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Abstract

Once nuclear fuel has been used, it gets stored into stainless steel canisters that are exposed
to dry storage conditions. Over time, these canisters are susceptible to corrosion. The maximum
pit size model is being used as an input to determine the location-specific risk to failure during the
service life of these canisters. In order to estimate the largest pit size possible, important parameters
are needed, such as the corrosion potential, repassivation potential, pit stability, and the

conductivity of the electrolyte.

In this work, OLI Studio: Corrosion Analyzer™ was used to calculate parameters for a
variety of single salt solutions for stainless steels 304L and 316L. OLI was used to study salt
solutions based on different degrees of saturation of stoichiometric dissolution of the alloys to
better understand the process that occurs inside the active pits. Evans diagrams were extracted for

those conditions to further understand the extent to which reactions control the outcome.

In conclusion, it was computationally determined that compounds that have equivalent
chloride concentrations will produce the same or similar result. It was found that when the surface
solution chemistry changes, the corrosion morphology does as well. At critical, higher
temperatures, sharp transitions in the corrosion potential for stainless steel 304L will occur and
will result in the corrosion potential being lower than the repassivation potential. Therefore, when
the canister reaches a high enough temperature, it will change the corrosion attack from pitting to
active, uniform corrosion. When comparing the two databases, it shows that the model used for
stainless steel 304L and the inputs for the maximum pit size predictions are sensitive to the

parameters used.
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1. Introduction

1.1 Nuclear Fuel Storage

Nuclear fuel is being used every day to generate electricity. In 2020, the nuclear power
plants in the United States (U.S.) generated 790 million megawatt hours (MWh) of electricity
which marked the first time that coal-fired electricity was not the largest or second-largest in
annual electricity generation'. After nuclear fuel has been used, it will remain in the spent fuel
pool for several years until it has cooled. Once cooled, the spent nuclear fuel (SNF) is removed
and stored inside dry storage canisters before being transported to a permanent repository**. The
U.S. Nuclear Regulatory Commission (NRC) issued licenses for independent spent fuel storage
installations (ISFSIs) where the SNF will be stored for 20 years. However, since the U.S. does not
have a permanent repository, the fuel will have to remain in dry storage for more than 20 years,

past the original license.

These canisters are primarily made of austenitic stainless steels (SS) which include 304 SS,
304L SS, and 316L SS°. SS are used because these alloys have thin passive films that naturally
form on the surface and decrease the corrosion rate. Unfortunately, these passive films are
vulnerable to localized breakdown which will cause the metal to have an accelerated dissolution
that can result in corrosion and in the formation of pits*. Additionally, many canisters are near salt
sources, such as oceans, so there is concern about corrosion damage leading to cracking and

therefore, there is a need to determine the location-specific risk to failure during their service life.

1.2 Corrosion of Nuclear Fuel Storage Containers
After a certain period of time, dust will deposit on the surface of the dry storage canisters.

As the canister cools, the relative humidity (RH) will increase and salts within that dust will



deliquesce to form high chloride concentration in solution. As further cooling occurs, the solution

becomes less concentrated, but more salt is deposited, allowing corrosion to occur.

These SS canisters are susceptible to pitting corrosion and stress corrosion cracking (SCC)
if sufficiently high internal stresses occur’. Pitting corrosion is when the attack is initiated on an
open surface and will only occur when there are aggressive anionic species, like chloride ions,
present*. High concentrations of chloride ions can cause pitting corrosion to occur at room

temperature®,

SCC is a crack formation as a result of stress and exposure to a corrosive environment and
has the ability to compromise the structural integrity of the canister®*. Previous studies have
discovered that the SCC susceptibility of the canisters was correlated to the deliquescence of the
deposited salt, which are mainly composed of sodium chloride and magnesium chloride®. When
there is an accumulative deposition of these chloride ions, the canisters can develop localized
corrosion and can further lead to SCC when residual stress is present®. SCC can even occur in SS
when there are low concentrations (around 100 ppm) of chloride ions because chloride ions will

accelerate the SCC?.

1.3 Mixed Potential Theory

The mixed potential theory (MPT) is used to predict the corrosion rate of alloys and metals.
The theory is that electrochemical reactions must consist of at least two partial cathodic and anodic
reactions and that there cannot be any charge accumulation during the reaction’. A cathodic
reaction is where the reduction occurs (where the cathode acts as an electron acceptor) and an

anodic reaction is where the oxidation reaction occurs (where the anode acts as an electron donor)?®.

Consider the reactions below:
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(i) Zn — Zn*" + 2¢ (anodic)

(i)  2H'+2e — H> (cathodic)

Figure 1 shows the diagrams of the potential versus the current density (or corrosion rate)
before and after the polarization of the anodic and cathodic reactions. Figure 1a shows that these
reactions occur on the surface at the same time and each reaction has its own electrode potential
and exchange current density. Figure 1b shows the polarization of each electrode potential to an

intermediate value, known as the corrosion potential (Ecorr) Or open circuit potential (OCP)°.
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Figure 1: Before (a) and after (b) polarization of anodic and cathodic reactions’

1.4 Localized Corrosion of Stainless Steels

Overview

Corrosion is defined as the deterioration of a metal as a result of the reaction to the
environment. In order for corrosion to occur, there needs to be an anode, a cathode, an ionic current
path, and an electrical path between the two'?. There are multiples types of corrosion, two of which
are general and localized corrosion. General corrosion, or uniform corrosion, is the most common
type of corrosion that takes place evenly on the surface of the metal in a corrosive environment,

resulting in a smooth look'"!2. This type of corrosion is often able to be predicted, managed, and
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even prevented. Localized corrosion is a type of corrosion that specifically targets an area of the
metal and is characterized by a rapid attack of a passive metal at localized sites on the surface, due
to the breakdown of the passive film, while the rest of the surface is corroding at a slower rate'>.
There are two types of localized corrosion which include pitting (where the attack is initiated on
the open surface when there are aggressive anionic species present that results in a small hole or

pit) and crevice corrosion (where the attack is initiated at the blocked site)*.

The process of localized corrosion can be broken down into three main stages. The first
stage is initiation, which is the result of the protective passive film breaking down. The second
stage is metastable growth, which is where the growth of the majority of pits will stop. The third
and final stage is the stable growth, where the sites of localized corrosion can become large in size.
It has been determined that localized corrosion will initiate above a critical potential and will

repassivate below a lower potential'®

. The repassivation potential, Eyp, is the potential at which a
pit will stop growing as it will not be able to dissolve fast enough to prevent dilution and any

existing pits will repassivate!*. The phenomenology of localized corrosion can be characterized as

scarcity on the surface, high local dissolution rates, and the existence of a repassivation potential.

Although models have been developed to study localized corrosion, several challenges still
remain. The first stage, initiation, is very difficult to predict as it has a large stochastic component
and initiation events are scarce. Propagation, which describes growth to sizes that could serve as
crack starters, is also hard to predict and model. Additionally, time-transient modeling of decades
of damage accumulation has not yet been successfully accomplished'®. An alternative to the
immense challenge of time-transient modeling is the development of bounding values for pit size

that can be defended as controlled by physical limits.
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Maximum Pit Concept
The maximum pit size is created when the size of the features of localized corrosion
increase to a point where it needs a cathode current that it cannot get from the surrounding

environment !’

. The maximum pit size has been modeled in order to calculate the largest possible
pit that can form on a material exposed to a given environment resulting in the formation of a thin
electrolyte film. It is useful to calculate the maximum pit size because it provides an upper bound
on the size that can determine what parts of the parameter space (such as RH, temperature (T), and

loading density (LD)) that could be of concern for allowing a pit of sufficient size to grow that

could lead to cracking.

Based on the application of the Mixed Potential Theory, Chen and Kelly developed a
computational model of the bounding conditions for localized corrosion, under thin electrolyte
films, in order to predict the maximum pit size. An analytical expression was created and validated
where the maximum cathode current that could support pit growth was determined and coupled
with an expression for the minimum anodic current required for the pit to retain its aggressive
solution. The aggressive solution is formed when the dissolution products hydrolyze, attracting
chloride ions, leading to a low pH, high chloride concentration environment. The pit stability
criterion is the current density required to be generated by a pit at a certain depth and if there is
insufficient current density, it will not meet the pit stability criterion and the pit will repassivate.
It was found that the maximum pit size in 304 and 316 SS under atmospheric conditions could be

predicted by linking the capacity of the cathode to the pit stability criterion'°.

A galvanic couple is a corrosive cell that happens when there is a potential difference that
occurs between two different metals or two different locations on the same metal'®. In pitting

corrosion, there are two parts of the galvanic couple which is the anodic pit and the surrounding



13

cathode where the anodic pit is dissolving and the surrounding cathode is covered by a thin film
of electrolyte!”. In order to calculate the maximum pit size, the pit stability product, repassivation
potential, and cathodic kinetics need to be determined'®. Chen and Kelly determined that the lowest
repassivation potential for pit propagation is at the pit mouth and chose to use that for the
repassivation potential which is always found in the activation-controlled region of the cathodic
kinetics'?. By applying the maximum pit size model to the materials and conditions of the dry
storage canisters, it would allow for the identification of the specific parameter combinations (such
as the LD, T, RH, salt mixture, and stainless steel of interest as a function of time) that are needed
in order to predict the time where the largest pit could be and it could be used to determine the

location-specific risk to failure of the canisters during their service life.

1.5 Anderko’s and Young’s Model

Anderko and Young developed a model that can calculate the corrosion rates of carbon
steels. It is composed of a thermophysical module, to produce the realistic evolution of aqueous
systems, and an electrochemical module, which includes halide adsorption as it influences the
process of corrosion, for the partial anodic (oxidation) and cathodic (reduction) processes that take
place on the surface of the metal. The model has been verified with the computed and experimental
corrosion rates and has been added to a program, now known as the OLI Studio: Corrosion
Analyzer™, where it can analyze the effects that flow velocity, what the solution is composed of,
pH, T, and pressure have on the rates of corrosion. Therefore, the model can be used to predict the
rates of corrosion and provide a means of calculating E;, and OCP for complicated and

concentrated systems that may not have any available experimental data'®!*-
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1.6 OLI Software

OLI Studio: Corrosion Analyzer™ is a software program that can be utilized as a predictive
tool. It contains two modules, thermophysical and electrochemical, where it is able to predict the
general corrosion rates and corrosion and repassivation potentials by modeling the surface
reactions, transport phenomena, and bulk chemistry. The thermophysical module is able to
determine the concentrations of the reacting species along with the transport and activity properties
whereas the electrochemical module mimics the oxidation and reduction processes that occur on

the metal surface?’.

These data are required as input for the maximum pit calculations for the dry storage
canisters. Conditions under which the repassivation potential is less than the corrosion potential
are those for which localized corrosion is expected to be able to propagate, whereas those for which
the corrosion potential is lower than the repassivation potential, localized corrosion would not be

expected.

1.7 Objective Statement
The main goal of this thesis is to computationally explore the effects of environmental

factors on the parameters needed for the calculation of the maximum pit size for 304L and 316L

SS.

2. Methods
2.1 OLI Studio Software

How It Was Used
OLI Studio: Corrosion Analyzer™ (version 10.0.1) was used to calculate the corrosion

rate, repassivation potential, and corrosion potential for stainless steels of grade 304L and 316L
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exposed to a wide range of chloride, nitrate, and sulfate solutions at different temperatures. OLI
was used to study salt solutions based on different degrees of saturation of stoichiometric
dissolution of the alloys to better understand the process that occurs inside the active pits. Evans
diagrams were also extracted for these conditions to understand the extent to which different

reactions control the outcome.

Database

In OLI, there are a total of three databases that can be used which are aqueous (AQ), the
Mixed Solvent Electrolytes (MSE), and the Mixed Solvent Electrolyte-Soave Redlich Kwong
(MSE-SRK). The AQ database is OLI’s original activity coefficient model. The MSE and MSE-
SRK databases are relatively new and are currently limited in the number of species it has as the
AQ database contains 6,000 species, the MSE database contains 3,500 species, and the MSE-SRK
database is even smaller with no species approximation stated?!. Therefore, the AQ database was

used for the computational calculations in OLIL

Parameters

The parameters used in the OLI Studio: Corrosion Analyzer™ are stream amount,
temperature, pressure, and inflows. Unless a temperature study is conducted, the temperature will
be at 25°C and the pressure at 1 atm. The inflows comprise of the compound being tested (which
will be stated for each calculation in the results section) along with the compounds found in the
atmosphere and their amounts which are 55.5082 mol H»0O, 0.209476 mol O, 0.780840 mol N>,
3.14000e™* mol CO», 9.340003¢ mol Ar, 1.81800e™ mol Ne, 2.00000¢® mol CH4, 5.24000¢°® mol
He, 1.14000e® mol Kr, 5.000000e”” mol H,, and 8.700000e® mol Xe. These values represent the

composition of ambient air.
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Tests Conducted

The calculations that were made included: corrosion rate versus concentration of the
compound, OCP and E., versus concentration of the compound, corrosion rate versus temperature,
and OCP and E,, versus temperature. The range for the compound concentration was from 0-100%
saturation and the range for the temperature was from 20-140°C. These tests were conducted for
chloride solutions (NaCl, MgCl,, CaCl,, KCI, and NH4Cl), nitrate solutions (KNO3 and NaNQO3),
sulfate solutions (CaSO4 and Na»S0O4), and solutions representing the stoichiometric dissolution of
304L and 316L SS. These salts were selected because those salts were identified as found on the
actual dry storage canisters by Sandia National Laboratories??. Stoichiometric solutions simulate
pit solutions and were used to calculate the corrosion rate, OCP, and E., at various levels of

saturation.

2.2 MATLAB Software

A MATLAB code was created to calculate the maximum pit size using the framework that
was set forth by Chen and Kelly, but has not been published yet!®!3?3, The tests that were
computed include: maximum radius, rmax, versus dissolution current/pit radius (I/r), LD, and RH
for 304L and 316L SS. The ranges for each of the variables were 0.05 — 0.6 A/m for I/r, 10 — 1,000
ug/cm? for LD, and 30 — 98% RH. Temperature plots were made for rmax versus LD and RH for

304L and 316L SS at 25°C, 35°C, 45°C, and 55°C.

3. Results

3.1 Computational Results
In this section, the chloride solutions will be presented first, followed by nitrate, sulfate,
and stoichiometric solutions respectively. For the chloride, nitrate, and sulfate solutions, the

corrosion rates, OCP, and E., will be shown as a function of the compound concentration and
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temperature and for stoichiometric solutions, it will be shown at various levels of saturation.
Additionally, when a sharp transition can be seen in the graphs, the origins of the corrosion
potential effects will be shown with Evans diagrams for conditions just below and just above the

sharp transition.

Chloride Solutions

A subset of the data is shown below for these solutions as 316L SS produced the same
results as 304L SS did, but on a significantly smaller scale and was therefore not included with the
rest of the figures in this section. The figures that are not included in this section can be seen in

the Appendix.

NaCl

The results of the chloride effects for NaCl can be seen below in Figure 2. As the
concentration of NaCl increases, there is a large effect on the corrosion rate for 304L SS (Fig. 2a)
and the repassivation potential decreases for 304L and 316L SS (Fig. 2b). For comparison, Figure
2b also includes experimental results that were found in a recently published paper'”. The stream

amount for Figure 2 was 55.5082 mol.

Corrosion Rate vs [NaCl] Potential vs [NaCl]
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Figure 2: Corrosion rate (a) and potential (E,, and OCP) (b) vs [NaCIl]"’
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The results of the temperature effects can be seen below in Figure 3. As the temperature
increases, the corrosion rate also increases for 304L SS (Fig. 3a). It also increased for 316L SS,
but on a significantly smaller scale and was therefore not included with the rest of the figures. As
the temperature increases, the OCP decreases for 304L SS with the largest effect at high NaCl
concentrations (Fig. 3b). Sharp transitions in the OCP for 304L SS occur at critical temperatures,
resulting in the OCP being lower than the E;, (Fig. 3b). In simple salt solutions, 316L SS is more
resistant to increased chlorides at increased temperatures than 304L SS, as expected (Fig. 3c). The
temperature range only went up to 100°C as the model was not able to determine data past that
temperature. At the highest temperatures studied, the OCP for 316L SS shows the beginning of a
decrease. The stream amounts for Figure 3 for 0.1 M, 2.1 M, 3.9 M, and 5.4 M were 56.6082 mol,

58.7082 mol, 60.8082 mol, and 62.6582 mol respectively.
304 SS Corrosion Rate vs Temperature
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Figure 3a: Corrosion rate of NaCl on 304L SSvs T
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316 SS NaCl Potential vs Temperature
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Figure 3 Continued: Potential (E,, and OCP) of NaCl on 304L (b) and 316L SS (c) vs T

The origins of the corrosion potential effects can be seen below in Figure 4 with Evans

diagrams from OLI for temperatures just below and just above the sharp transition that was seen

in Figure 3b. When there is an increase in passive current density where it exceeds the diffusion-

limited oxygen reduction reaction for 304L SS for NaCl, the corrosion potential drops, per Mixed

Potential Theory.
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Figure 4: Evans diagrams of 5.4 M NaCl on 304L SS at 40°C before (a) and 80°C after (b)

sharp transition
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MgCl>

The results of the chloride effects for MgCl, can be seen below in Figure 5. There is a peak

in the corrosion rate at ~2 M for 304L SS (Fig. 5a). Above a critical concentration (which is 1.5

M for 304L and 4 M for 316L SS), the corrosion potential falls below the repassivation potential

(Fig. 5b). The stream amount for Figure 5 was 55.5082 mol.
Corrosion Rate vs [MgCl2] Potential vs [MgCl2]
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Figure 5: Corrosion rate (a) and potential (E,, and OCP) (b) vs [MgCl>]

The origins of the corrosion potential effects can be seen below in Figure 6 with Evans

diagrams of before, at, and after the peak that was seen in Figure 5a. It can be seen that the

corrosion potential drops and the anodic current density increases from 1 M to 2 M for 304L SS.
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Figure 6: Evans diagrams of 1 M (a) and 2 M (b) MgCl; on 304L SS



At 2M (at the drop):

At 3M (af

25

21

ter the drop):

25 T v T o

e - . e -
20l SS Oxidation ]
15 .
10 Corrosion Potential 1
05

00

Potential (V (SHE))

05

-1.0

-15

20

Potential (V (SHE))

20

15

10

05

00

05

-1.0

-15

20

T

"5 Oxidation

Corrosion Potential

25

Current Density (A/sq-m)

25

Current Density (A/sq-m)

Figure 6 Continued: Evans diagrams of 2 M (b) and 3 M (c) MgCl> on 304L SS

The results of the temperature effects on corrosion rate can be seen below in Figure 7.

Increased temperature leads to switching the order of magnitude for different concentrations of

MgCl (Fig. 7a). When the OCP falls below the E;, with increased temperature, the critical

temperature is lower for higher concentration (Fig. 7b). For 5 M of MgCl> for 304L SS, the OCP

is always less than the Ey (Fig. 7b). 316L SS produced the same results as 304L SS did, but on a

significantly smaller scale and was therefore not included with the rest of the figures. Figure 8

displays Evans diagrams of before and after the sharp transition that was seen in Figure 7b. The

stream amounts for Figure 7 for 0.1 M, 1.8 M, 3.4 M, and 5.0 M were 56.6082 mol, 58.4082 mol,

60.2082 mol, and 62.3082 mol respectively.
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Figure 7: Corrosion rate (a) and potential (E,, and OCP) (b) of MgCl2 on 304L SSvs T
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CaCl»

sharp transition

The results of the chloride effects for CaCl, are shown below in Figure 9. The results of

CaCl, are qualitatively the same to the results of MgCl,. There is a peak in the corrosion rate at

~2.65 M for 304L SS (Fig. 9a). Above critical concentration (which is 1.5 M for 304L and 4 M

for 316L SS), the OCP will fall below the Er, (Fig. 9b). The stream amount for Figure 9 was

56.5082 mol.
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Figure 9: Corrosion rate (a) and potential (E,, and OCP) (b) vs [CaCl>]
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The origins of the corrosion potential effects are shown below in Figure 10 with Evans
diagrams of before, at, and after the peak that was seen in Figure 9a. It can be seen that the
corrosion potential drops when the anodic current density increases from 1 M to 2.65 M (Figs.
10a,b). The corrosion potential stays the same and the anodic current density decreases from 2.65

M to 4 M for 304L SS (Figs. 10b,c).
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Figure 10 Continued: Evans diagrams of 2.65 M (b) and 4 M (c) CaCl; on 304L SS

The results of the temperature effects can be seen below in Figure 11. Increased

temperature leads to switching the order of magnitude for different concentrations of CaCl (Fig.
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11a). When the OCP falls below the E., with increased temperature, the critical temperature is

lower for higher concentration of CaCl, (Fig. 11b). For 5 M of CaCl, on 304L SS, the OCP is

always less than the Ey, (Fig. 11b). 316L SS produced the same results as 304L SS did, but on a

significantly smaller scale and was therefore not included with the rest of the figures. Figure 12

displays Evans diagrams of before and after the sharp transition that was seen in Figure 11b. The

stream amounts for Figure 11 for 0.1 M, 2.3 M, 4.0M, and 5.4 M were 56.6082 mol, 59.1082 mol,

61.6082 mol, and 63.9582 mol respectively.
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KCl
The results of the chloride effects for KCl can be seen below in Figure 13. As the
concentration of KCl increases, the corrosion rate increases for 304L SS (Fig. 13a) whereas the

OCP and E., slightly decrease for both alloys (Fig. 13b). The stream amount for Figure 13 was

56.5082 mol.
Corrosion Rate vs [KCl] Potential vs [KCI]

0.004 0.30
_. 0.004 0.25 —a— OCP - 3045
< 000 Eaasesessss s
€ 3 w 020
£ - ;
~ 0.003 aQ ~—g— Erp - 304 SS
S >
5 0002 %
c B 304 SS =
o 0.002 [ 2. OCP - 316 §§
3 —g— 316 SS °
t 0.001 o
o]
Q

0001 @M e e e e e e N N B e e

~——Erp - 316 SS

0 1 2 3 4 0 1 2 3

Concentration of KCI (M) Concentration of KCI (M)

Figure 13: Corrosion rate (a) and potential (E,, and OCP) (b) vs [KCI]

The results of the temperature effects can be seen below in Figure 14. There is a peak in
the corrosion rate at 100°C for 304L SS (Fig. 14a). Sharp transitions in the OCP for 304L SS occur
at critical temperature where the OCP is lower than the E, (Fig. 14b). 316L SS produced the same
results as 304L SS did, but on a significantly smaller scale and was therefore not included with the
rest of the figures. The temperature range only went up to 130°C as the model could not determine
data past that temperature. The stream amounts for Figure 14 for 0.1 M, 1.5 M, 2.7 M, and 3.9 M

were 56.6082 mol, 58.1082 mol, 59.6082 mol, and 61.3282 mol respectively.
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304 SS KCl Potentials vs Temperature
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Figure 14: Corrosion rate (a) and potential (E,, and OCP) (b) of KCl on 304L SSvs T

The origins of the corrosion potential effects are shown below in Figures 15 and 16 with

Evans diagrams of before, at, and after the peak seen in Figure 13a and before and after the sharp

transition seen in Figure 14b. Figure 15a,b shows that the corrosion potential drops and anodic

current density increases from 80-100°C for 3.9 M KCI on 304L SS. Figure 15b,c shows that the

corrosion potential slightly drops and anodic current density slightly decreases from 100-110°C

for 3.9 M KCl on 304L SS. Similar to Figure 15, Figure 16a,b shows that the corrosion potential

drops and anodic current density increases from 90-110°C for 0.1 M KCl on 304L SS.
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Figure 15: Evans diagrams of 3.9 M KCl on 304L SS at 80°C before (a) and 100°C (b) sharp
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At 110°C (after the peak):

25 vy s
. SS Oxidation ]

154 -

1.0
0.5
0.0
05
-1.0

Corrosion Potential

A5
20

25 sul ol sl s siual sl saal sal sl sual ol sl

Current Density (A/sg-m)

Figure 15 Continued: Evans diagrams of 3.9 M KCl on 304L SS at 100°C (b) and 110°C after
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Figure 16: Evans diagrams of 0.1 M KCl on 304L SS at 90°C before (a) and 110°C after (b)

sharp transition

NH,CI

The results of the chloride effects for NH4Cl can be seen below in Figure 17. As the
concentration of NH4Cl increases, the corrosion rate increases for 304L SS (Fig. 17a), the
corrosion potential decreases for 304L SS (Fig. 17b), and the repassivation potential decreases for

both alloys (Fig. 17b). The stream amount for Figure 17 was 56.5082 mol.
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Corrosion Rate vs [NHaCl] Potential vs [NH4Cl]
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Figure 17: Corrosion rate (a) and potential (E,, and OCP) (b) vs [NH,CI]

The results of the temperature effects for NH4Cl can be seen below in Figure 18. There is
a peak in the corrosion rate at 100°C for 304L SS (Fig. 18a). Sharp transitions in the OCP for 304L
SS occur at critical temperature where the corrosion potential is lower than the E., (Fig. 18b). 316L
SS produced the same results as 304L SS did, but on a significantly smaller scale and was therefore
not included with the rest of the figures. The temperature range only went up to 130°C as the model
was not able to determine data past that temperature. The stream amounts for Figure 18 for 0.1 M,

23 M, 4.1 M, and 54 M were 56.6082 mol, 59.1082 mol, 61.6082 mol, and 63.8582 mol

respectively.
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Figure 18: Corrosion rate (a) and potential (E,, and OCP) (b) of NH4+Cl on 304L SS vs T
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The origins of the corrosion potential effects can be seen below in Figures 19 and 20 with
Evans diagrams of before, at, and after the sharp transition that was seen in Figure 18a and before
and after the sharp transition in Figure 18b. Figure 19a,b shows that the corrosion potential drops
and the anodic current density increases from 80-100°C for 4.1 M NH4Cl on 304L SS. Figure
19b,c shows that the corrosion potential slightly increases and the anodic current density increases
from 100-110°C for 4.1 M NH4Cl on 304L SS. Figure 20 shows that the corrosion potential drops

and the anodic current density increases from 80-100°C for 0.1 M NH4Cl on 304L SS.
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Figure 19: Evans diagrams of 4.1 M NH,Cl on 304L SS at 80°C before (a) and 100°C at (b)

sharp transition
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Figure 20: Evans diagrams of 0.1 M NH,CI on 304L SS at 80°C before (a) and 100°C after (b)

sharp transition

Nitrate Solutions
Since the nitrate solutions do not contain any aggressive anions, (e.g., chlorides), that can
advance the localized corrosion development, no localized corrosion of SS was found which

resulted in no repassivation potential.

KNO;
The results of the concentration effects for KNO;3 can be seen below in Figure 21. As the
concentration of KNOj3 increases, the corrosion rate slightly decreases for 304L SS (Fig. 21a)

whereas the corrosion potential slightly increases for both alloys (Fig. 21b). The stream amount

for Figure 21 was 56.5082 mol.
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Figure 21: Corrosion rate (a) and OCP (b) vs [KNO3]
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The results of the temperature effects can be seen below in Figures 22 and 23. As the
temperature increases, the corrosion rate for KNOj increases for both alloys (Fig. 22a,b). Sharp
transitions in the corrosion potential for both alloys occur (Fig. 23). The stream amounts for
Figures 22 and 23 for 0.1 M, 1.5 M, 2.4 M, and 3.3 M were 56.6082 mol, 58.1082 mol, 59.3082

mol, and 60.5482 mol respectively.
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Figure 22: Corrosion rate of KNO3 on 304L (a) and 316L SS (b) vs T
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Figure 23: OCP of KNO3 on 304L (a) and 316L SS (b) vs T

The origins of the corrosion potential effects can be seen below in Figure 24 with Evans
diagrams of before and after the sharp transition that was seen in Figure 23. Figure 24 shows that
the corrosion potential drops and the anodic current density increases from 90-110°C for 0.1 M

KNOs on 304L SS.
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At 110°C (after the drop):
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Figure 24: Evans diagrams of 0.1 M KNO3 on 304L SS at 90°C before (a) and 110°C after (b)

sharp transition

NaNO;

The results of the concentration effects for NaNOs3 can be seen below in Figure 25. As the

concentration of NaNOs3 increases, the corrosion rate decreases for 304L SS (Figure 25a) and the

corrosion potential for both alloys increase to a certain point and then drops off (Fig. 25b). The

stream amount for Figure 25 was 56.5082 mol.
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Figure 25: Corrosion rate (a) and OCP (b) vs [NaNO;]

The results of the temperature effects can be seen below in Figures 26 and 27. As the

temperature increases, the corrosion rate also increases for both alloys (Fig. 26) and sharp
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transitions in the corrosion potential for 304L SS occur (Fig. 27). The temperature range only went

up to 120°C as the model could not determine data past that temperature. The stream amounts for

Figures 26 and 27 for 0.1 M, 3.5 M, 5.7 M, and 7.4 M were 56.6082 mol, 60.6082 mol, 64.1082

mol, and 67.4582 mol respectively.
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Figure 26: Corrosion rate of NaNO3 on 304L (a) and 316L SS (b) vs T
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Figure 27: OCP of NaNOs on 304L (a) and 316L SS (b) vs T

The origins of the corrosion potential effects can be seen below in Figure 28 with Evans

diagrams of before and after the sharp transition that was seen in Figure 27. As the temperature

increases from 90-110°C, the corrosion potential drops and the anodic current density increases

for 0.1 M NaNOs on 304L SS.
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At 90°C (before the drop): At 110°C (after the drop):
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Figure 28: Evans diagrams of 0.1 M NaNO3 on 304L SS at 90°C before (a) and 110°C after (b)

sharp transition

Sulfate Solutions

Similar to the nitrate solutions, the sulfate solutions showed no repassivation potential.

CaS0Oy
The results of the concentration effects for CaSO4 can be seen below in Figure 29. As the
concentration increases, the corrosion rate and the OCP stay the same for both alloys. The stream

amount for Figure 29 was 56.5082 mol.
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Figure 29: Corrosion rate on 304L (a) and 316L SS (b) vs [CaSO4]
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The results of the temperature effects can be seen below in Figures 30 and 31. As the

temperature increases, the corrosion rate increases for both alloys (Fig. 30) and the OCP decreases

for both alloys (Fig. 31). There was no Evans diagram for CaSOj as the results did not show any

sharp transition as the other compounds did. The temperature range only went up to 90°C as the

model could not determine data past that temperature. The stream amounts for Figures 30 and 31

for 0.0015 M, 0.006 M, 0.0105 M, and 0.0165M were 56.5097 mol, 56.5142 mol, 56.5187 mol,

and 56.5247 mol respectively.
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Figure 30: Corrosion rate of CaSO4 on 304L (a) and 316L SS (b) vs T
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Na>S04
The results of the concentration effects for Na2SO4 can be seen below in Figure 32. Similar
to CaSOs, as the concentration increases, the corrosion rate and the OCP stay the same. The stream

amount for Figure 32 was 56.5082 mol.
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Figure 32: Corrosion rate (a) and OCP (b) vs [Na>SO4]

The results of the temperature effects can be seen below in Figures 33 and 34. As the
temperature increases, the corrosion rate also increases for both alloys (Fig. 33). Sharp transitions
in the corrosion potential for 304L SS occur (Fig. 34). The temperature range only went up to
100°C as the model could not determine data past that temperature. The stream amounts for
Figures 33 and 34 for 0.1 M, 0.7 M, 1.3 M, and 1.7 M were 56.5097 mol, 57.2082 mol, 57.9582

mol, and 58.4682 mol respectively.
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Figure 33: Corrosion rate of Na2SO4 on 304L (a) and 316L SS (b) vs T



37

304 SS Na2504 Potential vs Temperature 316 SS Na2504 Potential vs Temperature
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Figure 34: OCP of Na>SO on 304L (a) and 316L SS (b) vs T

The origins of the corrosion potential effects can be seen below in Figure 35 with Evans
diagrams of before and after the sharp transition that was seen in Figure 34. The corrosion potential

drops and anodic current density increases from 80-100°C for 0.1 M Na>SO4 on 304L.
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Figure 35: Evans diagrams of 0.1 M Na>SO+ on 304L SS at 90°C before (a) and 110°C after (b)

sharp transition

Stoichiometric Solutions
The effects of the degree of saturation for a stoichiometric solution on the corrosion rate,
OCP (Fig. 36), and Evans diagrams (Fig. 37) can be seen below. Figure 36 shows that the OCP of

304L and 316L SS are below the E.,. Figure 37 shows Evans diagrams at the peak (70% saturation)
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that can be seen in Figure 36a. The corrosion potential of 304L SS (Fig. 37a) is lower than that of
316L SS (Fig. 37b). The stream amount for Figure 36 for 304L SS was 58.2632 mol and for 316L

SS, it was 58.5193 mol.
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Figure 37: Evans diagrams of 70% saturation on 304L (a) and 316L SS (b)

3.2 Maximum Pit Calculations
The results of rmax versus I/r for 304L and 316L SS is shown below in Figure 38. For these
results, the temperature was held constant at 25°C, Cl at 0.6 M, RH at 98%, and LD at 0.5 g/m?.

This figure shows that rmax and I/r have a negative exponential relationship in both materials.
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304 SS rmax vs I/r 316 SS rmax vs I/r
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Figure 38: rimax vs I/r for 304L (a) and 316L SS (b)

The results of rmax versus LD for 304L and 316L SS is shown below in Figure 39. For these
results, the temperature was held constant at 25°C, Cl at 0.6 M, RH at 98%, and I/r at 0.844 A/m.

This figure shows that rmax has a direct relationship with LD in both materials.
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Figure 39: rmax vs LD for 304L (a) and 316L SS (b)

The results of rmax versus RH for 304L and 316L SS is shown below in Figure 40. For these
results, the temperature was held constant at 25°C, Cl at 0.6 M, LD at 0.5 g/cm?, and I/r at 0.844

A/m. These graphs show that rmax and RH have an exponential relationship for both 304L and

316L SS.
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304 SS rmax vs RH 316 SS rmax vs RH
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Figure 40: rmax vs RH for 304L (a) and 316L SS (b)

Figures 41 and 42 are temperature plots. Figure 41 shows the results of rmax versus LD for
both alloys and Figure 42 shows the results of rmax vs RH for 304L and 316L SS. For Figure 41,
the RH was held constant at 98%, Cl at 0.6 M, and I/r at 0.844 A/m. For Figure 42, the LD was
held constant at 0.5 g/cmz, Clat 0.6 M, and I/r at 0.844 A/m. Figure 41 shows a direct correlation

between the two whereas Figure 42 shows an exponential relationship for both materials.
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Figure 41: rmax vs LD for 304L (a) and 316L SS (b) at various temperatures
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304 SS rmax vs RH 316 SS rmax vs RH
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Figure 42: rmax vs RH for 304L (a) and 316L SS (b) at various temperatures

3.3 New Database

While writing this thesis, these calculations (shown above) were shared with OLI who
discovered that the 304L SS model needed improvement and provided a new database with
improved parameters. This database is not commercially available yet. Calculations for MgCl:
304L SS with the new database are shown below in Figures 43 and 44. Figure 43a shows the results
of the chloride effects for MgCl, where there is a peak in the corrosion rate at ~4 M and Figure
43b shows that above a critical concentration (~4 M), the OCP falls below the E.,. The results of
the temperature effects on the corrosion rate, OCP, and E,, can be seen below in Figure 44. These
graphs show that as the temperature increases, the corrosion rate will peak around 110°C (Fig.
44a) and when the OCP falls below the E., the critical temperature is lower for higher

concentrations (Fig. 44b).
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Corrosion Rate vs [MgCl2] for 304L SS Potential vs [MgCl2] for 304L SS
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Figure 43: Corrosion rate (a) and potential (Erp and OCP) (b) vs [MgCI2] for 304L SS of the

new database
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Figure 44: Corrosion rate (a) and potential (E,, and OCP) (b) of MgCl> on 304L SSvs T

4. Discussion
4.1 Overview

In this section, two points will be made and discussed. The first is that only the compounds
with equivalent chloride concentrations will produce the same or similar result. For example, 1.0
M MgCl; and 2.0 M NaCl both have equivalent chloride concentrations and the results are shown
below in Figures 45 and 46. Figure 45 shows the OCP and E., for both concentrations for 304L

and 316L SS on separate graphs. Figure 46 shows the same data but for both materials on the same
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graph. From these graphs, it can be seen that 1.0 M MgCl, and 2.0 M NacCl both produce almost
the exact same result for both alloys, which proves that compounds with equivalent chloride

concentrations will give the same or similar result.
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Figure 45: Potential (E,, and OCP) for 1.0 M MgCl> and 2.0 M NaCl on 304L (a) and 316L SS

() vs T
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Figure 46: Potential (E., and OCP) for 1.0 M MgClI> and 2.0 NaCl on 304L and 316L SSvs T

The second important point is that the corrosion morphology is expected to change as the
surface solution chemistry changes. The sharp transitions, that were seen above in the results
section, in the OCP for 304L SS occur at critical, higher temperatures and will result in the OCP

being lower than the Erp. Therefore, during the time the dry storage canister is at a high enough
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temperature (i.e., when the OCP is lower than the Ey,), the corrosion attack will be active, uniform
corrosion, rather than pitting. This prediction is important as uniform corrosion can be managed
much more easily than localized corrosion which tends to be more stochastic in location and

severity.

4.2 Computational

Computations of Surface Solution Chemistry and Electrochemistry

5.4 M NaCl for 304L SS (Figures 3a,b and 4a,b) will be used as an example of the method
used to interpret changes in the OCP coupled to changes in the corrosion rate and are reproduced
below for convenience. Figure 3a shows the corrosion rate, and it can be seen that the corrosion
rate of 304L SS in 5.4 M NaCl increased the most as the temperature increased as compared to
other chloride concentrations. Figure 3b shows the OCP and Erp and the OCP for 5.4 M NaCl
decreased as the temperature increased, reaching a critical temperature at which it becomes below

the Erp, resulting in a sharp transition that can be seen below.

304 SS Corrosion Rate vs ]Qn]pera[ure 304 SS NaCl Potential vs Iomporatur(-

20
80
0

Yo s o Temoerature (°C
emperature (*C

Figure 3a: Corrosion rate of NaCl on 304L SSvs T Figure 3b: Potential (Er, and OCP) of NaCl on 304L SSvs T

Figure 4 shows the Evans diagrams before the sharp transition at 40°C and after the sharp
transition at 80°C for 5.4 M NaCl for 304L SS that was seen in Figure 3b. When looking from

Figure 4a to Figure 4b, differences in the current density and corrosion potential can be seen. When
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there is an increase in passive current density where it exceeds the diffusion-limited oxygen
reduction reaction for 5.4 M NaCl on 304L SS, the corrosion potential drops, as per the Mixed
Potential Theory. When the corrosion rate increases and the OCP becomes more negative, as can
be seen in 5.4 M NaCl for 304L SS, it can be concluded that changes in the anodic reaction kinetics
are the dominant cause. What this means is that the change that controls the corrosion rate and
OCP are driven by changes in one of the reactions relative to the others, but it does not preclude

the other reactions from changing at all.
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Figure 4: Evans diagrams of 5.4 M NaCl on 304L SS at 40°C before (a) and 80°C after (b) sharp transition

For the results of the chloride solutions, sharp transitions occurred in the OCP for 304L SS
over a narrow temperature range for each species. In the case of NaCl, when there is an increase
in passive current density to the point that it exceeds the oxygen reduction reaction, the corrosion
potential drops into active dissolution region (Fig. 4). This drop in corrosion potential means that
activation of 304L SS for NaCl by higher temperature changes the attack from pitting to active,
uniform corrosion. MgClz (Fig. 8) and CaClz (Fig. 12) showed that when there is an increase in
passive current density by greater than 10x and a decrease in the oxygen reduction reaction, it will
cause the corrosion potential to drop and the corrosion rate to increase. KCI (Fig. 16) and NH4Cl

(Fig. 20) showed that the corrosion potential drops and the anodic current potential increases. This
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was the same for MgCl, (Fig. 6) and CaCl, (Fig. 10) when both showed a peak in the corrosion
rate over a concentration range and it was also the same for KCI (Fig. 15) and NH4ClI (Fig. 19)
when both showed a peak in the corrosion rate for over a temperature range. For all the chloride
solutions, the OCP will always be lower than the E;, when the compound is 100% saturated

because there will be no passivity so there cannot be any localized corrosion.

For the results of the nitrate and sulfate solutions, sharp transitions occurred in the
corrosion potential over a temperature range for KNOs3 (Fig. 24), NaNO; (Fig. 28), and Na,SO4
(Fig. 35) where the corrosion potential drops and the anodic current density increases. For KNO3,
NaNOs, Na;SO4, and CaSOQq4, there was no repassivation potential calculated. The results of the
stoichiometric solutions showed that the corrosion potential of 304L SS is lower than that of 3161
SS because stoichiometric solutions of 316L SS have a lower pH and cause the 316L SS to corrode

faster than the 304L SS in its stoichiometric solution.

Computations of Maximum Pit Sizes
For the results of the maximum pit sizes, it can be seen that rmax has a positive direct
relationship with LD, a positive exponential relationship with RH, and a negative exponential

relationship with I/r, including at increasing temperatures for LD and RH.

Ramifications for Dry Storage Canisters

Figures 47a and 47b, from C.R. Bryan et al., are shown below. Figure 47a shows the
modeled canister surface temperature at different initial heat loads and Figure 47b shows the
relative humidity as a function of time. As seen with the results of the maximum pit size
calculations (shown in Figures 38 — 42), it can be determined that the maximum pit size will
increase as the temperature and RH decreases over time. Corrosion can start when the deliquescent

RH for seawater is reached, which is about 35%. When looking at Figure 47b, it can be seen that



47

corrosion will occur around 100 years. Based on this graph, the maximum pit size will increase
over time, but it will not hit the maximum pit size because it does not reach ~75% RH during this

time period.
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Figure 47: T (a) and RH (b) vs t**

4.3 Sensitivity of Results to Parameterization

The two databases (denoted as “DB” in the graphs) will be compared using the results of
MgCl: for 304L SS shown below in Figures 48 — 51. Figure 48 compares the corrosion rate, OCP,
and E:p for both databases. It can be seen in Figure 48a that the corrosion rates with the new
database are lower in comparison to the old database and that with the new database, the corrosion
rate will increase initially and then decrease at higher MgCl, concentrations. Figure 48b shows
that the OCP for the new database is larger than it is for the old database and that the E, stayed
the same for both databases. Figure 48 can be understood by looking at the polarization curves of
before and after the peak for the new database, shown below in Figure 49, because the main
cathodic reaction is the oxygen reduction so as the concentration of MgCl. increases, the limiting
current density decreases. Figure 50 displays the corrosion rate with temperature for both databases

and while the old database indicates that there is a switching of the corrosion rate order as the
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temperature increases, this is not the case with the new database because the limiting current
density increases with concentration. Figure 51 shows the OCP and E;, for both databases and
although there is some variation, it can be seen that the same trend is followed. Therefore, it can
be determined that the 304L SS model, and subsequent maximum pit size predictions, are sensitive
to the parameters used. The details of the parameters for the new database are not known as that is

proprietary information and the database for 316L SS needs revision and is currently underway.
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304L SS MgCl2 Corrosion Rate vs Temperature

0.95
- —e—0.1 M-0Id DB
% 0.75 —4—0.1 M-New DB
£ —e— 1.8 M-0Id DB
g &5 —+—18M-New DB
E nio —e—3.4M-0Id DB
[ —t— 3.4 M-New DB
§ 015 —e—5.0M-0ld DB
—4%—5.0 M- New DB
-0.05

20 40 60 80 100 120 140

Temperature (°C)

Figure 50: Corrosion rate of MgCl2 on 304L SS vs T for both databases
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Figure 51: OCP (a) and E,, (b) of MgCl> on 304L SS vs T for both databases

4.4 Limitations

While using OLI Studio: Corrosion Analyzer™, several limitations were discovered. The
database used, which is currently the most comprehensive, is only limited to 6,000 species and
may not have the data for certain compounds of interest. OLI was also limited at higher
temperatures as it was unable to determine the values for the corrosion rate, OCP, and E, for most

compounds during a temperature study in this work.
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5. Conclusions

The OLI computational results show that compounds that have equivalent chloride
concentrations will produce the same or similar result, such as 1 M MgCl, and 2 M NaCl. As the
surface solution chemistry changes, so does the corrosion morphology. At a high enough
temperature, sharp transitions in the OCP for 304L SS will occur and will result in the OCP being
lower than the Er,. As previously stated, conditions under which the OCP is lower than the E.p,
localized corrosion would not be expected to occur because when the canister reaches a high
enough temperature, it will change the corrosion attack from pitting to active, uniform corrosion.
These data are required as input for the maximum pit calculations for the dry storage canisters.
Additionally, in simple salt solutions, 316L SS is more resistant to increased chlorides at increased
temperatures than 304L SS, as expected. 316L SS corrodes faster in its stoichiometric solutions
because the pH is lower than that of 304L SS. Lastly, by comparing the old and new database, it
shows that the model used for 304L SS and the inputs for the maximum pit size predictions are

sensitive to the parameters used.

6. Future Work

Once the new database is commercially available for both 304L and 316L SS,
concentration and temperature studies need to be calculated for NaCl and MgCl;, for both alloys.
Additionally, experimental validation is needed for future work. A set of cases that can be done
experimentally to show the range of behavior observed are: (1) corrosion rate versus the
concentration of NaCl (0.1 — 5.4 M) at 25°C for both alloys, (2) corrosion rate versus temperature
(20 — 100°C) for 0.1 M, 2.1 M, 3.9 M, and 5.4 M NacCl for both alloys, (3) OCP and E., versus
NaCl concentration (0.1 — 5.4 M) for both alloys at 25°C, (4) OCP and E,, versus temperature (20

—100°C) for 0.1 M, 2.1 M, 3.9 M, and 5.4 M NacCl for both alloys, (5) corrosion rate versus the
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concentration of MgCl (0.1 — 5.0 M) for both alloys at 25°C, (6) corrosion rate versus temperature
(20 — 140°C) for 0.1 M, 1.8 M, 3.4 M, and 5.0 M MgCl; for both alloys, (7) OCP and E,, versus
MgCl: concentration (0.1 — 5.0 M) at 25°C for both alloys, and (8) OCP and E., versus temperature
(20 — 140°C) for 0.1 M, 1.8 M, 3.4 M, and 5.0 M MgCl: for both alloys. By conducting this set
experimentally, it can be used to validate the computational results and/or provide more data to

improve the parameters for the new OLI database.

7. Appendix
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