

How to Choose Your Agile Methodology

Manage Your Expectations: How Has Agile Lived up to its Promise to Decentralize Power?

A Thesis Prospectus

In STS 4500

Presented to

The Faculty of the

School of Engineering and Applied Science

University of Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science in Computer Science

By

Jacob Rice

October 27, 2022

On my honor as a University student, I have neither given nor received unauthorized aid

on this assignment as defined by the Honor Guidelines for Thesis-Related Assignments.

ADVISORS

Kent Wayland, Department of Engineering and Society

Rosanne Vrugtman, Computer Science

1

Introduction

Problem: How can Agile development be effectively used when developing a software product?

When building a software product, the processes by which it is built are nearly as

important as the technical details, as the processes define how work is done and by whom the

work is done. In the modern day, most software development is done in an Agile environment.

Agile is not one specific framework, but rather a class of frameworks that provide “an iterative

approach to project management and software development that helps teams deliver value to

their customers faster and with fewer headaches” (Atlassian, n.d.). This is in direct opposition to

plan-driven methodologies which depend a lot on developing a plan to develop the software

early in the process and sticking to that plan (GeeksForGeeks, 2021), leading to a lack of

flexibility which Agile provides. This flexibility and iterative approach that Agile provides have

led to its adoption by many modern software development companies. In fact, according to the

15th State of Agile Report, 94% of software development companies report that they are

practicing Agile development (Digital.ai, 2021). With this emphasis on Agile development only

increasing, it is important for us to understand how Agile processes can be implemented in a way

that they help rather than hinder your developers’ workflows. Therefore, it is important to

understand why and how to select an appropriate agile methodology for your project. Thus, my

technical project aims to formulate a set of guidelines for selecting an Agile methodology from

one of several main methodologies.

In addition to understanding how to properly select and implement Agile methodologies

for your software product, you also need to be able to understand the effects of implementing

Agile on the people with whom you work as well as how workflows change as a result of Agile.

2

This is especially important when thinking about shifting your product away from more

traditional development processes (i.e., plan-driven methodologies), as the nature of Agile is

such that the roles of everyone on your team are subject to change to conform with the Agile way

of doing things. In particular, I focus on how Agile changes the role of the manager on a

software development team, as well as the extent to which preexisting power dynamics between

developer and manager are changed when developing using Agile.

Technical Project

Problem: Creating a set of guidelines for selecting an appropriate Agile methodology for your

software product.

When developing a software product, it is important to determine the processes by which

the software will be developed. By doing this early in the process, you can resolve several

managerial concerns (knowing when you are done with a task and what to do next).

Additionally, by creating standardized processes for the development of your software product,

you make it easier for multiple people on a team to work together because you minimize the

amount you have to learn about the workflows of other team members and how they make

decisions as all team members will instead be making decisions based on the processes defined

previously. Some of the most common ways of structuring the software development lifecycle in

the modern day are what we call Agile. Most importantly, though, Agile processes follow the

principles established in the Agile Manifesto, which amount to prioritizing individuals and the

customer as well as being responsive to change (Beck et al., 2001).

Because 94% of software engineering companies use some kind of Agile framework

when developing software, it is necessary to understand how this 94% is selecting processes and

3

whether those processes are appropriate for their situation. Further, these companies also practice

a number of different kinds of Agile Frameworks. The same State of Agile report explicitly

denotes the usage of 5 unique frameworks (implementations of Agile principles): Scrum,

Kanban, Iterative, Xtreme Programming (XP), and Lean Startup. Further, the report mentions 2

frameworks which, are actually compositions of other frameworks mentioned here that have

evolved and become frameworks in their own rights: Scrumban and Scrum/XP hybrids. While all

of these methodologies are considered Agile, they all come with their own set of unique practices

which may or may not mesh with pre-existing organizational values. Thus, it is important to

select an Agile framework for your project with organizational values in mind. In fact, selecting

the wrong process for your team may actually result in reversion to more plan-driven

development methods (Crouch, 2020), removing the flexibility and other benefits that Agile

provides. With all these differing frameworks, it can be difficult to select the appropriate

framework for your team. Thus, it becomes necessary to understand when and how each

framework should be used so that the most appropriate framework for your use case is selected.

Thus, my technical project will be to develop a set of guidelines for the selection of agile

methodologies for developing your software product. To do this, I will first conduct a review of

the current knowledge of the process of methodology selection to extract the factors that are

commonly mentioned as being important in the selection of an Agile methodology. After doing

this, I will inspect a subset of Agile methodologies. Specifically, I will be examining the three

most used methodologies according to the 15th State of Agile report: Scrum, Kanban, and

Xtreme Programming (XP) (Digital.ai, 2021). I will then read the existing documentation for

each of these three frameworks to determine what processes each framework calls for. From

here, I will analyze the implementation details of each process to determine the kinds of

4

environments in which they might be useful. Using this knowledge, I plan to compare the

advantages and disadvantages of each of the selected methodologies as well as the environments

in which I believe they will find the most success. I will also investigate what industries and

kinds of software projects each of these types of frameworks are used in. From there, I will be

able to construct a set of guidelines, using my analysis and research of the common work and

organizational values that each of these frameworks have found success in to determine when

one framework might be more valued over another.

STS Research Problem

Question: To what extent does the introduction of Agile change the overall control structure of

software development companies?

In software projects, it is often necessary to monitor the progress of a software product,

as well as its adherence to budgetary and time constraints. In plan-driven environments, this is

simple: everything is planned by the manager months or even years in advance, and there are

comprehensive guidelines in place to ensure compliance with these standards. However, in Agile

environments, this changes. Requirements can come and go, and planning is done iteratively

rather than all at once before the project gets off the ground. This fundamental difference in

development style, necessitates a change in management practices for managers to be able to

perform these activities in an Agile environment (Aguanno, 2004). Indeed, sometimes in Agile

organizations, developers may even take up duties that traditionally belong to the manager like

task delegation (Maruping et al., 2009). By allowing this flattening of hierarchies, developers are

better able to use their domain-specific knowledge and their motivation is increased (Puranam,

2022).

5

In order to reap the benefits of flatter hierarchies, you must use processes which allow

such flat hierarchies to exist in the first place. In particular, Agile in theory creates necessarily

flat hierarchies, if not at the organizational level, then at least at the team level (Sochova, 2020).

By placing the emphasis on the team rather than the individual, Agile implies that there is no

distinction of power levels between people on a team, and all team members share all

responsibilities of the software development process. Thus, the power of the traditional manager

is split in Agile environments (De Smet, 2018). This demonstrates the ability Agile has to

deconstruct traditional divisions of power and labor by delegating tasks that are traditionally

associated with individuals in positions of power to the team. Thus, Agile sets itself up to break

away from traditional management and control schemes. With up to 94% of software

development companies reporting the use of some kind of Agile in the workplace and even more

transitioning to Agile (Digital.ai, 2021), it becomes important to understand whether or not Agile

truly delivers on its potential to redistribute power in software development companies so that

companies can take advantage of the benefits that come by allowing their developers more

freedom.

To help me understand the changing hierarchies within the system of developers and

managers, I will use Actor Network Theory (ANT) to map out the pre-existing relationships

between developers, managers, and the technologies and practices they interact with on a day-to-

day basis, using these networks to synthesize hierarchies. By mapping out these complex

relationships, we can understand the interplay between the myriad pieces of the larger system.

Further, by using ANT to model this network of relationships, we also have a point of reference

to understand how these relationships change as Agile is introduced into the system. By

6

considering the developers and managers as actors in the system, we can also understand how

their actions influence the implementation of Agile in their organization.

Literature Review

 It has been shown that, in creative projects, such as video game development, the

introduction of Agile methodologies creates a flatter hierarchy in theory, but, in practice, a “soft”

hierarchy can form (Hodgson & Briand, 2013). That is to say, team leaders and others in

managerial positions seem to exhibit some degree of soft control over decisions made when

creating the project. In addition to the soft control exhibited by team leaders and other managers

in the flatter hierarchy of the project, the influence of higher management still exists, further

reinforcing the notion of a hierarchy in the workplace. Thus, in these cases, Agile may fall short

of its potential to reduce workplace hierarchy. While game development is a subset of software

development companies, these results may not necessarily translate to software development

because of the more specialized structure of a game development company and the modifications

that need to be made to Agile processes to adapt for use in this environment. However, it is still

important to understand how hierarchy manifests in Agile organizations to see if Agile truly does

flatten hierarchies in software development companies.

In order to understand the extent to which hierarchy changes in an organization, we need

some way to model hierarchy and understand how powers are distributed within the organizatio.

To this end, control theory provides us with a way to understand divisions of power and how

responsibilities flow in an organization. The primary purpose of many of the theories presented

here is to reduce information asymmetry, which occurs when parties have different knowledge

(Connelly et al., 2011). The predominant theory of control employed by many businesses using

7

more traditional management methods is agency theory. In agency theory, principals (managers)

contract agents (in our case, developers) to do some work for them, and this work is then

monitored by the principal to ensure that the agent does not diverge from the interest of the

principal (Jensen and Meckling, 1976). This theory, then, aligns itself most closely with plan-

driven methodologies in our case. That is, the manager acts as a delegator of tasks and monitor

of work being done to ensure that targets and deadlines are met according to well-defined plans

that they lay out. On the other hand, other theories that more closely align themselves with Agile

methods are signaling theory and stewardship theory.

In signaling theory, the side with private information will “signal” that private

information to the other concerned party (Spence, 1973). In management, this results in the

employee relaying unknown information to the manager. This puts the onus on the employee

rather than the manager to convey unknown information to reduce information asymmetry.

Additionally, in stewardship theory, managers act not out of individual interest, but rather out of

the interest of those they manage because the interests of the manager align with the interests of

the managed (Davis et. al, 1997). In effect, this means that the manager aims to cooperate with,

rather than control, the people they manage, which fits well with Agile’s potential to decentralize

power. By utilizing these different theories of control, we can understand the power dynamics of

a given organization and, thus, the hierarchy within it.

Methodology

 I plan to conduct interviews with five to ten individuals who work in a software

development company that has recently or is currently undergoing the transition from more

traditional, plan-driven methodologies to Agile practices. I plan to interview both developers and

8

managers to understand both sides of the control relationship. During the interviews, I will ask

questions about the changes that developers and managers have experienced during this

transitional period and how the new environment compares to the old, specifically regarding

organizational power dynamics. This will allow me to see the differences in culture caused by

the transition to Agile and how the people involved interpret the differences that arise from the

transition away from plan-driven processes. By conducting these interviews, I hope to be able to

understand how the power dynamic plays out and shifts over the course of the transition to Agile.

After understanding the overall control structure of the organization, I can learn to what extent

the shift to Agile has contributed to a shift in the type of controls in place in the organization.

Conclusion

 By conducting research on how the power dynamics in a software development company

change through the introduction of Agile methodologies, I hope to learn more about how the

processes we adopt can shape the social power structures which influence how and why software

is developed in a certain way. Further, by conducting my technical research, I hope to understand

how Agile processes are selected as well as provide the beginnings of a framework for the

selection of Agile processes for a software product. By inspecting these two different aspects of

Agile development and how they can influence the success of Agile for your product, we can

learn ways to more effectively implement Agile.

 Future technical work may involve elaboration on the guidelines developed, as well as

the development of a more comprehensive framework for understanding the structure of your

software organization and the selection of Agile processes therefor. Additionally, rather than

considering methodologies as a whole, it may be useful to think of a methodology as being a

9

collection of individual practices which can then be composed to create a more “custom” Agile

framework. Future non-technical work may involve the exploration of this question outside of

the English-speaking world and the degree to which Agile changes power structures in software

development companies which exist outside of the context of the United States of America.

10

References

Aguanno, K. (Ed). (2004). Managing Agile Projects is Different. In Managing Agile Projects.

(pp. 69-74). Multi-media Publications Inc.

Atlassian. (n.d.). What is Agile? https://www.atlassian.com/agile

Beck, K., Beedle, M., van Bennekum, A., Cockburn, A., Cunningham, W., Fowler, M.,

Grenning, J., Highsmith, J., Hunt, A., Jeffries, R., Kern, J., Marick, B., Martin, R. C.,

Mellor, S., Schwaber, K., Sutherland, J. & Thomas, D. (2001). Manifesto for Agile

Software Development. Manifesto for Agile Software Development.

https://agilemanifesto.org/

Davis, J., Schoorman, F., & Donaldson, L. (1997). Toward a Stewardship Theory of

Management. The Academy of Management Review, 22(1), 20–47.

https://doi.org/10.2307/259223

De Smet, A. (2018). The agile manager. The McKinsey Quarterly, 3, 76-81.

Digital.ai. (2021). State of Agile Report. (Report No. 15). Digital.ai. https://digital.ai/resource-

center/analyst-reports/state-of-agile-report/

GeeksForGeeks. (2021). Overview of Plan-driven Development. GeeksForGeeks.

https://www.geeksforgeeks.org/overview-of-plan-driven-development-pdd/

Hodgson, D., & Briand, L. (2013). Controlling the uncontrollable: ‘Agile’ teams and illusions

of autonomy in creative work. Work, Employment and Society, 27(2), 308–325.

https://doi.org/10.1177/0950017012460315

Jensen, M., & Meckling, W. (1976). Theory of the firm: Managerial behavior, agency costs and

ownership structure. Journal of Financial Economics, 3(4), 305–360.

https://doi.org/10.1016/0304-405X(76)90026-X

Maruping, L. M., Venkatesh, V., & Agarwal, R. (2009). A Control Theory Perspective on Agile

Methodology Use and Changing User Requirements. Information Systems Research, 20(3),

377–399.

Puranam, P. (2022). Should Employees Be Allowed to Choose What They Want to Do? Insead

Knowledge. https://knowledge.insead.edu/leadership-organisations/should-employees-be-

allowed-choose-what-they-want-do

Sochova, S. (2020). Hierarchy. Agile and Scrum Blog. https://agile-scrum.com/2020/04/01

/hierarchy/

https://www.atlassian.com/agile
https://agilemanifesto.org/
https://doi.org/10.2307/259223
https://digital.ai/resource-center/analyst-reports/state-of-agile-report/
https://digital.ai/resource-center/analyst-reports/state-of-agile-report/
https://www.geeksforgeeks.org/overview-of-plan-driven-development-pdd/
https://doi.org/10.1177/0950017012460315
https://doi.org/10.1016/0304-405X(76)90026-X
https://knowledge.insead.edu/leadership-organisations/should-employees-be-allowed-choose-what-they-want-do
https://knowledge.insead.edu/leadership-organisations/should-employees-be-allowed-choose-what-they-want-do
https://agile-scrum.com/2020/04/01%20/hierarchy/
https://agile-scrum.com/2020/04/01%20/hierarchy/

11

Spence, M. (1973). Job Market Signaling. The Quarterly Journal of Economics, 87(3), 355–374.

https://doi.org/10.2307/1882010

https://doi.org/10.2307/1882010

