

Postman Collection Integration: Enhance Customer Experiences

with Postman

CS4991 Capstone Report, 2022

Kedar Kulkarni

 Department of Computer Science

The University of Virginia

School of Engineering and Applied Science

 Charlottesville, Virginia USA

ksk6rz@virginia.edu

ABSTRACT

A software engineering company that facilitates

integration between cloud-based enterprise

applications has incorporated Postman, a popular

Application Programming Interface (API)

platform, into the services it provides in order to

reduce customer development overhead and

attract a greater customer base. As an intern, I

utilized a Postman Collection, a JavaScript Object

Notation (JSON) format for describing API

endpoints, to drive a seamless user experience for

configuring endpoints Representational State

Transfer (REST) endpoints. I also devised a

technical design that detailed the requirements

and motivation from the stakeholder, the solution,

the outcome, and potential limitations. Our team

employed REST, APIs, and microservice

architecture, OAuth internet protocol, as well as

the Java programming language, JSON and

Docker. As a result, clients could model their

REST endpoint configuration from Postman

without having to manually create them in our

services, which offered them greater flexibility

and functionality. In the future, additional core

features from Postman should be integrated and

comprehensive testing completed to ensure the

viability of the current implementation.

1 INTRODUCTION

In an area of rapid technological change, the

world is moving to the cloud, a network of

servers connected to the internet that manages

data and resources. These servers, hosted around

the world in physical data centers, allow

corporations to manage their software and deploy

applications without the need to oversee their own

physical infrastructure [1].

Moreover, corporations employ software and

services from all fronts on the cloud. The

challenge is how to best integrate these services

seamlessly. For instance, a company may have a

workflow that sends an alarm to its customers

once an outage occurs, using two different

software offerings from differing companies that

must be integrated.

My project dealt with enhancing the creation of

these integrations and workflows by allowing the

end user to utilize previous REST endpoint

configurations in Postman and view them in our

services. Postman, being a very lightweight tool,

allows users to easily debug and test their

endpoints for correctness. Previously, the

customer would have to go into Postman in order

to diagnose their problem and recreate those same

configurations manually in our platform. This

wastes time and loses productivity for both the

client and our team. Therefore, I created a feature

that allows the customer to import all their

configurations from Postman into our services in

order to configure their API and endpoints

utilizing our features and thus reap the benefits of

using the cloud.

2 RELATED WORKS

My work required fundamental knowledge in

many technologies. Although there are many

ways to communicate over the internet, my

project narrowed its scope to only REST calls. As

described by Gupta (2022), REST is an

architectural style that lays the foundations on

how systems should talk to over the internet.

Namely, REST defines a resource, which can be

any piece of information. In addition, REST

defines stateless calls, which ensures that no

context is needed to be stored on the client or

server to successfully execute a call [2].

Security is another major facet of communication

over the internet. Hardt (1970) helped me to

understand the configurations for one of the most

common authorization protocols: OAuth 2.0. This

protocol involves utilizing tokens that are granted

and authorized in order to gain access to systems

[3].

Although REST does not specify any format to

define the data for requests, I mainly dealt with

JSON for writing request payloads through HTTP

and REST. JSON is a widely used and

lightweight format that is human and machine

readable, according to Mozilla (2022) [4].

Understanding the importance of Docker and

virtualization was vital to the success of my

project. I utilized Dockerfiles, images, and

containers in order to package the code. As

explained by IBM (2022), Docker allows for easy

distribution of code in multiple systems through

containerization, which ships an entire package

with all its dependencies and requirements [5].

3 PROCESS DESIGN

My internship timeline consisted of three phases:

research, requirements and design, and the

development phase. Lastly, I will highlight the

challenges that I faced in the project.

3.1 RESEARCH

Firstly, I had to understand the product of my

team and its functionality, which can be best

explained by a simple example. Say that I am a

company that uses a messaging tool. I want to

update an internal database of users and leverage

the messaging tool’s APIs in order to reflect that

information on their end. Therefore, this customer

can leverage our product in order to create a

logical flow from querying their database of

users, updating the information, then

automatically updating the information of each

user in the messaging tool, requiring very little

development.

Once I attained this foundational understanding of

the integration space, I had to research heavily on

Postman and the possible endpoint configurations

that could be made. Further, a Postman Collection

is the medium in which data can be transferred to

our services. A Postman Collection is a flat list of

HTTP requests (every request connects to some

endpoint) that is described in a JSON document.

Within each request, there will be a request URL.

Moreover, the user can describe path or query

parameters and various headers. The body of the

request can be in numerous formats like JSON,

raw, binary, and more. Lastly, the authorization

for the request is important and there are many

protocols that can be utilized. These requests

could also be bundled into folders, which creates

a hierarchal structure in a Postman Collection.

3.2 REQUIREMENTS AND DESIGN

After conducting my research, I devised the

design and requirements for what would be

possible in a 12-week internship. Since a Postman

Collection and the Postman requests therein were

highly customizable, I narrowed the scope of the

project to certain core aspects. I restricted the

design to handle requests that were non-

hierarchal, meaning they could not be within

unique folders. In addition, the design initially

supported two types of authentications: OAuth

2.0 and basic authentication. Lastly, I supported

only JSON request bodies. It was essential that a

very similar experience to configuring requests

within Postman was presented, so that any

customer could easily transition to our services. I

therefore devised a logical flow and front-end

user interface that resembled Postman.

3.3 DEVELOPMENT PHASE

During the development of this feature, I

incrementally coded every aspect up to the

finished product. I first ensured that I would be

able to successfully load a Postman Collection

into our services and deserialize it as an object so

that the differing components within our product

could understand it. I then worked on creating the

user interface that would resemble a Postman-

esque experience, displaying the flat list of

requests and the aforementioned configuration

options. This aspect allowed me to reuse a lot of

existing back-end logic for configuring REST

endpoints.

3.4 CHALLENGES

The most consequential challenge was

understanding all the aspects of Postman requests

and how they fit together in order to make a

successful endpoint configuration. This demanded

an understanding of a wide variety of

technologies. Furthermore, tweaking the user

interface in our services to be like Postman also

brought challenges, as I had to gauge the common

uses of Postman and create an importance on their

user interface design to mimic in my design.

4 RESULTS

This project resulted in a successful end-to-end

feature. The customer can create several requests

in Postman and export them as a Postman

Collection. Then, they can upload it into our

services and both view and update the

configurations for each request. Lastly, they can

connect to the endpoint by running their requests.

This feature saves a lot of time for customers that

use Postman who want to transition to our

services and reuse their endpoints. Customers

often like using Postman’s simplicity to debug

their requests when they face issues, allowing

them to use both products in a seamless and

integrated manner.

5 CONCLUSION

Integration in the cloud is a salient tool as

technology becomes a more integral part of

people’s lives. In this project, I leveraged the

power of Postman to make a better experience for

customers using our product. I added

functionality that does not limit the customer to

only one service, thus utilizing the strengths

across multiple platforms for an optimal and

efficient use case. As customers can create more

robust integrations through the help of my feature,

their development lifecycle becomes more

efficient.

6 FUTURE WORK

This feature can be expanded to include all

aspects of a Postman Collection. This includes

supporting hierarchal Postman requests, non-

JSON request and response bodies,

authentications other than OAuth 2.0, and more.

The ability to support these within our product

will further enhance the development experience

of integrations and allow the customer to

customize their workflows to very specific use

cases.

REFERENCES

[1] Cloudflare. What is the cloud? Retrieved

September 23, 2022 from

https://www.cloudflare.com/learning/cloud/what-

is-the-cloud/

[2] Gupta, L. 2022. What is rest. (April 2022).

Retrieved September 23, 2022 from

https://restfulapi.net/

[3] Hardt, D. 1970. The oauth 2.0 authorization

framework. (October 1970). Retrieved September

23, 2022 from https://www.rfc-

editor.org/rfc/rfc6749

[4] Mozilla. 2022. Working with JSON - learn

web development: MDN. (2022). Retrieved

September 23, 2022 from

https://developer.mozilla.org/en-

US/docs/Learn/JavaScript/Objects/JSON

[5] IBM. 2022. What is Docker? (June 2022).

Retrieved September 23, 2022 from

https://www.ibm.com/cloud/learn/docker

