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Abstract 

               Biosphere-atmosphere interactions (BAIs) are integral to the functioning of the whole 

Earth System. The complexity of ecological systems profoundly determines these complex, 

nonlinear, and dynamic interactions. This complexity fundamentally originates from the high 

degree of biodiversity, resulting in complex interactions among individuals constituting a system 

and thus emergent system level behaviors. However, biodiversity has long been overlooked either 

intentionally or unintentionally largely because of methodological limitations. In particular, the 

currently widely used ecosystem model frameworks of aggregate representation of vegetation 

using plant functional types (PFTs) have severe deficiencies in integration of biodiversity and 

ecosystem functions. To address this grand issue, this dissertation primarily focuses on the 

development of an individual-based forest volatile organic compounds emission model, 

UVAFME-VOC (v1.0), and applications of this IBM (individual-based model) to addressing 

questions revolving around the roles of forest system diversity in influencing forest dynamics, 

biomass production, and isoprene (the most abundant VOC species) emissions responding to 

climate warming and ozone pollution. Specifically, this dissertation found that ozone may not 

suppress forest productivity and that climate warming does not necessarily always stimulate 

isoprene emissions all because of an explicit integration of species diversity and ecological 

interactions. These findings challenge long-held paradigms that are established on a linear scale-

up of plant leaf physiology to the ecosystem level circumventing the community scale. This 

dissertation is concluded with discussing the deficiencies of IBMs and pointing out the 

challenges/directions, and advocates the development of IBM in truly integrating biodiversity into 

biosphere-atmosphere interactions in the Anthropocene Epoch. 
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Chapter 1 Introduction 

 

1.1 Background 

            The Earth system functions through the complex, dynamic interactions among a variety of 

component systems, to which the biosphere-atmosphere interactions (hereafter referred to as BAIs) 

are integral. BAIs play a central role in regulating the Earth system in terms of atmospheric 

components, physical climate, organism distribution, composition, structure and function, and 

beyond through an extremely complex array of biogeochemical and biophysical pathways. BAIs 

are dynamically changing; with the Earth entering the Anthropocene epoch (Crutzen 2002), the 

equilibrium status of BAIs has been significantly broken by ever strong human perturbations with 

an emergence of ever new, complex feedback mechanisms and pathways (e.g., Thornton et al. 

2017; Penuelas et al. 2017). The climate is warming, atmospheric CO2 level rising, and nitrogen 

input increasing, accompanying among others severe air pollution (e.g., surface ozone), 

intensifying drought, and frequent heat waves, all of which are daunting problems to the biosphere 

in the past, present, and future, resulting from almost exclusively human activities (Ciais et al. 

2013). Over the past several decades, the terrestrial ecosystem productivity has been steadily 

increasing (Le Quéré et al. 2016) but accompanied with an enhanced water use efficiency (Keenan 

et al. 2013; Cheng et al. 2017; Keeling et al. 2017); the Earth’s land surface has been greening 

(Zhu et al. 2016); and the land carbon sink has also been increasing (Le Quéré et al. 2016). 

Increasing carbon uptake and land sink feed back both to determine the recent pause in the CO2 

growth rate (Keenan et al. 2016) and to offset the ‘carbon-13 Suess effect’ (Keeling et al. 2017); 

warming forms a positive feedback loop with carbon (Cox et al. 2000; Mellio et al. 2017); and 

biophysical feedbacks of the Earth greening partly mitigates the climate warming (Zeng et al. 
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2017). A glimpse of these feedbacks between terrestrial ecosystems and the atmosphere clearly 

suggests that BAIs research has been becoming unprecedentedly important and complex to ensure 

a sustainable and effective development of the natural systems and human society, as well as the 

whole Earth system.  

                Physicist Stephen Hawking asserted that ‘the 21st century will be the century of 

complexity’ when responding the question: ‘Some say that while 20th century was the century of 

physics, we are now entering the century of biology. What do you think of this?’. Echoing 

Hawking’s statement, theoretical physicist Geoffrey West contends that ‘it is necessary to build a 

science of complex, adaptive systems to resolve the extraordinarily challenging societal problems 

we face’ (West 2017). In fact, these statements are broadly true for BAIs research as well. From 

the biosphere side, lying in the heart of BAIs are the responses and feedbacks of the biosphere 

across the Earth to the physical and chemical components of the atmosphere, which is 

fundamentally determined by systems’ functions. For simplicity, we could view the whole 

biosphere as a super-organism, of which functions are eventually determined by its metabolisms. 

However, the biosphere in reality is comprised of a tremendous number of organisms spanning 

from microorganisms through plants to animals. Such individuals with striking metabolism 

differences are the basic agents forming a super rich diversity of different hierarchical natural 

systems from the ocean to land and from aboveground to belowground across the globe (O’Neill 

et al. 1986; Levin 1998). The responses of these different ecosystems in terms of various 

biogeochemical and biophysical functions are determined by, but far more than a linear 

combination of, the responses of individuals (determined by the physiological metabolisms) 

comprising these systems, because system behaviors can emerge from the complex interactions 

among individuals (i.e., synergism of systems). Identically, we must have a system view of and 
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build a science of complex, adaptive systems for the biosphere, which can offer us understandings 

of the past, present, and, more importantly, future state of the biosphere of clear composition, 

structure, and function. The beginning of this grand goal is biodiversity. 

             Because of this fundamental importance of diversity, the biodiversity-ecosystem 

functioning relationship in fact has largely drawn the attention from ecologists since 1990s (Loreau 

2001, 2010). When biodiversity being discussed, two interweaved facets are implied: diversity 

differences across systems and temporal diversity changes (or system compositional changes). 

Over two decades of research has revealed that biodiversity in general is a significant driver of 

ecosystem functioning and a key component of ecosystem resilience to environmental perturbation 

(Loreau et al. 2001; Oliver et al. 2015). However, the systems and ecosystem functions studied are 

still extremely limited. The most impressive studies are probably the BEF studies in grassland 

ecosystems because of feasible experimental setup (Weisser et al. 2017). By contrast, more and 

more studies on forest ecosystems are only emerging in recent decade (Liang et al. 2016), while 

the belowground microbial systems are not studied until very recently (e.g. Allison and Martiny 

2008). Moreover, the ecosystems functions studied are limited to carbon uptake (biomass) and 

ecosystem stability. Reasons leading to such scarcity of biodiversity consideration probably lie in, 

on the one hand, the extremely high biodiversity of terrestrial ecosystems, and, on the other hand, 

the long time scale and logistical difficulties for field experiments. Predicted changes in ecosystem 

composition, structure, and function play out over decades and centuries, making direct 

experimentation impossible and empirical observation challenging (Moorcroft et al. 2006). For 

example, to our best knowledge the longest FACE experiment manipulating environmental drivers 

is only 11 years; moreover, the number of species that can be included in such manipulated 

experiments is extremely limited (Zak et al. 2011). The understanding of BAIs thus largely rely 
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on the predictions of large, complex models that make predictions at scales far larger than we are 

typically able to make measurements. However, a fundamental deficiency of those models is the 

aggregate way of vegetation being represented (e.g., Purves & Pacala 2008; Scheiter et al. 2013). 

Therefore, the current condition is that we still do not widely see true integration of biodiversity 

and ecosystem function in BAIs research, which is ignored both intentionally and unintentionally 

and thus in its infancy.  

            By contrast, individual-based model (IBM), a bottom-up modelling strategy that has been 

existing for almost half of a century, can unify the theory of ecosystem and biodiversity by 

explicitly modelling each individual’s behavior, interactions among individuals, and system level 

behavior emerged (Shugart 1984; Huston et al. 1988; Grimm et al. 2017). Instead of the paradigm 

of aggregate modelling strategy I propose that the strategy of IBM could be applied to integrate 

the diversity into system functions and hence address more broad questions regarding BAIs. The 

overarching purpose of this dissertation is to develop an individual-based forest volatile organic 

compounds emission model—UVAFEM-VOC—to study the responses and feedbacks of forest 

system composition dynamics, biomass, and emissions of isoprene (the single most abundant 

hydrocarbon species) to the atmosphere changes of climate warming and tropospheric ozone 

pollution. 

 

1.2 Feedbacks between vegetation and atmospheric chemical processes  

            One major category of feedback mechanisms between the biosphere and atmosphere is the 

biogeochemistry pathway involving various biogeochemical processes associated with plant 

physiological metabolisms and soil microbial metabolisms in terrestrial ecosystems [but see Wang 

et al. (2017a) for an emerging new paradigm of non-microbial GHG production]. Terrestrial 
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ecosystems and the atmospheric components and chemistry are closely associated through a wide 

variety of biogeochemical processes in the biosphere. Specifically, the impacts of terrestrial 

ecosystems on the atmospheric components/chemistry are attributed to the volatile organic 

compounds (VOCs) produced by and emitted from the vegetation through secondary metabolisms 

and other trace gases including CO2, CH4, N2O, and NOx which are primarily emitted from the 

soil systems. These processes and the underlying reactions are in turn simultaneously subject to 

strong alterations of air quality and climate changes. 

            As early as in 1960s, Haagen-Smit, Went, and colleagues first discovered that plant-derived 

organic compounds can contribute to ozone (O3) and haze formation (Haagen-Smit and Fox, 1954; 

Went 1960).  Over a half century of research has accumulated a good knowledge of biogenic VOCs 

production and emissions and their direct implications for atmospheric chemical processes and 

indirect effects on physical climate. VOCs production and emissions are strongly regulated by 

light intensity and temperature variations among a variety of other abiotic (e.g., warming, rising 

CO2, O3 pollution, and drought) and biotic factors (e.g., herbivory) (Lerdau et al. 1997; Vickers et 

al. 2009; Sharkey and Monson 2017). Every year a huge amount of VOCs is produced and emitted 

from the land surface vegetation into the biosphere (Guenther et al. 1995, 2006). These plant-

derived VOCs, together with anthropogenic emissions of VOC and NOX, are oxidized by hydroxyl 

radical (OH), nitrate radical (NO3), and, to a smaller extent, O3 to form O3 and secondary organic 

aerosols (SOAs), which profoundly affects the air quality and physical climate (Atkinson and Arey 

2003). Via VOCs the biosphere closely bridges the climate and air quality. Climate warming-

initiated effects that cascade through the climate-biosphere-atmospheric chemistry chain have 

received the most attention (e.g., Weaver et al. 2009; Ito et al. 2009; Pacifico et al. 2012; Fu et al. 

2015). Currently, it is widely accepted that warming can enhance vegetation VOC emissions 
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because of warming-enhancement effects on leaf production (e.g., Sanderson 2003; Heald et al. 

2009; Pacifico et al. 2012) and thus aggravate O3 pollution (Sanderson 2003; Fu et al. 2015) and 

SOA formation (Kulmala et al. 2004; Paasonen et al. 2013). 

           The air quality changes in turn exert strong impacts on the activities of terrestrial 

ecosystems, which eventually influences VOCs and other gases exchange. Air pollutants effects 

on plants has drawn attention from researchers for a long term. The earliest report of air pollutant 

affecting plants can be dated back to 1922 when O’Gara reported that SO2 negatively influenced 

plants. However, the SO2 pollution has been significantly ameliorated decades ago (Hand et al. 

2012). Rather, O3 and and aerosols are the most severe air pollution problems confronted by the 

biosphere, affecting vegetation in both direct and indirect ways. First, O3, the most important 

secondary air pollutant, poses a strong oxidative pressure over the biosphere. The earliest finding 

of negative effects on plant date back to 1950s when researchers observed foliage damage and 

attributed it to O3 pollution. Over a half of century’s research, we have basically elucidated the 

underlying physiological mechanisms, and O3 effects are manifested at a wide range of coarser 

levels beyond the cellular metabolism. At the cellular and leaf level, O3 inhibits photosynthesis 

and decreases the stomatal conductance by entering the intercellular space via the stomata, where 

O3 damages the cell functioning (Ainsworth et al. 2012). Additionally, O3 can also exert strong 

influences on the belowground biogeochemical processes (Anderson 2003). Overall, it is 

concluded that O3 largely induces feedbacks of the biosphere to the atmosphere by altering the 

exchange of greenhouse gases and water cycling globally. In detail, the CO2 has been significantly 

accumulated in the atmosphere resulting from suppressed vegetation productivity (Sitch et al. 

2007), although suppressed CH4 and N2O emissions from terrestrial ecosystems can offset a small 

portion (Wang et al. 2017b).  
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            Aerosols can affect vegetation activity directly by supplying nutrients via deposition and/or 

indirectly by altering the physical environment (Mahowald 2011; Kanniah et al. 2012). The most 

discussed deposition of nitrogen deposition, supplying nitrogen nutrient to the biosphere, 

profoundly influences the whole biosphere. Nitrogen deposition has been shown to stimulate 

vegetation growth, inhibit CO2 emissions form land surface, and drive the increase of land carbon 

sink (Janssens et al. 2010; Penuelas et al. 2017).  Aerosols can also indirectly affect the vegetation 

photosynthesis by altering the solar radiation reaching the surface in terms of both of total amount 

and proportion of diffuse light (Kanniah et al. 2012). Regionally, the tropical forest seasonal GPP 

variations are mostly determined by diffuse radiation (Yan et al. 2017); the severe haze in China 

enhanced the the diffuse radiation and largely stimulate photosynthesis (Yue et al. 2017). Globally, 

the changes in diffuse light are estimated to have increased terrestrial ecosystem uptake of carbon 

between 1960 and 1980 by 0.44 PgC per year globally (Mercado et al. 2009).  

 

1.3 Importance of plant diversity in vegetation and atmospheric chemistry feedbacks 

            The role of diversity in influencing the feedbacks discussed above is almost completely 

ignored in current and previous research; however, a rich accumulation of evidence suggests its 

great importance and warrant an inclusion. First of all, plant species in a system are having 

intrinsically heterogeneous primary and secondary metabolisms, producing striking interspecific 

differences responding to a variety of global and regional environmental changes including among 

others climate warming, drought, O3 pollution, nitrogen deposition, elevated CO2, and species 

invasion. As for the representative secondary metabolites VOCs, one of the longest known and 

most robust results is that their production and emissions are strongly contingent on species (e.g., 

Lerdau et al., 1997; Monson et al. 2013). Across global biomes a mixture of emitters and non-



	
	
	

13	

emitters of different VOC species in an ecosystem is ubiquitous (Loreto and Fineschi 2015). For 

instance, major tree species in the south eastern US is showing varying sensitivity to O3 and 

differing isoprene emission capacity. In addition to the intrinsic inter-specific differences, a high 

diversity of individuals in a system produce complex interactions, especially competition for 

resources of light, water, and nutriment. Moreover, changes in species diversity, which occurs at 

relatively long time scales especially in forest systems (induced by primary metabolism differences 

and interactions among individuals), can be caused by disturbances arising from global 

environmental changes (Franklin et al. 2015). Therefore, it is not simply a linear scale-up of an 

individual’s response [usually obtained from studying one or just a few representative isolated 

individuals (with an average afterwards)] by assuming all the individuals comprising a system are 

same, as mostly done by previous studies. As regards VOCs, the changes in species diversity in 

terms of producers and non-producers have the potential to significantly influence the system-level 

emission capacity and even dominate physiological effects (Lerdau & Slobodkin 2002; Lerdau 

2007; Valolahti et al. 2015). We have scarce case studies that directly show the broad importance 

of diversity in affecting the biosphere-atmospheric chemistry interactions. The compositional 

change effect is best exemplified by the work by Hickman et al. (2010) who reported Kuzdo 

(Pueraria montana) invasion-induced O3 aggravation because of enhanced NO emissions in south 

eastern US, while a decline of O3 level induced by reduced isoprene emissions resulting from the 

red maple (Acer rubrum) expansion at the cost of oak (Quercus spp.) shrinkage in the eastern US 

was uncovered by Drewniak et al. (2014). 

            Therefore, it is essential to explicitly incorporate the species diversity and demographic 

processes when studying the effects of various environmental changes on forest functioning (e.g., 

productivity and VOC emissions). This requires long term studies and even a building of predictive 
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science of ecosystem ecology, as advocated by an editorial of the journal Nature Ecology and 

Evolution to study ‘long-term relationships’ (https://www.nature.com/articles/s41559-017-0306-

4) and evidenced by a few long term studies. For instance, the 11-year FACE study by Zak et al. 

(2011) found unsurprised forest productivity under O3 enrichment by including both O3-tolerant 

and –sensitive species/genotypes; the 27-year soil warming study by Mellilo et al. (2017) reported 

various phases of soil CO2 efflux response and indicated the important role of soil microbial 

community dynamics.  

 

1.4 Deficiencies of aggregate modelling strategy 

            The very first concern when building a biosphere model is how to represent the vegetation 

of extremely high biodiversity. To simplify the representation, a strategy mimicking vegetation in 

an aggregate approach, i.e., plant functional types (PFTs), has thereby been proposed and widely 

applied to simulation of ecosystem processes, which has a rich history and can be traced back to 

Alexander von Humboldt who recognized at least 16 species-based structural classes having 

different physiognomies or plant growth forms in explorations of Europe, Africa and the Americas 

in the late 1770s (Ustin and Gamon 2010). This approach of lumping species together into PFTs 

is a non-phylogenetic classification system representing the highly diverse plants across the 

biosphere based on structural, phenological, functional, and biogeographical similarities (Ustin 

and Gamon 2010). Thus, a varying number of PFTs including, e.g., natural and managed grasses 

with either C3 or C4 photosynthetic pathways, shrubs, broadleaf or needleleaf trees with 

deciduous, evergreen or “rain green” phenology, and tropical versus temperate are created (Poulter 

et al. 2015). Accordingly, even for the most diverse Amazon tropical rainforest, only seven PFTs 

in total represent the plants in models (Fisher et al. 2010). Both advantages and problems in current 
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large-scale terrestrial ecosystem mode frameworks emerge from this paradigm of vegetation 

representation.  

            With this approach current model frameworks represent vegetation in a climatological grid 

cell (usually 100-2500 km2, a habitat for a large number of species with varying ages and sizes) in 

the form of different PFTs which are assumed to be a single plant writ large experiencing spatially 

averaged resource conditions, i.e., ‘big-leaf’ (Moorcroft 2003). This ‘big-leaf’ representation of 

vegetation is the common practice in almost all of the terrestrial ecosystem models (TEM) and 

earth system models (ESM), e.g., TEM, IBIS, BIOME, and TRIFFID (Walker 1994; Purves and 

Pacala, 2008; Shugart and Woodward 2011). Recently, there are also a few model frameworks that 

deviate from these area-based ones and are simulated in ‘individual-based’ mode that can 

incorporate different ages and sizes (Smith et al. 2001; Ma et al. 2017), which, however, are still 

using the PFTs. Such an aggregate modelling approach shows overwhelming advantages, for 

example, reducing computational complexity of ESMs but also maintaining a feasible framework 

for hypothesis testing, and providing a practical solution to the problem that many of the plant 

traits required to parameterize a model at a species level are difficult to obtain (thereby fixed by 

averaging over a few representative species).  

            This aggregate modelling methodology, however, has severe weaknesses, fundamentally 

resulting from its abstraction of ecosystems that are of great complexity. This overwhelming 

simplification of ecosystem composition and structure is manifested by the missing of inter- and 

intra-specific variations of species, size, and age (Scheiter et al. 2013). This results in vertical and 

horizontal homogeneity, leading to the missing of mutual interactions and emergent properties; for 

example, the extremely important process of radiative transfer within the canopy is ignored 

(Scheiter et al. 2013). Thus, efforts to assess the stability and resilience of ecosystem–atmosphere 
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interactions over long time scales using these models and other similar models are clearly 

hampered (Moorcroft et al. 2003, 2006; Purves and Pacala 2008). All in all, PFT-way 

representation induces apparent scaling problems in extrapolating system level processes from an 

individual’s knowledge.  

               Here we take for example two widely used models (with fairly high citations, both 

exceeding 2000 times) that are capable of investigating BAIs to illustrate more details. LPJ-

GUESS (Lund-Potsdam-Jena) is a flexible DGVM (Dynamics Global Vegetation Model) 

framework that is widely applied to study the regional and global vegetation dynamics and 

implications for carbon sequestration and climate (Sitch et al. 2003). Ten PFTs are defined in LPJ, 

of which eight are woody and two herbaceous. As regards woody plants, each individual belongs 

to a PFT (which is treated as an ‘average individual’), while for grasses, just fractional coverage 

is defined. A spatial grid cell is treated as a mosaic divided into fractional coverages of different 

PFTs and bare ground; moreover, these PFTs do not occupy discrete blocks (Sitch et al. 2003). 

Without a mechanistic simulation of the competition among individuals, averages over these 

groups of PFTs for the demographic processes of growth, regeneration, and mortality enable a 

highly efficient modelling of vegetation dynamics (Sitch et al. 2003). Furthermore, with 

modification VOCs can also be simulated in a process-based way (Arneth et al. 2006; Hantson et 

al. 2017). In contrast to LPJ, MEGAN (Model of Emissions of Gases and Aerosols from Nature) 

is a popular, widely used model specifically for simulating biogenic VOCs emissions, which 

adopts the CLM4 scheme including 15 PFTs (Guenther et al. 2006). Unlike the LPJ and many 

other models, its vegetation representation per se is static, whereas dynamic vegetation distribution 

information can be obtained from other DGVMs such as LPJ and CLM (Oleson et al. 2013). 

Standard emission factor of VOC is assigned to different PFTs.  



	
	
	

17	

            It is undeniable that LPJ has been widely applied to study ecosystem functions (i.e. 

productivity, water cycling, and VOCs emissions) responding to global environmental changes 

including climate change and atmospheric components change (CO2 level rise and air pollution) 

and that MEGAN has made great contributions to the understanding of spatial and temporal 

heterogeneities of VOC emissions, quantification of the magnitude, and implications for 

atmospheric chemistry. These are directly indicated by their fairly high citations. However, these 

models fundamentally ignore the ecological processes of ecosystems, in particular for MEGAN 

which has a static vegetation and lacks the ability of prediction (though dynamic vegetation can 

be fed by outputs from other vegetation dynamic models). Nevertheless, either static or dynamic, 

these two representative models are PFT-based, making the system dynamics one of the greatest 

sources of uncertainty (Purves and Pacala 2008). This is arguably evidenced by the LPJ-based 

modelling work by Schurgers et al. (2011) who compared simulations of isoprene and 

monoterpene with two different modes of vegetation representation and suggested that PFT-based 

simulations lose important information concerning the species heterogeneity. 

 

1.5 Individual-based Model (IBM) 

              IBM is a bottom-up modelling methodology that can explicitly simulate the behaviors of 

each individual constituting a system, their interactions within this system, and system-level 

behaviors emerged (Huston et al. 1988). In contrary to the aggregate modelling strategy which 

lumps similar individuals together (but actually fairly different), as discussed above, this approach 

of modelling can integrate the hierarchical structure of ecological systems with processes at levels 

from the individual and population through community to ecosystem, each a separate discipline. 

In other words, IBM can simulate a system behaving the way it does. Therefore, IBM is capable 
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of linking ecosystem functions and community ecology (biodiversity) (Grimm et al. 2017). This 

capability would facilitate the building of a true predictive science of the biosphere to predict the 

future state of ecological systems and thereby to inform management policies in the Anthropocene 

Era (Moorcroft 2003; Evans et al. 2012; Stillman et al. 2015; Houlahan et al. 2016, Dietze 2017).  

            Apparently, the fundamental advantage of IBM lies in its capability in simulation of 

variations among individuals constituting a system. A recognition of the importance of simulating 

such differences down to the individual level broadly in natural systems to determine a system’s 

composition, dynamics, and functions can be dated back to at least the 1960s [according to the 

review by DeAngelis and Mooij (2005), and note that the early works do not necessarily use the 

term IBM]. A landmark work is that in 1988 Huston et al. gave the first formal endorsement of the 

great significance of IBMs in unifying ecological theory by synthesizing past theoretical and model 

development. Additionally, Huston et al. (1988) also predicted the rapid development of this 

approach by writing: “Within the next decade we expect to see a rapid development of this 

approach and a concomitant increase in the mechanistic understanding of ecological systems”. 

Unexpectedly, such rapid development did not happen, though successively a series of synthesis 

work have been published to advocate the role of IBM in integrating ecosystem ecology and 

community ecology (e.g., Judson 1994; DeAngelis and Mooij 2005; DeAngelis and Grimm 2014). 

With four decades passing by, IBM toward elucidating the mechanisms of ecosystem across scales 

is still in this infancy and mostly stays at a stage of articulating its ‘individual-based philosophy’ 

(Grimm et al. 2017), though overall big achievements have been made in understanding forest 

systems’ dynamics (Shugart and Woodward 2011). It is noteworthy that IBM development in 

ecological systems parallels the growth of related “agent-based” models (ABM, a different term 

but same with IBM) of economics, social science, and artificial intelligence and of particle-based 
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models in physics (Huston et al. 1988; DeAngelis and Mooij 2005). However, a stark contrast is 

that the IBM (or ABM) approach has been developed with a much higher maturity and seen 

successful applications in the social and physical sciences to tackle social and economic problems 

(Epstein and Axell 1996; Auyang 1998; Grimm et al. 2005). 

           In retrospect, forest-based IBM is basically the earliest type among the various IBM in 

different systems. IBM for forest systems has been existing for about four decades, since the first 

individual-based forest model for a temperate forest in north eastern US, JABOWA, was 

developed by Botkin and colleagues in 1972. The occurrence of such a forest model can be traced 

deeply back into the forest yield table [see Shugart et al. (2017 in review) for a deeper history]. 

Following the formulation strategy of JABOWA, Shugart and West in 1977 developed the second 

forest IBM, FORET. Successively, Shugart and West (1980) introduced the term ‘Gap Model’ to 

describe this class model, which is widely applied in the community. Such a gap model designation 

emphasized that a principal simplifying assumption in these models (the assumption that the 

competition among individual trees on a small patch of land was homogeneous in the horizontal 

over a small area but spatially explicit in the vertical dimension) comported well with the classic 

“gap dynamics” concept of A.S. Watt (1925, 1947). Implied in this formulation was an underlying 

idea that a small plot, near the size of the influence zone of a large tree was an appropriate scale to 

include the gap generation and recovery seen in Watt’s classic work. With these pioneering 

models, a diverse array of such individual-based forest gap models has been developed in different 

forest systems and has made huge contributions to the understanding of forest dynamic 

development responding to climate change and human disturbances (e.g., Bugmann 2001; Shugart 

and Woodward. 2011; Fischer et al. 2016; Shugart et al. in review). 
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1.6 Questions addressed 

            Specifically, in this dissertation four questions (chapters) are addressed (presented): 

1) How does tropospheric O3 affect the soil-atmosphere exchange of greenhouse gases 

including CO2, CH4, and N2O? (Chapter 2) 

2) An individual-based forest volatile organic compounds emission model, UVAFME-VOC 

(1.0) was developed, validated, and applied to address the following questions. (Chapter 3) 

3) How does tropospheric O3 pollution affects forest composition, biomass, and isoprene 

emissions with an explicit representation of species-specific sensitivity to O3? (Chapter 4) 

4) How does climate warming affect forest isoprene emissions when explicitly incorporating 

system biological diversity? (Chapter 5) 
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Chapter 2 Sensitivity of global greenhouse gas budgets to tropospheric ozone pollution 

mediated by the biosphere 

 

2.1 Introduction 

            Tropospheric ozone (O3) is formed from the photochemical oxidation of carbon monoxide 

(CO) and volatile organic compounds (VOCs), typically initiated by the hydroxyl radical (OH), in 

the presence of nitrogen oxides (NOx ≡ NO+NO2) (Leighton, 1961). Its concentration has 

significantly increased since the industrial revolution and is projected to either continue to rise or 

to decline over the course of this century with considerable spatial variability, driven largely by 

trends in fossil fuel combustion (source of NOx) and vegetation growth (source of VOCs) (Myhre 

et al., 2013; Young et al., 2013; Cooper et al., 2014). Aside from severe damage to human health, 

what makes O3 particularly important as a pollutant in the troposphere is its reactivity with 

biochemical systems—it can alter the metabolisms involved with the production and/or 

consumption of radiatively significant gases such as CO2, CH4, and N2O (McLaughlin et al., 2007; 

Zak et al., 2011; Ainsworth et al., 2012; Agathokleous et al., 2016). All of these could largely 

contribute to changes in the atmospheric GHGs budgets and affect climate (Sitch et al., 2007). 

This paper provides the first assessment of the sensitivity of global budgets of CO2, CH4, and N2O 

to tropospheric O3 abundance resulting from the alterations of land-atmosphere exchange based 

on a meta-analysis of published experimental studies of O3 impacts on the exchange of these three 

gases from varying ecosystems.   

 There are a myriad of mechanisms at different organizational levels by which the oxidizing 

capacity of O3 affects terrestrial ecosystems. Ozone can directly depress photosynthesis by 

disturbing cellular biochemistry or indirectly by damaging stomatal function; in either case it alters 
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carbon and water exchange (Ainsworth et al., 2012; Grantz et al., 2012). Ozone can also change 

secondary metabolism and tissue chemistry, which can affect carbon mineralization (Findlay et 

al., 1996; Loya et al., 2003; Valkama et al., 2007). At the community level, O3 exerts indirect 

effects on species composition through mediation of competitive relations (Wang et al., 2016). 

Since O3 does not penetrate soil (Blum et al., 1977), impacts on the processes responsible for the 

production and/or consumption of CO2, CH4, and N2O in soils are mediated by these aboveground 

changes (Fig.1). Changes in organic matter production, composition, and allocation, in turn, affect 

decomposition and carbon and nitrogen cycling, and alter rates of CO2 and N2O production and 

CH4 production/consumption (Agathokleous et al., 2016). 

            Independent empirical studies from different ecosystems around the world have been 

conducted to measure changes in the sources or sinks of GHGs in response to elevated O3. These 

experiments feature different designs with regards to ecosystem type, fumigation method and 

duration, O3 manipulation level, and other experimental factors (e.g., atmospheric CO2 level). Such 

differences likely contribute to inconsistencies among different studies and complicate efforts to 

synthesize and interpret the results. Here, we conducted a meta-analysis (Hedges et al., 1999; 

Gurevitch et al., 2001) of the published literature to statistically synthesize and analyze all reported 

empirical findings and determine the sensitivity of CO2, CH4, and N2O exchange between 

terrestrial ecosystems and the atmosphere to changes in O3 pollution. These results allow for the 

first systematic assessment of the sensitivity in the budgets of GHGs to tropospheric O3 

concentration elevation that are based on empirical data. 
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Figure 1 Schematic of processes by which O3 influences GHG production and/or 

consumption. +/−signs denote positive and negative effect reported by different studies, 

respectively. The blue and red lines denote CH4 consumption and emissions of CO2, N2O, 

and CH4, respectively. 
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2.2 Methods 

2.2.1 Data collection 

A search of published literature concerning O3 influences on belowground processes was 

initially conducted in both the ISI Web of Science (Thomson Reuters, New York, NY, USA) and 

Google Scholar (Google, Mountain View, CA, USA) with a range of search terms. Only those 

studies that reported results on soil respiration, CH4 uptake/emission, and/or N2O emission were 

selected. For example, the oft-cited study by Findlay et al. (1996) examined litter decomposition, 

but was not included here because CO2 emission values were not reported. Similarly, studies that 

only measured the respiration of soil surrounding roots or root respiration were not included. We 

did not include lab incubation studies, except for CH4 uptake with a lack of field measurements. 

These three GHGs show seasonal variations in their fluxes that appear to be independent of O3 

impacts. Therefore, to avoid the potential variability and bias caused by a limited number of 

sampling dates, only those studies that repeatedly measured the fluxes at least one year (growing 

season) are included. In these cases, we either extracted the annual sum, or calculated the mean 

values for a whole year. 

            For effect size calculations, data including mean, standard deviation or standard error, and 

number of replicate for both control and treatment were extracted from text, tables, or graphs. The 

basic principles for data extraction from each individual study were as follows: To keep the 

independence of each observation, continuous observations within a single study were subjectively 

excluded to extract only one observation (i.e., the last year or growing season). However, different 

treatments (e.g., multiple manipulated levels of O3, different plant community, and elevated CO2 

level) in one study were treated as independent observations (Gurevitch et al., 2001), and thus were 

included. The papers with data presented only as graphs were digitized using Engauge Digitizer 
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(http://digitizer.sourceforge.net/). In addition, the control and treatment O3 level (ppb) were 

extracted either directly if reported or indirectly by converting the cumulative O3 exposure 

measures (e.g., accumulative ozone exposure above a threshold of 0 and 40 ppb: AOT0 and 

AOT40). Categorical variables included ecosystem type (forest, cropland, rice paddy, grassland, 

and peat land), fumigation method (Free Air Concentration Enrichment—FACE and Open Top 

Chambers—OTCs), fumigation duration, and CO2 elevation. The categorical variables and the 

corresponding levels used by different response variables (soil respiration, CH4 flux, and N2O flux) 

depended on the data availability. The detailed information of these compiled data and the 

corresponding literatures are listed in supporting information S1.  

2.2.2 Meta-analysis and meta-regression 

            First, the RR (Response Ratio) of O3 elevation for each individual observation was 

calculated by response ratio: 

!! = 	 ln &'&(
 

of which the sampling variance was computed by: 

) = (+,-)/
0-(&-)/ +

(+,2)/
02(&2)/ 

where &-	is the control mean, &2	is the treatment mean, SDc is the control standard deviation, SDt 

is the treatment standard deviation, NC is the control replication number, and NT is the treatment 

replication number. 

           The normalization of effect sizes under different O3 manipulation levels to a same ΔO3 

followed a linear transformation procedure: 

&34 = &( +
&' − &(
∆78

ΔO3 ∗ 
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where &34	is the normalized value, &-	is the control mean, &2 is the treatment mean, ΔO3 is the 

O3 level difference between the treatment and control, and ΔO3
* represents the O3 level difference 

to which the effect sizes are normalized (i.e. a certain O3 concentration interval between the current 

troposphere O3 level and an elevated O3 level: 10, 20, 30 and 40 ppb).  

            Meta-analysis of RR was performed by fitting to the random-effects model via the 

restricted maximum-likelihood (REML) method. The inverse-variance weighted mean of RRs and 

the standard error of the weighted mean were calculated. The detailed calculation procedures are 

fully described in references Hedges et al. (1999) and Koricheva et al. (2013). The unlogged mean 

RR and corresponding 95% confidence interval (CI) were further obtained. Percentage change due 

to elevated O3 was calculated from the unlogged mean RR. The O3 effect on a response variable 

was considered significant if the 95% CI did not overlap 1.  

            The meta-regression of RR with moderators was performed by fitting to the mixed-effects 

model via the REML method as well. An omnibus test with a chi-square distribution (QM) 

(Koricheva et al., 2013) was conducted to show whether the moderator has a significant 

contribution to the total heterogeneity. For categorical moderator with a significant QM, the 

categorical group was subdivided and the inverse-variance weighted mean RR for each level was 

calculated. An omnibus test was further conducted, with a significance of QM indicating that the 

mean RR were different among the levels of this categorical moderator. 

            In addition, during the meta-analysis publication bias was tested by funnel plots 

(Rosenberg et al., 2013), and Egger’s regression test was further performed to test the plot 

asymmetry (Egger et al., 1997). Q-Q normal plots were created to test whether the effect sizes 

fulfill the normality requirement (Wang et al., 1998). All calculation procedures described above 

were executed by R language using the ‘metafor’ package (Viechtbauer et al., 2010). 
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2.2.3 Estimation of global GHGs budget sensitivity 

            The meta-analysis results provide the average changes of each gas across the terrestrial 

ecosystems over the planet under a certain O3 concentration interval between the current 

troposphere O3 level and an elevated O3 level (i.e. ΔO3
* in ppb). We can give an approximate 

sensitivity estimate of the global GHGs changes in response to this tropospheric O3 level increase 

relative to today in a way as follows: 

ΔF = F> ∗ ΔA�

where ΔF change (year-1) represents the average change of each flux; Fc (year-1) represents the 

strength of each flux under the current O3 level; and ΔA (%), obtained from meta-analysis and 

dependent on O3 level, denotes the average percentage change of each flux. The current strengths 

of the different fluxes are listed in Table S1 in supporting information S2. It is noteworthy that the 

upscaling here has integrated the major ecosystem types, though still not yet a complete 

representation, across the land surface. This representativeness is much better than the previous 

global modelling studies that parameterized O3 effects in global ecosystem models with strikingly 

limited O3 response data. For example, in the study of O3 impacts on global carbon cycling by 

Sitch et al. (2007) O3 response data for only a few European and North America species were 

extrapolated to represent all global vegetation types. 

            As for the determination of net flux of CO2 into the atmosphere, our work only conducted 

a meta-analysis of soil respiration and thus the change in carbon uptake by terrestrial vegetation is 

necessary to complete the analysis. Previous meta-analysis of plant photosynthesis response to O3 

elevation for trees (Wittig et al., 2007), wheat (Feng et al., 2008), and soybeans (Morgan et al., 

2003), and studies comparing plants from multiple functional groups find a consistent 20% 

reduction (Reich and Amundson, 1985; Volin et al., 1998; Lombardozzi et al., 2013). Moreover, 
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the synthesis work by Lombardozzi et al. (2013) did not find a significant correlation between 

photosynthesis response and O3 level and agreed with the average 20% effect. Therefore, a 

constant 20% value is applied to constrain the global net primary productivity (NPP) to quantity 

the reduction of vegetation carbon uptake caused by different O3 elevation levels. It is noteworthy 

that our meta-analysis of soil respiration also includes the autotrophic respiration by plant roots, 

which, however, is not included in the NPP term. This represents a small uncertainty. Note that for 

the CO2 flux change a 50% reduction is further applied assuming 50% percent of the net 

accumulation of CO2 from the terrestrial biosphere is sequestered by the ocean (Sabine et al., 

2004). 

            To describe the global GHGs budget change, GWP (global warming potential) was used 

to calculate the GHG balance in units of CO2 equivalents as follows: 

GHG = FCO2-C *44/12 + FCH4-C*16/12*GWPCH4 + FN2O-N*44/28*GWPN2O  

where FCO2-C, FCH4-C, and FN2O-N are annual changes of total soil CO2 efflux, N2O, and CH4 as 

calculated by the above equation. The fractions 44/12, 16/12 and 44/28 were used to convert the 

mass of CO2-C, CH4-C and N2O-N into CO2, CH4, and N2O. GWPCH4 (Pg CO2 equiv. per Pg CH4) 

and GWPN2O (Pg CO2 equiv. per Pg N2O) are constants indicating integrated radiative forcing of 

CH4 (28) and N2O (265) in terms of a CO2 equivalent unit over a period of 100 years (Ciais et al., 

2013). 

 

2.3 Results 

            Collectively, 96 effect sizes [Response Ratios (RR)] for soil respiration (CO2 emission), 

N2O emission, and CH4 emission and uptake were compiled from peer-reviewed studies 

(supporting information S1). These studies were conducted in the Northern Hemisphere for 
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ecosystems including forest, grassland, agricultural land, and peat land (Fig.S1 in supporting 

information S2). The data do not show publication bias based on funnel plots and Egger’s tests 

(Fig.S2 supporting information S2) and fulfill the requirement of normality according to Q-Q plots 

(Fig.S3 in supporting information S2). Moreover, methodological differences, i.e., fumigation 

method and duration, among studies do not make a significant contribution to RR variability, with 

the exception of fumigation method for CH4 emission (Table S2 in supporting information S2). 

For these reasons, we conducted the analyses across the entire dataset.  

            Differing O3 manipulation levels were adopted by different studies. We choose the absolute 

difference in experimental O3 concentration between the treatment and control (hereafter referred 

to as ΔO3) as a variable to describe the different studies. Meta-regressions between ΔO3 and RR 

of different gases indicate that the RR of CO2 and CH4 (both emission and uptake) hold a 

significantly positive and negative linear relationship with ΔO3, respectively, while the RR of N2O 

is uncorrelated with ΔO3 (Fig. 2). These results suggest that the magnitude of CO2 and CH4 

responses depend on O3 levels in the lower atmosphere. As for N2O, based on limited data we can  

not exclude its dependence on O3 levels. In this study, we temporarily treat N2O response as being 

independent O3 level. Therefore, to assess the sensitivity of terrestrial ecosystems in terms of GHG 

exchange to O3 pressure, we test four ΔO3 levels—10, 20, 30, and 40 ppb—to which RR were 

linearly normalized, except for N2O. Meta-analyses were further conducted on these normalized 

RR. 
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Figure 2 Meta-regression between RR and ΔO3. (a)–(d) denote soil respiration, CH4emission, 

CH4 uptake, and N2O emission, respectively. The RR of N2O is not statistically correlated 

with ΔO3 (d). The size of the bubble is the relative weight of the RR in the random-effects 

meta-regression. Larger bubbles indicate study outcomes that contributed a greater overall 

weight in meta-regressions. 
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            First, GHGs from different ecosystems present differing sensitivities to changes in O3 

(Table S3 in supporting information S2). The CO2 effluxes from soils in both cropland and peat 

land, though with a similar magnitude, show a low sensitivity to increased O3 (Fig.S4 in supporting 

information S2). By contrast, CO2 effluxes from grassland soils display strong sensitivity to 

elevated O3, with CO2 flux diminished by from more than 10% (10 ppb) to more than 60% (20 

ppb), and the forest shows a smaller but still significant response of 5% (10 ppb) to 30% (40 ppb) 

(Fig.S4 in supporting information S2). For CH4 emissions, rice paddies present a significant 

reduction from almost 7% (10 ppb) to 25% (40 ppb), while the peat land does not show significant 

responses to O3 elevation (Fig.S5 in supporting information S2). Similarly, O3 enrichment shows 

a significantly different effect on the N2O flux among the three ecosystems as well. Elevated O3 

results in a reduction of N2O emissions by an average of 19% (statistically not significant), 16%, 

and 41% for cropland, rice paddies, and grassland, respectively (Fig.S6 in supporting information 

S2). Additionally, this meta-analysis indicates that O3 and CO2 elevations in combination have a 

larger influence on CO2 and N2O effluxes than O3 alone (Fig. S4, S6 in supporting information 

S2). This may result from a carbon fertilization effect and associated protection of carbon fixation 

against elevated O3 via stomatal closure (Sitch et al., 2007; Valkama et al., 2007).     
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Figure 3 Meta-analysis of GHGs exchange across different ecosystems. (a)–(d) shows the 

meta-analysis results of soil respiration (a), CH4 emission (b), CH4 uptake (c), and N2O 

emission (d) respectively, with mean and 95% confidence interval. The values are back-

transformed from the RRs. The response is significant if the interval does not overlap 

1(denoted by the dashed line). Values presented in this figure minus 1 multiplied by 100 

correspond to the % change, with the negative and positive suggesting a decrease and an 

increase, respectively. Values listed on the bar are the mean of significant responses. 
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            Integrating the responses across these different ecosystems, we derived the average 

responses for each gas.  For soil CO2 efflux, the RR of CO2 is positively correlated with O3 level 

(Fig.2a), but does not show a significant sensitivity to O3 enrichment until ΔO3 of 30 and 40 ppb, 

when soil respiration is stimulated by an average of about 12% and 15%, respectively (Fig. 3a). 

By contrast, CH4 emissions are sensitive to O3 across the full range of treatments, with an average 

of 6% (10 ppb), 11% (20 ppb), 14% (30 ppb), and 16% (40 ppb) (Fig. 3b). Similarly, CH4 uptake 

is sensitive to the dose of elevated O3 with a large reduction seen initially but with low sensitivity 

to further increases in O3 (Fig. 3c). Finally, the RR of N2O emissions does not depend on O3 

manipulation level (Fig. 2d); elevated O3 significantly decreases N2O emission by an average of 

22% regardless of the ΔO3 level (Fig. 3d). Our meta-analysis suggests that the soil respiration of 

terrestrial ecosystems is rather insensitive to O3 pressure, stimulating CO2 release to the 

atmosphere only after large O3 changes. These responses of CO2, CH4, and N2O exchange occur 

primarily because of reduced carbon availability from inhibited photosynthesis and slower 

decomposition and nitrogen return from altered detritus quality (Findlay et al., 1996; Anderson et 

al., 2003; Grantz et al., 2006; Kanerva et al., 2006). However, it has also been postulated that O3 

pressure may stimulate mycorrhizal formation in fine roots and root nutrient acquisition and 

turnover (Scagel et al., 1997; Kasurinen et al., 2004) or greater consumption of the carbon formed 

since the O3 pressure because of changes in microbial activity and carbon quality (Loya et al., 

2003), which cause unsuppressed and even enhanced CO2 efflux from soils. 
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Figure 4 Sensitivity of global GHG budget change to O3 change. (a) Shows the positive 

(enhanced soil respiration and suppressed CH4 uptake) and negative contributions 

(suppressed N2O and CH4 emissions) to the atmospheric GHGs. (b) Shows the net global 

budget change and the percent of positive contributions offset by the negative contributions 

by accounting for the positive contribution from suppressed vegetation carbon uptake (that 

is, 22.0 Pg C yr−1). All values are in CO2 equiv. See table S4 in supporting information S2 for 

specific calculation and data source. 

 

Scaling up these average ecosystem-scale responses, we estimate the sensitivity of global 

budget of the three gases to enhanced O3 (Fig.4) As shown in Fig.4a, the contribution by 

suppressed N2O flux to the global budget is consistently ~1.23 Pg CO2 equiv. yr-1. Increased O3 of 

10 and 20 ppb induce a decline of the current terrestrial natural CH4 emission flux by an average 

of 6% and 11%, which contributes to a reduced balance of 0.6 and 1.0 Pg CO2 equiv. yr-1, while 
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suppressed CH4 uptake positively contributes 0.8 and 0.05 Pg CO2 equiv. yr-1. Global soil CO2 

efflux is insensitive to these small changes in O3 (∆O3 = 10 and 20 ppb). By contrast, in response 

to larger increases in O3 (∆O3 = 30 and 40 ppb) stimulated soil CO2 emissions contribute an 

average of 4.4 and 5.5 Pg CO2 yr-1, respectively (Fig. 4a). At the same ΔO3, suppressed CH4 

emissions contribute 1.3 and 1.5 Pg CO2 equiv. yr-1, while suppressed CH4 uptake contributes only 

0.07 and 0.09 Pg CO2 equiv. yr-1 (Fig. 4a). This sensitivity analysis clearly shows that the soil 

system can be transformed from a sink into a source with O3 level continuously increasing because 

of enhanced soil CO2 emissions outweighing suppressed CH4 and N2O emissions. Taking into 

consideration O3-suppressed CO2 uptake by vegetation (which is about 44.0 Pg CO2 yr-1), plus the 

oceans’ CO2 sequestration, the O3-induced net global GHGs budget change on average is 

approximately 21.0 (5.7), 19.8 (5.4), 24.0 (6.6) and 24.9 Pg CO2 yr-1 (6.8 Pg C yr-1) for the 10, 20, 

30, and 40 ppb change in O3, respectively (Fig. 4b; Table S4 in supporting information S2). These 

changes correspond to an annual increase of 12.73%, 12.00%, 14.55%, and 15.10% relative to the 

current net global budget (Table S4 in supporting information S2). Additionally, under the four O3 

change levels the reduction in N2O and CH4 emissions offset at most about 10% of the O3-induced 

net increase of CO2 (Fig. 4b). Therefore, the sensitivity of terrestrial vegetation productivity to 

elevated O3 predominate the global GHG budget change sensitivity. 

 

2.4 Discussion  

The overall exchange of GHGs between terrestrial ecosystems and the atmosphere are 

sensitive to tropospheric O3 pollution, and significantly contributes to the atmospheric GHGs 

accumulation. This matches the conclusion of a large buildup of CO2 in the atmosphere derived 

from the modelling study by Sitch et al. (2007), which, however, only considered the CO2. For 
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understanding the full range of interactions between the atmosphere and terrestrial processes, we 

need an integrative perspective (e.g., Tian et al.  2016). Our results also suggest that suppressed 

CH4 and N2O emissions can offset a portion of the increased CO2 emissions. This study clearly 

pinpoints the necessity for assessing surface-atmosphere exchange processes comprehensively in 

air quality-climate feedback analyses. Therefore, other possible feedback pathways mediated by 

biogenic volatile organic compounds (BVOCs) and soil nitrous oxides (NOx) emissions should be 

investigated and fully incorporated into assessment of O3-climate feedbacks (e.g. Hickman et al. 

2010). 

However, these estimates of global GHGs flux sensitivities come with uncertainties. First, 

GHGs from different ecosystems present differing sensitivities to changes in O3 due to 

fundamental differences in vegetation composition. However, this study, as a pioneering work, 

integrates the different systems in an aggregate way. Ecosystem-specific assessments are expected 

for following studies. Meanwhile, during these assessments different measures of O3 dosage 

should be differentiated. Second, the studied ecosystem types and independent observations that 

can be included in this meta-analysis are limited. For example, upland forest ecosystems generally 

act as a sink of CH4 (e.g. Yavitt et al., 1990), but no study is currently available of the O3-

sensitivities of these ecosystems. There is also a striking lack of experimental data from the 

Southern Hemisphere (Fig. S1 in supporting information S2). This problem is particularly 

important because many regions in the Southern Hemisphere are predicted to industrialize in the 

future, which could lead to higher O3 levels in the near field of cities and hemisphere wide. Clearly, 

more field measurements on CO2, N2O, and CH4 fluxes around the world should be undertaken. 

Third, exchange of GHGs between the atmosphere and terrestrial ecosystems can be 

simultaneously influenced by other global change agents. To more fully and realistically evaluate 
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O3 impacts on GHGs, the combined impacts with other global change agents, e.g., nitrogen 

deposition and climate warming, need additional investigation. 

 

2.5 Conclusion 

            By fully accounting for the three gases simultaneously, we find that with O3 level 

continuously increasing the whole soil system would be transformed from a sink into a source of 

GHGs. With an increase of O3 concentration by 10 ppb, the global annual net atmospheric budgets 

would on average increase by ~12% (i.e. ~5 PgC yr-1). However, in the global atmospheric budget 

suppressed CH4 and N2O emissions can offset a small portion (at most 10%) of the net CO2 

increase derived from changes in soil respiration and vegetation carbon fixation in terms of CO2-

equivalent. The sensitivity of global net GHGs budgets is still predominantly determined by the 

high sensitivity and thus a large magnitude of O3-induced reduction in terrestrial vegetation carbon 

sequestration capability. 

            Natural systems with a high biodiversity, however, are increasingly suggested to be 

resilient to O3 pressure. For example, the productivity and carbon stock of the temperate deciduous 

forest in the Eastern United States are shown to be unsuppressed by O3 pressure (Wang et al., 

2016). The FACE study by Zak et al. (2011), which included both O3-tolerant and O3-sensitive 

species or genotypes, also indicated unsuppressed net primary productivity after a long-term 

fumigation (11 years). Grassland ecosystems including temperate (Volk et al., 2011), calcareous 

(Thwaites et al., 2006), and alpine types (Bassin et al., 2007) have also shown that the productivity 

is insensitive to elevated O3. Hence, we postulate that the indirect role of O3 (that is via altering 

the land-atmosphere exchange) on the Earth’s radiative balance might be most significant on those 

managed systems that are of low diversity, e.g., agricultural and forest plantation systems. This 
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means agricultural production practices would play a key role in mitigating O3’s indirect effects 

on global climate, reinforcing the conclusion that adoption of best practices in human-impacted 

ecosystems could mitigate climate change (Paustian et al., 2016; Tian et al., 2016). 
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Table S1 Data sources of current annual fluxes of GHGs from the terrestrial ecosystems. 
Gas Source/Sink Strength (yr

-1
) Total annual flux* Reference 

CO2
 Soil respiration 75 Pg CO2

 75,000 Tg CO2 yr
-1 Schlesinger and Andrews, 2000 

 NPP 60 Pg C-CO2
 22,0200 Tg CO2 yr

-1 Beer et al., 2010 
N2O Agriculture 1.7-4.8 Tg N-N2O 21.67 Tg N2O yr

-1 Ciais et al., 2013 
 Natural vegetation 3.3-9.0 Tg N-N2O  Ciais et al., 2013 
CH4 emission Rice paddy 33 - 40 Tg CH4

 324 Tg CH4 yr
-1 Ciais et al., 2013 

 Wetland 177-284 Tg CH4
  Ciais et al., 2013 

CH4 uptake Upland  9 - 47 Tg CH4
 47 Tg CH4 yr

-1 Ciais et al., 2013 
* For the total annual fluxes of CH4 and N2O, the upper end values of the estimated range is applied. 
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Table S2 Test of fumigation methodology to effect sizes variation. 
Variable   CO2

 N2O CH4 emission 
Fumigation method QM

 0.0719 1.2198 8.9298 
 P 0.7886 0.2694 0.0115 
Fumigation duration QM

 0.0093 0.0094 0.0362 
  P 0.9233 0.9228 0.8491 
Only fumigation method (FACE and OTC) significantly contributes to the variations of effect sizes of 
CH4 emission. 
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Table S3 Effect of O3 enrichment on between group heterogeneity (QM) for each response variable. 
Response 
variable 

Categorical 
variable 

Delta O3
 

10 ppb 20 ppb 30 ppb 40 ppb 
QM df P-value QM df P-value QM df P-value QM df P-value 

CO2
 Ecosystem 10.1436 4 0.0381 33.3984 4 <0.0001 31.018 4 <0.0001 32.7520 4 <0.0001 

 CO2 elevation 6.7263 2 0.0346 2.8304 2 0.2429 6.5426 2 0.038 5.4281 2 0.0663 
CH4 emission Ecosystem 12.4856 2 0.0019 25.2659 2 <0.0001 20.6876 2 0.0001 19.4727 2 <0.0001 
N2O  Ecosystem 76.5853 3 <0.0001 76.5853 3 <0.0001 76.5853 3 <0.0001 76.5853 3 <0.0001 
  CO2 elevation 62.4640 2 <0.0001 62.4640 2 <0.0001 62.4640 2 <0.0001 62.4640 2 <0.0001 
Note: Four tests on N2O across the four delta O3 levels are totally same as meta-regression shows N2O response is independent of O3 level. 
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Table S4  Estimation of annual GHGs flux change induced by O3 level elevation.  

Gas
Current flux* 

(Tg yr-1)

DeltaO3 = 10 ppb DeltaO3 = 20 ppb DeltaO3 = 30 ppb DeltaO3 = 40 ppb

Average change† (%)
GWP change 
(Tg CO2 yr-1)

Average change† (%)
GWP change 
(Tg CO2 yr-1)

Average change† (%)
GWP change (Tg 

CO2 yr-1)
Average change (%)

GWP change 
(Tg CO2 yr-1)

NPP 220,200 CO2 20.00 22,020 20.00 22,020 20.00 22,020 20.00 22,020
Soil respiraton 75,000 CO2 0 0 0.00 0 11.83 4,436 14.64 5,490
N2O emission 16.7 N2O -21.37 -1,227 -21.37 -1,227 -21.37 -1,227 -21.37 -1,227
CH4 emission 324 CH4 -6.11 -554 -10.99 -997 -14.04 -1274 -16.36 -1,484
CH4 uptake 47 CH4 57.44 756 3.53 46 5.62 74 7.04 93

Global net change induced by 
future O3 pollution

20,995 Tg CO2 yr-1/5.7 Pg C yr-1 19,842 Tg CO2 yr-1/5.4 Pg C yr-1 24,029Tg CO2 yr-1/6.55 Pg C yr-1 24,891 Tg CO2 yr-1/ 6.8 Pg C yr-1

% of positive contribution offset 
by negative contribution

7.82% 10.08% 9.43% 9.82%

*See Table S1 for specific calculation and data source. † Negative sign (-) denotes negative contribution to the atmosphere budget.



	
	
	

57	

 

 

Fig.S1 Distribution of sites where measurements on soil respiration, CH4 flux, and N2O flux 

were conducted. The green, blue, and red denotes soil respiration, CH4, and N2O, 

respectively. 
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Fig.S2 Funnel plots and Egger’s regression test detecting the publication bias. The 

corresponding Egger’s regression test is shown in each panel.  A P > 0.0.5 indicates the 

asymmetry of the funnel plot, suggesting the absence of publication bias. 
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Fig.S3 Normality test of the effect sizes by Q-Q plot. All the four flux items fulfill the 

normality requirement. 
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Fig.S4. Meta-analysis results of soil CO2 emissions from different ecosystems. The combined 

effects of O3 and CO2 are always stronger than the O3 effects alone. 
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Fig.S5. Meta-analysis results of CH4 emissions from different ecosystems. 
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Fig.S6 Meta-analysis results of N2O emissions from different ecosystems. The combined 

effects of O3 and CO2 are stronger than O3 alone. 
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Chapter 3 An individual-based model of forest volatile organic compound emissions – 

UVAFME-VOC v1.0 

 

 

3.1 Introduction 

            Since the discovery by Haagen-Smit, Went, and colleagues that plant-derived organic 

compounds can contribute to O3 and haze formation (Haagen-Smit and Fox, 1954; Went, 1960) 

over half a century of research has shown the myriad ways that biogenic volatile organic compound 

(VOC) emissions from plants can influence both atmospheric chemistry and physical climate.  

Vegetation-derived VOCs enter the troposphere and are oxidized by reactions with hydroxyl 

radical (OH), nitrate radical (NO3), and to a smaller extent, O3 (Atkinson and Arey, 2003).  These 

reactions affect the growth rate of methane (CH4) and produce chemical products including O3, 

secondary organic aerosol (SOA), and various forms of oxidized nitrogen, which profoundly affect 

the air quality and physical climate at regional and global scales, in particular the forested areas 

(e.g., Atkinson and Arey, 2003; Fuentes et al., 2000; Jacob and Wofsy, 1988).  

             A good understanding of the biochemical mechanisms and the eco-physiology of 

production and emission of abundant VOCs species has been developed with over half a century 

of research (e.g. Monson et al., 1995; Lerdau et al., 1997; Lerdau and Gray, 2003; Vickers et al., 

2009). VOCs production and emissions are strongly regulated by light intensity and temperature 

variations among many other abiotic (e.g., rising CO2, O3 pollution, and drought) and biotic factors 

(e.g., herbivory) (e.g., Niinemets et al., 2013). These confine our understanding only to the low 

order levels, i.e., leaf and individual of the hierarchical ecosystems on short time scales. 
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            However, how ecosystem-level VOCs emissions behave, in particular at decade-to-century 

time scales, is almost unknown. Changes in species composition could have profound impacts on 

phytogenic VOCs emissions because of the strongly species-dependent nature of VOCs production 

(e.g., Lerdau et al., 1997; Loreto and Fineschi, 2014; Monson et al., 2013; Zimmerman et al., 

1979).  For example, in the eastern United States about one-third of tree species produce isoprene 

(Lerdau, 2007). Tropical systems have a similar proportion of emitting species, and even low 

diversity ecosystems, such as boreal forests, contain a mixture of emitting and non-emitting species 

(Lerdau, 2007). This inter-specific variability in VOCs production means that community 

dynamics (i.e., changes in species composition and abundance) could significantly affect an 

ecosystem’s VOCs emission capacity (Lerdau and Slobodkin, 2002).  Furthermore, recent work 

has shown that impacts of VOCs on the atmosphere can alter the trajectory of these community 

dynamics, feeding back to affect VOC emissions (Wang et al., 2016). A good understanding of 

VOCs emissions and controls at the community/ecosystem levels are critical for more accurate 

quantification of their impacts on global change-atmospheric chemistry feedbacks at larger 

temporal scales. 

            Investigating these issues, however, poses intrinsic challenges. Long tree generation times 

and slow forest dynamics mean that experimental studies would have to occur on time-scales of 

decades.  Substituting space for time, a common practice in ecological studies of long-lived 

organisms, is difficult because of the spatial heterogeneity of tropospheric chemistry (Atkinson 

and Arey, 2003; Fuentes et al., 2000).  Logistic difficulties with empirical studies dictate the need 

for predictive models.  However, previous modelling studies examining long-term vegetation 

VOCs emissions dynamics in response to global changes have not explicitly considered species 

compositional dynamics within ecosystems. Current modelling frameworks mostly represent 
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vegetation in an aggregate way without a consideration of species-specific changes (e.g., Purves 

and Pacala, 2008; Scheiter et al., 2013).  This is the case from the earliest regional model, BEIS 

(Pierce and Waldruff, 1991), to the widely used global model, MEGAN (Guenther et al., 2006, 

2012).  Operating from regional through global scales, these models represent vegetation in coarse 

resolutions, genus to PFT statically with the emission factors empirically constrained by 

environmental fluctuations. In addition, built on DGVMs (Dynamc Global Vegetation Models; see 

review by Shugart and Woodward, 2011) process-based models that can explicitly consider the 

biochemistry and eco-physiology of VOCs production and emissions have also been developed 

(Sanderson, 2003; Arneth et al., 2007). Nonetheless, these dynamic models, with a representation 

of vegetation in the PFTs fashion, still cannot explicitly predict communities’ compositional 

dynamics. Without an explicit consideration of ecosystems’ compositional change, great 

uncertainties are intrinsic to these models in estimating the magnitude of VOCs emissions. 

             Forest gap models (Shugart and West, 1980) are a type of individual-based model (IBM) 

in use for over 40 years.  They simulate forest compositional and structural dynamics through an 

explicit consideration of life cycles of individual trees, their interactions, and emergent behaviors 

at the ecosystem level (Shugart, 1984; Bugmann, 2001a; Grimm et al., 2005; Shugart and 

Woodward, 2011). IBMs provide a framework to develop an individual–based VOC emission 

model that can predict emissions at the ecosystem scale over time-scales relevant for community 

dynamics — decades to centuries. Our primary objectives are: 

1) To introduce the development of a forest VOC emissions model initiated with the 

individual-based gap model of University of Virginia Forest Model Enhanced, 

UVAFME—UVAFME-VOC v1.0;  
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2) To evaluate this model’s performance by implementing it for a temperate deciduous forest 

in the southeastern United States and then by comparing model outputs with independent 

field data.  An additional test involves an application testing the hypothesis that the 

Chestnut Blight (Cryphonectria parasitica), which essentially eliminated American 

Chestnut, (Castanea dentate) as a dominant canopy tree in eastern North America, resulted 

in the oak-dominance and increased isoprene emission; and  

3) Finally, to discuss the model’s applicability and implications in addressing the feedbacks 

between global change and atmospheric chemistry bridged by the vegetation community 

ecology. 

 

3.2 Methods 

3.2.1 Description of UVAFME 

            UVAFME (Fig.1) simulates the annual growth, death, and regeneration of each individual 

tree on a 1/20 ha plot.  These processes are constrained by temperature, light, and soil moisture 

and nutrients at the individual-tree level, as well as by wind and fire disturbances at the stand level. 

Trees compete for light, nutrient, and water resources. The community dynamics and composition, 

including tree numbers of each species, basal area, leaf area, biomass carbon and nitrogen, and 

litter carbon and nitrogen can be derived from the sizes and species of individual trees, which are 

computed annually in the model. The soil carbon, nitrogen, and water dynamics, along with soil 

carbon and nitrogen storage, soil respiration, and evapotranspiration, are calculated as state 

variables. The input data include species-related parameters, quantifying species’ fundamental 

silvics and responses to environmental factors and site conditions, local soil physiochemical 
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properties and meteorological temperature and precipitation. For details concerning the model 

algorithms, please refer to Yan and Shugart (2005).  

3.2.2 Model development              

            Two principles guided the development of this individual-based VOCs emissions model. 

First, starting with the individual-based forest gap model, UVAFME, the overarching principle 

during model development was to keep the internal structure and functions of UVAFME unaltered. 

Second, in the simulation of VOCs emissions we applied the extensively used empirically based 

methodology (Guenther et al., 1995, 2006): that is, species-specific standard emission rate of 

different VOCs constrained by the leaf area of each individual tree and modified by environmental 

factors, e.g., light and temperature through the forest canopy profile with the central governing 

equation: 

!"#$ = !& ∗ () ∗ *) ∗ *+ 

where Es represents the standard leaf-level emission rate of VOCs, AL represents leaf area, and CL 

and CT accounts for light- and temperature-induced variability, respectively. As will be discussed 

immediately below, the direct and diffuse light onto the leaf profile of each tree, in five canopy 

layers is simulated allowing the computation of each tree’s VOCs emission as a summation of 

sunlit and shaded leaves production.  Model structure and development are outlined in Fig.1. Note 

the specific inclusion of the simulation of isoprene emissions. See Appendix A for the simulation 

methodology of other VOCs species (e.g., monoterpenes).   
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Fig.1 A schematic of the main structure and components of UVAFME-VOC v1.0. 

 

            The leaf area is assumed to be uniformly distributed throughout the crown of each tree [as 

with all the other vegetation models (Bugmann, 2001a; Sitch et al., 2003)] and updated annually. 

We assume that the leaf area in July of each year equals this year-step leaf area. To account for the 

light variation within the forest stand, the canopy of each tree is divided into five layers. Each layer 

is further subdivided into sunlit and shaded leaves. Isoprene emissions from the sunlit and shaded 

leaves of each layer of each tree are calculated (mg m-2 h-1) under constraints of air temperature 

and leaf-level PPFD (photosynthetic photon flux density) for both sunlit and shaded leaves with 

an hourly time step, as shown below. The sunlit-leaves flux and the shaded-leaves flux from each 

tree’s five layers sum to the daily flux for each tree (mg m-2 day-1). The sum of isoprene emission 

over all trees represents the stand canopy isoprene flux (mg m-2 day-1). 
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            Light-dependency algorithm follows Guenther et al., (1995): 

*) =
α	*).	L

1 + α2L2
 

where L is leaf level PPFD, µmol m-2 s-1, α = 0.0027, and CL1 = 1.066. The hourly leaf-level PPFD 

at each canopy layer for sunlit and shaded leaves of each isoprene-emitting tree is obtained by 

three steps of calculation (Fig. 2): 

            First, the direct beam and diffuse PPFD above the forest stand is calculated from incoming 

total solar radiation. Second, considering the shading by taller and surrounding trees, the light 

intensity including total beam (unintercepted beam plus down scattered beam), beam 

(unintercepted beam), and diffuse PPFD above each individual tree canopy within the forest stand 

is then calculated. Third, the leaf area of sunlit and shaded leaves and the corresponding PPFD for 

each canopy layer are calculated. The sunlit leaf fraction and different flux densities are determined 

at each canopy layer using an exponential function of leaf area depth but with differing extinction 

coefficients based on a spherical leaf angle of 60º. The light intensity on shaded leaves is from 

both incoming diffuse light and scattered light from the direct beam inside the canopy, which plus 

the absorbed beam radiation equals the intensity on sunlit leaves surface. These calculations are 

described in Goudriaan and Van Laar (1994). See Appendix A for more details concerning 

simulation of the sunlit and shaded leaf area and PPFD level. 
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Fig.2 A schematic of simulation of light transmission within stand and individual tree 

canopy. Kdt, Kbt, and Kb represent the extinction coefficient for diffuse, total beam, and beam 

respectively. Qsc and Qabs denote the scattered and absorbed beam radiation, respectively.  

 

            The temperature-dependency algorithm of isoprene emission (Guenther et al., 1995) is: 

*+ =
exp

C7.(T − ;&)
R	;&	T

1 + exp
*+2	 T − T>

R	;&	T

 

where R=8.314 J K-1 mol-1, CT1 = 95,000 J mol-1, CT2 = 230,000 J mol-1, TM = 314 K, and TS = 

303 K. T is leaf temperature, which is assumed to be equal to hourly air temperature and constant 

through the canopy.  Hourly temperature is calculated from daily minimum and maximum 

temperature, the previous-day maximum temperature, and the following-day minimum 
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temperature (Goudriaan and Van Laar, 1994). See Appendix A for detailed procedures to calculate 

the hourly temperature. 

3.2.3 Model performance evaluation 

            To evaluate the performance of UVAFME-VOC v1.0, we implemented it to simulate the 

forest successional dynamics and VOCs (isoprene) emission in the southern Appalachian 

Mountains region located in the southeastern United States. This region has an extensive field 

record of forest inventory data (e.g., Fowells, 1965; Hardin et al., 2001), and, in particular, 

extensive research on VOCs production and emissions make species-specific information readily 

available (e.g., Geron et al., 2000, 2001). Historically, the Chestnut blight (Cryphonectria 

parasitica), a fungus parasite introduced from Asia (Braun, 1950; Woods and Shanks, 1959) of 

the late 19th and early 20th centuries caused a massive change in forest composition in the eastern 

United States. American Chestnut (Castanea dentate), which had comprised as much as 50% of 

East Coast lowland forests, disappeared almost completely and was replaced to a large extent by 

oaks (Braun, 1950). Unlike oak, American Chestnut does not emit isoprene (Guenther et al., 1996) 

and it has been hypothesized that the Chestnut Blight has produced an approximate doubling of 

the biomass of isoprene-emitting species and a significant increase of isoprene emission (Lerdau 

et al., 1997).  To date, however, this hypothesis has not been tested. A community/ecosystem-scale 

IBM is an ideal vehicle for explicitly testing the question of how changes in species composition 

might alter VOC emissions.  

3.2.3.1 Model parameterization 

            Thirty-two species including both deciduous and coniferous trees native to the southern 

Appalachian region in the southeastern US, plus chestnut, are included in the simulation (Appendix 

B). Twenty-five parameters describing silvical properties of each species required as inputs were 
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drawn from the literature. Specifically, wood bulk density values were from global wood density 

data compiled by Zanne et al. (2009). Species response to nutrient availability is according to 

Weinstein (1982). All the remaining parameters are estimated according to Fowells (1965) and 

Hardin et al. (2001). Major isoprene-emitting species and their standard emission rates were 

according to Geron et al. (2001). 

            Thirty years of meteorological data for monthly precipitation, mm and monthly maximum 

and minimum temperature (°C) ranging from 1981 to 2010 were obtained from the NOAA 

(National Oceanic and Atmospheric Administration) meteorological station at Oak Ridge ATDD, 

Tennessee, USA (GHCND: USW00003841; Latitude/Longitude: 36.0028°/-84.2486°; Elevation: 

275.8 m) to compute monthly average precipitation, monthly maximum and minimum 

temperature, and their standard deviations. Soil-related parameters including organic layer carbon 

and nitrogen, active layer carbon and nitrogen, and base soil layer carbon are estimated according 

to Johnson and Van Hook (2012). Values of 25 cm and 12.5 cm were used for soil field capacity 

and soil permanent wilting point, respectively. 

3.2.3.2 Simulation methodology  

            We applied a Monte Carlo simulation of a landscape of indeterminate size sampled with a 

system of independent sample plots with the same climate and soil conditions. Therefore, the 

average of the simulation corresponds to a shifting-mosaic steady-state landscape (Bormann and 

Likens, 1979). An analysis of convergence of average species-specific biomass values indicated 

that 150–200 replicate plots are needed to provide a sample which approximates a statistically 

quasi-stable landscape response of the forest landscape (Bugmann et al., 1996). The model was 

run for a plot size of 500 m2 starting from bare ground (i.e. gaps with ample active seeds where 

secondary succession occurs, and which in field such gaps can be created from the death of a 
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canopy-dominant tree resulting from wind, fire, or other disturbances) and lasting for 500 years 

for 200 independent plots. All the results presented are the average of 200 such runs. Specifically, 

the simulation without and with the chestnut tree was defined as ‘Present’ and ‘Pre-blight’, 

respectively.  

3.2.3.3 Validation criteria 

            As recommended by Grimm et al. (2006), the validation of an IBM should include 

individual, community, and system level inspections emphasizing the hierarchical structure of an 

ecological system. We compared simulation results with a series of independent observations 

involving community composition, basal area, stand density, biomass, productivity, and isoprene 

emission. Several criteria were applied to demonstrate the reliability of this model:  

(1) ‘Present’ simulation outputs including composition, stand basal area, stem density, biomass, 

productivity, and soil respiration generally match empirical data; 

(2) ‘Pre-blight’ forest composition is similar to the historical record; 

(3) Proportion of isoprene-emitting species within the forest community was much lower in ‘Pre-

blight’ than in ‘Present’; and 

(4) Correspondingly, isoprene emission is much higher from ‘Present’ forest than from the ‘Pre-

blight’ forest. 
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3.3 Results 

3.3.1 Forest successional dynamics in the southeastern United States 

 

Fig. 3 Simulated forest dynamics in terms of biomass over 500 years for (a) the ‘present’ 

forest (i.e., without Chestnut) and (b) the ‘pre-blight’ forest (i.e., with Chestnut). The width 

of each color band represents the biomass (tC ha-1) of different species at a specific year. 

QUERvelu: black oak; QUERrubr: red oak; QUERprin: Chestnut oak; QUERalba: white 

oak; PRUNsero: black cherry; LIRItuli: yellow poplar; FAGUgran: American beech; 

CARYcord: bitternut hickory; CASTdent: American Chestnut; ACERsacc: sugar maple; 

ACERrubr: red maple; and Other: all the following species simulated (see Appendix B). 
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Fig.4 Comparisons between model simulation and field survey in terms of percent species 

composition in basal area (m2 ha-1). (a) Comparison of major species in the present forest 

between the average of model simulation output from 10-90 year and field data describing 

the forest composition at a successional age of about 40 year at Walker Branch Watershed 

in eastern Tennessee (35'58' N; 84'17' W) acquired from Grigal and Goldstein (1971); (b) 

Comparison of major species in the pre-blight forest between the simulation (average of 400-

500 year output) and field data describing the composition of eastern Tennessee before the 

outbreak of chestnut blight acquired from Shugart and West (1977). The error bars show 

the upper 95% confidence interval. Species code is same with Figure 3. 
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Fig.5 Stand basal area (a) and stem density (b) dynamics over the 500-year simulation of the 

present forest. The open circle represents a value of basal area (26 m2 ha-1) and stem density 

(1466 stem ha-1) at a successional age of 50 years at Walker Branch Watershed in eastern 

Tennessee (35'58' N and 84'17' W) acquired from Lafon et al. (2000) and Bugmann et al. 

(2001b), respectively. Trees with a diameter larger than 2.5 cm are included. 

 

 

            Successional dynamics of the ‘Present’ forest over 500 years involves changes in 10 

abundant species and 22 other species (Fig.3a). Initially for a forest succession from an open plot, 

the ‘other’ species category, mostly composed of pioneer species, dominates the forest with 

approximately 50% of the total biomass. Soon, both Acer rubrum and Liriodendron tulipifera 

become increasingly important, but A. rubrum eventually loses to the larger, faster-growing L. 

tulipifera trees, which persist and become dominant. After L. tulipifera declines over time, trees 

of four late successional oak species (Quercus alba, Q. velutina, Q. rubra, and Q. prinus) become 
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increasingly important, together accounting for approximately 75% of the stand biomass at year 

500.  The composition of the forest stabilizes and is eventually dominated by aforementioned oaks, 

along with L. tulipifera and two maples (A. rubrum and A. saccharum). This simulated 

composition matches the description in southeastern United States qualitatively (Shugart, 1984). 

Moreover, the average percent composition over the first 100 years of simulation was compared 

with available field species survey data (Fig.4a). Generally, composition was statistically not 

different with field inventory data (overlap between 95% confidence intervals). These results 

suggest that the model can capture the forest succession composition. 

            Similar to the species composition changes, total biomass becomes relatively less variable, 

beginning around year 100 (Fig.3a).  Over succession, the total basal area and stand density 

quickly reached a maximum of almost 40 m2 ha-1 and 1400 stem ha-1 within 100 years, respectively 

(Fig.5). Subsequently, total basal area declined until around the 200 year to about 30 m-2 year-1, 

and then stayed relatively stable with a slight increasing trend (Fig.5a).  The stem density sharply 

declines and then keeps relatively stable at about 200 stems ha-1 (Fig.5b).  These patterns result 

from the initial rapid stand establishment, followed by thinning from competition. The simulation 

matches very well with the available field survey data at a succession age of around 50 years 

(Fig.5). Further, three principal carbon cycling processes, net primary productivity, soil 

respiration, and net ecosystem production and the forest carbon stock through dynamic 

development show reasonable resemblance over successional time (see Appendix A for details). 

            With the American Chestnut included, i.e., ‘Pre-blight’ forest, the successional dynamics 

were quite different in forest composition from the ‘Present’ forest (Fig.3b). Chestnut was 

dominant in ‘Pre-blight’ forests and oaks (Quercus spp.) dominant in the ‘Present’ forest. Chestnut 

was a canopy-dominant, shade-tolerant tree in these forests (Braun, 1950). These simulated 
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changes in forest composition accord well with the description of forest change in response to the 

chestnut blight in the southeastern United States (Keever, 1975; Nelson, 1955; Woods and Shanks, 

1959). Moreover, such dominance and the composition of other species by the model simulation 

matched the historical field survey data quantitatively. As shown in Fig.4b, the percentage of each 

species in the simulation at the later successional stage were not statistically different with field 

survey data except for only L. tulipifera [see Shugart and West (1977) for more details on historical 

forest composition].  
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3.3.2 VOCs, isoprene emission dynamics 

 

 

Fig.6 Comparisons of isoprene emission rate (a) and percentage of isoprene-emitting species’ 

biomass within the forest stand (b) between the ‘Present’ (red) and ‘Pre-blight’ forest (black) 

over the 500-year simulation. The isoprene emission rate represents the average of daily 

isoprene emission rate from July of each year. 
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Fig. 7 Total isoprene emissions contributed by species and leaf type (sunlit and shade leaf). 

(a) Total isoprene emissions comprised by different species, among which the ‘others’ refer 

to the isoprene emitters besides the four oak species. (b) Percent contribution to total 

isoprene emissions (solid lines) and to total leaf area (dashed lines) from sunlit (red) and 

shaded leaves (black). Note the dynamics presented in (b) starts from the year 10. See species 

code in Figure 3 and the leaf area in units of m2 m-2 in Appendix A. 
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Fig.8 An example of profile of fraction of sunlit leaf area and PPFD on the sunlit and shaded 

leaves across a white oak (Q. alba) tree canopy within the stand. The white oak tree was 

randomly chosen from the simulated forest stand at a successional age of 10 (a, b) and 300 

(c.d). A spherical leaf angle of 60 degrees is assumed. The negative values on Y-axis indicate 

an increasing canopy depth. Red lines denote the light intensity on sunlit leaves. 
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            Isoprene emissions following the ‘Present’ forest dynamics (Fig.6) showed an initial 

increase with the isoprene producers gradually accumulating in the forest.  After the plateau at 

around the year 200 with an emission rate of about 100 mg m-2 d-1, isoprene emission rate slightly 

declined until around year 300 when the emission settled at around 85 mg m-2 d-1 with the 

stabilization of forest composition and structure (for diurnal dynamics, see Appendix A).  

The magnitude of isoprene emissions simulated here was a little lower than was found in 

the simulation by MEGAN in the southeastern US (Guenther et al., 2006). MEGAN and other 

models (e.g., BEIS) assign an emission factor to each plant functional type or genus (Guenther et 

al. 2006; Pierce and Waldruff, 1991).  By contrast, the UVAFME-VOC v1.0 uses species-specific 

emission factor, which could contribute to this difference in simulated isoprene emission.  

            The ecosystem level emissions are comprised of emissions from different species and leaf 

types (sunlit and shaded) with differing proportions (Fig.7). Initially, the total isoprene emissions 

attributed to the ‘others’ reached nearly 50% percent, but this contribution source declined in 

importance very quickly and was nearly zero after about 60 years. The eventual contribution, 

ranked by the percentage, was from Q. prinus, Q. alba, Q. velutina, and Q. rubra (Fig.7a).  This 

dynamic change was accompanied by change in leaf area of sunlit and shaded leaves over the 

succession. The total isoprene emissions were also separated into sunlit leaf- and shaded leaf-

derived production, hereafter called sunlit and shaded flux, respectively (Fig.7b). During the early 

successional stage, the sunlit flux and shaded flux remained stable and contributed almost equally 

(~ 50%) with the sunlit flux being slightly higher.  The contribution by sunlit leaves relative to 

shaded leaves gradually increased, and eventually increased to about 75%, sunlit leaves against 

25%, shaded leaves at the later successional stage.  
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           This dynamic change pattern of ecosystem level isoprene emissions originated from the 

compositional and structural changes of the simulated forest over natural succession. The annual 

growth environment, including air temperature and in-coming radiation which were primary 

controlling factors for isoprene production, did not change during the 500-year succession (see 

Appendix A for diurnal and annual temperature and radiation cycles). However, the within-canopy 

environment experienced significant modifications resulting from the compositional and structural 

changes, which can affect isoprene production and emission (e.g., Bryan et al., 2015). This model 

explicitly simulated shaded and sunlit leaf area and the corresponding leaf-level PPFD variations 

of each individual tree within the canopy. Here an individual white oak, Q. alba tree within the 

forest stand is used to illustrate the changes (Fig. 8). At 10 year, when succession just started from 

bare ground, the white oak tree is still small and shaded by other trees (as indicated by the leaf area 

and PPFD in Fig.8a,b), which results in an almost linear decline of sunlit leaf area fraction (Fig.8a) 

and light extinction within the canopy (Fig.8b). By contrast, at 300 year the white oak (Q. alba) 

tree has grown much bigger and become canopy dominant (as indicated by the leaf area of > 4 m2 

m-2 and above-canopy PPFD of nearly 600 umol m-2 s-1).  At this point the sunlit leaf area 

proportion (Fig.8c) and sunlit and shaded leaf level PPFD exponentially decline within the canopy 

(Fig.8d). 

            When the American Chestnut was included (i.e., ‘Pre-blight’), the isoprene emission 

followed similar successional dynamics, but the magnitude is much lower than the ‘Present’ forest 

(Fig.6a). At a later successional stage (300-500 year), the ‘Pre-blight’ forest isoprene emission 

was lower than the ‘Present’ forest by as much as 50%. This is mostly from isoprene-emitting 

species in the ‘Pre-blight’ forest being much less common than in the ‘Present’ forest (Fig. 6b). 

The presence of American Chestnut significantly suppresses the growth and dominance of 
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isoprene-emitting species (mostly Quercus spp.) in the pre-blight forest, as shown in Fig.2. These 

results are congruent with the hypothesis that the Chestnut blight increased the dominance of 

Quercus spp. and isoprene emissions (Lerdau et al., 1997). 

 

3.4 Discussion 

3.4.1 Forest compositional dynamics simulation in southeastern United States 

            The simulated successional changes resemble expected changes in forest composition, 

basal area, and stem density in the southeastern United States. The model’s reconstruction of 

historical forest composition with American Chestnut also reasonably reproduced the historical 

forest compositional change in the eastern United States caused by the Chestnut Blight. These 

results suggest that UVAFME-VOC v1.0 is able to simulate the dynamic changes of secondary 

temperate deciduous forests in the southeastern United States. This motivates applications of this 

model to simulate the temperate forest dynamics in the southeastern United States in response to 

anthropogenic disturbances [e.g., impacts of pollutant ozone on forest diversity change by Wang 

et al. (2016)]. 

As is often the case, more detailed model tests are limited by the lack of detailed long-term 

(century time-scale) forest records with the associated weather records. In addition, the forests in 

the eastern United States regenerated from farmlands that were abandoned after disturbance by 

European colonists (McEwan et al., 2011). However, it is seldom a simple succession process 

because of human disturbances and climate change (McEwan et al., 2011; Oliver, 1980; Pederson 

et al., 2014). This is a common challenge in the evaluation not only of this specific model but of 

individual-based models in general (Harrison and Shugart, 1990; MacPherson and Gras, 2016). 
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3.4.2 VOCs emissions simulation in southeastern United States 

            Results presented suggest that UVAFME-VOCs 1.0 can simulate forest isoprene emission 

capacity change in the eastern United States. Simulation by this model offered a clear dynamic 

pattern of isoprene emission capacity over long-term forest succession. This ecosystem behavior 

is totally determined by forest community change in terms of species composition and structure, 

indicating the essential role of forest systems themselves in determining VOCs emission capacity. 

Moreover, the application with this model—a test of the hypothesis of significantly enhanced 

isoprene emissions from the present forest compared with the forest prior to the Chestnut Blight—

clearly shows that ecosystem composition change plays an important role in determining 

ecosystems’ VOCs emissions. This conclusion to some extent is supported by the postulation from 

the current short-term field surveys or experimental studies (Purves et al., 2004; Valolahti et al., 

2015). The current widely used global and regional vegetation VOCs emissions model 

frameworks, e.g., MEGAN (Guenther et al., 2006, 2012), could benefit from including this 

community dynamical perspective. 

             Clearly, uncertainties still exist. First, long-term empirical data on VOCs emissions 

dynamics following ecosystem successional development are rare. Very recently, a simple, stable, 

and affordable method toward ecosystem-level long-term VOCs flux measurements was proposed 

(Rinne et al., 2016), potentially providing long-term data to better evaluate this model. Second, 

algorithms used in this current version of model for simulating light- and temperature-induced 

variations can be further improved (Guenther et al., 2009; Sharkey et al., 1999). Other factors 

influencing VOCs production, e.g., drought, nitrogen deposition, and CO2 elevation, could be 

useful future additions, as would consideration of VOCs chemistry within the stand canopy.  
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Certainly, the latter has been suggested to be important in quantification of actual forest VOCs 

emissions capacity (Bryan et al., 2015; Fuentes et al., 2000).  

3.4.3 Generality and implications of UVAFME-VOC 

             We did not fine-tune model parameters to meet the field observation.  Rather, general 

silvical properties and standard VOCs emission rate of the North America temperate tree species 

were used to implement the simulation. Although the evaluation of performance of this model was 

currently limited to the temperate deciduous forest in the southeastern United States, it could apply 

to other forests around the world. Individual-based gap models have been extensively verified, 

validated, and applied to simulate local-, landscape-, and regional-level forest dynamics in many 

environments (Shugart and Woodward, 2011).  With the recent technical advances in computer 

and remote-sensing infrastructures, a large-scale testing of individual-based forest models has 

become feasible (Shugart et al., 2015). Additionally, although this model currently only introduces 

the isoprene emission simulation, it provides a convenient framework to conduct simulations on 

other species of VOCs (e.g., monoterpenes). This is facilitated by the accumulating and readily 

available species-specific emission data of various VOC species around the world (e.g., Geron et 

al., 2000).  

             This individual-based model can be a powerful tool in studying the VOCs emissions 

dynamics by integrating individual metabolism differences, community, and ecosystem ecology.  

These are potentially important contributions to the over half a century of research on vegetation 

VOCs emissions. Global change agents, including, for example, rising CO2 level, climate change, 

nitrogen deposition, ozone pollution, biotic invasions, altered disturbance regimes, and land-use 

change, have modified and will continue to modify ecosystems’ composition and species diversity 

(Franklin et al., 2016).  How these changes can affect vegetation VOCs emissions because of 
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diversity change has only rarely been studied.  For example, UVAFME-VOC v1.0 has been 

applied to study forest-isoprene-ozone feedbacks (Wang et al., 2016).  A positive feedback loop 

between tropospheric ozone pollution and forests is simulated, which is mediated by favoring 

isoprene-emitting species because of their overall stronger resistance to ozone’s oxidative pressure 

(Wang et al., 2016). This feedback mechanism could maintain the ecosystem-level carbon fixation 

capacity in the face of increased ozone in the eastern United States (Wang et al., 2016).  

            Further, the sort of massive community-scale changes seen in the case of American 

Chestnut because of Chestnut Blight invasion are not uncommon in mid- and high-latitude forest 

systems. For instance, eastern hemlocks (Tsuga Canadensis), oaks (Quercus spp.), and other 

species have also been heavily impacted by pathogens and/or herbivores in North America (Orwig 

et al., 2002; Rizzo and Garbelloto, 2003).  In particular, a similar change is ongoing in both North 

America and Europe as the emerald ash borer (Agrilus planipennis) and, in Europe, the chalara 

fungus, (Hymenoscyphus fraxineus) wreak havoc on ash (Fraxinus spp.) populations (Poland et 

al., 2014; Thomas, 2016).  Fraxinus does not emit large amounts of VOCs, while several of the 

species likely to replace it, e.g., Populus spp. in higher latitudes and Quercus spp. in lower ones, 

are large emitters of isoprene (Harley et al., 1999; Lerdau and Gray, 2003).  Any replacement of 

Fraxinus by these genera will likely lead to large increases in system-level VOCs emissions and 

thus a large change in the troposphere’s redox potential.  Fraxinus also is more sensitive to ozone 

damage than Populus and Quercus (Landolt et al., 2000), which creates the possibility for a 

positive feedback where increases in these two genera lead to higher levels of VOCs emissions to 

the atmosphere and higher ozone concentrations, which, in turn, can accelerate the decline of 

Fraxinus. Estimating the extent, magnitude, and impacts of these changes requires a formal 
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modeling approach that explicitly considers species identity, and the model developed here should 

be considered. 

            Therefore, individual-based model, UVAFME-VOC v1.0, should be applied in studying 

global environmental change effects on forest VOCs emissions and the complex mechanisms 

underlying climate change-air quality feedbacks mediated by the vegetation, in particular the role 

of forest composition dynamics in influencing ecosystem-scale VOCs emissions. 

    

3.5 Conclusion 

            This work introduces the development, evaluation, and application of an individual-based 

forest VOCs emission model—UVAFME-VOC 1.0. With an explicit consideration of individual 

metabolic and functional differences and their interactions, this model simulates forest succession 

impacts on isoprene emissions in the southeastern United States. Results of this model imply that 

the disappearance of American Chestnut as a canopy tree from the Chestnut Blight resulted in a 

dominance of oak trees (Quercus spp.) and increased isoprene emissions in today’s forests. 

UVAFME-VOC provides a flexible framework to simulate not only isoprene but also other 

phytogenic volatile compounds from forests, and as an experimental system, could see widespread 

applications in studying feedbacks among global change, forest diversity, and atmospheric 

chemistry. 
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3.7 Supplementary matrials 
 

3.7.1 Appendix A  

Dynamics of forest carbon cycling processes 

           This model also simulated two major processes determining the carbon balance of forest 

systems, NPP (net primary production) and SR (soil respiration) (Fig.A.1). The forest NPP 

increased sharply to a plateau of around 8 tC ha-1 year-1 in about 50 years, after which it declined 

and eventually stabilized at around 6 tC ha-1 year-1. The soil respiration followed a similar 

trajectory, increasing to about 7 tC ha-1 year-1 at approximate year 100, and then declining and 

remaining at a level that was lower than the NPP. Therefore, the net ecosystem productivity (NEP) 

remained positive (though approaching nearly zero) during the 500-year simulation, which enabled 

the accumulation of forest carbon (Fig. A. 2). These simulated results were compared with rare 

independent field observation data. Empirical information gave a range of NPP from 3.8 to 7.9 tC 

ha-1 year-1 at around the year 40, which overlapped the simulation	(Huston et al., 2013). Further, 

the soil respiration observation with a value of 6.1 tC ha-1 year-1 matched the simulation as well. 

These comparisons with field observations suggest that this model captures the magnitude of forest 

system carbon cycling processes including NPP and SR. Moreover, the long-term dynamics of 

NPP, SR, and NEP are congruent with the hypothesis proposed by Odum (1969) and with 

experimental studies (e.g., Gough et al. 2008; Tang et al. 2014). The positive NEP in this work 

suggests the secondary forests in southeastern US act as a carbon sink. This is congruent with other 

studies showing the North America forests act as a carbon sink (Goodale et al. 2002; Pan et al. 

2011). All these evidence indicate UVAFME-VOC 1.0 demonstrates capability of linking the 

carbon biogeochemical processes with forest dynamics in the southeastern US. 
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Fig. A.1 Simulated carbon cycling processes—net primary productivity (NPP), soil 

respiration (SR), and net ecosystem productivity (NEP)—over 500-year simulation. Dotted 

lines denote empirical values of NPP and SR observed at around 40 year from Huston et al. 

(2013). 
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Fig. A.2 Total carbon stock (tC ha-1) dynamics of the forest system over the 500-year 

simulation. 
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Fig.A.3 Temperature and PPFD dynamics at daily and diurnal scales throughout the 500-

year simulation. 
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Fig.A.4 Diurnal isoprene emission dynamics from the simulated present forest at day 201 of 

the 300 year.  
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Fig.A.5 Sunlit and shaded leaf area changes over the 500-year simulation at day 201 of each 

year. 
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3.7.2 Full model documentation 

1 Model Structure 

            UVAFME-VOC  is an individual-based forest volatile organic compounds emission model 

build up on the state-of-the-art forest gap model UVAFME (University of Virginia Forest Model 

Enhanced) which can be traced back to the FORET gap model developed by Shugart and West in 

1977 (Shugart and West 1977). UVAFME-VOC is capable of simulating forest compositional and 

structural dynamics at a yearly time step by explicitly simulate each individual tree’s growth, 

mortality, and regeneration, competition among these individuals, and emergent system behaviors 

(e.g., carbon productivity and VOCs emissions) under the constraints of light, temperature, and 

soil water and nutrition on a range of spatial scales over long time periods. A simplified model 

structure is shown in Fig.1. Inputs required include species-specific parameters (primarily 

silvicultural traits quantifying tree geometry, growth, mortality, establishment, and responses to 

environment), site-specific information, and climate of precipitation and temperature. Major 

components of this model include modules of growth, mortality, and regeneration, as well as soil 

hydrology and biogeochemistry and climate. Outputs of tree number categorized into groups of 

different sizes, species-specific and total basal area and biomass (C & N), productivity, and soil 

respiration are usually used. 
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Fig.1 Schematic of model structure in terms of major model components and inputs and 

outputs. 

 

2. Individual tree structure 

            In UVAFME-VOC (and almost all other individual-based forest gap models), the geometry 

of an individual tree follows the assumptions as follows: The stem bole shape is assumed to be a 

simple cone, the branch volume above the clear branch bole height (CH) is assumed to be a cubic 

cone, the foliage is assumed uniformly distributing across the branch, the lateral root volume is 

assumed to be half of the branch amount, and the primary root volume is computed by extending 

the cone used to compute bole volume to the depth of the soil rooting zone. Moreover, these 

structural units are quantitatively linked by allometric relationships. Tree height (H) is a function 
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of the diameter at the breast height (DBH), which are used to calculate diameter at canopy height 

(DCH), while leaf area (LAI) is a function of DCH. See formulations in the following section. 

 

 

 

Fig.2 Individual tree geometric structure simulated in UVAFME. 

 

3. Simulated Processes 

3.1 Growth 

            UVAFME defines an individual tree’s growth (G) as an increment of the diameter at the 

breast height (130 cm), i.e. DBH (cm), at a yearly time step, which is computed by multiplying the 
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optimal growth (Gopt) by scalars of available light, temperature, nutrient, and soil moisture, 

following the FORSKA model (Leemans and Prentice, 1989): 

? = ?@AB ∗ C)C+CDCECF	 

 

?@AB = G ∗ HIJ ∗
1.0 −

HIJ ∗ J
HIJM ∗ JM

2.0 ∗ J + O ∗ HIJ ∗ P
QR∗DST
TMQ..U

 

 

where g (cm yr-1) is a species-specific scalar parameter of tree growth, s (m cm-1) is species-

specific parameter representing the slope of the linear regression between DBH and H at an initial 

height stage, H (m) is tree height, DBHm (cm) and Hm (m) is species-specific maximum tree 

diameter and maximum tree height, respectively, required as input, and fL, fT , fD, fF, and fN is light 

scalar, temperature scalar, drought scalar, flood scalar, and nutrient scalar, respectively. Tree 

height (H) is calculated based on the allometric relationship between height and diameter using 

the formulation from the FORSKA model (Leemans and Prentice, 1989): 

J = 1.3 + JW − 1.3 ∗ 1.0 − P
QR∗DST
TMQ..U  

The parameter g is calculated following (Shugart 1984):  

 

G =
4JW

(?!W
∗ ln 2 2 ∗ HIJW − 1

+
[

2
ln

9 4 + [ 2

4HIJW2 + 2[HIJW − [

−
[ + [2 2

[2 + 4[
∗ ln

3 + [ − [2 + 4[ 4HIJW + [ + [2 + 4[

3 + [ + [2 + 4[ 4HIJW + [ − [2 + 4[
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The parameter s is estimated by fitting the FORSKA H(DBH) formulation as listed above with the 

data calculated from FORET H(DBH), which is calculable because no similar parameter with s is 

required (Shugart 1984).   

 

3.1.1 Light scalar (fL) 

            Light scalar is calculated as: 

 

C) J = ]. ∗ 1 − P Q$^∗ _ T Q$`  

 

where c1, c2, and c3 are species-specific parameters determining the shape of the productivity-light  

relationship, among which c1 and c2 involve the asymptote and increase of the productivity–light 

curve and c3 is the shade-tolerance parameter from the ZELIG model (Urban et al., 1991) 

corresponding to the light compensation point. C1 is one value of 1.01, 1.04, 1.11, 1.24, and 1.49; 

C2 of 4.62, 3.44, 2.52, 1.78, 1.23; and C3 of 0.05, 0.06, 0.07, 0.08, and 0.09. The specific values 

of these three parameters correspond to species shade tolerance level from 1-5 (denoted by s and 

required as a species-specific, of course, input, and the lower level represents the stronger 

tolerance). I(H) denotes the available light at height H and is computed according to the Lambert-

Beer law (Monsi and Saeki 1953): 

a J = a 0 ∗ PQb)c_(T) 

where I(0) is light intensity right above the tree, k is light extinction efficient (0.4), and LAI(H) is 

the integrated leaf area above the height H. To calculate the available light for each individual tree, 

we first have to obtain the value of leaf area. One major assumption concerning leaf area is its 
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uniform distribution across branch above the clear branch bole height (CH, m). Leaf area (LAI) is 

calculated according to the ‘pipe model’ proposed by Shinozaki et al. (1964): 

d(a = H) ∗ H*J
2 

where DL is a species-specific constant quantifying the relation between leaf area and squared  

diameter at the clear branch bole, and DCH (cm) is the stem diameter at CH and calculated  

following: 

H*J = HIJ ∗
J − *J

J − 1.3
 

Evergreen and deciduous species within the same physiological shade-tolerance class have 

different competition abilities for regeneration and growth, related to the utilization of light by  

evergreen tree species in the period before deciduous leaf expansion (Yan & Zhao, 1995a,b). Based 

on Yan & Zhao (1995a, b), UVAFME allows deciduous tree species to shade sub-ordinate 

evergreen tree species for 80% of the length of the growing season. 

 

3.1.2 Temperature scalar (fT) 

            Temperature scalar is calculated as: 

 

C+ ee =
f − eeWgh

eeijk − eeWgh

l eeWmf − f

eeWmf − eeijk

n

 

 

m =
eeijk − eeWgh

eeWmf − eeWgh
 

 

o =
eeWmf − eeijk

eeWmf − eeWgh
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where dd (°C) is effective growing degree-days, and ddmax, ddmin, and ddopt are observed  

species-specific maximum, minimum, and optimum growing degree days, respectively. These  

growing degree-days are using a 5 °C base.           

Note that an alternative algorithm of temperature scalar (an asymptotic curve rather than 

parabolic) has been proposed and used to account for the concern of high temperature-induced 

drought effects. The work by Bugmann and Solomon (2000) is referred to for details. 

 

3.1.3 Nutrient scalar (fN) 

 

CF pq = 	o. + o2 ∗ pq + oU ∗ pq
2 

pq =
plr
pst

 

where b1, b2 and b3 are species specific parameters determined by the species-specific nutrient-

limitation tolerance level (i.e., input variable n). from the ZELIG model of Urban et al. (1991). NV 

is the ratio of nutrient supply (Nav, i.e., available nutrient, tN ha-1) to potential maximum nutrient 

requirement (Nrq, tN ha-1). 

            Nitrogen requirement (Nrq) is computed by: 

 

pst =
uiie HIJ + ee − uiie(HIJ)

vw/y

−
zPmC H*J + ee − zPmC H*J ∗ {(;a|

dw/y
 

where Wc/n is wood biomass C/N ratio, Lc/n is the leaf C/N ratio, RATIO is annual leaf and fine  
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root renewal ratio, wood (DBH) is the wood biomass (103 kg of C), leaf (DCH) is leaf and fine 

root biomass (103 kg of C), and, lastly, dd denotes the DBH or DCH increment without nutrient 

limitation at an annual time step, which is calculated as: 

 

ee =
eDST
eB

C) J C+C} 

 

            Available nitrogen (Nav) calculation is documented in section 3.6.3. 

 

3.1.4 Drought scalar (fM) 

            Drought scalar is calculated as: 

C} H =
H~ − H

H#
	;				

0	; 		H ≥ H~	

H < H~ 

 

where D is relative drought days and D0 is a species-specific value dependent on the species-

specific drought tolerance parameter, d. D is calculated during the growing season based on a 

simple three-layer bucket soil water model. Detailed methods are referred to the soil hydrology 

section. D0 is one value of 0.50, 0.45, 0.35, 0.25, 0.15, and 0.05, corresponding to the species-

specific drought tolerance level (d) 1-6 (with a larger number denoting lower tolerance). 

            The flooding effect is neglected in the current version, although it does have corresponding 

input parameter and relevant codes (which, however, does not work). 

3.2 Mortality 
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            Tree death in UVAFME is a stochastic process, which is simulated by calculating the 

annual mortality probability taking into consideration of both intrinsic mortality and environment-

induced mortality. 

            As regards the intrinsic mortality, species simulated are categorized into three groups with 

an assumption of 1%, 0.1%, or 0.01% of the individual trees being expected to reach their 

maximum life span (AGEmax), respectively. Using the maximum age, AGEmax, as a scaling 

parameter, the annual intrinsic death probability (∂) of a tree is computed as: 

Ç = 	
ePmkℎ

(?!Wmf
 

where death is a species-dependent parameter contingent on the species’ group (4.605--1%, 6.908-

-0.1%, and 11.5129—0.01%). As regards how these values are obtained, please refer to Shugart 

(1984). In the model, a parameter named old with values 1-3 is used to index these values. 

            The likelihood of mortality is further increased for slow growing trees. UVAFME defines 

slow growth as DBH increment less than 0.5 mm or less than 10% of the average increment over 

the tree’s life span. Species are categorized into five groups assuming a survival of 5,10,20,40, and 

80 more years with a probability 5%, respectively, once they become slow growing trees. Thus, 

the annual probability of death is 0.43, 0.40, 0.37, 0.34, and 0.31. In the model, a parameter named 

stress with values 1-5 is used to index these probability values. 

 

3.3 Establishment 

            The annual establishment of new trees in terms of the number, size, and species is also a 

stochastic process. UVAFME randomly selects the species that establish in a given year from the 

candidate species pool which is comprised by the species that can survive in a given environment 
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determined by the relative size of seedling bank (RSSB) of a species. RSSB (seedlings m−2) is 

calculated as: 

 

{ÑÑI = OPPezghGomhÖ ∗ C)C+CFCD 

 

where environmental multipliers reduce each species’ seedling-bank size, and seedlingbank  

(seedlings m−2) is updated annually by computing the natural decline of seedlings with the  

parameter NDE (annual seedling survival coefficient) and adding new seedlings from seeds and  

sprouts: 

 

OPPezghGomhÖ = OPPezghGomhÖ ∗ pH! + OjÜiákghG + OPPeomhÖ ∗ CdC;CpCH 

 

where seedbank (seeds m−2) is also updated annually by adding new seeds from local tree seed  

production and any seeds for invading species from outside the plot and by decreasing the seeds  

with seed mortality (quantified by a parameter of annual seed survival coefficient--NDS): 

 

OPPeomhÖ = OPPeomhÖ ∗ pHÑ + ghàmePÜ 

 

            Parameters mentioned above, including invader (seeds m−2), seedbank (seeds m−2), 

sprouting (seedlings m−2), NDE, and NDS, can be defined and estimated according to species-

specific functional traits including seed size, shape, production amount and frequency of seeding,  

as well as species adaptations to environmental stress by sprouting and seed banking. 

Please note that UVAFME can also simulate the disturbances from wind and fire toward the  
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seed bank and seedling bank, which, however, is usually not considered in our application of  

this model and not described here. 

 

3.4 Biomass Volume, Carbon and Nitrogen 

            Tree biomass (C) is comprised of four parts: stem, twig, leaf, and root, of which the root 

consists of lateral root, root ball, and fine root.  

            Stem biomass (tC) and twig biomass (tC) are calculated as: 

 

ÑkPWnâ@MlR =
k* ∗ IH

3
∗ H*J2 ∗ J ∗ 0.9 

;ugGnâ@MlRR =
k* ∗ IH

0.34
∗ H*J2 ∗ (J − *J) 

 

where tC = 3.92699e-5, BD is species-specific wood density (tC m-3), H is tree height, and DCH  

is the diameter at the clear branch height.  

              Leaf biomass is calculated as: 

 

dPmCnâ@MlRR = d(a ∗ dä( 

 

where LAI is leaf rea calculated as above and LMA is species-dependent parameter of leaf biomass  

per hector (tC ha-1). Note in the model a different variable name, L_C (literally means leaf area to  

carbon), is used. 

              Fine root biomass is assumed to be equal to leaf biomass. Primary (seminal) root biomass  

is calculated as: 
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{iikomzznâ@MlRR = ÑkPWnâ@MlRR ∗
{iik_ePjkℎ

J
 

 

where Root_depth intuitively denotes the root depth and H denotes the tree height. The lateral root  

biomass is computed following: 

 

dmkPÜmzÜiiknâ@MlRR = 0.5 ∗ ;ugGnâ@MlRR 

 

            Biomass (N) calculations are totally based on the plant stoichiometry (i.e. C/N ratio) but 

with a differentiation between leaf and all remaining parts (stem), and the leaf is further 

distinguished between conifer and deciduous trees. As for the stem and branch, a C/N ratio of 450 

is used throughout the model. Leaf C/N is 40 and 60 for deciduous and conifer trees, respectively. 

 

3.5 Volatile organic compounds (VOCs) emissions 

             Ecosystem-level isoprene emission, FISO, is calculated as a summation of the emissions 

from each individual tree at five canopy layers with a differentiation between sunlit and shaded 

leaves at an hourly time step according to the widely used empirical approach developed by 

Guenther et al. (1995, 2006): 

 

ç_&# = !& g *+ g 	[dRèy gê 	*) gê + dRëlíì gê 	*) gê ](1)

ï

ñó.

y

âó~

 

 

where i denotes one of n trees in the forest, j denotes one of five layers of each individual tree’s  

canopy, Es represents the species-specific standard leaf-level emission rate of isoprene, Lsun and  
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Lshade represents sunlit and shaded leaf area, and *+ and *) account for light- and temperature- 

induced variability, respectively, which are calculated according to Guenther et al. (1995): 

 

*+ =
exp

C7.	 T − ;&
R	;&	T

1 + exp
*+2	 T − T>

R	;&	T

(2) 

*) =
α	*).	L

1 + α2L2
(3) 

 

where R=8.314 J K-1 mol-1, CT1 = 95,000 J mol-1, CT2 = 230,000 J mol-1, TM = 314 K, TS = 303 K,  

α = 0.0027, and CL1 = 1.066. T is hourly leaf temperature, which is assumed to be equal to hourly  

air temperature and constant through the canopy. L is hourly leaf-level PPFD (µmol m-2 s-1) at 

each canopy layer for sunlit and shaded leaves of each individual tree obtained with an explicit 

computing of light behavior within the stand and tree crown with a distinction between direct beam 

and diffuse radiation considering the shading by taller and surrounding trees, interception, 

reflection, scattering, and absorption. Please refer to Wang et al. (2017) for details. 

 

3.6 Soil Hydrology and Biogeochemistry 

3.6.1 Three-layer soil system 

            In UVAFME, the soil system is simplified by assuming having three distinctive layers: 

organic layer (Ao), active layer (A), and base layer (BL) (Fig.3). Soil hydrological processes and 

soil organic matter turnover all occur in this three-layer system. With basic soil properties of field 

capacity, permanent wilting point, soil depth, and initial soil system conditions in terms of water 

content and carbon and nitrogen contents at these three different layers being determined by model 
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inputs, the soil system conditions are successively influenced by rainfall and organic matter input 

from plant detritus (at a yearly step) and evapotranspiration and decomposition (at a daily step). 

See Pastor and Post (1985), Post and Paster (1996), Thornton (1998) for more details. 

 

 

 

Fig.3. Schematic of UVAFME soil system and major processes simulated. 

 

 

3.6.2 Hydrology 

            Soil hydrological processes are all calculated at a daily time step. Overall, water available 

to be allocated in the soil system is firstly calculated by subtracting from rainfall three items 

including potential evapotranspiration (PET), tree crown interception, and land surface runoff 

because of slope. Then, this available water is allocated across the three layers by the order of AO, 
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A, and BL based on soil field capacity of active layer (A) and maximum water content in the 

organic layer (Ao) and base layer (B). Water content of the three layers, actual evapotranspiration, 

and runoff are calculated.  

            First, potential evapotranspiration (PET) is fundamental in determining the soil hydrology,  

and is computed at a daily time step according to the 1985 Hargreaves equation (Hargreaves & 

Allen, 2003) following: 

 

ò!; = Jw@ìôô ∗ ;Mlö − ;Mây ∗ ;Mìly + Jlíí@y ∗ {l 

where Tmax, Tmin, Tmean are maximum, minimum, and average temperature, respectively, 

H_coeff = 0.000093876, H_addon = 17.8, and Ra is extraterrestrial radiation (mj/m2/day). 

            The amount of rain intercepted by canopy (LAIloss) is calculated as: 

d(aõ@RR = Wgh d(aúMlö − d(aú~ , Ümgh  

where LAIwmax is the maximum water that a tree canopy can hold, and is calculated as: 

d(aúMlö = d(a ∗ d(aMlö 

where LAI is the leaf area index and updated at an annual time step, and LAImax is a constant of  

0.15. 

            The amount of water loss resulting from a slope is calculated as: 

OzijPõ@RR = Ümgh − d(aõ@RR (
OzijP

90
)2 

where slope is the site slope required as an input. 

            Next, the rainfall after subtracting the canopy interception and slope-induced loss is 

compared with potential evapotranspiration. If larger, the net amount of water is allocated across 

the three layers, and the corresponding actual evapotranspiration and runoff are calculated. If 

smaller, the water already stored in the canopy and soil will lose, and corresponding actual 
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evapotranspiration and runoff are calculated. Detailed procedures concerning the computation of 

soil water contents in the three layers are skipped. However, the soil active layer (A) field capacity 

(cm) and permanent wilting point (cm), which are required as model inputs, are used here for 

water content calculations. Please note the following is a detailed description of water table 

calculation and soil base layer water content before evapotranspiration occurs.   

            With known values of soil water content, drought days are further calculated by a simple 

comparison of soil active layer (A) water content with a soil maximum drying parameter (in the 

model, named max_dry_parm with a constant of 1.0001). Two categories of drought days, 

minimum drought days and maximum drought days, are calculated based on the active water 

content computed from permanent wilting point and field capacity, respectively. 

 

3.6.3 Litter and soil organic matter turnover 

            Carbon and nitrogen pool sizes in each layer are balanced by output determined by organic 

matter decomposition and input from tree detritus (litter or fine roots) or downward transport 

across layers (Note that this model does not consider N in the base layer). Decomposition is 

simulated using first-order linear decay rates that are modified by environmental scalars 

(temperature and moisture). The amount of carbon decomposed into CO2 is assumed to be 

proportional to the soil C stock, and is calculated following: 

{w@^ = *~ ∗ Ö ∗ C+ ∗ C} 

where C0 is the carbon pool size, k is proportion of organic C that is respired as CO2, and fT and fM 

are temperature and moisture scalar, respectively, for which they are all layer-dependent. Nitrogen 

decomposed in the three layers is computed by dividing the Rco2 by the total soil C/N ratio in the 
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corresponding layer. See more details for such a modelling strategy (its derivation and underlying 

assumptions) in Jenkinson et al., (1987) and Parton et al., (1987). 

            Organic matter input into the soil system includes three fluxes: leaf and fine root turnover, 

branch litter fall, and individual tree death. Leaf and fine root return to litter layer (Ao). The 

increase in clear branch bole height (CH) generates branch litter fall (and the associated relative 

decline of the diameter at the clear branch bole height, DCH). These organic matter inputs do not 

affect the soil base layer.  

            The soil CO2 emission (respiration) is a summation of CO2 emissions from the three layers: 

{R@âõ = {w@^ cû + {w@^ c + {w@^ S)  

            Organic layer (AO): C and N input in this layer are determined by the input of plant input. 

kAo = 5.24e-4 

fT = 3
ü†°.¢
°¢ ; 	; ≥ 5	℃

0								; 		; < 5	℃
 

C} = Wmf 1 − 1 −
WigOkáÜP

0.3

2

, 0.2  

            Active layer (A): C and N input in this layer are dependent on both the plant input and the  

downward transport from the above Ao layer. 

kA = 1.24e-5 

C+ = 2.5
+Q..~
.~ ; 	; ≥ 5	℃

0												; 		; < 5	℃
 

C} = Wmf 1 − 1 −
WigOkáÜP

0.8

2

, 0.2  

            Soil available nitrogen, as mentioned above for an eventual calculation of the nutrient  

scalar in section 3.1.5, refers to the nitrogen in this layer, and is calculated following: 
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plr =
{w@^ c
($/F

∗ 	Wmf
($/F − ($/F(~)

($/F
, 0.5  

 

where ($/F and ($/F(~) refer to the active layer total C/N ratio and a constant of 4.0, respectively. 

            Base layer (BL): Carbon and nitrogen input into this layer are totally determined by the 

downward transport from the above layer A. Moreover, this layer’s decomposition is independent 

of soil moisture. 

kBL = 2.74e-7 

fT = 2.5
ü†°.¢
°¢ ; 	; ≥ 5	℃

	0										; 	; < 5	℃
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4. Input data 

4.1.1 Site geospatial and soil information 
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4.1.2 Species parameters 

 

 

4.1.3 Climate data 

            Mean precipitation, mean maximum and minimum temperature, and their standard 

deviations of each month are required. Therefore, historical data of monthly meteorological 

precipitation and temperature over the past several decades are usually acquired from, e.g., stations 

of World Meteorology Organization. For example, Wang et al. (2017) used thirty years of 

meteorological data for monthly precipitation (mm) and monthly maximum and minimum 

temperature (°C) ranging from 1981 to 2010 which were obtained from the NOAA (National 

Oceanic and Atmospheric Administration) meteorological station at Oak Ridge ATDD, 

Tennessee, USA (GHCND: USW00003841; Latitude/Longitude: 36.0028°/-84.2486°; Elevation: 

275.8 m) to compute monthly average precipitation, monthly maximum and minimum 

temperature, and their standard deviations. 

Category Symbol Unit Description
evergreen ~ Growth form: either evergreen (1) or deciduous (0)
AGEmax yr The maximum ages a species can reach
DBHmax cm The maximum diameter a species can reach
Hmax m The maximum height a species can reach
s ~ The initial relationship between tree height and diameter
D_L ~ The relationship between leaf area and the squared diamter at the clear branch height

Growth g ~ Tree growth scalar
old ~ Parameter (1-3) assigning the species into three groups with differing intrinsic mortality probability
stress ~ Index (1-5) referring to species with differing mortality probability when growth deficiency is reached
seed seeds m^-2 Annual number of seeds produced by a species in the plot
sprout sprouts m^-2 Annual number of sprouts produced by species in the plot
NDE ~ Annual seed survival coefficient for the seed bank
NDS ~ Annual seedling survival coefficient for the seedling bank
invader seeds m^-2 Annual number of seeds entering the plot
DEGDmax ºC Defines the maximum growing degree days (5 ºC basis)
DEGDopt ºC The optimum growing degree days (5 ºC basis)
DEGDmin ºC The minimum growing degree days (5 ºC basis)
l ~ Shade tolerance level: tolerance decreases from 1-5
d ~ Drought tolerance level: tolerance decreases from 1-6
f ~ Flood tolerance level: tolerance decreases from 1-6
n ~ Nitrient tolerance level: tolerance decreases from 1-3
fire ~ Fire tolerance level: tolerance decreases from 1-6
L_C tC ha^-1 Specific leaf area ratio used to calculate leaf biomass from leaf area
bulk tC m^-3 Stem bulk density used to calculate stem biomass from tree volume

Table 2 Species parameters (silvics) required as inputs.

Biomass

Geometry

Mortality

Establishment

Response to 
stress 
factors
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5. Modelling protocol 

            Because of the stochastic nature, UVAFME-VOC and all other individual-based gap 

models intrinsically simulate dynamics of a landscape of indeterminate size sampled with a system 

of independent sample plots(patches) with the same climate and soil conditions. An average of the 

simulation resulting from those independent plots corresponds to a shifting-mosaic steady-state 

landscape (Bormann and Likens, 1979). 

              According to the convergence analysis of gap model conducted by Bugmann et al. (1996), 

150–200 replicate plots are needed to provide a sample which approximates a statistically quasi-

stable landscape response of the forest landscape. Therefore, with a Monte Carlo simulation this 

model is usually run for 200 independent plots of a size of 500 m2 starting from bare ground (i.e. 

gaps with ample active seeds where secondary succession occurs, and in field such gaps can be 

created from the death of a canopy-dominant tree resulting from wind, fire, or other disturbances) 

and lasting for 500 years. The model results are usually analyzed with the average of these 200 

runs. 
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Chapter 4 Forests and ozone: productivity, carbon storage, and feedbacks 

 

4.1 Introduction 

            Interactions between forests and the atmospheric pollutants are a crucial component of 

Earth System Science, but the impacts of changes in tree-species composition on ecosystems and 

the atmosphere are not yet well understood. Most long-term efforts to examine pollutant 

interactions with forests have relied on models based on process-level studies at biochemical and 

physiological scales (Sitch et al. 2007; Felzer et al. 2005; Lombardozzi et al. 2015). These models 

do not explicitly consider variability among species, notably the impacts that growth and 

competition among species can affect system-level metabolism. Using an individual-based 

ecosystem model, we examined how species-specific variability in responses to the most important 

atmospheric pollutant in North America, ozone (O3) (Felzer et al. 2005), interacts with these 

higher-order processes and modifies functions at the community, ecosystem, and biogeochemical 

scales. 

  At cellular-to-organ scales, the impacts of O3 on plants are relatively well understood — 

ozone causes cellular damage; induces reduced stomatal conductance; eventually decreases carbon 

dioxide (CO2) assimilation rates and produces visible leaf injury (Wittig et al. 2007; Ainsworth et 

al. 2012; Lombardozzi et al. 2013). These effects often accelerate senescence, diminish leaf area 

and biomass, and reduce productivity (Wittig et al. 2007; Ainsworth et al. 2012; Reich et al. 1987; 

Wittig et al. 2009). These responses promote the inference that O3 pollution should reduce forest 

ecosystem productivity and suppress terrestrial carbon sequestration (Sitch et al. 2007; Felzer et 

al. 2005; Lombardozzi et al. 2015).  
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            This inference ignores the differences among tree species in their sensitivity to O3 (Wittig 

et al. 2007, 2009). These differences in sensitivities potentially mediate competitive interactions, 

giving O3-tolerant species that are competitively inferior in low-O3 environments advantages in 

high-O3 situations (Ainsworth et al. 2012; Matyssek et al. 2010; Zak et al. 2007). Understanding 

this complex problem requires consideration of both the diversity of species and sizes of trees in a 

forest, including their metabolic properties and competitive interactions.  Such insights are 

particularly difficult to obtain in forests because of the long generational times that are associated 

with trees. Some studies have tried to conduct ecosystem-scale forest O3 experiments in the context 

of free-air carbon enrichment (FACE) experiments, but logistical limitations have required these 

studies to focus on a limited set of species and for a relatively short time period (Matyssek et al. 

2010; Zak et al. 2011; Talhelm et al. 2014).   

The forest response to ozone is a complex mixture of the responses of individual trees of 

different species and sizes.  The homogenization of this complexity can be lost in the aggregation 

necessary to construct ordinary-differential-equation-based process-models of ecosystem 

dynamics. An approach to overcome this difficulty is to simulate each of the trees in a forest 

ecosystem using individual-based models (IBMs) (Shugart 1984; Grimm et al. 2005).  Here, we 

use a class of IBMs known as gap models to study the complex relationships among species-level 

variability in growth, ozone sensitivity, and ecosystem processes.  

            Gap models are IBMs that simulate growth, mortality, and regeneration of all individual 

trees in a ~0.10 ha plot in a forest, as well as their competition for light and other resources (Shugart 

1984). Such models have a rich history in community ecology (Shugart and Woodward 2011). 

Recent advances in computational power have allowed current versions of these models to 

explicitly simulate compositional and structural dynamics and to link these dynamics to ecosystem 
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and biogeochemical processes.  This study uses UVAFME-VOC (University of Virginia Forest 

Model Enhanced-Volatile Organic Compounds; Wang et al. 2017) to simulate the successional 

dynamics of species composition and structural change of a typical temperate deciduous forest in 

the southeastern USA, a region that is well studied in terms of forest succession and whose 

component species have been characterized with respect to their O3 sensitivity and competitive 

relations (McLaughlin et al. 2007).  

 

4.2 Methods 

4.2.1 Description of UVAFME 

            UVAFME-VOC simulates the growth, death, and regeneration of each individual tree 

annually on a 1/20 ha plot.  Its dynamics are constrained by temperature, light, soil moisture, soil 

nutrient, wind, and fire conditions. Competition among trees for light, nutrient, and water resources 

are also included. The community dynamics and composition, including tree number of each 

species, basal area, leaf area, litter carbon and nitrogen, and biomass carbon and nitrogen, can be 

determined from processing the sizes and species of individual trees, which are computed annually 

in the model. The soil carbon, nitrogen, and water dynamics, along with soil carbon and nitrogen 

storage, soil respiration, and evapotranspiration, are calculated as state variables. These parameters 

include species-related parameters (quantifying species’ fundamental silvics and responses to 

environmental factors) and site conditions (i.e., local soil physiochemical properties and 

meteorological temperature and precipitation).  

4.2.2 Coupling with isoprene emission model 

            The canopy of each tree of an isoprene-emitting species is divided into five layers. Hourly 

isoprene emissions from sunlit and shaded leaves of each layer are determined by leaf area and 
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standard emission rate, and constrained by hourly air temperature and leaf-level PPFD 

(photosynthetic photon flux density). The sunlit-leaves flux and the shaded-leaves flux sum to the 

hourly flux, which can be added together to obtain the daily flux (mg m-2 day-1) for each tree.  The 

sum of isoprene emission of each tree is the canopy isoprene flux.  

            Emitting species and their standard emission rates are according to Geron et al. (2001) 

(Supplementary Table 1). Leaf area of UVAFME changes annually and we assume that the leaf 

area during July is constant. The leaf area is assumed to be uniformly distributed for each tree in 

the UVAFME. 

            Temperature-dependency algorithm of isoprene emission (Guenther et al. 1995) is: 

*+ =
exp

C7.	(T − ;&)
R	;&	T

1 + exp
*+2	 T − T>

R	;&	T

 

where R=8.314 J K-1 mol-1, C7. = 95,000 J mol-1, *+2 = 230,000 J mol-1, T> = 314 K, and ;& = 

303 K. T is leaf temperature, which is assumed to be equal to hourly air temperature and through 

the canopy. Hourly temperature is calculated from daily minimum and maximum temperature, the 

previous-day maximum temperature, and the following-day minimum temperature (see 

Supplementary Note) (Goudriaan 1994). 

            Light-dependency algorithm (Guenther et al. 1995) is: 

*) =
α	*).	L

1 + α2L2
 

where L is leaf level PPFD (µmol m-2 s-1), α=0.0027, and *). = 1.066. The hourly leaf-level PPFD 

at each canopy layer for sunlit and shaded leaves (the distribution of sunlit leaf area within a 

canopy can be described by an exponential model analogous to Beer’s law with the extinction 

coefficient for direct beam but without the light intensity multiplier) of each isoprene-emitting tree 
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is achieved by three steps of calculations: First, above-forest stand PPFD is obtained; second, 

considering the shading by taller and surrounding trees, the light intensity above each isoprene-

emitting tree within the forest stand is then calculated; and, third, the sunlit-leaf area, shaded-leaf 

area, and the corresponding PPFD on sunlit and shaded leaves at each canopy layer for each 

isoprene-emitting tree are calculated. In detail, direct beam and diffuse PPFD above the forest 

stand are calculated from incoming extraterrestrial solar radiation using an atmospheric 

transmissivity value of 0.6.  Light intensity at each canopy layer within the canopy are determined 

by Beer’s law with different extinction coefficients for direct beam and diffuse light based on an 

assumption of spherical leaf angle distribution with accounting for light reflection and scattering. 

Light intensity on a shaded leaf is from both incoming diffuse light and scattered light from the 

direct beam. For more details concerning calculation of the sunlit and shaded leaf area and PPFD 

level, please refer to MEGAN 2.1 (Guenther et al. 2012) and Goudriaan (1994).  

4.2.3 Input parameters estimation 

            Thirty-two species native to the southern Appalachian region in USA, including both 

deciduous and coniferous trees, are simulated. Twenty-four parameters required as inputs for each 

species were estimated (Supplementary Data 1). Specifically, wood bulk density values were from 

a global wood density data compiled by Zanne (2009). Species response to nutrient availability is 

according to Weinstein (1982). All the remaining are estimated according to Fowell (1965) and 

Hardin et al. (2001). Thirty-year meteorological data of monthly precipitation (mm) and monthly 

maximum and minimum temperature (°C) ranging from 1981 to 2010 were obtained from a nearby 

NOAA (National Oceanic and Atmospheric Administration) meteorological station, Oak Ridge 

ATDD, Tennessee, USA (GHCND: USW00003841; Latitude/Longitude: 36.0028°/-84.2486°; 

Elevation: 275.8 m) to compute monthly average precipitation, monthly maximum and minimum 
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temperature, and their standard deviations. Additionally, soil-related parameters including organic 

layer carbon and nitrogen, active layer carbon and nitrogen, and base soil carbon are estimated 

according to Miegroet et al. (1994) and Iversen et al. (2012). Default values of 25 cm and 12.5 cm 

were used for soil field capacity and soil permanent wilting point, respectively.   

4.2.4 Modelling O3 effects on growth 

            To incorporate the O3 effects on tree growth into UVAFME, we first classify the 32 species 

into three categories based on their relative sensitivity to O3 stress: resistant, intermediate, and 

sensitive (Supplementary Table 1). This categorization derives from the current literatures 

including review studies (Wittig et al. 2007; Reich 1987; Wittig et al. 2009; Krupa et al. 1989; 

Coulston et al. 2003) and reports on individual species (Davis et al. 1992; Tjoelker et al. 1993; 

Samuelson et al. 1994; Lawrence et al. 1996; Chappelka et al. 1997; Weinstein et al. 2001; Schaub 

et al. 2003). A growth reduction of 0, 10%, and 20% is exerted on resistant, intermediate and 

sensitive species, respectively (For a validity check of these specific reduction values, see 

Supplementary Fig. 5). 

4.2.4 Simulation methods 

       We apply a Monte Carlo simulation of a landscape of indeterminate size sampled with a 

system of independent sample plots with the same climate and soil conditions. Therefore, the 

average of the simulation corresponds to a shifting-mosaic steady-state landscape. An analysis of 

convergence of average species-specific biomass values finds that 150–200 replicate plots are 

necessary to provide a sample which approximates the landscape response of the forest (Bugmann 

et al. 1996). Therefore, the model is run on a plot size of 500 m2 starting from bare ground and 

lasting for 500 years for 200 independent plots. All the results presented are the average of 200 

such runs. 
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4.3 Results 

            The simulated successional dynamics of this temperate deciduous forest over 500 years 

involve changes in 10 abundant species and 22 other species (Supplementary Fig. 1). Initially for 

a forest succession from an open plot, the ‘other’ species category, mostly composed of pioneer 

species, dominates the forest with approximately 50% of the total biomass (Figure 1). Soon, both 

Acer rubrum and Liriodendron tulipifera become increasingly important, but A. rubrum eventually 

loses to the larger, faster-growing L. tulipifera trees, which persist and become dominant. After L. 

tulipifera declines over time, trees of four shade-tolerant oak species (Quercus alba, Q. velutina, 

Q. rubra, and Q. prinus) become increasingly important, together accounting for approximately 

75% of the stand biomass at year 500.  The composition of the forest stabilizes and is eventually 

dominated by aforementioned oaks, along with L. tulipifera, and two maples (A. rubrum and A. 

saccharum). Correspondingly, total biomass becomes relatively stable starting around year 100 

(Figure 1). The simulated successional change resembles expected forest composition change in 

the southeastern USA (Shugart 1984). 

            When O3 impacts on growth and competitive ability are included, the compositional 

changes differ from the case when O3 impacts are absent (Figure 2). Generally, O3-sensitive 

species have lower biomass when exposed to O3 stress over succession (e.g., L. tulipifera and A. 

rubrum), but A. rubrum has almost same biomass at year 100 as the control case (Figure 1). For 

species with an intermediate O3 sensitivity (e.g., A. saccharum and Q. velutina), biomass can be 

enhanced rather than diminished early in the stand dynamics. For resistant species (e.g., Q. alba), 

biomass is significantly enhanced by O3. An individual’s response to O3 is not absolutely 
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determined by its intrinsic O3 sensitivity, and it can be modified through interactions with other 

species within the community (e.g., Matyssek et al. 2010).  

            The differential sensitivity to O3 and release from competitive suppression result in a 

compensatory response from O3-tolerant species, with the result that forest biomass does not 

decline over time under high O3 conditions, although it is lower initially (Figure 1). Forest carbon 

storage is also not suppressed by O3, and it gradually increases over time because of the 

unsuppressed net ecosystem productivity (Supplementary Fig. 2). These results differ from the 

logical inference emerging from coupled climate-biogeochemical cycling models (e.g., Felzer et 

al. 2005; Lombardozzi et al. 2015) that do not include the species-specific individual-based 

metabolism and competitive interactions. 

            An important source of metabolic variation with respect to O3 in forests is the occurrence 

of isoprene-emitting taxa.  Isoprene from forest trees dominates the annual global volatile organic 

compounds (VOCs) flux into the atmosphere (Guenther et al. 2006, 2012). Isoprene contributes to 

tropospheric O3 formation and aggravates O3 pollution under conditions of moderate to high 

nitrogen oxides (Sharkey et al. 2014).  Not all tree species, however, emit isoprene. About one 

third of tree species produce isoprene in both the eastern USA and tropical forests; low diversity 

boreal forests also consist of emitters (e.g., spruce and aspen) and non-emitters (e.g., pine) (Lerdau 

2007). There are 10 isoprene-emitting species identified in this simulated forest (Supplementary 

Table 1).  

            We examined the species composition change in terms of isoprene-emitting species. 

Because isoprene-emitting species tend to be better protected against atmospheric oxidative 

pressure (e.g., Sharkey 1995; Vickers et al. 2009; Loreto and Velikova 2001), the proportion of 

isoprene-emitting species in the simulated forest increases significantly from 60% to 80% under 
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O3 stress (Figure 3a). Among the emitting species, ‘other’ species represents a high percentage 

(~50 %) at the beginning of the succession (Supplementary Fig. 4). However, these species are 

almost completely replaced at about 60 years by four isoprene-emitting oak species (Q. alba, Q. 

velutina, Q. rubra, and Q. prinus).  From these simulations, tropospheric O3 pollution modifies 

forest composition and favors isoprene-emitting species. At the same time, tropospheric O3 

pollution engenders a decline of forest biodiversity as proposed earlier (Lerdau 2007). 

            We simulated the isoprene emission from this forest to investigate these implied feedbacks. 

Isoprene flux increases sharply within the first 200 years of compositional dynamics, and remains 

relatively stable with a slightly decline over the remaining simulation with some inter-annual 

variability (Figure 3b). Emitters are often shaded by non-emitting species (e.g., L. tulipifera) early 

in succession and are then more exposed to light when they eventually become canopy dominants, 

which is indicated by, for example, the change of sunlit leaf area proportion and light extinction 

for a Q. alba tree’s canopy at 10 and 300 years. We also calculated the dynamics of sunlit versus 

shaded leaf area index (LAI), and the corresponding isoprene flux initially increases and then 

stabilizes. The sunlit LAI is small relative to shaded LAI, but the sunlit leaf-derived flux always 

dominates in its contribution to the total isoprene flux.  It accounts for ~70% of the isoprene flux 

in the later successional forest. The contribution to emission from early successional species is 

initially large but declines quickly (Supplementary Fig. 4). As succession progresses, the isoprene 

flux becomes dominated by the aforementioned four oaks (Q. alba, Q. velutina, Q. rubra, and Q. 

prinus). Dynamic change in forest composition significantly alters the simulated isoprene flux 

under elevated O3 conditions (Figure 3b).  On average, the isoprene flux is increased by 50% (from 

80 mg m-2 d-1 to 120 mg m-2 d-1) under O3 stress. 
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4.4 Discussion            

These simulations suggest that O3 pollution does not necessarily cause reduced forest 

productivity or carbon storage.  The FACE study by Zak et al. (2011) which included both O3-

tolerant and –sensitive species or genotypes and reported unsuppressed net primary productivity 

after long-term fumigation, supports this conclusion. In contrast, the earlier modeling studies that 

have found such reductions (Sitch et al. 2007; Felzer et al. 2005; Lombardozzi et al. 2015) have 

explicitly not included species-specific effects and thus have not produced these compensatory 

responses. One would expect agricultural systems, which lack the interspecific dynamics and 

plant-size differences simulated here, to feature the O3-generated productivity reductions 

(Ainsworth et al. 2012).   

Previous comparative work on managed and unmanaged systems has measured the effects 

of forest composition on isoprene emissions27, and the results described here are congruent. In 

forests, enhanced isoprene emission arising from species-composition changes represents a 

potential positive feedback loop. If O3 tolerance is linked to isoprene production, as has been 

suggested (e.g., Sharkey 1995; Vickers et al. 2009; Loreto and Velikova 2001), these simulations 

of temperate deciduous forest in southeastern USA can be extended to other types of forests 

(tropical and boreal forests) with global-scale implications.   

Three important implications emerge from this study. The first is that community 

dynamics, in particular compensatory responses and competitive release, suggest that O3 may not 

play a substantial role in depressing productivity and carbon storage at ecosystem and landscape 

scales.  Second, many other large-scale environmental perturbations that are occurring today also 

have species-dependent effects, e.g., rising CO2 concentrations, increasing temperatures, and 

nitrogen deposition (Mooney et al. 1987; Bazzaz 1990; Lerdau and Slobodkin 2002; Rudd et al. 
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2011).  For large-scale environmental perturbations that modify interactions among individual 

plants, changes in competitive relations can induce compensatory (or, potentially, synergistic) 

responses not inferred from aggregated models. Moreover, how these factors act together to affect 

the terrestrial ecosystems are far more important. Third, the ozone-diversity-isoprene emission 

feedback suggests connectivity between species-specific metabolism and atmospheric chemistry.  

This has only rarely been demonstrated (Hickman et al. 2010), but it implies the possibilities for a 

diverse array of interactions between the biosphere and the atmosphere.  Future ecological and 

biosphere-atmosphere research should examine explicitly, rather than ignore by design, the 

potential for such species-specific impacts.  
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Supplementary Figure 1 Succession of the deciduous forest over 500 years without O3. The 

vertical distance between two lines represents the percentage of total biomass comprised by each 

species. The ‘other’ species refers to all the remaining 22 species except for the 10 listed. Red 

maple- Acer rubrum, sugar maple-Acer saccharum, Bitternut hickory-Carya cordiformis, Yellow 

poplar-Liriodendron tulipifera, beech-Fagus grandifolia, white oak-Quercus alba, chestnut oak-

Quercus prinus, red oak-Quercus rubra, and black oak-Quercus velutina. 
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Supplementary Figure 2 Forest carbon stock and flux changes over succession due to O3. Forest 

carbon (biomass and soil carbon) dynamics over succession (dark and red line denote without O3 

and with O3, respectively) (A). Forest NPP (net primary productivity, red), soil respiration (blue), 

and NEP (net ecosystem productivity, green) responses to O3 over the succession (B).	
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Supplementary Figure 3 Dynamics of sunlit leaf area fraction and sunlit and shaded leaf-level 

PPFD (photosynthetic photon flux density) profile. Sunlit leaf area fraction gradient (A, B) and 

sunlit leaf-level and shaded leaf-level PPFD changes (C, D) within the canopy of only one tree of 

Quercus alba, which is randomly chosen from the simulated forest stand at 10 year (A, C) and 300 

year (B, D). Values represent the 13:00 of day 201 in each year.  The negative axis values mean 

increased canopy depth. The light levels change shown by the two trees of the same species at two 

different stages of the forest stand development clearly shows that because of forest composition 

and structure change the shade-tolerant species (here Quercus alba) will become dominant in the 

forest, enabling them to receive more light. 	
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Supplementary Figure 4: Relative contribution to total isoprene emissions by individual species 

without O3 pressure. The interval between two lines represents the percentage of total isoprene 

emissions comprised by, from upper to bottom, other isoprene-emitting species, black oak, red 

oak, chestnut oak, and white oak, respectively. Note the biomass change of these isoprene-emitting 

species are basically same with their isoprene emission dynamics. Hence, the graph is not shown.	
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Supplementary Figure S5 Responses of biomass and isoprene flux to O3 stress of different levels. 

A growth reduction of 10%, 20%, and 30% for resistant, intermediate, and sensitive species, 

respectively (A, B); of 10%, 20%, and 40%, respectively (C, D); and of 0, 10%, and 40%, 

respectively (E, F) are applied to drive the simulations. Such various combinations of ozone-

induced growth reduction for species of different sensitivity always show unsuppressed biomass 

accumulation and enhanced isoprene flux. Hence, these results are presented to argue that the 

modelling results discussed throughout this work with a growth reduction of 0, 10%, and 20% for 

resistant, intermediate, and sensitive species, respectively, are convincing.  
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Chapter 5 The importance of biodiversity in mediating climate change-air quality feedbacks 

 

5.1 Introduction 

            Air quality change is closely linked to climate change (Jacob & Winner 2009). Aside from 

the direct climatic effects initiated by the atmospheric physico-chemical processes (Jacob & 

Winner 2009; Weaver et al. 2009), the biosphere plays a key role by releasing large quantities of 

volatile organic compounds (VOC; Guenther et al. 1995, 2006), acting as precursors of 

tropospheric ozone (O3) in presence of relatively high concentration of nitrogen oxides (NOx) 

(Atkinson & Arey 2003; Royal Society, 2008) and of secondary organic aerosols (SOA) (Atkinson 

& Arey 2003; Kulmala et al. 2013). Climate warming-initiated effects that cascade through this 

climate-biosphere-atmospheric chemistry chain have received the most attention (e.g., Weaver et 

al. 2009; Ito et al. 2009; Pacifico et al. 2012; Fu et al. 2015). Currently, it is widely accepted that 

warming can enhance forest VOC emissions (e.g., Sanderson 2003; Heald et al. 2009; Pacifico et 

al. 2012) and thus aggravate O3 pollution (Sanderson 2003; Fu et al. 2015) and SOA formation 

(Kulmala et al. 2004; Paasonen et al. 2013). None of these studies, however, explicitly consider 

the role of terrestrial ecosystem species diversity in influencing VOC emissions.  

            Impacts of temperature and other factors (e.g., radiation) on phytogenic VOC production 

are now relatively well understood at cellular-to-leaf scales over relatively short time scales with 

over half a century of research (Vickers et al. 2009; Loreto and Fineschi 2015; Sharkey and 

Monson 2017) since the descriptions in the mid-20th century by Haagen-Smit, Went, and 

colleagues of plant-derived organic compounds that could contribute to O3 and haze formation 

(Haagen-Smit and Fox, 1954; Went, 1960). Ecosystem-level emissions have been extrapolated 

from this relatively good understanding of biochemical mechanisms and eco-physiological 
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regulation via ecosystem models by aggregating vegetation into plant functional types (PFTs). For 

instance, well-defined empirically derived quantitative relationships between VOC emissions and 

environmental factors (notably temperature and light) have been obtained from extensive leaf-

level measurements and constitute the cornerstone of regional and global VOC emissions models 

(Guenther et al. 1995, 2006). With the accumulation of biochemical and eco-physiological 

knowledge concerning phytogenic VOC production and emissions, process-based models within 

the dynamic global vegetation model (DGVM) schemes have also been developed (e.g., Arneth et 

al. 2007a). These models have been coupled with climate and atmospheric chemistry models to 

investigate climate-biosphere-chemistry feedbacks in the earth system. These physiologically 

based aggregate models produce the conclusion that climate warming enhances VOC emissions 

and holds a positive relationship both with O3 level (i.e., the so-called ‘climate penalty’; Sanderson 

2003; Ito et al. 2009; Fu et al. 2015) and SOA formation (e.g. Weaver et al. 2009). However, the 

lumped approach to representing vegetation in such global and regional models, either static or 

dynamic, cannot capture the hierarchical and dynamic nature of natural systems, neglecting the 

inherent interspecific heterogeneity and complex interactions (Huston et al. 1988; Purves & Pacala 

2008; Scheiter et al. 2013). This aggregation of vegetation represents one of the major 

uncertainties in the current modelling of climate-biosphere-chemistry feedbacks (Lerdau 2007; 

Purves & Pacala 2008; Schurgers et al. 2011). 

One of the longest known and most robust results from studies of phytogenic VOCs is that 

their production and emissions are strongly contingent on species (e.g. Lerdau et al., 1997; Monson 

et al. 2013). Across global biomes a mixture of emitters and non-emitters of different VOC species 

in an ecosystem is ubiquitous (Loreto and Fineschi 2015). Changes in ecosystem composition that 

involve a shift in the relative abundance of species with differing VOC emission capacity can, in 
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principle, be caused by climate warming or other disturbances from global environmental changes. 

Such changes in diversity have the potential to significantly influence the system-level emission 

capacity and even dominate physiological effects (Lerdau & Slobodkin 2002). Therefore, it is 

essential to explicitly incorporate the role of species diversity change when studying the effects of 

various environmental changes on forest VOC emissions. Among the huge number of different 

VOC species isoprene (C5H8, 2-methyl 1-3-butadiene) is the most abundant phytogenic VOC and 

plays the largest role in tropospheric oxidant dynamics (Atkinson & Arey 2000; Guenther et al. 

2006; Pacifico et al. 2009). Isoprene is thus an ideal candidate for investigating impacts of forest 

species diversity changes on system-scale emissions.  

Here we specifically examine the impacts of climate warming on forest isoprene emissions 

over long time scales mediated both indirectly by compositional change and directly by leaf-level 

response. We hypothesize that compositional changes may either enhance or counteract the direct 

warming effects on leaves depending on the specific forest systems. Testing this hypothesis in 

field studies is logistically and methodologically challenging due to the long time duration 

required. Instead, an experimental system of a temperate deciduous forest in the southeastern 

United States is built using an individual-based forest isoprene emissions model—UVAFME-

VOC (v1.0) (Wang et al. 2017a), which can estimate isoprene emissions based on an explicit 

simulation of the size and age of different species and their competition for light, water, and 

nutrient in a forest community. This model has demonstrated satisfactory simulation of forest 

compositional and structural dynamics and ecosystem level isoprene emissions in this area (Wang 

et al. 2016; Wang et al. 2017a). For example, with its prominent ‘individual-based’ feature this 

model has been successfully applied to test the hypothesis that extinction of the American Chestnut 

(Castanea dentata) in the forests of the eastern United States in the late 19th and early 20th centuries 
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enhanced isoprene emissions by favoring oak species (Quercus spp.) (Wang et al. 2017a). Using 

this individual-based experimental system of a temperate forest we investigated the impacts of 

climate warming on forest dynamics and isoprene emissions. The results presented here represent 

a pioneering work examining how biodiversity responses may meditate climate change impacts on 

atmospheric chemistry.  

 

5.2 Materials and Methods 

5.2.1 Model description  

            UVAFME-VOC (v1.0) (Wang et al. 2017a) is an individual-based forest volatile organic 

compounds emissions model built from the state-of-the-art forest gap model, University of 

Virginia Forest Model Enhanced (UVAFME), with the philosophy of IBM (individual-based 

model) being capable of unifying ecological theory of biodiversity and ecosystem function 

(Shugart 1984; Huston et al 1988; Grimm et al. 2016). UVAFME-VOC simulates VOC emissions 

based on an explicit modelling of forest dynamics by computing the growth, death, and 

regeneration of each individual tree of different species and their competition for light, moisture, 

and nutrient, from which system-level VOC emissions are simulated by explicitly computing and 

summing up each individual’s emissions with an explicit simulation of radiative transfer and leaf 

function through the canopy (Wang et al. 2017a). It is just this individual-based modelling of forest 

dynamics that enables UVAFME-VOC apply explicitly species-based emission factor 

dynamically, distinguishing it from other PFT-based VOC models (e.g., Guenther et al. 2006; 

Arneth et al. 2007a). 

            In detail, the basic simulation unit of an individual tree is described by geometry variables 

primarily including diameter at the breast height (DBH), diameter at the canopy height (DCH), 
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tree height (H), and leaf area (LAI) (Fig. S6). These structural units are quantitatively linked by 

allometric relationships. Forest dynamics are thus simulated at an annual time step by computing 

the growth, mortality, and regeneration of such individual trees of different species. Tree growth 

is defined as an annual increment of DBH, which is computed by multiplying the optimal growth 

by scalars of available light, temperature, nutrient, and soil moisture. Tree death is a stochastic 

process, which is simulated by calculating the annual mortality probability taking into 

consideration of both intrinsic mortality and environment-induced mortality. Identically, the 

annual establishment of new trees in terms of the number, size, and species is also a stochastic 

process by randomly selecting the species that establish in a given year from the candidate species 

pool which is comprised by the species that can survive in a given environment determined by the 

relative size of seedling bank of a species. See ST1 for details of model formulations. 

            Ecosystem-level isoprene emission, FISO, is calculated as a summation of the emissions 

from each individual tree at five canopy layers with a differentiation between sunlit and shaded 

leaves at an hourly time step according to the widely used empirical approach developed by 

Guenther et al. (1995, 2006): 

ç_&# = !& g *+ g 	[dRèy gê 	*) gê + dRëlíì gê 	*) gê ](1)
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where i denotes one of n trees in the forest, j denotes one of five layers of each individual tree’s 

canopy, Es represents the species-specific standard leaf-level emission rate of isoprene, Lsun and 

Lshade represents sunlit and shaded leaf area, and *+ and *) account for light- and temperature-

induced variability, respectively, which are calculated according to Guenther et al. (1995): 
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where R=8.314 J K-1 mol-1, CT1 = 95,000 J mol-1, CT2 = 230,000 J mol-1, TM = 314 K, TS = 303 K, 

α = 0.0027, and CL1 = 1.066. T is hourly leaf temperature, which is assumed to be equal to hourly 

air temperature and constant through the canopy. L is hourly leaf-level PPFD (µmol m-2 s-1) at 

each canopy layer for sunlit and shaded leaves of each individual tree obtained with an explicit 

computing of light behavior within the stand and tree crown with a distinction between direct beam 

and diffuse radiation considering the shading by taller and surrounding trees, interception, 

reflection, scattering, and absorption. 

            Inputs required to drive this model include species-specific parameters quantifying species’ 

fundamental silvics (including tree geometry, growth, mortality, and regeneration, as well as 

responses to environmental factors), site conditions (including soil physiochemical properties and 

topographical information), and climate data (including meteorological data of temperature and 

precipitation). The outputs include tree size, number, basal area, leaf area, biomass, VOC flux, as 

well as other biogeochemical and hydrological variables. Wang et al. (2017a) is referred to for 

more model details concerning the development, validation, and application of this model.  

5.2.2 Model parameterization 

            We applied UVAFME-VOC to simulate the temperate deciduous forest in the eastern 

Tennessee, located at the southern Appalachian region in the southeastern United States. This site 

was chosen because long term forest dynamics and composition data are relatively rich, facilitating 

model validation, and species-specific isoprene data are relatively complete (Wang et al 2017a). 
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Thirty-two species including both deciduous and coniferous trees native to this region are included 

in this simulation, among which ten species are isoprene producers. The standard isoprene 

emission rates of these isoprene-emitting species are listed in Table S1. All the other parameters 

(twenty-four in total) describing silvicultural properties of each species required as inputs are listed 

separately in Table S2. The sources of these parameter values are further described in ST2. 

             Thirty years of meteorological data for monthly precipitation (mm) and monthly 

maximum and minimum temperature (°C) ranging from 1981 to 2010 were obtained from the 

NOAA (National Oceanic and Atmospheric Administration) meteorological station at Oak Ridge 

ATDD, Tennessee, USA (GHCND: USW00003841; Latitude/Longitude: 36.0028°/-84.2486°; 

Elevation: 275.8 m) to compute monthly average precipitation, monthly maximum and minimum 

temperature, and their standard deviations. Soil-related parameters including organic layer carbon 

and nitrogen, active layer carbon and nitrogen, and base soil layer carbon are estimated according 

to Johnson and Van Hook (2012). Values of 25 cm and 12.5 cm were used for soil field capacity 

and soil permanent wilting point, respectively. 

5.2.3 Climate warming simulation 

            Starting with the FORET (Shugart and West 1977) through a diverse range of versions in 

different forest systems (Shugart 1984; Shugart and Woodward 2011) to UVAFME used here, the 

capability of individual-based forest gap models in simulating climate change effects on forest 

dynamics has been a central topic of interest. Shugart and Woodward (2011) offer a review of the 

testing of these models, in many cases against independent data on climate change responses of 

forests.  Furthermore, many of these tests are against compositional changes in forests under paleo-

climate conditions or along altitudinal gradients. To examine the forest responses to climate 

warming, two levels of warming (temperature increase by 2°C and 4°C on the basis of base 
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climate) are simulated.  According to the study by Shuman et al. (2011) (which evaluated the 

sensitivity of Siberian larch forests to climate change using an earlier version of UVAFME), these 

climate changes are achieved in 200 years from year 0 to 200 in a linear way, which are followed 

by another 300-year simulation with these stabilized climates. See Fig. S1 for the modelled climate 

warming dynamics over the 500-yr simulation across the three different warming treatments.  

5.2.4 Simulation methodology  

            UVAFME-VOC (and several other antecedent models) are normally evaluated by Monte 

Carlo simulation of a large landscape sampled by a set of independent sample plots.  In these cases, 

each plot results from a single simulation from the model. An average of these simulation of 

independent plots corresponds to a shifting-mosaic steady-state landscape (Bormann and Likens 

1979). Bugmann et al. (1996) have suggested that 150–200 replicate plots are needed to provide a 

sample which warrants a statistically quasi-stable landscape response of the forest landscape. Here 

we run this model with 200 independent plots of a size of 500 m2 starting from bare ground 

(without a spin-up) for 500 years. All the results presented are the average of such 200 simulated 

plots.   

 

5.3 Results 

5.3.1 Forest compositional changes.  

            Successional dynamics of the forest over 500 years without simulated warming effects 

involve changes in 10 abundant species and 22 other species (Fig.1a). Initially for a forest 

succession from an open plot, the ‘other’ species category, mostly composed of pioneer species, 

dominates the forest with approximately 50% of the total biomass. Soon, both Acer rubrum and 
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Fig.1 Forest compositional dynamics in response to warming over 500-year simulation. a-c 

is the base run, 2 °C, and 4 °C warming, respectively. The width of each color band 

represents the biomass (tC ha-1) of different species at a specific year. QUERvelu: black oak; 

QUERrubr: red oak; QUERprin: Chestnut oak; QUERalba: white oak; PRUNsero: black 

cherry; LIRItuli: yellow poplar; FAGUgran: American beech; CARYcord: bitternut 

hickory; CASTdent: American Chestnut; ACERsacc: sugar maple; ACERrubr: red maple; 

and Other: all the remaining species simulated (see Table S2). 

a 

b 

c 
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 Liriodendron tulipifera become increasingly important, but A. rubrum eventually loses to the 

larger, faster-growing L. tulipifera trees, which persist and become dominant. After L. tulipifera 

declines over time, trees of four late-successional oak species (Quercus alba, Q. velutina, Q. rubra, 

and Q. prinus) become increasingly important, together accounting for approximately 75% of the 

stand biomass at year 300. The composition of the forest stabilizes and is eventually dominated by 

aforementioned oaks, along with L. tulipifera and two maples (A. rubrum and A. saccharum). This 

simulated composition matches field survey of forest composition in the southern Appalachian 

mountain region both qualitatively and quantitatively (Shugart and West 1977; Wang et al. 2017a). 

              Climate warming (Fig. S1) exerts significant impacts on the forest dynamics in terms of 

species composition and structure (Fig.1b, c). Four major Quercus species (Q. velutina, Q. rubra, 

Q. prinus, and Q. alba), mainly late successional species, lose their position in the stand over the 

500-year simulation with continuous warming. In particular, Q. prinus almost totally disappears 

from the simulation when warmed by both 2°C and 4°C. These significant changes are 

accompanied by changes in L. tulipifera and A. rubrum. L. tulipifera, a fast-growing, shade-

intolerant species, does not show an apparent change with 2°C warming but strong changes with 

4°C warming when L. tulipifera dominates the stand longer and eventually loses its position 

severely. By contrast, A. rubrum shows a dramatic increase with continuous warming. Overall, 

with continuous warming this simulation presents compositional changes of an increase of red 

maple (A. rubrum) versus oaks (Quercus spp.) declines.  

            These simulated compositional changes are congruent with the dramatic changes in 

composition across the temperate deciduous forests in the eastern United States during the past 

century. Red maple, a ‘super-generalist’ that has characteristics of both early and late successional 

species (Abrams 1998), has been widely documented with a large expansion (e.g., Abrams 1998; 
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Mcdonald et al. 2003; Fei and Steiner 2007), which is in stark contrast to a decline of oaks (e.g., 

Abrams 1998; Mcdonald et al. 2003; Crosby et al. 2014; Nowacki and Abrams 2015) and sugar 

maple (Iverson et al. 2008; Bishop et al. 2015). A variety of factors have been proposed to explain 

such changes including fire suppression, forest management, preferential browsing, insect and 

disease outbreaks, and climate change (Abrams 1998; Iverson et al. 2008; Pederson et al. 2014; 

Nowacki and Abrams 2015). This model-based study, capable of teasing out an individual factor, 

supports the view that climate warming contributed to these observed trends (Davis 1983; Abrams 

1998; Speer et al. 2009). These temperature-induced changes are also in agreement with the 

relatively strong tolerance to warming by red maple that confers big competitive advantages over 

other species over the forest dynamic development (Fig. S2). With continuous climate warming 

and other disturbances in the eastern United States such changes are expected to continue.  

 

5.3.2 Changes in isoprene-emitting species and isoprene emissions 

            Ten isoprene-emitting species are present in this simulated forest, of which seven are oak 

(Quercus) species (Table S1). Among these isoprene-emitting species, the four oak species of Q. 

prinus, Q. alba, Q. velutina, and Q. rubra mostly determine ecosystem isoprene emissions over 

the long term dynamics, and the remaining six species (hereafter referred to as ‘others’) only 

contribute substantially to the ecosystem isoprene emissions at very early successional stages (Fig. 

S3a). Climate warming-induced forest compositional dynamics alteration, as described above, 

presents an apparent species diversity change in terms of emitters versus non-emitters of isoprene. 

The relative changes of these isoprene-emitting species together are significant in the forest in 

terms of both leaf area and biomass (Fig. 2a; Fig. S4). After an early successional stage, forests 

that are warming by 2°C start to show a decline of isoprene-emitting species. With further warming  
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Fig.2 Dynamics of isoprene-emitting species abundance and isoprene flux in response to 

warming. The abundance of isoprene-emitters is calculated as the percentage of total 

isoprene emitters (10 species in total listed in Table S1) in the forest in terms of tree biomass 

(tC ha-1) (a). The isoprene emission rate (mg m-2 d-1) represents the average of daily isoprene 

emission rate from July of each year (b).  

 

 

by 4°C, the emitters show a much earlier decline, and the percentage declines to less than 20% at 

a later successional stage. Moreover, warming significantly alters the relative abundance of 

individual species (Fig. S3b, c). With continuous warming, except for the ‘others’ category, Q. 

velutina and Q. alba become increasingly dominant, while Q. prinus and Q. rubra gradually 
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disappear from the forest. Overall, climate warming significantly inhibits the presence of isoprene-

emitting species (Quercus spp.) at this location. 

            These changes in species composition mean that the forest system’s isoprene emissions do 

not simply show an increase as expected from the direct effect of leaf-scale warming enhancement 

(Fig. S5). With 2°C warming isoprene emissions are enhanced initially until the system sees an 

emission reduction resulting from a decline of isoprene-emitters (Fig.2b). With the isoprene-

emitters further decreasing and thus warming-enhanced emissions being offset by the reduction 

arising from a decline of isoprene-emitters, no difference is seen between the base and 2°C 

warming (Fig.2b). By later in succession, the reduction resulting from a decline of isoprene-

emitters starts to exceed the direct warming-enhancing effect, resulting in suppressed isoprene 

emissions (Fig.2b). When warmed by 4°C, the forest’s compositional change of emitters decline 

completely dominates the warming-enhancement effect, strongly inhibiting the isoprene 

production (Fig.2b). These results clearly show that, over long time scales, forest ecosystems’ 

isoprene emission capacity is predominantly contingent on species composition.  

 

5.4 Discussion 

            This study sheds new insights into the climate warming-air quality feedback mechanisms 

mediated by the terrestrial biosphere by explicitly considering forest compositional changes. 

Contrary to the widely seen scale-up from the temperature-dependent leaf level response (e.g., 

Turner et al. 1991; Sanderson et al. 2003; Heald et al. 2009; Goldstein et al. 2009; Pacifico et al. 

2012), climate warming may not enhance forest ecosystems’ isoprene emissions because of 

community-level changes in diversity. There exists a ‘threshold’ for the forest system examined 

here in terms of isoprene emission capacity in response to climate warming (Fig. 3). Prior to this  
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Fig.3 Schematic of climate warming impacts on atmospheric chemistry mediated by forest 

compositional changes. A threshold exists for forest systems in terms of isoprene production 

in response to climate warming, where the indirect warming effect (suppression of isoprene 

emissions from a decline of isoprene-emitting species) offsets the direct effect (enhancement 

of isoprene production and emission by increasing temperatures). Prior to and beyond this 

threshold, distinctive feedback mechanisms between climate and atmospheric chemistry 

mediated by the forests may occur at least regionally in the southeastern United States. Plus 

(+) and minus (-) signs denote the positive and negative effect, respectively, and it is 

noteworthy that the isoprene-O3 relationships described here is based on a relatively high 

level of nitrogen oxides. Note the forest in this figure is for illustrational purpose only and 

does not necessarily indicate actual composition changes. 

 

 

‘threshold’ climate warming can stimulate isoprene emissions, whereas beyond this ‘threshold’ 

isoprene emissions can be reduced because of a largely diminished occurrence of isoprene-
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emitting species. Similar ‘threshold’ phenomena are widely seen in ecosystem functioning under 

environmental disturbances (Groffman et al. 2006). Such reduced isoprene emissions under 

climate warming could have significant implications for the atmospheric chemical processes 

(Fig.3). First, climate warming may not aggravate O3 pollution because of a decline of O3 

formation precursors (that is, a possible disappearance of ‘climate penalty’), although the 

warming-O3 relationship is also influenced by other factors including O3 advection and 

anthropogenic NOx emissions (Atkinson & Arey 2003; Fiore et al. 2005; Fu et al. 2015). Such a 

decline of O3 level induced by reduced isoprene emissions has been arguably evidenced by the 

study of Drewniak et al. (2014), who suggested reduced O3 formation resulting from the red maple 

expansion at the cost of oak shrinkage in the eastern United States. Second, declines in isoprene 

emissions may reduce the formation of SOA, which has a cooling effect. Goldstein et al. (2009) 

has suggested a significant contribution of vegetation isoprene emissions to SOA formation in the 

southeastern United States. Reduced isoprene emissions herein potentially form a new positive 

rather than negative feedback mechanism to climate warming (Kulmala et al. 2004; Goldstein et 

al. 2009; Paasonen et al., 2013). Moreover, methane lifetime could also be reduced by this decline 

of isoprene emissions (Atkinson & Arey 2003).        

          In addition to the species diversity effects, impacts of climate warming on forest isoprene 

emissions could also be mediated by other secondary indirect pathways whose magnitudes are not 

yet well constrained and thus not included this modelling study. For instance, warming may both 

increase the atmospheric water vapor pressure deficit (VPD) and reduce soil moisture, and these 

changes could indirectly regulate leaf-level isoprene by reducing stomatal conductance and thus 

increasing leaf temperature and decreasing internal CO2 concentration (Rosenstiel et al. 2003; Seco 

et al. 2015). These impacts, especially VPD, are still far from being understood well enough to be 
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included in VOC modeling studies, whether or not such studies consider species composition 

explicitly. Although it has been postulated that a VPD increase could enhance isoprene emissions 

(Zhang et al. 2016), empirical studies have shown varying responses of ecosystem-level isoprene 

emissions to soil moisture depending on the drought intensity (Seco et al. 2015). There is clearly 

a need for added research on drought and VPD impacts on VOC emissions.  

            Although this study focuses on the impacts of increasing temperatures on forest isoprene 

emissions, another critical factor may be the rising CO2 that drives the warming.  Elevated CO2 

has been shown under low temperature conditions to inhibit isoprene emissions (Arneth et al 

2007b; Sharkey & Monson 2014).  However, recent work has both shown that this CO2-caused 

reduction in isoprene emission disappears under higher temperatures and offered convincing 

evidence for the mechanism underlying the temperature-dependency of the CO2-suppression (Sun 

et al. 2013; Potosnak et al. 2014; Niinemets and Sun 2015; Monson et al. 2016). If the current 

physiological mechanistic models are correct, then elevated CO2 will not suppress isoprene 

emissions under high temperatures.  If such suppression does not, however, occur under field 

conditions, then the lack of warming-induced emissions increase observed in this study will occur 

even earlier in succession.  A challenge for extrapolating from the ecosystem considered in this 

study lies in the dependency of the ecosystem-scale results on the responses of a few particular 

species.  In a sense, this dependency highlights the importance of going beyond plant functional 

type simplifications in modeling studies. 

            In summary, this study highlights that both individual metabolic differences (species 

diversity) and community level processes (inter-specific interactions and species abundance 

change) in the context of global environmental changes are of great significance in influencing 

system-level isoprene and likely other VOC emissions and thereby atmospheric chemical 
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processes and air quality. This view is also evidenced by a 13-year field warming study conducted 

in the subarctic ecosystems showing that warming-induced changes in vegetation composition are 

a major factor affecting the monoterpene and sesquiterpene emission potentials (Valolahti et al. 

2015). Terrestrial ecosystems show great heterogeneity in terms of composition and structure and 

are simultaneously subject to strong pressure arising from a variety of global change agents besides 

climate warming, e.g., drought, nitrogen deposition, O3 pollution, and species invasion (Franklin 

et al., 2016; Wang et al. 2017b). To understand how these agents alone and in combination can 

affect vegetation VOC emissions at temporally long scales requires the building of a predictive 

science of vegetation VOC emissions, as informed by the individual-based modelling study 

conducted here. The next generation dynamic global vegetation model, aDGVM (Scheiter et al. 

2013), built with the same philosophy with such individual-based model, may offer a good 

platform to conduct regional and global scale studies over long-time scales. Such large-scale 

individual-based ecosystem models are highly recommended to be integrated into future climate-

chemistry models and earth system models to investigate the complex climate-biosphere-air 

quality feedbacks and inform policy decisions. 
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Fig. S1 Warming treatments (+2 °C and +4 °C) relative to the base climate in the simulation 

in terms of DEGD (growing degree days with a 5 °C base) in each year over the 500-yr 

simulation. The DEGD is calculated from the daily temperature interpolated from model input of 

monthly mean, maximum, and minimum temperature data. The variations reflect the inter-annual 

variability of the climate in the simulation. 
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Fig.S2 Species-specific growth response to temperature as a function of DEGD. Four major 

species, Acer rubrum (red maple), Quercus alba (white oak), Quercus velutina (black oak), and 

Liriodendron tulipoplar (yellow poplar) are shown as examples. The underlying parabolic function 

follows: 

C(f) =
f − eeWgh

eeijk − eeWgh

l eeWmf − f

eeWmf − eeijk

n

 

m =
eeijk − eeWgh

eeWmf − eeWgh
 

o =
eeWmf − eeijk

eeWmf − eeWgh
 

where x is the input DEGD as shown in Supplementary Fig.1, and ddmin, ddopt, and ddmax refer 

to the species-specific minimum, optimal, and maximum growing degree days, respectively (see 

Table S2).  
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Fig.S3 Relative changes of the ten isoprene-emitting species in the simulated forest in 

response to climate warming. A-C is the base run, +2°C, and +4°C warming, respectively. The 

percentages are based on species biomass (t C ha-1). See Table S1 for the ten species included. 

Four isoprene-emitting species are dominant in the forest composition, so the remaining six species 

are categorized into one group as ‘others’. The species included in this category are in common 

because they are mostly early successional species. Their reappearance (e.g., in panel C) is totally 

because of regeneration with the death of large canopy-dominant trees, but these species 

consistently can’t gain any dominance in the forest. As regards Quercus alba, it has relatively 

better performance in the southeastern US among the four major species (e.g., Shugart et al. 1977), 

and climate warming further intensifies its advantage. 

A 

B 

C 
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Fig. S4 Dynamic changes of the total biomass (t C ha-1) and leaf area (%) of isoprene-emitting 

species in the forest in response to climate warming over the 500-yr simulation. Ten isoprene-

emitting species in total are included in this figure (listed in Table S1). These absolute biomass 

changes, combined with the relative changes (presented in Fig.2a), clearly show a decline of 

isoprene-emitters in the simulated forest under climate warming. The bottom panel shows the 

changes in total leaf area comprised by the isoprene-emitting species in response to climate 

warming. 
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Fig. S5 Leaf-level isoprene emission rate (normalized) as a function of temperature (°C). The 

underlying function of this curve follows the temperature-dependency algorithm developed by 

Guenther et al. (1993). Dotted lines in differing colors denote the different warming treatments 

(base, +2, and +4 °C), and the solid red line denotes the maximum temperature reached under the 

+4 °C treatment (4°C plus variation). Apparently, an experimental warming even by 4 °C still does 

not yet suppress leaf-level isoprene emissions, which excludes the possibility that warming-

induced decline of forest system-level isoprene emissions is because of leaf-level inhibition of 

isoprene production.   
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Chapter 6 Final remarks and conclusions 

 

6.1 Advantages and deficiencies of current IBM 

             Starting from UVAFME-VOC, I broadly discuss some of the advantages and deficiencies 

of the current paradigm of IBM formulation in terms of species-specific formulations and the 

spatial scale, which, to my knowledge, are the two major concerns when developing, evaluating, 

and applying an IBM. Apparently, the fundamental advantage of IBM lies in its basic simulation 

unit of an individual. Thereby, which parameters to choose to depict and quantify a species will 

fundamentally determine the capability and complexity of an IBM. In addition, research of 

biosphere-atmosphere interactions always requires a spatially large scale to see implications of 

fine scale processes, thus making spatially large scale simulation an essential capability of IBM. 

6.1.1 Species-specific parameters and formulations 

             Concerning the parameters and formulations governing the individuals of UVAFME-VOC 

and many other individual-based gap models (Bugmann 2001), it is best reflected by the comment 

from Shugart, “The simplicity of the functional relations in the models has positive and negative 

consequences. The positive aspects are largely involved in the ease of estimating model parameters 

for a large number of species; the negative aspects with a desire for more physiologically or 

empirically ‘correct’ functions.” (Shugart et al. under review). We can clearly see that the 

parameters used as inputs to describe each individual species are a small set of variables related to 

species geometry, demographic properties, responses to environment, as well as other traits (see 

Chapter 3). These parameters (the corresponding formulations mostly based on allometric 

relationships) are fairly easy to estimate from sources of silvicultural books and forest inventory 

data (Shugart 1984; Chapter 3). In particular, in North America two silvicultural books by Fowells 
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(1965) and Hardin et al. (2001) offer a synoptic compilation across the species ranges on each 

species’ silvics.  

            However, a major drawback of or even criticism from ecological modelers, especially those 

working on large scale ecosystem models (e.g. DGVM), toward this formulation paradigm is that 

it is not process-based and cannot reflect the mechanistic processes of plant physiology. This forms 

a stark contrast to the widely adopted modelling paradigm focally represented by the Farquhar and 

Ball-berry photosynthesis and stomatal conductance simulation (Farquhar et al. 1980; Ball et al. 

1987; Collatz et al. 1990). In response to these concerns, there do have process-based individual-

based gap models developed, e.g., HYBRID (Friend et al. 1993), FORMIND for tropical forest 

(Fischer et al. 2016), and a very recent one, TROLL, also for tropical forests (Maréchaux and 

Chave 2017). However, such process-based modelling strategy requires many more species-

specific parameters compared to the non-process-based ones that are much harder to estimate for 

every individual species. The overwhelming advantage of the UVAFME-type IBM makes the 

process-based strategy not widely accepted or applied in the forest modelling community to date 

(Shugart and Woodward 2011). Nevertheless, we acknowledge that without applying such 

process-based modelling strategy we can’t even simulate or simulate well a variety of plant and 

ecosystem processes (e.g., CO2 fixation and water evapotranspiration). With the species-specific 

data becoming increasingly available we believe that more and more process-based IBM will 

spring up and posses a dominant position in the IBM market. 

            However, with either paradigm IBM provides a really flexible framework to incorporate 

individual level processes and examine system level responses (as exemplified by the VOC add-

on to the UVAFME). For further development of IBM, species-specific information from readily 

available plant traits could be incorporated to improve the current widely used IBM with a better 
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reflection of interspecific differences and size- and age-dependent differences. This inclusion of 

plant traits could more completely reflect the great advancements that have been achieved in the 

past several decades and will be achieved in the coming decades of collecting data of different 

traits from species across the global biomes and of plant economic spectrum (Wright et al. 2014), 

such as the establishment of TRY global plant trait database (https://www.try-db.org; Kattge et al., 

2011).  

6.1.2 Spatial scale 

            The basic spatial extent of current IBM in general is about the size of a canopy gap created 

by the death of a canopy-dominant tree (that is why it is specifically called gap model, as 

mentioned earlier). In practice the plot size used in these models has been around 0.04 to 0.10 ha 

depending on sizes and heights of trees (e.g., UVAFME-VOC of 500 m2). The ratio of height of a 

gap to its width changes the illumination of the forest floor with latitude (Kuuluvainen 1992).  In 

agreement with this pattern, the spatial unit used in gap models for models from the tropics to 

temperate to boreal zones have smaller plot sizes towards the equator matching the higher average 

sun angles there. Such a spatial scale is perfect for theoretical exploration of diversity-ecosystem 

functioning relationships at a local scale. This is one reason that we have seen many different 

versions of such IBM developed for differing forest systems over the past four decades (Shugart 

and Woodward 2012). As demonstrated by the progress made by UVAFME-VOC, IBM shows an 

overwhelming advantage in integrating explicitly the diversity into ecosystem dynamics and 

functions locally in the southeastern US. 

            An apparent concern for biosphere-atmosphere interactions is about the spatial scope limit 

of the current IBM. With a local scale, it seems not yet truly possible to study the global feedbacks 

of biosphere-atmosphere with a consideration of the system complexity. Of course, there do have 



	
	
	

177	

studies beyond the local scale investigating regional or continental scale forest responses to climate 

change (Shugart et al. in review; Shuman et al. 2010). However, such large scale applications to 

regional/continental level have limitations. First, these studies are mostly limited to see the forest 

compositional changes responding to climate changes, lacking a closer examination of forest 

functions (e.g., carbon sequestration). More importantly, the modelling protocol of such IBM 

applications at large spatial scales are relatively inconvenient. We need an integrated biosphere 

model like DGVM and ESMs that have the IBM modelling strategy embedded. There have been 

practices in this direction that to some extent cater for these limitations. Earlier applications to 

global scale found a compromise between the IBM and aggregated modelling approach. This is 

best exemplified by the ED (Ecosystem Demographics) model developed by Moorcroft et al 

(2001), proposing a scaling up methodology of the gap dynamics to global scale. Simulations with 

this model have illustrated the importance of fine-scale heterogeneity in governing large-scale 

ecosystem functions. However, what is more exciting is the occurrence of a next generation 

DGVM, called ‘aDGVM’ developed by Scheiter et al. (2013), which merges the philosophy of 

IBM into vegetation dynamics and is built directly against the deficiencies of the PFT-based 

aggregate modelling strategy. These recent developments towards incorporating the system 

complexity following the IBM modelling strategy into large scale ecosystem simulations could be 

applied to study large scale feedbacks between the biosphere and atmosphere. Moreover, the rich 

data in the field of ecosystem ecology accumulated through the large-scale, spatially distributed 

eddy covariance flux towers across the planet provides a valuable, readily available resource for 

model validation (Williams et al. 2009). 
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6.2 Challenges of IBM-based BAIs research 

            Although applications with such an IBM have obtained surprisingly new findings about 

the forest responses and feedbacks, to truly explore the biosphere and atmospheric chemistry 

interactions and even broader biosphere-atmosphere interactions using IBM or other models with 

the IBM methodology embedded still needs a long way to go. Feedbacks between the biosphere 

and atmosphere are extremely complex (e.g., Walker 1994; Arneth et al. 2010). To better elucidate 

the roles of the terrestrial ecosystems playing in influencing the climate and atmospheric 

components, even more system level processes of biogeochemical and biophysical pathways 

(carbon, nitrogen, water, and energy) should be investigated and simulated taking into 

consideration system complexity. Therefore, a rich research avenue concerning the application of 

IBM to regional and global scale BAIs research lies ahead but with a wide variety of big 

challenges. One obvious challenge is the scarcity of species-specific information, while another 

challenge is large scale modelling, as discussed earlier. However, these probably would not be big 

problems with remote sensing technology advancements enabling fast data acquisition of species-

specific properties at spatial-temporal large scales (Shugart et al. 2015; Jetz et al. 2016; Stavros et 

al. 2017). By contrast, two biggest challenges toward developing next generation IBMs, to my 

understanding, are about the species acclimation and adaptation and the close linkage between the 

aboveground and belowground processes. These two challenges are likely to define a research 

agenda for the indefinite future not only for IBM itself but also for BAIs research broadly. 

6.2.1 Acclimation, Adaptation, and Evolution 

          One grand challenge is revolving around the species acclimation, adaptation, and evolution. 

In a changing environment a species’ metabolisms are not constantly same over time but 

dynamically changing, showing short-term plasticity or acclimation and relatively long-term 
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adaptation (Albert et al. 2011; Keenan et al. 2013); for example, the responses of photosynthesis 

and plant respiration to temperature and CO2 to change over time of exposure to new or changing 

environmental conditions (Smith and Dukes 2013). These processes are crucial for survival of 

plants under global and regional environmental changes. The implications of these processes for 

developing and applying IBM is that species-specific parameters and formulations would have to 

be updated during the simulation rather than be kept consistent over the simulation. Tracing the 

short-term acclimation and long-term adaptation is challenging; evidence of plasticity is still 

limited to a few species (Albert et al. 2011). Therefore, it is basically not yet available to 

incorporate such species-specific properties into IBM. Some initial progress achieved in PFT-

based model has clearly indicated the profound importance in including trait plasticity in modelling 

studies (e.g., Smith and Dukes 2013; Mastrotheodoros et al. 2017). These explorations could shed 

some light on the development of IBM, which, however, could not emerge until enough species-

specific data is available. Additionally, it is anticipated that machine learning, which in a broader 

sense is computational techniques mimicking aspects of biological information processing for data 

modelling, would play a role in moving this direction forward by creating models of evolving 

process equations and parameters (Recknagel 2001). 

6.2.2 Aboveground-belowground linkage 

            To completely understand ecosystem functioning, both the belowground system functions 

and in particular the close associations between the aboveground and the belowground activities 

must not be ignored, which are integral to the responses and feedbacks of the biosphere to changes 

in atmospheric conditions. Long term research of PSFs (plant-soil feedbacks) have accumulated 

convincing evidence showing the close interactions between the aboveground and belowground 

activities (e.g., Bever et al. 1994; Lau et al. 2017). In particular, system diversity has been 
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increasingly being reported to play a key role in mediating PSFs; for example, very recent studies 

found that aboveground biodiversity affects soil microbial activities, soil-derived GHGs, and 

carbon storage (Lange et al. 2015). Moreover, the soil organic matter decomposition is 

increasingly being recognized as a process that is also strongly influenced by the microbial system 

composition and dynamics (Wieder et al. 2015; Melillo et al. 2017), which should be incorporated, 

improved, and applied in IBM (Widder et al. 2016; Allison et al. 2017). This arguably indicates 

that a coupled individual-based modelling of both aboveground and belowground systems is 

necessary.  However, across the current lines of IBM the belowground processes are treated rather 

roughly. Take UVAFME-VOC for example. The process of organic matter decomposition is 

simulated using the first-order linear decay rates that are modified by environmental scalars 

(temperature and moisture) without considering the microbial community at all (Jenkinson et al. 

1987). This rough treatment, which is understandable, primarily originates from a ubiquitous fact 

in the model development community that models are always developed targeting for questions of 

interest, usually neglecting the processes or components that “seem” not important to the processes 

of primary concern. Another reason might be that even for models specifically simulating soil 

biogeochemical cycling processes, the role of soil microbial systems was not treated explicitly 

until very recently (Wieder et al. 2015). However, what is encouraging is that there have been 

already advancements in IBM for microbial systems (Allison et al. 2017). The challenge is how to 

couple these two IBMs reconciling the strikingly different and wide-ranging scales/time steps of 

different processes.  

 

6.3 Conclusion 

            Building a science of complex, adaptive systems of the biosphere is the prerequisite for an 
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accurate understanding of BAIs in the Anthropocene Epoch. Methodological limitations, 

especially biosphere models with an aggregate representation of vegetation that is of 

overwhelmingly rich biodiversity, let alone empirical research (though having made great 

contributions), are hindering our achievement of this grand goal. Our initial explorations with the 

UVAFME-VOC of the interactions of forests and the atmospheric components mediated by 

diversity demonstrate that IBM is a feasible modelling strategy that can be applied to integrate 

diversity into ecosystem functioning in BAIs research. Confronting some big but definitely soluble 

challenges, I advocate more efforts to be spent in the development, validation, and application of 

IBM to integrate diversity into ecosystem dynamics and functions research and more broadly BAIs 

research. We acknowledge that it does not necessarily mean that IBM will be the only tool at least 

in the coming decades, but it is highly expected to play increasingly more important roles 

(including being embedded into Earth System Models) in addressing BAIs. This bright future is 

fundamentally conferred by the complexity of natural systems in the biosphere. 
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