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Abstract 

Annular seals are critical to the efficient operation of turbomachinery under increasingly high 

pressure loadings. Brush seals employ rows of bristles to close the gap between the rotor and 

the stator in rotating machinery. They typically handle larger pressure differentials and have 

demonstrated lower leakage than comparable labyrinth seals. However, an understanding of the 

complex nature of the flow within these seals is limited. This is primarily due to the difficulty 

associated with modeling the flow through the bristle pack.  

Traditionally, the performance modeling of annular seals has been accomplished by the use 

of bulk flow theory. This method is relatively simple to implement but can be problematic due to 

the fundamental assumptions required to reduce the governing equations to a solvable form. 

More recent studies have used full three-dimensional computational fluid dynamics models and 

finite element models to simulate the behavior of the bristles and their influence on the flow 

through the seal. This method typically provides more information than is necessary for standard 

design and analysis problems faced by engineers in the turbomachinery industry. Simulations of 

this type also require a great deal of time and knowledge from the user in order to be of any use 

and are very computationally expensive. Porous media modeling techniques have also proven 

effective, but their application has remained limited due to the uncertainty of how to estimate 

the permeability terms and a lack of a simple computer code appropriate for the problem.  

In this thesis, a new approach is presented using a simplified porous media-based model. The 

governing equations are formulated in terms of pressure distribution and then discretized using 

finite differences. An algorithm is developed to model situations of incompressible flow as well 

as compressible flow under isothermal conditions. The code is then analyzed to demonstrate its 

performance capabilities and utility for modeling flow through a standard brush seal. Properties 

of the numerical scheme are demonstrated and potential limitations are addressed.  
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Nomenclature 

 

Subscripts 

 

x   component in the x direction 

y   component in the y direction 

   z   component in the z direction 

f   fluid 

p   particle 

total   total 

u   upstream 

d   downstream 

o   outer 

I   inner 

fp   front plate 

bp   back plate 

e   exact 

v   volume 

 

 

Constants 

 

R   air ideal gas constant = 386.8 (
𝐽

𝑘𝑔∗𝐾
) 

D0   center difference operator 
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Variables 

 

F   seal force vector (N) 

K   seal direct stiffness 

k   seal cross-coupled stiffness 

C   seal direct damping 

c   seal cross-coupled damping 

M   seal mass coefficient 

p   pressure 

μ   viscosity 

κ   permeability 

v   velocity vector 

κ1   inertial permeability 

ρ   fluid density 

a   inertial empirical resistance coefficient 

B   viscous empirical resistance coefficient 

ε   porosity 

av   area to volume ratio 

d   bristle diameter 

l   porous media flow path length 

Re   Reynolds number 

𝑚̇                          mass flow rate 

Ds   overall seal outside diameter 

Db   bristle bore diameter 

N   number of bristles per unit length of circumference 

φ   bristle lay angle 
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P*   nondimensional pressure 

Z   axial pressure tap location 

Rp   pressure ratio =
𝑝𝑢

𝑝𝑑
 

t    time 

Ro   outer radius 

Ri   inner radius 

γ   diagonal coefficient of numerical scheme 

α1   superdiagonal coefficient of numerical scheme 

α2   subdiagonal coefficient of numerical scheme 

β1   forward column coefficient of numerical scheme 

β2   backward column coefficient of numerical scheme 

T   temperature (K) 

[A]   total scheme coefficient matrix 

{p}   total grid pressure vector 

{b}   total boundary condition vector 

[D]   diagonal matrix 

[R]   remainder matrix 
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Chapter 1 

Introduction 

 

1.1 Overview 

 
  Brush seals are a proven technology used in turbomachinery for the purpose of 

reducing leakage and controlling flow. Some applications of brush seals include interstage 

sealing and end sealing of turbines (Pastrana, Wolfe, Turnquist, & ME, 2001) as well as 

compressor discharge seals (Hendricks, et al., 1994). A typical brush seal is designed to be fixed 

to the stator with compliant bristles extending toward the rotor (Fig. 1.1). The bristles are 

partially covered upstream by a front face plate and downstream by a back plate. Individual 

designs often differ in bristle material, bristle packing density,                                                                                                                                          

clearance/interference, front and backing plate heights, bristle lay angle, and pressure 

balancing methods (Pekris, Franceschini, & Gillespie, 2012; Li & Yang, Analytical Investigations 

on the Contact Force Between Bristle Packs and Shaft Surface of Brush Seals, 2012; Fellenstein 

& DellaCorte, 1995). 

 
 

Figure 1.1 Common brush seal features and design characteristics. The bristles are oriented in the 

direction of rotation 
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The earliest use of brush seals began in the 1950s when they were implemented for 

inter-stage compression sections of jet engines (Cieślewicz, 2004). They became prevalent in jet 

engines during the late 1980s and early 1990s (Pastrana, Wolfe, Turnquist, & ME, 2001). Today 

they are commonly applied to many different turbomachines. 

The primary function of any annular seal is to reduce the leakage flow between rotating 

and stationary parts. In order to asses and predict a seal’s ability to accomplish this task, many 

different methods are used. Experimental testing of brush seals has resulted in an improvement 

of the understanding of the internal fluid mechanics. Flow visualization tests have confirmed 

that the flow is highly chaotic and many vortices are formed due to the “flow over cylinder” 

around the bristles (Braun, Hendricks, & Canacci, 1990). CFD studies have also been an effective 

modeling tool in the design and analysis of brush seals. 

 

 

1.2 Methods of Analysis 

 
There are two standard methods of predicting the leakage through a brush seal: Bulk 

flow analysis and computational fluid dynamics (CFD).  Both of these methods typically rely on a 

porous media model to calculate flow properties through the bristle pack.  The focus of this 

project was to develop a new model for predicting the performance of a standard brush seal, 

and to solve the resulting system of equations by employing a finite difference method. 

 

1.2.1 Computational Fluid Dynamics 

 The use of CFD modeling is common for most annular seals. The process requires a 

domain to be specified, divided into smaller sub-domains, and then discretized into a grid. 

Governing equations are then solved using numerical approximations throughout the grid. 

Environmental parameters such as inlet pressure and shaft rotation are expressed as boundary 

conditions, and flow parameters are calculated at each node. This method is very useful for 

situations that require very detailed information of the solution, or when a great deal of 

parameter variation must be considered, such as a geometric optimization study.  The 

drawback of CFD analysis is that it requires a large amount of time and effort. A simulation for a 

grid that consists of several million elements can take several hours or days, even on a 

sophisticated computer.  Model validation and mesh-independence is required for most 

situations in order to establish that the results are reliable. This can add a great deal of time to 

the analysis process and requires the user to be knowledgeable on the subject of mesh 

generation.  
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1.2.2 Bulk Flow Method 

 Bulk flow methods are employed to predict leakage and rotordynamic properties for 

many different types of annular seals (Nordmann & Weiser, 1991; Williams & Flack, 1998; 

Migliorini, Untaroiu, & Allaire, 2012). This method involves dividing the seal domain into a few 

control volumes (typically less than four) and solving simplified versions of the momentum, 

continuity, and energy equations.  A few critical assumptions are made about the shear stress 

distribution in the fluid, and the turbulent behavior within the control volumes.  

 

1.3 Prior Work 

 
The desire to improve the design of brush seals necessitates a further understanding of the 

fluid dynamics within an operating brush seal. Due to the bristles, high pressure gradients, and 

the rotating shaft the flow situations can be very complex and chaotic. This makes it very difficult 

to model a brush seal and predict fluid forces by using strictly analytical methods. Most of the 

techniques that have been employed to study brush seals involve simplifying assumptions about 

the properties of the fluid or the boundary conditions. An example of an analytical study can be 

found in (Saber & Abdou, 2010) where a strip seal is modeled by using the Navier-Stokes and 

continuity equations and assuming a steady, laminar, incompressible and iso-viscous flow. A strip 

seal is similar to a brush seal, but implements strips instead of bristles. The flow was modeled by 

a system of non-dimensionalized PDE’s, and the solutions were helpful for demonstrating 

qualitative information about how certain design parameters affect the performance of the seal. 

From this analysis conclusions were drawn on the basic effects of strip angle and spacing, the 

sensitivity to strip thickness, and the effect of clearance between strip and shaft. This type of 

information can be extremely valuable for engineers who seek to understand the basic principles 

of a seal, but in order to find out specific values of physical properties within an operating seal 

we will need a different method of analysis.  

Bristle Modeling: The forces acting on the rotor due to rotor-bristle interaction can be 

calculated using the finite element method. The study of these forces is a very difficult three-

dimensional problem. During operation the bristles will deflect radially due to interaction with 

the rotor, and they will deflect axially due to pressure loading. A study conducted by Aksit (Aksit, 

2012) used a FE method with the bristles modeled as 3D beam elements. From this analysis it 

was shown that the bristle tip forces are primarily determined by the pressure loading. Another 

publication by Qiu and Li describes the use of finite element and CFD software together in order 

to calculate bristle deflection and frictional heating (Qiu & Li, Numerical Investigations on the 

Heat Transfer Behavior of Brush Seals Using Combined Computational Fluid Dynamics and Finite 

Element Method, 2013). The bristle pack was modeled in a CFD software package as a porous 

medium, and the bristles were modeled in a FE software package as beam elements. An iterative 
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method was used to calculate pressure and contact forces. The CFD simulation was used to obtain 

the pressure loading on the bristle pack, and the FE method was then used to determine the 

bristle deflection. The result was then used to modify the CFD model and calculate new values. 

Experimental Techniques: Some previous work has examined the nature of the flow within 

the seal to determine details of the velocity profile, turbulent eddies, and pressure distribution. 

It is commonly accepted that the flow within the seal, particularly within the bristle pack is chaotic 

and varies greatly with the application, fluid type, operating conditions, and seal design. A paper 

by Braun, Hendricks, and Canacci (Braun, Hendricks, & Canacci, 1990) describes a flow 

visualization technique that was used to provide insight. A linear seal configuration was tested in 

both an oil tunnel and a water tunnel. The test section of the tunnel was supplied with working 

fluid by gravity, the volumetric flow rate was maintained constant, and the fluid was seeded with 

light-reflecting particles of magnesium oxide. A laser was mounted above the test section and 

used to shine through the fluid in order to make the particles visible. The dynamics of the fluid 

and bristles were recorded on video tape, and provide a qualitative demonstration of the internal 

behavior of the seal. Pressure taps along the axis of the seal provided a map of pressure drop in 

the flow direction.  

The effects of the lay angle on the seal performance were considered in the research of 

Crudginton, Bowsher, and Lloyd (Crudgington, Bowsher, & Lloyd, 2009). This study took a 

comprehensive approach by using analytical, experimental, and numerical techniques. The 

influence of lay angle on the bristle tip pressure (BTP) was first modeled using simple beam 

theory. Estimates of the bristle tip pressure were calculated and discussed. Experiments were 

conducted using two brush seals with different lay angles. The two angles were approximately 

47° and 41°. The tests showed that measured BTP was greater than calculated, which can be 

expected because the friction between adjacent bristles is ignored in the simple beam theory 

calculations. The BTP was higher for the smaller lay angle. Among the conclusions of the study 

were: Contact pressure increases more with pressure drop when the lay angle is greater, and blow 

down effect is more pronounced at higher lay angles. 

 Bulk Flow Techniques: The first bulk flow model for brush seals was created by 

Hendricks and Schlumberger (Hendricks & Schlumberger, 1991). The bulk flow code was 

capable of predicting mass flow for seals with different geometric parameters and also took 

bristle loadings into account. There have been several updates to this code and its ability to 

predict seal performance.  
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Chapter 2 

Seal Performance Modeling 

 
2.1 Theoretical Background 

 
A complete study of an annular seal for turbomachinery applications should address 

leakage performance as well as the seals influence on rotordynamic stability. Shaft vibration 

must be kept below a certain threshold limit to ensure safe and reliable operation. Much of the 

shaft vibration can be attributed to imbalance or operation at a critical speed, but some 

components of the vibration can also be the result of aerodynamic and fluid-film cross-coupling 

forces generated in the seals and bearings (Yoon, 2013). In this chapter, a brief discussion of the 

rotordynamic performance of brush seals is given, followed by a more in-depth discussion of 

the fluid mechanics.  

 

2.1.1 Brush Seal Rotordynamics 

 Brush seals are primarily used for scenarios where the fluid to be sealed is a gas. The forces 
acting on the rotor at any particular cross-section are considered to be functions of the shaft 
motion within the plane: 
 
 

−{
𝐹𝑥

𝐹𝑦
} =  [

𝐾 𝑘
−𝑘 𝐾

] {
𝑋
𝑌
} + [

𝐶 𝑐
−𝑐 𝐶

] {𝑋̇
𝑌̇
} + 𝑀 {𝑋̈

𝑌̈
}        (2.1.1) 
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Figure 2.1 Net stiffness and damping forces acting on rotor 

 
Where [𝐾] is the seal stiffness matrix, [𝐶] is the seal damping matrix and 𝑀 is the mass 

coefficient. For seals gas seals such as a brush seal, the added mass term is typically considered 

to be negligible and the governing equation is reduced to: 

 

−{
𝐹𝑥

𝐹𝑦
} =  [

𝐾 𝑘
−𝑘 𝐾

] {
𝑋
𝑌
} + [

𝐶 𝑐
−𝑐 𝐶

] {𝑋̇
𝑌̇
}        (2.1.2) 

For further information on the derivation of these equations the reader is referred to Childs’ 

textbook (Childs, 1993).  

 The off-diagonal terms of the stiffness and damping matrices are referred to as cross-

coupled stiffness 𝑘, and cross-coupled damping 𝑐, respectively. These terms of are great interest 

to rotordynamicists because they are primarily responsible for the stability of the rotor-seal 

system. From equation 2.1.2 it can be seen that the rotordynamic forces are functions of 

eccentric shaft motion. For annular seals the coefficients in equation 2.1.2 depend on several 

factors including the pressure distribution within the seal. They are typically determined 

experimentally (Aksit, 2012), but may also be approximated by analytical and numerical 

methods (Vance, 2010). 

The work presented in this thesis is limited to the study of brush seals in situations 

where the shaft is not rotating. As a result, the estimation of rotordynamic coefficients is 

compared to static testing.    

 

2.1.2 Porous Media Fluid Mechanics 

The majority of brush seal CFD models that are presented in the literature use a porous 

media approach to model the bristle pack. The basic theory is to treat the region as a 

continuum that provides a resistance to flow. The basic constitutive equation describing flow 
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through porous media is Darcy’s law, which relates flux, fluid viscosity, and pressure gradient by 

using a resistance coefficient known as permeability (κ): 

 

∇𝑝 = −
𝜇

𝜿
𝒗𝑓        (2.1.3) 

 

Darcy’s law, which is an expression of conservation of momentum, was first determined 

experimentally. However, it has also been shown that it can be derived from the Navier-Stokes 

equations. An extension of Darcy’s law is known as the Darcy-Forchheimer Law. This is a more 

complete model of flow through porous media at higher Reynolds numbers as it accounts for 

inertial effects (Jambhekar, 2011). The Darcy-Forchheimer law can be expressed in equation 

form as: 

 

∇𝑝 =  −
𝜇

𝜿
𝒗𝑓 −

𝜌

𝜿𝟏
|𝒗𝑓|𝒗𝑓        (2.1.4)   

 

In the most general case, the coefficients κ and κ1 are second order tensors with nine 

components. They can be written as κij and κ1ij. However, off-diagonal terms are typically 

neglected in the analysis of brush seals κij = κ1ij = 0 for i≠j. The Forchheimer model was applied 

to the study of a brush seal by Dogu (Dogu, 2005). The coefficients of velocity were written 

more simply to include density and viscosity: 

 

−
𝑑𝑝

𝑑𝑥𝑖
= (𝑎𝑖𝑗|𝑢𝑗| + 𝐵𝑖𝑗) 𝑢𝑗        (2.1.5) 

 

Eq. 2.1.5 is an alternate form of Eq. 2.1.4, where index notation is used instead of tensor 

notation. The two permeability coefficients, a and B, were defined for each spatial direction, 

resulting in a total of 6 coefficients. These coefficients were determined empirically by collecting 

leakage data, the axial pressure distribution on the rotor surface, and the radial pressure 

distribution on the backing plate. A CFD model of a brush seal was created based on 

experimental data. This study contained detailed information on the seal dimensions and the 

boundary conditions, which made it possible to compare the CFD results against the 

experimental results. The CFD study was performed in two dimensions (radial and axial) 

because the circumferential velocity was negligibly low. The calibrated permeability coefficients 

are listed in Table 2.1.  
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Table 2.1. Resistance coefficients reported by Dogu [9]. 

 
 

The results from this study demonstrated that a bulk porous medium approach with calibrated 

permeability coefficients can be used to model the flow through a brush seal with a high degree 

of accuracy. This method provides an effective tool to study and predict leakage, but it is limited 

in its ability to provide information about the rotordynamics of the system. From a CFD analysis 

in a software package such as ANSYS CFX, flow field and pressure field data could be used to 

obtain pressure forces, which could then be used for rotordynamic stability analysis.  

When modeling a bristle pack as a porous medium in CFD, one of the major tasks is accurately 

calibrating the resistance coefficients. If the model is to be relied upon for future calculations it 

must first be validated against experimental data for leakage through the seal for a given 

pressure distribution. The resistance coefficients can then be adjusted to obtain agreement 

between the simulation and the experiment. In an experiment conducted by Pugachev and 

Helm (Pgachev & Helm, 2008), a series arrangement of seals was tested and then used to 

calibrate a CFD model of the arrangement. In this study they succeeded in calibrating the 

porous model to give good agreement between the simulations and the experiments.   

 

 

2.2 Permeability 

 
The permeability in Darcy’s law is the defining material property that may be used to 

characterize the tendency of a porous medium to pass a fluid. In the context of an annular seal, 
with all external conditions being equal, the permeability will determine the leakage rate. It is 
important to note that the proportionality constants in Eq. 2.1.5 are sometimes loosely referred 
to as permeability. For this paper, permeability will refer to κ and κ1, which are the intrinsic 
properties of the medium, and do not depend on the fluid properties.  

As mentioned above, a general permeability tensor is of rank two and has nine components 
which are expressed in matrix form as: 

 

𝜿 = [

κ11 κ12 κ13

κ21 κ22 κ23

κ31 κ32 κ33

]        (2.2.1) 

 

Previous work has demonstrated the utility of the isotropic porous medium model of a brush seal 
for prediction of leakage [11]. This assumption implies that off-diagonal elements are zero, and 
that all diagonal elements have the same value. Therefore the permeability and inertial 
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permeability tensors reduce to scalars κ and κ1, respectively. In a study by Chew and Hogg (Chew 
& Hogg, Porosity Modeling of Brush Seals, 1997) the isotropic assumption was applied to a brush 
seal model. Results from this model were observed to be in good agreement with empirical tests 
from multiple sources (Bayley & Long, 1993; Carlile, Hendricks, & Yoder, 1993; O'Neil, 1993).  

Although the simplifying assumption of constant permeability can be useful in some 
situations, it seems intuitive that effects such as bristle flutter, blow down, and bending could 
cause significant variation in the permeability of the bristle pack. Many previous studies have 
addressed the tendency of resistance coefficients to vary. The relationship between the 
resistance coefficients and the pressure drop can be modeled by the Ergun equation (Ergun, 
1952): 
 

𝜕𝑝

𝜕𝑥
=

150𝜇(1 − 𝜀)2

𝐷𝑝
2𝜀3

𝑢 + 
1.75𝜌(1 − 𝜀)

𝐷𝑝𝜀3
𝑢2        (2.2.2) 

 

Where:  𝑝=pressure,  𝜀 = porosity, and 𝑢 = fluid velocity in x direction. This model has been used 
extensively in the literature (Li, Experimental and Numerical Investigations on the Leakage Flow 
Characteristics of the Labyrinth Brush Seal, 2012; Qiu, Li, & Yan, Investigation Into the Flow 
Behavior of Multi-Stage Brush Seals, 2014). The parameter 𝐷𝑝 is referred to as “equivalent mean 

particle diameter”. The name for this parameter comes from its original application to flow 

through packed beds (Ergun, 1952). 𝐷𝑝 is calculated from the bristle geometry: 
 

𝑎𝑣 =
𝑆𝑡𝑜𝑡𝑎𝑙

𝑉𝑡𝑜𝑡𝑎𝑙
=

𝜋𝑑𝑙

(
𝜋𝑑2

4 ) 𝑙
=

4

𝑑
  , 𝐷𝑝 =

6

𝑎𝑣
= 1.5𝑑        (2.2.3) 

 

Where: 𝑎𝑣 = area to volume ratio, 𝑆𝑡𝑜𝑡𝑎𝑙 = total bristle surface area, 𝑉𝑡𝑜𝑡𝑎𝑙 = total bristle 

volume, 𝑙 = axial length, and 𝑑 = bristle diameter. 

In (Dogu, 2005) Dogu asserts that bristle pack thickness will decrease only until the 

bristles are compressed together and against the back plate. After this point is reached, the 

porosity, pack thickness, and resistance coefficients will all remain constant. This of course 

requires that the pressure difference is sufficiently high for that particular seal. 

 

 

2.3 Variation of Permeability 

 
A study was conducted to demonstrate the change in permeability of a brush seal as a 

function of pressure drop using CFD. This work utilized experimental data that is reported by 
Bayley and Long in (Bayley & Long, 1993). In their study the ratio of inlet to outlet pressure was 
varied, and mass flow was measured for several different pressure ratios. First, this set of data 
was analyzed in a new way to establish further understanding of the fluid mechanics. From this 
analysis a CFD model was created and iteratively calibrated to find the permeability of the bristle 
pack at every value of pressure ratio. This provided a mapping of how the permeability changed 
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over the range of pressure ratios. The results of this study provided a new and simplified basis for 
the study of flow in a brush seal and for using a porous media model of the bristle pack. 

 

2.3.1 Reynolds Number Analysis 

Although Eq. 2.1.4 is the more general model for flow through porous media, Eq. 2.1.3 has 
been shown to be sufficient for many applications where the viscous forces have a significant 
influence. The Reynolds number may be calculated as: 

 

Re =
ρDpu

μ
        (2.3.1) 

 

By reformulating the expression in terms of mass flow rate we obtain: 
 

𝑅𝑒 ≈  
ρDp

μ
(
𝑚̇

𝜌𝐴
) =

𝑚̇𝐷𝑝

𝐴𝜇
        (2.3.2) 

 

One of the standards for determining when the flow regime should be modeled by Eq. 2.1.3 or 
Eq. 2.1.4 was developed by Chilton and Colburn in (Chilton & Colburn, 1931). The critical region 
for non-Darcian effects to become significant was found to be when the Reynolds number was in 
the range 40 – 80. In order to apply Eq. 2.3.2 to a brush seal model, the area A can be 
approximated as an annulus defined by the bristle pack. This results in a final equation for the 
Reynolds number: 
 

𝑅𝑒 ≈  
𝑚̇𝐷𝑝

𝜇𝜋 [(
𝐷𝑠

2 )
2

− (
𝐷𝑏

2 )
2

]

         (2.3.3)   

 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

Figure 2.3.1 Annular cross section of the seal outlet (axial view) 
 
 

where Ds is the overall outside diameter of the seal and Db is the bore diameter. This equation, 
along with the criteria from Chilton and Colburn (Chilton & Colburn, 1931), was used as the basis 

𝐷𝑠 

𝐷𝑏 
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for determining whether to model the flow with Eq. 2.1.3 or Eq. 2.1.4, as described in a later 
section. 

2.3.2 Numerical Model 

A CFD model was developed based on the given dimensions and properties of the seal 
described in (Bayley & Long, 1993). Although the seal domain being studied has rotational 
symmetry about the axis of the shaft, and could therefore be modeled with a two-dimensional 
domain, the CFD model was three dimensional. The purpose for this was to maintain generality 
and to ensure that no unexpected three-dimensional effects (such as turbulent eddies) were 
being eliminated preemptively. A 10-degree sector model was constructed in ANSYS CFX 15 (Fig. 
2.3.2). Due to the circumferential symmetry it is assumed that a sector model of this size is 
sufficient to model the entire seal (Untaroiu, Liu, Migliorini, Wood, & Untaroiu, 2014). The 
experimental testing was performed with a nonrotating shaft, therefore shaft rotation was not 
considered in this study. A periodic boundary condition was used to connect the two sides of the 
sector model. The porosity of the bristle pack was estimated by the method described by Chew 
and Hogg in (Chew & Hogg, Porosity Modeling of Brush Seals, 1997).  
 

𝜀 = 1 −
𝜋𝑑2𝑁

4𝑙𝑠𝑖𝑛𝜙
         (2.3.4) 

 

For the seal described in (Bayley & Long, 1993) the values for these parameters are: d = 0.0762 
mm, N = 2400 bristles/in, l = 0.7 mm, ϕ = 45o. Therefore, the value of porosity is estimated to be 
~0.129. However, this value is expected to vary to some extent as pressure ratio changes, so a 
sensitivity study was performed for the CFD model. It was found that simulation results do not 
change for a range of porosity between 0.11 and 0.35. The seal inlet and outlet were defined as 
openings with pressure boundary conditions. The outlet pressure was fixed at 100 kPa for every 
simulation, while the inlet pressure was varied between 107 kPa and 380 kPa. The rotor and stator 
were defined as smooth, no-slip walls.  
 

 

Figure 2.3.2. Geometry of a sector of the brush seal, including the back plate, bristle pack, and 
face plate. 
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 There is no information available on the regions upstream or downstream of the seal that 
was tested in (Bayley & Long, 1993). Because this particular seal was single-stage, it can be 
assumed that the regions before and after the seal are defined by the annular space between the 
rotor and the stator. The influence of upstream and downstream regions was tested by creating 
a computational model that includes extended inlet and outlet regions (Fig. 2.3.3). 

 

 
 

Figure 2.3.3. Geometry of a sector of the brush seal, including upstream and downstream 
regions. 
 

Flow rate calculations using the model with extended inlet and outlet regions were compared to 
calculations for the same operating conditions without the extended regions. The operating 
conditions tested were those corresponding to the lowest, middle, and highest values of pressure 
ratio. The results from the simulations using the extended model were within 0.1% agreement 
with the results from the non-extended model (Fig. 2.3.4). This agreement in simulation results 
is used as justification to conduct the rest of the study with a smaller computational domain. The 
smaller model begins at the front plate of the seal and ends at the back plate. 

Studying the change in permeability at several operating pressures required many CFD 
simulations to be run for each operating point. This made it necessary to choose a mesh capable 
of providing enough detail of the flow field to ensure accuracy while minimizing computational 
time. Mesh independence was determined by testing 11 different meshes ranging in size from 
5,684 to 6,000,000 elements (Fig. 2.3.5). It was found that the CFD simulation results became 
independent of mesh size at approximately 79,000 elements, and the 2 x 106 element mesh that 
was used for this study was decidedly in the range of mesh independence (Fig. 2.3.6).  
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Figure 2.3.4. Geometry of a sector of the brush seal with no upstream or downstream 

regions. 

 

 
 

Figure 2.3.5. Mesh independence study. 
 

 

 
 

Figure 2.3.6. Mesh applied to the analysis domain. 
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The Shear Stress Transport model was chosen to model turbulence and the temperature 
conditions were treated as isothermal with an air inlet temperature of 20°C. The convergence 
criteria specified were RMS residuals below 10-4 to minimize any sources of numerical error. 

Because this CFD model is based off of the seal tested in (Bayley & Long, 1993), it was 
important to compare the model to the available experimental data. Axial and radial pressure 
distributions were measured and reported in terms of a nondimensional pressure P*. The value 
of nondimensional pressure is calculated by the following equation: 

 

𝑃∗ = 
𝑝 − 𝑝𝑑

𝑝𝑢 − 𝑝𝑑
        (2.3.5) 

 

The radial pressure distribution was originally measured by five different pressure taps on the 
back plate of the seal. The axial pressure distribution was measured by 24 pressure taps in the 
rotor, 11 of which were located under the bristle tips. The coordinate system for the radial 
direction was defined by Y, which is the ratio of the radial distance from the rotor divided by the 
distance between the shaft and the bottom of the front plate. For the axial pressure distribution, 
the location of the pressure tap can be determined from Z, the tap number. The bristle pack starts 
at Z=5 and ends at Z=16. Bayley and Long presented pressure distribution data by focusing on 
specific ranges of pressure ratio, and then averaging the pressure distribution from all the tests 
conducted in the range. For the sake of comparison, Figures 2.3.7 and 2.3.8 show the pressure 
distributions from the CFD simulations along with the measured pressure distributions, showing 
reasonably good agreement between experimentally and numerically values. 

Experimental data for mass flow rate as a function of pressure ratio was obtained from (Bayley 
& Long, 1993) and is listed in Table 2.2. Due to the relatively even spacing of the data points, it 
was determined that using every other set of points would be sufficient for characterizing the 
change in permeability. 
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Figure 2.3.7. Comparisons of radial pressure distributions between the CFD model and 
experimental data from [12] for a. pressure ratios of 1.29-1.86 and b. ratios of 3.17-3.80. 
 

The Reynolds numbers listed in Table 2.3.1 were found by applying Eq.2.3.2 to each data point, 
showing that the Reynolds number for each point was well below the range for non-Darcian 
effects to be significant. Because of this, Eq. 2.1.3 was found to be sufficient to simulate these 
experiments using CFD.  
 

 
 

Table 2.3.1 Experimental data of brush seal leakage. 

For this study, an isotropic model for the bristle pack was used due to the lack of non-Darcian 
effects expected. Because the shaft was not rotating during their experiment, no rotor excursions 
were present and the circumferential velocity of the fluid was minimal. The expected result is that 
changes in permeability would occur predominantly in the axial direction due to the large 
pressure difference between the axial ends of the seal. However, in a rotating environment it is 
noted that sharp lay angles and rotational flow could significantly contribute to variations in 
permeability in the radial direction as well.  
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Pressure Ratio Flow Rate (kg/s) Reynolds Number

1.19 1.86E-03 1.82

1.32 2.08E-03 2.03

1.36 3.04E-03 2.96

1.89 4.81E-03 4.70

2.12 5.82E-03 5.68

2.34 5.82E-03 5.68

2.47 7.03E-03 6.87

2.64 7.03E-03 6.87

2.69 8.73E-03 8.53

2.92 8.73E-03 8.53

3.14 1.06E-02 10.31

3.40 1.28E-02 12.46

3.70 1.35E-02 13.15

3.99 1.28E-02 12.46
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For a given operating pressure, several CFX input files were generated with all conditions 
identical except for the permeability. An initial “guess” value was chosen to be in the middle of 
the range of permeability used. The range of values considered for matching the model 
predictions to the experimental data were based on experimental values previously reported in 
the literature for brush seals (Dogu, 2005). For  

 

 

 
 

Figure 2.3.8. Comparisons of axial pressure distributions between the CFD model and 
experimental data from [12] for a. pressure ratios of 1.25-1.42 and b. ratios above 3.8. 

 

most operating pressures five initial simulations were performed. If none of the permeability 

values resulted in a mass flow rate within 3% of the experimentally measured value, then 

another round of simulations were performed with the permeability guesses centered around 

the closest value from the previous set. 

In order to calibrate the permeability at each operating pressure, the first step was to begin 
with an estimate based on previous values found in the literature (Dogu, 2005). From the value 
of the axial viscous resistance coefficient in Table 1, the initial guess value of permeability was 
found: 
 

𝜅 =
𝜇

𝐵
=

1.82 × 10−5 𝑘𝑔
𝑚 · 𝑠 

4.5 × 107 𝑘𝑔
𝑚3 · 𝑠

 
= 4.044 × 10−13 𝑚2  
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This value was used to establish a range of permeability values for the first pressure ratio (Rp 
= 1.194). The ranges for successive operating pressures were typically centered around the 
accepted best value from the previous point. On average, the permeability for each operating 
point was found from running 8 simulations, each requiring approximately 3.5 hours to converge. 
The computation time for this study was therefore approximately 392 hours. This was made 
feasible by the use of parallel computing on the Rivanna Cluster at the University of Virginia.  

2.3.3 Results of Permeability Variation Study 

The results of the CFD simulations are presented in Table 2.3.2 and Figure 2.3.8. For pressure 
ratios up to 2.5 it was found that the permeability of the bristle pack was estimated to decrease 
with increasing pressure ratio. At pressure ratios above 2.5, however, it was found that estimated 
permeability values were relatively constant. This was perhaps due to the bristle pack reaching a 
compaction threshold as pressure ratios approached a critical value of 2.5. It is worth noting that 
over this range of pressure the permeability changed by nearly an order of magnitude. The 
percentage difference between the maximum and minimum permeability values is ~75%.  
 

 
 

Table 2.3.2 Values of bristle pack permeability. 

 

Pressure Ratio Permeability [m2]

1.194 1.36E-12

1.323 9.40E-13

1.361 1.2E-12

1.89 8E-13

2.123 7.3E-13

2.342 6.5E-13

2.471 6.8E-13

2.639 6.3E-13

2.69 7.4E-13

2.923 6.4E-13

3.142 7E-13

3.4 7.5E-13

3.697 7.2E-13

3.994 6.2E-13
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Figure 2.3.8. Experimental and calculated values of brush seal permeability vs. pressure ratio. 

   

While the overall trend is a decrease in permeability with increasing pressure ratio, there are 
some local fluctuations and regions where the permeability increases with increasing pressure 
ratio. It is possible that this is an erroneous effect due to measurement error in the experimental 
data. If that is the case then the general flattening of the data above a pressure ratio of 2.5 would 
indicate this as the critical pressure ratio. Another potential explanation would be that temporary 
deformation or interaction between the bristles occurred when the data was originally measured. 
Because the simulations in this study did not have any physical model for the behavior of the 
bristles - but only for their effective porous behavior - this cannot be verified.  

 

 
 

Figure 2.3.9. Pressure contour plot at seal mid-plane. 
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Figure 2.3.10. Velocity vector plot at seal mid-plane. 
 
 
 

2.3.4 Comparison With Darcy’s Law 

Simply using Darcy’s law to calculate the permeability at every point does give values for the 
permeability at each pressure ratio. However, doing this gives different values of permeability 
than the ones found from the iterative CFD method presented in this section. The charts below 
demonstrate that direct calculations from Darcy’s law give a range of permeability that is not of 
the same order of magnitude (see Fig. 2.3.11a), likely due to a lack of consideration of compaction 
effects. For the sake of comparing the relative changes in permeability from this study to those 
predicted by a direct application of Darcy’s Law, the two sets of permeability can both be 
nondimensionalized by dividing each value by the smallest value in the set. It now becomes clear 
that no major discrepancy exists in the prediction of changes in permeability, despite the 
differences in predicted value of the permeability magnitude (see Fig. 2.3.11b). 
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Figure 2.3.11. Comparison of permeability calculated directly from Darcy’s law with 
permeability found using CFD a. permeability in units of m2 b. nondimensionalized 

permeability. 
 

Modern research in porous media diffusion has indicated that characterizing permeability in 
terms of tortuosity will provide more insightful models for predicting flow behavior. In general 
terms, the tortuosity is the ratio of the effective hydraulic path length to the straight line distance 
in the direction of flow (Guo, 2012). Although there are many different proposed ways to describe 
a medium’s tortuosity, it would be difficult even in theory to measure tortuosity. However, the 
concept is useful for providing qualitative understanding because it is inversely proportional to 
permeability (Nolen-Hoeksema, 2014). 

It is somewhat intuitive that higher internal tortuosity would result in a less permeable 
material. The shortened flow path between individual bristles would result in fluid particles 
passing more slowly through the pack. In order to characterize this in a formal mathematical 
sense, it would be necessary to account for the dynamics of bristle deformation and interaction 
under pressure force loadings.  

 

2.3.5 Inertial Effects 

In the results displayed above, the flow behavior was assumed to be dominated by viscous 
effects. However, in order to test this assumption, three simulations were chosen to be run 
without neglecting the inertial effects. The three cases tested were those with pressure ratios of 
1.19355, 2.47097, and 3.99355. These values were chosen because they represent the lowest, 
middle, and highest pressure ratios. The inertial permeability in the axial direction was initially 
set by using the value calculated in [9]. When the inertial term was included in the CFD model the 
maximum change in the mass flow through the seal was less than 0.001%. The inertial 
permeability was then varied between 10e-12 m2 and 10e12 m2. Despite this wide variation in 
the values of inertial permeability, the change in mass flow rate through the seal was never 
altered by more than 2% from the value found by using the corresponding non-inertial model.  
 

2.3.6 Conclusions From Permeability Variation Study 

In this section, experimental data of brush seal performance was used along with an extensive 
set of CFD simulations to study the changes in the permeability of a brush seal bristle pack as 
pressure loading was increased. It was demonstrated that the effective permeability of the bristle 
pack undergoes a significant reduction when the ratio of inlet to outlet pressure is increased, 
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eventually reaching a relatively constant value perhaps due to the bristle pack reaching a 
threshold for compaction. While the effects of bristle deformation and shape were not explored 
in this study, they can be of significance to permeability. With this knowledge of the tendency for 
permeability to change with operating pressure, investigation of anisotropic permeability models 
and non-Darcian flow models are considered later in this thesis.  

 

Chapter 3 

Model Development 

 
3.1 Governing Equations 

 

3.1.1 Incompressible Fluids 

 As discussed in section 2.1, the general equation to model flow through a porous 

medium is given by the Darcy-Forchheimer law (equation 2.1.4), and under conditions where 

inertial effects are minimal Darcy’s law is considered sufficient (equation 2.1.3). The general 

three dimensional form of Darcy’s can be expressed by writing equation 2.1.3 in component 

form: 

 
𝜕𝑝

𝜕𝑥
=  −

𝜇

𝜅𝑥
𝑢,       

𝜕𝑝

𝜕𝑦
=  −

𝜇

𝜅𝑦
𝑣 ,

𝜕𝑝

𝜕𝑧
=  −

𝜇

𝜅𝑧
𝑤        (3.1.1) 

 For two-dimensional flow, we are only concerned with axial (x-direction) and radial (y-

direction) flow. The set of equations now reduces to: 

𝜕𝑝

𝜕𝑥
=  −

𝜇

𝜅𝑥
𝑢,    

𝜕𝑝

𝜕𝑦
=  −

𝜇

𝜅𝑦
𝑣        (3.1.2) 

Conservation of mass within the bristle pack can be expressed in terms of the continuity 

equation: 

𝜕𝜌

𝜕𝑡
+ 

𝜕(𝜌𝑢)

𝜕𝑥
+ 

𝜕(𝜌𝑣)

𝜕𝑦
+

𝜕(𝜌𝑤)

𝜕𝑧
= 0        (3.1.3) 

Again we restrict our focus to two dimensions, which allows equation 16 to be reduced to the 

following form: 
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𝜕𝜌

𝜕𝑡
+ 

𝜕(𝜌𝑢)

𝜕𝑥
+ 

𝜕(𝜌𝑣)

𝜕𝑦
= 0        (3.1.4) 

For typical turbomachinery applications, the flow through the stages of a compressor or turbine 

will experience a great deal of compression or expansion. However, for certain fluids (typically 

liquids) the flow through an individual seal may experience comparatively little change in 

thermodynamic properties. For such cases, the flow may be accurately modeled as 

incompressible. This assumption reduces the continuity equation to the following form: 

𝜕𝑢

𝜕𝑥
+ 

𝜕𝑣

𝜕𝑦
= 0        (3.1.5) 

Solving equation 15 for u and v, and then substituting those expressions into equation 17 gives: 

𝜅𝑥

𝜕2𝑝

𝜕𝑥2
+ 𝜅𝑥

𝜕2𝑝

𝜕𝑦2
= 0        (3.1.6) 

The mass flow rate through the seal can be calculated from the following surface integral: 

𝑚̇ =  ∬𝜌𝑽⃗⃗ ∙ 𝑑𝑨⃗⃗          (3.1.7) 

Which can be greatly simplified due to the cylindrical symmetry of this application and the 

assumption that effects of compressibility are negligible.  

𝑚̇ = 2𝜋𝜌 ∫ 𝑢(𝑟) ∙ 𝑟𝑑𝑟
𝑅𝑜

𝑅𝑖

        (3.1.8) 

The evaluation of this integral is equivalent to the summation of the flow rate through an 

infinite number of annuli of infinitesimal thickness and with radii varying from the inner radius 

of the seal to the outer radius. This technique is sometimes referred to as the “washer method” 

in standard calculus textbooks. 

3.1.2 Compressible Fluids 

Brush seals are commonly used in applications where the fluid to be sealed is a gas 

moving at relatively high speeds or undergoing large changes in pressure. For example, 

situations where air is moving with a Mach number of approximately 0.3, the change in density 

is expected to be greater than 5% and compressibility effects are no longer negligible. 

For applications involving compressible flow, the governing equations of section 3.1.1 

are not valid. By considering density as a variable rather than a constant, it will no longer cancel 

out of the continuity equation. 
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𝜕

𝜕𝑥
(𝜌(𝑥, 𝑦) (

𝜅𝑥

𝜇

𝜕𝑝

𝜕𝑥
)) +

𝜕

𝜕𝑦
(𝜌(𝑥, 𝑦) (

𝜅𝑦

𝜇

𝜕𝑝

𝜕𝑦
)) = 0        (3.1.9) 

 

Where density is written as a function of x and y. expanding the derivative and simplifying 

gives: 

𝜅𝑥 [
𝜕𝜌

𝜕𝑥

𝜕𝑝

𝜕𝑥
+ 𝜌

𝜕2𝑝

𝜕𝑥2
] + 𝜅𝑦 [

𝜕𝜌

𝜕𝑦

𝜕𝑝

𝜕𝑦
+ 𝜌

𝜕2𝑝

𝜕𝑦2
] = 0        (3.1.10) 

 

Equation 3.1.10 describes the pressure and density distribution throughout the plane of 

the bristle pack. Because pressure and density are interdependent, this is a non-linear PDE. The 

relationship between density and pressure must be defined through an equation of state, such 

as the ideal gas law.  

While equations 3.1.6 and 3.1.10 are two dimensional, it would be possible to adapt this 

method to three-dimensional brush seal modeling. This would allow for the incorporation of 

flow field effects induced by shaft rotation. A three-dimensional (e.g. cylindrical) coordinate 

system could be established in order to appropriately express Darcy’s law and continuity.  

 

3.2 Domain and Boundary Conditions 

 
The domain is defined as a plane which extends in the axial direction from the front 

plate to the back plate (see Fig. 3.2). The bristle pack is considered to be a porous medium. The 

rotor, stator, front plate, and back plate are wall boundaries, and the inlet and outlet are 

constant pressure boundaries. It is assumed that the bristles are in contact with the rotor, and 

are of the same material properties throughout the region (homogeneous porous medium).  

The inlet and outlet, which will also be referred to as the upstream and downstream 

pressure boundaries, respectively, are subjected to prescribed pressure values Pu and Pd. These 

are Dirichlet boundary conditions. At the rotor, stator, front plate and back plate there cannot 

be any flow across the boundary. This corresponds to Neumann boundary conditions: 

 
𝜕𝑝

𝜕𝑥
= 0        (𝑥 = 0, 𝑦 > 𝑦𝑓𝑝) 𝑎𝑛𝑑 (𝑥 = 𝑋, 𝑦 > 𝑦𝑏𝑝) 

𝜕𝑝

𝜕𝑦
= 0        (𝑥, 𝑦 = 0) 𝑎𝑛𝑑 (𝑥, 𝑦 = 𝑌) 

𝑝 = 𝑃𝑢        (𝑥 = 0, 𝑦 < 𝑦𝑓𝑝) 𝑎𝑛𝑑 (𝑥 = 𝑋, 𝑦 < 𝑦𝑏𝑝) 
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𝑝 = 𝑃𝑑         (𝑥 = 0, 𝑦 < 𝑦𝑓𝑝) 𝑎𝑛𝑑 (𝑥 = 𝑋, 𝑦 < 𝑦𝑏𝑝) 

Where yfp is the y coordinate of the bottom of the front plate, ybp is the y coordinate of 

the bottom of the back plate, X is the overall axial length of the seal, and Y is the overall radial 

length of the seal. 

 

Figure 3.2. Model Domain. 

 

For a typical brush seal, the radial length is approximately 15 to 25 times greater than the axial 

length (Chew, Lapworth, & Millener, Mathematical modeling of brush seals, 1995). 

 

3.3 Analytical Methods 

 
While the primary focus of this thesis is the development of a numerical method for 

calculating the pressure distribution in a brush seal, a brief discussion of analytical solution 

techniques for the compressible flow within the bristle pack is given here. Equation 3.1.6 is a 

linear, second order elliptic partial differential equation. The coordinate system can be re-

defined by normalizing x and y by  √𝜅𝑥 and √𝜅𝑦, respectively. The chain rule can be applied to 

obtain expressions for the partial derivatives of pressure: 

𝑥̃ =
𝑥

√𝜅𝑥

        (3.3.1) 
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𝜕𝑝

𝜕𝑥
=  

𝜕𝑝

𝜕𝑥̃

𝜕𝑥̃

𝜕𝑥
=

1

√𝑘𝑥

𝜕𝑝

𝜕𝑥̃
        (3.3.2) 

𝜕2𝑝

𝜕𝑥2
= 

𝜕

𝜕𝑥̃
(
𝜕𝑝

𝜕𝑥
)

1

√𝜅𝑥

= 
1

𝜅𝑥

𝜕𝑝

𝜕𝑥̃
        (3.3.3) 

The same procedure can be repeated for y, resulting in: 

𝜕2𝑝

𝜕𝑦2
=  

1

𝜅𝑦

𝜕𝑝

𝜕𝑦̃
        (3.3.4) 

These expressions for the second partial derivatives of pressure can be substituted into 

equation 3.1.6. The result is Laplace’s equation in terms of the variables 𝑥̃ and 𝑦̃: 

𝜕2𝑝

𝜕𝑥̃2
+ 

𝜕2𝑝

𝜕𝑦̃2
= 𝛻2𝑝 = 0        (3.3.5) 

The primary method to solve problems of this form is to assume the function 𝑝(𝑥̃, 𝑦̃) is equal to 

the product of a function of strictly 𝑥̃ and a function of strictly 𝑦̃: 

𝑝(𝑥̃, 𝑦̃) =  𝑋̃(𝑥̃)𝑌̃(𝑦̃)        (3.3.6) 

By substituting this expression for p into Laplace’s equation and separating the variables, a set 

of ordinary differential equations are formed: 

𝑋̃′′ − 𝜆2𝑋̃ = 0        (3.3.7) 

𝑌̃′′ + 𝜆2𝑌̃ = 0        (3.3.8) 

Where λ is called the “separation constant” and is an eigenvalue of the corresponding 

eigenfunctions 𝑋̃ and 𝑌̃. These equations can then be solved for λ=0 and λ≠0. The solution to 

𝑝(𝑥̃, 𝑦̃) is the sum of the solutions for both cases. The final form of the exact solution depends 

on the boundary conditions. For certain cases (such as the Dirichlet problem) the solution may 

be expressed in terms of a Fourier series.  

 The present problem has mixed (Robin) boundary conditions, and discontinuous 

boundary conditions. These are described in section 3.2. The exact solution to Laplace’s 

equation in this scenario is difficult to obtain, and extremely difficult to implement practically 

(Greenberg, 1998). 

 For the case of compressible flow, the governing equation is more complex. Depending 

on the specified relationship between pressure and density, the equation can become 

nonlinear. While there are methods for solving nonlinear partial differential equations, the 

solution techniques discussed in this thesis are limited to the numerical methods described in 

section 3.4.5. 
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3.4 Numerical Methods 

 
3.4.1 Discretization of the Governing Equations - Incompressible 

 For the incompressible case, applying a central difference scheme to approximate both 

of the 2nd order derivatives in equation 3.1.6 gives: 

 

𝜅𝑥𝐷𝑥,0
2 (𝑝) + 𝜅𝑦𝐷𝑦,0

2 (𝑝) = 0        (3.4.1) 

 

Where 𝐷𝑥,0
2  represents the central difference operator applied with respect to x, and 𝐷𝑦,0

2  

represents the central difference operator applied with respect to y. Applying these 

approximations results in the difference equation: 

 

 
𝜅𝑥

𝛥𝑥2
(𝑝𝑖−1,𝑗 − 2𝑝𝑖,𝑗 + 𝑝𝑖+1,𝑗) +

𝜅𝑦

𝛥𝑦2
(𝑝𝑖,𝑗−1 − 2𝑝𝑖,𝑗 + 𝑝𝑖,𝑗+1) = 0        (3.4.2)    

 

−2(𝜅𝑥𝛥𝑦2 + 𝜅𝑦𝛥𝑥2)𝑝𝑖,𝑗 + 𝜅𝑥𝛥𝑦2(𝑝𝑖−1,𝑗 + 𝑝𝑖+1,𝑗) + 𝜅𝑦𝛥𝑥2(𝑝𝑖,𝑗−1 + 𝑝𝑖,𝑗+1) = 0        (3.4.3) 

 

This can be written in a more compact form by defining parameters α, β, and γ:  

 

𝛼 = 𝜅𝑥𝛥𝑦2, 𝛽 = 𝜅𝑦𝛥𝑥2, 𝛾 = −2(𝛼 + 𝛽)        (3.4.4) 

 

The scheme is therefore: 

 

𝛾𝑝𝑖,𝑗 + 𝛼(𝑝𝑖−1,𝑗 + 𝑝𝑖+1,𝑗) + 𝛽(𝑝𝑖,𝑗−1 + 𝑝𝑖,𝑗+1) = 0        (3.4.5) 

 

In a similar manner, a central difference scheme may be applied to approximate the first 

derivatives in equation 3.1.2: 

 

𝐷𝑥,0(𝑝) = −
𝜇

𝜅𝑥
𝑢,   𝐷𝑦,0(𝑝) = −

𝜇

𝜅𝑦
𝑣         (3.4.6)  

 

 − (
𝑝𝑖+1,𝑗 − 𝑝𝑖−1,𝑗

2𝛥𝑥
) =

𝜇

𝜅𝑥
𝑢𝑖,𝑗, − (

𝑝𝑖,𝑗−1 − 𝑝𝑖,𝑗+1

2𝛥𝑦
) =

𝜇

𝜅𝑦
𝑣𝑖,𝑗        (3.4.7)  

 

𝑢𝑖,𝑗 =
𝜅𝑥

𝜇
(
𝑝𝑖−1,𝑗 − 𝑝𝑖+1,𝑗

2𝛥𝑥
) , 𝑣𝑖,𝑗 =

𝜅𝑦

𝜇
(
𝑝𝑖,𝑗−1 − 𝑝𝑖,𝑗+1

2𝛥𝑦
)        (3.4.8)  

 

The equations of 3.4.8 along with equation 3.4.5 form a system of three equations and three 

unknowns. Of course, the boundary conditions are given in terms of pressure, so the numerical 
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solution will first calculate an approximation of the pressure field. Once the pressure field has 

been evaluated it is trivial to find the axial and radial velocity by applying 3.4.8.   

 The mass flow rate through the seal can be calculated numerically from the axial velocity 

by applying equation 3.1.8 at the outlet of the seal, and approximating the integral using the 

trapezoidal rule: 

 

𝑚̇ = 𝜋𝜌𝛥𝑦 ∑[𝑢(𝑋, 𝑦𝑖+1) ∙ 𝑦𝑖+1 + 𝑢(𝑋, 𝑦𝑖) ∙ 𝑦𝑖]

𝑦=𝑌

𝑦=0

        (3.4.9) 

 

3.4.2 Discretization of the Governing Equations - Compressible 

 In the same manner, the equation for compressible flow can be discretized by applying 

finite difference approximations of the derivatives in equation 3.1.10: 

 

𝜅𝑥[𝐷𝑥,0(𝜌)𝐷𝑥,0(𝑝) + 𝜌𝐷𝑥,0
2 (𝑝)] + 𝜅𝑦[𝐷𝑦,0(𝜌)𝐷𝑦,0(𝑝) + 𝜌𝐷𝑦,0

2 (𝑝)] = 0        (3.4.10) 

 
 

−2(𝜅𝑥𝛥𝑦2 + 𝜅𝑦𝛥𝑥2)𝑝𝑖,𝑗 + 𝜅𝑥𝛥𝑦2 (𝜌𝑖,𝑗 +
𝛥𝑥

2
(𝐷𝑥,0(𝜌)))𝑝𝑖+1,𝑗 + 𝜅𝑥𝛥𝑦2 (𝜌𝑖,𝑗 −

𝛥𝑥

2
(𝐷𝑥,0(𝜌)))𝑝𝑖−1,𝑗 

 

+ 𝜅𝑦𝛥𝑥2 (𝜌𝑖,𝑗 +
𝛥𝑦

2
(𝐷𝑦,0(𝜌)))𝑝𝑖,𝑗+1 + 𝜅𝑦𝛥𝑥2 (𝜌𝑖,𝑗 −

𝛥𝑦

2
(𝐷𝑦,0(𝜌)))𝑝𝑖,𝑗−1 = 0        (3.4.11) 

 

This equation can be written in a more compact form by re-writing the coefficients of p as: 

 

𝛾 = −2(𝜅𝑥𝛥𝑦2 + 𝜅𝑦𝛥𝑥2)                     (3.4.12) 

𝛼1 = 𝜅𝑥𝛥𝑦2 (𝜌𝑖,𝑗 +
𝛥𝑥

2
(𝐷𝑥,0(𝜌)))    (3.4.13) 

𝛼2 = 𝜅𝑥𝛥𝑦2 (𝜌𝑖,𝑗 −
𝛥𝑥

2
(𝐷𝑥,0(𝜌)))      (3.4.14)  

𝛽1 = 𝜅𝑦𝛥𝑥2 (𝜌𝑖,𝑗 +
𝛥𝑦

2
(𝐷𝑦,0(𝜌)))     (3.4.15) 

𝛽2 = 𝜅𝑦𝛥𝑥2 (𝜌𝑖,𝑗 −
𝛥𝑦

2
(𝐷𝑦,0(𝜌)))     (3.4.17) 

 

Equation 3.4.11 can now be written as: 

 

𝛾𝑝𝑖,𝑗 + 𝛼1𝑝𝑖+1,𝑗 + 𝛼2𝑝𝑖−1,𝑗 + 𝛽1𝑝𝑖,𝑗+1 + 𝛽2𝑝𝑖,𝑗−1 = 0        (3.4.18) 
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3.4.3 Implicit Solution Method 

 In this section, an overview of the development of an implicit numerical solution 

method is given for the incompressible case. The treatment of compressible flow is saved for 

the section on explicit solutions. This is because the code which was developed (described in 

chapter 4) used only an explicit technique to handle compressible flow. 

The discretized governing equations can be solved by employing an implicit method. 

Consider equation 3.4.5 applied along the columns of the pressure domain matrix: 

 

𝛾𝑝1,1 + 𝛼(𝑝0,1 + 𝑝2,1) + 𝛽(𝑝1,0 + 𝑝1,2) = 0 

𝛾𝑝2,1 + 𝛼(𝑝1,1 + 𝑝3,1) + 𝛽(𝑝2,0 + 𝑝2,2) = 0 

𝛾𝑝3,1 + 𝛼(𝑝2,1 + 𝑝4,1) + 𝛽(𝑝3,0 + 𝑝3,2) = 0 

 
∙
∙
∙
 

𝛾𝑝𝑁,1 + 𝛼(𝑝𝑁−1,1 + 𝑝𝑁+1,1) + 𝛽(𝑝𝑁,0 + 𝑝𝑁,2) = 0 

 
∙
∙
∙
 

𝛾𝑝𝑁,𝑁 + 𝛼(𝑝𝑁−1,𝑁 + 𝑝𝑁+1,𝑁) + 𝛽(𝑝𝑁,𝑁−1 + 𝑝𝑁,𝑁+1) = 0 

 

 

 

This set of equations can be expressed in matrix form as: 

 

 

 

 

  

 

 

 

 

 

Where the matrix on the left is block tridiagonal, composed of the tridiagonal matrix A and the 

diagonal matrix B: 

 

(3.4.19) 
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And the vector P is made up of sub-vectors which form the columns of the pressure domain 

matrix. For example, P1 represents the pressure at each node along the first column: 

 

 

 

 

 

 

 

 

The boundary conditions must be implemented in equation 3.4.19 by modifying the matrices A 

and B for certain entries of the larger matrix. The system can then be solved computationally 

using a decomposition method.  

 The matrix that is formed in equation 3.4.19 becomes extremely large for refined 

meshes. If the overall mesh is chosen to contain NxN elements, then the matrix dimensions will 

be N2xN2.  

 

 

3.4.4 Explicit Solution Method – Incompressible Flow 

 An explicit method can be implemented by iteratively solving for each column of the 

pressure domain matrix. First equation 3.4.5 is written for the iteration step n: 

 

𝛾𝑝𝑖,𝑗
𝑛 + 𝛼(𝑝𝑖−1,𝑗

𝑛 + 𝑝𝑖+1,𝑗
𝑛 ) + 𝛽(𝑝𝑖,𝑗−1

𝑛 + 𝑝𝑖,𝑗+1
𝑛 ) = 0        (3.4.23) 

[B] =  = β[I] (3.4.21) 

[𝑷1] =  (3.4.22) 

(3.4.20) 
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This discreet equation gives the relationship between the pressure 𝑝𝑖,𝑗at one node and the 

pressure at the neighboring nodes. The value of the pressure at a given node for the iteration 

step n+1 can now be determined:  

 

𝑝𝑖,𝑗
𝑛+1 = −

𝛼

𝛾
(𝑝𝑖−1,𝑗

𝑛 + 𝑝𝑖+1,𝑗
𝑛 ) −

𝛽

𝛾
(𝑝𝑖,𝑗−1

𝑛 + 𝑝𝑖,𝑗+1
𝑛 )        (3.4.24) 

 

This is commonly known as the Jacobi iteration method. The convergence rate can be improved 

by altering the scheme to simultaneously solve for all nodes along a given dimension: 

 

𝑝𝑖,𝑗
𝑛+1 = −

𝛼

𝛾
(𝑝𝑖−1,𝑗

𝑛+1 + 𝑝𝑖+1,𝑗
𝑛+1 ) −

𝛽

𝛾
(𝑝𝑖,𝑗−1

𝑛 + 𝑝𝑖,𝑗+1
𝑛 )        (3.4.25) 

 

𝛼

𝛾
𝑝𝑖−1,𝑗

𝑛+1 + 𝑝𝑖,𝑗
𝑛+1 +

𝛼

𝛾
𝑝𝑖+1,𝑗

𝑛+1 = −
𝛽

𝛾
(𝑝𝑖,𝑗−1

𝑛 + 𝑝𝑖,𝑗+1
𝑛 )        (3.4.26) 

 

 

In this case, the dimension correspond to j was chosen. This is known as the line method, and 

all values of the solution along a given row (or column) are computed simultaneously. It can be 

reformulated as: 

 

 

[
 
 
 
 
 
 
 
 
 
 1

𝛼

𝛾
0

𝛼

𝛾
1

𝛼

𝛾

0
𝛼

𝛾
1

⋯

0 0

0 0

0 0

⋮ ⋱ ⋮

0 0 0

0 0 0
⋯

1
𝛼

𝛾
𝛼

𝛾
1
]
 
 
 
 
 
 
 
 
 
 

  

[
 
 
 
 
 
 
 
 
 
 
𝑝1,𝑗

⋮

⋮

𝑝𝑁,𝑗]
 
 
 
 
 
 
 
 
 
 
𝑛+1

=   
−𝛽

𝛾

(

 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
 
𝑝1,𝑗+1

⋮

⋮

𝑝𝑁,𝑗+1]
 
 
 
 
 
 
 
 
 
 
𝑛

+

[
 
 
 
 
 
 
 
 
 
 
𝑝1,𝑗−1

⋮

⋮

𝑝𝑁,𝑗−1]
 
 
 
 
 
 
 
 
 
 
𝑛

  

)

 
 
 
 
 
 
 
 
 

        (3.4.27)  

 

Where the pressure values on the right side of the equation are from the previous iteration. 

When this method is used in an algorithm a “sweep” is performed in the i direction to calculate 

each line of constant j. 
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3.4.5 Explicit Solution Method – Compressible Flow 

 In a similar manner, equation 3.4.18 can be solved along a line. If values of constant j are 

moved to one side of the equation, and the values on the other side are taken from the 

previous iteration, the scheme becomes: 

 

𝛼2

𝛾
𝑝𝑖−1,𝑗

𝑛+1 + 𝑝𝑖,𝑗
𝑛+1 +

𝛼1

𝛾
𝑝𝑖+1,𝑗

𝑛+1 =
−𝛽1

𝛾
𝑝𝑖,𝑗+1

𝑛 +
−𝛽2

𝛾
𝑝𝑖,𝑗−1

𝑛         (3.4.28) 

 

This scheme can also be written in matrix form: 

 

 

[
 
 
 
 
 
 
 
 
 
 1

𝛼1

𝛾
0

𝛼2

𝛾
1

𝛼1

𝛾

0
𝛼2

𝛾
1

⋯

0 0

0 0

0 0

⋮ ⋱ ⋮

0 0 0

0 0 0
⋯

1
𝛼1

𝛾
𝛼2

𝛾
1

]
 
 
 
 
 
 
 
 
 
 

  

[
 
 
 
 
 
 
 
 
 
 
𝑝1,𝑗

⋮

⋮

𝑝𝑁,𝑗]
 
 
 
 
 
 
 
 
 
 
𝑛+1

=  
−1

𝛾

(

 
 
 
 
 
 
 
 
 

𝛽1

[
 
 
 
 
 
 
 
 
 
 
𝑝1,𝑗+1

⋮

⋮

𝑝𝑁,𝑗+1]
 
 
 
 
 
 
 
 
 
 
𝑛

+ 𝛽2

[
 
 
 
 
 
 
 
 
 
 
𝑝1,𝑗−1

⋮

⋮

𝑝𝑁,𝑗−1]
 
 
 
 
 
 
 
 
 
 
𝑛

  

)

 
 
 
 
 
 
 
 
 

        (3.4.30)   

 

Where the quantities 𝛼1, 𝛼2, 𝛽1, 𝛽2 are vectors which are dependent on density and its partial 

derivatives, as described in section 3.4.2. An important feature of this explicit method is that it 

treats density as a variable.  

 A relaxation factor 𝜔 can be defined for the schemes shown in equations 3.4.27 and 

3.4.30. After each sweep has been performed to calculate the Jacobi iterate, the updated 

solution is found from the Jacobi iterate and the solution from the previous iteration: 

 

𝑝𝑖,𝑗
𝑛+1 = 𝜔𝑝𝑖,𝑗

∗ + (1 − 𝜔)𝑝𝑖,𝑗
𝑛         (3.4.31) 

 

Where 𝑝𝑖,𝑗
∗  is the solution from the scheme at each iteration. Due to the nature of this scheme 

the relaxation factor should be chosen from the range 0 < 𝜔 ≤ 1. Choosing a relaxation factor 

less than 1 will slow the convergence rate, but can establish convergence for cases in which 

divergence would otherwise occur.  

 In order to have a closed system, an equation of state must relate density and pressure. 

For air under isothermal conditions, the ideal gas model can be used to provide the necessary 

relationship. The density at each node is easily found from equation 3.4.32: 
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𝜌𝑖,𝑗 =
𝑝𝑖,𝑗

𝑅𝑇
        (3.4.32) 

 

The partial derivatives of density which are required for the scheme can be approximated by 

using the central difference method.  

 

3.5 Code Development 

 
While software packages capable of modeling general two and three dimensional 

porous media flow already exist, there is a need for a simple model, developed specifically for 

solving the pressure distribution within the bristle pack of a brush seal. 

The methods described in this chapter were implemented to develop a finite-difference 

based computer program. This code is capable of accepting basic geometry and material 

properties, generating a sufficiently fine mesh, solving the system of numerical equations, and 

providing desired information of the flow within the seal. Results are based on two-dimensional 

calculations and are therefore limited to the analysis of an individual plane with dimensions in 

the axial and radial directions. 

By solving for the two-dimensional pressure distribution, it is possible to also predict 

density distribution, velocity distribution, mass flow rate and aerodynamic forces acting on the 

bristles. 

 
 

Fig. 3.5 Program algorithm 
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Because the solution relies on information about the density field from the previous iteration, it 

is useful to “decouple” the density and pressure calculations. The algorithm shown in figure 3.5 

shows the basic structure of the developed code. 

 

 

3.6 Code Assessment 

The two sources of error in a finite-difference scheme are machine error and 

discretization error. The machine error is associated with rounding during floating point 

calculations and must be considered, especially when values being stored require many 

significant figures (e.g. 16). The algorithm described in this thesis iteratively calculates and 

stores values of pressure in the standard SI unit system. Values are expected to be between the 

specified inlet and outlet boundary pressures calculated in Pa. Physically realistic values should 

be on the order of 105Pa - 107Pa.  

It should be noted that permeability coefficients for the bristle pack, expressed in 

standard SI units, are expected to be on the order of 10−13m2. However, when the scheme is 

implemented as described by equation 3.4.30 all terms containing permeability coefficients are 

divided by terms which are also multiples of permeability. Therefore, no values are expected to 

require a large amount of precision to maintain the required number of significant digits. 

Code performance can be investigated by considering consistency, convergence, and 

stability. A numerical scheme for solving a PDE is considered consistent with the PDE if it 

approaches the exact solution as the discretization size approaches zero. For the problem of 

compressible flow, the PDE to be approximated is equation 3.1.10: 

 

𝜅𝑥 [
𝜕𝜌

𝜕𝑥

𝜕𝑝

𝜕𝑥
+ 𝜌

𝜕2𝑝

𝜕𝑥2
] + 𝜅𝑦 [

𝜕𝜌

𝜕𝑦

𝜕𝑝

𝜕𝑦
+ 𝜌

𝜕2𝑝

𝜕𝑦2
] = 0        (3.1.10) 

 

Where the scheme is defined by equation 3.4.11: 

 

−2𝜌𝑖,𝑗(𝜅𝑥𝛥𝑦2 + 𝜅𝑦𝛥𝑥2)𝑝𝑖,𝑗 + 𝜅𝑥𝛥𝑦2 (𝜌𝑖,𝑗 +
𝛥𝑥

2
(𝐷𝑥,0(𝜌))) 𝑝𝑖+1,𝑗 + 𝜅𝑥𝛥𝑦2 (𝜌𝑖,𝑗 −

𝛥𝑥

2
(𝐷𝑥,0(𝜌))) 𝑝𝑖−1,𝑗  

+ 𝜅𝑦𝛥𝑥2 (𝜌𝑖,𝑗 +
𝛥𝑦

2
(𝐷𝑦,0(𝜌))) 𝑝𝑖,𝑗+1 + 𝜅𝑦𝛥𝑥2 (𝜌𝑖,𝑗 −

𝛥𝑦

2
(𝐷𝑦,0(𝜌))) 𝑝𝑖,𝑗−1 = 0        (3.4.11) 

 

The numerical derivatives 𝐷𝑥,0 and 𝐷𝑦,0 are central difference approximations, which are 

derived from the Taylor series expansion and are known to be 2nd order accurate. Therefore as 

discretization size 𝛥𝑥 and 𝛥𝑦 approach zero linearly, the truncation error for each derivative 

approximation will approach zero quadratically.  
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 A scheme is considered stable if the error caused by a small perturbation in the 

numerical solution remains bounded. As demonstrated in chapter 3, the entire scheme can be 

expressed in matrix form: 

 

[𝐴]{𝑝} = {𝑏}        (3.6.1) 

 

Where the vector {𝑝} contains all nodes in the grid, the matrix A is block tri-diagonal with the 

coefficient terms 𝛾, 𝛼1, 𝛼2, 𝛽1, 𝛽2 from section 3.4.5, and the vector b incorporates the boundary 

conditions. The matrix A can be expressed as a sum of a diagonal matrix and a “remainder 

matrix”: 

[𝐴]  = [𝐷] − [𝑅]        (3.6.2) 

The iterative scheme can then be written as: 

[𝐷]{𝑝}𝑛+1 = [𝑅]{𝑝}𝑛 + {𝑏}        (3.6.3) 

Let the exact solution be 𝑝𝑒, and let the error in the numerical scheme be 𝜀 = 𝑝 − 𝑝𝑒, the exact 
solution can be substituted into the scheme: 
 

[𝐷]{𝑝𝑒}
𝑛+1 = [𝑅]{𝑝𝑒}

𝑛 + {𝑏}        (3.6.4) 

By subtracting equation 3.6.4 from equation 3.6.3 and multiplying by the inverse of D, an 
expression for the error is obtained: 
 

{𝜀}𝑛+1 = [𝐷]−1[𝑅]{𝜀}𝑛        (3.6.5) 

The error will be bounded, and the equation will therefore be stable if the eigenvalues of the 

matrix (𝐷−1𝑅) are all less than 1 (Young, Iterative Solution of Large Linear Systems, 1971).  

 The code that was developed for this thesis was tested for a small mesh to demonstrate 

the stability of the scheme. The matrix (𝐷−1𝑅) changes for each iteration because it is a 

function of density, so the eigenvalues for each iteration were stored. The absolute value of the 

maximum eigenvalue is referred to as the spectral radius. 
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Figure 3.6.1 Plot of Eigenvalues 

Fig. 3.6.1 demonstrates that the magnitude of all eigenvalues of the matrix (𝐷−1𝑅) are less 
than one. This is considered a standard criterion for scheme convergence.  
 
 
Chapter 4  
Results and Discussion  
 
4.1 Mesh Independence Study 

 
An important aspect of CFD code performance is its ability to provide solutions that are 

not dependent on the grid density. For successive grid refinement, results are expected to 

asymptotically converge upon final values.  To demonstrate mesh independence, several 

simulations were run for the same operating conditions and bristle properties. Results are 

considered to have convereged when the RMS residual of the pressure matrix is less than 1e-4. 

The details of the four meshes are provided in table 4.1. 
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Mesh Nodes 

 
Iterations 

   
Wall-Clock Time (s) 

100 498 0.099159 

400 2163 0.63985 

2500 13800 12.375 

4900 26721 36.669 

8100 43349 89.632 

10000 52309 123.78 

14400 74020 222.35 
 

Table 4.1.1 Meshes for Mesh Independence Study 

The set of operating parameters for testing mesh independence is given in table 4.2. These 

values were chosen because they are standard and within the range of typical seal testing. The 

fluid was air modeled as an ideal gas.  

Parameter Value 

Axial Permeability 2.40E-11 m2 

Radial Permeability 2.40E-08 m2 

Temperature 293.15 (K) 

Upstream Pressure 169.677 (Kpa) 

Downstream Pressure 100 (Kpa) 

 

Table 4.1.2 Mesh Study Parameters 

The results from this mesh study demonstrate that predicted mass flow and average fluid 

density approach final values as the mesh is increasingly refined. Figures 4.1(a) and 4.1(b) show 

the mass flow rate and average fluid density versus the number of elements in the mesh. In 

order to maintain generality these values were non-dimensionalized by dividing each set by its 

minimum value.  
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(a) Mass Flow Rate      (b) Average Fluid Density 

 

 

(c) Pressure  

Fig. 4.1 Mesh Study Parameters 

Figure 4.1(c) shows the pressure distribution along the rotor for each mesh. This demonstrates 

that a threshold exists for the utility of increasing the number of nodes used to calculate the 

solution.  
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4.2 Comparison with Experiments 

 
4.2.1 Mass Flow Rate 

The ability of this code to predict mass flow rate can be assessed by comparing it with 

experimental test data. Four test cases were taken from the experimental data presented by Bayley 

and Long (Bayley & Long, 1993) and simulated using the developed code. The operating 

parameters for these cases are listed in table 4.2.1 and the results are shown in Figure 4.2.1 

 

Inlet Pressure (Kpa) Outlet Pressure (KPa) Isothermal Temperature (c) 

107.742 100 20 

189.032 100 20 

269.032 100 20 

399.355 100 20 

 
Table 4.2.1 Mass Flow Test Parameters 

 

 
 

Fig. 4.2.1 Mass Flow Rate Comparison 

The results shown above demonstrate that the difference between the results from the code and 

the results from the experiments tend to fluctuate over the range of pressure ratios. This can be 

attributed to the fact that the code does not model the bristle dynamics such as flutter, bending, 

and blow down. The bristle pack is only considered to be a stationary porous medium. 

 

 

4.2.2 Radial Pressure Distribution 

Figures 4.2.2(a)-(c) show the non-dimensional pressure variation in the radial direction 

just upstream of the back plate. P* is the non-dimensional pressure and Y is the non-

dimensional radial coordinate. These parameters are determined in the exact same way as 

described in section 2.3.2.  
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(a) Pressure ratio between 1.08 and 1.29  (b) Pressure ratio between 1.86 and 2.2  

 

(c) Pressure ratio between 3.17 and 3.8 

Fig. 4.2.2 Non-dimensional radial pressure distribution vs. non-dimensional radial coordinate. Results 

shown for three different ranges of pressure ratio. 

The experimental results were collected by taking many samples of radial pressure distribution 

for a specific range of pressure ratios. The results from the code were generated by using the 

mean value of pressure ratio within the range. For example, the experimental results from the 

pressure ratio ranging between 1.08 and 1.29 is compared to results from the code where the 

pressure ratio was specified as 1.185. 

 The code clearly does not capture some of the fluctuation of pressure along the radial 

direction of the back plate. It can also be seen that the radial pressure distribution predicted by 

the code becomes closer to the measured results at higher pressure ratios. 

 

4.2.3 Axial Pressure Distribution 
In the same way, the ability of the code to model axial distribution of pressure can be 

assessed by comparison with experiment. The tests conducted by Bayley and Long included 

measurements of axial pressure distribution along the shaft. Multiple tests were run for each range 

of pressure ratio. 
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(a) Pressure ratio between 1.25 and 1.42  (b) Pressure ratio between 2.20 and 2.70 
 

 

(c) Pressure ratio between 3.8 and 4.0 

Fig. 4.2.3 Non-dimensional axial pressure distribution vs. non-dimensional axial coordinate. Results 

shown for three different ranges of pressure ratio. 

The different symbols used in Figures 4.2.3(a)-(c) denote the results from different trials, and the 

solid line shows the prediction from the code. Once again, the pressure ratio specified for the code 

was taken to be the mean value of pressure ratio from the range used in experiments. The non-

dimensional axial coordinate z corresponds to the location of evenly spaced pressure tapings along 

the shaft. Further details on this parameter can be found in the reference (Bayley & Long, 1993). 

 The results from this comparison show that the code tends to predict the pressure to be 

within the range of values determined from experiment. However, it also appears that the code 

begins to underestimate the pressure as pressure ratio between seal inlet and outlet is increased. 

More data at higher pressure ratio would be required to further test this trend. 

 

 



41 
 

4.3 Comparison with Commercial Software 

 
Further assessment of the performance of the code is possible with direct comparison 

to commercial-grade CFD software. A simple two-dimensional model was created to simulate 

flow through the bristle pack. This model used the same operating conditions, fluid properties 

and seal geometry as the developed code. The software used for comparison was ANSYS CFX.   

Three sample cases were run using an inlet pressure of 128 KPa and an outlet pressure 

of 100 KPa. The fluid was air modeled as an ideal gas, and the ratio of permeability in the y 

direction to permeability in the x direction was different for each sample case. For the first case 

the ratio  
𝜅𝑦

𝜅𝑥
 was equal to 1, for the second case the ratio was 100, and for the third case it was 

1000. A comparison of the results are shown below:  

 

   
                          

    (a) Permeability Ratio = 1                 (b) Permeability Ratio = 100  

 

 
 
     (c) Permeability Ratio = 1000  

 
Fig. 4.3.1 Axial pressure distribution comparison for three cases of permeability ratio. Note: 

data taken at radial height of 0.75 mm from rotor. 
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Figures 4.3.1 (a)-(c) show the comparisons of axial pressure distribution for three different 

cases of permeability ratio. The axial pressure distribution shown is for a constant radial section 

0.75mm above the rotor surface. It is noteworthy that the disagreement between ANSYS CFX 

and the developed code shows some variation with permeability ratio.  

 

    
(a) ANSYS CFX, Permeability Ratio=1         (b) Developed Code, Permeability Ratio=1 
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(a) ANSYS CFX, Permeability Ratio=10         (b) Developed Code, Permeability Ratio=10 

 

Fig. 4.3.2 Comparison of pressure distribution in the bristle pack. ANSYS CFX and the author’s code. 

Figures 4.3.2 shows comparisons between the predicted pressure distribution from ANSYS CFX 

and the pressure distribution predicted from the code described in this thesis. The pressure 

ratio used for these comparisons was chosen to be 1.29 and the axial permeability was    

2.4x10-11 m2. These values were selected because they are representative of standard 

parameters. It is again demonstrated that the results from this code are more dramatically 

affected by changes in the relative permeability ratio (
𝑘𝑦

𝑘𝑥
) than the results from ANSYS CFX. 
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Chapter 5  
Conclusions and Future Work 
  
This study used CFD to assess the variation of axial permeability within the bristle pack of a 

brush seal. It was determined that the permeability of a standard brush seal varied by a percent 

difference of 75% when pressure ratio was varied from 1.2 to 4. This result verified the 

expectation that axial permeability of a bristle pack can vary significantly over standard ranges 

of pressure ratio conditions. 

In order to provide a simple and efficient solution for studying the performance of brush 

seals a new code was developed. This code used a two-dimensional finite difference scheme to 

discretize the governing equations for incompressible and slightly compressible flow through a 

porous domain. The theoretical performance of this scheme was analyzed and the limits of its 

applications were assessed.  

 Finally, the code was used to develop a brush seal model based on a seal design for 

which there is experimental data available in the literature. Predictions for pressure distribution 

and mass flow rate through the bristle pack were compared to experimental results and results 

from a commercial CFD software. The finite difference code shows good agreement with 

experimental results. The comparison to commercial CFD shows strong agreement for cases 

where the radial permeability is between 1 and 1000 times the axial permeability. 

 The governing two-dimensional equations used in this model were derived from 

simplifications which limit the application to cases in which flow behavior is only slightly 

compressible and inertial effects are small. Therefore, it should be acknowledged that the code 

developed in this thesis is a useful tool for estimating seal performance under conditions where 

flow is driven by an axial pressure gradient and inertial effects do not dominate flow behavior. 

 With this model available, engineers and scientists studying the design and performance 

of turbomachinery have yet another tool at their disposal. Flow rate can be calculated, pressure 

loadings on bristles can be estimated, and results can be obtained in a timely manner.  
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