2
x,t

+
cos2(θt)

2σ2
y,t

(2.7)

The new parameter vector can then be expressed as p = [At, (σx,t, σy,t), θt, (x0, y0)].

Considering the circular symmetry induced by the profile generation approach, equation

(2.4) is greatly simplified and reduces to:

gp(x, y, t) = At exp
{
−
[
(x− x0)2 + (y − y0)2

]
/2σ2

t

}
(2.8)

Figure 2.10: Normalized Cross-Correlation be-
tween displacement profiles and fitted Gaussians
for Wink 1 (blue), Wink 2 (green), and Wink 3
(red). (From [78] ©2013 Taylor and Francis)

To derive a mathematical model of the

displacement evolution, we fitted each profile

with the projection of (2.8) over the plane

of symmetry and evaluated At and σt. To

substantiate the validity of this approach, we

calculated the normalized cross-correlation

between the displacement profiles and their

corresponding Gaussian fit for each time t

(Fig. 2.10).

The correlation coefficient for the first few
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time frames (t < 7 months) did not show strong correlation due to the lack of significant

changes in the subsidence however, as the time progressed and changes became more evident,

a strong correlation developed with coefficients approaching unity for both Wink 2 and Wink

3. The reduced fit quality for Wink 1 is probably due to the fact that it had already collapsed

and filled up with water before the SAR data was taken causing the lack of reliable scatterers

within the central collapsed region; nevertheless, the surrounding data points still displayed a

marked downward trend resulting in cross-correlation coefficients around 0.75.

(a) (b)

Figure 2.11: Gaussian fit parameters versus time for Wink 1 (blue), Wink 2 (green), and Wink 3
(red): (a) amplitude and (b) sigma. (From [78] ©2013 Taylor and Francis)

We then looked at the parameter vector behavior resulting from the fitting analysis to

detect possible trends that would allow to write the explicit time dependency of At and σt.

From Fig. 2.11 it can be noticed that the amplitude linear behavior is obvious for all the

time samples (a), whereas σt only shows an asymptotic tendency to a fixed value (b) again

attributable to the lack of strong subsidence features within the initial time frames. We

analyzed the strength of the linearity by evaluating the linear regression of the amplitude
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as function of time and calculating the normalized cross-correlation of the results with the

original Gaussian amplitude data (Fig. 2.12).

Figure 2.12: Linear regression (dashed lines) of
the amplitude versus time plots (solid lines) in
Fig. 2.11 for Wink 1 (blue), Wink 2 (green), and
Wink 3 (red). (From [78]©2013 Taylor and Fran-
cis)

For all the cases, the calculation yielded

a coefficient of nearly one justifying the fol-

lowing assumption for the temporal behavior

of the sinkhole amplitude: At = A(t) = αt.

Based on our analysis, we modeled

the spatiotemporal evolution of the sinkole-

induced subsidence as a Gaussian with con-

stant σ and linearly increasing amplitude.

Equation (2.8) was then modified to describe

the displacement due to a growing sinkhole

centered at a particular set of coordinates

x0 = (x0, y0) as follows:

gp(x, t) = αt exp
[
−(x− x0)2/2σ2

]
(2.9)

Equation (2.9) represents the basic model we used in our detection and classification

algorithms.

2.4 Simulation

The basic underlying phenomenon behind sinkhole formation is the slow erosion of sediments

loosened up by the dissolution of carbonate rocks. These sediments are then flushed away

through cracks in the bedrock underlying the top soil. As this process creates empty
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underground spaces, larger rocks and boulders will dislodge from their location and fall to

fill the vacuum. With time, the type and relationship between the different soil layers will

dictate the observed sinkhole morphology.

To gain a better understanding of this process, and the interactions between the soil layers

and the final sinkhole structure, and to verify the behavior described by (2.9), we created a

model of a multi-layered soil and simulated a dissolution process by slowly removing material

from the bottom of the stack.

The simulations were carried out using ESyS-Particle, an Open Source parallel computing

software for particle-based numerical modeling written in C++ with a Python application

programming interface [82].

ESyS-Particle is an example of what has become known as molecular dynamics or discrete

element method (DEM) [83] [84]: a family of numerical computational methods for the

solution of motion problems involving a large number of particles. In particular, ESyS-

Particles implements a Lagrangian explicit finite-difference time-integration scheme.

The Lagrangian frame of reference refers to an approach where the physical properties of

a material under analysis are described in term of coordinates that are fixed with respect to

the material itself. In other words, the calculation point follows the material elements, or

particles, as they move through space: velocities and positions are evaluated at each time

step, and the instantaneous acceleration is obtained from the application of Newton’s second

law to each particle. In contrast, Eulerian methods fix a series of locations in space and

study the evolution of physical quantities of interest at those locations as time progresses. In

other words, as material moves across a specific location, quantities are calculated within

fixed spatial boundaries. Lagrangian methods are typically used when it is possible to easily
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identify elements within the material and describe the forces acting on and between them,

such as in our case, whereas Eulerian methods are typically used when identification of

particles is not easy as, for example, within fluids, or when the interest is focused on global

properties such as density and pressure. There exists also hybrid methods that have been

developed to address situations where the behavior transitions from one representation to

the other [85].

The term explicit refers to the integration scheme used in the numerical simulation.

Explicit methods evaluate the current state of the model based exclusively on the state at

previous times. Similarly to what is observed for finite impulse response (FIR) and infinite

impulse response (IIR) filter, explicit methods are typically more stable respect to their

counterpart (implicit) which also include the current state as part of the integration, thus

requiring an iterative approach until convergence is reached. The drawback to this gained

stability is the requirement for a much shorter simulation time step to guarantee accurate

results. As for the Lagrangian-Eulerian descriptions, also in the case of explicit-implicit

integration schemes, hybrid methods have been developed [86].

Within the Lagrangian approach, each particle i is identified by the location of its center

of mass (ri) and its orientation (φi) with respect to a given frame of reference, and the

dynamic of the system is regulated by Newton’s equations [87]:

∂2ri
∂t2

=
1

mi

Fi(ri,vi,φi,ωi) (2.10)

∂2φi
∂t2

=
1

Ĵi

Mi(ri,vi,φi,ωi) (2.11)

where Fi and Mi, the force and the torque, acting on the i-th particle through the mass mi
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(a) (b)

Figure 2.13: Illustration of the interaction forces considered in ESyS-Particles. (a) illustrates the
basic frictional-elastic interaction between two unbonded particle, whereas (b) shows the more
complex interactions accounted for when considering bonded particles.

and the tensorial moment of inertia Ĵi respectively, are functions of the particle location ri,

velocity vi, angular orientation φi, and angular velocity ωi. In our case, due to the symmetry

of our sinkhole model (2.9), we limited our simulation to a two-dimensional space for which

both φi and Ĵi are scalars.

A typical DEM integration cycle will consist of three basic steps:

1. Evaluate the total force and torque acting on a particle due to all the other interacting

particles: Fi =
∑

j 6=i Fij and Mi =
∑

j 6=i Mij

2. Calculate the instant acceleration and integrate (2.10) and (2.11) to evaluate the new

position and velocity of each particle

3. Move time forward by a specified amount ∆t

These steps will be repeated until the simulation is completed after a user specified time.

For our simulation we used rotating spherical particles. In this case, if i and j are

two neighboring particles, they are considered to be interacting with each other if ξij =
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Ri + Rj − |ri − rj| > 0, where ξij is know as mutual compression, Ri and Rj are the radii,

and |ri − rj| represents the distance between the centers of the two particles (Fig. 2.13).

If the interacting particles are unbonded, the force resulting from the interaction can be

projected along the normal F(n) and tangential F(t) directions (Fig. 2.13(a)). ESyS-Particle

uses frictional-elastic contact forces for these type of interactions. As a results, the normal

force is computed using a linear elastic contact law, whereas the tangential force is calculated

using a Coulomb friction law as described in [83]. In case of rotational bonded particles, the

interaction are more complex (Fig. 2.13(b)) and the force resulting from the superposition of

tension or compression, torsion, bending, and shear, is calculated according to the rotational

particle bond formulation described in [88]. The inclusion of this type of bonded particles

within our model, allows for the description of a cohesive/brittle top layer whose parameters

can be modified to simulate a range of top soil characteristics, resulting in different type of

sinkholes.

2.4.1 Model description

The model we developed consisted of a two-dimensional structure 150 m wide and 50 m deep.

This volume was densely filled, with particles with random radii in the range 0.1-1.0 m, using

a routine (GenGeo) provided with the ESyS-Particle distribution. The density was set to

2300 kg/m3, an average value between clay and sedimentary rocks3.

To minimize the influence of the model size on the simulation results, we enforced circular

boundary conditions along the horizontal axis, periodically extending the structure both to

3The values used throughout the simulation are taken from the Handbook of geotechnical investigation
and design tables [89].



2.4 Simulation 62

Figure 2.14: Layered structure for the simulation of sinkhole formation with different type of top
soil.

the left and the right.

The basic model consisted of three main layers:

� Bottom bedrock. This was modeled by bonding the particles nearest to the bottom

of the structure with the structure itself using a non rotational elastic link. The Young’s

modulus of this interaction was set to 15 MPa in line with values for harder rocks such

as Granite and Sandstones. We also set a bond-breaking length of twice the maximum

radius to allow for interactions simulating surface erosion of the bedrock layer.

� Middle layer. The middle layer (represented as alternating tan and brown bands in

Fig. 2.14) was composed of unbonded rotational particles undergoing a frictional-elastic

interaction. The physical properties for this group of particles were designed to simulate

a mix of sand, large gravel, and rocks with a Young’s modulus of 15 MPa, a shear

modulus of 100 kPa, and static and dynamic friction coefficients of respectively 0.6 and

0.4. Given the large size of the particles, we simulated the high viscosity, that might
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be encountered while interacting with finer materials, by introducing fairly high linear

and rotational damping parameters, 1.5 and 0.1 respectively. These parameters are

used by ESyS-Particle to generate a resistance to the motion proportional to the linear

and rotational velocities. This has the result of effectively limiting the accumulation of

kinetic energy by individual particles.

� Top layer. This layer (represented in green in Fig. 2.14) simulated the top soil and

was composed of particles bonded to their immediate neighbors creating a continuous

structure extended periodically by the circular boundary conditions. The Poisson’s

ratio and the angle of internal friction were kept constant to 0.25 and 30◦, consistent

with values for clay, whereas the Young’s modulus and cohesive strength were varied

for each simulation to mimic different types of soil behavior: from very hard to very

soft clay.

For each simulation, the layered structure was allowed to settle under gravity, the only

external force acting on the particles. When, according to the total internal kinetic energy,

the equilibrium was reached, a small aperture in the middle of the bottom layer was opened

allowing the outflow of the unbonded particles from the structure, effectively simulating the

slow drainage of sediment through a crack in the bedrock layer.

Since one of the purposes of the simulations was to verify the model obtained form

the analysis of the Wink Sinks dataset, we generated displacement profiles, similar to

the one described in Fig. 2.8, by subdividing the top layer in 5 m intervals (the average

size of the ground resolution element of a SAR image (see chapter A: Satellites and SAR
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instrumentation)), and calculating the average displacement of the particles within each

interval.

Following the process previously illustrated (see section 2.3: The model), we computed the

best fitting Gaussian (2.9) for each of the displacement profiles, and evaluated the behavior

of the amplitude and scale (sigma) parameters as function of time. We then verified the

linearity of the amplitude behavior by evaluating the R2 coefficient of the linear fit.

2.4.2 Results

Dissolution sinkholes

Dissolution sinkholes form when a small depression starts developing in the bedrock and the

top layer smoothly mirrors the underlying surface. In our simulation environment it was

not possible simulate the slow action of water erosion on the bedrock. Instead we decided

to simulate this process as a slow loss of loose material in a situation where the top layer

was composed by a very cohesive/non-brittle soil with a Young’s modulus and the cohesive

strength of 15 MPa and 8 MPa respectively.

The results of the simulation are displayed in Fig. 2.15, where in (a), (b), and (c) we show

three different time steps of the simulation. In (d) we show the evolution of the displacement

profile with time. For each one of the profiles, we computed the best fitting Gaussian using

(2.9) as template and plotted the calculated amplitude and sigma as function of time in (e)

and (f) respectively.

The amplitude follows an almost perfect linear trend with a coefficient of α = −0.61 m/s

(R2 = 1.00). It is also interesting to notice that the sigma obtained from this simulation
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(a) (b) (c)

(d) (e) (f)

Figure 2.15: Simulation of a dissolution sinkhole. Three different stages of the simulation (t =
0.2, 1.1, 20.0 s) are shown in (a), (b), and (c) respectively. In (d) we illustrate the evolution of the
displacement profile, in (e) the amplitude and in (f) the scale (sigma) of the best fitting Gaussian
as functions of time.

follows a behavior that is comparable with the one obtained from the Wink Sinks analysis,

displaying a trend towards an asymptotic value (Fig. 2.11).

Cover-subsidence sinkholes

Cover-subsidence sinkhole follow a similar pattern of dissolution sinkholes with the difference

that the top layer is thick and composed of mostly granular material. To simulate this type

of feature, we modified the parameters to remove the bonds between the particles in the top

layer and replace them with the frictional-elastic properties of the middle layer.

The results of the simulation are displayed in Fig. 2.16.

Similarly to the previous results, the amplitude of the best fitting Gaussian follows a

linear trend in time with a coefficient of α = −0.85 m/s (R2 = 1.00), and an asymptotic
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(a) (b) (c)

(d) (e) (f)

Figure 2.16: Simulation of a cover-subsidence sinkhole. Three different stages of the simulation
(t = 0.2, 1.1, 20.0 s) are shown in (a), (b), and (c) respectively. In (d) we illustrate the evolution
of the displacement profile, in (e) the amplitude and in (f) the scale (sigma) of the best fitting
Gaussian as functions of time.

behavior can be observed for the Gaussian sigma as function of time.

Cover-collapse sinkholes

Cover-collapse sinkholes form when the top soil is composed of high cohesive brittle material.

When the supporting force from the underlying soil is remove, the top layer typically collapses

under his own weight.

We simulated this process for two different types of top layers. The first set of parameters

was chosen to produce a behavior similar to a very stiff clay with a Young’s modulus of

150 MPa and a tensile strength of 800 kPa. For the second simulation we further increased the

stiffness of the material to prevent the collapse of the top layer and evaluate if, under these

conditions, it was still possible to detect linear changes in displacement. Due to the thickness
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(a) (b) (c)

(d) (e) (f)

Figure 2.17: Simulation of a cover-cover collapse sinkhole. Three different stages of the simulation
(t = 0.2, 1.1, 20.0 s) are shown in (a), (b), and (c) respectively. In (d) we illustrate the evolution
of the displacement profile, in (e) the amplitude and in (f) the scale (sigma) of the best fitting
Gaussian as functions of time.

of the top layer, we had to increase the values of the Young’s modulus and the cohesive

strength to 1.5 GPa and 8 MPa respectively. These values are more typical for sedimentary

rock such as Sandstone and Shales than for clay.

Results for these two simulation are shown in Fig. 2.17 and Fig. 2.18 respectively. In

the case of the collapsing sinkhole, we can still clearly observe the linear behavior of the

amplitude of the Gaussian with time (α = −0.98 m/s and R2 = 1.00), and a sigma behavior

resembling the previously observed asymptotic one. In the case of the non collapsing sinkhole,

it is still possible to notice a fairly good linear trend with a lower growth rate (α = −0.12 m/s

and R2 = 0.9), but the behavior of the Gaussian sigma is more erratic. This could also be

influenced by the fact that, as it is possible to observe both in the actual simulation snapshot

(a-c) and in the profile evolution (d), the size of the developing feature was quite large in
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(a) (b) (c)

(d) (e) (f)

Figure 2.18: Simulation of a sinkhole forming under an hard rock top. Three different stages of the
simulation (t = 0.3, 1.1, 20.0 s) are shown in (a), (b), and (c) respectively. In (d) we illustrate the
evolution of the displacement profile, in (e) the amplitude and in (f) the scale (sigma) of the best
fitting Gaussian as functions of time.

comparison with the actual simulation space and extended passed the edge of the model

being effectively mirrored to the opposite side by the periodic boundary conditions.

2.5 Summary

In this chapter we presented some general information about the mechanism at the base of

sinkhole development and how different interactions between soil layers result in different

sinkhole morphologies.

We have also derived a sptiotemporal model for the development of a sinkhole by analyzing

the behavior of the scatterer within the Wink Sinks dataset. The relevance of this dataset is

dictated by the fact that one of the sinkholes, present within its area (Wink 2), collapsed

after the satellite data was acquired, providing a ground truth measurement against which
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the detection and characterization methods we will present in the following chapters are

going to be tested.

We concluded the chapter by presenting the results of DEM simulations that we developed

to verify the behavior of the spatiotemporal model for different types of sinkholes.



Chapter 3

Detection

3.1 Introduction

In the previous chapter we have described how, by analyzing the ground truth behavior of

the features present within the Wink Sinks dataset (see section 2.2.2: The Winkler sinkholes

(Wink Sinks)), we developed a model of the spatiotemporal evolution of sinkholes. In this

chapter we will describe the process we followed, starting from a basic segmentation technique

(graph cut), to develop of our main contribution: a framework for model-based feature

detection in sparse spatiotemporal data.

3.1.1 Graph theory primer

Point cloud datasets are typically an unorganized collection of points obtained by some

sampling process of an existing object. These type of datasets do not provide connectivity

information or a manifold/mesh structure, making it hard to directly implement geometrical

methods. Furthermore, due to the nature of the acquisition/processing techniques, often they

70
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lack regular sampling, thus limiting the direct implementation of signal processing techniques

[90]. Because of these characteristics, we first represented our datasets as graphs.

The starting point for a graph is a nonempty set V = {v1, . . . , vn} whose elements are

called vertices (or nodes). The order of the graph (|V |) is the number of vertices of a graph.

Vertices can be connected with a collection E = {eij = (vi, vj) | vi, vj ∈ V } of two-element

tuples of V called edges. The size of a graph (|E|) is the number of edges in the graph. Two

vertices are said to be adjacent if they are directly connected by an edge and the connecting

edge is said to be incident onto the vertices it joins. The most basic definition of graph is

then provided by a combination of the previous two set: G = (V,E). This definition is still

general enough to capture the abstract idea of graph: a set of vertices and the existence (or

not) of a relationship between them (edges), but nevertheless it allows the development of an

entire set of topological structures and operators [91]. What is still lacking is a description of

the type and level of connectivity between vertices.

The next level of specialization comes with the definition of the type of edges: undirected

simply represent connectivity between two vertices (eij = eji), whereas directed start from one

node and end at another (eij = vi → vj) and allow to represent concept such as ”dependency”.

In this project we will be using undirected graphs without self-loops (vertices connected

to themselves) or parallel edges (multiple edges connecting two adjacent vertices). Edges

might also carry information about the level of connectivity. This is typically expressed by

defining a weight (wij) associated with the edge eij . Weights are typically, but not necessarily,

non-negative (wi,j ≥ 0). For an undirected graph it is usually required that wij = wji.

There are several different approaches that can be followed to define the connectivity of

a graph [91] [92] [93]. In our case, since the data can be embedded in an Euclidian space,
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defined by the geographical coordinates of the location of the scatterers, the weight definition

is derived as some functional of the natural definition of physical distance. In other cases,

such as abstracted graphs where, for example, nodes might represent features of a given

dataset element, connectivity and distance might be designed to represent the more abstract

concept of ”is similar to”, ”is like”, ”interacts often with”, etc. An example of this type of

representation is provided by the PageRank algorithm at the basis of the Google search engine

where the ”[. . .]the number and quality of links to a page[. . .]” is used ”[. . .]to determine a

rough estimate of how important the website is.” [94].

In many situations it is customary to base the connectivity of a graph on the concept of

”similarity”. In this case nodes, considered similar by some defined metric, will have incident

edges with higher weights (typically normalized to 1) while very dissimilar nodes will have

incident edges with weights closed to 0. This provides a natural concept of neighborhood

by increasing the ”strength” of the edges connecting similar nodes while allowing for easy

removal (by thresholding, for example) of weak links. In some other situation, it is often

more natural to consider the relationship between nodes that are ”closed together” (clusters)

introducing and underlying idea of an actual ”distance” between vertices that follows the

usual properties of a distance measure: dij = d(vi, vj) = 0, dij = dji, and dij ≤ dik + dkj.

The use of either one approach or the other is dictaded by the specific characteristics of the

dataset and the goals of the representation.

One advantageous approach is to represent graphs as matrices. For a graph with n vertices,

the n× n adjacency matrix (A) is constructed such that the entry in row i, column j is 1

if the edge eij = (vi, vj) is present and 0 if it is not. In case of weighted edges, the entry
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will be the edge weight1. Due to its construction, the adjacency matrix of an undirected

graph is symmetrical and entries on the diagonal are zero if there are no self loops. The same

representation can be used in case of weighted, directed graph in which case the entry in row

i, column j is the weight of the directed edge eij = vi → vj.

If we define as Ni the neighborhood of vertex vi (the set of vertices adjacent to vi), then

we can define the degree of the vertex vi as:

di =
∑
j∈Ni

wij (3.1)

With (3.1) we can proceed to define the degree matrix (D) as the n× n diagonal matrix

with the degrees d1, . . . , dn on the diagonal.

As an example, consider the weighted, undirected graph in Fig. 3.1. This can be completely

described by its adjacency and degree matrices:

A =



nodes A B C D E

A 0 0.5 0 0 0

B 0.5 0 1.0 0.75 0

C 0 1.0 0 1.0 0

D 0 0.75 1.0 0 0.5

E 0 0 0 0.5 0


D =



nodes A B C D E

A 0.5 0 0 0 0

B 0 2.25 0 0 0

C 0 0 2 0 0

D 0 0 0 2.25 0

E 0 0 0 0 0.5


It is interesting to notice that, if we define the weighted version of the adjacency matrix

as W = D−1A, the resulting operator represents a diffusion process from each vertex to its

1The same representation can be used when using a distance instead of a weight (similarity) connectivity.
In this case the weights will be replaced by distances and unconnected vertices will have a distance of ∞.
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Figure 3.1: Example of basic graph.

neighbors determined by the weights of the edges. To verify that this is the case, let us first

define a signal f on a graph as one that only takes values on the nodes fi = f(vi). This

definition allows us to represent a signal on a graph as a vector of Rn. If we now imagine to

apply the W operator to a delta, that assumes the value of 1 on a specific vertex and zero

everywhere else (fi = f(vi) = δi), we can see how this will be equivalent to distribute the

value to the adjacent nodes based on the edge weights.

3.2 Graph cut approach

Armed with the basic notions of graph theory, we approached the problem of detecting

sinkholes within the dataset as a segmentation problem on a graph [95].

In image processing, segmentation is often implemented as a preprocessing step to separate
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objects from each other and from the common background [96] [97] [98]. Thresholding of the

individual pixel intensity [99], detection of salient edges [100], statistical comparison between

texture and color characteristics of different regions [101], and level set analysis [102] are

just few examples of the techniques implemented to achieve the goal of identifying specific

regions within an image. These techniques have expanded to include analysis of graphs

representations and, under the collective name of graph-cut [103], are routinely implemented

in medical imaging [104] [105], environmental sciences [106], and social networks [107].

We constructed our graph by assigning each scatterer, identified by the non-uniform,

sparsely-sampled dataset obtained from the processing of the SAR stack by the SqueeSAR

algorithm, to a vertex. We then embedded the graph in the Euclidian space determined

by the physical coordinates of the scatterers. As connectivity we decided to implement the

Delaunay triangulation [108] which maximized the minimum angles of the triangles produced

and creates non-overlapping edges resulting in a connectivity construction that, away from the

data boundaries, reflects local neighborhood relationships. Due to the construction process, at

the boundary of the data, it is possible to observe very narrow and long triangles connecting

vetrices physically far from each other. We compensated for the potential inaccuracy due

to these connections by introducing a weight term inversely proportional to the length of

the edge thus minimizing the importance of longer edges (more about it later). Another

advantage of the use of Delaunay triangulation is that, respect to other approaches such as

thresholded Euclidian distance or k-nearest neighbors [91], it guarantees that the resulting

graph is connected (give any two vertices there exists at least one path connecting them)

thus eliminating the presence of isolated nodes or group of nodes.



3.2 Graph cut approach 76

If we consider a set of k subsets {Ai}i=1,...,k ⊂ V , not necessarily disjoint, we can define

as cut (C) the following measure of the ”cost” of separating the subsets [92]:

C(A1, . . . , Ak) =
1

2

k∑
i=1

W (Ai, A
c
i) (3.2)

where Aci = V \Ai is the complement of Ai with respect to V , and W (A,B) =
∑

vi∈A,vj∈B wij

is the sum of the weights of all the edges between the vertices in A and those in B.

In case the sets Ak are mutually disjoint (
⋃
k Ak = V and Ai∩Aj = ∅ i 6= j), (3.2) reduces

to the sum of the weights of the edges that connect the sets with their complements.

As for any other segmentation algorithm, the fundamental idea behind a graph-cut is to

identify regions containing similar elements and separate them from each other and/or from

a background. Within the graph theory framework, this translates into identifying cluster

of nodes with similar properties and cuts that separate them from other cluster which are

dissimilar. With this approach, the definition of the edge weights becomes critical. The ideal

weighting function should be designed to simultaneously maximize intra-cluster and minimize

inter-cluster weights. With the design goal achieved, the simple elimination of the lowest

weight edges would result in the minimization of (3.2) and provide the desired result.

One approach could be to directly minimize (3.2), remove the detected clusters and then

repeat iteratively on the remaining dataset until all meaningful clusters have been identified

[109]. However once this approach is followed, it becomes apparent that a direct application

of (3.2) favors cuts around smaller sets with the tendency of selecting single nodes since

W (A,B) increase proportionally to the number of edges cut. Typically, to increase spatial

coherence and minimize the occurrence of isolated vertices cuts, (3.2) can be regularized by
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including a term that favors larger subsets. The two main approaches used are RatioCut

[110] and Ncut [111]: RatioCut normalizes the cut by dividing each sum element by the

order (number of nodes) of Ai (|Ai|) whereas Ncut uses the sum of the degree of the vertices

belonging to each Ai, also known as the volume of the subset defined as
∑

vj∈Aj dj.

After careful evaluation of the characteristics of our dataset, we decided to omit either

of the normalization factors in the definition of our weights because we did not want to

explicitly encourage spatial coherence. This decision was based on the fact that some points

in our dataset (especially in the case of distributed scatterers) can represent large physical

areas. If such points display trends that, in agreement with surrounding scatterers, accurately

indicates that subsidence might be occurring a that location, we should not discourage a cut

around them and, in the process, miss a potential sinkhole-forming region.

Graph cuts have been used extensively to pursue segmentation in images where intensity

and location are the only information available for each pixel. Our datasets are unique in

that they offer a large amount of information for each scatterer: displacement time series,

coherence, velocity, acceleration, physical area represented, elevation, and location. Thanks to

the richness of such feature set, we had a lot of flexibility in defining the weights to associate

to each edge.

To achieve our goal of detecting subsiding regions, we defined independent weights for

each of the factors that might be indicative of this phenomenon, with the intention of favoring

a minimum for cuts occurring on the boundary of regions that showed sinkhole-forming

behavior.

If we consider every edge eij, obtained from the Delaunay triangulation, for each of the

incident vertices vi and vj, we can extract the displacement of the corresponding scatterers,
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evaluated for one of the time slices t available in the SqueeSAR dataset (d
(t)
i and d

(t)
j ) and,

from these, calculate the average displacement of the two scatterers d
(t)
avg = (d

(t)
i + d

(t)
j )/2.

The dataset also provides the physical coordinates of the two scatterers (used to evaluate the

actual distance lij), and the coherence values ci and cj.

We can now define a displacement range of interest (dlow, dhigh), that acts like a threshold

for the acceptable average displacement values, and define a set of weight functions as:

wb(vi, vj) =


0 if dlow < d

(t)
avg < dhigh

min
(∣∣∣dhigh − d(t)avg∣∣∣ , ∣∣∣d(t)avg − dlow∣∣∣) otherwise

(3.3)

wd(vi, vj) =
1∣∣∣d(t)i − d(t)j ∣∣∣ (3.4)

wr(vi, vj) =
2

ci + cj
(3.5)

wl(vi, vj) = lij (3.6)

Each of these weights was designed to address a specific feature of interest. In particular

wb was designed to minimize the weight for edges connecting scatterers located within the

displacement range of interest; wd to reduce the cost for cutting steep edges, indicative of

boundary regions; wr to favor cuts through reliable edges (the higher the coherence of the two

scatterer, the higher the quality of the displacement measurement); finally wl was introduced

to give priority to cuts that passed through shorter, and thus more accurate, edges rather

than through sparse regions.
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All these weights were normalized to the same mean and standard deviation and then

combined into a final function using inter-category weighting parameters α, β, γ, and δ:

wij = α · wb(vi, vj) + β · wd(vi, vj) + γ · wr(vi, vj) + δ · wl(vi, vj) (3.7)

After the weights were assigned to each edge by (3.7), we used an efficient implementation

of the min-cut/max-flow algorithm2 to find the minimizing cuts. Finally, to provide a visual

representation of the segmentation results, for each cut we identified the midpoints of the

removed edges and defined a contour using a spline interpolation.

3.2.1 Results

We applied the method to the Wink Sink dataset (see section B.2: Wink Sinks). As

displacement values (d
(t)
i ) we used the data selected from the latest available time slice in

the dataset. For each scatterer, this corresponds to the cumulative displacement occurred

after t = 68.68 months from the reference frame acquisition time. The range of the measured

displacements for the entire set of scatterers was [−289 mm, 95.5 mm] with an overall mean

of -8.64 mm.

The inter-category weighting parameters were arbitrarily chosen to favor steep edges

connecting high coherence scatterers exhibiting an average displacement between the values

of dlow = −115 mm, and dhigh = −99 mm: namely α = 0.1, β = 1, γ = 2, and δ = 0.5.

Fig. 3.2 shows the steps of the graph-cut approach. This illustration is restricted to the

area of Wink 2 and Wink 4. It is interesting to notice that the removal of the regularization

2For details on the algorithm, its implementation and the wrapper we used see [112] [113] [114] [115].
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(a) (b)

(d) (e)

Figure 3.2: Steps in the graph-cut process for Wink 2 and 4. (a) Original dataset representing
the displacement of the scatterers for the acquisition taken 68.68 months after the reference image.
Each point represent a vertex and is located according to its physical coordinates. (b) Delaunay
triangulation defining the connectivity of the graph. (c) Result of the graph-cut algorithm. (d)
Spline represented on top of the original data. (From [95] ©2012 IEEE)

term from (3.2), caused one of the cuts to converge to a minimum including a single node.

After analyzing the time series relative to the identified scatterer, we verified that this region

was undergoing active subsidence. This was also confirmed by a recent study conducted in

2009, 11 years after the last frame in our dataset was acquired [17].

In Fig. 3.3 we show a direct comparison between the segmentation results for Wink 1 (a)

and Wink 2 (b) and the respective ground truths. In (b) and (c) we also show the results of
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(a) (b) (c)

Figure 3.3: Results of the graph cut algorithm applied to the Wink Sinks compared with ground
truth data. (a) Wink 1. (b) Wink 2 and 4. (c) Wink 3.

the algorithm when applied to Wink 3 and 4 although, since as May 2014 these sinkholes

had not collapsed, no ground truth is available for direct comparison.

Table 3.1: Graph-cut sinkhole detection vs. collapsed ground truth (From [95] ©2012 IEEE)

Total area Segmentated % detected

Wink 1 8, 476 m2 2, 306 m2 27.20%
Wink 2 5, 098 m2 4, 775 m2 93.67%

Table 3.1 provides a quantitative summary of the results shown in Fig. 3.3. The graph

cut segmentation approach managed to capture about 27% of Wink 1 and 94% of Wink 2

collapsed sections. We did not capture a significant portion of Wink 1 most probably because

the sinkhole had already collapsed and filled with water by the time the satellite data was

acquired. As a results, it presented poor coherent scattering characteristics resulting in a

very sparse distribution of scatterers.

One think to bear in mind when comparing the results with the size of the collapsed

regions is that, often, the region affected by subsidence is much larger and not necessarily

symmetrically placed with respect to the actual collapsed section [76].
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3.3 Spatiotemporal matching

3.3.1 Introduction

Graphs provide a powerful tool to handle sparse non-uniformly sampled data such as ours

but, up until recently, most of the graph cut applications have been directed to the analysis

and segmentation of static datasets.

Some recent development have extended these algorithms to include temporal evolution.

For example in [106] a stack of subsequent images obtained from the burnt area product

(MCD64A1) [116] of MODIS3 is translated in a 3D (2D+time) graph by connecting neighboring

pixels. Weights are then assigned to the edges based on the similarity of adjacent pixels

intensity values whereas the temporal dimension is included by enforcing coherence between

consecutive time slices. This is achieved assigning infinite weights to edges connecting pixels

whose state changes from burnt to non-burnt, effectively preventing them from being cut.

The minimization is then evaluated globally across the entire stack rather than one individual

slices at the time.

A similar approach is used in [105] to evaluate the size of the patches of dryness developing

over the iris of patients affected by dry-eye syndrome. An interesting development is the

enforcement of decreasing monotonicity obtained by assigning an infinite weight to the

temporal edges connecting pixels showing a growing wetness from one frame to the following

one of the video. Once again, the minimization is evaluated globally for all the frames.

3The moderate resolution imaging spectroradiometer (MODIS) is 36-channels multi-spectrometer instru-
ment flown aboard the Aqua and Terra earth observation satellites operated by the National Aeronautics and
Space Administration.
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A third example further extends the application of graph cuts to 4D datasets (3D+time)

[104]. In this approach each voxel4 is connected both to its spatiotemporal neighbors with

one set of edges and to two external nodes labeled ”object” and ”background” with another.

The first set is weighted according to the intensities of the adjacent voxels, whereas the

second connects each voxel to its neighbors, with zero weights, and to the external nodes

with infinite weights. This serves as a mean to provide classification. After the user selects

two initial set of seeding voxels, one belonging to the object and one to the background, the

graph cut algorithm separates 4D volumes by enforcing spatiotemporal coherence and, as

both connecting edges are severed, classifies each voxel as object or background based on the

remaining connections to the external nodes.

All these approaches show the flexibility of graph cut algorithms to handle spatiotemporal

problems. Nevertheless, they all rely on the ability to define weights that, while preserving

coherence between nodes belonging to an existing object, can separate separate it from

the background. On the contrary, in our datasets, the main value associated with each

node is its displacement as function of time. Because of this, the object (subsiding regions)

might appear at a certain spatiotemporal location and then evolve. Furthermore, as we have

described in (see chapter 2: Modeling), what characterizes the signature of a sinkhole is a

specific spatiotemporal behavior. In order to classify subsidences phenomena as sinkholes, it

is necessary to distinguish between those showing a linear behavior from other displaying a

different type of spatiotemporal evolution while, at the same time, identifying all subsiding

regions. The method that we propose in this section achieves this result.

4Voxel is the name typically assigned to a pixel within a 3D (volume) image.
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3.3.2 Method

Our analysis shows that the subsidence in a sinkhole forming regions can be described as a

Gaussian of fixed scale (standard deviation) with amplitude growing linearly in time (see

section 2.3: The model):

gp(x, t) = αt exp
[
−(x− x0)2/2σ2

]
(3.8)

We would like to design a method that allows us to evaluate to what extent the available

data conforms to our postulated spatiotemporal Gaussian sinkhole displacement evolution

model.

The inherent spatial sparsity and non-uniformity of the data obviously presents the

major difficulty in achieving the desired result. To address these issues, we decided to

adapt the parameter space search approach suggested by the Hough transform [117] [118] by

incorporating aspects of matched filtering [26] [27] and residual measurements.

The approach we developed [78] is based on the availability of a model describing the

feature of interest. Starting from this representation, in our specific case the spatiotemporal

behavior of the subsidence in sinkhole-forming regions illustrated by (3.8), we identify the

key parameters and organize them in a vector. In our subsidence model, the parameter

vector contains the location, the linear amplitude growth coefficient, and the fixed scale of

the feature: p = [x0, α, σ].

We employed the basic parameter search of the Hough transform; however, instead of

the typical voting step, we applied a technique inspired by the matched filter approach

where we replaced the correlation operation with a residual-based measure. This approach
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provides the user with a finer control over resolution in the parameter space search, avoids

the all-or-nothing nature of the decision threshold used in the Hough voting, and proves

advantageous in case where one wishes to more robustly evaluate the matching where only a

handful of points are available.

Specifically, this blended approach is implemented as follows: for each point in the

parameter space identified by p = [x0, α, σ], a template gp(x, t) is reconstructed corresponding

to a specific instantiation of the spatiotemporal model (3.8). At this point we also identify a

region of influence R(p) over which the residual will be evaluated. The size is determined by

the parameter p and is limited to a circular area of radius 3σ centered at x0. This provides

a region that is large enough to include the significant part of the template (at distances

greater than 3σ from x0 the amplitude of the template is less than 0.012% of the maximum)

and small enough to limit the evaluation of the residual just to the relevant data points.

The template is then used to scan the data point cloud d(xi, t) and evaluate the match

by calculating the residual r(p) using a specific metric µ. Within the data point cloud, i

identifies the coordinates of the NR scatterers inside the region of influence R(p), and t is

one of the T time slices for which displacement information are available.

The metric µ is based upon the general definition of absolute residual |d(xi, t)− gp(xi, t)|

which is simply the absolute difference between the model-predicted and the measured

displacement.

A measure of the match could be obtained by taking the `1 (or `2) norm of the residual

vector, of size NR × T and generated by considering the time series of all the points located

within the influence region R(p), and normalizing it by the total number of points considered.

However, both of these norms provide a measurement of the actual average distance between
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the template and the data. It is clear how this would be biased towards shallower features.

As an example, consider a situation where the data points identified by the influence

region R(p̂) are compared against the corresponding template gp̂(xi, t) (where p̂ = [x̂0, α̂, σ̂])

resulting in an `1 (or `2) residual r̂(p̂). If we were to multiply each displacement value within

R(p̂) by a factor β, the resulting `1 (or `2) residual would scale to r′(p′) = β · r̂(p̂) when

considering the match with a new template gp′ , where p′ = [x′0, α
′, σ′], x′0 = x̂0, σ′ = σ̂, and

α′ = β · α̂, while intuitively we would like both matches to provide an identical result since

the behaviors are identical.

This would seem to suggest the use of classic normalizing approaches such as the normalized

cross-correlation. The main drawback with this type of approaches is that the normalization

step is performed in isolation for each of the terms independently rather than jointly, resulting

in the removal of any global scale information. In our application, due to the nature of the

model (3.8), where growth is based exclusively on change of scale linearly with time, this

would effectively eliminate the temporal dependency.

To remove the potential bias toward smaller features and maintain temporal dependency,

we designed a measure µ based on the notion of proportional match:

µ(xi, t) = min

(
|d(xi, t)− gp(xi, t)|

max(|d(xi, t)|, |gp(xi, t)|)
, 1

)
(3.9)

where |d(xi, t)− gp(xi, t)| is the measure of the mismatch between the data point considered

d(xi, t) and the corresponding template value gp(xi, t) evaluated at the same spatiotemporal

coordinates (xi, t).

This measure, which can be verified to be a metric, provides the desired amplitude scale
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invariance and it guarantees that equivalent behaviors will results in equivalent measures

independently of the amplitude of the considered template. This matches our final goal

to provide detection and classification of features based on their behavioral similarity to

the spatiotemporal model of the feature of interest. For data points where measured and

template values have opposite sign, we limit the proportional measure (3.9) at one indicating

maximum mismatch.

One of the issues deriving from the sparsity of the data is that the density of data points

within the influence region is not constant. Under certain condition, it could be possible for

the residual to be evaluated exclusively based on data concentrated in specific subsets of Rp

leading to an incorrect results. To minimize the occurrence of such scenarios, we partition

the influence region into three subregions based on the value of σ identified by p:

R1(p) = {xi ∈ d(xi, t) | 0 ≤ ‖xi − x0‖ < σ} (3.10)

R2(p) = {xi ∈ d(xi, t) | σ ≤ ‖xi − x0‖ < 2σ} (3.11)

R3(p) = {xi ∈ d(xi, t) | 2σ ≤ ‖xi − x0‖ < 3σ} (3.12)

where R(p) = R1(p) ∪R2(p) ∪R3(p).

The value of µ(xi, t) is independently evaluated and normalized according to the number

of spatial and temporal data points contained within each subregion:

rk(p) =
1

Nk × T
∑
t

∑
xi∈Rk(p)

µ(xi, t) (3.13)

where Nk is the total number of points contained in Rk(p) and t is the index into the total
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number of time samples T available in the dataset. These partial residuals are then combined

via a simple average. The result r(p) is, in the case of our model, a four-dimensional matrix

where each element represents the quality of the fit between the data and the spatiotemporal

template gp(xi, t).

3.3.3 Results

To validate the spatiotemporal approach, we tested the algorithm we developed against an

artificial dataset, the Wink Sinks dataset (see section B.2: Wink Sinks), and the Virginia

dataset (see section B.3: Virginia) where we verify our results against ground validation

performed by Virginia Department Of Transportation (VDOT) geologists.

Artificial data

The first step towards validation of our algorithm was to test the approach on three artificial

datasets designed to verify its efficacy in detecting data regions conforming to the specified

model.

The coordinate section of the first dataset was obtained from a uniform spatial grid

x = (x, y) with −50 m ≤ x ≤ 50 m (∆x = 2.5 m) and −50 m ≤ y ≤ 50 m (∆y = 2.5 m) for a

total of 1,681 points for each of the 22 time intervals that were chosen to be consistent with

the Wink Sink dataset: 0.00, 1.15, 5.75, 6.90, 9.21, 10.36, 12.66, 17.26, 42.18, 42.21, 43.33,

44.48, 44.52, 46.78, 46.82, 47.93, 47.97, 59.47, 60.62, 64.08, 66.38, and 68.68 months from

the master reference (first acquisition). This grid was then used, at each time interval, to

generate subsidence data using the model (3.8) with the parameter vector p0 = [x0, α, σ] =
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3.4: Artificial test datasets and results of the detection algorithm applied to these datasets.
(a) Time varying uniform spatial grid (shown at t = 44.5 months). (b) Time varying non-uniformly-
sampled version of (a) (shown at t = 44.5 months). (c) Time fixed version of (b): the frame for
t = 44.5 months is repeated for all the time intervals. (d-f) Result of the detection algorithm applied
to (a-c). (g-i) Propagated version of (d-f). (From [78] ©2013 Taylor and Francis)

[(0 m, 0 m),−5.5 mm/month, 10 m]. The resulting point cloud for t = 44.5 months is shown in

Fig. 3.4(a).



3.3 Spatiotemporal matching 90

The second dataset was generated in a similar fashion with the difference that, to increase

similarity with the data processed by the SqueeSAR algorithm, the uniform spatial grid

was replaced with a grid generated by 200 realizations of a bivariate uniform distribution:

x ∼ U2(−50, 50). The resulting point cloud for t = 44.5 months is displayed in Fig. 3.4(b).

For the last dataset, we extracted the data corresponding to t = 44.5 months from the

second dataset and repeated it for each time interval. This type of data simulates a sudden

change of elevation with no further subsidence. This corresponds to our model in the spatial

coordinates, with the temporal coordinate being static. The resulting distribution, for any of

the time intervals, is illustrated in Fig. 3.4(c).

We applied our approach to all three artificial datasets. The parameter space limits and

increments were chosen to provide, for the first two dataset, a perfect overlap at p0 between

template and data (Table 3.2).

Table 3.2: Parameter space limits and increments for the artificial dataset

Parameter Minimum Maximum Increment

x0 −50 m 50 m 2.5 m
y0 −50 m 50 m 2.5 m
α −10.05 mm/month −0.05 mm/month 0.25 mm/month

σ 2.5 m 30 m 2.5 m

The four-dimensional result (one dimension for each parameter in the model) contains

the residuals evaluated for each location of the parameter subspace identified by the selected

parameter ranges and steps. In order to visualize this multidimensional result, we collapsed

two of the dimensions onto the coordinate plane using a procedure adapted from the maximum

intensity projection [119]. Since, in our case, we are interested in the minima of the residual,
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we projected results according to:

m(x0, y0) = min
α,σ

[r(p)] (3.14)

The result of this projection is shown in Fig. 3.4(d)-(f).

As expected, our algorithm perfectly locates the template for the first two datasets,

yielding, for both, a minimum residual m(x0, y0) = 0 at (x0, y0) = (0 m, 0 m). However,

we also obtain an attenuated response for the fixed subsidence case (third dataset) with a

minimum residual of m(0 m, 0 m) = 0.42.

This result shows that our measure complements strong detection capabilities for data

regions behaving as the specified spatiotemporal model with the ability, typical of matched

filter, to respond (at a lower level) also to data conforming simply to the general spatial

shape of the model. This is desirable as these stable deformations might still be caused by

subsidence phenomena and provide clues about the activity level of the region. At the same

time, our approach provide the ability to distinguish between the evolving and non-evolving

features by responding with two different levels.

Each minimum residual image also exhibit a response beyond the actual location of the

best match. For the synthetic dataset, a clear radial fringing pattern is evident (Fig. 3.4(d)).

These pattern corresponds to lower amplitude tangential fits between the data and smaller

templates offset with respect to the center of the feature. This pattern is also visible for

the second and third datasets (Fig. 3.4(e) and (f)) where the sparsity of the data allows for

smaller (albeit still poorly fitting) templates to slightly register in emptier areas.

The map obtained using (3.14) only provides information about the location of the feature
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and how well it is matched to the original model but it does not give any visual clue on the

size of the matched template which is quite relevant in the case of our application. To allow

for a direct visualization of the size of the detected feature, we associated a circular region

to each minimum. The radius of this region is determined by the σm corresponding to the

template that provided the best match at that particular location:

σm = arg min
σ
{mina[r(p)]} (3.15)

In case of overlap between circular regions, visualization precedence is given to the region

presenting the lowest residual. Examples of what we call propagated maps are shown in

Fig. 3.4(g)-(i).

Wink Sinks

As second validation step, we applied our detection algorithm to the Wink Sink dataset (see

section B.2: Wink Sinks).

Table 3.3: Parameter space limits and increments for the Wink Sink dataset

Parameter Minimum Maximum Increment

x0 0 m 6, 670 m 10 m
y0 0 m 8, 290 m 10 m
α −5 mm/month −1 mm/month 0.25 mm/month

σ 5 m 185 m 10 m

The parameter space limits and increments were chosen to provide coverage of the entire

dataset (Table 3.3).

As described in (see section 2.2.2: The Winkler sinkholes (Wink Sinks)), there are four

major features in the dataset. Our algorithm was successful in detecting all four features
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(a) (b)

Figure 3.5: Propagated results of our detection algorithm applied to the Wink Sinks. In (a) we
show the propagated residual whereas in (b) we illustrate the propagated risk evaluated according
to (3.16) (see section 3.3.3: Virginia). ((a) from [78] ©2013 Taylor and Francis)

as it can be seen in Fig. 3.5. In this figure we also show the results of the propagated risk

evaluated using (3.16) (see discussion below).

Details of the three regions are displayed in Fig. 3.6 where it is outlined (with a white

contour) the collapsed region of Wink 1 Fig. 3.6(d) and Wink 2 Fig. 3.6(e). As we previously

mentioned, the region affected by subsidence, due to the evolution of the sinkholes, is much

larger than the actual collapsed section and our algorithm succeeded in detecting the extent

of all the deformations including, as we mentioned when discussing the results of the graph

cut algorithm, the region east of the collapsed section of Wink 2 (Wink 4) that in a recent

study [18] was confirmed being a separate evolving depression.



3.3 Spatiotemporal matching 94

(a) (b) (c)

(d) (e) (f)

Figure 3.6: Detailed results of our detection algorithm on the Wink Sinks. (a) Detection of Wink 1.
(b) Detection of Wink 2 and Wink 4. (c) Detection of depression (potential Wink 3). (d) Propagated
version of (a) with included outline of collapsed portion of Wink 1. (e) Propagated version of (b)
with included outline of collapsed portion of Wink 2. (f) Propagated version of (c). (From [78]
©2013 Taylor and Francis)

Comparison with graph cut approach

In Fig. 3.7 we present a direct comparison between (left) the graph cut and (right) the

spatiotemporal matching approaches. The images relative to the spatiotemporal approach

were obtained by binning the propagated risk, evaluated using (3.16), into the four ranges

(severe, moderate, slight and none) that we will describe when discussing the results of the

analysis of the Virginia data.

The graph cut algorithm does not naturally provide a range of values for the segmentation

as the result is typically binary: object or background. To allow for direct comparison,
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Figure 3.7: Direct comparison between the (left) graph cut algorithm and (right) spatiotemporal
matching approach for the Wink Sinks dataset with details for comparison with the collapsed
sections of Wink 1 and Wink 2. In all the images the color mean high (red), moderate (orange) and
slight (yellow) risk (see text for discussion).

we modified the graph cut approach and iteratively run it for several average displacement

window values ([dmin, dmax]) (see section 3.2: Graph cut approach) assigning proportionally

higher risk to those regions that resulted segmented in multiple levels and for values of

the average displacement indicating larger growth. Furthermore, to include the effect of

the temporal evolution of the displacements, for each three consecutive time frames in the

dataset we evaluated the average displacements and repeated the analysis just described.
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The normalized results were then combined by averaging, and the binning evaluated using

the same risk intervals used for the spatiotemporal data [120].

Table 3.4: Graph-cut and spatiotemproal matching vs. collapsed ground truth

Wink 1 Wink 2

Approach High Moderate Slight High Moderate Slight

Graph cut 37.5% 57.8% 4.7% 17.6% 82.4% -
Spatiotemporal 52.6% 47.4% - 81.6% 18.4% -

Table 3.4 provides a quantitative summary of the results shown in Fig. 3.7. Both algorithms

do a reasonable job in detecting these large features and the overall subsidence areas. It

could be argue, especially in the case of Wink 2, that the spatiotemporal matching provides a

better detection of the actual collapsed area although, as we previously mentioned, often the

region affected by subsidence is much larger and not necessarily symmetrically placed with

respect to the collapsed section. Nevertheless, in the case of Wink 2 (see section B.2: Wink

Sinks), there are several scatterers, showing large displacement growth over time, placed right

over the collapsed section that the graph cut approach fails to identify as high risk.

For large features, such as the Wink Sinks, both algorithms provide a reasonable detection

but these are not the type of features we are interested in detecting. What we are looking

for are the initial displacements that might be indicative of early subsidence development.

In particular, we are interested in detecting scatterers undergoing a specific temporal dis-

placement trend. Although the modified graph cut approach takes into account temporal

variations by averaging cuts evaluated over the mean behavior of neighboring time slices, it

still fails at discriminating between different temporal behaviors.
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Figure 3.8: Project area of interest 40× 40 km2 located in Virginia, United States. Areas prone to
sinkhole formation is highlighted in light blue while previously repaired sinkholes are indicated by
dark red dots. (From [78] ©2013 Taylor and Francis)

Virginia

As part of the project, we selected a region of about 40× 40 km2 because of the diversity of

geological conditions and history of subsidence.

The area, represented in Fig. 3.8, is centered roughly in the locality of Middlebrook,

Augusta County, Virginia (38◦04′24.79′′ N - 79◦11′30.88′′ W) and is a tectonically complex

area spanning the Valley and Blue Ridge physiographic provinces [121].

Geological ages ranging from Holocene sediments to Precambrian granulite gneiss [122]

with frequent nonconformities, are represented in this area of study. The predominant

tectonic framework consists of eastward-dripping thrusts faults and decollements related to
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repeated orogenic cycles [123]. This area contains carbonate, non-carbonate clastic, and

metamorphic terrains, resulting in both rock slope stability and karst geohazards. The

karst areas range in age from Cambrian to Devonian and formed during the Taconic and

Acadian Orogenies and their associated divergent and inter-orogenic periods. Karst lithologies

consist mainly of limestone and dolostone while non-carbonate clastic lithologies consist of

occasionally interbedded shales, slitstone, conglomerates, and sandstone, and the metamorphic

lithologies consist of charnockite, granulite gneiss, quarzite, and greenschist and blueschist-

grade metabasalt.

In central Virginia, the carbonate formations generally present a well-developed orthogonal

joint system, which, combined with bedding-plane faulting and tectonic deformation, described

above, create the potential for secondary porosity and preferential groundwater flow [124]. The

majority of the karst features encountered within the Valley and Ridge physiographic province

of Virginia are of the solution and cover subsidence sinkhole variety. As a consequence we

expect a slowly forming typology progressively developing a karst topography reflecting the

underlying bedrock geology and tectonics [125]. In Fig. 3.8 karst terrains are illustrated in

light blue with areas of known sinkhole locations and previously repaired sinkholes identified

by red markers.

One of the advantages of the algorithm that we developed is the level of flexibility it offers

to include external information in the post-processing phase. Consider Fig. 3.9(a). This

diagram illustrates the basic flow behind a typical implementation.

� Feature identification. The process starts by defining a specific feature of interest

that we would like to detect within a dataset.
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(a)

(b)

(c) (d)

Figure 3.9: (a) Processing flow diagram. (b) Virginia point cloud dataset showing location and
average displacement velocity in mm⁄year of the PS. (c) Propagated residual map. (d) Propagated
minimum-risk map. ((b) and (d) from [78] ©2013 Taylor and Francis)
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� Parametrization. The feature is analyzed and a parametrized model is created by

identifying the n most relevant parameters.

� Dataset acquisition. A dataset is acquired from a remote sensing provider. In our

case we use point cloud datasets from TRE Canada. One point to notice is that this

process is not limited to remote sensing data and it can be easily extended to any point

cloud dataset as long as the feature of interest can be represented by a parametrized

model. Furthermore, the dataset is not required to be a point cloud, our approach can

be used for uniformly sampled datasets such as stack of digital images.

� Analysis. After selecting ranges and steps for each of the n parameters, the dataset is

analyzed. The result is an n-dimensional residual matrix. The minima in this matrix

identify the parameter vectors that provide good model matching. In our specific case,

once projected on the geographical coordinate space, the minima identify location where

the measured displacement behave accordingly to our model. One of the advantages of

this approach is that, for each residual value, all the n parameters are available. For

our dataset, this means that information regarding location, size and growth speed are

identified for both the best matches and every other geographic location.

� External sources integration. The extracted parameters can be used during post

processing to generate secondary maps where external information are queried from

existing sources using the parameters as indexes.

� Decision support systems (DSS) - Risk assessment. The ability to include

external data in the generation of accessory maps facilitates the development of decision
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support system algorithms. For example, a user could generate a map where actual

residual values are weighted according to how close the potential sinkhole is to a major

transportation highway or infrastructure or, as another example, generate a map where

the risk function is defined based on the location with respect to known karst terrain

and growth speeds or sizes that closely resembles that of existing features.

To illustrate this process, we used the Virginia point cloud dataset Fig. 3.9(b). Parameters

were chose to provide coverage for the entire dataset extension (see section B.3: Virginia)

and allow detection of significant subsidence (see Table 3.5).

Table 3.5: Parameter space limits and increments for the Virginia dataset

Parameter Minimum Maximum Increment

x0 0 m 43, 235 m 2.5 m
y0 0 m 51, 768 m 2.5 m
α −5 mm/month −1 mm/month 0.25 mm/month

σ 5 m 100 m 5 m

We then analyzed the dataset with our approach and developed a very simple risk function

based on the residual (Fig. 3.9(c)), and the minimizing amplitude values:

ρ(p) = [1− r(p)] exp(1/αp) (3.16)

where αp is the α corresponding to the specific parameter space point p considered.

The rationale behind the form of (3.16) is to provide an increased risk factor for those

regions matching faster-growing templates (larger values of |α| in (3.8)) while reducing false

detection by minimizing the risk factor in case of regions showing a slow subsidence grow

rate.
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Table 3.6: Categories of subsidence evidence based on ground inspection (From [78] ©2013 Taylor
and Francis)

Categories Infrastructure Geomorphology

Absolute (A) Cracks, settlement Recent non-vegetated scarps
Strong (S) Distortions or cracks Overgrown scarps
Weak (W) Repairs or cracks Geomorphology indicates activity

Possible (P) Near existing active region In correct terrain, presence of pinnacles
None (N) No or negative confirmation No or negative confirmation

The risk map was then collapsed according to mρ(x0, y0) = maxα,σ[ρ(p)] and propagated

following σmρ = arg maxσ{maxα[ρ(p)]}. The results are illustrated in Fig. 3.9(d). It is

interesting to compare these results with the original scatterer displacement rates, in mm⁄year,

shown in Fig. 3.9(a). Although, as expected, it is possible to identify a general correspondence

between subsiding regions and areas of higher risk, the direct comparison highlights the

ability of our method to distinguish between simple changes in elevation and subsidence

following a modeled behavior.

We classified the regions within the propagated risk map into four separated categories

according to the risk factor: severe (mρ ≥ 0.475), moderate (0.4 ≤ mρ ≥ 0.475), slight

(0.35 ≤ mρ ≥ 0.4), and no risk (mρ ≤ 0.35). These ranges were selected based on the

observed behavior of the risk function on the Wink Sinks dataset. Following this classification,

we produced a list of potential subsidence candidates out of which we selected a sample of 32

locations for ground validation: seven identified as severe, 15 moderate, and 10 as slight risk.

To allow for a more direct comparison between the algorithm detection and the ground

validation results, with the help of VDOT geologists, we classified the evidence of subsidence

into five distinct categories based on the observed infrastructure deformation and geomor-

phology at the inspected locations. The categories and the associated evidences are listed in
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Table 3.7: Results of ground validation on Virginia data (From [78] ©2013 Taylor and Francis)

Risk Evaluated A S W P N

Severe 7 4 (57%) 2 (29%) - - 1 (14%)
Moderate 15 8 (54%) 2 (13%) 2 (13%) 1 ( 7%) 2 (13%)

Slight 10 5 (50%) 4 (40%) - 1 (10%) -

Total 32 17 (53%) 8 (25%) 2 ( 6%) 2 ( 6%) 3 (10%)

Table 3.6.

Table 3.7 shows a direct comparison between the algorithm classification and the ground

validation. These results show that 78% of the locations selected between those identified by

our algorithm presents strong evidence of subsidence.

These results show that we can successfully isolate regions showing a specific type of

subsidence behavior nevertheless, we would like to point out that, although definite signs of

subsidence were identified during the ground validation phase for the Virginia results, it was

difficult to assess the actual cause behind the subsidence. This is mainly due to the high

sensitivity provided by the permanent scatterer technique: the largest observed displacements

over the acquisition period were of the order of 30-40 mm. So, although the behavior of

such regions showed a coherent movement in line with our model, it will require a longer

observation campaign to precisely determine the cause of the observed subsidence and provide

direct numerical comparison.

3.3.4 Subsidence model discussion

Since the detection algorithm we developed is independent of the specific parametric model

we select as template, we can use it to indirectly evaluate the quality of the sinkhole model
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(a) (b) (c) (d)

Figure 3.10: Comparison between the results the proposed detection algorithm on the Wink dataset
using variations on the model described in (3.8). For comparison, the location of the available
scatterer is marked with black dots. The displayed map are not propagated to allow for better
comparison. (a) Static model with fixed amplitude α = −104.63 mm and σ = 95 m. (b) Model with
adapting amplitude α and fixed σ = 95 m. (c) Model with fixed amplitude α = −104.63 mm and
adapting σ. (d) Fully adaptive model as described by (3.8). (From [78] ©2013 Taylor and Francis)

itself (3.8) by comparing the results of the detection over the Wink Sinks area5 using modified

versions of the subsidence model. The outcomes are illustrated in Fig. 3.10. As expected,

reducing the degrees of freedom of the model results in an overall increased residual.

In Fig. 3.10(a), we present the results for a template where the amplitude and size

were selected to be the mid-range values of the respective parameter space search ranges

(αt = −104.3 mm and σ = 95 m), effectively resulting in a model describing a fixed subsidence

of a given amount not changing in time.

One of the major advantages of this fixed parameter configuration is the extreme reduction

in computational burden, which allows the analysis of large datasets to be conducted in a

relatively short time. The drawbacks are the loss in resolution (spatial details are averaged

over the fixed size of the template) and the reduced ability to cope with low data density areas.

This is clearly visible in the top and center sinkhole regions where section with large residual

5The reasons behind the choice of the Wink Sinks dataset rather than, for example, the Virginia one, is
once again dictated by the fact that it can be considered as ”ground truth” (see section 2.2.2: The Winkler
sinkholes (Wink Sinks)).



3.3 Spatiotemporal matching 105

value appear in correspondence of areas with low scatterer density. The same issues are

evident in Fig. 3.10(b), where the model was modified to allow the search for the best-fitting

growth rate α while keeping the scale fixed (σ = 95 m).

Fast screening of large areas can also be obtained by using a model where the amplitude is

kept constant at the expected mid-range (αt = −104.3 mm in our case) while full parameter

search is allowed for the scale. This effectively corresponds to a search for the best-fitting

static model where the temporal evolution is ignored. Results for this model are shown in

Fig. 3.10(c). In this case, the local spatial details are preserved allowing for localization of

potential features but the temporal information is lost, greatly diminishing the classification

capabilities of the detection algorithm as indicated by the overall higher residual values.

Nevertheless, it is possible to envision a two stages process where large areas are first quickly

scanned for spatial features coherent with the desired model and then only matching regions

are selected for a full parameter search, potentially reducing the computational time (see

chapter 4: Performance analysis).

Another interesting detail to notice is that only the fully adaptive model clearly identifies

the region of subsidence corresponding to Wink 4 and separates it from the Wink 2 area.

We believe this might be due to the fact that, although scatterers present between the two

features are potentially aligned spatially to a subsidence model, their temporal behavior does

not conform to that of a developing subsidence. This subtle difference can only be captured

by a full adaptive model (3.8) that considers both spatial and temporal evolution of the

displacement.

In order to quantitatively compare the performances of the different subsidence models

variants described above, we selected two subregions for each of Wink 1, Wink 2, and Wink
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(a) (b)

Figure 3.11: Comparison between different subsidence models performances. (a) Selection of on-
target (green) and off-target (red) regions for each subsidence region in the Wink Sinks dataset.
The dots represents the location of each scatterer and are color coded based on the displacement (in
mm) measured at t = 68.68 months. (b) Quality factor (see text) evaluated for each of the presented
models. (From [78] ©2013 Taylor and Francis)

3 (Fig. 3.11)6: the green box identifies the subregion where the potential center for the

subsidence phenomenon might be located as extrapolated from the recorded displacements

while the red box identifies a region where a lower level of subsidence is occurring.

Two desirable characteristics of a detection algorithm are to provide the lowest possible

residual when on-target while achieving the largest possible discrimination between the

on-target and off-target conditions. To measure the performance of our algorithm when using

the different models, we defined a quality factor Q = |µrON − µrOFF |/µrON , where µrON and

µrOFF are the average residuals evaluated over the on-target and off-target areas respectively.

For each of the models and each of the sinkhole areas, we evaluated the quality factor

and the results are illustrated by the histogram in Fig. 3.11(b), where it is clear that the

model implementing full parameter search outperforms the other variants.

6The area corresponding to Wink 4 was not included in this evaluation due to the high sparsity of available
scatterers.
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3.4 Summary

We believe that the algorithm we developed, used in conjunction with a the spatiotemporal

template described by (3.8), provides a valuable tool that can help in the detection of

precursory subsiding motions that can be associated with the development of sinkholes

but, as we have briefly touched upon in the model variants analysis, is quite expensive

computationally.

In the next chapter we will discuss this issue and describe an approach that can potentially

reduce the computational burden by pre-selecting areas of interest where the temporal behavior

of the scatterers ”differs” from the average behavior observed over the entire scene, and by

providing a fast feature detection method with the goal of restricting the application of the

spatiotemporal matching algorithm.



Chapter 4

Performance analysis

4.1 Introduction

The computational cost of the spatiotemporal matching algorithm depends on two main

factors: the granularity of the parameter space and the number of points within the dataset.

If we consider the ranges and steps size required to provide an accurate analysis for the

Wink Sinks (Table 3.3) and the Virginia (Table 3.5) datasets, we can round the number of

elementary cells defined within each parameter space to approximately 180 million for the

Wink Sinks and 122 billion for Virginia. At the same time, the two datasets contain a large

number of points: 93,513 over 55.88 km2 for each of the 22 time slices resulting in a total of

about 2 million points (36,82 pts⁄km2) for the Wink Sinks and 296,121 over 1,600 km2 for each

of the 32 scenes for a total of about 9.5 million points (5,92 pts⁄km2) for Virginia1.

1If we envision an actual implementation of this approach at one of the State DOTs, we can imagine
that a new set of scenes, potentially covering the entire State, will be acquired at regular intervals largely
increasing both the ranges of the parameters and the number of data points.

108



4.2 Parameter space reduction 109

The direct implementation of the spatiotemporal matching algorithm requires the evalua-

tion of the residual measure (3.9), for each cell in the parameter space and for every data

point within the region of influence (on average 17.9 thousands for the Wink Sinks and 800

for the Virginia dataset) resulting in a total of 2.9 · 1012 evaluations for the Wink Sinks and

86.4 · 1012 for Virginia.

Following these consideration, it becomes apparent that, with larger datasets and more

complex models, the currently proposed approach would require increasingly long computation

times to evaluate the residual matrix r(p) for parameter spaces sampled densely enough to

guarantee proper detection.

Although this burden can be mitigated by taking advantage of the highly parallel nature of

the algorithm, or by implementing part of the calculation in the powerful graphics processing

units available in nowadays video card, we devised an approach that can improve the detection

performances.

4.2 Parameter space reduction

The proposed method [126] provides two tools that can be used, together or independently,

to address the main bottlenecks of the spatiotemporal matching algorithm: the size of the

parameter space and the expensive computation of the residual matrix r(p). The first is

based on a screening stage where areas that behave differently from the average behavior

of the entire scene are detected, whereas the second provides faster features localization by

implementing an approach based on the concept of mutual information.
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In more detail, if we consider our datasets, for each point we have an associated displace-

ment time series recording the changes in elevation with respect to the master reference

measurement (for which d(xi, 0) = 0 ∀xi).

Figure 4.1: Illustration of the distribution of
the displacements for the entire dataset at t =
1.15 months (blue) and t = 68.68 months (red).
(From [126] ©2013 SPIE)

Looking at the normalized distribution of

the displacements for the entire dataset at a

given time, it can be observed that, starting

from a δ(0) = 1 at the reference time t = 0,

as t increases, the distribution spreads due to

changes in the displacements values. This is

illustrated in Fig. 4.1 where two normalized

distribution are shown for t = 1.15 months

(blue) and t = 68.68 months (red). After

careful examination, it can be seen that the

latter has larger variance and that the mean has drifted towards the negative displacement

values, in line with the development of subsiding features within the areas.

By analyzing the global distribution, it is difficult to evaluate size, location and amplitude

of potential events due to the fact that the subsets of points displaying a subsiding trend is

typically small and distributed in random patches within the dataset.

To increase detectability and provide localization, we divided the dataset into N smaller

rectangular non-overlapping subsets, or blocks, (Sn n = 1, . . . , N) spanning the entire dataset2.

Fig. 4.2(a) shows a possible subdivision of the Wink Sinks dataset with N = 2601.

2The choice of subdivision is arbitrary although it should guarantee coverage of the entire dataset.
Furthermore, the area covered by each block should be of the order of the size of the expected feature or
smaller so insure that the statistical properties of active differ from those of inactive blocks (see explanation
in text).
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(a) (b)

Figure 4.2: (a) Example of possible subdivision of the Wink Sinks dataset into N = 2601 non-
overlapping rectangular subsets identified by different cycling colors. The black rectangles show the
regions where the subsidence activity is located. (b) Scatter plot of standard deviation vs. mean for
the displacements within each block shown at t = 1.15 months (blue) and t = 68.68 months (red).
(From [126] ©2013 SPIE)

If we now consider each of the Sn obtained from the subdivision process, we expect the

distribution of the displacements associated with active blocks to differ from that of inactive

blocks where, with the term active, we indicate regions undergoing subsidence phenomena.

In particular we expect an amplified version of the behavior observed for the entire dataset:

the distribution for active blocks should show growing variance and an increasingly negative

mean whereas, for inactive block, we expect the distribution to remain fairly narrow and

show no preferential mean direction.

To better analyze this behavior, we evaluated the mean (µ
(t)
n ) and standard deviation

(σ
(t)
n ) for each block and represented them in a scatter plot (Fig. 4.2(b)) for two different

times t = 1.15 months (blue) and t = 68.68 months (red). For the earlier time, all the blocks

present similar statistics and are concentrated around the origin. As time increases, the

statistic for the majority of the block (inactive) remains fairly clustered around the origin
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(a) (b)

Figure 4.3: (a) Scatter plot of the differential mean and standard deviation of the displacement for
each block in the dataset. The outliers according to the Mahalanobis distance are identified in red.
(b) The Wink Sinks dataset with identified (solid red) the block selected as outliers (active). For
comparison we highlighted (green) the location of scatterers with an overall displacement larger
than -50 mm. In light blue are indicated the block selected for analysis. (From [126] ©2013 SPIE)

displaying a symmetric distribution respect to the mean and a slightly increased standard

deviation whereas, for the active blocs, it drifts away from the origin towards negative means

and largely increased standard deviations with a behavior indicative of developing subsidence.

To correct for displacement statistic potentially introduced by the SAR imaging process

or by the SqueeSAR post processing and not due to developing features, we used the

displacements measured at t = 1.15 months and subtracted them, on a block-by-bock basis,

from the measurements obtained at t = 68.68 months. The justification for this correction

is that after a short time interval, in our case 1.15 months, we expect to observe almost

no subsidence changes while potential systematic error introduced by the processing would

already be present. The result is shown with black markers in Fig. 4.3(a).

Under the assumption that the majority of the blocks does not contain active features

(which is usually the case when large areas are analyzed) and that the displacement distri-
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butions represent natural statistics typical of each individual block characteristics, we can

consider our data (ξ
(t)
n = (µ

(t)
n , σ

(t)
n )) to follow a two-dimensional multivariate normal distribu-

tion. We can then look for outliers in our dataset and tag them as active blocks. To increase

sensitivity, we carried this analysis for the displacement measured at t = 68.68 months.

Since our goal is to quickly identify possible active regions where the full spatiotemporal

algorithm will be applied, between the many methods available for multivariate outliers

detection [127], we opted for the Mahalanobis distance [128] that provides a fast measure of

how dissimilar a test sample set is from an existing one.

The Mahalanobis distance estimates the sample mean vector (ξ̄(t)) and the covariance

matrix (Σ(t)) of the multivariate distribution given by the sample mean and standard deviation

of our blocks Sn and, for each data point ξ
(t)
n in the sample, evaluates a distance given by

M
(t)
n =

√(
ξ
(t)
n − ξ(t)

)T
(Σ(t))

−1
(
ξ
(t)
n − ξ(t)

)
.

Given the above assumption on the distribution of the ξ
(t)
n , the Mahalanobis distance will

follow a Chi-Squared distribution with two degrees of freedom (χ2
2). We can then use a p-test

to detect outliers. We chose a p-value3 of 0.01 as significance threshold4.

4.2.1 Results and comparison with spatiotemporal matching

In Fig. 4.3(a) we identify with a red-circled marker the ξ
(t)
n selected as outliers by the outlined

process. The corresponding blocks Sn are identified in Fig. 4.3(b) by red rectangle. Most of

the selected blocks fall within the known active regions (identified by black rectangles) and

3The p-value represents the probability that the sample under analysis is coming from the considered

distribution. In our case, the probability that a given ξ
(t)
n is coming from the distribution generated by mostly

inactive blocks.
4We use a significance threshold of 0.01 which, according to readily available critical value tables for the

Chi-Squared distribution, means that, if M
(t)
n is larger than 13.82, we can reject the hypothesis that the

sample is coming from the inactive distribution and we can label it as an outlier.
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(a) (b)

Figure 4.4: Comparison between the residual maps resulting from application of the spatiotemporal
matching algorithm to (a) the active regions and (b) the entire dataset. (From [126] ©2013 SPIE)

near data points showing overall displacements larger than -50 mm (green). To insure proper

coverage of the detected features, we extend the detection to include the direct neighbors

of the identified block. The final area selected for subsequent analysis by the sptiotemporal

matching algorithm is identified in light blue.

The speed up in the detection process is, to the first order, proportional to the ratio

of the original area to the area covered by the blocks selected for processing. As shown in

Fig. 4.3(b), this can be quite dramatic.

We verified the detection results by comparing the residual maps obtained by applying

the spatiotemporal matching algorithm only to the active blocks and to the entire dataset

(Fig. 4.4) and confirmed that the outliers detection step has correctly identified the active

regions.

The main advantage of using this preprocessing step is to reduce the computational

burden that would result from analyzing large datasets with complex models requiring several

parameters. Furthermore this mechanism is independent of the complexity of the model and
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directly compares the displacement statistic between blocks of data singling out, for further

analysis, regions exhibiting a behavior different from the overall average.

The strength of this approach can also be one of its weaknesses. For the detection to

work, it is required for subsiding regions to present a statistical signature different from the

one of inactive blocks. If we consider that the nature of the datasets we are most likely to use

is differential, we expect the detection algorithm to fail at differentiating between active and

inactive regions during the initial acquisition period5. On the other hand the more images in

a SAR stack, the higher the accuracy of the results obtained by the SqueeSAR algorithm

and, typically, stacks are not processed until at least 15-20 frames have been acquired, with

optimal results obtained with 30 or more fames. If we consider that, to increase phase

traceability, a SAR frame is acquires every two weeks, we can expect that, after the one to

two years necessary to build up the stack, relevant subsiding features will present a large

enough signature to be detected.

Another option that can be considered, when small variation between blocks is expected,

is to increase the p-value. This would effectively lower the threshold for the Malahanobis

distance and increase the number of blocks considered outliers. At the limit of zero distance,

all blocks would be considered outliers and scheduled for full analysis, reverting back to the

full spatiotemporal matching algorithm.

5We have noticed a similar behavior while trying to evaluate the spatiotemporal model of sinkholes (see
section 2.3: The model).
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4.3 Mutual information metric

Although the proposed method can provide a considerable increase in efficiency, with larger

datasets and complex models, or in the case of low discriminating statistics between active

and inactive regions, the screening stage can still identify large areas. Furthermore, the mere

identification of a different statistical activity does not provide any information about the

actual spatial distribution or temporal behavior of the scatterers. We would like to develop

an approach to efficiently handle both these scenarios.

While discussing the property of the subsidence model (see section 3.3.4: Subsidence

model discussion) we noticed that all the different variants provided a considerable decrease

in computational time. This was mainly due to the fact that the parameter search over

the amplitude and/or scale was replaced by a fixed value. We also noticed that, among

the studied models, the one implementing a fixed amplitude template with adaptive scale

showed the most promising results by both allowing the localization and preserving the scale

of potential features, albeit loosing temporal evolution information.

When we tested the performance of the scale-adaptive template, we assumed a certain

fixed amplitude based on our a priori knowledge about the feature we were looking for.

Obviously when analyzing general datasets we do not have this advantage. Furthermore, the

proportional match measure we introduced (3.9) is designed to penalize, with high residual,

any spatiotemporal mismatch between template and data.

To address both these issues, we designed an amplitude invariant approach, based on the

concept of mutual information, that provides the advantages of a fast matching algorithm

while preserving local scale information. This approach addresses both scenarios described
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at the beginning of this section by providing a tool that can be either used to screen entire

datasets to identify displacement regions spatially conforming to the desired model, or, in

case of large datasets, as a follow up to the activity screening technique, previously illustrated,

to provide information about the spatial behavior of the subsidence in the regions identified

as active and further refine the selection of areas to be analyzed with the full spatiotemporal

matching algorithm. In the rest of this section we will describe this approach and show its

results on the Wink Sinks dataset when used as further refinement after the activity screening

step.

Measures based on mutual information (I) and, in particular, normalized mutual in-

formation (NMI) are commonly used to evaluate hidden dependencies between datasets

that might not be evident in covariance-based measures, such as correlation, which address

linear dependency [129] [130]. Within our framework this feature can be used to evaluate

the dependency between the expected displacements, according to a specific model, and the

observed ones.

In our approach, we use the following definition for I and NMI [131] [132]:

I(D;G) =
∑
di∈D

∑
gi∈G

p(di, gi) log
p(di, gi)

p(di)p(gi)
(4.1)

NMI(D;G) = NMImax(D;G) =
I(D;G)

max[H(D), H(G)]
(4.2)

where D in the set of the actual displacement values di, G is the set containing the expected

displacements gi according to the subsidence model, p(di, gi) is the joint probability mass

function, estimated using an optimized kernel method [133], p(xi) are the marginals evaluated
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from the joint probability (where xi can indicate either di or gi), and H(X) are the entropies

of each dataset evaluated as H(X) = −
∑

i p(xi) log(p(xi)).

To generate the NMI map, we proceeded similarly to the spatiotemporal matching

approach but, taking advantage of the scale invariance properties of the NMI, we used the

previously described variant of the subsidence model (3.8) where the dependence on time

was removed. This resulted in a simplified parameter space including the spatial coordinates

(x0 = (x0, y0)), the scale (σ), and a fixed amplitude (α) that can be arbitrarily chosen (we

selected a value of α = −150 mm).

Following the procedure outlined for the spatiotemporal matching algorithm, for each

point in the now simplified parameter space, we defined a region of influence of 3σ around its

coordinates (x0, y0). After identifying the scatterers within this region, we defined two sets

of data D and G. The first set (D) contained the scatterer displacements measured for a

specific time slice of the point cloud dataset (in the case of the sinkhole dataset we selected

t = 68.68 months where the subsidence was more pronounced)6. The second dataset (G) was

generated by evaluating the simplified template at the spatial coordinates of the elements of

D. In other words, for every xi in the region of influence, D = {d(xi, t)} and G = {gp(xi, t)}

where p = [(x0, y0),−150 mm, σ] and t = 68.68 months.

We then estimated the joint probability mass function p(di, gi), the two marginals (p(di),

and p(gi)), and the entropies (H(D) and H(G)). These quantities, together with (4.2), were

used to evaluate the normalized mutual information now a function of the spatial coordinates

and the size of the simplified template: NMI = NMI(x0, y0, σ).

6Generally the last temporal slice available in datasets generated by differential measurements, such as
SqueeSAR, is the one where it is possible to find the largest signatures of growing features.
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The outcome of the process was a 3-dimensional matrix containing, at each location,

the normalized mutual information between the actual and the expected displacement

data, generated according to the template corresponding to the parameters associated with

the location in the matrix. To generate the final map we used an approach similar to

(3.14) and evaluated the maximum intensity projection of the matrix along the scale axis:

NMI(x0, y0) = maxσ[NMI(x0, y0, σ)].

4.3.1 Results and comparison with spatiotemporal matching

We applied this method to the areas of the Wink Sinks dataset identified by the activity

screening step. The NMI map was evaluated for each detect block using the time-fixed

template with scale σ ranging within [50 m, 150 m] with a step size of ∆σ = 1 m.

In Fig. 4.5 we show three NMI maps obtained at three different values of the scale and

the final maximum intensity projection along the scale axis. It is interesting to notice how

features of different size become salient at different template scales. This is a well known

phenomenon that has been studied in depth in the field of image processing [134] and is at

the core of several techniques known under the general name of scale space analysis [135]. In

scale analysis, an image, considered at scale zero, is iteratively convolved with a Gaussian of

fixed σ. As a result, at each step, the image is increasingly blurred and the large changes of

intensity, that are typically associated with the presence of details, are increasingly smoothed

(or diffused). As the iteration are repeated, larger regions start to get affected. In the limit,

the entire image becomes uniform.

In our case, instead of convolution with a Gaussian, we evaluate the mutual information
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(a) (b)

(c) (d)

Figure 4.5: Results for the NMI analysis with progressively large size templates: (a) σ = 50 m,
(b) σ = 100 m, and (c) σ = 150 m. In (d) we show the map resulting from the maximum intensity
projection of the NMI along the scale (σ) axis. (From [126] ©2013 SPIE)

between a Gaussian template and the point cloud dataset and, instead of iterating with a

fixed scale Gaussian, we use templates of increasing scale. The final projection step provides

a synthesis of the process by showing, at each coordinate location, the value of the best fit

obtained at that location insuring that, if a match was found it will show on the final map

independently of its scale. To find out the actual scale at which the maximum occurred, we

can simply use the arg max function.
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(a) (b)

Figure 4.6: Comparison between (a) the spatiotemporal matching and (b) the NMI approaches
applied to the active regions. (From [126] ©2013 SPIE)

In Fig. 4.6 se show the direct comparison between the results of the spatiotemporal

matching algorithm and the NMI approach evaluated on detected active regions.

The alignment of the features detected by the two methods confirms that the NMI

approach can be used, when required, as direct fast screening for entire dataset or as second-

tier screening for regions identified as active by the parameter space reduction step. The

final selection of the areas where the full spatiotemporal matching algorithm should be

implemented could be achieved by simple thresholding of the NMI map at a predetermined

level of significance.

4.4 Summary

In this chapter we described two techniques that can be used to restrict the area where the

spatiotemporal matching algorithm needs to be applied. These two approaches, as well as the

spatiotemporal matching method, require the implicit definition of a regular grid underlying
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the physical location of the points in our dataset. This is achieved by specifying range and

step size for the x0 and y0 parameters. To insure that each element in the parameter space

includes at most one data point and that all element of the dataset are accounted for, the

range is typically selected to cover the entire size of the scene and the step size is chosen to

match the highest spatial resolution of the original SAR images. The resulting parameter

space is sparsely populated in the spatial coordinates.

As an example, let us consider the spatial parameters for the Virginia dataset (Table 3.5).

The ranges were set to [0 m, 43, 235 m] for x0 and [0 m, 51, 768 m] for y0 to provide coverage

of the imaged area whereas the step size was set to 2.5 m for both to match the 3 × 3 m2

ground resolution of the COSMO-SkyMED constellation (see section A.2: COSMO-SkyMed).

This resulted in a total of about 360 million cells. If we compare this with the actual number

of permanent scatters in the dataset, 296,121 (see section B.3: Virginia), we can calculate

that only 0.083% of the parameter space cells were actually occupied by data points.

In the next chapter we present a method that takes advantage of this inherent sparsity

and implements a scale space analysis technique, similar to the one just illustrated, directly

within the graph domain without defining any underlying grid.



Chapter 5

Graph signal detection

5.1 Introduction

In the previous chapters we have introduced a method to detect a specific behavior within a

spatiotemporal point cloud dataset. In particular we developed an algorithm that can detect

ground motion conforming to a model representing the early development of subsidence

phenomena. We also identified one of the main drawbacks of our approach, the computational

burden. We therefore developed two improvements that, if used as pre-screening stages,

would limit the extent of the data to be analyzed.

By comparing the sparsity of the point cloud dataset, derived from the persistent scatterer

processing, to the size of the parameter space required to properly identify features of interest,

we noticed that only a minimal fraction of the parameter space cells is indeed occupied by

actual physical scatters. This prompted us to evaluate alternative approaches to the detection

problem.

In this chapter we will expand the background on graph theory we provided earlier (see

123
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section 3.1.1: Graph theory primer) to include spectral tools, in particular the graph Fourier

transform (GFT). We will then show how similarities between the discrete Fourier transform

(DFT) and the GFT can be exploited to define a shift operator within the graph domain.

This will allow us to develop a method that provides detection of features of interest, and

their scale, directly within the graph without the need to identify and underlying grid as

in our other approaches. We will then show the results of this method applied to three

different dataset: an artificial one consisting of a Gaussian signal over a regular lattice graph,

a Gaussian signal over the graph generated from the coordinates of scatterer within the Wink

3 area, and the actual Wink 3 dataset itself. For this latter case, we will compare the results

with those obtained by the graph cut, spatiotemporal matching, and the normalized mutual

information metric.

Approaches based on the eigenvalues and eigenvectors of the graph Laplacian (see next

section), are generally known as graph spectral theory and have been intensively used to study

the nature of graphs, their connectivity, and their topological characteristics [136] [137] [138].

More recently, with the increased interest in point cloud dataset applied to robotic

vision, the focus has shifted from the analysis of graph properties toward the use of spectral

techniques to detect and separate groups of vertices considered similar according to some

metric, a process known as spectral clustering [139] [92] [140] [93].

In the last decade, with the introduction of social networks - where individuals are typically

represented in graphs as multi-featured nodes connected by multi-layered edge structures

- new analysis techniques, closely related to traditional signal processing, have been used

to detect anomalous network dynamics, with emphasis on local changes in the edge density

[141] [142], and transitional behaviors of single nodes with the intent of identifying patterns
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and trends [143].

The emerging field of graph signal processing (GSP) [144] [145] has shifted the focus of

spectral techniques from the analysis of local and global properties of the graph itself to

that of the value assumed by graph signals on vertices, effectively turning the graph into

an underlying connectivity space. The main tool a the basis of this new approach is the

graph Fourier Transform (GFT) [146]. This novel technique, that is at the foundation of our

approach, has sparked the development of graph-based traditional signal processing techniques

aimed at the analysis of the local ”frequency” behavior of graph signals. Here the graph signal

is considered a function of the eigenvectors of one of the matrices representing the connectivity

(typically, but not exclusively, the Laplacian). Multiscale geometric wavelets [147], spectral

graph wavelet transform [148], and two-channels wavelet filter banks on bipartite graphs1

[149] are just a few examples of the application of these techniques.

5.1.1 Graph theory II

An important matrix that is at the basis of both the field of spectral graph theory and GSP is

the Laplacian [138]. The basic non-normalized graph Laplacian is defined as L = D−W.

The name is derived from the fact that the graph Laplacian performs over the graph similarly

to the discrete difference counterpart. If we consider again the toy example that we showed

1Bipartite graphs are graphs where vertices can be divided into two disjoint sets and edges only connect
elements of different sets.
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before (Fig. 3.1), we can write the Laplacian for that graph as:

L =



nodes A B C D E

A 0.5 −0.5 0 0 0

B −0.5 2.25 −1.0 −0.75 0

C 0 −1.0 2 −1.0 0

D 0 −0.75 1.0 2.05 −0.5

E 0 0 0 −0.5 0.5


Let us consider a graph signal fi = f [i] = f [vi] defined over an uniformly weighted

grid graph (wij = 1 ∀i, j), where the nodes are placed on a regular 2D grid with equal

spacing (∆x,∆y) (assumed, without loss of generality, to be (1, 1)), and are connected with a

4-neighbors connectivity (NSEW) with each edge of equal weight wij (again assumed to be 1).

With this regular construct, we can associate virtual coordinates to each node vi = (xi, yj)

such that the neighbor to the north will be located at (xi, yj−1) = (xi, yj −∆y) = (xi, yj − 1)

and so forth.
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If we then consider the result of applying the graph Laplacian L to f , we can write:

−Lfi = −
∑
j∈Ni

wij[fi − fj] =

= [f(xi + 1, yj)− f(xi, yj)]− [f(xi, yj)− f(xi − 1, yj)]+

+ [f(xi, yj + 1)− f(xi, yj)]− [f(xi, yj)− f(xi, yj − 1)] =

= [f(xi + 1, yj)− 2f(xi, yj) + f(xi − 1, yj)]+

+ [f(xi, yj + 1)− 2f(xi, yj) + f(xi, yj − 1)] =

= f(xi + 1, yj) + f(xi − 1, yj) + f(xi, yj + 1) + f(xi, yj − 1)− 4f(xi, yj) ≈

≈ ∂2f

∂x2
(xi, yj) +

∂2f

∂y2
(xi, yj) = ∇2f(xi, yj) = ∇2fi

with clear resemblance to the 2D discrete Laplace operator L =
[
0 1 0
1 −4 1
0 1 0

]
[97]. This resemblance

is derived directly from to the continuous Laplace-Beltrami differential operator. Sandryhaila

and Moura write ”[. . .]if the dataset is large and samples uniformly randomly a low-dimensional

manifold then the (empirical) graph Laplacian acting on a smooth function on this manifold is

a good discrete approximation that converges point-wise and uniformly to the elliptic Laplace-

Beltrami operator applied to this function as the number of points goes to infinity.” [145]. In

other words, if the graph is the result of the sampling of a continuous surface then the graph

Laplacian provides a good approximation of what the behavior of the continuous Laplacian

would be on the continuous surface.

In this interpretation, the quadratic form of the Laplacian operator (5.1) can also consid-

ered as a measure of the smoothness of a the surface represented by the graph: resulting in a

small value if either f has limited variability or the weights of the edges connecting regions,
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or vertices, where the f varies substantially, are small [92]:

fTLf =
1

2

n∑
i,j=1

wij(fi − fj)2 (5.1)

where f ∈ Rn.

It is possible to observe the use of normalized versions of the Laplacian. There are

two commonly used form of normalization: Lsym = D− 1/2LD− 1/2 = I−D− 1/2AD
− 1/2 and

Lrw = D−1L = I − D−1A = I −W. If we remember the discussion about the diffusion

operator W (see section 3.1.1: Graph theory primer) we can understand why the second

normalization is referred to as the random walk Laplacian. The choice of which version to

use is determined by the problem at hand2. In our case, since nodes have similar degrees, we

opted for the unnormalized Laplacian.

As we mentioned in the introduction, in GSP there is a further ”separation” between

the actual graph and the signal. The graph is a projection of the samples of the original

surface to an underlying hyperplane and the signal corresponds to the distance between the

original samples and their projections. In this framework, the Laplacian matrix becomes a

representation of the intrinsic characteristics of the graph, based exclusively on the established

connectivity (topology). This underlying ”fabric” is a quality determined by the graph itself

and is decoupled from the values that a signal might assume at its vertices.

The two representations (sampled-surface and the lower dimensional projection) might

differ depending on how the weights (or distances) between the vertices are defined and the

2In [92], the author argues that all the Laplacians will provide similar spectral results when the graph are
fairly regular and every node has similar degree, whereas in case of high spread in the vertices degree statistic,
the normalized versions are more robust in the sense that they guarantee convergence to the continuous case
we described before as the number of nodes is increased.
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smoothness of the original surface. We can imagine a case where, if the distances are defined

from an Euclidian embedding of the surface, in the presence of large gradients, nodes that

are far in the sampled surface representation might end up very close in the projected graph.

This underlines the importance of the weight definition in graph theory.

It can be verified, by substitution, that the complex exponentials φ(x, ω) = ejωx are

solutions of the eigenproblem ∇2φ = λφ in R. In this sense, we can also interpret the inverse

Fourier transform of the frequency representation ĝ(ω) of a function g(x) as the superposition

of the eigenfunctions of the Laplace operator [148]: g(x) = 1/2π
∫
ĝ(ω)φ(x, ω)dω, where the

ĝ(ω) are obtained by the analysis step ĝ(ω) =
∫
g(x)φ∗(x, ω)dx. Given the relationship

described above between continuous and graph spaces, we can extend this approach to

represent graph signals as superposition of the eigenvectors of the graph Laplacian.

For a connected graph with N nodes, we can write the discrete graph eigenproblem as

Lu = λu, where u` ∈ RN is the eigenvector corresponding to the eigenvalue λ`.

Because of its definition, the Laplacian matrix is real and symmetric leading to a set

of N eigenvalues {λ`}`=0,1,...,N−1 and the corresponding set of independent eigenvectors

{u`}`=0,1,...,N−1 which constitutes an orthogonal3 basis4 of RN .

The graph Laplacian eigenvalues have several interesting properties that provide insight

about the graph connectivity. For example, in the case of connected graphs, the lowest

eigenvalue (after sorting) is always zero (λ0 = 0) and the corresponding eigenvector is constant.

This can be verified by looking at each row of the Laplacian matrix which contains the

degree of a vertex and the negative weights of its connections to the other vertices. Each row

3Normalization can be achieved by dividing each eigenvector by its norm.
4Some authors use the generalized eigenvectors derived from the Jordan decomposition of the adjacency

matrix as basis [145] due to the wider range of type of graphs that can be analyzed with this approach. Since
we will be using simple undirected graphs, we decided to follow the more common approach of the Laplacian.
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will then sum to zero. Since this is true for every row, we see how the vector 1N becomes

eigenvector with eigenvalue zero. Another interesting property of λ0 is that its algebraic

multiplicity is equal to the number of connected components of G. We use this as a check

step in our approach, after determining the connectivity of the graph, to verify that we have

a connected graph with a single component.

With an orthonormal basis at our disposal, we can now write the analysis and synthesis

equations for the GFT [144]:

f [n] =
N−1∑
`=0

f̂ [`]u`[n] (5.2)

f̂ [`] = 〈u`, f〉 =
N∑
n=1

u`[n]f [n] (5.3)

where the convention is that the inner product5 is conjugate-linear in the first term, although

in our case, all elements are real.

If we identify with U the array composed of the eigenvectors as columns, we can rewrite

the previous as f̂ = UT f and f = Uf̂ . The reconstruction in this case is guaranteed

by the fact that U is and orthogonal matrix in which case UT = U−1 and UUT = I.

Using this property, we can also prove that the Plancherel theorem applies to the GFT:

〈f̂ , ĝ〉 = 〈UT f ,UTg〉 = (UT f)TUTg = fTUUTg = fTg = 〈f ,g〉.

If we consider the discrete Fourier transform (DFT), we can look at the analysis process

as the projection of a signal in RN , originally defined on the discrete-unit-interval basis

{ei = ei[n] = δ[i − n]}i=1,...,N , onto the elements of the complete orthonormal DFT basis

{wm = wm[n] = 1√
N
ej2πmn/N}m=0,...,N−1. In the case of the GFT, we replace the DFT basis

5We use the natural definition of inner product for vector in RN : 〈x,y〉 = xTy.
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with the one identified by the Laplacian eigenvectors.

While the concept of frequency (as number of oscillation within signal sample length) can

be naturally defined within the DFT realm, given the underlying ordered connectivity of RN ,

it might not be immediately obvious that a similar property holds also for graphs.

In the case of graphs, the concept of frequency can be generalized to a relationship between

neighboring nodes: low frequency signals show smooth changes between adjacent nodes and

present few edges incident on vertices of opposite signs, whereas high frequency signals are

characterized by a high number of adjacent node showing opposite signs. A numeric estimate

of the frequency of a signal, can be obtained by counting the zero crossings within each of

the eigenvectors as the eigenvalue is increased.

A more rigorous approach is based on the definition of the oriented incidence matrix (E)

where each row represents a vertex and each column an edge. If the edge eij exists then

the entries corresponding to vertices i and j will have values -1 and +1 respectively6. For

weighted graph, the ±1 values are replaced by ±√wij (under the usual assumption that edge

weights are symmetric).

6While the assignment of a sign to nodes occurs naturally in directed graph where the positive sign
is associated to the arriving and the minus to the departing nodes, in the case of indirected graph, the
orientation is arbitrary and sometimes both entries will be positive.
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For the toy example in Fig. 3.1, the incidence matrix is given by:

E =



nodes\edges eAB eBC eBD eCD eDE

A −
√

0.5 0 0 0 0

B
√

0.5 −
√

1.0 −
√

0.75 0 0

C 0
√

1.0 0 −
√

1.0 0

D 0 0
√

0.75
√

1.0 −
√

0.5

E 0 0 0 0
√

0.5


If we consider how E behaves when applied to a signal, we see that it performs similarly

to a derivative (ET f)ij =
√
wij(fj − fi) (this would definitely be the case if the weights were

defined as wij = 1/d2ij with dij representing a physical distance between the nodes). Following

[150], the relative variation of a signal, given a particular graph G, can be evaluated as

∆2
Gf = ‖ET f‖2/‖f‖2. If we observe that, independently from the chosen orientation of the

edges, EET = L, we can write ∆2
Gf = fTLf/‖f‖2. Remembering the discussion on how the

quadratic form of the Laplacian (5.1) is a measure of the smoothness of a signal, we can see

how ∆2
Gf will be smaller for smoother signals and larger for high-varying ones, providing a

measure of the variability (frequency) of the signal f .

Fig. 5.1 illustrates this frequency behavior for some selected eigenvectors of two graphs:

cycle and periodic lattice, where the similarity with the DFT is stronger due to the natural

embedding of these regular graphs into the Euclidian space.

In our application graph geometries are more complicated. The graph for the Wink Sinks

dataset (see section B.2: Wink Sinks), shown as the base graph for Fig. 5.2, was obtained by
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Figure 5.1: Example of eigenvectors of the Laplacian for regular graphs. The top six plots represent
eigenvectors for eigenvalues 0, 1, 3, 7, 40, and 79 for a cycle graph. For this graph, the eigenvector
corresponding to the u2k+1 = cos(2πkn/N) and u2k+2 = sin(2πkn/N) for k = 0, 1, . . . ,N/2− 2 whereas
u0[n] = 1 and uN−1[n] = cos(πn) (where n is the node ”number”). The bottom six show eigenvectors
0, 1, 3, 4, 162, and 323 for a periodic lattice graph. The periodicity is obtained by folding the graph
as a T 2 and connecting the folded ends. In both cases it is possible to see how a high frequency of
change of sign between adjacent nodes corresponds to a higher eigenvalue.
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Figure 5.2: From left to right, top to bottom, eigenvectors corresponding to eigenvalues 0, 1, 5, 10,
20, 50, 100, 200, and 400 for a graph obtained from the Wink 3 dataset. The verices are represented
based on their actual coordinates. The connectivity is evaluated using the Delaunay triangulation
and the weights assigned based on the actual physical distance between the points (Thicker edges
correspond to higher weights). To improve readability of the plot, we simply show the sign domains
(positive and negative) instead of the actual values.

associating a node to each scatterer, embedding the nodes into the Euclidian space defined

by the coordinates of the corresponding scatters, connecting the nodes using the Delaunay

triangulation (see section 3.2: Graph cut approach), and weighting the resulting edges

exponentially, according to the physical distance between represented scatterers. Nevertheless,

the eigenvectors of the resulting Laplacian continue to display the frequency behavior we

illustrate above (Fig. 5.2).
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Figure 5.3: Top: from left to right, three examples of artificial normalized Gaussian signals
generated on the Wink 3 dataset with increasing value of sigma: 0.0005◦, 0.0015◦, 0.003◦. Bottom:
the corresponding spectra (only the first 500 eigenvalues) evaluated using (5.3).

Because of this intrinsic frequency behavior associated with the eigenvector basis, it

natural to define the concept of spectrum of a graph signal as the representation of the GFT

coefficient, obtained from the analysis step (5.3), as function of the sorted eigenvalues.

This representation follows the behavior we have learned to expect from the DFT: the

larger the feature in the graph-signal space, the narrower the associated spectrum. This is

illustrated in Fig. 5.3 where we show the GFT of Gaussian signals, of increasing scale, defined

over the graph obtained from Wink Sinks dataset restricted to the region of Wink 3.

As equations (5.2) and (5.3) provide a convenient way of moving across representations,

we can now use them to verify how far we can push the similarities between GFT and DFT.
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5.2 Detection and scale analysis

To achieve our goal of detecting a feature in a graph signal, we would like to use an approach

similar to the one used in matched filters: evaluate the cross-correlation between a signal (f)

and a template (τσ). The cross-correlation would then be repeated for templates of different

scales (σ) and the optimal result could be obtained by employing the scale space analysis

method outlined in the previous chapter, evaluating the maximum value across the scale axis.

In ”regular” spaces, the cross-correlation is typically evaluated by the convolution between

the signal and the time- or space-inverse of a specific template [26]. In turn, for computational

efficiency, the convolution is evaluated as the element-wise multiplication of the Fourier

transforms of the two signals after the appropriate zero-padding. Leveraging again the

similarity between Fourier and graph transform, we can define the graph convolution between

two graph signals f [n] and τσ[n] as the inverse GFT of the product of their GFT representations

[146]:

ξσ[n] = (f ∗ τσ)[n] =
N−1∑
`=0

f̂ [`]τ̂σ[`]u`[n] (5.4)

or ξσ = U[diag(UT f)UTτσ], where diag(x) = Ix.

The result of this operation follows the parallelism with the DFT only on regular graphs

such as the path, cyclic, and lattice. The main reason for the discrepancy lies on the fact that,

although each eigenvector displays a frequency-like behavior, when compared with each other,

this behavior lacks the regularity provided by the Fourier basis, except in the case of regular

graphs. Nevertheless it is still possible to approach the problem as direct cross-correlation of
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graph signals:

ξσ[n] = (f ? τσ)[n] =
N∑
i=1

f ∗[i]τσ[n+ i] (5.5)

In order to perform this operation, we need to provide a meaningful definition of what

shifting on a graph might mean.

We have previously discussed how the W = D−1A matrix represent one of the natural

processes by which ”information” might travel from one node to the connected ones. The

application of this operator, though, is closer to a diffusion and the repeated application of

W smooths the signal rather than shifting it. Following, once again, the similarities between

Fourier and graph transforms, we can define a shift in the graph domain as the inverse

transform of a ”modulation” in the Laplacian eigenvector domain [146]. If we apply this

operation to our template, we can write:

(S[i]τσ)[n] =
N−1∑
`=0

τ̂σ[`]u`[i]u`[n] (5.6)

Alternatively, we can define this shift operator as S[i] = U[diag(UTδi)]U
T , where δi is a

signal that is zero on every vertex except the i-th where it assumes the value of one, and, with

the notation S[i], we intend to underline the fact that this operation has to be understood

as a shift onto a specific vertex i rather than a shift of i vertices7. Shifting to a node is

effectively achieved by multiplying the spectrum of the signal to be shifted by the row of U

corresponding to the desired target node, followed by the inverse GFT.

7A factor of
√
N can be added to guarantee that the sum of the values is preserved by the operator. In

our case, we will re-normalize the data after each shift.
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Similar to what is expected for the DFT, if we consider a flat spectrum signal (φ̂ = 1N),

the shift operator will reconstruct a delta signal at the desired node:

(S[i]φ)[n] =
N−1∑
`=0

φ̂[`]u`[i]u`[n] =
N−1∑
`=0

u`[i]u`[n] = δ[n− i] = δi[n] (5.7)

This can be understood by noting that u`[i] and u`[n] are two rows of the orthogonal

eigenvector matrix U for which UUT = I.

Now that we have defined a graph shift operator, the most natural approach to implement

the cross-correlation (5.5) would be to define a specific graph-domain template (τσ) that we

are interested in detecting within the signal f , and then evaluate the cross-correlations:

ξσ[n] = 〈f ,S[n]τ 〉 =
N∑
i=1

f ∗[i](S[n]τσ)[i] (5.8)

for each vertex n in the graph, or ξσ = fTU[diag(UTδn)]UTτσ. Once again, this direct

approach does not work for a generic signal τσ on a generic graph.

This is, once more, a consequence of the representation of the graph signal in the Laplacian

eigenspace, and is one of the major differences between the DFT and the GFT. In the DFT, the

amplitude of the spectrum of a signal is invariant to translation and the phase is responsible

for its reconstruction at the appropriate location. With the GFT, there is no phase. If we

consider, for example, the eigenvectors illustrated in Fig. 5.2, we see that, if as signal is

shifted on the graph before analysis, the two resulting spectra will be quite different while

still maintaining the general width associated with the overall size of the signal (Fig. 5.3).

When we apply the shift operator (5.6) to a signal, since there is no phase information, we
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are effectively changing the amplitude of the coefficients required for the reconstruction of

the signal. As a result, direct application of (5.6) to the spectrum of the desired template

would cause, not only a shift, but also a distortion of its reconstructed signal. However, it has

been shown that, if we were to start with a smooth spectral representation for τ̂σ[`], then the

application of the shift operator (5.6) would results in a localized signal around the selected

node [148].

Furthermore, it is possible to define a version of the uncertainty principle for graph

signals and their spectra that provide an inverse proportionality link between the spread

of the spectrum and the spread of the corresponding signal [150] [151]. This result, in

conjunction with (5.3) defines the windowed graph transform that is used to analyze local

graph ”frequency” behavior. The approach consists in defining a localized spectrum, shift

the resulting localized window on a specific vertex, point-wise multiply with the graph signal,

apply the GFT to the resulting signal, and repeat the process for each node generating a plot

similar to a spectrogram8.

We are going to use these two properties to define a smooth template of a given scale that

we can use to evaluate (5.8) on our test data. One issue to be considered is that, by defining

a graph signal starting from its spectrum and enforcing smoothness, we lose the possibility of

controlling the specific shape because of the reasons listed above. Nevertheless, when starting

from a Gaussian spectrum, the reconstructed signal resembles a smooth Gaussian centered on

8It could be argued that a direct definition of a window on a graph at each step without implementing
any of the GFT could achieve the desired result without the use of this complicated mechanism. Although in
principle this is true, there are several issues. First, defining a specific waveform and then using the location
of the nodes as sampling points assumes that the graph is embedded in a space where it is possible to define
such templates. The second problem is presented by the potential sparsity of the data. The graph-based
approach automatically preserves the average value of the signal while shifting it over a specific vertex by
implicitly considering density of nodes and weights of edges.
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Figure 5.4: Top: from left to right, three examples of artificial normalized Gaussian spectra (only the
first 500 eigenvalues). Middle: the direct reconstruction of the spectra using (5.2). It is noticeable
how a narrower spectrum will corresponds to a smoother signal. Bottom: the signal obtained from
reconstruction of the spectra using (5.6) (centered at node 700).

the desired node. Gaussian-based objects are some of the most commonly used templates at

the basis of several image processing approaches such as spot detection [152], edge detection

[153], and scale-space analysis [134].

In (Fig. 5.4) we show an example of the template construction procedure for the graph

obtained from the Wink 3 dataset. First we define a Guassian spectrum (τ̂σ) of a given

scale σ (top). The middle line shows the synthesis (5.2) of a signal starting from the given

spectrum. This signal is only presented to illustrate the results of the reconstruction since,
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the shifting occurs in the eigenvalue domain. It is possible to notice that the narrower the

spectrum, the smoother the reconstructed signal. The bottom row show the reconstruction

of the template centered at node 700 (S[700]τσ).

We now have all the ingredients necessary to evaluate the normalized cross-correlation of

the graph signals by applying a normalization factor to (5.8):

ξ̄σ[n] =
〈f ,S[n]τσ〉
‖f‖‖S[n]τσ‖

=
fTU[diag(UTδn)]UTτ

‖f‖‖S[n]τσ‖
(5.9)

Since the signals span the entire graph, the normalization of f is intended to include only

the region where the template is non-zero. This guarantees the localization of ξ̄σ[n] around n.

Given a value for σ, ξ̄σ[n] provides a measure of the match between the graph signal f and

the template τσ shifted on node n. The maximum of this function will identify the location

of the feature within the graph. To also extract information about the scale of the detected

feature, we need to evaluate (5.9) for several values of σ. In this case, ξ̄σ[n] is no longer a

function of just n but a surface determined by both σ and n. The maximum of this surface

provides both localization and size information for the best matching feature present in the

dataset:

(n, σ)best = arg max
n,σ

〈f ,S[n]τσ〉
‖f‖‖S[n]τσ‖

= arg max
n,σ

fTU[diag(UTδn)]UTτσ
‖f‖‖S[n]τσ‖

(5.10)

Alternatively, if we expect the presence of multiple features, it might be more relevant to

evaluate the maximum of ξ̄σ[n] along the scale axis (ξ̄max[n] = maxσ(ξ̄σ[n])), with an approach

similar to the one described in (3.14). This will result in a graph signal indicating, for each
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node, the best match obtained. This signal can then be thresholded at a predetermined

significance level to detect the location and size of all the features present within the dataset.

5.3 Results

We tested the approach outlined in the previous section on three datasets.

Dataset I This dataset was generated artificially starting from a lattice graph of 1089

nodes (33× 33) embedded in the interval [−10, 10]× [−10, 10] ∈ R2. The nodes where then

connected with a 4-connectivity (nearest neighbors - NSEW) with edges of weight wij = 1.

The signal, a normalized Gaussian of σI = 2.0, was placed in the top right quadrant, centered

on (x0, y0) = (4, 4).

Dataset II The base graph for this dataset was generated using a subset of the Wink

Sink point cloud (see section 2.2.2: The Winkler sinkholes (Wink Sinks)) restricted around

the Wink 3 area (−103.139◦E, 31.758◦N to −103.128◦E, 31.769◦N). Each scatterer in the

area was associated to a node and its coordinates used as natural embedding in R2. The

connectivity was obtained by applying the Delaunay triangulation (see section 3.2: Graph

cut approach). Each edge was assigned a weight exponentially decreasing with the physical

distance between the nodes. The value of σ was set to the average distance between adjacent

nodes to insure that the strength of the edge reflected the average neighborhood properties.

The resulting graph had 1826 nodes. The signal was obtained from a normalized Gaussian of

σII = 0.0007◦, centered in the middle of the area at (x0, y0) = (−103.134◦E, 31.764◦N)
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Dataset III The base graph for this signal was obtained as illustrated for dataset II.

The signal consisted of the actual displacement data for the scatterers used as vertices of

the graph. Between the available time slices in the Wink Sinks point cloud dataset, we

selected t = 68.68 months since, as previously discussed, it provides the largest displacement

information.

These three datasets are illustrated in the top row of Fig. 5.5 as graph-signal and in the

top row of Fig. 5.6 as function of the node index. This second representation is used because

it favors the comparison of the results but it is strictly dependent on the node indexing.

To prove that we can effectively detect a signal within the graph, we evaluated the

normalized cross-correlation (5.9) between each of the signals and a template defined by a

smooth spectrum: a normalized Gaussian kernel of arbitrary size σ = 40:

τ̂σ[`] =
e− `

2/2σ2
`∑

` e
− `2/2σ2

`

(5.11)

In the second row of Fig. 5.5 and Fig. 5.6 we show ξ̄σ[n] as function of n. For all three

datasets, the approach succeeded in detecting the features within the graph since, comparing

with the original signal, we can see that we achieved good discrimination between presence

and absence of the feature. Nevertheless, since in our application we are also interested

in extracting as many information as possible about the detected feature, we see that the

evaluation of ξ̄σ[n] only provides reliable localization. This is shown in the third row of

Fig. 5.5 and Fig. 5.6 where the template is shifted at the node where the feature was detected

and scaled to minimize the least square error with the original signal. The comparison

between the scaled template (third row) and the original signal (first row), clearly shows that



5.3 Results 144

(a) (b) (c)

Figure 5.5: Top row: the graph corresponding to the three datasets: (a) dataset I, (b) dataset II,
and (c) dataset III. Second: the results of the normalized cross-correlation (5.9) with the template
(5.11). Third: the template shifted to the maximum of the cross-correlation and scaled to minimize
the least square error (shown) with the signal. Bottom row: same as third row with the difference
that scale analysis (5.10) was applied to the template.
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(a) (b) (c)

Figure 5.6: The signals represented in this figure correspond to those shown in Fig. 5.5. Here we
represent the signals as function of the node index rather than as graph to favor a direct comparison.
In the last two rows, where we display the template shifted at the node where the feature was
detected and scaled to minimize the least square error with the original signal, the actual value of
the LSE is also reported.

we cannot infer the scale of the feature from the template.

This issue is addressed by the scale space analysis approach described by (5.10) and the
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(a) (b) (c)

Figure 5.7: Graphical illustration of the implementation of (5.10) for the three dataset: (a) dataset
I, (b) dataset II, and (c) dataset III. The top row shows the surface resulting from the analysis.
The correlation coefficient is shown as function of node index and scale of the template spectrum.
Below each surface, we display the correlation coefficient as function of the scale (one plot for node).
Here it is possible to clearly identify the maximum that simultaneously provide identification of
location and size of the best fitting template. In the case of Wink 3, since template and signal have
opposite signs, we should identify the minimum.

process, for each of the datasets, it outlined in Fig. 5.7. The first row is a representation of

ξ̄σ[n] as function of the node index n (horizontal axis) and the scale σ (vertical axis) of the

template spectrum τ̂σ[`]. The evaluation of (5.10) is equivalent to finding the coordinates for

which the surface achieves its maximum. This is better visualized in the bottom row where

we plot, for each node, the value of the normalized cross-correlation (5.9) as function of the

scale. In this representation the maximum9 is clearly identifiable for all three datasets.

Since, typically, there will be more than one feature we might want to detect within

a dataset, we also tested the approach on a signal containing two features. The base

9In the case of Wink 3, since the template and the signal had opposite signs, the optimal match is located
at the minimum.
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(a) (b) (c)

(d) (e) (f)

Figure 5.8: Graphical illustration of the implementation of (5.10) for a dataset containing two
features. (a) Representation of the graph signal (the underlying graph is not represented). (b)
The graph signal illustrated as function of the node index n. (c) ξ̄σ[n] as function of n and σ.
(d) Maximum intensity projection of (c) along the scale axis represented on the base graph. (e)
Maximum intensity projection of (c) along the scale axis represented as function of the node index
to allow for direct comparison with (b). (f) Detections of features in the graph signal, obtained by
thresholding (d) at a significance level of 0.75.

graph and connectivity were generated as for dataset I whereas the signal consisted of two

normalized Gaussian of σa = 1.5 and σb = 3.0 centered respectively at (x0, y0)a = (−5,−5)

and (x0, y0)b = (3, 3).

In Fig. 5.8 we illustrate the results of the detection process. The graph signal, shown as

discrete surface in (a) and as function of the node index n in (b), was analyzed using (5.9) for

sizes of the template spectrum ranging from σmin = 5 to σmax = 95. The resulting ξ̄σ[n] is

shown in (c) as function of n and σ. It is possible to clearly identify the two maxima relative

to location and scale of the two features. In (d) we show the graph signal corresponding
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to the maximum intensity projection of (c) along the scale axis (ξ̄max[n]). The same signal

is shown in (e) for direct comparison with the original signal (b). It is possible to notice

that both location and size of the two features where correctly identified. Finally, in (f), we

show a possible representation of the results where areas of interest are selected based on a

predetermined significance level. In this particular case, we selected ξ̄max[n] > 0.75.

5.3.1 Comparison with previous results

In Fig. 5.9, we show a direct comparison between ξ̄max[n] and the results obtained by

the spatiotemporal matching method (see section 3.3: Spatiotemporal matching) and the

normalized mutual information (NMI) metric pre-screening approach (see section 4.3: Mutual

information metric), all applied to dataset III (Wink 3)10.

In the first row of Fig. 5.9 we present the same graph signal (ξ̄max[n]) with two different

color maps to allow for better visual comparison with the results provided by the other

methods. In (c) and (d) we show the results for the spatiotemporal matching algorithm and

the NMI metric pre-screening approach respectively11. Finally, in (e) and (f) we display a

direct comparison between the results by aligning and overlapping the corresponding images.

From this illustration, it is possible to see that all these methods, not only successfully identify

the feature within the area, but also provide comparable information on its size.

For completeness, in Fig. 5.10 we show a comparison between the method illustrated in

this chapter, the graph cut approach (see section 3.2: Graph cut approach), the graph cut

10We did not include the parameter space reduction technique (see section 4.2: Parameter space reduction)
in this comparison because, differently from the other approaches, it does not provide information about the
characteristics of the features, apart from a generalized localization within a larger area. Nevertheless, as
previously described, this approach proved to be quite effective in reducing the size of the areas requiring full
analysis.

11See Fig. 4.6 for more details on these images.
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Figure 5.9: Comparison between spatiotemporal matching, NMI metric pre-screening, and graph
scale methods over the Wink 3 area (dataset III). In (a) and (b) we show ξ̄max[n] represented in
two different color maps to favor direct comparison with the results of the spatiotemporal matching
algorithm (c) and the mutual information pre-screening (d) applied to the same region (For more
information about (c) and (d) see Fig. 4.6). In the bottom row we overlap the graph scale results to
the spatiotemporal matching (e) and mutual information metric (f).

method modified to provide some sensitivity to the temporal behavior (see section 3.3.3:

Comparison with graph cut approach), and the spatiotemporal matching algorithm applied

to dataset III (Wink 3). In the first row we show (a) the result of the graph cut approach,

(b) the risk results for the modified graph cut and (c) the propagated risk as obtained from
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(a) (b) (c)

(d) (e) (f)

Figure 5.10: Comparison between results of (a) the graph cut approach, (b) the modified graph
cut method, (c) the spatiotemporal matching algorithm and the graph scale analysis. The direct
comparison is offered respectively in (d), (e), and (f).

(3.16) applied to the Wink Sinks dataset12. The colors represent the detected level of risk:

severe (red), moderate (orange), and slight (yellow). In the case of the graph cut approach

(a), the entire detected area is considered high risk, since this approach only provides a logic

label as output. In the second row we show ξ̄max[n] overlapped to each of the previous results.

We divided the values of ξ̄max[n] in 4 bins to allow for direct comparison. The bins where

chosen such that values in the interval [−1,−0.75) corresponded to severe, [−0.75,−0.5) to

medium, and [−0.5,−0.25) to slight risk. All the remaining data was considered as no risk.

12The comparison between the modified graph cut approach and the spatiotemporal matching method is
argued with more detail in (see section 3.3.3: Comparison with graph cut approach).
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It is important to underline that, although the results illustrated in Fig. 5.9 and Fig. 5.10

might seem to indicate that all approaches can offer satisfactory results in term of localization

and scale identification, only the spatiotemporal matching approach provides the capability

of discriminate features also based on the temporal behavior. Furthermore, since this method

is model independent (see section 3.3.4: Subsidence model discussion), the information that

can be extracted from the spatiotemporal approach is only limited by the set of parameters

used in the model definition. In the case of features tens of meters in diameter and several

meters deep, such as the Wink Sinks, and datasets that provide several years of displacement

information, allowing for features to become relevant with respect to the surroundings, the

added computational cost of providing temporal discrimination might not be required and

simpler static model might suffice. If, on the other hand, we consider the fundamental

motivation behind our research: the detection of precursory motion that might indicate the

early stages of development of hazardous conditions for the transportation infrastructure,

we see how the capability of detecting specific behaviors might become of critical importance

in dataset covering limited temporal duration such as the Virginia one (see section B.3:

Virginia).

5.4 Summary

In this chapter we presented an approach where the detection of features and their scale was

conducted entirely within the graph-space. The development of this method was prompted by

the inherent sparsity of the SqueeSAR data with respect to the granularity of the parameter

space required, by the spatiotemporal matching algorithm, to provide an accurate analysis. In
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particular the highest sparsity was caused by the underlying spatial grid required to identify

the location of a feature. By providing a detection mechanism acting exclusively on the nodes

of the graph, the need for this underlying grid was removed.

Although this approach provides good detection and the capability of identifying the

scale of the detected features, it cannot yet provide temporal discrimination. Furthermore, it

is based on the evaluation of eigenvalues and eigenvectors of matrices of size n × n where

n is the number of nodes in the dataset. Several powerful computational approaches are

available to address eigenproblems [154], nevertheless the memory requirement is most likely

to quickly become an issue as the number of considered scatterer is increased. One approach,

to address this issue, is to subdivide the dataset in smaller overlapping subsets and analyze

them separately. The subdivision could be posed as a minimization problem where the goal

is to identify a set of low weight cuts under the constraint that the separated components do

not contain more than a given number of points. This is one of the area of research, together

with the addition of temporal analysis, that we are planning to pursue in the future.



Chapter 6

Conclusions and future work

With the expected growing availability of SAR data (see section A.3: Future of SAR), we

believe that the routine use of remote sensing data for surface displacement monitoring will

become a reality. What we presented in this work is our contribution to the development

of analysis techniques for the point cloud sparse dataset typically obtained from, but not

restricted to, permanent scatterer interferometry.

In particular we presented a generalizable framework that allows the detection of a specific

spatiotemporal behavior defined by a user-specified parametric model. The independence of

the detection algorithm from the actual model provides this framework with the flexibility

required for its potential implementation in the detection of a variety of features in different

type of datasets.

By analyzing a ground truth point cloud datasets containing subsiding features, we also

developed a model describing the spatiotemporal evolution of sinkholes. This model was

then used, in conjunction with our detection framework, to study an area located in western

Virginia. The ground validation on a subset of the features identified by our algorithm showed

153
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that 78% of the locations presented strong evidence of subsidence.

Within this specific application, we evaluated the potential computational burden imposed

by the direct implementation of the detection framework for complex models over large

datasets and proposed two mitigating techniques to reduce the extent of the analysis region.

We then introduced a different approach that addressed the detection process from a

graph-theoretical point of view, drawing from the similarities between the Fourier analysis in

regularly-sampled spaces and what is becoming know as the graph Fourier transform. Based

on this approach, we presented a detection and scale analysis algorithm where location and

size of features were detected directly in the graph domain greatly reducing the size of the

parameter space to be analyzed.

6.1 Future work

Although the spatiotemporal matching algorithm can be considered a mature approach, we

would still like to evaluate possible algorithmic improvements and implementation strategies

to speed up the computational time. The original algorithm was entirely developed in

MATLAB [155] and, after a brief analysis on a subset of the Virginia dataset (see section

B.3: Virginia), we evaluated that the projected run time for the whole dataset extent would

have been 28 days. We then implemented the core functions in C++ and gained a factor of

10 on the total execution time.

Without diminishing the validity of the proposed parameter space reduction and mutual

information analysis methods, we still believe that translating the algorithm to operate on a

graphic processing unit would be an interesting research subject also because of the added
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challenges due to the size of dataset and parameter space. Furthermore, a considerable

increase in the computational speed would allow the use, for example, of complex subsidence

models including different sinkhole symmetries.

A subject where we would like to concentrate our future efforts is the proposed graph

detection approach. As already mentioned, one of the current main limitation to this approach,

is the n2 increase in the size of the Laplacian with the number n of nodes considered. We

would like to address this problem by evaluating the effects that a sectioning of the graph

might have on the detection method by answering questions such as: what is the relationship

between the eigenvector of the global Laplacian and those of the Laplacians obtained from the

smaller subsets? Is it possible to find an optimal cut that minimizes the distortion introduced

by the subdivision? Can we stitch together the detection results evaluated on smaller subsets

and, if possible, how does the compounded detection compares with the results evaluated

directly on the entire graph?

Translating the detection problem to the graph domain has drastically reduced the size of

the parameter space by leveraging the sparsity of the dataset. Nevertheless, this approach

still requires to cycle through node indexes and scale sizes in order to test the match with all

possible templates of interest. An interesting research subject would be to pose the entire

detection problem as an optimization problem. In other words:

(n, τ̂ ) = arg max
n,{αi}

〈f ,S[n]τ̂ 〉
‖f‖‖S[n]τ̂‖

(6.1)

under a smoothness constraint for the spectrum of the template τ̂ .

Although the graph-domain approach allows for the detection of scale and location of
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features present in the dataset, one of its main shortcomings is its inability to track temporal

evolution. We would like research the possibility of extending the current method to include

this ability. This would allow for a direct comparison of performances with the spatiotemporal

matching algorithm.



Appendix A

Satellites and SAR instrumentation

In this appendix we provide technical information about the satellites that provided the data

we used in out research as well as the instrumentation characteristics. We also identify future

sources of data and describe new space agencies policies that might provide access to high

resolution SAR data for low or no cost.

The two main datasets we used in our research were provided by two missions: the

European Space Agency (ESA) European remote sensing satellite (ERS), and the Agenzia

Spaziale Italiana (ASI) constellation of small satellites for mediterranean basin observation

(COSMO-SkyMed).

A.1 European remote sensing satellites (ERS)

ERS-1 and -2 were launched into the same orbit in 1991 and 1995 respectively. The ERS-1

mission, sponsored by ESA, was the first Earth observation program designed to provide

environmental monitoring in the microwave spectrum. The primary mission goals were to

157
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provide data measurements of wind speed and direction at the ocean surface, waves length

and direction, obtain high resolution mapping of land, ocean, ice, and costal zone, as well as

detect changes in land and ocean surface processes. ERS-1 operated from 1991 until 2000

when the attitude control system failed, whereas ERS-2, launched in 1995 and was retired in

2011 after the orbit had decayed from the nominal 780 km to 573 km.

Orbial specification for ERS-1 and -2 are shown in Table A.1.

Table A.1: ERS Orbital characteristics [32]

Feature Value

Type SSO, near circular
Repeat cycle 3-day 35-day 168-day
Inclination 98.516◦ 98.543◦ 98.491◦

Altitude 785 km 782 km 770 km
Orbits (cycle) 43 501 2411
Orbits (day) 141⁄3 1411⁄35 14847⁄2411

Among the several instrumental payloads, both satellites carried the AMI (active mi-

crowave instrument), a multimode RADAR operating in C-band (4-8 GHz). The three main

modes of operation were directly related to the mission goals: image mode, wave mode, and

wind mode. The data we used in our work was obtained in image mode

In AMI, a central local oscillator systems provided a reference at 123 MHz that was

up-converted to the nominal RADAR operating frequency of 5.3 GHz. When in image mode,

the transmitted pulse consisted of a 37.12µs chirp with a 15.55 MHz bandwidth transmitted

with a tunable pulse repetition frequency ranging from 1640 Hz to 1720 Hz. Due to the fact

that several pulses were transmitted by the satellite before the reception of the first echo

from the ground, the system had to actively fine tune and keep track of the delays (typically

10 pulses long) to correctly correlate the received data.
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The signal was amplified by a traveling wave tube amplifier and routed to the trans-

mitting/receiving 10 × 1 m antenna, with a beam width of 5.4◦ in elevation and 0.288◦ in

azimuth, and a gain of 40 dB.

Upon reception of an echo, the signal was down-converted, corrected for potential trans-

mitting amplifier gain fluctuations, decompressed and routed, together with the reference

replica, to a quadrature detector from which amplitude and phase information were sampled

every 52.74 ns. The digitized signal was then transmitted to the ground segment where data

was further processed to generate the various SAR products.

A summary of the most relevant features of this instrument is provided in Table A.2 (see

[156] for more details).

Table A.2: Characteristics of AMI in imaging mode [32]

Feature Value

Center frequency 5.3 GHz (λ = 5.66 cm)
Bandwidth 15.55 MHz
Polarization Linear Vertical (LV)
PRF Range 1640-1720 Hz (2 Hz steps)
Long pulse 37.12µs
Compressed pulse 64 ns
Peak power 4.8 kW
Antenna size 10× 1 m
Look angle 23◦ (mid-swath)
Spatial resolution 10-30 m
Swath width 100 km
Data rate 105 Mbit⁄s

For a brief period (October 1995 - June 1996) the two ERS satellites were joined in a

tandem mission. In this configuration, the two instruments were flown in the same orbit with

a delay (phasing) of 35 min. This configuration allowed the simultaneous observation of the

same scene from two slightly different vantage points providing an interferometric baseline
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with excellent temporal and spatial coherence resulting in the generation of very accurate

DEM (∼ 10 m).

A.2 COSMO-SkyMed

COSMO-SkyMed is a mission funded by the Agenzia Spaziale Italiana (ASI) and the Italian

ministry of defense providing both civilian and defense imagery. The 4 satellites, currently

orbiting Earth, started deployment on June 8, 2007 and ended on November 6, 2010 and a

second generation upgrades has been approved to replace the existing satellites as they reach

the projected end-of-life starting in mid 2015, providing continuity at least until 2023.

The mission, consisting of 4 medium-size satellites, deployed, under normal operation,

equi-phased in the same orbital plane, is providing at least 4 acquisitions a day at the equator

(one left- and one right-looking in ascending orbit, at approximately 6:00, and the same in

descending orbit, at approximately 18:00 local time [157]). It was designed to cover a wide

range of applications from defense and security to risk management and earth observation.

Nominal orbital information are provided in Table A.3.

Table A.3: COSMO-SkyMed constellation orbital characteristics [32]

Feature Value

Type SSO, circular
Contellation repeat cycle 16-day
Satellites 4
Phasing 90◦

Individual satellite repeat cycle 5-day
Local Time of Ascending Node 6:00 (dawn/dusk)
Altitude 619.6 km
Orbits (cycle) 237
Orbits (day) 23713⁄16
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To achieve 3D SAR imaging of Earth’s surface, the constellation can also be operated

in interferometric configuration which can be implemented either as in-plane, where two

satellites are in close proximity within the same orbital plane acquiring interferometric images

in real time, or dual-plane where two of the satellites are placed in different orbit planes with

20′′ separation [157].

The SAR system on board of the COSMO-SkyMed satellites (SAR-2000) can operate in

three main modes: spotlight, providing the enhanced spotlight mode product, stripmap,

resulting in the himage and pingpong modes, and scanSAR, allowing for wideregion and

hugeregion modes. The data collected for our project was obtained in himage mode. In

this configuration, the imaging method is similar to the one described for the ERS mission

with the antenna pointed at a fixed direction with respect to the track. The swath width is

about 40 km wide with a typical frame length, in the azimuth direction, of another 40 km

corresponding to an acquisition time of 6.5 s. The pulse repetition frequency range is between

2905.9 Hz and 3874.5 Hz with a chirp duration of 35-40µs and a bandwidth of 65.64 MHz, at

the far range (sampled at 82.50 MHz), and 138.60 MHz (sampled at 176.25 MHz) at the near

range. The transmitted pulse is build in the time domain sample after sample (via look up

tables) following a model that corrects for the distortion introduced by the hardware. The

intermediate frequency is synthesized by single side band modulation with up-conversion

to 2400 MHz followed by a ×4 stage to the final X-band driver centered ate a frequency of

9.6 GHz [157]. The receiver is a two stage superheterodyne scheme followed by quadrature

demodulation operating at 2400 MHz [32].

Table A.4 presents a summary of the most relevant features the SAR-2000 instrument in

imaging mode.
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Table A.4: Characteristics of the SAR-2000 in imaging mode [32]

Feature Value

Center frequency 9.6 GHz (λ = 3.125 cm)
Bandwidth 65.64 MHz
Polarization Selectable: HH, HV, VH, VV
PRF Range 2905.9-3874.5 Hz
Long pulse 35-40µs
Compressed pulse 64 ns
Peak power 14 kW
Antenna size 5.7× 1.4 m
Look angle 20-60◦

Spatial resolution 3× 3 m
Swath width 40 km
Data rate 600 Mbit⁄s

A.3 Future of SAR

There are several new satellite platforms, designed to produce InSAR raw data, being currently

developed and launched by various space agencies. These systems will guarantee continuity

in the availability of SAR data. Furthermore, several space agencies have committed to new

data policies that will lower the cost of raw data in order to encourage value added processing,

thus maintaining high interest for algorithms such as the ones described in this work.

The following is just a subset of the new missions that are planned for the next ten years.

Sentinel-1 [41], part of the Copernicus project [158], is a European Space Agency (ESA)

mission comprising several satellites designed to provide data continuity for Earth observation

missions with the final goal being the replacement of current older technology reaching

retirement such as ERS (see section A.1: European remote sensing satellites (ERS)) and

Envisat [32]. In particular Sentinel-1 is a two satellite constellation that will provide C-Band

SAR data continuity. Sentinel-1A was launched on April, 3 2014 while Sentinel-1B will

follow in 2015. Both platforms are designed for a lifespan of 7 years with consumables for 12.
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The mission will carry a C-Band (4-8 GHz) SAR instrument capable of generating strip-map

images, with 80 km swath and a 5x5 m spatial resolution, from a 98.18◦ sun-synchronous,

near-polar, circular orbit at an altitude of 693 km with a repeat cycle of 175 orbits in 12 days.

RADARSAT Constellation Mission (RCM) [159] is a Canadian Space Agency

(CSA) mission, designed as the evolution of the RADARSAT program, to provide data

continuity, improved operational use of the SAR payload, and system stability. The space

segment is comprised of 3 equally-spaced satellites in a sun-synchronous circular orbit (dawn-

dusk mission), at an altitude of 532 km with an inclination of 97.74◦ and a repeat cycle of

179 orbits in 12 days. The SAR instrument is a C-Band (center frequency 5.405 GHz) SAR

with a chirp bandwidth of 100 MHz, designed to cover a swath width of 20-350 km with a

spatial resolution of 5-50 m. The satellites are planned to be launched in 2018.

Advance land observing satellite ”DAICHI-2” (ALOS-2) [160] is a Japanese

Aerospace Exploration Agency (JAXA) mission with the objective of providing observations

at various incidence angles, to accommodate interferometric analysis of pre- and post-disaster

data. ALOS-2, expected to launch in 2014, will provide 14 days revisit time (213 orbits) while

parked in a 97.74◦ sun-synchronous orbit at an altitude of 628 km. The L-band (1-2 GHz)

sAR will provide a ground resolution element down to 3x3 m (range-azimuth) with a swath

of 50 km.

As far as the processing costs of InSAR data with algorithms such as PSInSAR and

SqueeSAR, we expect that, due to the increase availability of data, there will be an increasing

competition between service providers that will result in better automation of the processing

algorithms and cheaper stack processing.
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Project datasets

The datasets we used for this work were provided by TRE Canada and consists of point

clouds of both permanent and distributed scatterers obtained by processing the stack of

SAR images using their proprietary algorithms PSInSAR and SqueeSAR (see section 1.3.6:

Permanent Scatterer InSAR (PSInSAR) and SqueeSAR). In these datasets, each scatterer

is identified by its location (in the case of PS) or the location of the center of mass of the

coherence area (in the case of DS). Furthermore, for each scatterer, the datasets contain

additional information that can be used during the analysis phase: elevation with associated

standard deviation, coherence level, time series of the elevation changes, average displacement

velocity, and acceleration with relative standard deviation.

This project was based on archival ERS (Wink Sinks) and ad hoc COSMO-SkyMED

(Virginia) data acquired as part of the RITA funded project.

164
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B.1 Precision of data

The parameters that are used to evaluate the quality of the processed data are:

� Precision of the estimated deformation rates

� Precision of the estimated elevations

� Precision of the geocoding

These element ultimately affect the final results and the subsequent secondary processing.

When a stack of at least 45 images is available for processing then the typical precision

that can be applied to scatterers located within 2 km of the reference point1 are indicated in

Table B.1.

Table B.1: Typical precision for PS located within 2 km from the reference point

Measurement Precision

Deformation rate < 1 mm/yr
Displacement error between contiguous SAR images < 5 mm
Elevation ±1.5 m
Positioning error along east direction ±3 m
Positioning error along north direction ±2 m

The values listed in Table B.1 can be affected, in both direction, by the following factors:

� Spatial density of the PS/DS (higher density produces higher precision)

� Quality of the RADAR targets (better SNR are preferable)

� Distance from the reference point

� Number of images processed

1When a stack of SAR images is processed, the most coherent permanent scatterer is identified as reference.
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� Period of time covered by the imagery

� Climatic conditions at the time of the acquisitions

� Temporal interval between subsequent acquisitions

Each dataset includes, for each scatterer, standard deviations of the displacement rates

which provide a quantitative characterization of the precision of the measured values.

B.2 Wink Sinks

The Wink Sinks dataset was created using the TRE proprietary SqueeSAR algorithm applied

to a stack of 22 ERS-1/2 (see section A.1: European remote sensing satellites (ERS)) images

acquired between June, 3 1992 and February, 21 1998 over a sinkhole active region near

Winkler, Texas (see section 2.2.2: The Winkler sinkholes (Wink Sinks)).

Figure B.1: Wink Sinks dataset at three different time slices.
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The result consists in a point cloud dataset comprising 93,513 scattered identified over an

area of 55.38 km2, each with a 22-point time series. The dataset is characterized by several

large temporal gaps including a 2 year gap between 1993 and 1995 and a 1 year gap between

1996 and 1997. As a result, there are few instances of phase unwrapping error of phase

ambiguities in the data. It should be recalled that phase unwrapping is the process by which

the original phase shift measured between SAR images is translated into ground deformation.

This is a complex problem and often the global solution is not unique leading to location

where ambiguities and error might occur.

Figure B.2: Geometry of the ERS image acquisi-
tions over the Wink Sinks area. (Courtesy of TRE
Canada)

This is common in datasets with large

time gaps since the elevation changes during

the missing intervals might be large enough

to reach the critical level of half wavelength

necessary to skip a cycle. In this dataset

post analysis was conducted at ambiguity

points by looking at the time series of the

displacements and evaluating which of the

possible solutions best fitted the subsidence

data across the large time gaps. Table B.2

summarized the main characteristics of the

Wink Sinks dataset.

All images for this dataset were acquired from a descending orbit with the satellite traveling

from north to south and imaging to the west). The geometry of the image acquisition is

shown in Fig. B.2 where η = 22.05◦ is the incidence angle formed by the incident beam and
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Table B.2: Summary of the Wink Sinks dataset characteristics

Feature Data

Satellite ERS-1 and -2
Acquisition geometry Descending
Analysis time interval 03 June 1992 - 21 February 1998
Number of scenes 22
Projection system used Latitude, longitude
Datum WGS 1984
Reference Point location 31◦44′39.9654′′ N, −103◦05′58.0518′′ E
Area of scene 55.38 km2

Number of PS + DS 93,513
Average PS + DS density 1,689 PS+DS⁄km2

the vertical to the imaged scene, and θ = 11.04◦ represent the angle formed between the

satellite azimuth traveling direction and the geographic north at the imaging time. From

these values is possible to calculate the line of sight (LOS) versor:

Table B.3: ERS-1/2 LOS versor for Wink Sinks

Direction Versor

North -0.07191
East 0.36846

Vertical 0.92686

These values can be used to determine the sensitivity of the LOS to the vertical, east-west,

and north-south directions. For example, the 22.05 off-nadir viewing angle is quite steep and

gives rise to a versor value of cos η = 0.927 (Table B.3). This implies that the measurement

are very sensitive to vertical motion. At the same time, the sensitivity in the east-west (0.368)

and in the north-south (-0.072) directions is quite low.
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B.3 Virginia

This area of interest correspond to one full COSMO-SkyMed (see section A.2: COSMO-

SkyMed) radar scene of approximately 1,600 km2 in size covering most of Augusta county and

a small part of Rock Bridge county in Virginia (see section 3.3.3: Virginia).

Figure B.3: Virginia dataset at three different time slices.

The RADAR data was acquired as a stack of 32 images between 29 August 2011 and 25

October 2012 (a total of 14 month of continuous monitoring). Images were acquired on a

eight day interval for the first two months of data collection (September and October 2011)

followed by a regular schedule of 16 days for the majority of the remaining 12 months with

an additional set of short time acquisitions in June. Table B.4 shows the schedule of the

acquisitions.
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Table B.4: Dates of the image acquisition for the Virginia dataset

Number Date Number Date

1 29 Aug 2011 17 23 Mar 2012
2 05 Sept 2011 18 08 Apr 2012
3 13 Sept 2011 19 16 Apr 2012
4 21 Sept 2011 20 02 May 2012
5 29 Sept 2011 21 18 May 2012
6 07 Oct 2011 22 11 Jun 2012
7 15 Oct 2011 23 12 Jun 2012
8 31 Oct 2011 24 15 Jun 2012
9 17 Nov 2011 25 19 Jun 2012
10 02 Dec 2011 26 05 Jul 2012
11 18 Dec 2011 27 21 Jul 2012
12 03 Jan 2012 28 06 Aug 2012
13 19 Jan 2012 29 22 Aug 2012
14 04 Feb 2012 30 23 Sep 2012
15 20 Feb 2012 31 09 Oct 2012
16 07 Mar 2012 32 25 Oct 2012

Figure B.4: Geometry of the COSMO-SkyMed im-
age acquisitions over the Virginia area. (Courtesy
of TRE Canada)

All images for this dataset were acquired

from an ascending orbit with the satellite

traveling from south to north and imaging

to the east in beam mode H4-0B. This corre-

sponds to COSMO-SkyMed stipmap himage

mode with a near range angle of 20.05◦ and

a far range angle of 23.5◦ [161]. The geom-

etry of the image acquisition is shown in

Fig. B.4 where η = 22.24◦ is the incidence

angle formed by the incident beam and the

vertical to the imaged scene, and θ = 12.51◦ represent the angle formed between the satellite

azimuth traveling direction and the geographic north at the imaging time. From these values
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is possible to calculate the Line Of Sight (LOS) versor:

Table B.5: COSMO-SkyMed LOS versor for Virginia

Direction Versor

North -0.08893
East -0.40081

Vertical 0.91183

Table B.6 summarized the main characteristics of the Virginia dataset.

Table B.6: Summary of the Virginia dataset characteristics

Feature Data

Satellite COSMO-SkyMed
Acquisition geometry Ascending
Analysis time interval 29 August 2011 - 25 October 2012
Number of scenes 32
Georeferencing PS aligned on orthophotos (1 foot resolution)
Projection system used State Plane Virginia North FIPS 4501 (feet)
Datum NAD 1983
Reference Point location 6744485.69 N - 11323234.49 E
Area of scene 617.8 sq. mile (1,600 km2)
Number of PS + DS 296,121
Number of PS 166,348
Number of DS 129,773
Average PS + DS density 187 PS+DS⁄km2

Both permanent (PS) and distributed (DS) scatterer were identified in the imaged region.

Building, roads, fences and other man-made structures together with natural features such

as rocks or exposed ground provide the source for most of the PS whereas DS corresponds to

large areas (up to hundreds of square meters) and were most probably generated by large

exposed areas such as bare ground or fallow fields and in general large patches of consistent

and stable target. As previously mentioned, it is important to consider that while DS are

represented as individual points for clarity of representation and ease of interpretation, these
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measurement actually correspond to non-point-like features multiple pixel wide. In these

measurements, the area of the DS varied from 76 to 891 m2.
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