
Using Text-Based and Example-Based Querying to Improve Usage of IoT Sensor Data in
Smart Buildings

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Andrew Villca-Rocha

Spring, 2020.

Technical Project Team Members

Andrew Villca-Rocha

Max Zheng

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Hongning Wang, Department of Computer Science



Using Text-Based and Example-BasedQuerying to Improve
Usage of IoT Sensor Data in Smart Buildings

Andrew Villca-Rocha
Department of Computer Science

University of Virginia
Charlottesville, Virginia, United States

ABSTRACT
As IoT sensor data use becomes more prevalent in smart build-

ings, building managers are left to search for data themselves by
using dashboard metrics. This paper proposes an improvement
to current building management systems by using text-based and
example-based querying. The system accomplishes this by utiliz-
ing Information Retrieval techniques and Dynamic Time Warping
algorithms. Through these two types of querying the user is able
to better express their intentions in their searches which leads to
an overall productivity improvement to their workflow.
ACM Reference Format:
Andrew Villca-Rocha. 2021. Using Text-Based and Example-Based Querying
to Improve Usage of IoT Sensor Data in Smart Buildings. In . ACM, New
York, NY, USA, 5 pages.

1 INTRODUCTION
With the increasing use of IoT devices in smart buildings, comes a

need for software that is able to retrieve this information efficiently
for buildingmanagers. This is especially important because building
management such as power management and energy efficiency
need effective methods of using their vast IoT sensor data.

Smart buildings are buildings that incorporate IoT devices into
their infrastructure to achieve some efficiency. Improvements to
infrastructure could also include increasing productivity to the
management of its facilities[2]. Most research has been limited to
integrating various facilities systems such as heating, ventilation,
and air conditioning. Currently, building managers are limited to
using dashboards with metrics for various sensors to determine the
productivity of the smart building. This process is limited because
it relies on the users to manually search rather than letting the
system conduct the search. This technical report aims at improving
the retrieval of IoT sensor data by providing new methods. These
new methods for building management systems take the form of
text-based and example-based querying.

2 RELATEDWORK
As described earlier, current solutions fail to provide efficient

methods for retrieving information from IoT sensors. These systems

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
, ,
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

do little to innovate on the methods for retrieving data. Current
solutions involve a dashboard where users have to manually inspect
sensors to retrieve the information they are looking for. This is why
I propose adding text-based and example-based querying.

Text-based querying is common in search engines. Sites like
Google and DuckDuckGo dedicate their business to retrieving rele-
vant documents based on a text query. Current practice involves
tokenizing a query into segments. Each segment represents a se-
mantic subsection of the overall query. This process is conducted
to understand the user’s intention when performing a query. Most
research around query tokenization is limited to retrieving web-
pages. In this case the internet query deviates from queries on IoT
sensors. Query tokenization in the context of the internet treats
each segmentation as a term that needs to be matched in a docu-
ment’s metadata. In IoT sensors, each segmentation isn’t bound
to a document’s metadata but also to the time-series data that is
associated with the document.

There has also been previouswork towards example-based query-
ing. Query-by-sketch allows users to draw time-series shapes and
the system will produce similar windows of time-series data [3].
This method relies on the user’s ability to produce rich patterns
for search. Instead of relying on the user to retrieve relevant data,
I propose improving this by having the user select pre-existing
examples from the time-series data. This way the examples the user
produces are realistic and can better match existing time-series
data.

In order to accomplish example-based querying, we need meth-
ods for extracting characteristics from time-series data. Using these
characteristics, we can then compare time-series data for relevance
determination. This process is known as feature selection. Current
methods involve dividing time-series into subsequences and ex-
tracting basic statistics like slope, mean, and variance [1] . This
method suffers from the simplicity of its characteristics. Since slope
can only distinguish between different linear trends, other trends
like exponential or quadratic are not properly described.

Other methods include a bag-of-patterns approach. In this ap-
proach, a bag-of-patterns is generated by dividing time-series data
into windows and then using Fourier transforms to approximate the
shape of each window. The Fourier values are then used to create
classes amongst the windows and the bag-of-patterns is generated
by looking at the unigrams and bigrams from each window in the
time-series-data [5].

Another more efficient method is proposed by using Dynamic
Time Warping (DTW). Through an exhaustive literature search,
researchers found that DTW outperforms other distance measures
by a statistically significant amount. DTW is an algorithm that
measures similarity between time-series data that may vary in



, , Andrew Villca-Rocha

speed. This is important for IoT data as different sensors may take
measurements at different rates. Additionally, time-warping allows
us to conduct one-to-many and many-to-one matches which can
be useful in comparing data points that occur at different indexes
in the time-series data. This is demonstrated in Figure 1. Finally,
efforts have been made to optimize this method for the case of
time-series data. This provides a fast implementation that can be
easily utilized within our system [4].

Figure 1: Visual Representation of Euclidean (one-to-one)
Matching vs. DTW (one-to-many/many-to-one) Matching

3 SYSTEM DESIGN
The system provides two ways of querying for information: text-

based and example-based querying. The solution is then provided
in a web-app with a distributed system design. This solution also
assumes data is static.

3.1 Text-based Querying
Text-based querying is a common method for retrieving informa-

tion. Our system allows for metadata querying which is common in
search engines like Google. This type of querying can also be used
to search over the time-series data. Queries like “temperature > 65”
can be used to search through temperature data that exceeds the

value of 65. This is accomplished by translating text queries into
queries that can be issued to the database system. See Figure 2 for
an example of this translation. Even though this provides search-
ing for time-series data, it does not provide the user the flexibility
needed in their searching.

Figure 2: Example of text-based query translation to data-
base query

3.2 Example-based Querying
Text-based querying is limited in its lack of quality representation

of the user’s intent. In order to complement text-based querying
another method must be proposed to better retrieve information
related to the time-series data. One way of accomplishing this is
with example-based querying.

Example-based querying involves using an example of a graphi-
cal trend in time series data to retrieve other time series data from
other sensors that match the trend provided. For example, a user
can select a portion of continuous time-series data from a sensor
that shows the temperature linearly decreasing. The system then
uses this selection and retrieves time-series data from other sensors
that show a linear decrease similar to the one provided by the user.
This method is not limited to only linear trends but allows for a
comparison with a variety of graphical trends. This improves on
the text-based querying because the system is no longer bounded
by categorical methods. Instead it gives the user more flexibility in
determining what data they want to retrieve from the database.

The system designed is able to conduct example-based query-
ing by gathering descriptive information about the user selected
time-series data. The descriptive information is gathered by utiliz-
ing DTW. As proposed in the paper [4], DTW was optimized by
utilizing EBSM. This meant significant offline preprocessing com-
putations were conducted. This is fine as earlier we assumed that
data associated to these sensors are static. To conduct the search
for similar trends, a window is slid across time-series data and the
data in that window is compared to the user-selected trend. The
most similar results are then retrieved from the database.

3.3 Query Pipeline
In order to systematically parse a text-query provided by the

user, a pipeline was created. This pipeline consists of operations
conducted on the original query.

A query is first passed into the spell check. Each token in the
query is checked for spelling mistakes. If a spelling mistake is found,
then the token is corrected. This is accomplished by using the NLTK
package. Now that the query is sanitized, a cache check is performed.
If the query is in the cache, then the pipeline is halted and the
results are returned to the user. Else, the query is issued to the
database. If the database does not retrieve any relevant results then



Using Text-Based and Example-BasedQuerying to Improve Usage of IoT Sensor Data in Smart Buildings , ,

the query is passed onto the next step. The final step is a last effort
at retrieving results. The query is expanded by using a Wordnet
lexical database. This lexicon contains semantic relations between
words. For instance, the word “temperature” can get expanded to
other semantically similar words like “heat” or “cool”. By expanding
the initial query we are able to conduct a more extensive search of
our database. Any results acquired from this pipeline is then used
to update the cache for future lookups. This process is represented
graphically by Figure 3.

Figure 3: Overview of the query pipeline

3.4 System Architecture
The text-based querying and example-based querying solutions

described earlier are housed in a search engine web app. This web
app is designed using Docker containers. The web app is split into
6 containers: front-end, API, Database, Microservices, Event, and
DTW.

The front-end does not deviate from common practice. Its sole
purpose is to serve web pages to the user and to issue any network
requests to the API for additional work to be conducted. These
webpages will accept queries provided by the user and display time
series data associated with retrieved sensors.

The API in my design acts as a mediator between the front-
end and the other docker containers. Depending on the operation
needed, the API will either conduct some light-weight work or
delegate the work to other containers that are more equipped. Ad-
ditionally, the API handles the search engine pipeline where it
pre-processes the query provided by the user and applies pipeline
operations to get more meaning from the user’s query.

The database houses the dataset used for this project (described
in Section 3.5). Additionally, it houses the cache used to speed up
commonly issued queries. Since we assume the sensor metadata
in our system is static, we are able to store the results of previous
queries. When a user issues a query that is the same as one in our
cache we are able to retrieve the results without having to execute
the query pipeline.

The microservices container handles computationally intensive
work. This container houses the WordNet expansion used in the
query pipeline.

The Event and DTW both handle the example-based querying
functionality. The DTW container conducts the Dynamic Time
Warping computations (described in Section 3.2). Since the DTW
implementation used is written in C, the Event container is created
to write network communication between the DTW and the API
in Python.

3.5 Datasets
In order to test the system’s capabilities of retrieving information,

a dataset was acquired from an existing building’s sensor data.
The data used in this project was obtained from the University
of Virginia Building Management Group. This dataset contains
time series data from 2858 different sensors in buildings on the
University of Virginia’s campus. The dataset also contains data
from 34 different sensor types. There are a total of 21,909,993 time-
series data points in the entire system. These data points range
from 6/1/2013 03:00:10 to 10/12/2014 17:38:05. The data from each
sensor is also labelled with metadata in the form of descriptive text
attributes. Some example attributes include “occupancy sensor” and
“room-id:386”. These attributes describe an occupancy sensor that
exists in room 386.

4 PROCEDURE & RESULTS
This section showcases how this system provides users with

new methods for retrieving IoT sensor data. To do this I will walk
throughways a user can use the system and afterwards I will discuss
design criticisms provided by my peers from the user study.

4.1 Showcase
A user can directly type a query into the search box to search

for sensors. The webpage serves the sensors that are relevant to
the user’s query. The time series data for each sensor retrieved
is also displayed. If the user chooses to more closely inspect a
retrieved sensor, he can expand each sensor to display the attributes
associated with it and a more detailed visual of the time series data.

In the example provided by Figure 4, a user queries "temperature
> 75". The system then retrieves temperature sensors whose values
exceed 75.

Figure 4: Screenshot of search engine returning results for
"temperature > 75" query

If a user wishes to conduct an event based query, the user can
select a window from the sensor’s time series data and then the
system will create an “event” for that window. The event is labelled
for future querying. This event can then be queried by the search
box or by using the left menu labelled “events”. Once the event is
queried, the user is provided time-series data that resembles the
event they selected.



, , Andrew Villca-Rocha

Figure 5 shows the results of an event query. The left time-series
data is the event selected by the user and the right time-series data
is a sensor who experiences a similar event.

Figure 5: Screenshot of search engine returning results for
event query

For both the text-based and example-based queries. The user is
able to provide feedback about the relevancy of retrieved sensor
data. This feedback can be used to further evaluate the system and
to improve any hyper parameter tweaking.

4.2 Peer User Study
A small user study was conducted. Students of my technical

advisor were contacted to test out our system and provide any
comments and recommendations for improvement. The user study
consisted of two parts: an exploration of text-based querying and
event-based querying.

The text-based querying study involved users using their in-
tuition to issue queries in order to solve building management
problems. An example problem statement is the following: "I am
interested in sensors that detect the temperature of rooms. Can you
provide a list of sensor names that are associated with the temper-
ature of rooms?". Users were tasked to determine what keywords
to query for in order to find the names of temperature sensors for
rooms. The second task given to users was to validate that an event
occurred within the building. An example of this was "Room 500
was reported to be too cold. Can you confirm this?". Again like the
previous tasks, users had to use their intuition to conduct queries
into the database.

The event-based querying study was more simple. Users in this
study were provided with events already queried into the system.
Users simply had to evaluate whether or not the provided time
series sub-sequences "matched" the even sub-sequence. This aimed
at evaluating the event matching algorithm (DTW).

Here I will highlight a few findings from this user study. The
text-based querying study exposed a flaw in the study itself. Users
were tasked with taking the role of a building manager. This meant
users had to be comfortable with the nomenclature of various sen-
sors in the system to be able to issue queries. Thus, many users
felt confused as to how to determine if a sensor was relevant to
the query itself. Additionally, users struggled with validating the
occurrence of events. 55.6% of users claimed the event did not oc-
cur and 44.4% claimed the event did occur. This result hints that

users were guessing which further confirms the confusion of users.
However, this confusion is stemmed from students taking on the
role of a building manager. This confusion can be mitigated if the
users were building managers. This way they would understand
the naming convention.

The event-based querying study went more smoothly because
graphical trends were intuitive to the students. Results showed
that the event matching algorithm employed by the system was
working very well. However when results from the algorithm began
to deviate from the event, users struggled with determining when
an event no longer matches what was provided by the system. An
example of this ambiguous case is given by Figure 6. The event is
an oscillating increasing trend. The retrieved sensor data exhibits
oscillating trends but some would argue it deviates from the event.

Figure 6: Screenshot of ambiguous event query match

5 CONCLUSION
In this technical project, we designed a system which is able to

retrieve IoT time-series data by utilizing both text-based and event-
based querying. This was accomplished by utilizing information
retrieval techniques in the form of a query pipeline and by using a
DTW-based algorithm for event-based querying. The system was
showcased to demonstrate its ability to retrieve information from
IoT sensor data. Additionally, a small user study was conducted.
Findings showed that users without building management expertise
struggled using the system. However, our stakeholders are building
managers who presumably know the nomenclature of the system.
The user study also showed that the event matching algorithm
retrieved high quality matches.

6 FUTUREWORK
In this section I will suggest possible improvements on my solu-

tion. First, we assume the metadata associated with every sensor
is static. This assumption does not hold in the real world as sen-
sors are re-purposed or modified to fit a different use, thus making
the metadata dynamic. Additionally, the time-series data in build-
ing management systems is handled in real-time. Future solutions
should then assume the metadata to be dynamic. This will affect
the cache system in our database. This will also affect the DTW
implementation because it assumes the data is offline and static in
order to compute preprocess computations to speed up the process.

Second, the user study showed that there was a learning curve
in understanding the nomenclature of the system. This should be



Using Text-Based and Example-BasedQuerying to Improve Usage of IoT Sensor Data in Smart Buildings , ,

addressed by introducing tools to allow the user to explore the
sensors and their naming schema.

REFERENCES
[1] Mustafa Gokce Baydogan, George Runger, and Eugene Tuv. 2013. A Bag-of-

Features Framework to Classify Time Series. IEEE Trans. Pattern Anal. Mach. Intell.
35, 11 (Nov. 2013), 2796–2802. https://doi.org/10.1109/TPAMI.2013.72

[2] B. M. Flax. 1991. Intelligent Buildings. Comm. Mag. 29, 4 (April 1991), 24–27.
https://doi.org/10.1109/35.76555

[3] Miro Mannino and Azza Abouzied. 2018. Expressive Time Series Querying with
Hand-Drawn Scale-Free Sketches. In Proceedings of the 2018 CHI Conference on

Human Factors in Computing Systems (CHI ’18). ACM, New York, NY, USA, Article
388, 13 pages. https://doi.org/10.1145/3173574.3173962

[4] Thanawin Rakthanmanon, Bilson Campana, Abdullah Mueen, Gustavo Batista,
Brandon Westover, Qiang Zhu, Jesin Zakaria, and Eamonn Keogh. 2012. Searching
and Mining Trillions of Time Series Subsequences under Dynamic Time Warping.
In Proceedings of the 18th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD ’12). Association for Computing Machinery, New
York, NY, USA, 262–270. https://doi.org/10.1145/2339530.2339576

[5] Patrick Schäfer and Ulf Leser. 2017. Fast and Accurate Time Series Classification
with WEASEL. In Proceedings of the 2017 ACM on Conference on Information
and Knowledge Management (CIKM ’17). ACM, New York, NY, USA, 637–646.
https://doi.org/10.1145/3132847.3132980

https://doi.org/10.1109/TPAMI.2013.72
https://doi.org/10.1109/35.76555
https://doi.org/10.1145/3173574.3173962
https://doi.org/10.1145/2339530.2339576
https://doi.org/10.1145/3132847.3132980

