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Abstract 

 Land use change in the form of deforestation and degradation is contributing to the 

release of greenhouse gases on the order of 1.2 ±0.7 Gt CO
2
e per year. Emissions of this 

magnitude suggest that the conversion and disturbance of forests play a significant role in forcing 

global climate change. Although there is growing recognition of this contribution among 

scientific and political communities, there is an expressed need for more efficient and accurate 

methods for assessing the role of forests in shifting climate patterns. Recent efforts to measure 

and monitor forests on large scales have used remotely sensed data from airborne and spaceborne 

sensors. This study leverages high spatial resolution remotely sensed data with in-situ field 

measurements to measure forest structure in the Dry Deciduous Lowland Forests of 

Mozambique. The approach to analysis was motivated by the importance of three-dimensional 

forest structure in driving forest dynamics. A novel tree crown analysis methodology was 

employed in order to calculate select structural properties of forests from remotely sensed data. 

The results of this analysis were not deemed accurate enough to be considered robust 

geophysical measurements. However, the study provides a step forward in the application of this 

methodology to the classification of terrestrial surfaces and to the detection of forest degradation 

due to anthropogenic lumber harvesting disturbance. 
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1 Introduction 

1.1 Forests as part of a global system 

 Forests play a unique and dynamic role in a complex global system. These unique 

ecosystems provide a vast array of essential functions as part of broader environmental, social, 

economic and political systems. Forest ecosystems are often viewed in terms of the tangible 

environmental goods and services they provide, which can subsequently be divided into timber 

or non-timber concerns. Timber products are explicitly associated with forests, and refer to 

lumber and other goods (such as paper) which trace their material roots back to trees. Services 

provided by the consumption of timber range from the localized heating provided by small 

campfires to the electricity provided by industrial-scale wood pellet-based power plants. Forest 

ecosystems also provide countless non-timber (and often less obvious) goods and services 

ranging from habitat preservation and shelter to nutrient and chemical cycling. While the benefits 

of forests are numerous, in certain forested areas, economic, social and political pressures are 

contributing to unsustainably extractive and destructive practices. Meanwhile, increasing 

recognition of the broad, essential roles of forests is contributing to concerns over the potential 

long-term negative consequences associated with these actions. 

 In light of growing concerns regarding the role of greenhouse gases in forcing global 

climate change, understanding the movement of carbon through forest ecosystems is becoming 

increasingly important. The link between forests and climate change forcing is compelling with 

as much as 12-20% of global anthropogenic carbon emissions resulting from deforestation and 

land use change (Le Quere, et al., 2009). Essentially, these emissions come from the conversion 

of carbon stocks as a sequestered form of vegetative biomass into greenhouse gases such as 
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carbon dioxide and methane. To better understand and manage the carbon balance of terrestrial 

ecosystems, more information is needed about how biomass is being released in the form of 

atmospheric greenhouse gases and how these emissions can be mitigated. Efforts at quantifying 

carbon emissions due to deforestation and land use change are still evolving and lacking in 

empirical rigor (Houghton, 2003; Corbera, Estrada, & Brown, 2010). This is illustrated by 

significantly larger percentage uncertainty associated with greenhouse gas emissions due to 

deforestation (1.2 ±0.7 Gt CO2e/a) as compared to those due to fossil fuel use (8.7 ±0.5 Gt 

CO2e/a). Additionally, an imbalance in the global carbon budget has led to speculations of a 1.6 

Gt C/a unidentified terrestrial sink (Forster, 2007). Ideally, the application of new and more 

expansive methods for measuring carbon cycling in terrestrial ecosystems will lead to a 

reduction in this uncertainty and inform attempts to reduce future emissions. 

 The emergence of new methodologies (including those utilizing remote sensing 

techniques) for measuring and monitoring forest ecosystems coincides with greater awareness of 

global climate change and other large-scale, human-induced ecological shifts. As such, there is a 

broad-based social, economic, political and scientific movement to leverage these methods to 

enhance understanding of the role of forests and learn how to manage them in a sustainable, 

mutually beneficial manner. The aim of this research is to contribute incrementally to this much 

larger movement by examining forest structure in a relatively understudied area in the Dry 

Deciduous Lowland Forests of Mozambique. Accordingly, this research intends to develop and 

employ a suitable methodology for measuring forest structural properties using a combination of 

in-situ data collection and high resolution remote sensing analysis. This will in turn allow for a 

comparative analysis of forest structure among sites that experience varying degrees of 

anthropogenic forest disturbance, including: preserved forests, community-use forests, 
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traditionally extractive commercial logging operations, and an innovative, sustainable use 

forestry. 

  

1.2 Tropical forests, deforestation and land use change 

 Land use change, particularly in the context of deforestation, refers to the intentional 

removal of forests. For thousands of years, land use change has been driven by the desire to 

increase arable or pastoral agricultural land and make room for settlement. Deforestation also 

comes from resource extraction, wherein trees or other vegetation are removed in a manner that 

alters the original forest ecosystem. Degradation refers to less visible forest disturbances in the 

form of selective logging or understory livestock grazing. The result of deforestation and 

degradation is the disruption of natural forest processes with broad ranging implications that can 

take decades or centuries to recover. Among the most significant effects of deforestation and 

degradation, is the release of greenhouse gases. As forests are cleared or disrupted, sequestered 

carbon within terrestrial biomass and soil is released through decomposition, fire, tilling and 

other anthropogenic activities (Geist & Lambin, 2002; Boucher, et al., 2011; DeFries, Rudel, 

Uriarte, & Hansen, 2010). As previously noted, up to one fifth of all anthropogenic greenhouse 

gas emissions are due to land conversion practices and deforestation. Additional climate forcing 

affects associated these practices include the alteration of albedos by changing the reflectance 

characteristics of landscapes and introducing black carbon to the atmosphere through burning 

(Hely, Caylor, Alleaume, Swap, & Shugart, 2003; Kuhlbusch, et al., 2012). 

 Although land-use changes are occurring on a global scale, about 60% of the carbon 

dioxide emissions from these activities occur in the form of deforestation within the tropics 

(Houghton, 2003; Hansen, Stehman, & Potapov, 2010; Achard, et al., 2002). Various 
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international private and governmental organizations have recognized the significance of this 

source of greenhouse gases and have attempted to incentivize the protection of tropical forests in 

order to reduce emissions. These efforts have progressed in tandem with the promotion of 

corollary benefits such as the preservation of biodiversity and watershed management. Programs 

such as the United Nations‟ Reducing Emissions from Deforestation and Forest Degradation 

(REDD+), the World Bank‟s Forest Carbon Partnership Facility (FCPF), and the Governors‟ 

Climate and Forests (GCF) Task Force have developed programs that provide financial 

incentives for the preservation of carbon stocks in tropical regions. While these programs take 

different approaches, a common concern is the difficulty associated with measuring and 

monitoring these carbon stocks (Governors' Climate and Forests Task Force, 2009; Food and 

Agriculture Organization of the United Nations, United Nations Development Program, United 

Nations Environment Programme, 2008; Gordon, Tam, Bosquet, & Aquino, 2011). 

 The reasons behind the aforementioned trends in deforestation and land use change are 

complex, and are subject to a variety of political, social, economic and environmental influences. 

For many, forested lands are viewed as a resource, whether as a potential field for pastoral 

grazing, a bank of harvestable timber or a preserve of biodiversity. Regardless of viewpoint, it is 

important to understand not only what role forests play in changing global systems, but also how 

they in turn respond to such changes. 

 

1.3 The role of remote sensing 

 In order to best reduce, mitigate, and manage changes that may affect human society and 

the Earth as a whole, efforts need to be taken to understand how humans are altering the 

environment and what effects they are causing. Remote sensing applications are well-suited to 
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contribute to research on global climate change in various ways, ranging from measuring 

atmospheric and sea surface temperatures to monitoring changes in polar ice mass. Remote 

sensing techniques allow researchers to analyze data on spatial and temporal scales that are often 

orders of magnitude greater than those which could be similarly analyzed from an in-situ 

perspective. The development of techniques that provide observations of the Earth on global and 

decadal scales coincides opportunely with the growing recognition of global environmental 

issues.  

 Remote sensing techniques can additionally be used to observe and monitor terrestrial 

processes that dynamically interact with the global climate. In particular, there exists a promising 

array of remote sensing methods that can be employed to measure and monitor forests. While all 

of these techniques rely on measuring the forests‟ interaction with and reflection of 

electromagnetic radiation, a wide variety of variables and otherwise helpful metrics can be 

gathered through remote sensing. Some methodologies provide simple Boolean classification of 

forested versus non-forested areas, while others allow for measurement of actual geophysical 

values such as the fraction of Absorbed Photosynthetically Active Radiation (fAPAR) or crown 

geometry. 

 Some of the most common variables utilized in the remote sensing of forests are the 

Normalized Difference Vegetation Index (NDVI), Leaf Area Index (LAI) and the Enhanced 

Vegetation Index (EVI) (Adams & Gillespie, 2006). These measures represent simple ratios of 

electromagnetic reflection at different wavelengths, and are easily calculated and obtained from a 

wide variety of satellite payloads. Perhaps because of their ready availability and ease of 

calculation, many forest properties have been assessed using these ratio-based calculations. 

Despite their ease of use, these measures are empirically limited by their high level of 



Heil  8 

uncertainty. Because these parameters respond to changes unrelated to vegetation, such as soil 

moisture, atmospheric attenuation, sun positioning and anisotropy, there is a high level of 

measurement error which limits the correlation of these values with actual forest parameters, 

such as structure or productivity. In fact, NDVI was devised in the 1970‟s according to the data 

available at the time, not because it represented the most robust methodology for measuring 

forest properties (Myeni, 1993). As such, it is important to recognize the limitations of remotely 

sensed data and to make an attempt to provide supplemental data when applicable.  

 There are a growing number of terrestrial remote sensing techniques that provide various 

tradeoffs in terms of accuracy, spatial resolution, spatial extent, and temporal span. These 

methods, in turn, provide insight into a variety of forest characteristics, including changes due to 

anthropogenic degradation, productivity, phenology, senescence, biodiversity, and forest 

structure. This study uses methods for measuring forest structure and related properties, which 

are expounded in section 1.5. 

  

1.4 Importance of forest structure 

 Remote sensing methods for monitoring and measuring forests are useful in quantifying 

the role of forests as part of broader societal issues, including climate change and biodiversity 

preservations. In order to frame forests within these contexts, several forest metrics have become 

increasingly important as part of global, transdisciplinary discussions. These include biomass 

and productivity measurements, which are crucial in understanding the flow and stores of carbon 

within forest ecosystems. 

 Forest biomass provides a measurement of sequestered carbon (in mass units) and 

includes organic matter in the form of above and below ground living vegetation (trees, shrubs, 
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saplings, vines, etc) as well as dead vegetation (leaf litter, downed logs, etc). Obtaining 

reasonable estimates for below ground biomass and dead vegetation is extremely difficult with 

current techniques, and is often time and cost prohibitive (Casper, Schenk, & Jackson, 2003; 

Hely, Caylor, Alleaume, Swap, & Shugart, 2003). As such, the majority of biomass estimates 

focus on above ground living biomass (AGB), which includes standing vegetation such as 

leaves, stems, branches, vines, trunk and bark. AGB is generally regarded as containing the 

majority of biomass within forests (though some particular trees have been shown to contain 

more below ground biomass than above ground) and is assumed to be a good proxy for total 

biomass (Brown, 1997). It should be noted that current measurements of biomass rarely take into 

account the significant quantities of carbon stored within the soil substrate. 

 Productivity measures assess the rates at which forests are fixing carbon (in mass units 

per area per time) through photosynthesis. Gross primary productivity (GPP) refers to the 

amount of total carbon captured through photosynthetic activities, while net primary productivity 

(NPP) is used more specifically to refer to the carbon that is converted into biomass (Field, 

Randerson, & Malmstrom, 1995). GPP and NPP are difficult to measure in-situ, but can be done 

using carbon flux towers, which measure the concentration of carbon within influent and effluent 

carbon eddies above the forest canopy (Burba & Anderson, 2010). 

 Given the role of carbon in the context of global climate change, it becomes clear why 

biomass and productivity are important variables. Unfortunately, the in-situ measurement of 

these variables is often prohibitively expensive and tedious. As such, efforts have been made to 

create algorithms that correlate remote sensing and empirical observations. While this seems like 

a promising approach, these methods do not allow for direct measurement of biomass or 

productivity and tend to rely on correlations and relationships among pixel reflectance values. 
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 In recognition of such limitations, the National Research Council Committee on Earth 

Science and Applications from Space calls for the incorporation of forest structure into remote 

sensing analyses of forests as a top priority (Committee on Earth Science and Applications from 

Space: A Community Assessment and Strategy for the Future, 2007). Many current 

methodologies are limited by their reliance on a two dimensional conceptualization of forests. In 

the manner of form influencing function, the three dimensional structure of a forest plays a 

significant role in determining forest processes. The converse, which states function also 

influences form, highlights the notion that forest structure will in turn adapt as forest processes 

change. Incorporating the influence of horizontal and vertical forest structure in scientific studies 

will thus allow for a better understanding of forest dynamics. As such, measurements based on 

the inclusion of forest structure have the potential to greatly reduce uncertainty in measurements 

of forest biomass, carbon cycling, productivity, energy balance and even habitat diversity 

(Shugart, Saatchi, & Hall, 2010; Frolking, et al., 2009). 

 Forest structure can be discerned from a number of measurements and observations, 

including biomass, canopy geometry, tree architecture, distribution of tree sizes and tree density, 

among others (Spies, 1998). Recent advancement in high resolution passive, radar and LiDAR 

remote sensing technologies provide the tools to directly measure several of these properties, 

though each method has inherent benefits and limitations tied to resolution and scale (Shugart, 

Saatchi, & Hall, 2010).  

 

1.5 Remote sensing of forest structure 

 Current methods for measuring forest structure generally fall into the following 

categories: field measurement methods, remote sensing methods, and geographic information 
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systems (GIS) methods (Lu, 2006). Each of these methods has their respective strengths and 

limitations. Field measurement-based methodologies of measuring structure are generally 

regarded as the most accurate, but require significant amounts of time, expertise, manpower and 

equipment - which all in turn translate to a prohibitive financial burden for monitoring anything 

other than small measurement plots. That being said, field-based measurement are often required 

in one form or another in order to calibrate, validate and/or verify observations using other 

techniques such the GIS-based or remote sensing-based approaches. GIS-based approaches have 

been used to some degree in the past because of the ease in obtaining the required inputs for this 

sort of inventory. GIS-based estimates rely on land cover classification maps that relate different 

types of land cover to different forest structure estimations. These estimates often do not require 

extensive expertise and monetary resources and allow underresourced, developing countries to 

self-report their land classification (Brown, 1997). While promoting national sovereignty, these 

methods are not standardized and are often riddled with uncertainty, inconsistency, and 

misclassification of land cover type (Grainger, 2008). This type of approach can often be seen as 

a derived method of the other two approaches, as the land cover classification maps that drive 

such an analysis are often created with data from field-based and remotely-sensed observations. 

 Remote sensing methods provide alternatives to some of the issues raised by field-based 

and GIS-based method, but there is currently no “best method” for remote sensing of forest 

structure. In fact, there are several types of approaches, each with their own respective strengths 

and weaknesses. They can be broken up into four broad categories including: fine spatial 

resolution (fine-scale) passive approaches, medium spatial resolution (medium-scale) passive 

approaches, coarse spatial resolution (coarse-scale) passive approaches, and active remote 



Heil  12 

sensing approaches. The nature of these different methods is such that there are tradeoffs in 

temporal and spatial resolution, availability and cost at each scale (Lu, 2006). 

 

1.5.1 Fine-scale passive remote sensing 

 Fine spatial resolution (typically less than one meter) approaches to measuring forest 

structure using passive remote sensing sensors represent the method closest in scale to actual in-

situ measurement, and thus tend to reflect the most accurate methods of any passive approach. 

Unfortunately, it also has similar limitations in terms of spatial extent and cost, as high resolution 

images often come from proprietary satellites (IKONOS, QuickBird) or aerial mounted cameras. 

Thus these images are not free of charge and it is often prohibitively expensive to acquire data 

for areas on the regional and national scale or at high temporal resolution. Another caveat 

includes the necessity to handle large quantities of data when analyzing these images. The 

particular strengths and limitations of fine-scale passive approaches tend to place these methods 

as intermediate analyses that are calibrated using field measurements, and are often extrapolated 

to larger scales in conjunction with medium or coarse-scale approaches (Gonzalez, et al., 2010; 

Hurtt, et al., 2003). 

 Many of the benefits of using fine-scale passive remotes sensing techniques are due to the 

fact that the scale of the structural characteristic of interest is often larger than the resolution of 

the image. For this reason, the trees in an image can be individually delineated and measured. 

This is the basic approach that will be utilized in the proposed research. Typically, tree crowns 

are demarcated manually or automatically using algorithms that scan visible panchromatic or 

false color images (Broadbent, Asner, Pena-Claros, Palace, & Soriano, 2008). Palace et al. 

(2008) reveal that automated methods of tree crown analysis tend to be at least as accurate, if not 
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more so as compared to manual methods. An example of the automated tree crown analysis 

output from their research is presented in figure 1. As is illustrated in this figure, these sorts of 

algorithms can deduce tree distribution and canopy diameter from a high resolution image. 

Crown closure and stand area are other variables that can be measured in this manner, as well as 

tree height, which is sometimes measured using the length of visible shadows.  

 

 

Figure 1: Graphic output from Palace et al.‟s (2008) automated tree crown analysis algorithm. 

White circles represent the automatically identified tree crowns and their respective 

circumferences in tropical Amazonian rainforest. 

 

1.5.2 Medium-scale passive remote sensing 

 Medium-scale passive remote sensing images refer to those with a spatial resolution on 

the order of about twenty to one hundred meters per pixel captured by sensors aboard such 

satellites as France‟s Systeme Pour l‟Observation de la Terra (SPOT) or Landsat. At this 
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resolution, forest structure is exhibited at the subpixel scale which prohibits direct geometric 

observations of forest structure. As such, various classifying algorithms, statistical methods, 

and/or correlations with other measurable variables are leveraged as proxies for forest structure. 

Since structure must be deduced using non-direct methods, medium-scale passive remote sensing 

techniques tend to be less accurate than fine-scale methods. That being said, medium-scale 

images tend to be much more accessible, if not free, and allow for consistent temporal 

observations over time. Unlike fine-scale approaches, this accessibility allows medium-scale 

images to be acquired and analyzed at regional to global extents. 

  

1.5.3 Coarse-scale passive remote sensing 

 Coarse spatial resolution based approaches have similar limitations and benefits 

compared with that of the medium-scale variety, and often employ similar techniques and 

correlations. While coarser scales necessarily introduce more uncertainty in their indirect 

measurements of forest structure, they are also increasingly more available both financially 

(typically free and downloadable online) and temporally. The various sensors that fall within this 

category include the Moderate-resolution Imaging Spectroradiometer (MODIS) and Multi-angle 

Imaging Spectroradiometer (MISR) with approximately 300 meter spatial resolution, the Wide 

Field-of-view Sensor (WiFS) with 180 meter resolution, and the Advanced Very High 

Resolution Radiometer (AVHRR) with 1.1 kilometer resolution. The eight day (four day in some 

locations) temporal resolution of MODIS and the thirty plus years of data collection from 

AVHRR lend coarse-scale approaches to be well suited for observing changes in forests over 

time (Lu, 2006). 
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 As discussed above, the nature of medium and coarse-scale remote sensing data is such 

that forest structure is directly identifiable only at the subpixel level. Thus, in order to deduce 

any reasonable measure of forest structure from these images, one must employ one or more of 

the following methodologies: correlation with remote sensing indices such as NDVI, LAI or 

EVI, classifying algorithms and statistical methods, vegetation and biomass models, and/or 

scaling with finer-resolution data. It should be noted that because these methods do not directly 

measure forest structure, they all must be calibrated with either in-situ, fine-scale passive, or 

actively remote sensed data (Shugart, Saatchi, & Hall, 2010). 

 

1.5.4 Active remote sensing 

 Whereas passive remote sensing approaches simply sense radiation that is being emitted 

from a foreign body (either from the sun or the Earth), active remote sensing approaches 

leverage the ability to sense radiation emitted by a controlled source, such as a laser or radio 

wave sounder. The manner in which active remote sensing payloads sense the Earth is such that 

the actual structure of forests can be measured. When emitted radiation is directed towards the 

Earth, it is reflected back to the sensor in different ways and at different points in time, 

depending on the distance from the sensor and type of medium that is reflecting the signal (a 

simplified example is illustrated in figure 2). This variation in reflectance can be used to tease 

out as important structural forest details such as canopy height and density (Lim, Treitz, Wulder, 

St-Onge, & Flood, 2003).  
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Figure 2: Illustration of how LiDAR response curves would hypothetically behave when 

encountering above ground biomass, such as a standing tree (Lim, Treitz, Wulder, St-Onge, & 

Flood, 2003). 

 

 Currently, there are two main types of active remote sensing approaches: that which is 

characterized as using Radio Detection and Ranging (Radar) and that which uses Light Detection 

and Ranging (LiDAR). These two approaches employ similar methodologies, and often have 

similar outputs. Various Radar sensors include the Spaceborne Imaging Radar (SIR-C) and 

numerous different Synthetic Aperture Radars (SARs) aboard various satellites, as well as 

airborne payloads such as AIRSAR and E-SAR. SIR-C and SAR data provide reliable data over 

decent temporal scales, but the resolution of these satellite-borne sensors are often similar in 

resolution to medium-scale passive sensors (at approximately thirty meters). At this resolution it 

is difficult to directly detect forest structure (Lu, 2006). By weighting the various reflectances 

and polarities measured in different bands, however, a backscattering coefficient can be 

calculated, which in turn can be used to deduce forest structure using an empirical relationship 



Heil  17 

similar to that in figure 3 (Toan, et al., 2004). As with medium to coarse-scale passive remote 

sensing approaches, a large degree of uncertainty and confounding effects are introduced 

whenever spatial resolution is larger in scale than the property that is being measured. Airborne 

Radar sensors do provide the finer-scale resolutions necessary for directly measuring forest 

characteristics such as canopy height but tend to be too expensive and time-consuming for large 

scale studies. 

 

 

Figure 3: Graphical relationship between backscattering coefficients calculated from SAR 

instruments and above ground biomass (Toan, et al., 2004). 

 

 Similarly to Radar, LiDAR data can come both from spaceborne sensors such as 

CALIPSO, GLAS, ATLAS as well as airborne instruments such as the Scanning LiDAR Imager 

of Canopies by Echo Recovery (SLICER) sensor, the Carnegie Airborne Observatory and the 

Laser Vegetation Imaging Sensor (LVIS). Spaceborne LiDAR data is rarely used for estimations 

of forest structure, likely because of its coarse resolution. That being said, there is a plethora of 

researchers currently employing airborne LiDAR data. Just as with airborne passive or Radar 
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sensors, though, this sort of technique is often cost prohibitive for large scale measurement and 

monitoring. The methods for measuring forest structure from this data seem to be the most 

accurate of any remote sensing method, likely because of the combination of high spatial 

resolution and the ability to monitor vertical structure. An example of an aerially-mounted 

LiDAR sensor‟s data in figure 4 exhibits the fine-scale variation in canopy height and density of 

Amazonian tropical forest (Lefsky, et al., 2002). 

 

 

Figure 4: Measurements of forest canopy structure as measured from the SLICER sensor, which 

exhibit variations in canopy density and canopy height for different types of forests (Lefsky, et 

al., 2002). 

 

1.6 Dry tropical forests 

 Dry tropical forests (as compared to wet and moist tropical forests) comprise the biggest 

proportion of tropical forests and represent an estimated 22% of the Earth‟s total forests. Given 

its relative abundance compared with wet tropical forests, the dry tropical forest biome receives 

much less public, media, and scientific attention (Murphy & Lugo, 1986; Miles, et al., 2006; 
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U.N.). This type of forest appears to be understudied due to both methodological and economic 

factors. From a remote sensing point of view, this likely has to do with the complexity inherent 

in the assessment of dry tropical forests. This includes difficulties measuring multi-story 

canopies and surface reflectance issues. In addition, existing algorithms are typically designed 

either for less complex temperate, or more complex moist biomes that saturate when applied to 

dry tropical rainforests (Fensholt, Rasmussen, Nielsen, & Mbow, 2009). Many dry tropical 

forests fall within the boundaries of relatively under-resourced and developing countries, 

complicating data collection. In developing countries, scientific endeavors compete for limited 

resources and are often relegated on the list of priorities, while a lack of developed infrastructure 

makes in-situ studies more difficult and costly. This study offers the opportunity to provide data 

on an under-researched region of dry tropical forests known as the Dry Deciduous Lowland 

Forests of Mozambique. 

 

1.7 Forest use in the Sofala Province of Mozambique 

 Section 1.1 outlined the role of forests both as a part of a dynamic global environment 

and as an agent in anthropogenic social, economic and political systems. The latter role is 

necessarily true in Mozambique, where forests contribute to many of the good and services 

utilized by its wider population. Forests permeate the daily lives of many Mozambicans, 

providing energy (80% of the country‟s energy demands are met through wood and charcoal 

combustion), a habitat for food (80% of the country‟s populated area relies on bushmeat from 

forests as a source of protein), and even a source of medicine (10% of Mozambique‟s flora are 

used in traditional medicine practices) (ARD, Inc., 2002). Additionally, forests are seen as 

economic drivers by providing natural resources such as lumber and pulp that can be sold in 
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global markets. The use of forests for subsistence needs such as energy, food and medicine 

promotes interaction with, and connection to local forests. However, the utilization of forests 

solely for lumber products often introduces a disconnect between these forests and human 

consumers. This disconnect can in turn lead to forest management practices that do not ensure 

the long-term viability of forest ecosystems (Friedmann & McNair, 2008). In fact, 90% of 

harvested Mozambican lumber is absorbed by the Asian market, adding an even larger gap 

between consumers and forests (Umuntu Media, 2012). Consequently, many (and increasingly 

more) Mozambican forestry concessions have multinational owners based in China or Hong 

Kong (Environmental Investigation Agency, 2013). Although the national or cultural background 

of a forestry concession‟s management does not necessarily determine its harvesting practices, 

foreign owners may focus more on wood as a product and not the forest as a whole. Without a 

culture-based sensitivity to the forest as a life-sustaining ecosystem, foreign developers are likely 

to neglect the impact of harvesting on broader ecological processes, in addition to the nutritional 

and medicinal functions of the forest. With a one-dimensional view of the forest, developers will 

tend to employ more environmentally and socially extractive methods of harvesting (Fortin, 

2013). In the Sofala province where this study is focused, 72% of the companies involved in 

harvesting timber have not engaged in any forms of reforestation, shedding light on the 

extractive and unsustainable approaches that dominate lumber harvesting operations in this area 

(Savcor Indufor Oy, 2005).  
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2 Project Description 

2.1 Research Hypotheses  

1. (a) Remote sensing analysis utilizing crown delineation software can effectively identify 

and measure tree crowns in a manner consistent with in-situ data. (b) This methodology 

can be consistently employed over the range of forest types (from open woodlands to 

closed canopy) found within the Dry Deciduous Lowland Forests of Mozambique. 

2. Using this analysis, there will be detectable and significant structural dissimilarities in 

forests that undergo different disturbance regimes. 

3. This methodology will be able to link changes in forest structure to various forest 

management practices.  

 

2.2 Study Area 

 The study area is located within the Dry Deciduous Lowland Forest region, 

approximately 30 kilometers south of the Zambezi River within the Cheringoma District, in the 

Sofala Province of Mozambique (Campbell, 1996; Wild & Barbosa, 1967). Figure 5 displays the 

study area overlaid on a land cover map and illustrates the three main land classifications 

present: dense (or closed canopy) forests, open woodlands and prairies. This particular site was 

chosen for a number of reasons, in part because of the relatively understudied and remote nature 

of this area. Additionally, research within this study area leverages and strengthens preexisting, 

longitudinal relationships among researchers at the University of Virginia, the University of 

Southern Illinois and the University of Eduardo Mondlane in Maputo, Mozambique as well as 

the operators of the timber concession, TCT Catapu, in Sofala. As one of only two Forest 

Stewardship Council (FSC) certified operations in Mozambique, and only a handful within the 
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entire African continent, TCT Catapu offers a uniquely managed, periodically-disturbed forest 

unlike anywhere else on the continent (FSC Forest Stewardship Council). A site visit in 2009 

confirmed the novel and sustainable practices being employed by this operation, including the 

designation of 16 hectare unmanaged and unharvested “set aside areas” per 1000 hectares and a 

32 year, selective logging rotation among blocks within the property. This type of rotation 

harvesting creates a spectrum of blocks that exhibit varying and predictable amounts of time 

since the most recent harvesting disturbances. Lastly, the owners of this forestry have been 

known to welcome scientific teams on their property and can provide the local assistance 

necessary for conducting field research in such a remote location. For this reason, all in-situ data 

collection was conducted in cooperation with TCT Catapu within their concession limits. 
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Figure 5: Land cover map of the Sofala province adapted from Macuacua (2012) with the study 

area outlined in red. The legend lists the various “classes dominantes” (ruling classes) of this 

area, three of which fall within the study area: “florestas densas” (dense forests), “florestas 

abertas” (open woodlands) and “pradarias” (prairies). 

 

 In addition to the forest concession operated by TCT Catapu, the study area includes the 

northern adjacent concession managed the Mozambican-Chinese partnership, EDM Limitada. 

Figure 6 illustrates the study area in more detail and identifies the TCT Catapu (yellow) and 
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EDM (orange) concessions. While there was no direct communication with EDM‟s management, 

it is included as part of the study area because of its shared border with, but distinctly different 

harvesting methods as compared to TCT Catapu. Whereas TCT Catapu employs the lower 

impact, FSC certified rotational management strategy described above, EDM‟s operations bear 

no such certification. In fact, the entire concession was intensely harvested from 2009 to 2012 

and has since been abandoned. During this time period, several main species (including Millettia 

stuhlmannii, Cordyla africana, and Combretum imberbe) were felled so aggressively, that this 

area is no longer a viable option for subsequent forestry. It has been roughly estimated that 8,000 

to 10,000 m
3
 of lumber was extracted from the 14,000 hectare concession during those four 

years. While this area has been noticeably thinned on the ground, it is difficult to distinguish via 

visual inspection of satellite images. This is a function of the diversity of the region‟s forests and 

the many noncommercial tree species that remain standing after harvesting. An additional 

difference in the harvesting techniques between these two concessions is the degree to which 

each felled tree is utilized. EDM tends to focus on lumber from minimally flawed logs, often 

leaving the majority of the felled tree on the forest floor, while securing the prime section of the 

bole. TCT Catapu, on the other hand, has developed a creative operation that seeks to maximize 

the use of available lumber through their on-site lumber mill, complemented by wood turning 

and carving stations. By finding a use for smaller dimensional lumber and creatively utilizing 

odd-shaped pieces from stumps and branchwood, TCT Catapu is able to realize far more lumber 

volume per felled tree than more traditional harvesting operations. It should be noted that this 

information was not gathered empirically, and was instead acquired through personal 

communication with the TCT Catapu management and lumber suppliers in the Provincial capital 

of Beira.  
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Figure 6: Map of the study area centered on coordinates -18.05, 35.18 that represents the 

amalgamation of the concessions, TCT Catapu in yellow and EDM Limitada in orange. The 

more specific areas of interest are additionally outlined. 

 

 Within the main site described above, two areas of interest (AOIs) were chosen based on 

forest disturbance regime, field data locations and remote sensing data availability. For each of 

these areas of interest, one WorldView2 and one GeoEye1 image (each with panchromatic and 

multispectral bands) were obtained as outlined in section 3.1. The first area of interest (AOI1 – 
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purple outline in figure 6) was chosen because it includes contiguous plots where field data was 

collected, which allows for proper calibration of the crown delineation software with in-situ 

measurements. Within AOI1 there is range of forest types from open woodlands to closed 

canopy forests, allowing for comparison of forest properties across these types of forests. 

Additionally, AOI1 falls within the boundaries of the TCT Catapu concession, where harvesting 

statistics are known, allowing for the comparison of different harvesting blocks that have 

undergone varied and known disturbances.  

 The second area of interest (AOI2 – blue outline in figure 6) falls within both the TCT 

Catapu and EDM concessions. This allows for a comparison of harvesting approaches in highly 

similar, adjacent closed canopy forests. This AOI contains mostly closed canopy forests, but 

includes a small section of woodlands along its central eastern edge. Figure 7 outlines the 

locations of forest types within each area of interest. 
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Figure 7: Map of each AOI and its classified forest types overlaid on WorldView2 true color 

imagery. 

 

3 Methods 

 To test the aforementioned hypotheses, a number of techniques were employed to 

measure, gather and analyze an appropriate dataset. A general work flow is presented in the 

following paragraphs, and illustrated visually in figure 8. 
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Figure 8: Work flow diagram for this study. 
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3.1 Field data acquisition  

 After the specific sites were selected, the data collection phase began. The two main 

sources of data were categorized as either in-situ field data or remote sensing data. Each of these 

datasets required a distinct methodology for collection as outlined in the following paragraphs 

 In-situ data collection is an essential step in this study for two main reasons. First, in-situ 

data was essential in calibrating the subsequent analytical tools. Secondly, it provided the basis 

for developing a series of allometric relationships. In order to ensure that the requisite data was 

properly collected, a hybrid methodology, adapting those described by Asner et al. (2002) and 

Broadbent et al. (2008) was employed. These studies articulate field sampling methods for 

collecting the measurements necessary for the calibration of a remote sensing tools similar to 

those used in this study. A list of in-situ measurements and observations was developed which 

balanced the temporal and financial costs associated with collecting field data and the need for a 

robust dataset. Table 1 lists these properties and their associated measurement techniques. 

 

Table 1: In-situ field measurements and techniques. 

Tree Property Measurement Technique 

Species Field guides - local knowledge 

Diameter at breast height (DBH) DBH tape 

Crown width Handheld laser range finder 

Crown depth Laser range finder + clinometer 

Tree height Laser range finder + clinometer 

Basal area of nearby trees Basal area prism 

Basal area of taller nearby trees Basal area prism 

  

 Collecting tree species enables quantification of diversity and allows for the application 

of previously developed species-specific allometric relationships in future studies utilizing this 

dataset. Each species was identified by name according to the local dialect, Sena. The Sena 
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names were then converted to their scientific names according to a table presented by Palgrave et 

al. (2007). Diameter at breast height (DBH) was collected using a DBH-specific measuring tape. 

This is an important structural property of the tree and is useful in estimating other unmeasured 

tree properties via preexisting allometric equations, such as above ground biomass.  

 Tree height, crown width and crown depth are less commonly measured structural 

properties, but nonetheless play an important role in describing the geometry and other 

characteristics of the individual tree. In particular, in-situ crown widths were instrumental in 

developing a baseline dataset for subsequent calibration of the analytical remote sensing tools. 

These widths were measured along the cardinal N-S and E-W dimension using a laser range 

finder positioned perpendicularly beneath the outer boundary of the crown and measuring the 

distance to a surface situated perpendicularly beneath the opposite crown boundary. Tree height 

and crown depth were measured by standing in a position where the base of the crown, the base 

of the trunk, and the vertical extent of the tree could viewed simultaneously at approximately ten 

meters from the tree trunk. A laser range finder was then used to measure the perpendicular 

distance of the observer from the tree (x) as illustrated in figure 9. A clinometer was used to 

measure the angles to the base of the trunk (< trunk base), the base of the crown (< crown base), 

and the top of the crown (< tree top). Using simple trigonometry, these angles and distances were 

converted to tree height and crown depth. The basal area of trees surrounding each of the 

measured trees was collected using a basal area prism, while noting which of the surrounding 

trees were taller than the measured tree. These measurements were crucial in estimating the 

competitive environment of the tree, potential crown exposure and tree canopy class (such as 

dominant, codominant, intermediate, or overtopped) (Nylan, 2002). 
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Figure 9: Illustration of the method used to measure tree height and crown depth using a laser 

range finder and clinometer. 

 

 After arriving in country, specific plots were chosen in collaboration with the TCT 

Catapu forestry management, based on forest type and disturbance characteristics. At least two 

different plots were chosen within closed canopy and open woodland type forests, with at least 

one plot for each forest type exhibiting low anthropogenic disturbance and having no recent 

history (within about forty years) of logging. For practical reasons, the plot selections were all 

within walking distance (within about an hour) from the main camp. Four randomized line 

transects of 500 meters were identified within each plot. A stratified sampling technique was 

employed based on the anticipated DBH distribution. This sampling approach attempted to avoid 

an overrepresentation of smaller trees and underrepresentation of larger trees by assigning a 

sampling percentage to each DBH class (Keller, Palace, & Hurtt, 2001). In this manner, the 
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transect was traversed and a subplot was designated at 25 meter intervals. At each subplot, the 

four nearest trees exhibiting the minimum DBH requirement of 10 centimeters was selected, 

their DBH measured and their species noted. Each tree was then assigned a randomly selected 

one digit number, which determined whether that tree‟s DBH class necessitated additional 

measurements (as presented in table 1). The stratification scheme used in the field is presented in 

table 2. 

 

Table 2: Stratification scheme for determining which trees receive a “full” measurement. If the 

random number assigned to that tree falls within the range presented in column three, then a 

“full” measurement was undertaken, including all measurements presented in table 1. Otherwise, 

only the DBH and species were noted. 

DBH class Sampling percent Random #’s for full measurement 

10 – 20 cm 20% 0 – 1 

20 – 30 cm 40% 0 – 3 

30 – 40 cm 80% 0 – 7 

40 cm + 100% 0 – 9 

  

 By following the procedure outlined above a total for 320 sampling locations were 

identified along 16 transects (displayed in figure 12) and 1280 trees were selected for DBH 

measurement. Of those 1280 trees, only 960 have their associated species noted. This was due to 

the lack of field guides available for a number of days during an unforeseen extended national 

holiday. The DBH bins for all 1280 trees are presented in figure 10, which illustrates an expected 

decrease in tree frequencies as DBH increases. The numbers of trees in each bin which were 

fully measured are presented in figure 11, which shows the relatively even distribution of 

measured trees in each DBH class. In all, a total of 469 trees were fully measured as described in 
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table 1, which represents a 50% larger dataset than the suggested sample population of 300 trees 

required for calibration as presented by Asner et al. (2002). 

 

 

Figure 10: The number of trees which fell into each DBH bin class, where DBH was measured 

in centimeters. 

 

 

Figure 11: The number of trees that were fully measured as described in table 1 within each 

DBH class, where DBH was measure in centimeters. 

 

 Additional data, in the form of historical records was also collected with the help of the 

TCT Catapu management. The locations and statistics associated with each harvesting block 

were shared in order to provide insight into the anthropogenic disturbances experienced by 

different areas within the concession. Figure 12 presents the locations of the various blocks that 

fall within AOIs 1 and 2, while table 3 summarizes the available harvesting data for each of these 

657 
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blocks. Additionally, the TCT Catapu management provided anecdotal information related to the 

state of lumber harvesting in the Sofala province of Mozambique. This included generalized 

information about areas that experience high or low harvesting disturbances and methods of 

harvesting present in the region. 

 

 

Figure 12: Representation of the various TCT Catapu harvesting blocks within each area of 

interest, as well as the area managed by EDM Limitada and the field transects traversed for this 

study. 
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Table 3: Summarized harvesting data for the blocks that fall within AOIs 1 and 2, including: 

total area, the main years of harvesting (several blocks experience additional, yet significantly 

smaller periods of harvesting), and the total volume of lumber harvested (for the three main 

species – Panga Panga, Chanfuta, and Mutondo). 

Block Total area (ha) Harvest year Volume harvested (m
3
) 

1 385 1996 1,318  

2 339 1997 – „98 783  

5 1903 2003 3,170  

6 1540 2001 1,465  

17 1960 2006 – „07 2,301  

18 5352 n/a 0 

25 1093 2004 – „05 2,543  

26 1585 2005 – „06 2,536  

0 1039 n/a 0 

 

3.2 Remote sensing data acquisition 

 An appropriate remote sensing dataset (or “image”) is a necessary complement to the in-

situ data collected on the ground. As discussed previously, there are several categories of remote 

sensing data. In order to choose the most appropriate dataset for the purposes of this research, 

several factors were taken into account, including spectral range, spatial resolution, availability 

and cost. The most limiting factor was spatial resolution. Since this study is focused on structural 

properties at the individual tree level, remote sensing datasets with spatial resolutions larger than 

an average tree‟s canopy are immediately excluded. The next factor to consider is the spectral 

range associated with each remote sensing dataset. This is a less exclusive data requirement, as 

the analysis software is compatible with a range of spectral inputs, including panchromatic and 

hyperspectral as well as those derived from light detection and ranging (LIDAR) techniques. 

Cost and availability are obvious limitations associated with any type of data collection and 

ended up being a significant driver in data acquisition process. 
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 Active LIDAR-based datasets are promising for this type of research because they 

represent measurements taken in three-dimensional space. This dataset allows for the analysis of 

both horizontal and vertical tree characteristics, whereas passive remote sensing techniques are 

confined to the two-dimensional, horizontal plane. Airborne-based LIDAR datasets provide the 

benefits of this three dimensional dataset with fine scale spatial resolution, but at costs and 

within a restricted sampling area that were prohibitive for this study. Satellite-based LIDAR 

datasets such as those collected aboard the Geoscience Laser Altimeter System (GLAS) or the 

Ice, Cloud and land Elevation Satellite (ICESat) exhibit resolutions that are too coarse, and 

would require calibration with alternative, higher resolution sources (Choi, et al., 2013; 

Defibaugh y Chavez & Tullis, 2012). 

 LIDAR-based datasets are not necessary, as this study is well suited to use two 

dimensional image analysis instead. These passive remotely sensed datasets have been proven to 

be adequate inputs in previous tree structure analyses as long as they exhibit sufficient spatial 

resolution (Broadbent, Asner, Pena-Claros, Palace, & Soriano, 2008; Asner et al., 2002; Palace, 

Keller, Asner, Hagen, & Braswell, 2008; Chambers, et al., 2007; Culvenor, 2002). As such, 

several passive, fine-scale remote sensing datasets were explored. These are presented in table 4 

with their respective spectral packages and spatial resolutions. 

 

Table 4: Potential sources of high resolution passive remote sensing data, their respective 

spectral packages and spatial resolution for each band at nadir. 

Satellite payload Spectral package (spatial resolution) 

WorldView2 Panchromatic (0.46m) + 8 multispectral bands (1.85m) 

WorldView1 Panchromatic only (0.5m) 

QuickBird Panchromatic (.65m) + 4 multispectral bands (2.62m) 

GeoEye1 Panchromatic (.41m) + 4 multispectral bands (1.65m) 

Ikonos Panchromatic (.82m) + 4 multispectral bands (3.2m) 
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 The archives of the five satellite datasets listed in table 4 were explored for this study‟s 

areas of interest with the help of a third party proprietor. Unfortunately, these datasets are limited 

by the remote location of these areas of interest, and by relatively brief archive histories (many 

of these satellites have only been deployed in the last decade). The entirety of the data available 

for purchase for this study‟s areas of interest for each of the five satellite payloads is presented in 

table 5. As can be seen, only thirteen images were available in total, even after relaxing image 

restrictions such as maximum cloud cover and maximum angle off of nadir. Of these images, 

only five were “clear” (less than 10% cloud cover) and only seven include both areas of interest. 

Three images (highlighted in green in table 5) were captured in clear conditions and are of 

sufficient geographical extent to include both areas of interest. Of these, only the WorldView2 

and GeoEye1 images provide multispectral datasets (crucial in masking clouds, roads and ground 

during analysis). Thus, the two images that meet the quality standards necessary for this study 

were selected. One WorldView2 image taken on December 16, 2012 and one GeoEye1 image 

taken on June 8, 2010, were identified and purchased for subsequent analysis. Fortunately, the 

WorldView2 image was taken within six months of field data collection (during June, 2012) and 

exhibits the relatively limited degree of change ideal for proper calibration. It should be noted 

that the measurements taken in the field between the colder, dry season (June) and the hotter, wet 

season (December) are relatively stable since there is minimal change in forest structure during 

this period. The GeoEye1 image was taken over two years prior to the WorldView2 image and 

thus allows for a temporal comparison. 
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Table 5: Available datasets for this study‟s areas of interest (AOI1 and AOI2) and their 

associated payload and capture date. Red highlighting denotes less than ideal conditions, 

including high cloud percentage, noticeable attenuation (“hazy”) and limited spatial expanse. 

Satellite payload Date Extent available Notes 

WorldView2 1/28/2012 AOI2 Cloudy 

 4/16/2012 AOI2 Cloudy 

 12/16/2012 AOI1, AOI2 Clear 

 3/27/2013 AOI1, AOI2 Cloudy 

WorldView1 2/22/2008 AOI2 Cloudy 

 3/19/2008 AOI2 Cloudy 

 1/6/2011 AOI1, AOI2 Cloudy 

 1/14/2011 AOI2 Cloudy 

 5/30/2011 AOI2 Clear 

 6/16/2011 AOI1, AOI2 Clear 

QuickBird n/a n/a n/a 

GeoEye1 6/8/2010 AOI1, AOI2 Clear 

 9/15/2010 AOI2 Clear 

Ikonos 8/28/2012 AOI1, AOI2 Hazy 

 

3.3 Field data processing 

 Upon selection of the requisite datasets, a series of preprocessing steps are necessary 

before analysis begins in earnest. First, the species associated with each sample was translated 

from Sena to its scientific name via a table developed by Palgrave et al. (2007). The in-situ data 

was then aggregated and transcribed into Microsoft Excel. After the data was inputted and 

checked for consistency, derivative measurements were calculated and relationships among tree 

geometry were explored. Figures 13 and 14 display the relationship between DBH and average 

crown width for the full population of measured trees on linear and logarithmic scales, 

respectively. Figure 15 displays the disaggregated contributions from the woodland and closed 

canopy samples for the same data. Figure 16 shows a similar disaggregation, but based instead 

on the surrounding basal area collected for each tree sample. In this case, dominant trees are 

defined as those that are taller than 90% of the surrounding trees, codominant trees as those taller 
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than between 50% and 90% and overtopped trees as those that are shorter than at least half of the 

surrounding trees. These graphs illustrate the relationship between four sets of variables, 

including: DBH vs. tree height, DBH vs. crown depth, tree height vs. average crown width, and 

tree height vs. crown depth. A sampling of correlations among selected in-situ data is presented 

in Appendix A. This is not an exhaustive representation of the various allometric or other 

relationships that could be determined, but rather a subset of relevant measures. 

 

 

Figure 13: Relationship between DBH and average crown width according to linear axes, and its 

associated linear and power-based regressions. 
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Figure 14: Relationship between the natural logarithms of DBH and average crown widths and 

its associated power-based regression. 

 

 

Figure 15: The relationship between DBH and average crown width for the trees measured in 

closed canopy (blue) and woodland (red) sites and their associated power-based regressions. 
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Figure 16: The relationship between DBH and average crown width for the trees categorized as 

dominant (blue), codominant (red) and overtopped (green) and their associated power-based 

regressions. 

 

3.4 Remote sensing data preprocessing 

 Many remote sensing analyses benefit from data preprocessing prior to more in-depth 

analysis. Methods of preprocessing can vary, but tend to focus on creating a more consistent 

dataset. This can include removing flagged or inappropriate pixels, such as those providing 

inaccurate information due to the effects of factors such as clouds or sunglint. Preprocessing may 

also entail normalizing and combining data across different sources and performing remote 

sensing corrections. The analytical software that this study employs includes a preprocessing 

package that enhances consistency and efficiency in the subsequent tree crown analysis. 

 aims to ensure consistency and efficiency in their subsequent tree crown analysis. Prior to this 

study, two dataset-specific preprocessing programs had been developed, one for QuickBird and 

the other for Ikonos images.  
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 Since the remote sensing images in this study came from different sources, the existing 

preprocessing programs were redesigned to facilitate analysis. Due to commonalities in parent 

company, certain similarities existed between DigitalGlobe‟s QuickBird and WorldView2 

satellites, as well as GeoEye‟s Ikonos and GeoEye1 satellites. As such, the existing QuickBird-

specific program was used to guide the development of a WorldView2 preprocessing program 

while the Ikonos program aided in the preprocessing of GeoEye1. 

 Each of these programs proceeded according to a common protocol, performing the 

following main operations. The first step included the import and consolidation of a high 

resolution (about 0.5 to 1 meter resolution) panchromatic image, a slightly coarser 

(approximately 2 to 4 meter resolution) multispectral image and the geospatial metadata 

associated with each image. Because WorldView2 and QuickBird datasets incorporate 

multispectral bands in different orders, an adjustment was made in the importation of bands so 

that the blue, green, red and near-infrared bands were all correctly assigned. In order to provide 

appropriately-sized datasets for the tree crown analysis, these programs then partitioned the 

larger images into multiple smaller “chips.” AOI1 and AOI2 were each broken into 98 different 

25 hectare chips from their larger 25 km
2
 images.  

 Several remote sensing corrections were also included in these programs, such as a top of 

atmosphere and a solar gain correction. These corrections utilize various factors such as solar 

zenith angle, satellite off-nadir angle and satellite-specific coefficients to create a more 

consistent dataset across different images and payloads. Although the existing Ikonos and 

QuickBird preprocessing programs included these corrections, adequate corrections for 

WorldView2 and GeoEye1 were unable to be developed for this study. Thus, this part of the 

program was removed and the preprocessing continued without these slight alterations. The next 
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step applied a moving window filter to smooth images that contain a high level of radiometric 

variability. Additionally, the coarser, multispectral bands were broken into smaller pixel sizes 

that corresponded with the higher resolution panchromatic band. The maximum, minimum and 

mean pixel brightness values were determined to allow for dataset normalization during the tree 

crown analysis. After these steps were completed, the panchromatic, blue, green, red and near-

infrared bands were packaged into geotiffs with their metadata and exported into their respective 

chips. 

  

3.5 Remote sensing analysis 

 Following preprocessing, an automated tree crown analysis software suite developed by 

Palace et al. (2008) was utilized for further analysis. This software suite uses a pattern 

recognition algorithm to systematically scan remotely sensed images and automatically delineate 

tree crowns. There are many methods that have been proven successful in delineating tree 

crowns, including local minima value finding, local maxima filtering, template matching, valley 

finding, three dimensional modeling and wavelet analysis (Brandtberg & Walter, 1998; Chubey, 

Franklin, & Wulder, 2006; Popescu, Wynne, & Nelson, 2003; Leckie, et al., 2005; Wulder, 

Niemann, & Goodenough, 2000; Shugart, Bourgeau-Chavez, & Kasischke, 2000; Pouliot, King, 

Bell, & Pitt, 2002). The software developed by Palace et al. (2008) leverages a combination of 

local minima finding and local maximum filtering. This software-based approach was chosen for 

this study because of its successful use in randomly distributed, high density tropical forests. 

This stands in contrast to other methods which have focused on less dense, low diversity forests 

with more regular canopy geometries (Palace, Keller, Asner, Hagen, & Braswell, 2008). 
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 This proprietary software was shared by its authors through a remote connection to two 

Ubuntu machines at the University of New Hampshire. A remote method was chosen over the 

use of a local machine, due to the software‟s complexity and unproven compatibility with 

foreign computers. As with the preprocessing code developed by the same authors, this program 

was mostly coded in Python, with the occasional integration of Weave. In its entirety, the suite 

contains a number of useful remote sensing analyses in addition to tree crown delineation. These 

include estimates of lacunarity, entropy, angular second momentum, semi-variance and a power 

spectrum analysis, all of which can provide insight into forest structure (Palace, Keller, Asner, 

Hagen, & Braswell, 2008). In order to manage the scope of this project, however, it was decided 

to focus on the analysis provided by the tree crown delineation algorithm.  

The program proceeds by importing an appropriately preprocessed remote sensing image, 

then scanning and identifying local maximum values (according to the “brightness” of each 

pixel‟s digital number). It should be noted that the inclusion of a multispectral remote sensing 

dataset allows for the masking of bright non-canopy pixels through the use an NDVI filter. From 

these maximum value locations, an ordinal transect analysis is conducted via linear transects in 

360 directions. These transects extend until either an observed drop in brightness from the center 

maxima or until a rise in brightness between two adjacent pixels reaches a predetermined 

threshold. At that point, the ordinal transect is ended. The local maximum point approximates the 

center of the canopy which allows the ordinal transects to extend radially and terminate at the 

edge of the tree crown. These transects are then integrated and approximated as circles centered 

at the local maximum to delineate each individual crown. The circle‟s radius is calculated as half 

the sum of the longest pair of opposing transects. This circle and its pixels are then removed 

from the image as analysis continues, iteratively seeking lower local maximum values as 
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additional “trees” are removed. After this point, the analysis is complete and the software outputs 

data on the geometry of the delineated crowns.  

 

3.5.1 Software calibration 

 The software suite can leverage a variety of different remote sensing images to analyze a 

range of different landscapes. The nuances associated with each of these datasets and geographic 

sites, however, necessitates that the software be recalibrated whenever a new type of image or 

forest is introduced into the analysis. Although a variety of terrestrial surfaces have been tested 

with this software, from Amazonian tropical forests to the Sierra Nevada Mountains in 

California, this study introduces the untested Dry Deciduous Lowland Forests of Mozambique. 

Due to this new location, in addition to the utilization of unproven datasets (WorldView2 and 

GeoEye1 images), a number of calibration steps were undertaken to create the most precise and 

accurate analysis possible. Throughout the calibration process, the available field data was 

instrumental in providing a baseline for verification. Visual inspections were also key in 

comparing iterative adjustments in order to identify the most ideal calibration settings.  

The following calibration procedure was carried out for each image type. Separate 

calibrations were not necessary for each AOI, as the WorldView2 and GeoEye1 images 

contained both AOIs in one contiguous image swath. Calibration began with the WorldView2 

AOI1 image which contained the field measurement transects and had been captured within 6 

months of field data collection. The GeoEye1 image was taken approximately 2 years earlier.  

As part of the calibration process, the existing code was slightly modified during the 

debugging and troubleshooting process. Most of these changes were semantic in nature and did 

not alter the overall function of the program. Two functional changes were necessary, however: 
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the first relating to a software coding problem and the second incorporating a global 

normalization scheme. Because of a coding incompatibility in the creation a supplementary 

“masking” image the section of code associated with this function was removed. Fortunately, the 

impact on the analysis was minimal since this nonessential process only served as a visual check 

on the masking process, which was able to be independently verified through other methods.  

The second and more significant change was the introduction of a global normalization 

scheme. Without global normalization, each preprocessed chip was independently normalized 

based on its maximum and minimum pixel value. As such, chips with anomalously bright or dark 

pixel values would be represented on entirely different scales than adjacent chips without such 

extreme values. This would result in specious variation in the tree crown delineation, based on 

these relatively different scales. Figure 17 illustrates the inconsistency introduced by this type of 

local normalization at the intersection of four adjacent chips. The top, left chip displays 

inconsistently large representative tree circles caused by an anomalously bright pixel associated 

with a tin roof elsewhere in the image. In order to remedy this situation, each chip (inclusive of 

both AOIs) was consistently normalized based on the global maximum and minimum brightness 

values determined during the preprocessing step (as outlined in section 3.4). The GeoEye1 

images were normalized independently of WorldView2 images.  
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Figure 17: Illustration of delineation inconsistency due to local normalization at the 

intersection of four chips overlain on a WorldView2 true color image that has been sharpened 

using the higher resolution panchromatic image (pan-sharpened).  

 

 Calibration began by first adjusting the manner in which the program applied an NDVI 

mask. By applying an upper and lower NDVI threshold, values outside of the specified range 

were excluded from analysis. This allowed bare soil, clouds, grasslands, water, and most human-

made features to be automatically removed from analysis based on their low NDVI values (as 

compared to forested vegetation). This calibration was undertaken by iteratively adjusting each 

threshold and inspecting the results for an area that experiences a wide range of NDVI values. 

After each iteration, the NDVI values of the trees with the brightest 200 pixel values (the first 

200 trees to be delineated) were calculated. These values were then associated with the centroid 

of that tree‟s location on an appropriate map. Figure 18 displays the delineated tree centroids 

from several such iterations on a map of the analyzed area. It can be seen upon visual inspection 

that as the lower NDVI threshold is raised from 0.1 upward, more bare ground is masked out of 

the image, removing pixels which would otherwise be mistaken as trees from the analysis. As the 
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lower threshold progressively increases, some vegetated areas begin to be removed the analysis. 

Through the process of iterative analysis and visual inspection, thresholds were set that removed 

as much unforested areas as possible without encroaching into the tree canopy. The lower NDVI 

threshold for both the WorldView2 and GeoEye1 images was set at 0.6, while the upper 

threshold was set at 0.99. 

 

 

Figure 18: Illustration of delineated tree centroids based on the lower NDVI threshold overlain 

on the true-color representation of the WorldView2 image within an area of AOI1. The layers of 

this map are in such an order that the centroid with the largest NDVI threshold value will visible 

at any given point. As such, many of the green, ndvithresh = 0.7 locations also represent the 

locations of ndvithresh = 0.6, 0.5 and 0.1 as well. 
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 With the NDVI thresholds appropriately set, the unmasked, remaining pixels should 

optimally represent only those areas that exhibit tree canopy cover. Working under this 

assumption, the main calibration step could begin. This includes the adjustment of two variables, 

the rise and drop values, which are crucial in properly delineating tree crowns. These two values 

represent thresholds which, when properly set, terminate the transect during the ordinal transect 

analysis. As mentioned previously, the aim of this part of the analysis is to end each transect at 

the edge of the tree crown. The rise value represents an increase in brightness between two 

adjacent pixels that suggests the edge of the crown has been reached and the transect should be 

terminated. In contrast, the drop value represents the maximum allowable brightness drop 

between the peak center brightness and any pixel in the ordinal transect. Adjusting these two 

values affect both the number and size of the trees that are delineated, and are thus the most 

important variables in the calibration process.  

 Due to the complementary nature of the rise and drop values, and their similar impact on 

analysis, calibrating each of them in turn is not an effective method. As such, they were 

calibrated “simultaneously” by running the crown delineation algorithm in a sensitivity mode. 

Essentially, this required placing the algorithm within nested for loops which iterated through a 

series of assigned values for each variable. The output from each pair of values was imported 

into Microsoft Excel, Matlab and ArcMap for numerical and visual verification. This iterative, 

brute force method allowed for a systematic exclusion of certain rise and drop values, until an 

ideal pair of values was reached. 

 Numerical and visual comparisons were utilized in order to complement the distinct 

strengths and weaknesses associated with quantitative and qualitative calibrations. Numerical 

methods were used to compare outputted data with in-situ measurements of tree crowns. As 
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elucidated by Asner et al. (2002), it is not realistic to utilize individual tree measurements for 

calibration due to limitations in geolocation and to temporal changes between in-situ and remote 

sensing measurements. Additionally, the use of a stratified sampling technique and a minimum 

DBH threshold contribute to an in-situ dataset that is skewed to include more measurements of 

larger trees and is therefore not representative of the full population. In-situ data, however, is still 

important in providing insight into the range of tree crown widths that could be expected from 

the crown delineation output. Because of these limitations, the in-situ data set was utilized to 

compare geographically similar transects as opposed to individual trees. In this manner, a 25 

meter buffer was added to the sides of each transect traversed in the field. The delineated trees 

with centroids located within this 50 meter swath were compared to the in-situ dataset for same 

transect. One closed canopy and one open woodland site (each with four transects) were chosen 

for calibration comparison, with the others were reserved for subsequent validation. These 

swaths, in addition to larger 25 hectare chips were also analyzed visually to ensure that the 

circular tree approximations were located, centered and sized reasonably. 

 An initially large range of values from 10
-5

 to 10
1
 were assigned to each the rise and drop 

values to ensure a that the range was sufficiently broad. This was then narrowed to a range of 10
-

3
 to 10

1
 for each variable by removing values that exhibited a consistent maximum diameter 

(regardless of changes in the complementary variable) that was five times smaller (6.92 m) than 

the overall maximum diameter (34.61 m) measured in the field. It was also discovered that drop 

values greater than 10
0
 and rise values greater than 10

-1
 saturated such that changes above these 

thresholds resulted in identical outputs. Visual inspection confirmed that drop values outside of 

10
-3

 to 10
0
 and rise values outside of 10

-3
 to 10

-1
 led to inaccurate estimations of tree crowns. 

This was the case for both the WorldView2 and GeoEye1 calibrations. The range of reasonable 
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rise and drop values was further refined by iteratively removing values that led to exceedingly 

large or small maximum radii and/or displayed inconsistent delineation upon visual inspection. 

This led to further narrowing of the range of appropriate rise and drop values for each image as 

displayed in table 6. 

 

Table 6: Final rise and drop values, in addition to the range of rise and drop values that 

contributed to reasonable estimations of individual tree crowns after numerical and visual 

inspection.  

 WorldView2 images GeoEye1 images 

Rise value range 0.0075 – 0.0110 0.010 – 0.040 

Final rise value 0.0095 0.020 

Drop value range 0.060 – 0.100 0.060 – 0.090 

Final drop value 0.075 0.070 

 

 After the appropriate range of values was defined, a more refined method of comparison 

was used to arrive at final calibration values. In the manner described above, in-situ 

measurements from select transects were compared to software-based approximations for trees 

that fell within the buffered area around each of these transects. The eight transects associated 

with open woodland site 1 and closed canopy site 2 were randomly selected for this verification 

step. Since only about thirty trees per transect received canopy width measurements, a couple 

proxies were used to estimate the canopy diameters for the entire 80 trees identified per transect. 

Both allometric equations presented in figure 13 were used to estimate canopy width based on 

each tree‟s DBH value. This allowed for a comparison of a larger dataset that was not as skewed 

because the DBH‟s were measured prior to stratification. That being said, the 10 cm minimum 

DBH threshold would still contribute to a dataset that excludes the smaller trees present in the 

software-based approach. As such, a subset of software-derived measurements that were larger 
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than a certain threshold was included for a more appropriate comparison. This threshold was 

chosen to be four meters because each of the sites mentioned above had only one tree that 

measured less than four meters in average diameter. Table 7 displays the average and maximum 

diameters associated with each measurement or approximation method listed above. All of these 

values were checked in conjunction with a visual scrutiny of the area in order to select the most 

appropriate calibration settings.  

 

Table 7: Average diameter, maximum diameter and sample size associated with the two sites 

used for calibrating the crown delineation software. In this case, the software-based 

measurements are associated with the ultimate rise (0.0095) and drop (0.075) values used for 

analysis of the WorldView2 images. 

 Measurement method Average diameter (m) Maximum diameter (m) Number of trees 

C
lo

se
d

 

ca
n

o
p

y
 #

2
 

In-situ 9.93 20.65 123 

DBH proxy (linear) 8.78 19.63 320 

DBH proxy (exponent) 8.34 17.92 320 

Software 5.54 31.98 1017 

Software (diameter > 4m) 8.84 31.98 474 

O
p

en
 

w
o
o
d

la
n

d
 #

1
 In-situ 11.75 21.52 122 

DBH proxy (linear) 9.00 25.08 320 

DBH proxy (exponent) 8.57 21.20 320 

Software 5.44 35.14 596 

Software (diameter > 4m) 8.77 35.14 266 

 

Table 8 illustrates how iterative adjustments to the rise and drop values contribute to 

visual changes in the locations and sizes of delineated trees. Scenes such as these were consulted 

during calibration to ensure that the program‟s approximations were realistically delineating 

trees. This table also demonstrates the tradeoff between calibration settings that overestimated 

the size of trees (drop value = 0.085, rise value = 0.0105) as compared to settings which 
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contributed to an overabundant delineation of subcrown areas such as individual boughs (drop 

value = 0.070, rise value = 0.0095). 

 

Table 8: Comparison of the effect of several iterations of rise and drop values on the geometry 

of delineated trees. Each scene represents the same extent, with delineated crowns in red overlain 

on a pan-sharpened WorldView2 image. 

 drop value = 0.085 drop value = 0.075 drop value = 0.070 

ri
se

 v
a
lu

e 
=

 0
.0

1
0
5
 

   

ri
se

 v
a
lu

e 
=

 0
.0

0
9
5
 

   

 

 Although the rise and drop values contribute significantly to the proper functioning of the 

crown delineation program, there are additional variables that can be adjusted to define the 

manner in which each image is analyzed. These include the smoothing window size, stop value, 

maximum transect length and minimum radius. As might be expected, the minimum radius limits 

the analysis to delineating trees that are larger than a certain threshold. In the case of this 

analysis, this was set to two pixels, which is equivalent to one meter. The maximum transect 
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length is somewhat the converse in that it sets a limit on the maximum length an ordinal transect 

can reach without being terminated. It is not, however, a limit on individual tree radii, as each 

radius is a summary of component transects. Thus, by definition, the maximum radius is 

necessarily some number smaller than the maximum transect length, which was set to 50 pixels, 

or 25 meters. In order to prevent transects from extending beyond the edge of the chip being 

analyzed, the maximum transect length also defines a border around each chip wherein no tree‟s 

centroid can exist. This boundary zone can be seen in figure 17 along the intersection of each 

chip. 

 The smoothing window size can be adjusted so that a more or less smooth image can be 

analyzed. In this case, a larger window size will contribute to a smoother image, by redefining 

each pixel based on a larger number of surrounding pixels. For the purposes of this study, the 

smoothing window size was set to its default value of 3 pixels across. The last value that was 

adjusted during the calibration of this software was the stop value. This variable is useful in 

terminating the analysis when the remaining unmasked maximum brightness value is equal to or 

less than the stop value. The justification underlying the stop value is that at a certain level of 

“darkness,” either no more trees are left to be delineated, or they can no longer be done so 

properly. The drop value is set based on the difference between the mode and minimum pixel 

values divided by the difference between the maximum and minimum pixel values. Because 

some of the chips from the outside edges of the WorldView2 images contain blank areas with 

pixel values equal to zero, the stop value associated with these chips are also calculated to be 

zero. In order to ensure consistency across all chips and images, the stop value for the program 

was set to a static value of zero. In the case of inappropriate delineation due to this minimal stop 

value, the trees associated with the lowest peak brightness values could always be removed later, 
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contributing to the same results as if they were never delineated due to a higher stop value. This 

was not an issue, however, as the lowest peak brightness values were not associated with 

improperly delineated trees. Figure 19 highlights the bottom fifth percentile of peak brightness 

values and their associated tree approximations. It can be seen that this “darker” subset actually 

contains a number of appropriately delineated trees that would not be included had the stop value 

been raised. 

 

 

Figure 19: Circular tree approximations associated with a WorldView2 image analysis, where 

the trees with the bottom fifth percentile of peak brightness values are highlighted in teal. 

 

3.5.2 Software analysis 

 After ideal calibration settings had been determined, the crown delineation software was 

used to analyze each of the 392 preprocessed chips. The output associated with this analysis was 

then imported into ArcMap and amalgamated into four appropriate datasets, one for each AOI 

for both image types. Figure 20 displays an example of the output from a scene within AOI1 as 

seen in ArcMap, where each tree is approximated by a red circle. The image on the left 
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represents the WorldView2 output overlain on the WorldView2 panchromatic image, and the 

image on the right displays the GeoEye1 output similarly on top of the GeoEye1 panchromatic 

image for the same geographic extent. Upon further scrutiny, it seems that there may be slight 

differences in the manner in which each of these images is analyzed, where the WorldView2 

analyses tend to show a bias towards more, smaller diameter trees as compared to GeoEye1 

analyses.  

 

    

Figure 20: Raw output from the crown delineation software analysis imported into ArcMap. The 

image on the left illustrates a WorldView2 scene within AOI1, while the image on the left shows 

this same geographic area with its associated GeoEye1 output. 

 

 Figure 21 displays the cumulative distribution of tree diameters for each image analysis, 

grouped by area of interest. For both types of images, there is good agreement when comparing 

the cumulative distributions between each area of interest. Such agreement, however, is not 

extended to a comparison of the diameter distributions between each type of image. This 
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confirms the visual observation that the WorldView2-based analyses result in more trees of 

smaller diameters, whereas the GeoEye1-based analyses include more trees of larger diameters.  

 

 

Figure 21: Cumulative distributions of tree diameters resultant from the software-based analyses 

of the four images associated with each of the image types and areas of interest. 

 

 In a separate calibration exercise, efforts were taken to adjust the aforementioned 

calibration variables such that the cumulative diameter distribution from the WorldView2 and 

GeoEye1 images more closely resembled each other. In addition to comparing these functions, 

the delineated diameters from each image were binned in one meter increments and compared as 

the GeoEye1 analysis was iterative adjusted. During this process, it became evident that a better 

fit between the analytical results of these to images was not possible, as either the upper, middle 

or lower bins could be appropriately matched, but not all three. Inconsistencies such as these 

highlight the difficulties inherent in comparing analyses rooted in two different datasets. 
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3.5.3 Results postprocessing 

 The results of the crown delineation analysis are critical in answering the hypotheses 

presented in section 2.1, but are not yet in a form that can robustly inform these questions. In 

order to disaggregate and refine the raw datasets outputted by the software analysis, a number of 

postprocessing steps are necessary. Essentially, the first step in postprocessing, was combining 

the individual chip outputs into the four main datasets as explained above. After that, the datasets 

can be grouped and groomed so that only the most relevant data remains. 

The first step in grooming the datasets involved removing what were deemed to be 

“perturbed” areas. Such areas were demarcated if they contained confounding factors that could 

alter the way in which their pixels were analyzed by the crown delineation software. Figure 22 

illustrates these areas, which include pixels marked by cloud cover, cloud shadows, significant 

anthropogenic development (including roads, buildings and clearings), pans and any null data 

areas. Most of these areas (such as clouds and roads) would be automatically masked and 

removed from the analysis due to the aforementioned NDVI filter. They were removed again 

during postprocessing for several reasons. The first is that this post-analytical method would 

allow for the removal of nearby, adjacent areas using a buffer. This is important for wispy, 

translucent areas around clouds that may not be removed by the NDVI filter in addition to the 

forested areas around roads, which would exhibit different characteristics than non-road adjacent 

forests. Additionally, this allowed for the spatial area associated with these unanalyzed pixels to 

be removed from the analysis area, contributing to a more accurate measurement of stem density. 

For this reason, the unanalyzed space between chips (due to the maximum transect length value) 

was also removed for its areal contribution. Both the WorldView2 and GeoEye1 images were 

demarcated with these designations, the combination of which was removed equally from both 
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datasets. Thus, even though the GeoEye1 images had zero cloud cover, the cloud and shade areas 

marked out in green and blue in figure 22 were still removed from this dataset. This was done in 

order to ensure a consistent area was being compared for both images. 

 

 

Figure 22: Illustration of the “perturbed” areas that were removed from each dataset overlaid on 

the WorldView2 images for each area of interest. 
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 Once the perturbed areas were removed, the remaining data was grouped according to 

their block and forest type designations presented in figures 12 and 7. Additional sub-datasets 

were also created from the larger forest type classifications. The full transitional and open 

woodland datasets were broken into four geographically distinct regions. The EDM Limitada 

closed canopy area was also broken into three regions based on anticipated harvesting intensity. 

Each of these datasets was created in ArcMap by extracting those trees whose centroid fell 

within each classified area and grouping them together. Figure 23 displays how individual trees 

were grouped according to their location by block in AOI1. This figure also illustrates the 

absence of the perturbed areas as outlined in figure 22. 

 

 

Figure 23: Tree crown delineation output for the WorldView2 AOI1 image, categorized and 

color-coded by block. 

 

3.6 Numerical analysis 

  Upon completion of the requisite postprocessing steps, the refined datasets were 

imported into Matlab for a more in-depth analysis. Due to the nature of the output from the 
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crown delineation software analysis, the main metrics used in this analysis were average and 

maximum crown diameters, crown diameter distribution and stem density. The average and 

maximum values were fairly simple to compute for each sub-dataset using existing Matlab 

functions. Evaluating crown diameter distribution was less straightforward and was characterized 

through the use of cumulative distribution functions, histograms and the binning of tree 

diameters. Stem density was calculated by dividing the number of trees within each dataset by its 

area as calculated in ArcMap, while making sure to remove any areal contribution due to 

perturbed areas or the unanalyzed space between chips. 

 For reasons that will be discussed further in the section 4, this analytical step included 

additional postprocessing in the form of setting an iterative minimum tree diameter value. In 

order to disaggregate the contribution of the smaller tree approximations to stem density, average 

diameter and the distribution of tree diameters, supplementary datasets were created that 

removed these smaller trees. This was carried out in one meter increments from the default two 

meter minimum diameter through a 15 meter minimum length. This step serves a similar 

function as setting the minimum radius length variable during software analysis as described in 

section 3.5.1. The metrics discussed in the previous paragraph were similarly calculated for each 

of these auxiliary datasets. 

 

3.7 Comparative analysis 

 One of the goals of this research is to provide insight into forest structure in a manner that 

would provide physical measurements and approximations of tree and forest properties. In 

addition, this research aims to provide insight into how a remote sensing analysis can prove to 

distinguish different types of forests based on their observable structure, patterns of disturbance 
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and/or anthropogenic land use. The benefit of a comparative analysis in conjunction to other 

analyses is the flexibility to focus more on similarities and differences between observations than 

on the quantitative meaning of measurements. Thus, even if a certain degree of geophysical 

accuracy is missing, the results of this study can be used to shed light on discernable and 

measureable differences between sites. 

 

4 Results 

 The three research hypotheses presented in section 2.1 (1) address the relationship 

between remote sensing and in-situ data, and assess the utility of a remote sensing-based analysis 

in (2) detecting forest disturbance, as well as (3) identifying the relationship between forest 

structure and specific land management practices. The first of the hypotheses focused on the 

utility of a remote sensing-based tree crown delineation algorithm in identifying and measuring 

tree crowns in a manner consistent with field measurements and observations. An additional goal 

was to develop a method that was able to assess the range of land cover types found within this 

study‟s sites. Methodologically, this study will also determine whether the software analysis 

described above can provide accurate delineation and measurement of individual tree crowns 

utilizing high resolution WorldView2 and GeoEye1 images. 

 Evaluating the agreement between in-situ and remote sensing-based data relies on a 

complex calibration process conducted with the goal of verifying the utility of the crown 

delineation program (discussed in detail in section 3.5.1). The results of verification are 

summarized in table 7, which present the tree count, average tree crown diameter and maximum 

diameter of the calibrated remote sensing analysis along with results measured or derived from 

field observations. A subsequent post-calibration validation of alternative sites was also 
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conducted, the results of which are summarized in table 9. These values confirm that this study‟s 

methodology is yielding consistent results. Although these results are consistent, they are not 

necessarily reflections of precision or accuracy in delineation. Figures 19 and 20 illustrate the 

incomplete manner in which a subset trees are identified and demarcated. It can be seen that 

some trees seem appropriately delineated. Others tree approximations, however, represent 

overestimation in the merging of multiple crowns or underestimation by disaggregating a single 

crown into several smaller “trees”. Collectively, these figures and tables shed light on the 

limitations in the methodology developed for this study. According to visual and numerical 

inspection, the results associated with relatively larger tree crowns seem to be effective 

representations of actual trees. Appropriate delineation at smaller diameters is less convincing, 

however. Figure 24 displays a WorldView2 scene overlaid with delineated trees that are 

distinguished based on their diameter. As can be seen on visual inspection, the larger red circles 

are more effectively delineating trees than the smaller circles in blue and green hues. 
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Table 9: Average diameter, maximum diameter and sample size associated with the two sites 

used for validating the crown delineation software. In this case, the software-based 

measurements are associated with the ultimate rise (0.0095) and drop (0.075) values used for 

analysis of the WorldView2 images. 

 Measurement method Average diameter (m) Maximum diameter (m) Number of trees 

C
lo

se
d

 

ca
n

o
p

y
 #

1
 

In-situ 10.5 34.61 103 

DBH proxy (linear) 8.81 37.57 320 

DBH proxy (exponent) 8.21 27.38 320 

Software 6.11 33.16 1017 

Software (diameter > 4m) 9.93 33.16 474 

O
p

en
 

w
o
o
d

la
n

d
 #

2
 In-situ 9.10 18 121 

DBH proxy (linear) 8.73 16.04 320 

DBH proxy (exponent) 8.35 15.41 320 

Software 5.80 35.36 899 

Software (diameter > 4m) 9.09 35.36 431 

  

  

Figure 24: A WoldView2 panchromatic scene with various tree crown approximations color-

coded according to their diameter. 
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  Additional questions regarding the accuracy of crown delineation are raised by the 

diameter distribution variation between WorldView2 and GeoEye1 images as presented in figure 

21. Some divergence is to be expected due to temporal variations, since these images were 

captured two and a half years apart. However, this level of deviation is sufficiently large to 

suggest that this is a function of the manner in which each image is analyzed, as opposed to a 

reflection of actual forest structure change. Because of the questions regarding the accuracy with 

which trees of diameters less than ten meters are delineated, the first hypothesis can neither be 

confirmed nor denied. However, the software-based analysis, when viewed independently of the 

accuracy of delineation, seems to provide consistent analysis across a range of forests from 

dense, closed canopies, to sparse, open woodlands. Figure 27 illustrates the consistency with 

which various subplots were analyzed using the tree crown delineation software. This figure also 

presents further evidence of the inconsistencies between WorldView2 and GeoEye1-based 

analyses. As such, the results from each of these types of images will be considered separately in 

subsequent discussions. 

  Because this software-based analysis did not produce effective delineation, the existing 

dataset was modified by removing the influence of smaller trees and creating supplementary 

datasets as described in section 3.6. These modified datasets were subjected to subsequent 

analysis focused on the larger subset of delineated trees, which reflect a more appropriate 

characterization of forest structure. Upon visual inspection, it is apparent that the accuracy of 

individual tree approximations generally decreases as tree diameter decreases. It seems likely 

that these smaller trees are misrepresentations of subcrown canopy areas such as boughs. The 

systematic removal of these smaller “trees” from subsequent datasets also removes the influence 
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of that portion of the canopy. This will necessarily lead to undersampling, a caveat that is noted 

in subsequent analyses.  

 After comparing minimum tree diameter thresholds numerically and visually, an eight 

meter diameter was set as the most appropriate cutoff. This value balances the influence of 

inappropriately delineated trees, with that of undersampling due to the removal of small but 

appropriately marked trees. This is illustrated in Figure 24 which includes those trees that meet 

this threshold demarcated in red and orange, and excludes those marked in yellow, blue or green. 

Figure 25 displays tree diameter cumulative distribution functions for each image type and AOI 

after the trees with diameters less than eight meters were removed. This graph stands in stark 

contrast to figure 21, which includes a full dataset of trees with no minimum threshold. The 

difference in diameter distribution which is obvious between image types in figure 21 is barely 

noticeable in figure 25. Thus, applying the eight meter threshold provides a consistent dataset for 

comparison across image types. Subsequent discussion will evaluate results both inclusive and 

exclusive of this threshold. 
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Figure 25: Cumulative distributions of tree diameters greater than eight meters as determined by 

the software-based analyses of the images associated with WorldView2 and GeoEye1 payloads 

for each area of interst. 

 

 The second and third hypotheses presented in section 2.1 focus on the link between forest 

structure and disturbance regime. In particular, these two hypotheses express an interest in 

connecting observable dissimilarities in forest structure with the anthropogenic activities 

associated with those forests. In this study, which is centered on two forestry concessions, forest 

disturbances are related primarily to lumber harvesting operations. These hypotheses suggest that 

differences in harvesting operations will be detectable by analyzing high resolution remote 

sensing images with an automated crown delineation software. The results of these analyses 

support the hypothesis that differences in forest structure can be detected by a crown delineation 

algorithm. Whether these differences are due to underlying anthropogenic activity, however, is 

less clear. This limitation appears to be more a function of limits in temporal comparison 

analysis than errors or shortcomings associated with the crown delineation software. 
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 In the areas studied, differences in tree size distribution, average crown diameter and 

stem density could be a reflection of anthropogenic disturbances, natural variation in forest 

characteristics due to a broad set of environmental variables, or a function of both. The range of 

forest types within each study site highlight the degree of variability in forest structure that is 

introduced due to natural variation. Thus, it becomes difficult to identify the more subtle changes 

in forest structure that could be characteristic of anthropogenic influences. Temporal 

comparisons can help differentiate between natural variations and those resultant of disturbances 

by providing a baseline with which to compare changes over time Typically, significant changes 

over a short period of time are more likely due to anthropogenic activity. That being said, 

climatic and environmental factors (such as drought, flooding, fire, etc.) can also have significant 

effects in the short term. However, these natural phenomena are likely to be known events 

facilitating accurate differentiation between these and changes due to human activity. Thus, 

inclusion of repeat measures of temporal datasets interpreted in conjunction with known 

climactic events should lead to increased confidence in the designation of the cause of variation 

in forest structure. For this reason, two datasets spanning two and a half years were used for this 

study. Unfortunately, because of the limitations in data availability (as discussed in section 3.2), 

these datasets come from two separate satellite payloads, which does not allow for effective 

cross-comparison. This in turn led to the inconsistencies reported in section 3.5.2. Because these 

two datasets cannot be properly compared, the robustness of temporal analysis is undermined. 

This limits the extent to which hypotheses two and three can be evaluated. However, meaningful 

distinctions were noticed, particularly in the WorldView2-based analysis, which will be 

discussed in further detail. 
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 As alluded to above, it is important to characterize a baseline or “natural state” of 

terrestrial surfaces before attempting to interpret the impact of human-induced changes. The 

term, “natural state” is somewhat misleading, given that forest ecosystems are constantly 

changing in response to an array of environmental stimuli. That being said, if considered on 

relatively small time scales, it can be assumed that most changes to this natural state are due to 

anthropogenic activities or other large-scale disturbances (such as natural disasters, infestations, 

etc). In recognition that forests are constantly changing, the natural states within this study‟s 

areas of interests were defined by three broad categories: closed canopy forests, open woodlands, 

or intermediate semi-closed canopy forest (see figure 7). It should be noted that these more 

classifications as demarcated with the help of the TCT Catapu management and field 

observations vary significantly to the coarser scale classifications presented in figure 5.  

 Given these predefined classifications, this study was well-positioned to evaluate the 

ability of a tree crown delineation analysis to provide insight into land cover classifications. To 

test whether this type of analysis can indeed help with classification, it is necessary to assess 

whether a significant distinction between forest types can be recognized. Using the metrics 

discussed previously (diameter distributions, average diameter and stem density), several 

woodland and closed canopy datasets were compared for their relative differences. These subsets 

included the four previously-classified woodland regions and all eight TCT Catapu management 

blocks that fell entirely within the closed canopy areas as illustrated in figure 26. The respective 

cumulative diameter distributions for each of these subsets (and their aggregated sum) are 

displayed in figure 27. As discussed previously, these distributions are evaluated with and 

without the eight meter minimum diameter threshold and for both WorldView2 and GeoEye1 

images. 
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Figure 26: Illustration of the four woodland and eight closed canopy subset used for 

comparative analysis. 
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Figure 27: Cumulative diameter distribution functions for woodland (orange) and closed canopy 

(green) areas. Each subset is marked by a dashed line, while the aggregated sum for each type of 

forest is represented by a solid line. The four graphs compare the WorldView2 and GeoEye1 

analyses for all tree crowns contrasted with a subset containing only those trees greater than 

eight meters in diameter. 

 

 The graphs above provide mixed evidence for the effectiveness of using a crown 

delineation analysis for distinguishing among forest types. In the case of the WorldView2-based 
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analysis, there seems to be a clear, consistent and significant difference between open woodland 

and closed canopy areas. Woodland areas have a steeper initial incline, representing the presence 

of more trees of an intermediate size (between about 8 and 15 meters in diameter) and relatively 

few very large trees (greater than 25 meters in diameter). The closed canopy subsets exhibit a 

more even distribution among intermediate and large trees as suggested by the more constant 

slope among trees greater than about eight meters in diameter. As discussed previously, the 

uncertainty inherent in this analysis does not necessarily mean these distributions represent the 

reality present on the ground. The more consistent diameter distributions seen in the closed 

canopy areas may in part be a reflection of a greater number of merged and overestimated trees 

as compared to woodland areas. Tree crowns are more likely to be merged or overestimated 

when the edge of the crown is not marked by significantly different pixel values. This, in turn, is 

more likely to occur in closed canopy areas, where a consistent canopy represents a more 

homogeneous surface than the intermittent bare soil and grasses present in woodland areas. 

Regardless of the reasons behind these distributions, it does prove that there is a measurable and 

noticeable difference in the way that woodland and closed canopy areas are delineated when 

using a WorldView2 image. Including the diameter distributions of intermediate semi-closed 

canopy forests as in figure 28 provides consistent results, as well. The distributions associated 

with these datasets fall somewhere in between closed canopy and woodland distributions, as 

would be expected. When viewing the results of the GeoEye1-based analysis, however, any 

distinction breaks down. Whereas the woodland and closed canopy distributions for the top two 

graphs in figure 27 clearly diverge, they are essentially overlapped in the bottom two, GeoEye1 

images. As such, a GeoEye1-based crown delineation analysis (as calibrated according to this 

study) cannot be used to confidently distinguish between different forest types. 
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Figure 28: Cumulative diameter distribution functions for open woodland, semi-closed 

intermediate and closed canopy areas. The results are based on a WorldView2-based analysis 

and the inclusion of an eight meter diameter threshold. 

  

 Comparing these same datasets according to their stem density and average tree diameter 

provides additional metrics with which to view any dissimilarity among forest types. Figure 29 

displays these values for each area according to image type and diameter threshold in a manner 

similar to figure 27. Figures 30 and 31 illustrate the differences in these metrics among the 

various sub-datasets for a WorldView2 based analyses with an eight meter diameter threshold 

(additional graphics for GeoEye1 images and those without a threshold are included in Appendix 

C). The results apparent in these scatter plots and graphics confirm the conclusions drawn in the 

previous paragraph. Again, there is a clear and significant distinction between the woodland and 

closed canopy areas when comparing the WordView2-derived results. The analyzed woodland 

areas are characterized by notably smaller stem densities and average diameters as compared to 
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the closed canopy areas. The GeoEye1-based results exhibit a lack of this obvious distinction, 

though a slight variation is evident. As with the WorldView2 results, the woodland areas tend to 

exhibit smaller stem densities, as would be expected in a forest type that is characterized by 

fewer trees and more open areas. There is not a noticeable difference in the average tree 

diameters associated with each forest type for GeoEye1-based results. In all of the 

aforementioned cases, the exclusion of trees under eight meters in diameter serves to increase the 

evident distinctions between subsets. This makes sense because of the relatively similar 

distribution of trees below this threshold across subsets. 

 



Heil  75 

Figure 29: Scatter plots comparing average tree diameter and stem density for woodland 

(orange) and closed canopy (green) areas. Each subset is marked by a circle, while the 

aggregated sum for each type of forest is represented by a triangle (the two orange triangles 

represent each AOI). The four graphs additionally highlight the differences between 

WorldView2 and GeoEye1 analyses and due to the inclusion of an eight meter diameter 

threshold. 
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Figure 30: Geographic illustration of each sub-dataset in the WorldView2 analysis according to 

their mean diameter value. These values reflect the inclusion of an 8 meter diameter threshold. 

 

 

Figure 31: Geographic illustration of each sub-dataset in the WorldView2 analysis according to 

their stem densities. These values reflect the inclusion of an eight meter diameter threshold.  
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 For the reasons set forth above, temporally distinct datasets are necessary for a robust 

analysis of the effects of anthropogenic activities on forest structure. Unfortunately the 

temporally varied datasets in this study (represented by the baseline GeoEye1 image and the 

more recent WorldView2 image) exhibit very little consistency and cannot be appropriately 

compared. Additionally, the GeoEye1 dataset as a whole provides very little insight into the 

variations in forest structure present within this study‟s areas of interest. Ideally, this dataset 

would have described a certain baseline scenario with which to compare the known harvesting 

activities presented in sections 2.2 and 3.1. Since this is unavailable, certain assumptions were 

necessary for an evaluation of the link between forest structure and harvesting disturbances. Of 

these, the most significant is that the areas to be compared (which include most of the closed 

canopy area in AOI2) are assumed to have been essentially similar in structure prior to any 

anthropogenic disturbances. Therefore, any noticeable variations among these areas are assumed 

to be reflections of the manner in which each of these areas was harvested. The TCT blocks in 

this comparison were harvested from 2001 to 2006 (table 3), while the EDM concession was 

harvested between 2009 and 2012. The EDM concession area was broken up into three sections 

according to harvesting intensity level, which are displayed in figure 32. EDM central is 

characterized by having experienced the most intensive disturbances associated with logging 

activities, followed by EDM north and EDM south. In order to further remove any influences 

due to spatial variation, approximately equal areas on either side of the TCT-EDM border were 

also compared for variability. These areas were created by generating a 500 meter buffer on each 

side of the border and removing the unforested pan in the middle. The trees whose centroid fell 

within either the TCT or EDM buffered area were aggregated into a dataset for subsequent 

analysis. These buffer zones can be seen in figure 32. 



Heil  78 

 

 

Figure 32: Map of AOI2 that illustrates the three TCT blocks and three EDM areas that were 

used to compare the link between forest structure and harvesting method. The 500 meter buffer 

zone on either side of the border is also displayed and color coded according to concession. 

 

 The subsets within each concession displayed in figure 32 were compared based on their 

average diameters and stem densities in a manner similar to figure 29. The resultant scatterplot 

can be seen in figure 33. Upon viewing these scatterplots and the graphic representation in figure 

31, there is not a clear distinction among the stem densities associated with each concession area. 

When comparing average densities, however, the EDM Limitada areas exhibit generally smaller 
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values (and lighter shades in figure 30). As would be expected, the more intensely harvested 

EDM north and EDM central subareas exhibit the most noticeable differences. Figure 34 

illustrates diameter distribution differences among the EDM north and central subsets as 

compared to the TCT Catapu blocks. In all such comparisons, these two subsets exhibit qualities 

(such as a smaller average diameter or the presence of more intermediate sized trees) that 

characterize a shift away from a closed canopy state towards more of an open woodland state. 

This is a logical shift for an area that has experienced significant disturbances wherein many 

trees have been felled for lumber harvesting.  

 

Figure 33: Scatter plots comparing average tree diameter and stem density for TCT Catapu 

(blue) and EDM Limitada (blue) areas. These results come from the evaluation of datasets with 

an eight meter minimum diameter threshold. 
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Figure 34: Cumulative diameter distribution functions for subareas within the EDM Limitada 

and TCT Catapu concessions. The results are based on a WorldView2-based analysis and the 

inclusion of an eight meter diameter threshold. 

 

 The results of a comparison of each buffer zone according to average diameter and stem 

density are summarized in table 10. These values provide further evidence that what should be 

two statistically similar areas, in fact exhibit dissimilarities in forest structure. Applying a t-test 

to the buffer datasets on either side of the TCT-EDM border confirmed that the EDM population 

of diameters is significantly smaller than the TCT population with a p value of less than 0.0015. 

This provides further evidence that forests within the EDM concession are displaying evidence 

of the more intense disturbances that they experience. The feasibility of utilizing a tree crown 

delineation analysis to link forested areas with their harvesting schemes cannot be conclusively 



Heil  81 

proven because of the lack of a reliable baseline for comparison. That being said, the evidence 

set forth this section suggests that this may be a plausible application of such an analysis. 

 

Table 10: Average diameter and stem density of the trees within each 500 meter buffer zone on 

either side of the TCT-EDM concession border. Included are these values with and without the 

inclusion of an eight meter diameter threshold. 

  TCT side EDM side 

all trees 
average diameter (m) 6.108* 6.049* 

stem density (trees/km
2
) 11716 11916 

diamter > 8m 
average diameter (m) 15.791 15.553 

stem density (trees/km
2
) 2339 2366 

 * p < .0015 

 

5 Discussion and Significance 

 Although the study hypotheses were not confirmed, a number of valuable insights can 

still be drawn from the results of this research. These insights are based on the use of a tree 

crown delineation software suite as a tool for comparative analysis as opposed to a tool for 

complete and accurate measurement of individual tree crowns. This software-based approach has 

proven to be a successful measurement tool in the past, but not in this particular study. This 

could be due to several reasons. The untested nature of the WorldView2 and GeoEye1 systems 

used in this study present the possibility that the datasets are not sufficient to allow for a proper 

analysis. The inconsistency between the results of the WorldView2 and GeoEye1 analyses are 

particularly telling in this regard. It suggests that the manner in which crowns are delineated can 

be a function of the input image, and thus that analytic methods would need to be customized to 

specific image acquisition systems. It is also possible that elements such as sun angle and 

satellite angle off-nadir (which were not measured in this study) affect the influence of canopy 
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shadows within images. This would in turn affect the manner in which images are delineated, as 

shadows tend to facilitate the terminating of transects. The utility of these types of datasets might 

also be improved with further preprocessing steps, such as the inclusion of atmospheric and solar 

gain corrections, or by an adaptation to the smoothing window. The nature of the site itself and 

the forest structure present on the ground could also introduce a number of confounding 

characteristics not present at other more effectively-delineated sites.  

 Regardless of the limitations in the geophysical accuracy of this methodology, the results 

point to several important applications for this type of research. Based on the comparative 

analyses discussed above, this type of crown delineation analysis could be useful in regional 

scale land cover classification. The WorldView2 analysis was particularly effective in 

distinguishing open woodland and closed canopy type forests. Thus, depending on the presence 

of a minimum diameter threshold, a classifying algorithm could be developed to aid in the 

delineation of various forest and non-forest ecosystem types. Classification algorithms are 

already an established tool for distinguishing among land cover type. Typically, the algorithms 

rely on numerical comparisons and ratios among the bands of a multispectral image (Foody G. 

M., 2002). The results of this study suggest that incorporating structural aspects into these 

classification schemes will lead to increased accuracy. Many of these algorithms use decision 

trees that proceed through a number of comparative steps before arriving at an estimated land 

cover type (DeFries & Chang, 2000). The results of a crown delineation analysis could easily be 

incorporated into existing characterization methods. Table 11 presents two schemes that could be 

used to distinguish woodland and closed canopy areas within the study sites for a WorldView2-

based analysis. 
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Table 11: Example classification schemes for the WorldView2-based analysis of forested areas 

within this study‟s site. A dataset that meets the inequalities present in this table can thusly be 

designated as either woodland or closed canopy forest, where S is stem density in trees/km
2
 and 

D is average diameter in meters.  

diameter threshold woodland closed canopy 

none S < 8000 & D < 5.5 S > 7000 & D > 5.9 

8 m S < 1300 & D < 14 S > 1300 & D > 15 

 

 The classification techniques discussed above can also be effectively applied to monitor 

forest changes in response to anthropogenic disturbances. The results presented in figures 30, 33 

and 34 and table 10 show the sensitivity of this study‟s analysis to subtle changes in forest 

structure due to harvesting regimes. The datasets associated with harvesting within the EDM 

Limitada and TCT Catapu concessions exhibit a distinct pattern of contrast, which is consistent 

with the observed status of EDM Limitada as a more degraded forest. Unlike in some regions 

where deforestation is easily visible at high resolutions, forest degradation due to overharvesting 

in the study‟s region is less obvious. This appears to be a function of the relatively large number 

of noncommercial tree species that are left unharvested, resulting in a forest that continues to 

appear in a “closed canopy” state. Because the study methodology is sensitive to change of this 

type, it can serve as a tool for agencies interested in detecting and monitoring forest degradation 

due to harvesting practices. However, this would require a temporally distinct baseline condition 

with which to compare such changes. While there are limitations in the sensitivity of this 

approach, it can be a very useful tool in pinpointing areas of likely degradation which can then 

be subject to further study. 
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 Further adjustments in this study‟s methodology that contribute to more effective 

delineation could introduce additional applications such as above ground biomass estimations 

and monitoring of carbon stocks over larger spatial and temporal scales. Although this study was 

not sufficiently precise in the delineation of tree crowns to calculate a confident estimate of 

biomass, the allometric equations derived in section 3.3 offer a pragmatic starting point for 

subsequent estimates of biomass for this region. 

 This research contributes an incremental step in in developing remote sensing techniques 

for monitoring and measuring forest ecosystems. Although some results are inconclusive, this 

study has proven the feasibility of remote sensing in the analysis of forest structure in the Dry 

Deciduous Lowland Forests of Mozambique. This study also provides an assessment of the 

strengths and weaknesses of a particular methodology applied to this unstudied forest type. In 

addition, this study offers a resource for subsequent research initiatives interested in measuring 

forest structure. 

 

5.1 Supplemental Research Suggestions 

 The use of untested remote sensing images in this study‟s analysis leaves several 

questions unanswered. Namely, whether the type of images was a contributing factor in the 

incomplete manner in which individual trees were delineated. As such, it would be useful to 

apply the same methodology to Ikonos and/or QuickBird images for a similar forested area. This 

would provide insight into whether the limitations in the current study are derivative of the 

image type, a function of the methodology, or perhaps due to some other factor. 

 The successive analysis of multiple, additional WorldView2 and GeoEye1 images across 

time would reveal whether the limitations in the methodology diminish across repeat trials to a 
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sufficient degree to provide a more effective tracking of forest change. As both of these satellite 

payloads are still in operation, there is a good chance that additional images for these AOIs will 

become available. The opportunity for additional analysis of multiple images of the same type 

for these study sites might be revealing in regard to the link between harvesting disturbance and 

forest structural response. Unfortunately, however, these images will not be useful in providing 

any additional insight into the state of the EDM Limitada concession prior to its intensive 

harvesting episodes beginning in 2009. 

 Since images from the same satellite payload will not always be able to be compared, it 

would be useful to introduce more consistency across image types. One way to do this could be 

the reintroduction of atmospheric and solar gain corrections into the preprocessing code for 

WorldView2 and GeoEye1 images. This would require that certain calculation and coefficients 

need to be established, which would ideally contribute to preprocessed images that are more 

consistent across types. Additional methods could involve adjusting the smoothing filter based 

on image type due to varying radiometric variability, or introducing other normalization 

schemes. 

 It would also be useful to examine the potential use of publicly available high resolution 

imagery for this type of analysis. These could include images from Google Maps, Bing Maps, or 

ESRI World Imagery. Although this type of analysis would not allow NDVI masking due to the 

absence of multispectral bands, a method incorporating these datasets could significantly reduce 

the financial burdens associated with purchasing high resolution images.  

 The analysis employed in this study is limited by tradeoffs inherent in spatial versus 

temporal resolution, as well as by the cost associated with data acquisition and analysis. Because 

fine-scale images are costly in terms of time and finances, there is a growing interest in pairing 



Heil  86 

fine-scale analysis with coarser-scale remote sensing products in order to evaluate larger swaths 

of land over more frequent intervals. It has been suggested that coarse (MODIS or MISR) to 

medium-scale (Landsat) datasets be used to extrapolate fine-scale analyses over larger areas in 

order to marry the precision associated with fine-scale analysis with the scope of coarser 

datasets,  (Hansen, et al., 2008; Frolking, et al., 2009). Applying finer-scale analyses to broader 

extents has shown some success in leveraging coarser-scale analyses to pinpoint areas for fine-

scale study (Hansen, et al., 2008; Asner G. , 2009; Tomppo, Nilsson, Rosengren, Aalto, & 

Kennedy, 2002). This research could similarly stand to benefit from an extrapolation technique 

that could increase the temporal and spatial extent to which these analyses could be applied. 
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8 Appendices 

8.1 Appendix A 

 Selected relationships among the in-situ collected data. 

 

Figure 35: Relationship between DBH and tree height and its associated linear and power-based 

regressions. 

 

Figure 36: Relationship between DBH and tree crown depth and its associated linear and power-

based regressions. 
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Figure 37: Relationship between tree height and average crown width and its associated linear 

and power-based regressions. 

 

Figure 38: Relationship between tree height and tree crown depth and its associated linear and 

power-based regressions. 
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8.2 Appendix B 

 Comparative analysis based on stem densities and average tree diameter with the 

inclusion of intermediate forests. 

 

Figure 39: Scatter plots comparing average tree diameter and stem density for woodland 

(orange), intermediate semi-closed canopy (blue) and closed canopy (green) areas. Each subset is 

marked by a circle, while the aggregated sum for each type of forest is represented by a triangle 

(the two orange triangles represent each AOI). The four graphs additionally highlight the 

differences between WorldView2 and GeoEye1 analyses and due to the inclusion of an eight 

meter diameter threshold. 
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8.3 Appendix C 

 Illustrations of each AOI sub-dataset based on average diameter and stem density values. 

 

Figure 40: Geographic illustration of each sub-dataset in the WorldView2 analysis according to 

their mean diameter value. These values reflect the inclusion of all trees regardless of diameter. 

 

Figure 41: Geographic illustration of each sub-dataset in the GeoEye1 analysis according to 

their mean diameter value. These values reflect the inclusion of all trees regardless of diameter. 
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Figure 42: Geographic illustration of each sub-dataset in the GeoEye1 analysis according to 

their mean diameter value. These values reflect the inclusion of an eight meter diameter 

threshold. 

 

 

Figure 43: Geographic illustration of each sub-dataset in the WorldView2 analysis according to 

their stem densities. These values reflect the inclusion of all trees regardless of diameter. 
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Figure 44: Geographic illustration of each sub-dataset in the GeoEye1 analysis according to 

their stem densities. These values reflect the inclusion of all trees regardless of diameter. 
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Figure 45: Geographic illustration of each sub-dataset in the GeoEye1 analysis according to 

their stem densities. These values reflect the inclusion of an eight meter diameter threshold.  


