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Abstract

Graph structure has been a general language describing relational data and interconnected systems. It
widely exists in a variety of domains: biological and chemical molecule structures studied in natural
science, social and economic networks formed in our daily life, the virtual Internet and physical trans-
portation networks built to connect the world. The ubiquity of such a graph-structured description of our
world calls for effective and trustworthy machine learning models that can better make use of and learn
to understand information represented in such a structured form.

The graph structure of data brings opportunities as well as challenges to the development of practical
machine learning solutions. On one hand, the graph structure introduces informative relational inductive
bias which can facilitate learning algorithms to reveal fundamental properties of entities and their in-
teractions; on the other hand, such structure imposes complex dependency relationships among entities
which could be used in an undesired way threatening the trustworthiness of machine learning.

The thesis presents our understanding towards the computational questions about the double-edged role
of graph structure in machine learning. Specifically, we elaborate the opportunities and the trustworthi-
ness issues brought by the graph structure through two threads of my research: 1) how to utilize the
information encoded in graph structure to enhance machine learning, especially when label information
is limited; 2) how to mitigate potential pitfalls brought by biased or perturbed structure that threaten the
fairness and robustness of machine learning. Our study answers these questions lying at the intersec-
tion of machine learning, graph theory and network science. By unleashing the power of graph structure
while mitigating the potential pitfalls in machine learning, the outcome of this thesis can be applied to a
variety of real-world problems, such as recommendation, user modeling, document understanding, and
representation learning.
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Chapter 1

Introduction

1 Overview: When Graph Structure Meets Machine Learning

Graph structure is all around us: from fundamental physical interactions to emergent structures such as
atoms, molecules, living organisms, societal networks, ecosystems, planetary systems, and many more
examples across a wide range of scales in the universe. Not only is the world around us rich in structure,
but also our own understanding of the world is highly structured: we think, reason and communicate in
terms of relations. A natural way to formalize and represent information in structured form is as a graph,
which is a data structure describing a collection of entities, represented as nodes, and their pairwise
relationships, represented as edges. The ubiquity of such a graph-structured description of our world
calls for the development of effective and trustworthy methods that make use of and learn to understand
information represented in this structured form. While we get there, the lessons learned along the way
can help us develop better intelligent systems and agents that share a similarly structured understanding
of the world as we humans do.

The desire to understand human cognition (e.g., how humans perceive and correlate things) has spawned
a variety of scientific disciplines in artificial intelligence. This proposal is inspired by graph theory and
network science to study the relations and the collective graph structure of data in the field of machine
learning. Machine learning deals with the question of how we can build systems and design algorithms
that learn from data. The problem of learning is commonly approached by fitting a model to data with the
goal that this learned model will generalize to new data. Supervised machine learning has been proven
powerful in many domains, which aims to maximize the likelihood of observing labels given features.
However, it heavily relies on well-annotated manual labels, which require domain knowledge and thus
are difficult to obtain. Unsupervised machine learning does not require label information and aims to
discover intrinsic patterns from the data itself. The issue is that unsupervised machine learning is usually
inefficient due to the lack of clear and optimal goals for the model to learn.

With the graph structure of data, we can now bridge the gap between supervised and unsupervised ma-
chine learning. The graph structure provides explicit, implicit, and global information which can effec-
tively guide the learning process, and the information is freely offered with the generation of graph-
structured data. The explicit relationships/edges between entities indicate whether two entities should
be connected, which can naturally serve as label information in many machine learning tasks, e.g., link
prediction. The relationships can also guide the feature aggregation process by introducing relational
inductive bias for many machine learning models, e.g., graph convolutional networks. The implicit in-
formation reflects the clustering property of graphs, which can capture and describe collective patterns of
entities to help machine learning models study the behavior of individual entities. The global structural
property of the graph collects the important essence of the graph to differentiate it from other graphs,
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which can be comprehensively summarized by the graph spectrum. This suggests the tremendous oppor-
tunities brought by graph structure to machine learning paradigms.

While we take advantage of graph structure to advance machine learning, we cannot ignore potential
pitfalls when the graph structure is used in an undesired way. The misuse of graph structure could lead to
serious threats to the accountability and trustworthiness of machine learning. Ethical issues arise when
a machine learning model is trained on a biased structure, which could output unfair decision making to
different groups of users based on their sensitive demographic features, and simply removing sensitive
features cannot amend the biased structure. Another concern is regarding security when the graph struc-
ture which is used in a machine learning model can be penetrated by an adversary. These issues indicate
that introducing graph structure in machine learning could be Pandora opening her box, since biased
or perturbed graph structure could greatly mislead the machine learning models. This calls for careful
treatment of graph structure when dealing with real-world applications, such as job recommendations or
friend recommendations.

In this dissertation, we study the double-edged sword role of graph structure for machine learning, given
its information advantage and shortcomings. Based on such fact, we aim to develop machine learning
solutions that can model graph structure in an effective and trustworthy way. To achieve this goal, two
main challenges arise. One is to discover and harness different types of information encoded in the
graph structure, such that machine learning models can be enhanced especially when label information is
limited. The other is to understand how biased or perturbed structures threaten the fairness and robustness
of machine learning. Our study answers these questions lying at the intersection of machine learning,
graph theory, and network science.

2 Challenges and Contributions

To enable effective and trustworthy deployment of machine learning solutions on graph-structured data,
we need to address two challenges that stand between machine learning paradigms and non-Euclidean
graph structure. Addressing these two challenges consists of two main threads of this dissertation.

2.1 Challenge I: Harnessing Graph Structure in Machine Learning

Modeling and analyzing the graph structure bring enormous opportunities to reveal fundamental prop-
erties of entities (e.g., you are whom you connect with) and understand how entities interact with each
other (e.g., social influence and contextual effect). Nevertheless, the complex dependency relationships
imposed by the graph structure also introduces nontrivial requirements for machine learning to harness
real-life graphs (e.g., non-i.i.d. problem instances), especially on rich-content and unlabeled data. The
major challenge is to enable machine learning models to effectively discover different types of structural
information: the explicit links indicate the dependency between two entities, which could be even more
complicated when other data modalities exist such as text; the entities implicitly form groups and clus-
ters reflecting higher-order patterns among entities beyond pairwise relationships; graph structure also
globally present essential properties to differentiate the graph from others, which can be summarized by
the graph spectrum. Multiple levels of structural information provides a comprehensive profile for the
relational-data, and failing to discover and exploit such information will lead to a suboptimal models.

In this thread, we explore possibilities in exploiting the explicit, implicit and global structural infor-
mation encoded by the graph structure in graph neural networks. Specifically, our contributions can be
summarized to answer the following questions.



4

Research Question 1: How to advance machine learning on rich-content but unlabeled data using
explicit relationship information within data?
Multimodal contents (e.g., texts and images) are commonly associated with, and manifest, the structure,
e.g., users post textual comments when they interact with others. This imposes a higher demand on
simultaneously harnessing the structure and content to understand entities even when labels are not
available. Our main contribution to address this question is a novel graph neural network, which is
discussed in Chapter 2, Section 1. This model is equipped with a channel-aware attention mechanism
enabled by edge text content when aggregating information from neighboring nodes. We propose a fresh
principle for joint modeling text content and graph structure, and realize the principle via a variational
auto-encoder on both text and graph.

Research Question 2: How to discover and exploit implicit cluster information to further advance ma-
chine learning with graph structure?
Graph structure provides higher-order and global structure patterns, which is beyond the pairwise rela-
tionships. Canonical graph convolutional networks cannot differentiate the importance of relationships
when aggregating the neighboring states. Our contribution to address this question is a cluster-based
graph convolutional network discussed in Chapter 2, Section 2. We argue that the implicit clusters can
offer another way to relate nodes, and nodes that are belong to the same cluster should be embedded
closer. We realize this principle by uncovering the hierarchical clustering of nodes, and adding a group-
level attention mechanism to guide the feature aggregation.

Research Question 3: How to advance self-supervised learning with graph structural property?
Self-supervised learning on graphs has gained attentions to capture intrinsic structural patterns by de-
signed supervised signals. Graph contrastive learning is one of the dominating solution to maximize
the correspondence between graphs in different augmented views. Our main contribution is to generate
augmentation views based on the spectral property of graphs, discussed in Chapter 2, Section 3. The
augmentation should inject structural perturbations that do not contain too much redundant information
and cannot greatly modify the global property of the graph. We aim to use the spectral change of graph
to control the trade-off when generating augmentations.

2.2 Challenge II: Understanding Structural Threats in Machine Learning

Machine learning models have been shown unfair to biased dataset and vulnerable to adversarial ex-
amples. These issues threatening the trustworthiness of machine learning becomes even severe when
handling relational data where entities are highly correlated: the structure can be biased when the sensi-
tive attributes are involved in the generation of relational data, such that the bias is amplified in learned
embeddings when neighboring nodes with similar sensitive attributes are aggregated in the message pass-
ing paradigm; an attacker can utilize the vulnerability of the structure to inject hacking nodes or edges,
such that a learning model is fooled to make erroneous predictions on target nodes. The existence of bias
and perturbation on real-world graph structure posts severe challenges to the trustworthiness of machine
learning models.

In this thread, we develop unbiased graph embedding methods to mitigate structural bias, and evaluate
the model robustness when the global structural property reflected by the graph spectrum is changed.
The contribution of this thread of works are guided by the following research questions.

Research Question 4: How to prevent the structure from spreading and amplifying bias on entities?
The network structure driven by homophily and social influence is inevitably affected by sensitive at-
tributes of entities, e.g., people with the same skin color tend to connect, and a loan or job recommender
system learned on such structure may favor or disregard on groups. The structure can inherit and even
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magnify undesired societal discrimination, which raises fairness issues. Our main contribution is to learn
unbiased graph embeddings from biased graph structure, discussed in Chapter 3, Section 1. We study
the generation process of attributed graph, and build the connection between the edge distributions of
the observed biased graph and a underlying bias-free graph. We then exploit such connection to reweigh
the biased training objective, which in expectation achieves the same effect of learning on the underly-
ing bias-free graph. We also propose to regularize the training objective by minimizing the discrepancy
between group-level edge distributions on these two graphs.

Research Question 5: How to understand and evaluate the model robustness when the structure is
maliciously altered?
The network structure exposing dependency information gives malicious attackers more room to break
in, e.g., phishing users can deceive recommender systems and worm normal users’ trust by strategically
making connections with their friends. This raises trustworthy issues and security concerns. Our main
contribution is to study the structural robustness in the Fourier domain, discussed in Chapter 3, Section 2.
The graph spectral filters are the key in graph convolutional networks, and we propose to directly disrupt
the spectral filters by generating structural perturbation that maximize the spectral changes, such that the
graph convolutional networks are undermined.

3 Dissertation Structure

To answer the proposed questions which are essential to understand and exploit graph structure to achieve
a more effective and trustworthy machine learning, the rest of the thesis is organized as follows. In Chap-
ter 2, we thoroughly study the different types of information encoded in the graph structure, including
explicit links, the implicit hierarchical grouping of entities, and global spectral property. We develop
practical unsupervised generative models and contrastive learning paradigms to harness the graph struc-
ture of unlabeled data. In Chapter 3, we propose principled frameworks to mitigate structural bias and
understand structural vulnerability in representation learning. We first cope with the ethical issue by
studying the graph generation process, based on which we learn node embeddings from an underlying
bias-free graph whose edges are generated without any influence from sensitive attributes. We then study
the structural vulnerability in the Fourier domain by designing a structural attack model to directly max-
imize the spectral distance between the original and perturbed graph. Addressing the proposed research
problems can establish a solid foundation to develop machine learning paradigms for rich-content, biased
and perturbed graph structure, which widely exist in many real-world domains and applications.



Chapter 2

Harnessing Graph Structure in Unsupervised Machine Learning

Supervised machine learning heavily relies on well-annotated manual labels. However, the cost of la-
bel annotation and collection is prohibitive for many research problems in data science which deal with
large-scale datasets (e.g., social networks with millions of entities) and problems that rely on domain
knowledge (e.g., drug design in biochemistry). Considering a large amount of unlabeled data (e.g., free
text and network structure) that can be freely obtained, unsupervised machine learning is studied to un-
cover intrinsic patterns within data without soliciting label information. The graph structure of data pro-
vides enormous information which can be harnessed to advance unsupervised machine learning. Given
the ubiquity of graph structure in a broad spectrum of domains, one thread of my dissertation aims to
answer the question: how to discover knowledge from relational but unlabeled structure?

In this chapter, by thoroughly studying the different types of information encoded in the graph structure,
we provide insights on better exploiting the graph structure in unsupervised learning paradigms. In Sec-
tion 1, we explicitly use the edge as an indicator of similarity between entities, and propose to jointly
embed network and topic from user-generated data [50]. This work is based on a simple but intrinsic
principle: the contents and connections are generated from entities’ hidden essence, which can be mod-
eled as latent variables and learned as representations. In Section 2, we discover a latent hierarchical
grouping of entities that commonly exist in network structure: entities sharing common property and
neighbors tend to group and small groups can be merged into larger groups in a hierarchical way [100].
This work verifies the informativeness of discovering and preserving implicit structures. In Section 3, we
explore a newly emerging self-supervised learning paradigm, a.k.a. contrastive learning, on graphs, and
propose a graph augmentation scheme guided by graph spectrum capturing global structural property.
Generally speaking, my works study the generation of unlabeled data to understand the dependency
structure in relational data, and develop practical models for real-world problems such as representation
learning, user modeling, and recommendation.

1 Unsupervised Machine Learning with Explicit Structure

We first study the problem of user modeling in social networks as a practical showcase of exploiting ex-
plicit graph structure for unsupervised machine learning. Essentially, user modeling builds up conceptual
representations of users, which help automated systems to better capture users’ needs and enhance user
experience in such systems [46, 84]. Extensive efforts have proved the value of user representation learn-
ing in various real-world applications, such as latent factor models for collaborative filtering [142, 85],
topic models for content modeling [182, 115], network embedding models for social link prediction
[99, 16], and many more [154, 188].
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User representation learning is challenging, and it can never be a straightforward application of exist-
ing statistical learning algorithms on user-generated data. First, user-generated data is noisy, incom-
plete, highly unstructured, and tied with social interactions [165], which imposes serious challenges in
modeling such data. For example, in an environment where users are connected, e.g., social network,
user-generated data is potentially related, which directly breaks the popularly imposed independent and
identically distributed assumptions in most learning solutions [99, 163, 49]. Second, users often partic-
ipate in various online activities simultaneously, which creates instrumental contextual signals across
different modalities. Although oftentimes scattered and sparse, such multi-modal observations reflect
users’ underlying intents as a whole and call for a holistic modeling approach [88]. Ad-hoc data-driven
solutions inevitably isolate the dependency and hence fail to create a comprehensive representation of
users. For example, users’ social interactions [134, 16] and their generated text data [13, 182, 115] have
been extensively studied for user representation learning, but they are largely modeled in isolation. Third,
consequently, a unified user representation learning solution is preferred to serve different applications,
by taking advantage of data-rich applications to help those data-poor applications.

Even among a few attempts for joint modeling of different types of user-generated data [196, 51], ex-
plicit modeling of dependency among multiple behavior modalities is still missing. For example, Yang et
al. [196] incorporated user-generated text content into network representation learning via joint matrix
factorization. In their solution, content modeling is only used as a regularization for network modeling;
and thus the learnt model is not in a position to predict unseen text content. Gong and Wang [51] paired
the task of sentiment classification with that of social network modeling, and represented each user as
a mixture over the instances of these paired tasks. Though text and network are jointly considered, they
are only correlated by sharing the same mixing component, without explicitly modeling of the mutual
influence between them.

In social psychology and cognitive science, the concept of user schema defines the knowledge structure
a person holds which organizes categories of information and the relationships among such categories
[172]. Putting it into the scenario of user modeling, we naturally interpret the knowledge structure as
user representation described by the collection of associated data, such as the set of textual reviews
and behavioral logs associated with individual users. The interrelation existing among multiple types of
data further motivates us to perform user modeling in a joint manner while the concept of distributed
representation learning [8] provides us one possible solution. By constructing a shared latent space, we
can embed different modalities of user-generated data in the same low-dimensional space, where the
structural dependency among them can be realized by the proximity among different embeddings. The
space should be constructed in such a way: 1) the properties of each modality of user-generated data is
preserved; 2) the closeness among different modalities of user-generated data can be characterized by
the similarity measured in the latent space. For example, connected users in a social network should be
closer to each other in this latent space; and by mapping other types of user behavior data into this same
space, e.g., text data or behavioral logs, users should be surrounded by their own generated data.

To realize this new perspective of user representation learning, we exploit two most widely available
and representative forms of user-generated data, i.e., text content and social interactions. We develop
a probabilistic generative model to integrate user modeling with content and network embedding. Due
to the unstructured nature of text, we appeal to statistical topic models to model user-generated text
content [13, 182], with a goal to capture the underlying semantics. We define a topic as a probability
distribution over a fixed vocabulary [13]. We embed both users and topics to the same low-dimensional
space to capture of their mutual dependency. On one hand, a user’s affinity to a topic is characterized
by his/her proximity to the topic’s embedding in this latent space, which is utilized to generate each text
document of the user. On the other hand, the affinity between users is directly modeled by the proximity
between users’ embeddings, which are utilized to generate the corresponding social network connections.
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In this latent space, the two modalities of user-generated data are correlated explicitly, indicated by the
user’s topical preferences. The user representation is obtained by posterior inference of those embedding
vectors over a set of training data, via variational Bayesian.

1.1 Related Work

In order to learn effective user representations, a lot efforts have been devoted to modeling diverse modal-
ities of user-generated data: 1) in an isolated manner, i.e., focusing on one modality of user-generated
data such as text reviews; 2) in a joint manner, i.e., utilizing multiple types of user data. Our proposed
solution falls into the second one as it learns representations from both network structure and text content
by capturing the dependency between the two modalities in the latent topic space.

When performing user representation learning in an isolated way, much attention has been paid on ex-
ploring user-user interactions to learn users’ distributed representations, which are essential for better
understanding users’ interactive preferences in social network analysis. Inspired from word embedding
techniques [120], random walk models are exploited to generate random paths over a network to learn
dense, continuous and low-dimensional representations of users [134, 166, 52]. Matrix factorization
technique is also commonly used to learn user embeddings [128, 185], as learning a low-rank space
for an adjacency matrix representing the network naturally fits the need of learning low-rank user/node
embeddings. For instance, Tang and Liu [167] factorize an input network’s modularity matrix and use
discriminative training to extract representative dimensions for learning user representation.

In parallel, the user-generated text data is utilized to understand users’ emphasis on specific entities or
aspects. Topic models [13, 61] serve as a building block for statistical modeling of text data. Typical
solutions model individual users as a bag of topics [146], which govern the generation of associated text
documents. Wang and Blei [182] combine topic modeling with collaborative filtering to estimate topical
user representations with additional observations from user-item ratings. Wang et al. [183] use topic
modeling to estimate users’ detailed aspect-level preferences from their opinionated review content. Lin
et al. [103] learn users’ personalized topical compositions to differentiate user’s subjectivity from item’s
intrinsic property in the review documents. Implicit preferences of each user as well as the properties
of each product is uncovered by mapping users and items into a shared topic space [115]. Some recent
works use deep neural networks to obtain user embedding from their generated text data [164, 27].

Although most previous works studied social networks and user-generated text content in isolation, little
attention has been paid in combining the two sources for better user modeling. Earlier work [118] regu-
larizes a statistical topic model with a harmonic regularizer defined on the network structure. Yang et al.
[196] incorporate text features of users into network representation learning via joint matrix factoriza-
tion. Gong and Wang [51] pair tasks of opinionated content modeling and network structure modeling in
a group-wise fashion, and model each user as a mixture over the tasks. Though both text and network are
utilized for user modeling in the aforementioned works, explicit modeling of dependence among differ-
ent modalities is still missing. Archarya et al. [2] explore the dependency among documents and network
but on a per-community basis instead of a per-user basis. Our work proposes a holistic view to model
users’ social preferences and topical interests jointly, thus to provide a more general understanding of
user intents from multiple perspectives.

1.2 Method: Joint Network Embedding and Topic Embedding

To interrelate different modalities of user-generated data for user representation learning, we propose to
perform joint network embedding and topic embedding. In this section, we first provide the details of our
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probabilistic generative model, JNET, which imposes a complete generative process over user-generated
social interactions and text data in each individual user. Then we describe our variational Bayesian based
Expectation Maximization algorithm, which retrieves the learnt user representation from a given corpus.

1.2.1 Model Specification We denote a collection of U users as U = {u1, u2, ...uU}, in which each

user ui is associated with a set of documents Di=
{
xi,d

}Di

d=1
. Each document is represented as a bag of

words xd = {w1, w2, .., wN}, where each wn is chosen from a vocabulary of size V . Each user is also
associated with a set of social connections denoted as Ei = {eij}Uj ̸=i, where eij = 1 indicates user ui

and uj are connected in the network; otherwise, eij = 0.

We represent each user as a real-valued continuous vector ui ∈ RM in a low-dimensional space. And
we seek to impose a joint distribution over the observations in each user’s associated text documents
and social interactions, so as to capture the underlying structural dependency between these two types
of data. Based on our assumption that both types of users-generated data are governed by the same
underlying user intent, we explicitly model the joint distribution as p(Di, Ei) =

∫
p(Di, Ei, ui)dui,

which can be further decomposed into p(Di, Ei, ui) = p(Di|Ei, ui)p(Ei|ui)p(ui). We assume given the
user representation ui, the generation of text documents in Di is independent from the generation of
social interactions in Ei, i.e., p(Di|Ei, ui) = p(Di|ui). As a result, the modeling of joint probability
over a user’s observational data with his/her latent representation can be decomposed into three related
modeling tasks: 1) p(Di|ui) for content modeling, 2) p(Ei|ui) for social connection modeling, and 3)
p(ui) for user embedding modeling.

We appeal to topic models [13, 61] due to their effectiveness shown in existing empirical studies for
content modeling. The concept of user schema inspires us to embed both users and topics to the same
latent space in order to capture the dependency between them. By projecting a user’s embedding vector
to topic embedding vectors, we can easily measure affinity between a user and a topic, and thus capture
users’ topical preferences. It also allows us to capture the topical variance in documents from the same
user and establish a valid predictive distribution of his/her documents.

Formally, we assume there are in total K topics underlying the corpus with each represented as an em-
bedding vector ϕk ∈ RM in the same latent space; denote Φ ∈ RK×M as the matrix of topic em-
beddings, which facilitate our representation of each user’s affinity towards different topics: Φ · ui,
which reflects user ui’s topical preferences, and serves as the prior of topic distribution in each text
document from him/her. Specifically, denote the document-level topic vector as θid ∈ RK , we have
θid ∼ N (Φ·ui, τ

−1I), where τ characterizes the uncertainty when user ui is choosing topics from his/her
global topic preferences for each single document. By projecting the document-level topic vector θid
into a probability simplex, we obtain the topic distribution for document xi,d: πidk = softmax(θidk) =
exp(θidk)/

∑K
l=1 exp(θidl), from which we sample a topic indicator zidn ∈ {1, ...,K} for each word

widn in xi,d by zidn ∼ Multi(πidk). As in conventional topic models, each topic k is also associated
with a multinomial distribution βk over a fixed vocabulary, and each word widn is then drawn from
the respective word distribution indicated by corresponding topic assignment, i.e., widn ∼ p(w|βzidn).
Putting all pieces together, the task of content modeling for each user can be summarized as p(Di|ui) =∏Di

d=1 p(θid|ui, Φ, τ)
∏N

n=1 p(zidn|θid)p(widn|zidn, β).

The key in modeling social connections is to understand the closeness among users. As we represent
users with a real-valued continuous vector, this can be easily measured by the vector inner product
in the learnt low-dimensional space. Define the underlying affinity between a pair of users ui and uj

as δij , we assume E[δij ] = uT
i uj . To capture uncertainty of the affinity between different pairs of

users, we further assume δij is drawn from a Gaussian distribution centered at the measured closeness,
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2.1 Graphical Model Representation

⇠ � ↵ �k �

eij �ij ui ✓id zidn widn

⌧

ND
U

U

K

Putting all the developed components together, we obtain a generative model which learns
distributed representations of users and topics and capture different correlations jointly. We
name the resulting model as Explicit User Behavior model, or EUB in short. We successfully
achieve a holistic user behavior modeling by capturing three different types of correlations.

The generative process of EUB is as follows:

• For each topic �k:

– Draw topic compact representation �k ⇠ N (0, ↵�1I)

• For each user ui:

– Draw user compact representation ui ⇠ N (0, ��1I)

– For every other user uj:

⇤ Draw affinity �ij between ui and uj, �ij ⇠ N (uT
i uj, ⇠

2)

⇤ Draw interaction eij between ui and uj, eij ⇠ Bernoulli(logistic(�ij))

• For each opinionated document of user ui:

– Draw the user-document topic preference vector ✓id ⇠ N (�Tui, ⌧
�1I)

– For each word widn:

⇤ Draw topic assignment zidn ⇠ Multi(softmax(✓id))

⇤ Draw word widn ⇠ Multi(�zidn
)

where we make several assumptions:

• the dimensionality M of the compact representation of topics and users is predefined and
fixed;

• the word probabilities are parameterized by a K⇥V matrix � where �kv = p(wv = 1|zk = 1)

3 Inference
Posterior inference and parameter estimation is not analytically tractable due to the coupling
between latent variables and the non-conjugate logistic-normal prior. We develop a stochastic
variational method that involves only compact topic and user vectors which are cheap to infer.

2

Fig. 1: Graphical model representation of JNET. The upper plate indexed by K denotes the learnt topic
embeddings. The outer plate indexed by U denotes distinct users in the collection. The inner plates
indexed by U and D denote each user’s social connections and text documents respectively. The inner
plate indexed by N denotes the word content in one text document.

δij ∼ N (uT
i uj , ξ

2), where ξ characterizes the concentration of this distribution. The observed social
connection eij between user ui and uj is then assumed as a realization of this underlying user affinity:
eij ∼ Bernoulli(logistic(δij)) where logistic(δij) = 1/(1 + exp(−δij)). As a result, the task of social
connection modeling can be achieved by p(Ei|ui) =

∏U
j ̸=i p(eij |δij)p(δij |ui, uj).

We do not have any specific constraint on the form of latent user embedding vectors {ui}Ui=1 and topic
embedding {ϕk}Kk=1, as long as they are in a M -dimensional space. For simplicity, we assume they
are drawn from isotropic Gaussian distributions respectively, i.e., ui ∼ N (0, γ−1I), where γ measures
the concentration of different users’ embedding vectors, and ϕk ∼ N (0, α−1I). Other types of prior
distribution can also be introduced, if one has more knowledge about the user and topic embeddings,
such as sparsity or a particular geometric shape. But it is generally preferred to have conjugate priors, so
as to simplify later posterior inference steps.

Putting these components together, the generative process of our solution can be described as follows:

– For each topic ϕk:
• Draw its topic compact representation ϕk ∼ N (0, α−1I)

– For each user ui:
• Draw its user compact representation ui ∼ N (0, γ−1I)
• For every other user uj :

* Draw affinity δij between ui and uj , δij ∼ N (uT
i uj , ξ

2)

* Draw interaction eij between ui and uj , eij ∼ Bernoulli(logistic(δij))
– For each document of user ui:

• Draw the user-document topic preference vector θid ∼ N (Φ · ui, τ
−1I)

• For each word widn:

* Draw topic assignment zidn ∼ Multi(softmax(θid))
* Draw word widn ∼ Multi(βzidn)

We make two explicit assumptions here: 1) the dimensionality M of the compact representation of topics
and users is predefined and fixed; 2) the word distributions under topics are parameterized by a K × V
matrix β where βkv = p(wv|zk) over a fixed vocabulary of size V . The generative model captures
the interrelation between multiple modalities of user-generated data for user representation learning.
In essence, we are performing a Joint Network Embedding and Topic Embedding, thus, we name the
resulting model as JNET in short.
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1.2.2 Variational Bayesian Inference The compact user representations can be obtained via posterior
inference over the latent variables on a given set of data. However, posterior inference is not analytically
tractable in JNET due to the coupling among latent variables, i.e., user-user affinity δ, user embedding
u, topic embedding Φ, document-level topic proportion θ and word-level topic assignment z. We appeal
to a mean-field variational method to approximate the posterior distributions, and further utilize Taylor
expansion [12] to address the difficulty introduced by non-conjugate logistic-normal priors.

We begin by postulating a factorized distribution:

q(Φ,U,∆,Θ,Z) =

K∏
k=1

q(ϕk)

U∏
i=1

q(ui)
[ U∏
j=1,j ̸=i

q(δij)

D∏
d=1

q(θid)

N∏
n=1

q(zidn)
]

where the factors have the following parametric forms:

q(ϕk) = N (ϕk|µ(ϕk), Σ(ϕk)), q(ui) = N (ui|µ(ui), Σ(ui)),

q(δij) = N (δij |µ(δij), σ(δij)
2
), q(θid) = N (θid|µ(θid), Σ(θid)),

q(zidn) = Mult(zidn|ηidn)

Because the topic proportion vector θid is inferred in each document, it is not necessary to estimate a
full covariance matrix for it [12]. Hence, in its variational distribution, we only estimate the diagonal
variance parameters.

Variational algorithms aim to minimize the KL divergence from the approximated posterior distribution
q to the true posterior distribution p. It is equivalent to tightening the evidence lower bound (ELBO) by
Jensen’s inequality [13]:

log p(w, e|α, β, γ, τ) ≥ Eq[log p(U,Θ,Z, Φ,∆,w, e|α, β, γ, τ)]− Eq[log q(U,Θ,Z, Φ,∆)] (1)

where the expectation is taken with respect to the factorized variaitonal distribution of the latent variables
q(Φ,U,∆,Θ,Z). Let L(q) denote the right-hand side of Eq (1), the first step of maximizing this lower
bound is to derive the analytic form of posterior expectations required in L(q). Thanks to the conjugate
priors introduced on {ui}Ui=1 and Φ = {ϕk}Kk=1, the expectations related to these latent variables have
closed form solutions, while due to non-conjugate logistic-normal priors, we use Taylor expansions to
approximate the expectations related to θid, δij . Next we describe the detailed inference procedure for
each latent variable.

• Estimate Topic Embedding. For each topic k, we relate the terms associated with q(ϕk|µ(ϕk), Σ(ϕk))
in Eq (1) and take maximization w.r.t. µ(ϕk) and Σ(ϕk). Closed form estimations of µ(ϕk), Σ(ϕk) exist,

µ(ϕk) = τΣ(ϕk)
∑U

i=1

∑Di

d=1
µ
(θid)
k µ(ui)

Σ(ϕk) =
[
αI + τ

∑U

i=1

∑Di

d=1
(Σ(ui) + µ(ui)µ(ui)

T
)
]−1

(2)

The estimation of Σ(ϕk) is not related to a specific topic k, because we impose an isotropic Gaussian prior
for all {ϕk}Kk=1 in JNET. It suggests that the correlations between different topic embedding dimensions
are homogeneous across topics. Interestingly, we can notice that the posterior covariance Σ(ϕk) of topic
embeddings is closely related to user embeddings, which indicates direct dependency from network
structure to text content.

• Estimate User Embedding. For each user i, we relate the terms associated with q(ui|µ(ui), Σ(ui)) in
Eq (1) and maximize it with respect to µ(ui), Σ(ui). Closed form estimations can also be achieved for
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these two parameters as follows:

µ(ui) =Σ(ui)
(
τ
∑Di

d=1

∑K

k=1
µ
(θid)
k µ(ϕk) +

∑U

j ̸=i
ξ−2µ(δij)µ(uj)

)
Σ(ui) =γI + τDi

∑K

k=1
(Σ(ϕk) + µ(ϕk)µ(ϕk)

T
)

+
∑U

j ̸=i
ξ−2(Σ(uj) + µ(uj)µ(uj)

T
) (3)

The effect of joint content modeling and network modeling for user representation learning is clearly
depicted in this posterior estimation of user embedding vectors. The updates of µ(ui) and Σ(ui) come
from two types of influence: the text content and social interactions of the current user. For example,
the posterior mode estimation of user embedding vector ui is a weighted average over the topic vectors
that this user has used in his/her past text documents and the user vectors from his/her friends. And the
weights measure his/her affinity to those topics and users in each specific observation. The updates ex-
actly reflect the formation of “user schema” in social psychology from two perspectives: both modalities
of user-generated data shape user embeddings, while the structural dependency between them is reflected
in this unified user representation.

• Estimate Per-document Topic Proportion Vector. Similar procedures as above can be taken to es-
timate µ(θid) and Σ(θid). Due to the lack of conjugate prior for logistic Normal distributions, we apply
Taylor expansion and introduce an additional free variational parameter ζ in each document. Because
there is no closed form solution for the resulting optimization problem, we use gradient ascent to opti-
mize µ(θid) and Σ(θid) with the following gradients,

∂L/∂µ
(θid)
k =− τµ

(θid)
k + τµ(ϕk)

T
µ(ui) +

∑N

n=1

[
ηidnk − ζ−1 exp(µ

(θid)
k +Σ

(θid)
kk /2)

]
∂L/∂Σ

(θid)
kk =− τ −N exp(µ

(θid)
k +Σ

(θid)
kk /2)/ζ + 1/Σ

(θid)
kk

(4)

where ζ =
∑K

k=1 exp(µ
(θid)
k + Σ

(θid)
kk /2). Since only the diagonal elements in Σ

(θ)
id are statistically

meaningful (i.e., variance), we simply set its off-diagonal elements to zero in gradient update. The gradi-
ent function suggests that the document-level topic proportion vector should align with the corresponding
compact user representation and topic representation. Although no closed form estimations of µ(θid) and
Σ(θid) exist, the expected property of µ(θid) is clearly reflected: the proportion of each topic in document
xi,d should align with this user’s preference on this topic (i.e., affinity in the embedding space) and the
topic assignment in document content. And the variance is introduced by the uncertainty of per-word
topic choice and the intrinsic uncertainty of a user’s affinity with a topic.

• Estimate User Affinity. Similar approach can be applied here to estimate µ(δij) and σ(δij)
2

which
govern the latent user affinity. Again, gradient ascent is utilized to optimize µ(δij) and Σ(θid),

∂L/∂µ(δij) = eij − ε−1 exp (µ(δij) + σ(δij)
2
/2)− ξ−2(µ(δij) − µ(ui)

T
µ(uj))

∂L/∂σ(δij) = −ε−1σ(δij) exp (µ(δij) + σ(δij)
2
/2)− ξ−2σ(δij) + 1/σ(δij)

The gradient functions suggest that the latent affinity between a pair of users is closely related with their
observed connectivity and their closeness in the embedding space.

• Estimate Word Topic Assignment. The topic assignment zidn for each word widn in document xi,d

can be estimated by,

ηidnk ∝ exp{µ(θid)
k +

∑V

v=1
widnv log βkv}
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We execute the above variational inference procedures in an alternative fashion until the lower bound
L(q) defined in Eq (1) converges. The variational inference algorithm postulates strong independence
structures between the variational parameters, allowing straightforward parallel computing. Since the
variational parameters can be grouped by documents: µ(θid), Σ(θid) and η, by topics: µ(ϕk) and Σ(ϕk),
and by users: µ(ui), Σ(ui), µ(δij) and σ(δij)

2
, we perform alternative update in parallel to improve com-

putational efficiency: for example, we fix topic-level parameters and user-level parameters, and distribute
the documents across different machines to estimate their own µ(θid), Σ(θid) and η in parallel for large
collections of user-generated data.

1.2.3 Parameter Estimation When performing the variational inference described above, we have
assumed the knowledge of model parameters α, γ, τ, ξ and β. Based on the inferred posterior distribu-
tion of latent variables in JNET, these model parameters can be readily estimated by the Expectation-
Maximization (EM) algorithm. The most important model parameters are priors for user embedding γ
and topic embedding α, and word-topic distribution β. As ξ and τ serve as the variance for user affinity
δij and document topic proportion vector θid, and we have large amount of observations in text docu-
ments and social connections across all users, our model is less sensitive to their settings. Therefore, we
estimate ξ and τ less frequently than α, γ and β.

By taking the gradient of L(q) in Eq (1) with respect to α and γ, and set the resulting gradient to 0, we
get the closed form estimations of α and γ as follows:

α =
KM∑K

k=1[
∑M

m=1 Σ
(ϕk)
mm + µ(ϕk)

T
µ(ϕk)]

, γ =
UM∑U

i=1[
∑M

m=1 Σ
(ui)
mm + µ(ui)

T
µ(ui)]

And the closed form estimation for word-topic distribution β can be achieved by,

βkv ∝
∑U

i=1

∑Di

d=1

∑N

n=1
widnvηidnv

where widnv indicates the nth word in ui’s dth document is the vth term in the vocabulary. The estimation
for ξ and τ is omitted for space limit, but they can be easily derived based on Eq (1).

The resulting EM algorithm consists of E-step and M-step. In E-step, the variational parameters are
inferred based the procedures described in Section 1.2.2; and in M-step, the model parameters are esti-
mated based on collected sufficient statistics from E-step. These two steps are repeated until the lower
bound L(q) converges over all training data.

Inferring the latent variables with each user and each topic are computationally cheap. By Eq (2), updat-
ing the variables for each topic imposes a complexity of O

(
KM2|D|

)
, where K is the total number of

topics, M is the latent dimension, |D| is the total number of documents. By Eq (3), updating the variables
for each user imposes a complexity of O(M2U2) where U is the total number of users. Estimating the
latent variables for the per-document topic proportion imposes a complexity of O(|D|K(N̄ + M)) by
Eq (4), where N̄ is the average document length. And updating variables for each pair of user affinity
takes constant time while there are U2 affinity variables. With the consideration of the total number of
users and topics, the overall complexity for the proposed algorithm is O(KM2|D|+M2U2).

1.3 Experiments

We evaluated the proposed model on large collections of Yelp reviews and StackOverflow forum dis-
cussions, together with their user network structures. Qualitative analysis demonstrates the descriptive
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power of JNET through direct mapping of user and topic embeddings into a 2-D space. The explicit
modeling of dependency among user-generated data confirms the effectiveness of JNET, as indicated by
the model’s predictive power in recovering missing links and modeling unseen documents. The learnt
user representation also enables accurate content recommendation to users.

• Datasets. We employed two large publicly available user-generated text datasets together with the
associated user networks: 1) Yelp, collected from Yelp dataset challenge 1, consists of 187,737 Yelp
restaurant reviews generated by 10,830 users. The Yelp dataset provides user friendship imported from
their Facebook friend connections. Among the whole set of users, 10,194 of them have friends with an
average of 10.65 friends per user. 2) StackOverflow, collected from Stackoverflow.com 2, consists of
244,360 forum discussion posts generated by 10,808 users. While there is no explicit network structure
in StackOverflow dataset, we utilized the “reply-to” information in the discussion threads to build a
user network, because this relation suggests implicit social connections among users based on their
expertise and technical topic interest. We ended up with 10,041 connected users, with an average of
5.55 connections per user. We selected 5,000 unigram and bigram text features based on Document
Frequency (DF) in both datasets. We randomly split the data for 5-fold cross validation in all the reported
experiments.

• Baselines. We compared the proposed JNET model against a rich set of user representation learning
methods, including topic modeling based solutions, the network embedding methods, and models per-
forming joint modeling of text and network. 1) Latent Dirichlet Allocation (LDA) [13] generates the
topic distribution in documents across different users, and the user presentation is constructed by aver-
aging the posterior topic proportion of documents associated with a user. 2) Relational Topic Model
(RTM) [25] explicitly models the connection between two documents and we constructed a user-level
network by concatenating all documents of one user in this baseline. 3) Hidden Factors and Hidden
Topics (HFT) [115] combines latent rating dimensions of users with latent review topics for user model-
ing. Users’ “upvote” toward a question is utilized as a proxy of rating in StackOverflow. 4) Collaborative
Topic Regression (CTR) [182] combines collaborative filtering with topic modeling to explain the ob-
served text content and ratings. 5) DeepWalk (DW) [134] takes truncated random walks as input to learn
social representations of vertices in the network. 6) Text-Associated DeepWalk (TADW) [196] further
incorporates text content of vertices into network representation learning under the framework of joint
matrix factorization.

• Parameter Settings. We set the latent dimensions of user and topic embeddings to 10 in both JNET
and baselines as larger dimension gives limited performance improvement but slows down all models
considerably. As we tuned the topic size from 10 to 100, we found the learnt topics are most representa-
tive and meaningful at around 40 topics. Hence, we set topic number to 40 in the reported experiments.
The maximum number of iteration in our EM algorithm is set to 100. Both the source codes and data are
available online 3.

1.3.1 The Learnt User Representations We first study the quality of the learnt user representations
from JNET. The learnt user embeddings are mapped to a 2-D space using the t-SNE algorithm and
is visualized in Figure 2. For illustration purpose, we simply assign each user to the topic that he/she is
closest to, i.e., argmaxk(ϕk ·ui) and we mark users sharing the same interested topic with the same color.
We also plot the most representative words of each topic learnt from JNET (i.e., argmaxw p(w|βz)), with
the same color of the corresponding set of users.

1 Yelp dataset challenge. http://www.yelp.com/dataset challenge
2 StackOverflow. http://stackoverflow.com
3 JNET. https://github.com/Linda-sunshine/JNET.

http://www.yelp.com/dataset_challenge
http://stackoverflow.com
https://github.com/Linda-sunshine/JNET.
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Fig. 2: Visualizing learned user embedding and topics on Yelp (LEFT) and StackOverflow (RIGHT).

As we can find from the visualization of StackOverflow, users of similar interests are clearly clustered
in the 2-D space, which indicates the descriptive power of our learnt user vectors. Meanwhile, we can
easily identify the theme of each learnt topic, such as C++ (in light green circle), SQL (in dark purple
circle) and java (in light blue circle). It is also interesting to find correlations among the users and topics
by looking into their distances. The users in dark green are mainly interested in website development,
thus are far away from the users who are interested in C++ (in light green). The users in orange care
more about the network communication and they are overlapped with other clusters of users focusing
on SQL (in dark purple) and C++ (in light green) as network communication is an important component
among different programming languages. Similar observations can also be found on Yelp dataset.

1.3.2 Document Modeling In order to verify the predictive power of the proposed model, we first
evaluated the generalization quality of JNET on the document modeling task. We compared all the topic
model based solutions by their perplexity on a held-out test set. Formally, the perplexity for a set of
held-out documents is calculated as follows [13]:

perplexity(Dtest) = exp
(
−

∑
d∈Dtest

log p(wd)∑
d∈Dtest

|d|
)

where p(wd) is the likelihood of each held-out document given by a trained model. A lower perplexity
indicates better generalization quality of a model.

Figure 3 reports the mean and variance of the perplexity for each model with 5-fold cross validation
over different topic sizes. JNET achieved the best predictive power on the hold-out dataset, especially
when an appropriate topic size is assigned. RTM achieved comparative performance as it utilizes the
connectivity information among users, but it is limited by not being able to capture the variance within
each user’s different documents. The other baselines do not explicitly model network data, i.e., LDA,
HFT and CTR, and therefore suffer in their performance.

A good joint modeling of network structure and text content should complement each other to facilitate
a more effective user representation learning. Hence, we expect a good model to learn reasonable repre-
sentations on users lacking text information, a.k.a., cold-start users, by utilizing network structure. We
randomly selected 200 users and held out all their text content for testing. Regarding to the number of
social connections each testing user has in training data, we further consider three different sets of users,
and name them as light, medium and heavy users, to give a finer analysis with respect to the degree of
connectivity in cold-start setting. The threshold for categorizing different sets of users is based on the
statistics of each dataset; and each group contains 200 users. In particular, we selected 5 and 20 as the
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Fig. 3: Perplexity comparison on Yelp and StackOverflow.

20 40 60 80 100

Number of Topics

2000

3000

4000

5000

6000

P
er

p
le

x
it

y

Yelp-light

JNET

LDA

HFT

CTR

RTM

20 40 60 80 100

Number of Topics

2000

3000

4000

5000

6000
Yelp-medium

JNET

LDA

HFT

CTR

RTM

20 40 60 80 100

Number of Topics

2000

3000

4000

5000
Yelp-heavy

JNET

LDA

HFT

CTR

RTM

Fig. 4: Comparison of perplexity in cold-start users on Yelp.

connectivity threshold for Yelp, 5 and 15 as the threshold for StackOverflow respectively. That is, in Yelp,
light users have fewer than 5 friends, medium users have more than 5 friends while fewer than 20 friends
and heavy users have more than 20 friends. We compared JNET against four baselines, i.e., LDA, HFT,
RTM, CTR for evaluation purpose. We reported the perplexity on the held-out test documents regarding
to the three sets of users, in Figure 4.

As we can observe in Figure 4, JNET performed consistently better on the testing documents for the three
different sets of unseen users on Yelp dataset, which indicates the advantage of utilizing network infor-
mation in addressing cold-start content prediction issue. The benefit of network is further verified across
different sets of users as heavily connected users can achieve better performance improvement compared
with text only user representation model, i.e., LDA. Similar conclusion is obtained for StackOverflow
dataset, while we neglect it due to the space limit.

1.3.3 Link Prediction The predictive power of JNET is not only reflected in unseen documents, but
also in missing links. In the task of link prediction, the key component is to infer the similarity between
users. We split the observed social connections into 5 folds. Each time, we held out one fold of edges for
testing and utilized the rest for model training, together with users’ text content. In order to construct a
valid set of ranking candidates for each testing user, we randomly injected irrelevant users (non-friends)
for evaluation purpose. And the number of irrelevant users is proportional to the number of connections
a testing user has, i.e., t × number of social connections. We rank users based on the cosine similarity
between their embedding vectors. Normalized discounted cumulative gain (NDCG) and mean average
precision (MAP) are used to measure the quality of ranking. We started with the ratio between irrelevant
users and relevant users being t = 2 and increased the ratio to t = 8 to make the task more challenging
to further verify the effectiveness of the learnt user representations.

To compare the prediction performance, we tested five baselines, i.e., LDA, HFT, RTM, DW and TADW.
We reported the NDCG and MAP for the two datasets in Figure 5. It is clear JNET achieved encour-
aging performance on both datasets, which indicates effective user representations are learnt to recover
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Fig. 5: The performance comparison of link suggestion on Yelp and StackOverflow.

Table 1: The performance comparison of link prediction for cold-start users on StackOvewrflow.

Models
Light Medium Heavy

Ratio=2 Ratio=4 Ratio=6 Ratio=2 Ratio=4 Ratio=6 Ratio=2 Ratio=4 Ratio=6
NDCG/MAP NDCG/MAP NDCG/MAP NDCG/MAP NDCG/MAP NDCG/MAP NDCG/MAP NDCG/MAP NDCG/MAP

LDA 0.786/0.648 0.664/0.477 0.632/0.431 0.774/0.597 0.677/0.451 0.612/0.364 0.818/0.581 0.745/0.443 0.697/0.366
HFT 0.666/0.493 0.543/0.333 0.483/0.259 0.671/0.461 0.562/0.313 0.492/0.226 0.682/0.389 0.591/0.250 0.532/0.179
RTM 0.777/0.642 0.688/0.514 0.627/0.433 0.801/0.638 0.709/0.495 0.654/0.419 0.837/0.624 0.760/0.481 0.711/0.399
TADW 0.695/0.525 0.583/0.373 0.515/0.291 0.696/0.481 0.591/0.336 0.532/0.263 0.739/0.448 0.639/0.298 0.587/0.229
JNET 0.794/0.664 0.697/0.534 0.643/0.453 0.812/0.649 0.724/0.511 0.663/0.425 0.842/0.626 0.763/0.483 0.713/0.399

network structure. In Yelp dataset, network-only solutions, i.e., DW, and text-only solutions, i.e., LDA
and HFT, cannot take the full advantage of both modalities of user-generated data to capture user intents,
while RTM achieved descent performance due to the integration of content and network modeling. Since
the way of constructing network in StackOverflow is more content oriented, the performance of link pre-
diction on StackOverflow prefers the text based solutions, which explains the comparable performance
of LDA. Though TADW utilizes both modalities for user modeling, it fails to capture the dependency
between them, leading to the poor performance on this task.

In practice, link prediction for unseen users is especially useful. For example, friend recommendation
for new users in a system: they have very few or no friends, while they may associate with rich text
content. This is also known as “cold-start” link prediction. Network-only solutions will suffer from the
lack of information in such users. However, a joint model can overcome this limitation by utilizing user-
generated text content to learn representative user vectors, thus to provide helpful link prediction results.

In order to study the models’ predictive power in the cold-start setting, we randomly sampled three sets
of users, regarding to the number of documents each user has, and name them as light, medium and heavy
users accordingly. Each set of users consists of 200 users, and we selected 10 and 50 as the threshold for
Yelp, 15 and 50 as the threshold for StackOverflow respectively. For example, in StackOverflow, light
users have fewer than 15 posts, medium users have more than 15 but fewer than 50 posts, and heavy
users have more than 50 posts. We compared JNET against four baselines, i.e., LDA, HFT, RTM and
TADW for evaluation purpose. Because DW cannot learn representations for users without any network
information, it is excluded in this experiment. We also randomly injected irrelevant users as introduced
before for evaluation and we varied the ratio to change the difficulty of the task. We reported the NDCG
and MAP performance on the three sets of users in Stackoverflow dataset with three different ratios, i.e.,
2, 4 and 6, in Table 1, respectively.

JNET achieved consistently favorable performance in cold-start users, as accurate proximity between
users is properly identified with its user representations learnt from text data. Comparing across user
groups, better performance is achieved for users with more text documents. Similar results were obtained
on Yelp dataset as well, but omitted due to space limit.
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Fig. 6: Expert recommendation on StackOverflow.

1.3.4 Expert Recommendation In the sampled StackOverflow dataset, the average number of an-
swers for questions is as low as 1.14, which indicates the difficulty for getting an expert to answer the
question. If the system can suggest the right user to answer the posted questions, e.g., push the question
to the selected user, more questions would be answered more quickly and accurately. We conjecture the
learnt topic distribution of each question in StackOverflow, together with the identified user representa-
tion, can facilitate the task of expert recommendation for question answering. The task can be further
decomposed into two components: whether the question falls into a user’s skill set; and whether the user
who asked the question shares similar interests with the potential candidate experts. With the learnt topic
embeddings Φ and each user’s embedding ui, each user’s interest over topics can be characterized as a
mapping from the topic embeddings to the user’s embedding, i.e., Φ · ui. Together with the learnt topic
distribution of each question, we can estimate the proximity between a question and a user’s expertise to
score the alignment between them. In the meanwhile, the closeness between users can be simply mea-
sured by the distance of their corresponding embedding vectors. As a result, the task can be formalized
as finding the user that achieves the highest relatedness with the given question, where we define the
relatedness as follows:

score = α · cosine(ui · Φ, θid) + (1− α) · cosine(ui, uj) (5)

Due to the limited number of answers for each question in our dataset, we selected 1,816 questions with
more than 2 answers for the experiment. Besides the users that answered the given question, we also
incorporated irrelevant users for each question for evaluation purpose. And the number of irrelevant users
is 10 times of the number of answers. We compared against the learnt topic distributions of questions and
user representations from LDA, HFT and CTR as we cannot get the topic distribution of each question
from the other baselines. As we tune α, we plot the corresponding NDCG and MAP in Figure 6.

JNET achieved very promising performance in this recommendation task, as it explicitly models a user’s
expertise and a given question in the topic space. The estimated similarities between user-user and user-
content accurately align the question to the right user. The baseline models can only capture the similarity
between questions and users based on their topical similarity, which is insufficient in this task. Interest-
ingly, as we gradually increased the weight of question-content similarity from 0 to 1, JNET’s perfor-
mance peaked, which indicates the relative importance between user-user and user-content similarities
for this specific problem.

2 Unsupervised Machine Learning with Implicit Structure

Recent graph embedding methods achieved phenomenal success by exploiting the neighborhood struc-
ture. Specifically, each node is embedded by aggregating local features from its neighboring nodes [81];
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Fig. 7: An illustration of hierarchical grouping structure where higher layer identifies more global prop-
erties shared by larger groups of nodes.

then the node embedding is decoded to recover the node’s structural context, which is composed of
neighbors that can be related to this node (e.g., reachable via random walks in the original graph [134]).
To effectively encode the local features and preserve the surrounding context, it is worth noting that im-
plicit hierarchical grouping of nodes commonly exists in a graph’s neighborhood [107, 35, 34, 108].
Nodes tend to form groups; and the groups are organized in a hierarchical manner in terms of the
neighborhood orders: at the lower level, groups formed among low-order neighboring nodes identify
fine-grained properties shared by these nodes; as higher-order neighbors are included, small groups at
lower-levels are merged with globally shared patterns extracted. The same insight has been investigated
in social psychology [80, 73] which suggests that related individuals (nodes) tend to flexibly manifests
their properties in different groups, and new properties emerge when groups are merged into larger ones.

Figure 7 shows a motivating example on a citation graph. The nodes denoting papers are connected by
citation links. The three layers concern different neighborhood orders (indicated by the blue circle) of the
red target node. From the bottom up, as we include higher-order neighbors, small groups are merged to
larger groups. For instance, if we inspect the first-order neighbors of the target node, we may distinguish
them relating to “Optimization” or “AutoML”, because more subtle distinctions between them can be
identified from their node features and direct citation links. But when we consider the higher-order
neighborhood, we may view nodes previously from different fine-grained groups to be members of the
same but more coarse-grained groups, such as “Machine Learning” vs., “Data Science”.

Although the hierarchical grouping of graph nodes is ubiquitous and informative, little attention has been
devoted to it. Previous works showed that modeling a node’s membership to multiple groups is effective
in refining the relatedness among nodes [104, 106, 42, 130]. For example, the connection among nodes
was profiled as a distribution of memberships, which is inferred from textual content [104] or extracted
from random walks [106] based on each node’s neighborhood [42, 130]. However, these works simply
modeled the grouping of nodes with a global mixture model, ignoring the hierarchy among groups.
Other attempts trying to preserve hierarchical community structure were purely based on graph structure
[41, 107], and ignored its inter-dependency with node features in the neighborhood structure.

Modeling nodes’ membership to hierarchical groups establishes a new principle for graph embedding:
nodes that are members of the same group should be embedded closely, and the learned node embed-
dings should reflect the nodes’ membership to groups at different layers in the hierarchy. In light of this
principle, we define two important properties of group hierarchy in a graph: 1) the layer of the hierarchy
controls the resolution of node groups, such that the higher-level layers capture global patterns shared by
a broader neighborhood scope; 2) an inclusive relation exists across layers, such that lower layer groups
are merged into higher layer groups carrying more shared patterns from the bottom up in the hierarchy.



20

To realize such a group hierarchy when exploiting neighborhood structure, we propose a novel Graph
embedding model with Hierarchical Attentive Memberships, abbreviated as GraphHAM. In this model,
we embed nodes and latent node groups to the same latent space, such that the affiliation of nodes toward
groups can be inferred based on its context. The critical design component is an aggregation function
that attends neighboring nodes guided by both node and group embeddings jointly, such that both local
and global context within the neighborhood scope are captured. The node states generated for each
aggregation layer are trained to recover context nodes at a certain granularity for the neighborhood scope
of this layer. We further incorporate a set of structural constraints on the inferred group memberships
across layers of the hierarchy, such that the inclusive relation across layers is explicitly impose for a
well-defined group hierarchy.

2.1 Related Work

Hierarchical graph embedding. Recent years have witnessed numerous advances in deep architectures
for learning graph embeddings, among which Graph Convolutional Networks (GCNs) received the most
attention [18, 39, 81, 54, 69]. While most GCN models consider nodes as homogeneous, there are some
efforts exploring the hierarchical grouping property of nodes in graphs. Hierarchical structure could be
observed in heterogeneous graphs [110], multi-source aligned networks [68] and interconnected graphs
[94]. However, in most cases the hierarchical groups are latent, and there are mainly two lines of studies
addressing this challenge: 1) graph coarsening methods, and 2) spherical projection methods.

Graph coarsening strategies are proposed to obtain a series of successively simplified graphs capturing
global patterns under different granularity [26, 197, 62, 10, 93, 203]. Graphs are coarsened by a node
and edge collapsing heuristic in [26]; however, it is performed as a pre-processing step thus is isolated
from later model training. Graph pooling operation is proposed to learn an intermediate weight matrix
as a soft group assignment, such that nodes are merged as hyper-nodes to coarsen graphs [197, 62,
10]. However, such graph pooling methods lack necessary control on the weight matrix to maintain
reasonable group hierarchy, such as the inclusive relation. Spherical projection methods embed low-
level groups onto a spherical surface, the center of which represents the higher-level groups [41, 107].
But they only consider node co-occurrences when constructing the hierarchy. Hierarchical structure is
also studied in the hyperbolic space [127]; but the learned embeddings in such space are difficult to
be converted into the Euclidean vectors, which limits their applications. Hierarchical taxonomy [108]
is incorporated in network embedding via nested Chinese restaurant process; however it is not directly
applicable to GCN models.

Multi-membership based graph embedding. Nodes are considered to have distinct memberships to
different groups depending on its local context [104, 130, 106, 132, 90]. Long et al. [106] model node
memberships to topic groups on random walks in the graph. The solution heavily relies on the random
walks generated prior to the actual embedding, which results in fixed memberships that are indepen-
dent from the training of embedding models. Lin and Wang [104] associate each edge with multiple
group channels, and propose a channel-aware attention mechanism to aggregate neighbor features based
on their memberships. But external supervision from textual content in a graph is needed to infer the
memberships. There are some recent studies that dynamically assign membership in each node based
on a single context node [42, 130]. The selection module is trained with node embedding via Gumbel-
Softmax [130] or a graph cut loss [42], but group hierarchy is still ignored.

Though the effectiveness of multi-membership modeling has been verified in the aforementioned stud-
ies, the memberships are based on a flat set of groups with the same granularity [42, 130, 106]. Our
work proposes a more general model to capture nodes’ membership for a hierarchy of groups under dif-
ferent granularity. The node groups at each layer of the hierarchy correspond to a certain neighborhood
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Fig. 8: Overview of GraphHAM. In each layer of the aggregation operation, a group membership is firstly
sampled for each node. Then the information from neighbors is attended by the inferred membership to
generate node states for the next layer. The node states for each layer are learned by recovering the
context within a certain neighborhood scope. Meanwhile, inter-layer constraints are introduced to inject
the inclusive relation between membership assignments across layers.

scope. It enables structured and automatic membership discovery for each node, which supports more
comprehensive and accurate node embeddings.

2.2 Model: GraphHAM

In this section, we explain the detailed design of our model GraphHAM as illustrated in Figure 8. Each
node is modeled as a mixture of groups at each layer (Section 2.2.1). The hierarchical membership
attentive layer aggregates information from neighboring nodes with both node-level and group-level
attentions (Section 2.2.2). Finally, the node embedding vectors on each layer are learned by preserving
the structural contexts within a certain neighborhood scope (Section 2.2.3). We further impose structural
constraints to regularize the inferred memberships across layers (Section 2.2.4).

2.2.1 Membership Modeling We propose to infer nodes’ latent affiliation to each group based on
their embeddings. Then each time a group assignment is sampled for a node from its membership when
it interacts with another node, adopting the intuition that the group membership of each node is context
dependent and its particular assignment is only manifested under a specific context.

Given graph G = (V,E) with V denoting a set of nodes and E representing the edges, we assume that
each node vi is associated with an embedding vector hi ∈ Rd that depicts the states of this node. As
illustrated in Figure 7, groups can be formed by nodes that share similar states, when we view node
proximity in a certain neighborhood scope. We assume that each node is a mixture of K groups with a
corresponding group-membership distribution denoted by πi ∈ ∆K , where ∆K is a probability simplex
over K dimensions, i.e., ∀k, πk

i ≥ 0 and
∑K

k=1 π
k
i = 1. To infer the latent membership of each node, we

embed each group in the same space as node state denoted by ϕk ∈ Rd, and use Φ ∈ RK×d to represent
the matrix of embeddings of all K groups. Therefore, given a node state hi, we measure the node’s
affiliation to each group via Φ · hi ∈ RK×1. We then sample a group assignment for each node denoted
as zi, following the commonly adopted assumption that each node only manifests a single membership
depending on the specific context [5, 130]. We summarize the procedure in the following steps.
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– For each node vi:
• Draw its membership vector πi ∼ Dir(softmax(Φ · hi))
• Draw its group assignment zi ∼ Multi(πi)

where Dir(·) denotes the Dirichlet distribution and Multi(·) is the Multinomial distribution. Note that
the hard assignment based on a categorical distribution is non-differentiable, which blocks the flow of
gradients in later end-to-end optimization. We adopt the Gumbel-Softmax trick [97] to reparameterize
the multinomial distribution and draw a one-hot assignment zi as follows:

zi = one-hot(argmaxk[πi,k + g]), g ∼ Gumbel(0, 1)

where g is sampled from the standard Gumbel distribution. The non-differentiable argmax(·) operation
is further replaced with softmax to render the whole process differentiable:

zi ∝ exp
(
(πi,k + g)/τ

)
(6)

where τ is the temperature parameter to control the extent to which the output approximates the argmax(·)
operation: As τ → 0, samples from the Gumbel-Softmax distribution become one-hot.

Multiple sets of groups can be modeled when considering nodes with different scopes of neighborhood.
As shown in Figure 8, for layer l+1 concerning neighborhood scope N (l+1), the target node marked by
red is associated with a group-membership distribution π

(l+1)
i obtained by group embeddings Φ(l+1) ∈

RK(l+1)×d(l+1)

and node states h
(l+1)
i ∈ Rd(l+1)

. It is then assigned a new group z
(l+1)
i . Since the

higher-level layer captures more coarse-grained groups covering larger neighborhood scope, the number
of groups should become smaller, i.e., K(l) > K(l+1).

2.2.2 Hierarchical Membership Attentive Layers Our principle suggests that node proximity in the
embedding space should reflect their closeness in the group hierarchy. Following this insight, we propose
an aggregation function that attends neighboring nodes by both node-level and group-level relatedness.

Formally, the aggregation operation of graph convolutional layer l + 1 takes two inputs: 1) node states
from the previous layer l, {h(l)

1 , . . . ,h
(l)
|V |}, where h(l)

i ∈ Rd(l)

; 2) group states within the neighborhood
scope N (l), which is profiled by the matrix of group embeddings Φ(l). The layer l + 1 aggregates infor-
mation from neighborhood scope N (l) and generates a new set of node states {h(l+1)

1 , . . . ,h
(l+1)
|V | },h′

i ∈
Rd(l+1)

. We stack multiple layers to capture the information from neighborhoods of different scopes,
where the node states output by a lower layer are used as input to the layer above it. We denote the raw
input node features as h(1), the first-order neighbor scope as N (1), and stack L layers.

When encoding the target node vi, we propose the following aggregation function to emphasize neigh-
boring nodes that have similar states and belong to related groups:

h
(l+1)
i = σ

(
1

M

∑M

m=1

∑
j∈Ni

λm
ijα

m
ijW

(l+1),mh
(l)
j

)
(7)

where Ni is the immediate neighborhood of node i, {W(l+1),m ∈ Rd(l+1)×d(l)}Mm=1 is a set of state
transformation matrices and σ is a non-linear function. The states of neighboring nodes are re-weighed
by both a group-level coefficient λm

ij and a node-level coefficient αm
ij , which are calculated by multi-head

attention [174]. Specifically, we calculate the following attention weights with a shared transformation
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parameterized by W(l+1),m for each head m:

λm
ij = att

(
W(l+1),mΦ

(l)

z
(l)
i

,W(l+1),mΦ
(l)

z
(l)
j

)
, αm

ij = att
(
W(l+1),mh

(l)
i ,W(l+1),mh

(l)
j

)
Thus λm

ij captures the global relatedness between the two nodes’ assigned groups, while αm
ij measures the

local relatedness in terms of node states. The attention function att(·, ·) [6] can be expressed as follows
by normalizing over all nodes within the neighborhood:

att(pi,pj) =
exp

(
LeakyReLU(a⊤[pi∥pj ])

)∑
j′∈Ni

exp (LeakyReLU
(
a⊤[pi∥p′

j ])
)

where ∥ is the concatenation operation over two vectors, and a ∈ R2d(l)

is the weight vector of a linear
transformation.

The combination of group-level and node-level attention is the key to realizing our principle: if two nodes
have similar node states measured by α, and belong to related groups indicated by λ, more information
should be passed between them; and thus they are encoded closer in the embedding space. As a result,
the relatedness of nodes with respect to the hierarchy of groups is preserved in the embedding space.

2.2.3 Membership-based Context Prediction Our proposed principle argues that node embeddings
should preserve the group hierarchy, which requires us to capture node proximity at each layer of the
hierarchy. This can be achieved by aligning the neighborhood scope when aggregating information and
decoding the context. The former is achieved by our membership-aware attentive layer introduced above,
and now we introduce our membership-based context decoder to preserving graph hierarchy.

Given a target node vi, the context summarizes its surrounding nodes when it manifests a certain mem-
bership. We introduce a trainable membership-based context vector Q(l)

j,z
(l)
i

∈ Rd(l)

to encode each node

vj that constitutes the context of the target node vi within the neighborhood scope N (l)
i . This context

vector can be decoded by maximizing the likelihood of observing the context nodes given a target node,
defined by the following skip-gram based objective [130]:

L(l)
context =

∑
vi∈V

∑
j∈N (l)

i

− log p
(
vj |vi, z(l)i

)
(8)

=
∑
vi∈V

∑
j∈N (l)

i

− log
(
σ(h

(l)⊤
i ·Q(l)

j,z
(l)
i

)
)
− E

jn∼N̄ (l)
i

log
(
σ(−h

(l)⊤
i ·Q(l)

jn,z
(l)
i

)
)

The context vector Q(l)

j,z
(l)
i

depends on the group assignment z(l)i of the target node vi, which aligns with

our intuition that a single membership is manifested in a given context. N̄ (l)
i denotes the set of node out-

side the immediate neighborhood of vi. This objective represents the context reconstruction error, such
that nodes that frequently co-occur within scope N (l) should be pushed closer in the embedding space.
We use negative sampling to construct N̄ (l)

i for efficient calculation. The membership-based context
vector and the model parameters are jointly learned.

As illustrated in Figure 8, node state generated by each layer is decoded to recover the context composed
of the neighborhood with corresponding scope (indicated by orange arrows). By aligning the neighbor-
hood scope in the aggregation layer and the decoded context, we capture the anticipated property of
graph hierarchy that each layer controls the resolution of groups.
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2.2.4 Inter-layer Membership Constraints An inclusive relation exists in the hierarchy of groups to
depict the emergence of groups bottom up. We leverage this relation to explicitly introduce inter-layer
constraints to regularize the modeling of latent group memberships of nodes.

We define two sets of constraints: 1) must-link denoted by M(l+1) = {(vi, vj) : z
(l)
i = z

(l)
j }, which

implies that nodes vi and vj should be members of the the same group in the higher layer l+1, as they al-
ready belong to the same group in the lower layer; 2) cannot-link denoted by C(l) = {(vi, vj) : z(l+1)

i ̸=
z
(l+1)
j }, which suggests that these two nodes should belong to different groups in the lower layer l, since

they belong to different groups in the higher layer. We then introduce the following regularization term
to penalize the violation of must-link and cannot-link constraints:

L(l)
reg =

∑
(vi,vj)∈M(l+1)

γ · 1
(
z
(l+1)
i ̸= z

(l+1)
j

)
+

∑
(vi,vj)∈C(l)

β · 1
(
z
(l)
i = z

(l)
j

)
(9)

where 1(·) is the indicator function. The strength of penalty is controlled by γ and β respectively.

The node pairs marked by red circles in Figure 8 illustrate the purpose of the inter-layer membership
constraints, where two pairs of nodes are penalized for violating the must-link and cannot-link require-
ments on membership assignments. This regularization ensures the dependency between memberships
across layers, such that node proximity maintains the consistency in the hierarchy.

Applying the inter-layer constraints to the loss of recovering membership-based contexts with differ-
ent neighborhood scopes, we obtain the final optimization objective as follows to learn the node states
generated on each aggregation layer in GraphHAM:

L =
∑L

l=1
L(l)
context +

∑L−1

l=1
L(l)
reg (10)

To prepare the embeddings for use on downstream tasks, such as node classification, we concatenate
the layer-wise node states to obtain a final embedding of each node, which can be further fine-tuned by
introducing a task-specific loss to Eq (10).

2.3 Experiments

We evaluated GraphHAM on two popular tasks, node classification and link prediction, to verify its ef-
fectiveness in preserving node property and graph structure (Section 2.3.1 and 2.3.2). In the qualitative
analysis, we mapped the learned node embeddings to a 2-D space to demonstrate the membership in-
ferred by GraphHAM, which verified the effectiveness of the learned group-membership distributions in
discovering nodes at the boundary of groups (Section 2.3.3). Finally, we analyzed GraphHAM via a com-
prehensive ablation study which verified the effectiveness of membership attentive layers and inter-layer
membership regularization (Section 2.3.4).

• Datasets. We included six public datasets for our evaluation, ranging from academic citation networks
to large-scale social networks. The citation network datasets, Cora, Citeseer and Pubmed [152], contain
research papers as nodes and citation links as edges. The Facebook dataset [148] represents official
Facebook homepages as nodes and mutual likes between them as edges. The Youtube dataset [168]
includes users as nodes and co-subscription relations as edges. The Amazon graph [29] denotes products
as nodes which are connected by edges if purchased together. Table 2 shows detailed statistics of the
datasets, and the clustering coefficient measures the degree to which nodes tend to be clustered together.

• Baselines. The proposed GraphHAM is compared against a rich collection of graph embedding models:
1) GraphSage [54] uniformly passes information through edges without neighborhood-based attention.
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Table 2: Statistics of evaluation graph benchmark datasets.
Dataset #Node #Edge #Class Clustering Coef.

Cora 2, 708 5, 429 7 0.241
Citeseer 3, 327 4, 732 6 0.141
Pubmed 19, 717 44, 338 3 0.060

Facebook 22, 470 171, 002 4 0.360
Youtube 1, 138, 499 2, 990, 443 47 0.080
Amazon 2, 449, 029 123, 718, 280 47 0.419

2) GAT [174] incorporates attention mechanism on node states to reweigh neighboring nodes when
aggregating their information. 3) GraphSTONE [106] is a multi-membership baseline, but ignores the
hierarchy of groups. It extracts structural patterns as groups from random walks, and uses a topic model
to infer group membership for reweighing neighbor nodes. 4) DeepMinCut [42] is a multi-membership
baseline which derives nodes’ membership assignments by minimizing a graph cut loss. 5) asp2vec
[130] is a multi-membership baseline which dynamically assigns each node a membership based on its
context in random walk. 6) H-GCN [62] is a hierarchical embedding baseline, which coarsens graphs
by learning a soft membership assignment matrix for each aggregation layer, and then produces node-
level embeddings by refining the layers under node classification loss. 7) GNE [41] is a hierarchical
embedding baseline based on spherical projection, which projects lower-level groups to a sphere with
the center representing the merged higher-level groups. 8) SpaceNE [107] projects groups into different
subspaces whose dimensionalities reflect the hierarchy, such that groups in lower-dimension subspace
can be merged in higher-dimension subspace.

• Experiment settings. We set the node embedding size d = 128, and use L = 2 aggregation layers
for all GCN-based methods. Each layer in GraphHAM has its dimension set to d1 = d2 = d/L = 64.
The models are trained in a mini-batch manner following [54]. For each node in a batch, we sample
S1 = S2 = 25 neighbors for each layer. To sample node pairs for skip-gram optimization, we conduct
random walks from each node 50 times with a window size set to 2. We set the number of negative
samples equal to the number of positive examples. The other parameters of baselines are set to their
optimal values as suggested in their original papers. All the results are reported based on five-fold cross-
validation.

• Model complexity. Compared with commonly used GCNs, we only introduced two sets of additional
parameters to model group membership: the membership embeddings Φ(l) ∈ RK(l)×d(l−1)

for each
aggregation layer, and the context node embeddings Q(l) ∈ RK(l)×d(l)

for the membership-based context
decoder. In general, GCNs are equipped with a weight matrix of state transformation W(l) ∈ Rd(l)×d(l−1)

for each layer. Since the number of groups K is usually set smaller than the embedding dimension d, we
did not significantly increase model complexity in GraphHAM.

2.3.1 Node Classification The node embeddings are fed to predict the node labels. Recall that each
aggregation layer of GraphHAM produces a vector for each node to encode neighbor information within
a given scope. We concatenate these vectors from all layers to serve the node classification task. The
composed embedding is trained in a multitask manner by joining the classification loss with Eq (10).

Table 3 summarizes the performance of GraphHAM against baseline models with accuracy, micro- and
macro- F1 score metrics. We can clearly observe that GraphHAM consistently outperformed baselines
on these datasets. Compared with GraphSage and GAT which do not model group membership, Graph-
HAM achieved a significant improvement. This demonstrates the importance of modeling the latent
group structure in graphs. GraphSTONE discovered global structures by summarizing random walk
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Table 3: Performance comparisons of node classification task under different metrics.
Dataset Metric GraphSage GAT H-GCN GraphSTONE GNE SpaceNE DeepMinCut GraphHAM

Cora
Accuracy 0.812±0.014 0.829±0.013 0.835±0.013 0.823±0.016 0.787±0.015 0.796±0.011 0.830±0.013 0.853±0.014

Micro-F1 0.823±0.014 0.834±0.013 0.844±0.014 0.831±0.015 0.782±0.019 0.788±0.018 0.840±0.014 0.860±0.013

Macro-F1 0.785±0.013 0.800±0.013 0.804±0.013 0.798±0.015 0.755±0.011 0.746±0.019 0.806±0.014 0.824±0.013

Citeseer
Accuracy 0.703±0.015 0.723±0.014 0.724±0.013 0.720±0.015 0.676±0.016 0.679±0.013 0.723±0.014 0.727±0.014

Micro-F1 0.756±0.014 0.772±0.014 0.781±0.013 0.768±0.016 0.722±0.011 0.725±0.010 0.723±0.015 0.783±0.013

Macro-F1 0.724±0.015 0.739±0.014 0.748±0.013 0.739±0.015 0.706±0.012 0.710±0.010 0.682±0.016 0.746±0.014

Pubmed
Accuracy 0.788±0.015 0.797±0.014 0.797±0.014 0.794±0.016 0.749±0.011 0.756±0.011 0.723±0.015 0.812±0.015

Micro-F1 0.802±0.014 0.813±0.014 0.817±0.015 0.809±0.016 0.763±0.019 0.775±0.010 0.723±0.015 0.824±0.015

Macro-F1 0.794±0.014 0.801±0.015 0.813±0.015 0.804±0.017 0.755±0.013 0.762±0.011 0.712±0.011 0.819±0.014

Facebook
Accuracy 0.875±0.016 0.894±0.017 0.901±0.016 0.905±0.018 0.864±0.017 0.848±0.018 0.876±0.017 0.918±0.016

Micro-F1 0.894±0.015 0.907±0.016 0.915±0.016 0.918±0.017 0.867±0.014 0.852±0.012 0.879±0.016 0.930±0.016

Macro-F1 0.889±0.015 0.905±0.015 0.909±0.016 0.912±0.017 0.853±0.015 0.846±0.014 0.865±0.016 0.924±0.016

Youtube
Accuracy 0.732±0.014 0.745±0.014 0.744±0.015 0.739±0.016 0.713±0.017 0.722±0.012 0.742±0.017 0.755±0.015

Micro-F1 0.775±0.014 0.787±0.015 0.782±0.015 0.784±0.016 0.753±0.016 0.759±0.014 0.767±0.017 0.795±0.015

Macro-F1 0.696±0.014 0.710±0.015 0.708±0.015 0.711±0.015 0.677±0.014 0.681±0.011 0.701±0.016 0.721±0.016

Amazon
Accuracy 0.659±0.015 0.674±0.015 0.652±0.016 0.662±0.017 0.612±0.013 0.632±0.010 0.667±0.015 0.686±0.016

Micro-F1 0.727±0.015 0.743±0.015 0.731±0.016 0.733±0.017 0.687±0.019 0.703±0.010 0.705±0.015 0.742±0.015

Macro-F1 0.297±0.014 0.325±0.015 0.295±0.015 0.305±0.016 0.254±0.015 0.267±0.011 0.303±0.018 0.342±0.015

Table 4: Performance on link prediction task.
Dataset Metric GraphSage GraphSTONE asp2vec GraphHAM

Cora AUC 0.849±0.018 0.858±0.015 0.865±0.021 0.869±0.016

MRR 0.674±0.019 0.680±0.022 0.683±0.023 0.692±0.018

Citeseer AUC 0.935±0.015 0.944±0.017 0.944±0.015 0.957±0.016

MRR 0.762±0.018 0.768±0.017 0.741±0.013 0.778±0.015

Pubmed AUC 0.953±0.017 0.962±0.020 0.927±0.014 0.959±0.015

MRR 0.886±0.019 0.902±0.017 0.841±0.018 0.906±0.016

Facebook AUC 0.954±0.019 0.965±0.020 0.969±0.016 0.966±0.018

MRR 0.832±0.016 0.844±0.022 0.842±0.024 0.855±0.020

Youtube AUC 0.757±0.014 0.763±0.016 0.750±0.013 0.768±0.014

MRR 0.594±0.022 0.601±0.18 0.587±0.020 0.608±0.019

Amazon AUC 0.792±0.015 0.808±0.013 0.818±0.016 0.824±0.014

MRR 0.579±0.017 0.584±0.015 0.589±0.022 0.593±0.015

patterns; but GraphHAM still outperformed it, which proves the effectiveness of inferring group mem-
bership in an end-to-end fashion. DeepMinCut modeled global structures of the graph via graph cut, but
it was less effective than our method because node features and the grouping hierarchy were ignored
in DeepMinCut. H-GCN proposed successive pooling operations which captured the grouping hierar-
chy, but lacked the control on the group assignments to calibrate the structure across layers. GNE and
SpaceNE recursively merged lower-level groups into higher-level groups in an unsupervised manner and
ignored node features, thus gave worse performance.

2.3.2 Link Prediction The task is to predict the linkage between two nodes via the similarity of their
embeddings [156, 195, 204]. We formulate the task as a ranking problem to retrieve linked nodes from a
candidate set with negative (irrelevant) nodes. We utilize Area under the ROC Curve (AUC) and scaled
mean reciprocal rank (MRR) metrics to demonstrate how effectively the models can rank real neighbors
at higher positions. Since the links between nodes correspond to the context defined by the first-order
neighborhood, we use the embedding vectors generated by the first layer in GraphHAM to make the
prediction.

Table 4 summarizes the results of the link prediction task. GraphSAGE used two hidden layers to aggre-
gate second-order neighborhood, which is empirically better than using one layer in it. In contrast, de-
spite using only the output of a single hidden layer, GraphHAM still outperformed GraphSAGE, which
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Fig. 9: Visualization of the learned embeddings on Facebook (upper) and Cora (lower) graph. Red trian-
gles denote the boundary nodes with small variance of π. The rest colors denote the ground-truth classes
(Y ) or sampled group assignment across two layers (z(1), z(2)) on each node.

Fig. 10: Heatmaps about the degree of correlation between group assignments z(1), z(2) (left) and be-
tween z(2), y (right) on Cora, measured by their concurrency on nodes.

strongly suggests the effectiveness of our group membership modeling in capturing global patterns.
GraphSTONE and asp2vec modeled multiple memberships, but ignored the inherent hierarchy concern-
ing different granularity of contexts, and thus were still outperformed by GraphHAM.

2.3.3 Proof-of-Concept Visualization To analyze the quality of the jointly learned node embeddings
and groups from GraphHAM, we use the t-SNE algorithm to project the composed node embeddings to
a 2-D space, and visualize Facebook graph in the first row and Cora graph in the second row in Figure 9.
The node color has different meanings across the columns. In column (a) and (b), the color denotes the
group assignment of each node vi with the largest affiliation strength in the first and second layer, i.e.,
argmaxkπ

(1)
i,k and argmaxkπ

(2)
i,k , respectively. In column (c), the color shows the ground-truth label with

its definition listed aside. In column (d), we calculate the average variance on π(1) and π(2) for each node
to measure its degree of concentration over groups, and the color reflects the conentration: a darker color
means a lower degree of concentration, which suggests that the node’s affiliation to different groups is
evenly distributed. Meanwhile, the nodes with the lowest concentration degree are highlighted by red
triangles in column (c) for the purpose of illustration.

To better demonstrate the correlation between the learned groups and inferred memberships across layers
and the ground-truth labels, we also visualize their co-occurrence matrices on Cora dataset, shown in
Figure 10. In the left heatmap, for each entry indexed by row i and column j, we calculate the number
of nodes that are concurrently assigned with z(1) = i in the first layer and z(2) = j in the second layer.
In the right heatmap, we count the number of nodes that have ground-truth label y = i and are assigned
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Table 5: Ablation study of three model variants on node classification task. The results are performance
gap between each variant and the complete GraphHAM. * suggests p-value < 0.05.

Dataset Metric GraphHAM-λ GraphHAM-Q GraphHAM-Lreg

Cora
Accuracy −0.017∗ −0.007∗ −0.012∗

Micro-F1 −0.021∗ −0.016∗ −0.020∗

Macro-F1 −0.012∗ −0.007∗ −0.008∗

Citeseer
Accuracy −0.004 −0.003 −0.004
Micro-F1 −0.008∗ −0.003 −0.009∗

Macro-F1 −0.005 −0.002 −0.007∗

Pubmed
Accuracy −0.017∗ −0.013∗ −0.007∗

Micro-F1 −0.012∗ −0.009∗ −0.003
Macro-F1 −0.012∗ −0.008∗ −0.004

Facebook
Accuracy −0.020∗ −0.010∗ −0.013∗

Micro-F1 −0.016∗ −0.011∗ −0.012∗

Macro-F1 −0.012∗ −0.009∗ −0.015∗

Youtube
Accuracy −0.007∗ −0.006 −0.003
Micro-F1 −0.007∗ −0.005 −0.002
Macro-F1 −0.009∗ −0.006 −0.003

Amazon
Accuracy −0.008∗ −0.003 −0.012∗

Micro-F1 −0.010∗ −0.002 −0.013∗

Macro-F1 −0.007∗ −0.003 −0.009∗

to group z(2) = j in the second layer. The color denotes the number of nodes satisfying those respective
assignments, thereby reflecting the degree of correlation between z(1), z(2) and y.

The visualizations in Figure 9 and Figure 10 together demonstrate two intriguing properties of Graph-
HAM as discussed below.

• A hierarchy of groups is captured. Comparing column (a) and (b) of Figure 9, we can clearly ob-
serve different node groups are captured. And more interestingly, a hierarchy of groups is automatically
discovered: in the highlighted circles, different groups of nodes shown in column (a) are merged to form
larger groups shown in column (b). The trend of merging groups is a clear manifestation of the desired
group hierarchy, where coarse-grained properties shared by a larger group of nodes are captured when
we aggregate information from lower-level groups with fine-grained properties. Comparing column (b)
and (c), we show that the learned node membership is also well aligned with node labels, which suggests
that node label as a comprehensive signal to distinguish nodes is captured by the hierarchical group mod-
eling. The correlation among z(1), z(2) and y reported in Figure 10 also supports our argument. From
the diagonals with large number of nodes, we observe a clear merging structure, where multiple entries
of z(1) frequently co-occur with one specific entry in z(2). This suggests a trend of group merging from
lower to higher layers.

• Our membership modeling discovers nodes at the boundary of groups. Recall that we calculate the
variance of π to measure the concentration of nodes’ group affiliation. A low variance means that π is flat
such that the node’s affiliation to different groups is evenly distributed. In other words, such nodes have
no strong ties to any group and therefore reside at the boundary of circles [1]. In column (c) of Figure
9, we observe that the nodes marked by red triangles with the lowest variance are indeed located at the
edge of different groups. The color gradient in Column (d) clearly demonstrates the coherence between
the concentration degree over π and the position of nodes in groups: the concentration decreases as we
view from the center of a group to its boundary. This shows that modeling group membership encodes
global structure, thereby endowing the learned embeddings with collective patterns in addition to the
local pairwise proximity between nodes.
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Fig. 11: Accuracy of node classification on Facebook graph under different hyper-parameter settings for
group size K(1),K(2) (left) and regularization coefficients γ, β.

Fig. 12: Number of nodes fall into each interval of KL divergence between self attention coefficients λ
and group attention coefficients α.

2.3.4 Model Analysis We provide an overall analysis on GraphHAM, including an ablation study
verifying the effectiveness of each component of it and a sensitivity study about the hyper-parameters
related to membership modeling.

• Ablation Study. We construct three variants of GraphHAM by disabling one component at a time:
1) GraphHAM-λ removes the membership-based attention coefficient λ in the aggregation layer de-
fined in Eq Eq (7); 2) GraphHAM-Q omits the group indicator zi in Eq (8) and replaces Q with a
single vector q, thus only preserves a membership-agnostic context; 3) GraphHAM-Lreg removes the
inter-layer membership regularization defined by Eq (9), and thus no inclusive constraint is imposed on
groups across layers in it. The performance of these variants compared with the complete model on node
classification is summarized in Table 5. We use Student’s t-test to quantify the difference between the
cross-validation results from the complete GraphHAM model and each variant. The values marked with
asteroid in the table suggest the difference is significant (i.e., p-value¡0.05). We can verify the importance
of each component based on the gap in performance. First, GraphHAM-λ gave the worst results and the
majority of performance values were significantly different from the complete model (marked by star),
which highlights the importance of the membership-level attention in encoding the global information.
The second most effective design is the inter-layer regularization that explicitly forces an inclusive re-
lation across layers to form a well-defined hierarchy. The membership-dependent context decoder also
improves the embedding quality, which suggests that even the same context perceived by nodes with
different memberships reveal different information about node neighborhood.

• Group Attention versus Node Attention. Since the membership-based attention gives the most im-
provement, an interesting question to study is how different the group-level and the node-level attentions
are. To quantify the information difference brought by these two types of attention, on each node vi, we
calculated the average KL-divergence between α and λ as follows:

diff(vi) =
1

|Ni|
∑

j∈Ni

KL(αij , λij)
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We then count the number of nodes in different ranges of KL-divergence shown in Figure 12, where each
bar x collects nodes with diff(v) ∈ [x, x + 0.05). It is clear that a large amount of nodes exhibit high
degree of difference, which demonstrates that these two types of attention capture different aspects of
node relatedness and are thus complementary to each other.

• Hyper-Parameter Sensitivity. We analyzed two groups of hyper-parameters related to membership
modeling: the numbers of groups K(1) and K(2) for the two layers, and the weights of penalty γ and β for
must- and cannot-link constraints. Figure 11 reports the performance of GraphHAM on Facebook graph
under different hyper-parameter settings. The model is generally more stable with respect to the number
of groups, compared with the coefficients for the regularization term. Setting those hyper-parameters
either too large or too small will compromise the performance. More specifically, performance peaks
when K(1) = 12 while K(2) = 5 on the Facebook graph, which has 4 classes. Therefore, we believe
a guidance for setting K(2) is to make it comparable with the number of classes while setting K(1) to
be mildly larger than K(2). To balance the effect of the must- and cannot-link constraints, γ should be
larger than β since the must-link set is usually much smaller.

3 Self-supervised Learning with Structural Property

To obtain more generalizable, transferable, and robust representations, the self-supervised learning (SSL)
paradigm has recently emerged which enables graph neural networks (GNNs) to learn from pretext tasks
constructed on unlabeled graph-structured data [65, 64, 200, 71]. As the current state-of-the-art SSL
technique, graph contrastive learning (GCL) has attracted the most attention due to its simplicity and
remarkable empirical performance [176, 205, 59, 198, 161, 169].

A typical GCL method works by creating augmented views of the input graph and learning node (or
graph) representations by contrasting related graph objects against unrelated ones. Different contrastive
objects are studied, such as node-node [205, 206, 133], node-(sub)graph [177, 59, 158] and graph-graph
[11, 169, 161] contrastive pairs. The goal of GCL is to maximize the congruence between the represen-
tations of graph objects in augmented views, following the mutual information maximization (InfoMax)
principle [60]. This makes graph augmentation one of the most critical designs in GCL, as it deter-
mines the effectiveness of the contrastive objective. However, despite various GCL methods have been
proposed, it remains a mystery about what makes the most effective graph augmentations.

Unlike images, which can be augmented by rotation or cropping to naturally highlight the main subject
from the background, it is less intuitive and more challenging to augment graphs due to the complicated
topology structure of diverse nature (e.g., citation networks [152], social networks [125], chemical and
biomedical molecules [96, 64]). Most existing works perform topology augmentations in a uniformly
random manner [199, 205, 169, 11]. Although such a strategy indeed achieves a certain level of empirical
success, it is far from optimal: recent studies show that perturbations on different edges post unequal
influence on the graph spectrum [44, 22] while the uniformly random edge perturbation adopted in
many GCL methods treats all edges equally and ignores such differences. Given the importance of graph
spectrum for spectral filters in GNNs [39], such a discrepancy between uniform edge perturbations and
their non-uniform influence on the graph spectrum urges us to rethink a fundamental but not yet clearly
answered question: Will graph spectrum based topology augmentations be more effective for GCL?

In this work, we answer this question affirmatively. By studying the influence of different edge perturba-
tion strategies on graph spectrum, we observe a clear positive relationship between the overall spectral
change on augmented graphs and the resulting GCL performance. This empirical finding further mo-
tivates us to propose a principled Graph Contrastive Learning scheme with Topology Augmentation
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guided by the Graph Spectrum, termed GCL-TAGS. Specifically, instead of perturbing edges uniformly
at random, we search for graph augmentations that mostly change the graph spectrum of the input graph.
By identifying sensitive edges where the graph spectrum is largely affected, GCL-TAGS allows the GNN
encoder to focus on robust components (which can be hardly affected by small edge perturbations) in the
spectral filters and to reduce its dependency on relatively vulnerable components (which can be easily
affected). Therefore, the learned encoder captures the minimally sufficient information about the graph
[171, 170] for the downstream tasks.

3.1 Related Work

Existing graph SSL methods focus on self-prediction [54, 134, 52, 200, 71] and contrastive learning. We
focus on contrastive learning, and will mainly discuss existing designs of topology augmentation.

• Graph Contrastive Learning. Graph contrastive learning (GCL), also known as instance discrimina-
tion, leverages the InfoMax principle [60] to maximize the correspondence between related objects on
the graph such that invariant property across objects is captured. Depending on how the related positive
objects are defined, one line of work treats different parts of a graph as positive pairs, while constructing
negative examples from a corrupted graph [64, 67, 177, 133, 158]. In such works, contrastive pairs can
be defined as local nodes v.s. the entire graph [177], substructures v.s. graph [158], and the input graph
v.s. reconstructed graph [133]. The other line of works exploits graph augmentation to generate multiple
views, which enable more flexible contrastive pairs [169, 11, 199, 59, 137, 161, 198, 45]. By generating
augmented views, the GNN model is encouraged to encode crucial graph information that is invariant
to different views. While both topology and feature augmentations are explored in prior GCL works, we
focus on topology augmentation strategies.

• Graph Topology Augmentation. The most widely adopted topology augmentation is the edge per-
turbation following uniform distribution [205, 169, 11, 199]. The underlying assumption is that each
edge is equally important to the property of the input graph. However, a recent study shows that edge
perturbations do not post equal influence to the graph spectrum [22] which summarizes a graph’s struc-
tural property. To better preserve graph property that has been ignored by uniform perturbations, domain
knowledge from network science is leveraged by considering the importance of edges measured via
node centrality [206], the global diffusion matrix [59], and the random-walk based context graph [137].
While these works consider ad-hoc heuristics, our method targets the graph spectrum, which compre-
hensively summarizes global graph properties and plays a crucial role in the spectral filter of GNNs.
To capture minimally sufficient information from the graph and remove redundancy that could compro-
mise downstream performance, adversarial training strategy is paired with GCL for graph augmentation
[161, 198, 45], following the information bottleneck (IB) [171] and InfoMin principle [170]. While the
adversarial augmentation method requires frequent back-propagation during training, our method real-
izes a similar principle with a simpler but effective augmentation by maximizing the spectral change of
graph with only one-time pre-computation.

3.2 Preliminaries

• Notations. We focus on connected undirected graphs G = (X,A) with n nodes and m edges, where
X ∈ Rn×d describes node features, and A ∈ Rn×n denotes its adjacency matrix such that Aij = 1
if an edge exists between node i and j, otherwise Aij = 0. The unnormalized Laplacian matrix of the
graph is defined as Lu = D−A, where D = diag(A1n) is the diagonal degree matrix with entry
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Dii =
∑n

i=1 Aij and 1n being an all-one vector with dimension n. The normalized Laplacian matrix is
further defined as Lnorm = Lap(A) = In −D−1/2AD−1/2, where In is an n× n identity matrix.

• Graph Spectrum. By treating node features as signals, one can apply graph signal processing (GSP)
techniques to conduct graph filtering for representation learning. The most essential component of GSP
is the graph shift operator (GSO), which commonly adopts the normalized Laplacian matrix Lnorm
and admits an eigendecomposition as Lnorm = UΛU⊤. The diagonal matrix Λ = eig(Lnorm) =
diag(λ1, . . . , λn) consists of the real eigenvalues which are known as graph spectrum, and the corre-
sponding U = [u1, . . . ,un] ∈ Rn×n collecting the orthonormal eigenvectors are the spectral bases.
Graph spectrum plays a significant role in analyzing and modeling graphs, as discussed in Appendix 1.1.
On one hand, it comprehensively summarizes important graph structural properties, including connectiv-
ity [33], clusterability [89] and diffusion distance [55]. On the other hand, at the essence of many graph
models, including GNNs, is the spectral filter which is defined on the graph spectrum, and different fil-
ters can manipulate graph signals in various ways, such as smoothing and denoising [150], abnormally
detection [122] and clustering [179].

• Graph Representation Learning. Given a graph G ∈ G, the goal of node representation learning is to
train an encoder fθ : G → Rn×d′

, such that fθ(G) produces a low-dimensional vector for each node in
G which can be served in downstream tasks, such as node classification. One can further obtain a graph
representation by pooling the set of node representations via a readout function gϕ : Rn×d′ → Rd′

, such
that gϕ(fθ(G)) outputs a low-dimensional vector for graph G which can be used in graph-level tasks
such as graph classification or regression task.

• Graph Contrastive Learning by Topology Augmentation. GCL methods generally apply graph aug-
mentation to perturb the input graph and decrease the amount of information inherited from the original
graph; then they leverage the InfoMax principle [60] over the perturbed graph views such that an encoder
is trained to capture the remaining information [161]. Given a graph G ∈ G with adjacency matrix A,
we denote a topology augmentation scheme as T (A) and a sampled augmented view as t(A) ∼ T (A).
GCL with two-branch augmentation can be formulated as the following problem:

GCL : min
Θ

LGCL(t1(A), t2(A), Θ), s.t. ti(A) ∼ Ti(A), i ∈ {1, 2} (11)

where the contrastive loss LGCL measures the disagreement between representations from contrastive
positive pairs, which can be defined among different levels of representations, such as node-node [205],
graph-graph [161], and node-graph [177, 59] representations. The topology augmentation scheme deter-
mines a distribution from which perturbed graphs are sampled in augmented views.

3.3 Methodology: Graph Contrastive Learning Guided by Graph Spectrum

In this section, we introduce our graph contrastive learning framework with topology augmentation
guided by the change of graph spectrum (GCL-TAGS). We start with some empirical evidence on the
relationship between the spectral change and GCL performance, then propose a new augmentation prin-
ciple to maximize the spectral change when perturbing the graph.

3.3.1 Behavior of Edge Perturbation on Graph Spectrum Given that graph spectrum is a compre-
hensive manifestation of graph structural properties [33, 89, 55], to further understand its role in GCL,
we study how the behavior of edge perturbation on graph spectrum correlates with GCL performance.
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Fig. 13: Spectral change (LEFT) and downstream performance (RIGHT) of two augmentation schemes.

• Pre-analysis Setup. We take node representation learning on Cora dataset as an example, and adopt the
same contrastive learning setup as in GRACE [205]. We consider two topology augmentation heuristics:
1) uniform: the original augmentation from GRACE [205] which removes edges with uniformly random
probability; 2) clustered: a cluster-based strategy which removes edges within the same cluster with a
larger probability. The cluster-based strategy explicitly modifies the connectivity between clusters which
may result in large change on the graph spectrum as suggested by recent studies [30, 101], thus it stands
in sharp contrast to the uniform perturbations. For the two augmentation branches, one is fixed with
the uniform version, and we compare the strategies when the other augmentation branch adopts the
uniform or the clustered perturbation. Figure 13 shows their comparison with respect to spectral change
(measured by the L2 distance of graph spectrum between the original and the augmented graphs), and
F1 score (measuring the downstream node classification performance).

• Remarks. From Figure 13, we can clearly observe that under the same perturbation budget indicated
by x-axis, the cluster-based strategy leads to a larger change on graph spectrum, while achieving better
performance on the downstream task. This analysis suggests that an effective edge augmentation should
pay more attention to sensitive edges that introduce large disturbance to graph spectrum. The perfor-
mance gap between these two simple strategies suggests a distinct possibility to improve over the uni-
formly random augmentation. Unlike the proof-of-concept cluster-based heuristic, we aim on designing
a principled topology augmentation by directly maximizing the spectral change.

3.3.2 Augmentation Scheme via Spectral Change Maximization We now introduce our augmenta-
tion scheme guided by graph spectrum. We first define the edge perturbation based topology augmenta-
tion scheme determined by a Bernoulli probability matrix. Based on that, we formulate our augmentation
principle as a spectral change maximization problem.

• Edge Perturbation Based Augmentation Scheme. We focus on topology augmentation using edge
perturbation. Following the GCL formulation in Eq (11), we define topology augmentation T (A) as a
Bernoulli distribution B(∆ij) for each entry Aij . All Bernoulli parameters for all entries constitute a
probability matrix ∆ ∈ [0, 1]n×n. We can sample an edge perturbation matrix E ∈ {0, 1}n×n, where
Eij ∼ B(∆ij) indicates whether to flip the edge between node i and j, and the edge is flipped if Eij = 1
otherwise remaining unchanged. A sampled augmented graph is then obtained via:

t(A) = A+C ◦E, C = Ā−A (12)

where Ā is the complement matrix of the adjacency matrix A, calculated by Ā = 1n1
⊤
n − In − A,

with (1n1
⊤
n − In) denoting the fully-connected graph without self-loops. Therefore, C = Ā − A ∈

{−1, 1}n×n denotes legitimate edge adding or removing operations for each node pair: edge adding
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between node i and j is allowed if Cij = 1, and edge removing is allowed if Cij = −1. Taking the
Hadamard product C ◦E finally gives valid edge perturbations to the graph.

Since E is a matrix of random variables following Bernoulli distributions, we can easily obtain the
expectation of sampled augmented graphs in Eq (12) as E[t(A)] = A +C ◦∆. Therefore, the design
of ∆ determines the topology augmentation scheme. Taking uniformly random edge removal as an
example, the entry ∆ij is set as a fixed dropout ratio if Cij = −1; and 0 otherwise.

• Spectral Change Maximization. The default uniform edge perturbation adopted in many GCL meth-
ods is far from satisfactory. Motivated by our observation in Section 3.3.1, instead of setting fixed values
for ∆, we propose to optimize it guided by graph spectrum. Specifically, we aim to search for ∆ that
in expectation maximizes the spectral difference between the original graph and the augmented graph.
Recall that we denote the normalized Laplacian matrix of A as Lap(A), and the graph spectrum vector
can be calculated by Λ = eig(Lap(A)). We formulate the following problem to search for the desired
perturbation matrix ∆ in a single augmentation branch:

Single-way scheme: max
∆∈S

∥eig(Lap(A+C ◦∆))− eig(Lap(A))∥22 (13)

where S = {s|s ∈ [0, 1]n×n, ∥s∥1 ≤ ϵ} and ϵ controls the strength of graph perturbation. By solving
Eq (13), we obtain the optimal Bernoulli probability matrix ∆∗, from which we can sample augmented
views that in expectation differ the most from the original graph in graph spectrum. Note that Eq (13) only
provides one augmented view, to further introduce flexibility for a two-branch augmentation framework
and enlarge the spectral difference between the resulting two views, we extend Eq (13) as follows:

Two-way scheme: max
∆1,∆2∈S

∥eig(Lap(A+C ◦∆1))− eig(Lap(A+C ◦∆2))∥22 (14)

where ∆i is the Bernoulli probability matrix for augmentation branch i’s scheme Ti(A) in Eq (11). Note
that Eq (13) is a special case of Eq (14) when setting ∆2 = 0. Eq (14) gives better flexibility yet also
makes the nonconvex optimization problem harder to solve, thus we further simplify it by pushing two
branches towards opposite directions: maximizing the spectral norm in one branch, while minimizing it
in the other, which leads to the final objective for our augmentation scheme:

Opposite-direction scheme: max
∆1∈S

LGS(∆1), and min
∆2∈S

LGS(∆2) (15)

where LGS(∆) = ∥eig(Lap(A+C ◦∆))∥22 measures the Graph Spectral norm under augmentation
scheme with ∆. For scheme T1(A), ∆1 produces views that overall have larger spectral norm than the
original graph, while for T2(A), ∆2 produces views with smaller spectrum. We can understand them
as setting a spectral boundary for the input graph such that the encoder is trained to capture information
that is essential and robust regarding perturbations within this region.

• Optimizing ∆1 and ∆2. Eq (15) can be solved via projected gradient descent (for ∆2) or ascent (for
∆1). Taking ∆2 as an example, its update works as follows:

∆
(t)
2 = PS [∆

(t−1)
2 − ηt∇LGS(∆

(t−1)
2 )] (16)

where t is the iteration step, ηt > 0 is the learning rate for step t, and PS(a) = argmins∈S∥s− a∥22 is
the projection operator at a over the constraint set S. The calculation of gradient ∇LGS(∆

(t−1)
2 ) is done

via chain rule. We now explain how to obtain a closed-form gradient over eigenvalues as it looks less
straightforward. For a real and symmetric matrix L, one can obtain the derivatives of its k-th eigenvalue
λk by: ∂λk/∂L = uku

⊤
k [144], where uk is the corresponding eigenvector. Note that the derivative

calculation requires distinct eigenvalues, which does not hold for graphs satisfying automorphism [47].
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Fig. 14: The framework of GCL-TAGS contains topology augmentation and contrastive objective. The
opposite-direction augmentation scheme guided by graph spectrum is pre-computed following Eq (15).
The contrastive objective is to maximize the mutual information between node representations from one
view and the graph representation from another view, and vice versa.

To avoid such cases, we add a small noise term to the adjacency matrix4, e.g., A+C ◦∆+ ε× (N+
N⊤)/2, where each entry in N is sampled from a uniform distribution U(0, 1) and ε is a very small
constant. Such a noise addition will almost surely break the graph automorphism, thus enabling a valid
gradient calculation of eigenvalues.

For T iterations, the time complexity of optimizing the scheme is O(Tn3) due to the eigen-decomposition
eig(·) in LGS, which is prohibitively expensive for large graphs. To reduce the cost, instead of measur-
ing the spectral change over all eigenvalues, we only maintain the K lowest- and highest-eigenvalues
which are the most informative, as suggested by the spectral graph theory. The performance with dif-
ferent choices of K is studied in Appendix 1.4. Using selective eigen-decomposition via the Lanczos
Algorithm [131], the time complexity of augmentation scheme optimization is recuded to O(TKn2) 5.

3.3.3 Formulation and Framework of GCL-TAGS Figure 14 illustrates our GCL framework equipped
with the spectrum-guided augmentation. We first pre-compute the Bernoulli probability matrix ∆1 and
∆2 by solving the optimization problem in Eq. Eq (15), which sets up the topology augmentation
scheme. During contrastive learning, for each iteration, we sample two augmented graphs for the in-
put graph t1(A) ∼ T (A|∆1) and t2(A) ∼ T (A|∆2). The augmented graphs are then fed into a GNN
encoder fθ, which outputs two sets of node representations H(1),H(2) ∈ Rn×d′

corresponding to the
two views. We then apply a graph pooling readout function gϕ to aggregate and transform the node
representations and obtain graph representations z(1), z(2) ∈ Rd′

. Finally, the GNN encoder and the
readout function are trained by a contrastive objective LGCL that maximizes the correspondence between
local node representations of one view and the global graph representation of the other view. Given a
set of training graphs G, by putting all components together, we formulate GCL-TAGS as the following
optimization problem:

GCL-TAGS : min
θ,ϕ

LGCL(t1(A), t2(A), θ, ϕ) = − 1

|G|
∑
G∈G

(
1

n

n∑
i=1

(
I(H

(1)
i , z(2)) + I(H

(2)
i , z(1))

))
s.t. ti(A) ∼ T (A|∆i), i ∈ {1, 2},∆1 = argmax∆∈S LGS(∆),∆2 = argmin∆∈S LGS(∆) (17)

4 The form of (N+N⊤)/2 is to keep the perturbed adjacency matrix symmetric for undirected graphs.
5 Since we only require to precompute ∆1 and ∆2 once, the time complexity is totally acceptable.
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Table 6: Node classification performance in unsupervised setting. The metric is accuracy%. Bold high-
lights that our method significantly outperforms baselines suggested by t-test with p-value≤0.05.

Dataset Cora Citeseer PubMed Wiki-CS Amazon-Computer Amazon-Photo Coauthor-CS

Raw-X 48.93±0.00 50.81±0.00 68.33±0.00 71.98±0.00 73.81±0.00 78.53±0.00 90.37±0.00
S-GCN 81.34±0.35 70.42±0.45 79.82±0.41 77.19±0.12 86.51±0.54 92.42±0.16 93.03±0.31
R-GCN 56.44±0.24 63.52±0.25 73.92±0.32 72.95±0.58 82.46±0.38 90.08±0.48 90.64±0.29

B
as

el
in

es

GRACE [205] 83.33±0.43 72.10±0.54 78.72±0.13 80.14±0.48 89.53±0.35 92.78±0.30 91.12±0.20
BGRL [169] 83.63±0.38 72.52±0.40 79.83±0.25 79.98±0.13 90.34±0.19 93.17±0.30 93.31±0.13
GBT [11] 80.24±0.42 69.39±0.56 78.29±0.43 77.30±0.62 88.02±0.32 92.23±0.35 92.85±0.31
MVGRL [59] 85.16±0.52 72.14±1.35 80.13±0.84 77.52±0.08 87.52±0.11 91.74±0.07 92.11±0.12
GCA [206] 83.67±0.44 71.48±0.26 78.87±0.49 78.35±0.05 88.94±0.15 92.53±0.16 93.10±0.01
GMI [133] 83.02±0.33 72.45±0.12 79.94±0.25 74.85±0.08 82.21±0.31 90.68±0.17 91.08±0.56
DGI [177] 82.34±0.64 71.85±0.74 76.82±0.61 75.35±0.14 83.95±0.47 91.61±0.22 92.15±0.63

GCL-TAGS 85.86±0.57 72.76±0.63 81.54±0.24 82.13±0.15 90.09±0.32 93.52±0.26 93.91±0.24

where I(X1, X2) calculates the mutual information between variables X1 and X2, and we adopt In-
foNCE as its estimator which is proven to be a lower bound of mutual information [173, 136]. Specifi-
cally, denoting cosine similarity as sim(·, ·), we estimate the mutual information as follows:

I(H
(a)
i , z(b)) = log

exp(sim(H
(a)
i , z(b)))∑n

j=1 exp(sim(H̃j , z(b)))
(18)

where a and b index the augmented views, and H̃ is the node representations for a corrupted graph by
randomly shuffling the features of the input graph [177, 59] to serve as negative examples. Note that the
augmentation scheme is optimized prior to contrastive learning, which is a one-time computation thus
does not introduce any extra complexity to the contrastive learning process.

3.4 Experiments

This section reports an extensive set of empirical evaluations of GCL-TAGS on a variety of graph datasets
serving for downstream node classification, graph classification and regression tasks under unsupervised
learning, transfer learning and adversarial attack settings.

• Setup: Our evaluation includes 25 graph datasets ranging from citation networks, social networks to
chemical molecules. We compare GCL-TAGS against seven GCL baselines that serve for node represen-
tation learning and five baselines for graph representation learning. We adopt the following evaluation
protocol for downstream tasks [161]: based on the representations given by the encoder, we train and
evaluate a Logistic classifier or a Ridge regressor. We repeat all experiments for 10 times and report the
mean and standard derivation of the evaluation metrics.

3.4.1 Unsupervised Learning Setting This setting is to evaluate the quality of learned graph/node
representations. We apply different GCL methods for representation learning. A linear model is then
trained using these learned representations as features for the downstream tasks and the resulting predic-
tion performance is reported. We evaluate the effectiveness of GCL-TAGS for both node- and graph-level
prediction tasks.

• Node Classification Task. The datasets include Cora, Citeseer, PubMed citation networks [152], Wiki-
CS hyperlink network [119], Amazon-Computer/Photo co-purchase network [153], and Coauthor-CS
network [153]. We compare GCL-TAGS against GCL methods that augment topology with uniformly
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Table 7: Graph representation learning performance in unsupervised setting. TOP shows the biochemical
and social network classification results on TU datasets (measured by accuracy%). BOTTOM shows the
molecular regression (measured by RMSE) and classification (measured by ROC-AUC%) results on OGB
datasets. Bold indicates that our method outperforms baselines with p-value≤ 0.05.

Dataset Biochemical Molecules Social Networks

NCI1 PROTEINS MUTAG DD COLLAB RDT-B RDT-M5K IMDB-B IMDB-M

S-GIN 78.27±1.35 72.39±2.76 90.41±4.61 74.87±3.56 74.82±0.92 86.79±2.04 53.28±3.17 71.83±1.93 48.46±2.31
R-GIN 62.98±0.10 69.03±0.33 87.61±0.39 74.22±0.30 63.08±0.10 58.97±0.13 27.52±0.61 51.86±0.33 32.81±0.57

B
as

el
in

es

InfoGraph [158] 68.13±0.59 72.57±0.65 87.71±1.77 75.23±0.39 70.35±0.64 78.79±2.14 51.11±0.55 71.11±0.88 48.66±0.67
GraphCL [199] 68.54±0.55 72.86±1.01 88.29±1.31 74.70±0.70 71.26±0.55 82.63±0.99 53.05±0.40 70.80±0.77 48.49±0.63
MVGRL [59] 68.68±0.42 74.02±0.32 89.24±1.31 75.20±0.55 73.10±0.56 81.20±0.69 51.87±0.65 71.84±0.78 50.84±0.92
AD-GCL [161] 69.67±0.51 73.59±0.65 89.25±1.45 74.49±0.52 73.32±0.61 85.52±0.79 53.00±0.82 71.57±1.01 49.04±0.53
JOAO [198] 72.99±0.75 71.25±0.85 85.20±1.64 66.91±1.75 70.40±2.21 78.35±1.38 45.57±2.86 71.60±0.86 51.14±0.69

GCL-TAGS 71.43±0.49 75.78±0.41 89.12±0.76 75.78±0.52 75.01±0.45 83.62±0.64 54.10±0.49 73.65±0.69 52.16±0.72

Dataset Regression (Metric: RMSE) Classification (Metric: ROC-AUC%)

molesol mollipo molfreesolv molbace molbbbp molclintox moltox21 molsider

S-GIN 1.173±0.057 0.757±0.018 2.755±0.349 72.97± 4.00 68.17±1.48 88.14±2.51 74.91±0.51 57.60±1.40
R-GIN 1.706±0.180 1.075±0.022 7.526±2.119 75.07±2.23 64.48±2.46 72.29±4.15 71.53±0.74 62.29±1.12

B
as

el
in

es

InfoGraph [158] 1.344±0.178 1.005±0.023 10.005±4.819 74.74±3.64 66.33±2.79 64.50±5.32 69.74±0.57 60.54±0.90
GraphCL [199] 1.272±0.089 0.910±0.016 7.679±2.748 74.32±2.70 68.22±1.89 74.92±4.42 72.40±1.01 61.76±1.11
MVGRL [59] 1.433±0.145 0.962±0.036 9.024±1.982 74.20±2.31 67.24±1.39 73.84±4.25 70.48±0.83 61.94±0.94
AD-GCL [161] 1.217±0.087 0.842±0.028 5.150±0.624 76.37±2.03 68.24±1.47 80.77±3.92 71.42±0.73 63.19±0.95
JOAO [198] 1.285±0.121 0.865±0.032 5.131±0.722 74.43±1.94 67.62±1.29 78.21±4.12 71.83±0.92 62.73±0.92

GCL-TAGS 1.218±0.052 0.802±0.019 4.531±0.463 76.74±2.02 69.59±1.34 80.28±2.42 72.83±0.62 64.87±0.88

random edge perturbation (e.g., GRACE [205], BGRL [169], GBT [11]), centrality (GCA [206]), diffu-
sion matrix (MVGRL [59]) and the original graph (e.g., GMI [133] and DGI [177]). We also consider
a fully semi-supervised GCN (S-GCN), a randomly initialized untrained GCN (R-GCN) and using the
raw node features as node representations (Raw-X). All the methods exploit a 2-layer GCN encoder and
a downstream linear classifier with the same hyper-parameters for a fair comparison. We adopt random
feature masking in GCL-TAGS, following the setup in SOTA works [206, 11]. We randomly split the
datasets into training, validation and test set with ratio 10%, 10%, 80% for evaluation purpose.

Table 6 shows that on the node classification task, GCL-TAGS achieves state-of-the-art performance in
6 out of the 7 datasets, 5 of which are significantly better than others. Specifically, comparing GCL-
TAGS with MVGRL and GCA which use domain knowledge of the graph (e.g., node centrality or graph
diffusion), the performance gain suggests the advantage of the spectrum based augmentation over pre-
vious domain-knowledge based heuristics. Meanwhile, GCL-TAGS is shown to be more effective than
GRACE, BGRL and GBT which adopt uniformly random augmentation6 and use a node-level contrastive
objective. It is noteworthy that the representations learned by GCL methods achieve better performance
than the semi-supervised model R-GCN, which suggests the effectiveness of self-supervised learning
when label information is limited (e.g., only 10% data for training).

• Graph Prediction Task. We test on TU biochemical and social networks [125], Open Graph Bench-
mark (OGB) [63] and ZINC [64, 48] chemical molecules, and Protein-Protein Interaction (PPI) biologi-
cal networks [64, 207] for graph prediction. We compare GCL-TAGS with five GCL methods including
InfoGraph [158], GraphCL [199], MVGRL [59], AD-GCL (with fixed regularization weight) [161] and
JOAO (v2) [198]. We use a 5-layer GIN encoder for all methods, including a semi-supervised S-GIN

6 We also discuss the gain of spectrum augmentation in Appendix 1.4 by directly plugging our proposed augmen-
tation into these frameworks.
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Table 8: Graph classification performance in transfer learning setting on molecular classification task.
The metric is ROC-AUC%. Bold indicates that our method outperforms baselines with p-value≤ 0.05.

Dataset Pre-Train ZINC-2M PPI-306K

Fine-Tune BBBP Tox21 SIDER ClinTox BACE HIV MUV ToxCast PPI

No-Pre-Train-GIN 65.8±4.5 74.0±0.8 57.3±1.6 58.0±4.4 70.1±5.4 75.3±1.9 71.8±2.5 63.4±0.6 64.8±1.0

B
as

el
in

es

InfoGraph [158] 68.8±0.8 75.3±0.5 58.4±0.8 69.9±3.0 75.9±1.6 76.0±0.7 75.3±2.5 62.7±0.4 64.1±1.5
GraphCL [199] 69.7±0.7 73.9±0.7 60.5±0.9 76.0±2.7 75.4±1.4 78.5±1.2 69.8±2.7 62.4±0.6 67.9±0.9
MVGRL [59] 69.0±0.5 74.5±0.6 62.2±0.6 77.8±2.2 77.2±1.0 77.1±0.6 73.3±1.4 62.6±0.5 68.7±0.7
AD-GCL [161] 70.0±1.1 76.5±0.8 63.3±0.8 79.8±3.5 78.5±0.8 78.3±1.0 72.3±1.6 63.1±0.7 68.8±1.3
JOAO [198] 71.4±0.9 74.3±0.6 60.5±0.7 81.0±1.6 75.5±1.3 77.5±1.2 73.7±1.0 63.2±0.5 64.0±1.6

GCL-TAGS 70.0±0.7 78.0±0.5 64.7±0.5 80.7±2.1 79.9±0.7 77.8±0.6 73.8±0.9 64.2±0.4 70.0±0.8

and a randomly initialized R-GIN. A readout function with a graph pooling layer and a 2-layer MLP is
applied to generate graph representations. We adopt the given data split for OGB dataset, and use 10-fold
cross validation for TU dataset as it does not provide such a split.

Table 7 summarizes the graph prediction performance. GCL-TAGS gives the best results on 13 out of
17 datasets, of which 10 are significantly better than others. Compared with GraphCL and JOAO which
select the best combination of augmentations for each dataset from a pool of methods including edge
perturbation, node dropping and subgraph sampling, GCL-TAGS using only edge perturbation based
augmentation still outperforms them. This suggests the effectiveness of graph spectrum in guiding topol-
ogy augmentation. Compared with MVGRL, our performance gain mainly comes from the augmentation
scheme, as these two methods share similar contrastive objectives, and our augmentation guided by graph
spectrum is clearly more effective than the widely adopted uniformly random augmentation. While AD-
GCL and GCL-TAGS follow a similar principle to remove edges that carry non-important and redundant
information, GCL-TAGS is more flexible since the augmentation scheme is optimized in an independent
pre-computation step without interfering with the contrastive learning procedure.

3.4.2 Transfer Learning Setting This experiment evaluates the generalizability of the learned GNN
models. Following [161, 64], we pre-train the GNN encoder on a large dataset using GCL methods, then
fine-tune and evaluate it on other datasets. We focus on the graph classification task using chemical and
biological datasets from [64]. The GCL baselines designed for graph representation learning are com-
pared, as well as a reference model without pre-training (No-Pre-Train-GIN). Table 8 summarizes the
performance. GCL-TAGS is shown to be more effective in learning generalizable encoders. This sup-
ports our augmentation principle: by perturbing edges that cause large spectral changes, the encoder is
pre-trained to ignore unreliable structural information, such that the relationship between such informa-
tion and downstream labels can be removed to mitigate the overfitting issue. The generalizability of the
GNN encoder on molecule classification depends on the structural fingerprints such as subgraphs [43].
JOAO and GraphCL using subgraph sampling augmentation is outperformed by GCL-TAGS, which
suggests that the graph spectrum could be another important fingerprint to study chemical and biological
molecular properties.

3.4.3 Adversarial Attack Setting GNNs trained via GCL methods are shown to be more robust than
encoders learned in a semi-supervised manner [53]. This setting focuses on further evaluating the ro-
bustness of different GCL methods when the input graphs are adversarially poisoned with perturbed
topology. We adopt different poisoning attack strategies on the global graph structure, including Random
(which randomly flips edges), DICE (which deletes edges internally and connects nodes externally across
classes), GF-Attack (which maximizes a low-rank matrix approximation loss) and Mettack (which maxi-
mizes the training loss via meta-gradients). We test the perturbation ratios ranging from σ ∈ {0.05, 0.2}
for each attack strategy: σ ×m edges are flipped for a graph with m edges.
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Table 9: Node classification performance on Cora in adversarial attack setting (measured by accu-
racy%). Bold indicates that our method outperforms baselines with p-value≤ 0.05.

Attack Clean Random DICE GF-Attack Mettack

Ratio σ 0.05 0.2 0.05 0.2 0.05 0.2 0.05 0.2

S-GCN 81.34±0.35 81.11±0.32 80.02±0.36 79.42±0.37 78.37±0.42 80.12±0.33 79.43±0.32 50.29±0.41 31.04±0.48

B
as

el
in

es

GRACE [205] 83.33±0.43 83.23±0.38 82.57±0.48 81.28±0.39 80.72±0.44 82.59±0.35 80.23±0.38 67.42±0.59 55.26±0.53
BGRL [169] 83.63±0.38 83.12±0.34 83.02±0.39 82.83±0.48 81.92±0.39 82.10±0.37 80.98±0.42 70.23±0.48 60.42±0.54
GBT [11] 80.24±0.42 80.53±0.39 80.20±0.35 80.32±0.32 80.20±0.34 79.89±0.41 78.25±0.49 63.26±0.69 53.89±0.55
MVGRL [59] 85.16±0.52 85.28±0.49 84.21±0.42 83.78±0.35 83.02±0.40 83.79±0.39 82.46±0.52 73.43±0.53 61.49±0.56
GCA [206] 83.67±0.44 83.33±0.46 82.49±0.37 82.20±0.32 81.82±0.45 81.83±0.36 79.89±0.47 58.25±0.68 49.25±0.62
GMI [133] 83.02±0.33 83.14±0.38 82.12±0.44 82.42±0.44 81.13±0.49 82.13±0.39 80.26±0.48 60.59±0.54 53.67±0.68
DGI [177] 82.34±0.64 82.10±0.58 81.03±0.52 80.48±0.38 79.89±0.43 81.30±0.54 79.88±0.58 71.42±0.63 63.93±0.58

GCL-TAGS 85.86±0.57 86.29±0.52 86.21±0.78 85.52±0.59 84.30±0.63 85.08±0.77 84.28±0.82 77.28±0.82 69.92±0.83

Table 9 reports the node classification performance under adversarial attack. The encoders learned by
GCL methods with graph augmentations are generally more robust to perturbed graph structure com-
pared with S-GCN. GCL-TAGS outperforms baselines with a clear margin, even under the strong Met-
tack which solicits the downstream label information. This shows the advantage of our augmentation
scheme by spectral change maximization: GCL-TAGS enables the encoder to stay invariant to the adver-
sarially perturbed graph if its spectrum falls into the range captured by the opposite-direction augmenta-
tion scheme.

4 Conclusion

In this chapter, we demonstrate the possibility of improving unsupervised machine learning with graph
structural information, including explicit pairwise link, implicit cluster and global structural property
summarized by graph spectrum. Firstly, we treat the explicit edge as an indication of entity similarity. For
the task of user representation learning, different modalities of user-generated data, i.e., social network
and user reviews, are jointly modeled via a generative model to integrate user representation learning
with network and topic embedding. The learned user representations are interpretable and predictive,
indicated by the performance improvement in many important tasks such as link prediction and expert
recommendation. In the second work, we further capture a hierarchy of implicit node groups and the
nodes’ affiliation to such groups. We align the group hierarchy with the convolutional layers in GCNs
and design a joint node-level and group-level attention mechanism to aggregate the neighbor structure
more accurately. Finally, we explore on improving an advanced self-supervised learning paradigm using
graph structural property, that is, contrastive learning. Instead of generating graph augmentation using
uniformly random edge perturbation, we propose a guided augmentation scheme by maximizing the
change of graph spectrum. These works show our successful trials in harnessing graph structure for
unsupervised learning from different perspectives.

While we enjoy the opportunities brought by graph structure to facilitate machine learning, potential
threats also arise due to the complicated dependency structure among entities. Such dependency may in-
evitably expose vulnerability to adversary or amplify unwanted bias in the dataset, threatening robustness
and fairness of the learning models. In the next chapter, we will introduce our efforts in understanding
and mitigating structural threats such that more trustworthy machine learning solutions can be achieved.



Chapter 3

Understanding Graph Structural Threats in Machine Learning

While we take advantage of graph structure to advance machine learning, potential threats could arise
when the graph structure is used in an undesired way. The misuse of graph structure could lead to se-
rious threats to the accountability and trustworthiness of machine learning models. The graph structure
driven by homophily and social influence is inevitably affected by sensitive attributes of entities, e.g.,
people with the same skin color tend to connect, and a loan or job recommender system learned on such
structure may favor or disregard groups. The structure can inherit and even magnify undesired social
discrimination, which raises fairness issues and bias concerns. Meanwhile, the graph structure expos-
ing dependency information gives malicious attackers more room to break in, e.g., phishing users can
deceive recommender systems and worm normal users’ trust by strategically making connections with
their friends. This raises robustness issues and security concerns. These issues indicate that introducing
graph structure in machine learning could be risky, because biased or perturbed graph structure could
greatly mislead the machine learning models. This calls for careful treatment of graph structure when
dealing with real-world applications, such as job recommendations or friend recommendations.

In this chapter, we introduce our efforts in understanding potential fairness and robustness issues raised
by biased or perturbed graph structure. In Section 1, we propose a principled unbiased graph embed-
ding framework to cope with the ethical issues when a machine learning model is trained on a biased
structure [184]. Such biased models could output unfair decision making to different groups of users
based on their sensitive demographic features, and simply removing sensitive features cannot amend the
biased structure. By studying the graph generation process, we aim to learn node embeddings from an
underlying bias-free graph whose edges are generated without any influence from sensitive attributes.
Two alternative solutions are further provided to uncover the bias-free graph from the given observed
graph. In Section 2, we design a new structural attack method in the Fourier domain to understand the
robustness issue when the graph structure used to train a machine learning model can be penetrated by
an adversary [102]. Specifically, we define spectral distance between the original and perturbed graph
and attack the graph structure by directly maximizing the spectral distance. This work expands the scope
of verifying and enhancing graph embedding models’ robustness in both spatial and Fourier domains.

1 Fair Machine Learning with Biased Structure

The observed connections in a graph are inevitably affected by certain sensitive attributes (such as gender
and age of a user in a social network), which should be withheld from the downstream tasks [135].
Without proper intervention, the learnt node embeddings can inherit undesired sensitive information that
can lead to bias or fairness concerns when used in downstream tasks [138, 15]. For example, in a social



41

network, if the users with the same gender tend to connect more often, the learnt embeddings can inherit
such gender information and lead to gender bias by only recommending friends to a user with the same
gender identity. And from the data privacy perspective, this also opens up the possibility for extraction
attacks from the learnt node embeddings [159].

There is rich literature in enforcing unbiasedness/fairness in algorithmic decision making, especially
in classical classification problems [76, 201, 31]. Unbiased graph embedding has just started to attract
research attentions in recent years. To date, the most popular recipe for unbiased graph embedding is
to add adversarial regularizations to the loss function, such that the sensitive attributes cannot be pre-
dicted by the learnt embeddings [112, 15, 4, 37]. For example, making a discriminator built on the
node embeddings fail to predict the sensitive attributes of the nodes. However, such a regularization is
only a necessary condition for unbiased node embeddings, and it usually hurts the utility of the embed-
dings in downstream tasks (a trivial satisfying solution is to randomize the embeddings). Besides these
regularization-based solutions, Fairwalk [138] modifies the random walk strategy in the node2vec al-
gorithm [52] into two levels: when choosing the next node on a path, it first randomly selects a group
defined by sensitive attributes, and then randomly samples a reachable node from that group. DeBayes
[19] proposes to capture the sensitive information by a prior function in Conditional Network Embed-
ding [77], such that the learned embeddings will not carry the sensitive information. Nevertheless, both
Fairwalk and DeBayes are based on specific graph embedding methods; and how to generalize them to
other types of graph embedding methods such as GAT [175] or SGC [190] is not obvious.

Moving beyond the existing unbiased graph embedding paradigm, in this paper, we propose a principled
new framework for the purpose with theoretical justifications. Our solution is to learn node embeddings
from an underlying bias-free graph whose edges are generated without any influence from sensitive at-
tributes. Specifically, as suggested by Pfeiffer et al. [135], the generation of a graph can be treated as a
two-phase procedure. In the first phase, the nodes are connected with each other solely based on global
graph structural properties, such as degree distributions, diameter, edge connectivity, clustering coeffi-
cients and etc., resulting in an underlying structural graph, free of influences from node attributes. In
the second phase, the connections are re-routed by the node attributes (including both sensitive and non-
sensitive attributes). For example, in a social network, users in the same age group tend to be more con-
nected than those in different age groups, leading to the final observed graph biased by the age attribute.
Hence, our debiasing solution is to filter out the influence from sensitive attributes on the underlying
structural graph to create a bias-free graph (that only has non-sensitive attributes or no attributes) from
the observed graph, and then perform embedding learning on the bias-free graph.

We propose two alternative ways to uncover the bias-free graph from the given graph for learning node
embeddings. The first is a weighting-based method, which reweighs the graph reconstruction based loss
function with importance sampling on each edge, such that in expectation the derived loss is as calculated
on the bias-free graph. This forms a sufficient condition for learning unbiased node embeddings: when
the reconstruction loss is indeed defined on the corresponding bias-free graph, the resulting node em-
beddings are unbiased, since the bias-free graph is independent from the sensitive attributes. The second
way is via regularization, in which we require the probabilities of generating an edge between two nodes
with and without the sensitive attributes to be the same. This forms a necessary condition for learning
unbiased node embeddings: when the learning happens on the bias-free graph, the learnt embeddings
should not differentiate if any sensitive attributes participated in the generation of observed graph, i.e.,
the predicted edge generation should be independent from the sensitive attributes. These two methods
are complementary and can be combined to control the trade-off between utility and unbiasedness.
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1.1 Related Work

• Graph Embedding. Graph embedding aims to map graph nodes to low-dimensional vector represen-
tations such that the original graph can be reconstructed from these embeddings. Traditional approaches
include matrix factorization and spectral clustering techniques [126, 7]. Recent years have witnessed
numerous successful advances in deep neural architectures for learning graph embeddings. Deepwalk
[134] and node2vec [52] utilize a skip-gram [120] based objective to recover the node context in random
walks on a graph. Graph Convolutional Networks (GCNs) learn a node’s embedding by aggregating the
features from its neighbors supervised by node/edge labels in an end-to-end manner. These techniques
are widely applied in various real-world applications, such as friend recommendation in social network
[105], content recommendation [192], protein structure prediction [74] and many more.

• Unbiased and Fair Node Embeddings. In real-life scenarios, sensitive attributes such as age, gender,
skin color, religion, and region are inevitably involved in the generation and evolution of graph data,
which raises severe bias and fairness concern when applying graph embedding techniques for real-world
tasks. For example, people with similar age tend to connect closer; thus, graph embedding models built
on such input for downstream applications, such as loan application and job recommendation, may unin-
tentionally favor or disregard one group, causing biased and unfair treatments. This realistic and ethical
concern sets a higher bar for the graph embedding models to learn effective and unbiased embeddings.

Recent efforts on unbiased and fair graph embedding mainly focus on pre-processing, algorithmic and
post-processing steps in the learning pipeline. The pre-processing solutions modify the training data to
reduce the leakage of sensitive attributes [20]. Fairwalk [138] is a typical pre-processing method which
modifies the sampling process of random walk on graphs by giving each group of neighbors an equal
chance to be chosen. However, such pre-processing may shift the data distribution and leads the trained
model to inferior accuracy measured on test set. The post-processing methods employ discriminators to
correct the learnt embeddings to satisfy specific fairness constraints [57]. However, such ad-hoc post-
correction is detached from model training which may heavily degrade model’s prediction quality.

Our work falls into the category of algorithmic methods, which modify the learning objective to prevent
bias from the node embeddings. The most popular algorithmic solution is adding (adversarial) regular-
izations as constraints to filter out sensitive information [15, 36, 4]. Compositional fairness constraints
[15] are realized by a composition of discriminators for a set of sensitive attributes jointly trained with
the graph embedding model. Similarly, FairGNN [36] adopts a fair discriminator but focuses on de-
biasing with missing sensitive attribute values. Different from regularization based methods. DeBayes
[19] reformulates the maximum likelihood estimation with a biased prior which absorbs the information
about sensitive attributes; but this solution is heavily coupled with the specific embedding method thus
is hard to generalize. Our method differs from these previous works by learning embeddings from an
underlying bias-free graph. We investigate the generation of the given graph and remove the influence
from sensitive attributes in the generative process to uncover a bias-free graph for graph embedding.

• Generative Graph Models. Generative graph models [5, 135] focus on the statistical process of
graph generation by modeling the joint distributions of edges conditioned on node attributes and graph
structure. For example, Attributed Graph Model (AGM) [135] jointly models graph structure and node
attributes in a two step graph generation process. It first exploits a generative graph model to compute
underlying structural edge probabilities based on the structural properties of an observed graph. AGM
then learns attribute correlations among edges from the observed graph and combines them with the
structural probabilities to sample graphs conditioned on attribute values, while keeping the expected edge
probabilities and degrees of the input structural graph model. This process motivates us to uncover an
underlying bias-free graph by separating out sensitive attributes and only conditioning on non-sensitive
attributes for calculating edge probabilities.
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1.2 Preliminaries

In this section, we first introduce our notations and general graph embedding concepts. Since the bias
and fairness issues emerge most notably in prediction tasks involving humans, such as loan application
[86] or criminal justice [9], we will use user-related graphs as running examples to discuss our criterion
for unbiased graph embedding. But we have to emphasize this setting is only to illustrate the concept of
unbiased graph embedding; and our proposed solution can be applied to any graph data.

• Notations. Let G = (V, E ,A) be an undirected, attributed graph with a set of N nodes V , a set of
edges E ⊆ V × V , and a set of N attribute vectors A (one attribute vector for each node). We use (u, v)
to denote an edge between node u ∈ V and node v ∈ V . The number of attributes on each node is K,
and A = {a1,a2, . . . ,aN}, where au is a K-dimensional attribute vector for node u. Without loss of
generality, we assume only the first m attributes are sensitive, and au[: m] and au[m :] stands for the
first m sensitive attributes and the rest of the attributes that are non-sensitive, respectively. We assume
all attributes are categorical and Si is the set of all possible values for attribute i. For example, if node
u is a user node, and the i-th attribute is gender with possible values Si = {Female,Male,Unknown},
then au[i] = Female indicates u is a female.

In the problem of graph embedding learning, we aim to learn an encoder ENC : V → Rd that maps each
node u to a d-dimensional embedding vector zu = ENC(u). We focus on the unsupervised embedding
setting which does not require node labels and the embeddings are learned via the link prediction task. In
this task, a scoring function sθ(zu, zv) with parameters θ is defined to predict the probability of an edge
between node u and node v in the given graph, i.e., (u, v) ∈ E . The loss for learning node embeddings
and parameters of the encoder and scoring function are defined by:∑

(u,v)∈E

Ledge(sθ(zu, zv)) (19)

where Ledge is a per-edge loss function on (u, v) ∈ E . Such loss functions generally aim to maximize
the likelihood of observed edges in the given graph, comparing to the negative samples of node pairs
where edges are not observed [121, 52].

• Unbiased Graph Embedding. Given a user node u, we consider its embedding zu as unbiased with
respect to an attribute i if it is independent from the attribute, zu ⊥ au[i], u ∈ V . Prior work measures
such unbiasedness in the learnt embeddings by their ability to predict the value of the sensitive attributes
[15, 129, 19]. For example, such work evaluates the unbiasedness of learnt embeddings by training a
classifier on a subset of nodes’ embeddings and their sensitive attributes. If the classifier cannot predict
the sensitive attribute values of nodes in the test set, one claims that the embeddings have low bias. If the
prediction accuracy equals to that from random embeddings, the learnt embeddings are considered bias-
free. In fact, such classifiers are often used as discriminators in adversarial methods where the classifier
and the embeddings are learnt jointly: the embeddings are pushed in directions where the classifier has
low prediction accuracy [112, 15].

There are also studies that use fairness measures such as demographic parity or equalized opportunity to
define the unbiasedness of learnt embeddings [57, 19]. But such fairness measures can only evaluate the
fairness of the final prediction results for the intended downstream tasks, but cannot assess whether the
embeddings are biased by, or contain any information about, sensitive attributes. In particular, fairness
in a downstream task is only a necessary condition for unbiased embedding learning, not sufficient.
The logic is obvious: unbiased embeddings can lead to fair prediction results as no sensitive attribute
information is involved; but obtaining fairness in one task does not suggest the embeddings themselves
are unbiased, e.g., those embeddings can still lead to unfair results in other tasks or even the fair results
are obtained by other means, such as post-processing of the prediction results [189].
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1.3 Effect of Attributes in Graph Generation

We now discuss the generation of an observed graph by explicitly modeling the effects of node attributes
in the process. In particular, we assume that there is an underlying structural graph behind an observed
graph, whose edge distribution is governed by the global graph properties such as degree distributions,
diameter, and clustering coefficients. Then the attributes in A will modify the structural edge distribu-
tion based on effects like homophily in social networks, where links are rewired based on the attribute
similarities of the individuals [117, 87]. The new distribution is then used to generate the observed graph.

Formally, let M be a generative graph model and ΘM be the set of parameters that describe properties
of the underlying structural graph. In particular, this set of parameters ΘM is independent from node
attributes in A. We consider the class of generative graph models that represent the set of possible edges
in the graph as binary random variables Euv, u ∈ V, v ∈ V: i.e., the event Euv = 1 indicates (u, v) ∈ E .
The model M assigns a probability to Euv based on ΘM , PM (Euv = 1|ΘM ). Therefore, the edge set
E can be considered as samples from Bernoulli(PM (Euv = 1|ΘM )). There are many such structural
models M such as the Chung Lu model [32] and Kronecker Product Graph Model [91]. Note that M
does not consider attributes in A in the generation of the graph.

Now we involve the attributes in the generation of a graph. Specifically, let Cuv ∈ {(ai,aj)|i ∈ V, j ∈
V} be a random variable indicating the attribute value combination of a pair of nodes u and v, which is
independent from ΘM . We should note that Cuv on different node pairs (u, v) can be the same, as many
different node pairs can share the same attribute value combination. Po(Euv = 1|Cuv = auv, ΘM ) is the
conditional probability of an edge given the corresponding attributes on the incident nodes and structural
parameters ΘM , where auv = (au,av) denotes the observed attribute value combination on nodes u
and v. Then based on Bayes’ Theorem, we have

Po(Euv = 1|Cuv = auv, ΘM ) =
Po(Cuv = auv|Euv = 1, ΘM )Po(Euv = 1|ΘM )

Po(Cuv = auv|ΘM )
(20)

= PM (Euv = 1|ΘM )
Po(Cuv = auv|Euv = 1, ΘM )

Po(Cuv = auv|ΘM )
,∀u ∈ V,∀v ∈ V

where the prior distribution on Euv is specified by the structural model M: i.e., Po(Euv = 1|ΘM ) =
PM (Euv = 1|ΘM ), and the posterior distribution accounts for the influences from the attribute value
combinations. Therefore, the edge distribution used to generate the observed graph with node attributes
is a modification of an structural graph distribution defined by M and ΘM . It is important to note that in
the generative process, the node attributes are given ahead of graph generation. They are the input to the
generation model, not the output. Hence Po(Cuv = auv|Euv = 1, ΘM ) is the same for all edges whose
incident nodes have the attribute combination Cuv , no matter where they are, since Cuv is independent
from the graph structure ΘM .

To simplify the notation, let us define a function that maps the attribute value combination auv to the
probability ratio that modifies the structural graph into the observed graph by

R(auv) :=
Po(Cuv = auv|Euv = 1, ΘM )

Po(Cuv = auv|ΘM )
,∀u ∈ V,∀v ∈ V

Thus we can rewrite Eq (20) by

Po(Euv = 1|Cuv = auv, ΘM ) = PM (Euv = 1|ΘM )R(auv) (21)

In this way, we explicitly model the effect of node attributes by R(auv), which modifies the structural
graph distribution PM (Euv = 1|ΘM ) for generating the observed graph G.
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Fig. 15: Illustration of UGE. The color of nodes represents the value of sensitive attributes, and different
line styles suggest how the observed edges are influenced by sensitive attributes in the generative process.

1.4 Methodology: Unbiased Graph Embedding from a Bias-Free Graph

In a nutshell, we aim to get rid of sensitive attributes and modify the structural edge distribution by
only conditioning on non-sensitive attributes. This gives us the edge distribution of a bias-free graph,
from which we can learn unbiased node embedding. Consider a world without the sensitive attributes,
and the attribute vector of node u becomes ãu = au[m :], which only include non-sensitive attributes
in au. We denote G̃ = (V, Ẽ , Ã) as the corresponding new graph generated with ãu,∀u ∈ V , and
ãuv = (ãu, ãv). Therefore, G̃ is a bias-free graph without influence from sensitive attributes. If we can
learn node embeddings from G̃ instead of G, the embeddings are guaranteed to be unbiased with respect
to sensitive attributes. Specifically, the edge probabilities used for generating G̃ can be written as

Põ(Euv = 1|C̃uv = ãuv, ΘM ) = PM (Euv = 1|ΘM )R̃(ãuv), (22)

where

R̃(ãuv) :=
Põ(C̃uv = ãuv|Euv = 1, ΘM )

Põ(C̃uv = ãuv|ΘM )
,∀u ∈ V,∀v ∈ V, (23)

C̃uv ∈ {(ãi, ãj)|i ∈ V, j ∈ V} is the random variable indicating attribute value combinations without
sensitive attributes, and Põ indicates the distribution used in generating G̃. We name the methods that
learn embeddings from G̃ as UGE, simply for Unbiased Graph Embedding. We illustrate the general
principle of UGE in Figure 15. Next we discuss two instances of UGE. The first is called UGE-W, which
reweighs the per-edge loss such that the total loss is from G̃ in expectation. The second is called UGE-R,
which adds a regularization term to satisfy the properties as embeddings directly learnt from G̃.

1.4.1 Weighting-Based UGE We modify the loss function in Eq (19) by reweighing the loss as

LUGE−W (G) =
∑

(u,v)∈E

Ledge(sθ(zu, zv))
R̃(ãuv)

R(auv)
. (24)

The following theorem shows that in expectation Eq (24) is equivalent as learning embeddings from G̃.
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Theorem 1. Given a graph G, and R̃(ãuv)/R(auv),∀(u, v) ∈ E , LUGE−W (G) is an unbiased loss
with respect to G̃.

Proof. We take expectation over the edge observations in G as

E
[
LUGE−W (G)

]
=E

[ ∑
(u,v)∈E

Ledge(s(zu, zv))
R̃(ãuv)

R(auv)

]
(25)

=E

[ ∑
u∈V,v∈V

Ledge(s(zu, zv))
R̃(ãuv)

R(auv)
· Euv

]

=
∑

u∈V,v∈V
Ledge(s(zu, zv))

R̃(ãuv)

R(auv)
· Po(Euv = 1|Cuv = auv, ΘM )

∗ =
∑

u∈V,v∈V
Ledge(s(zu, zv)) · Põ(Euv = 1|C̃uv = ãuv, ΘM )

=E

[ ∑
(u,v)∈Ẽ

Ledge(s(zu, zv))

]
.

The step marked by ∗ uses Eq (21) and Eq (22).

UGE-W is related to the idea of importance sampling [83], which analyzes the edge distribution of the
bias-free graph G̃ by observations from the given graph G. The only thing needed for deploying UGE-W
in existing graph embedding methods is to calculate the weights R̃(ãuv)/R(auv). To estimate R(auv),
we need estimates for two probabilities Po(Cuv = auv|Euv = 1, ΘM ) and Po(Cuv = auv|ΘM ). With
maximum likelihood estimates on the observed graph, we have

Po(Cuv = auv|Euv = 1, ΘM ) ≈
∑

(i,j)∈E I[aij = auv]

|E| , (26)

Po(Cuv = auv|ΘM ) ≈
∑

i∈V,j∈V I[aij = auv]

N2
. (27)

Similarly we can estimate R̃(ãuv) by

Po(C̃uv = ãuv|Euv = 1, ΘM ) ≈
∑

(i,j)∈Ẽ I[ãij = ãuv]

|Ẽ |
, (28)

Po(C̃uv = ãuv|ΘM ) ≈
∑

i∈V,j∈V I[ãij = ãuv]

N2
. (29)

Note that the estimation of Po(C̃uv = ãuv|Euv = 1, ΘM ) is based on Ẽ , which is unfortunately un-
observable. But we can approximate Po(C̃uv = ãuv|Euv = 1, ΘM ) with E in the following way: after
grouping node pairs by non-sensitive attribute value combinations ãuv , the sensitive attributes only re-
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route the edges but do not change the number of edges in each group, and thus we have

Po(C̃uv = ãuv|Euv = 1, ΘM ) ≈
∑

(i,j)∈Ẽ I[ãij = ãuv]

|Ẽ |
(30)

=

∑
i∈V,j∈V,ãij=ãuv

I[(i, j) ∈ Ẽ ]
|Ẽ |

=

∑
i∈V,j∈V,ãij=ãuv

I[(i, j) ∈ E ]
|Ẽ |

=

∑
(i,j)∈E I[ãij = ãuv]

|E| .

For node pairs with the same attribute value combination, Eq (26)-Eq (29) only need to be calculated once
instead of for each pair. This can be done by first grouping the pairs by their attribute value combinations
and then perform estimation in each group. However, when there are many attributes or attributes can
take many unique values, the estimates may become inaccurate since there will be many groups and each
group might only have a few nodes. In this case, we can make independence assumptions between at-
tributes. For example, by assuming they are independent, the estimate for attribute combinations becomes
the product of estimates for each attribute. The non-sensitive attributes can be safely removed under this
assumption with R̃(ãuv) = 1, and only R(auv) needs to be estimated as R(auv) =

∏m
i=1 R(auv[i]).

Since UGE-W only assigns pre-computed weights to the loss, the optimization based on it will not in-
crease the complexity of any graph embedding method.

1.4.2 Regularization-Based UGE We propose an alternative way for UGE which adds a regulariza-
tion term to the loss function that pushes the embeddings to satisfy properties required by the bias-free
graph G̃. Specifically, when the node embeddings are learnt from G̃, their produced edge distribution
should be the same with and without the sensitive attributes. To enforce this condition, we need to reg-
ularize the discrepancy between Po(Euv = 1|Cuv = auv, ΘM ) and Põ(Euv = 1|C̃uv = ãuv, ΘM )
induced from the node embeddings. We can use the scores in sθ(zu, zv) as a proxy to represent edge
probability between u and v, i.e., high sθ(zu, zv) indicates high probability of an edge between u and
v. We can measure Po(Euv = 1|Cuv = auv, ΘM ) by aggregating all node pairs with the same attribute
value combination to marginalize out the effect of ΘM and focus on the influence from attribute value
combinations as

Qauv
=

1

Nauv

∑
i∈V,j∈V,aij=auv

sθ(zi, zj), (31)

where we use Qauv
to denote the approximated measure of Po(Euv = 1|Cuv = auv, ΘM ), and Nauv

is
the number of node pairs that has the attribute value combination auv . For pairs with the same attribute
value combination, Qauv only needs to be calculated once. Similarly, Põ(Euv = 1|C̃uv = ãuv, ΘM )
can be represented by Qãuv

, which can be obtained by aggregating the scores over pairs with non-
sensitive attribute value combination ãuv . Finally, we use ℓ2 distance between Qauv

and Qãuv
as the

regularization

LUGE−R(G) =
∑

(u,v)∈E

Ledge(sθ(zu, zv)) + λ
∑

u∈V,v∈V
||Qauv

−Qãuv
||2, (32)

where λ controls the trade-off between the per-edge loss and the regularization.
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Table 10: Statistics of evaluation graph datasets.
Statistics Pokec-z Pokec-n MovieLens-1M

# of nodes 67, 796 66, 569 9, 992
# of edges 882, 765 729, 129 1, 000, 209
Density 0.00019 0.00016 0.01002

In contrast to adversarial regularizations employed in prior work [112, 15, 4, 37], UGE-R takes a different
perspective in regularizing the discrepancy between graphs with and without sensitive attributes induced
from the embeddings. All previous regularization-based methods impose the constraint on individual
edges. We should note the regularization term is summed over all node pairs, which has a complexity of
O(N3) and can be costly to optimize. But in practice, we can add the regulariztaion by only sampling
batches of node pairs in each iteration during model update, and use λ to compensate the strength of the
regularization.

1.4.3 Combined Method As hinted in section 1, UGE-W is a sufficient condition for unbiased node
embeddings and UGE-R is a necessary condition. We can combine them to trade-off the debiasing per-
formance and utility,

LUGE−C(G) =
∑

(u,v)∈E

Ledge(sθ(zu, zv))
R̃(ãuv)

R(auv)
+ λ

∑
u∈V,v∈V

||Qauv −Qãuv
||2, (33)

where we use LUGE−C(G) to represent the combined method. LUGE−C(G) thus can leverage the ad-
vantages of both UGE-W and UGE-R to achieve better trade-offs between the unbiasedness and the
utility of node embeddings.

1.5 Experiments

In this section, we study the empirical performance of UGE on three benchmark datasets in comparison
to several baselines. In particular, we apply UGE to five popularly adopted backbone graph embedding
models to show its wide applicability. To evaluate the debiasing performance, the node embeddings
are firstly evaluated by their ability to predict the value of sensitive attributes, where lower prediction
performance means better debiasing effect. Then a task-specific metric is used to evaluate the utility of
the embeddings. Besides, we also apply fairness metrics in the link prediction results to demonstrate the
potential of using embeddings from UGE to achieve fairness in downstream tasks.

• Datasets. We used three public user-related graph datasets, Pokec-z, Pokec-n and MovieLens-1M,
where the users are associated with sensitive attributes to be debiased. The statistics of these three
datasets are summarized in Table 10. Pokec7 is an online social network in Slovakia, which contains
anonymized data of millions of users [162]. Based on the provinces where users belong to, we used two
sampled datasets named as Pokec-z and Pokec-n adopted from [36], which consist of users belonging
to two major regions of the corresponding provinces, respectively. In both datasets, each user has a rich
set of features, such as education, working field, interest, etc.; and we include gender, region and age as
(sensitive) attributes whose effect will be studied in our evaluation. MovieLens-1M8 is a popular movie

7 https://snap.stanford.edu/data/soc-pokec.html
8 https://grouplens.org/datasets/movielens/1m/

https://snap.stanford.edu/data/soc-pokec.html
https://grouplens.org/datasets/movielens/1m/
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Table 11: Unbiasedness evaluated by Micro-F1 on Pokec-z and Pokec-n. Bold highlights the best results.
Dataset Prediction Target No Debiasing Fairwalk CFC UGE-W UGE-R UGE-C Random

Pokec-z
+GAT

Gender (Micro-F1) 0.6232 0.6135 0.5840 0.6150 0.6094 0.5747 0.4921
Region (Micro-F1) 0.8197 0.8080 0.7217 0.6784 0.7660 0.6356 0.4966

Age (Micro-F1) 0.0526 0.0522 0.0498 0.0431 0.0545 0.0429 0.0007

Pokec-n
+node2vec

Gender (Micro-F1) 0.5241 0.5291 0.5241 0.5187 0.5095 0.5158 0.5078
Region (Micro-F1) 0.8690 0.8526 0.8423 0.8158 0.6975 0.6347 0.4987

Age (Micro-F1) 0.0626 0.0534 0.0426 0.0305 0.0294 0.0194 0.0002

recommendation benchmark, which contains around one million user ratings on movies [58]. In our ex-
periment, we construct a bipartite graph which consists of user and movie nodes and rating relations
as edges. The dataset includes gender, occupation and age information about users, which we treat as
sensitive attributes to be studied. We do not consider movie attributes, and thus when applying UGE,
only user attributes are counted for our debiasing purpose.

• Graph Embedding Models. UGE is a general recipe for learning unbiased node embeddings, and
can be applied to different graph embedding models. We evaluate its effectiveness on five representa-
tive embedding models in the supervised setting with the link prediction task: GCN [81], GAT [174],
SGC [190] and node2vec [52] are deep learning models, and we use dot product between two node
embeddings to predict edge probability and apply cross-entropy loss for training. MF [123] applies ma-
trix factorization to the adjacency matrix. Each node is represented by an embedding vector learnt with
pairwise logistic loss [143].

• Baselines. We consider three baselines for generating unbiased node embeddings. (1) Fairwalk [138]
is based on node2vec, which modifies the pre-processing of random-walk generation by grouping neigh-
boring nodes with their values of the sensitive attributes. Instead of randomly jumping to a neighbor node,
Fairwalk firstly jumps to a group and then sample a node from that group for generating random walks.
We extend it to GCN, GAT and SGC by sampling random walks of size 1 to construct the corresponding
per-edge losses for these embedding models. (2) Compositional Fairness Constraints (CFC) [15] is an
algorithmic method, which adds an adversarial regularizer to the loss by jointly training a composition of
sensitive attribute discriminators. We apply CFC to all graph embedding models and tune the weight on
the regularizer in {1, 5, 10, 25, 35, 45, 55, 65}, where larger weights are expected to result in embeddings
with less bias but also lower utility. (3) Random embeddings are used as a baseline which is considered
bias-free. We generate random embeddings by sampling the value of each embedding dimension from
[0, 1] uniformly at random.

It is important to mention a recent work called DeBayes [19], which is based on the conditional network
embedding (CNE) [77]. It includes the sensitive information in a biased prior for learning unbiased node
embeddings. We did not include it since it is limited to CNE and cannot be easily generalized to other
graph embedding models. Besides, we found the bias prior calculation in DeBayes does not scale to
large graphs and the utility of resulting node embeddings is close to random. The original paper [19]
only experimented with two small graph datasets with less than 4K nodes and 100K edges. By default,
UGE follows Fairwalk to debias each of the three sensitive attributes separately without independence
assumption between attributes. CFC debiases all sensitive attributes jointly as in the original paper9.

• Configurations. For the Pokec-z and Pokec-n datasets, we apply GCN, GAT, SGC and node2vec as
embedding models and apply debiasing methods on top of them. For each dataset, we construct positive

9 UGE can also debias multiple attributes jointly.
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Fig. 16: Trade-off between utility by NDCG@10 (y-axis) and unbiasedness by micro-f1 (x-axis) of em-
beddings from different methods. Random embeddings without any bias give the lowest Micro-F1 (green
line), and no debiasing gives the best NDCG@10 (blue line). An ideal debiasing method should locate
itself at the upper left corner.

examples for each node by collecting Npos neighboring nodes with Npos equal to its node degree, and
randomly sample Nneg = 20 × Npos unconnected nodes as negative examples. For each node, we use
90% positive and negative examples for training and reserve the rest 10% for testing. For Movielens-
1M, we follow common practices and use MF as the embedding model [138, 15] to evaluate CFC. We
do not evalaute Fairwalk on this dataset since there is no user-user connections and fair random walk
cannot be applied. The rating matrix is binarized to create a bipartite user-movie graph for MF. We use
80% ratings for training and 20% for testing. For all datasets and embedding models, we set the node
embedding size to d = 16. Since there is a large number of experimental settings composed of different
datasets, embedding models, and baselines, we report results from different combinations in each section
to maximize the coverage in each component, and include the other results in Appendix 2.

1.5.1 Analysis of Unbiasedness We first compare the unbiasedness of node embeddings from different
debiasing methods. For each sensitive attribute, we train a logistic regression classifier with randomly
sampled 80% nodes with their embeddings as features and attribute values as class labels. Then we
use the classifier to predict the attribute values of the rest of 20% nodes and evaluate the performance
with Micro-F1. The Micro-F1 score can be used to measure the bias in the embeddings, i.e., a lower
score means lower bias in the embedding with respect to the sensitive attribute. In expectation, random
embeddings should have the lowest Micro-F1 and embeddings without debiasing should have the high-
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GCN without Debiasing GCN with UGE-C

Fig. 17: Visualizing embeddings learnt on Pokec-n using GCN. Node color represents region attribute.

est Micro-F1. We show the results on Pokec-z with GAT as base embedding model and Pokec-n with
node2vec as base embedding model in Table 11.

From the results, we can find that embeddings from UGE methods always have the least bias against
all baselines with respect to all sensitive attributes and datasets. This confirms the validity of learning
unbiased embeddings from a bias-free graph regarding the sensitive attributes. Besides, by combining
weighting and regularization, UGE-C usually produces the best debiasing effect, which demonstrates the
complementary effect of our two methods.

Besides the unbiasedness, the learnt embeddings are required to be effective when applied to downstream
tasks. In particular, we use NDCG@10 evaluated on the link prediction task to measure the utility of the
embeddings. Specifically, for each target node, we create a candidate list of size 100 that includes all
its observed neighbor nodes in the test set and randomly sampled negative nodes. Then NDCG@10 is
evaluated on this list with predicted edge probabilities from node embeddings. Figures 16(a) and 16(b)
show the unbiasedness as well as the utility of embeddings from different methods in correspondence to
the two datasets and embedding models in Table 11. Figure 16(c) shows the results on MovieLens-1M
with MF as embedding model.

In these plots, the y-axis denotes NDCG@10 evaluating the utility of embeddings and x-axis shows
Micro-F1 measuring the bias in embeddings. Different embedding methods are represented by different
shapes in the figures, and we use different colors to differentiate UGE-W, UGE-R and UGE-C. Again,
random embeddings do not have any bias and provide the lowest Micro-F1 (denoted by the green line),
while embeddings without any debiasing gives the best NDCG@10 (denoted by the blue line). An ideal
debiasing method should locate at the upper left corner to achieve the best utility-unbiasedness trade-off.
As shown in the figures, UGE methods achieve the most encouraging trade-off on these two contradicting
objectives in most cases. UGE-C can usually achieve better debiasing effect, without sacrificing too much
utility in most cases. UGE-W and UGE-R maintain high utility but are less effective than the combined
version. CFC can achieve descent unbiasedness in embeddings, but the utility is seriously compromised
(such as in Pokec-z and MovieLens-1M). Fairwalk unfortunately does not present an obvious debiasing
effect on sensitive attributes.

To further illustrate the debiasing effect from UGE, we use the t-SNE algorithm to project the learned
node embeddings on Pokec-n to a 2-D space and visualize them in Figure 17. The left plot shows the
embedding learned via GCN without debiasing, and the right plot exhibits the debiased embeddings
by applying UGE-C on GCN to debias the region attribute. Node colors represent the region value.
Without debiasing, the embeddings are clearly clustered with respect to region. After applying UGE-C,
embeddings with different region values are blended together, showing the effect of removing the region
information from embeddings.
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Fig. 18: Fairness metrics evaluated on link prediction task on Pokec-n with node2vec embedding model.

1.5.2 High-Level Fairness from Embeddings We study whether the embeddings can lead to fairness
in downstream tasks. Two fairness metrics called demographic parity (DP) and equalized opportunity
(EO) are adopted to evaluate the fairness in the link prediction task from the embeddings. In particular,
DP requires that the predictions are independent from sensitive attributes, measured by the maximum
difference of prediction rates between different combinations of the sensitive attribute values. EO mea-
sures the independence between true positive rate (TPR) of predicting edges and the sensitive attributes,
and it is defined as the maximum difference of TPRs between different sensitive attribute value combi-
nations. For both DP and EO, lower values suggest better fairness. We use the exact formulation of DP
and EO in [19] and use sigmoid function to convert each edge score for a pair of nodes to a probability.

We show the results on fairness vs., utility in Figure 18, which are evaluated on three sensitive attributes
in Pokec-n with node2vec as embedding model. In each plot, the x-axis is the fairness metric and y-axis
is the NDCG@10 on link prediction. Similar to Figure 16, the ideal debiasing methods should locate
at the upper left corner. Except for EO on the age attribute where all methods performed similarly,
UGE methods can achieve significantly better fairness than the baselines on both DP and EO, while
maintaining competitive performance on the link prediction task. UGE-C that combines UGE-W and
UGE-R can achieve the most fair predictions. This study shows UGE’s ability to achieve fairness in
downstream tasks by effectively eliminating bias in the learnt node embeddings.

1.5.3 Unbiasedness-Utility Tradeoff in UGE Last but not least, we study the unbiasedness-utility
trade-off in UGE-C by tuning the weight on the regularization. Although UGE-W itself can already
achieve promising debiasing effect, we expect that the added regularization UGE-R can complement
it for a better trade off. In particular, we tuned the regularization weights λ in both CFC and UGE-C



53

0.58 0.60 0.62
Micro-F1 on Gender

0.25

0.30

0.35

0.40

Lin
k 

Pr
ed

ict
io

n 
 (N

DC
G@

10
)

0.0
0.10.3

0.5
0.7

0.9
1.1

1.31.5
1.7

1.9

1
5

10
15

2545

0.65 0.75 0.85
Micro-F1 on Region

0.0
0.1

0.30.50.70.9

1.1

1.3

1.51.71.9

1
5

10
15

25

45

55

UGE-C CFC GAT

Fig. 19: Trade-off comparison between CFC and UGE-C on Pokec-z with GAT as the embedding model.

and plot Micro-F1 (x-axis) vs., NDCG@10 (y-axis) from the resulting embeddings in Figure 19. Weight
values are marked on each point. The results are obtained on Pokec-z with GAT and the two figures
correspond to debiasing gender and region, respectively. With the same extent of bias evaluated by
Micro-F1, embeddings from UGE-C have a much higher utility as indicated by the vertical grids. On
the other hand, embeddings from UGE-C have much less bias when the utility is the same as indicated
by horizontal grids. This experiment proves a better trade-off is achieved in UGE-C, which is consistent
with our design on UGE-W and UGE-R. UGE-W learns from a bias-free graph without any constraints,
and it is sufficient for it to achieve unbiasedness without hurting the utility of embeddings. On the other
hand, UGE-R requires the embeddings to satisfy the properties of those learnt from the bias-free graph,
which is necessary for the embeddings to be unbiased.

2 Robust Machine Learning with Perturbed Structure

Graph data differs from image or text data due to the topological structure formed among nodes. On
one hand, GCNs exploit such structures to aggregate information conveyed in nodes’ neighborhoods,
which yield better predictive power on many tasks (such as link prediction [151] and node classification
[145]). But on the other hand, the complex dependency relations introduced by the topological structure
of graphs also expose learning models to a greater risk: an attacker can mislead classifiers to erroneous
predictions by just slightly perturbing the graph structure, without even modifying any node features.
Various adversarial attacks have been studied on graph structure [72], considering different prediction
tasks (node classification [193, 180, 209] or graph classification [38, 111]), attacker’s knowledge (white-
box [193, 180, 208] or black-box [38, 111]), attack phases (test-time evasion attack [24, 38, 193] or
training-time poisoning attack [180, 209]), and perturbation types (edge modification [193, 209] or node
modification [160]). In this paper, we focus on the structural attack by adding or removing edges to
compromise the node classification performance of a victim GCN model.

Graph convolution, as the fundamental building block of GCNs, is designed to filter graph signals in the
Fourier domain. Studies in spectral graph theory [33] show that the spectra (eigenvalues) of the graph
Laplacian matrix capture graph structural properties (e.g., the second smallest eigenvalue, also known
as the Fiedler value, reflects the algebraic connectivity of graphs [124] ). Therefore exploiting spectral
changes provides a comprehensive way to study the vulnerability of GCN models. However, so far most
structural attack solutions only search for perturbations in the spatial domain. Ignoring the direct source
of GCN models’ vulnerability which resides in the Fourier domain limits the effectiveness of attacks.

Studying GCN models’ vulnerability in the Fourier domain can effectively capture important edges that
influence the structural property the most, e.g., the clustering structure of nodes. According to the con-
cept of graph signal processing, the eigen-decomposition of the Laplacian matrix of a graph defines the
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frequency domain of message passing on the graph. Recent works have established the relationship be-
tween frequency components and graph clustering [40, 155]. Based on the ascending ordered eigenvalues
of the Laplacian matrix, we can obtain both low- and high-frequency components, which play different
roles in message passing on graphs. The eigenvectors associated with small eigenvalues carry smoothly
varying signals, encouraging neighbor nodes to share similar properties (e.g., nodes within a cluster). In
contrast, the eigenvectors associated with large eigenvalues carry sharply varying signals across edges
(e.g., nodes from different clusters) [23, 70]. The fact that graph frequency components encode the global
structure of graphs motivates us to study GCN models’ vulnerability in the Fourier domain.

In this work, we propose a principled graph perturbation strategy in the Fourier domain to improve the
effectiveness of adversarial attacks against GCN models. Specifically, we define the spectral distance
between the original and perturbed graph, measured by the change in their Laplacian eigenvalues. Then
we build a structural attack model which directly maximizes the spectral distance in a black-box fashion.
To solve this combinatorial optimization problem, we relax the binary constraint on edge perturbation to a
continuous one, and apply a randomization sampling strategy to generate valid binary edge perturbations.
We name this method SPectral AttaCk, abbreviated as SPAC. It is worth noting that generating the
SPAC attack requires eigen-decomposition of the Laplacian matrix, which results in a time complexity of
O(n3) with n nodes in a graph. To handle large graphs, we propose an approximation solution only based
on a set of largest and smallest eigenvalues and their corresponding eigenvectors, and use eigenvalue
perturbation theory [157] to avoid frequent computation of eigen-decomposition, which reduces the time
complexity to O(n2). Our attack method is evaluated under both white-box and black-box settings for
both evasion and poisoning attacks on a set of benchmark graph datasets. Promising empirical results
demonstrate that convolutional graph learning models are sensitive to spectral changes, which expands
the scope of adversarial attacks on graphs to the Fourier domain and opens up new possibilities to verify
and enhance GCNs’ robustness in both the spatial and Fourier domains.

2.1 Related Work

Adversarial attacks on graph structures have been extensively studied in recent years. The vast majority
of attack efforts manipulate graphs in the spatial domain to maximize a task-specific attack objective.
However, the vulnerability of graph convolutions in the Fourier domain is less studied in existing attack
solutions. We bridge the gap by measuring and maximizing the spectral changes in the graph Laplacian
matrix, such that we can directly disrupt the graph spectral filters and attack the graph convolutions.

• Adversarial Attack on Graph Structures. The attacker aims to perturb the graph adjacency matrix in
directions that lead to large classification loss. In the white-box setting, the attacker follows the gradients
on the adjacency matrix to find such perturbations [209, 193, 191, 208, 28, 95, 181]. Different strategies
are exploited to convert continuous gradients into binary edge modifications. Topology attack [113] uses
randomization sampling to select sub-optimal binary perturbations. Nettack [208] and FGA [28] select
edge changes with the largest gradient greedily. Metattack [209] first calculates meta-gradient on graph
adjacency matrix to solve a bi-level optimization problem for poisoning attack, and then greedily picks
perturbations with the largest meta-gradient. In the black-box setting, the attacker cannot access gradients
of the victim model but uses a proxy (e.g. model output scores) to search for the best perturbations
[109, 111, 38]. Reinforcement learning based solutions [24, 111, 38, 139] make a series of edge addition
or deletion decisions that yield the maximal attack utility and thus can serve for black-box setting.

These attacks search for perturbations in the spatial space, but the target GCNs generate node embeddings
by the signal filters defined in the Fourier space. Thus the vulnerability of graph convolutions reflected
on the graph spectral changes cannot be fully realized. Our method captures such vulnerability directly
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in the Fourier domain measured by the spectral distance between the original and perturbed graphs for a
more effective attack.

• Spectral Perturbations on Graphs. Existing attack methods in the Fourier space are generally sparse.
Bojchevski and Günnemann [14] reformulate random walk based models as a matrix factorization prob-
lem, and propose an attack strategy to search for edges that lead to large eigenvalue changes in the derived
matrix. However, this method is model-specific and cannot be easily applied to general forms of GCNs.
GF-Attack [24] constructs an objective based on the low-rank graph spectra and feature matrix to guide
the attack in a black-box fashion. A universal attack on deformable 3D shape data is proposed to change
the scale of its eigenvalues [140], but it is not studied in the graph domain. DICE [186] corrupts the graph
structure by “deleting edges internally and connecting nodes externally” across clusters which implicitly
influences the graph’s spectral property. But this heuristic is performed without any principled guidance.
Studies that analyze spectral graph filters [79, 92, 78] provide the theoretical stability upper bounds of
popular filters, such as polynomial and identity filters. It is shown that the filters become unstable if the
end nodes of changed edges have low degrees or the perturbation is concentrated spatially around any
single node [79]. Our method empirically shows that we can attack the vulnerability of these filters and
break such requirements by directly maximizing graph spectral changes.

2.2 Preliminaries: Graph Neural Networks from Signal Processing Perspective

• Notations. Let G = (V,E) be a connected undirected graph with n nodes and m edges. Let A ∈
{0, 1}n×n be its adjacency matrix. The diagonal degree matrix can be calculated by D = diag(A1n)
with entry Dii = di =

∑n
j=1 Aij , and 1n is an all-one vector with dimension n. The normalized

Laplacian matrix of a graph is defined as L = Lap(A) = In − D−1/2AD−1/2, where In is an n× n
identity matrix. Since L is symmetric positive semi-definite, it admits an eigen-decomposition L =
UΛU⊤. The diagonal matrix Λ = eig(L) = diag(λ1, . . . , λn) consists of the real eigenvalues of L in an
increasing order such that 0 = λ1 ≤ · · · ≤ λn ≤ 2, and the corresponding U = [u1, . . . ,un] ∈ Rn×n

is a unitary matrix where the columns consist of the eigenvectors of L. X ∈ Rn×d denotes the node
feature matrix where each node v is associated with a d-dimensional feature vector.

• Graph Fourier Transform. By viewing graph embedding models from a signal processing perspec-
tive, the normalized Laplacian L serves as a shift operator and defines the frequency domain of a graph
[149]. As a result, the eigenvectors of L can be considered as the graph Fourier bases, and the eigenval-
ues correspond to frequency components. Take one column of X as an example of graph signal, which
can be compactly represented as x ∈ Rn. The graph Fourier transform of graph signal x is given by
x̂ = U⊤x and the inverse graph Fourier transform is then x = Ux̂. The graph signals in the Fourier
domain are filtered by amplifying or attenuating the frequency components Λ.

• Spectral Graph Convolution. At the essence of different graph convolutional models is the spectral
convolution, which is defined as the multiplication of signal x with a filter gϕ parameterized by ϕ ∈ Rn

in the Fourier domain [39]:

gϕ(L) ⋆ x = Ug∗ϕ(Λ)U⊤x (34)

where the parameter ϕ is a vector of spectral filter coefficients. The filter gϕ defines a smooth transfor-
mation function, and a commonly used filter is the polynomial filter:

g∗ϕ(Λ) =
∑∞

k=0
ϕkΛ

k (35)

which can be approximated by a truncated expansion. A commonly adopted approximation is based on
the Chebyshev polynomials Tk(Λ), which are recursively defined as T0(Λ) = In, T1(Λ) = Λ and
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Tk+1(Λ) = 2ΛTk(Λ)−Tk−1(Λ) . Using the Chebyshev polynomials up to the K-th order achieves the
following approximation [56]:

g∗ϕ(Λ) ≈
∑K

k=0
ϕkTk(Λ̃) (36)

with a rescaled Λ̃ = 2Λ/λn − In.

Graph Convolutional Network (GCN). A vanilla GCN is a first-order approximation of the spectral
graph convolution with the Chebyshev polynomials [81]. Setting K = 1, ϕ0 = −ϕ1 in Eq (36) and
approximating λn ≈ 2, we obtain the convolution operation gϕ(L) ⋆ x = (In +D−1/2AD−1/2)x. We
can replace matrix In+D−1/2AD−1/2 with a self-loop version L̃ = D̃−1/2ÃD̃−1/2 where Ã = A+In
and D̃ = D+In. This resembles the vanilla GCN layer with activation function σ and trainable network
parameters Θ for feature transformation: H(l+1) = σ

(
L̃H(l)Θ(l)

)
, where the signals from the previous

layer H(l) is filtered to generate new signals H(l+1). To unify the notations, H(0) = X denotes the input
node features, and Z = H(L) denotes the output node embeddings of an L-layer GCN model.

2.3 Methodology

We propose to maximize the changes on the graph Laplacian spectrum, such that we can exploit the edge
perturbation budget to most effectively influence the spectral filters and attack graph convolutions. We
solve the resulting optimization problem using gradient descent, and propose an efficient approximation
via eigenvalue perturbation theory on selective eigenvalues. We finally discuss the theoretical evidence
showing the dependency between the eigenvalues of graph Laplacian and the stability of GCN models,
which supports the proposed spectral attack on graph data. Based on the aforementioned spectral per-
spective for understanding GCNs, we aim to generate edge perturbations that can disrupt the spectral
filters the most when processing input signals on the graph. We measure the disruption by the changes
in the eigenvalues of graph Laplacian, which we define as the spectral distance.

2.3.1 Spectral Distance on Graphs As shown in Eq (34), the spectral filters g∗ϕ(Λ) are the key in
graph convolutions to encode graph signals that are transformed in the Fourier domain. The output of the
spectral filters is then transformed back to the spatial domain to generate node embeddings. Therefore,
perturbing the spectral filters g∗ϕ(Λ) will affect the filtered graph signals and produce inaccurate node
embeddings. To measure the changes in spectral filters, we define the spectral distance between the
original graph G and perturbed graph G′ as:

Dspectral = ∥g∗ϕ(Λ)− g∗ϕ(Λ
′)∥2 (37)

where Λ and Λ′ are the eigenvalues of the normalized graph Laplacian for G and G′ respectively. The
spectral distance Dspectral is determined by both filter parameters ϕ and the frequency components Λ. For
graph embedding models based on the vanilla GCN [81], we follow their design of spectral filters which
uses the first-order approximation of the Chebyshev polynomials in Eq (36) and sets ϕ0 = −ϕ1 = 1,
which gives:

g∗ϕ(Λ) ≈ ϕ0I0 + ϕ1Λ = In −Λ (38)

Plugging it into Eq (37), we conclude the following spectral distance which is only related to the eigen-
values of graph Laplacian:

Dspectral ≈ ∥(In −Λ)− (In −Λ′)∥2 = ∥Λ−Λ′∥2 = ∥eig(Lap(A))− eig(Lap(A′))∥2 (39)
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This spectral distance reflects the changes of spectral filters due to the graph perturbation. Therefore,
if we perturb the graph by directly maximizing the spectral distance, we can impose the most effective
changes to graph filters and thus disrupt the generated node embeddings the most.

2.3.2 Spectral Attack on Graph Structure Since the spectral distance measures the changes of the
spectral filters on the graph after perturbation, we can produce effective attacks by maximizing the re-
sulting spectral distance. The goal is to find the perturbation on the graph adjacency matrix that can
maximize the spectral distance Dspectral defined in Eq (39). We first define the structural perturbation as
a binary perturbation matrix B ∈ {0, 1}n×n, which indicates where to flip the edges in G. The new ad-
jacency matrix after the perturbation is then a function of the perturbation matrix, which can be obtained
as follows [193]:

g(A,B) = A+C ◦B, C = Ā−A (40)

where Ā is the complement matrix of the adjacency matrix A, calculated by Ā = 1n1
⊤
n − In −A, with

(1n1
⊤
n − In) denoting the fully-connected graph without self loops. Therefore, C = Ā − A denotes

legitimate addition or deletion operations on each node pair: adding an edge is allowed between node i
and j if Cij = 1, and removing an edge is allowed if Cij = −1. Taking the Hadamard product C ◦B
finally gives valid edge perturbations to the graph.

To generate an effective structural attack, we seek a perturbation matrix B that maximizes the spectral
distance Dspectral defined in Eq (39). More specifically, given a finite budget of edge perturbation, e.g.,
∥B∥0 ≤ ϵ|E| with |E| denoting the number of edges, we formulate the SPectral AttaCk (SPAC) as the
following optimization problem:

max
B

LSPAC := Dspectral s.t. ∥B∥0 ≤ ϵ|E|,B ∈ {0, 1}n×n,A′ = g(A,B) (41)

which is not straightforward to solve because of two challenges: 1) it is a combinatorial optimization
problem due to the binary constraint on B; 2) the objective involves eigen-decomposition of the Lapla-
cian matrix, which is time-consuming especially for large graphs. Next, we introduce our practical solu-
tion to address these challenges such that we can efficiently generate the structural perturbations for the
spectral attack.

2.4 Practical implementation of SPAC

To solve the combinatorial optimization problem involving eigen-decomposition in Eq (41), we first relax
the combinatorial problem and use a randomization sampling strategy to generate the binary perturba-
tion matrix; we then introduce an approximation strategy to reduce the complexity of backpropagation
through eigen-decompostion.

2.4.1 Binary perturbation via gradient descent For the ease of optimization, we relax B ∈ {0, 1}n×n

to its convex hull ∆ ∈ [0, 1]n×n [193], which simplifies the combinatorial problem in Eq (41) to be the
following continuous optimization problem:

max
∆

LSPAC := Dspectral s.t. ∥∆∥1 ≤ ϵ|E|,∆ ∈ [0, 1]n×n,A′ = g(A,∆) (42)

which can be solved via gradient descent. The gradient with respect to ∆ is as follows by chain rule:

∂LSPAC

∂∆ij
=

n∑
k=1

∂LSPAC

∂λ′
k

n∑
p=1

n∑
q=1

∂λ′
k

∂L′
pq

∂L′
pq

∂∆ij
(43)
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Recall that L′ = Laplacian(A′) and λ′
k is an eigenvalue of L′ in Eq (39). We now focus on the

gradient calculation that involves eigen-decomposition. Since the gradient calculation of the rest is
straightforward, we leave it to Appendix 3.1. For a real and symmetric matrix L, one can obtain the
derivatives of its eigenvalue λk and eigenvector uk by: ∂λk/∂L = uku

⊤
k , ∂uk/∂L = (λkI − L)+uk

[144, 114]. Therefore, we can directly obtain the closed-form derivative of the eigenvalues in Eq (43)
as: ∂λ′

k/∂L
′
pq = u′

kpu
′
kq . Note that the derivative calculation requires distinct eigenvalues. This does

not hold for graphs satisfying automorphism, which reflects structural symmetry of graphs [47]. To
avoid such cases, we add a small noise term to the adjacency matrix of the perturbed graph10, e.g.,
A′ + ε× (N+N⊤)/2, where each entry in N is sampled from a uniform distribution U(0, 1) and ε is a
very small constant. Such a noise addition will almost surely break the graph automorphism, thus enable
a valid gradient calculation of eigenvalues.

Solving the relaxed problem in Eq (42) using projected gradient descent gives us a continuous per-
turbation matrix ∆ that maximizes the spectral change. To recover valid edge perturbations from the
continuous ∆, we then generate a near-optimal solution for the binary perturbation matrix B via the
randomization sampling strategy [193]. Specifically, we use ∆ as a probabilistic matrix to sample the
binary assignments as follows:

Bij =

{
1, with probability ∆ij

0, with probability 1−∆ij

(44)

Suppose we take aforementioned projected gradient descent for T steps. For each step, SPAC takes
eigen-decomposition with time complexity O(n3) and samples binary solution with O(n2) edge flips.
The overall time complexity for solving SPAC is O(Tn3 + Tn2), which is mainly attributed to eigen-
decomposition and is considerably expensive for large graphs. Next, we discuss an approximation solu-
tion to improve its efficiency.

2.4.2 Efficient approximation for SPAC To reduce the computation cost of eigen-decomposition,
instead of measuring the spectral distance over all the frequency components, we decide to only maintain
the k1 lowest- and k2 highest-frequency components which are the most informative, as suggested by
the spectral graph theory. Specifically, Dspectral in Eq (39) can be approximated as follows:

Dspectral-approx =

√∑
i∈S

(λi − λ′
i)

2 (45)

where S = {1, . . . , k1, n − k2, . . . , n}. This reduces the time complexity O(n3) for exact eigen-
decomposition to O((k1 + k2) · n2) for the corresponding selective eigen-decomposition using the
Lanczos Algorithm [131]. To avoid frequent computation of the selective eigenvalues and further im-
prove efficiency, we propose to estimate the change in each eigenvalue for any edge perturbation based
on the eigenvalue perturbation theory [141, 14, 24].

Theorem 1. Let ui be the i-th generalized eigenvector of L with generalized eigenvalue λi. Let L′ =
L +∇L be the perturbed Laplacian matrix, and M′ be the diagonal matrix summing over rows of L′.
The generalized eigenvalue λ′

i of the Laplacian matrix L′ that solves L′u′
i = λ′

iM
′u′

i is approximately
λ′
i ≈ λi +∇λi with:

λi − λ′
i = ∇λi = u⊤

i (∇L− λidiag(∇L · 1n))ui (46)

10 The form of (N+N⊤)/2 is to keep the perturbed adjacency matrix symmetric for undirected graphs.
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Algorithm 1 Spectral Attack on Graph Structure

Input: G = (X,A); total step T ; step size η; k1, k2,m.

1: Initialize continuous perturbation ∆0 ∈ [0, 1]n×n

2: Initialize perturbed Laplacian matrix L′ = Laplacian(g(A,∆))
3: for t = 0, . . . , T − 1 do
4: if SPAC then
5: L(∆) = ∥Λ−Λ′∥2 by Eq (42), with Λ′ = eig(L′)
6: else if SPAC-approx then
7: if t %m = 0 then
8: L(∆) =

√∑
i∈S(λi − λ′

i)
2 by Eq (45)

9: else
10: L(∆) =

√∑
i∈S(u

⊤
i (∇L− λidiag(∇L · 1n))ui)2 by Eq (46) and Eq (45), with ∇L = L′ − L

11: end if
12: end if
13: Compute gradient on ∆: gt = ∇L(∆) by Eq (43)
14: Update ∆t+1 = ∆t + η · gt

15: Project ∆t+1 to its convex hull ∆t+1 ∈ [0, 1]n×n

16: end for
17: Output binary perturbation B by sampling from ∆T via Eq (44)

The proof is given in Appendix 3.2. Instead of recalculating the eigenvalues λ′
i for the updated L′

in each step when measuring the spectral distance, we use this theorem to approximate the change of
each eigenvalue in Eq (45) in linear time. Suppose we execute Eq (46) to calculate spectral distance in
Eq (45) for m steps and compute the exact eigenvalues every m step to avoid error accumulation, we can
achieve an overall time complexity O

(
(1+ k1+k2

m )Tn2
)
. We name the spectral attack equipped with the

approximation stated in Eq (45) and Eq (46) as SPAC-approx.

Algorithm 1 summarizes the implementation of SPAC (in line 5) and its approximation SPAC-approx
(in line 7-10). After obtaining the objective function based on the (approximated) spectral distance, the
algorithm further updates the continuous perturbation matrix ∆ via gradient descent and finally generates
the binary structural perturbation matrix B by sampling from ∆.

2.4.3 Extension in White-box Setting The proposed attack only requires information about graph
spectrum, therefore it can be conducted alone in the black-box setting as Eq (41) stated. Since SPAC
does not rely on any specific embedding model, it can also serve as a general recipe for the white-box
attack setting. Next, we show how to easily combine SPAC with white-box attack models.

Without loss of generality, we consider the vanilla GCN model for the node classification task as the
Victim Graph Embedding Model. Given a set of labeled nodes V0 ⊂ V , where each node i belongs to
a class in a label set yi ∈ Y . The GCN model aims to learn a function fθ that maps each node to a
class. We consider the commonly studied transductive learning setting, where the test (unlabeled) nodes
with associated features and edges are observed in the training phase. The GCN model is trained by
minimizing the following loss function:

min
θ

Ltrain(fθ(G)) =
∑
vi∈V0

ℓ(fθ(A,X)i, yi)
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where fθ(X,A)i and yi are the predicted and ground-truth labels of node vi and ℓ(·, ·) is a loss function
of choice, such as the cross entropy loss.

To generate edge perturbations under white-box setting that lead to both disrupted spectral filters and
erroneous classifications, we propose to maximize the spectral distance and task-specific attack objective
simultaneously. Specifically, given the test node-set Vt ⊂ V , the attack model aims to find the edge
perturbation B that solves the following optimization problem:

max
B

∑
vi∈Vt

ℓatk(fθ∗(A′,X)i, yi)︸ ︷︷ ︸
task-specific attack objective Lattack

+β · LSPAC

s.t. ∥B∥0 ≤ ϵ,B ∈ {0, 1}n×n,A′ = g(A,B)

θ∗ = argmin
θ

Ltrain(fθ(Ĝ)) (47)

where the third constraint controls when to apply the attack: setting Ĝ = G makes it an evasion attack,
so that the graph embedding model training is not affected; and setting Ĝ = G′ makes it poisoning
attack with perturbed training data. The attack objective Lattack is a flexible placeholder that can adapt to
many loss designs, for a simple example, the cross-entropy loss on test nodes in the node classification
task. The hyper-parameter β balances the effect of these two components, which is set based on graph
properties such as edge density. Algorithm 1 also applies for the white-box setting by plugging in Lattack
to the objective function. We will discuss the choices of attack objectives and hyper-parameters in the
experiment section for our empirical evaluations.

2.5 Discussion of the Relationship between GCNs and Graph Spectrum

Our spectral attack is based on the fact that the spectral filters are the fundamental building blocks for
graph convolutions to process graph signals in the Fourier domain. Therefore, searching the graph per-
turbations in the direction that causes the most changes in the spectral filters, measured by eigenvalues
of graph Laplacian, is expected to best disrupt graph convolutions. This is also supported by recent theo-
retical evidence in the field. Some recent literature has shown that the stability of GCN models is closely
related to the eigenvalues of the graph Laplacian. For example, it is proved that the generalization gap of
a single layer GCN model fθ trained via T -step SGD is O(λ2T

n ), where λn is the largest eigenvalue of
graph Laplacian [178]. Meanwhile, Weinberger et al. [187] proved that a generalization estimate is in-
versely proportional to the second smallest eigenvalue of the graph Laplacian λ2. These findings suggest
that manipulating the graph by perturbing the eigenvalues can potentially aggravate the generalization
gap of GCN, causing a larger generalization error.

2.6 Experiments

We performed extensive evaluations of the proposed spectral attack on four popularly used graph datasets,
where we observed remarkable improvements in the attack’s effectiveness. This section summarizes our
experiment setup, performance on both evasion and poisoning attacks, and qualitative analysis on the
perturbed graphs to study the effect of the spectral attack.

• Datasets. We evaluated the proposed attack on two citation network benchmark datasets, Cora [116]
and Citeseer [152], as well as two social network datasets, Polblogs [3] and Blogcatalog [147]. Table 12
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Table 12: Dataset statistics. D is the
feature dimension. K is the number of
classes.

Dataset #Node #Edge Density D K

Cora 2,708 5,278 0.0014 1433 7
Citeseer 3,312 4,536 0.0008 3703 6
Polblogs 1,490 16,715 0.015 - 2

Blogcatalog 5,196 171,743 0.013 8189 6

Table 13: Average running time (in seconds) for 10 runs
of evasion attack (T = 100, ϵ = 0.05).

Dataset Random DICE GF-Attack SPAC SPAC-approx

Cora 0.05 55.58 66.73 212.53 75.46
Citeseer 0.06 46.72 57.22 116.07 60.93
Polblogs 0.02 14.84 21.73 44.18 22.98

Blogcatalog 1.46 127.72 132.23 352.52 147.34

summarizes the statistics of these datasets. We followed the transductive semi-supervised node classifi-
cation setup in [81], where only 20 sampled nodes per class were used for training, but the features and
edges of all nodes were visible to the attacker during the training stage. The predictive accuracy of the
trained classifier was evaluated on 1000 randomly selected test nodes. The evasion attacker can query the
trained classifier, but cannot access the training nodes; the poisoning attacker can observe the training
nodes, but cannot access the labels of the test nodes.

• Baselines. We compared the proposed attack model SPAC against three attacks in the black-box setting,
and further verified the effectiveness of SPAC by combining it with five baselines in white-box setting11.
Black-box baselines for both evasion and poisoning attack include: 1) Random directly attacks the
graph structure by randomly flipping the edges; 2) DICE [186] is a heuristic method that deletes edges
internally and connects nodes externally across class clusters; 3) GF-Attack [24] perturbs the structure
by maximizing the loss of low-rank matrix approximation defined over small eigenvalues. We further
evaluate the performance of SPAC combined with white-box attack baselines which include: 1) PGD-CE
[193] is an evasion attack which maximizes the cross-entropy (CE) loss on the test nodes via projected
gradient descent (PGD) algorithm [113]; 2) PGD-C&W [193] is an evasion attack which perturbs edges
by minimizing the C&W score, which is the margin between the largest and the second-largest prediction
score, defined by Carlini-Wagner attack [21]; 3) Max-Min [193] is a poisoning attack, which solves the
bi-level optimization problem by iteratively generating structural perturbations (to maximize the cross-
entropy loss) and retraining a surrogate victim model on the perturbed graph (to minimize the loss);
4) Meta-Train [209] is a poisoning attack which uses meta-gradients on the perturbation matrix to
maximize the training classification loss; 5) Meta-Self [209] is a poisoning attack that extends Meta-
Train to maximize the self-training loss on test nodes using the predicted labels;

• Variants of SPAC. The proposed attack can be realized with exact and approximated spectral distance,
which gives SPAC and SPAC-approx. We will compare their attack performance and running time.
Meanwhile, adopting the objectives from white-box baselines to Eq (47) generates the following white-
box attack variants: 1) SPAC-CE is an evasion attack that jointly maximizes the cross-entropy loss and
spectral distance; 2) SPAC-C&W is an evasion attack combining the negative C&W score and spectral
distance; 3) SPAC-Min extends Max-Min by maximizing the loss as in SPAC-CE for poisoning attack;
4) SPAC-Train includes the spectral distance to Meta-Train for the meta-gradient calculation; 5) SPAC-
Self enhances the loss of Meta-Train by the spectral distance. The detailed objective for each variant is
summarized in Appendix 3.3.

11 We conducted the comparative experiments using DeepRobust Library [98].
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Table 14: Misclassification rate (%) with ϵ = 0.05 for evasion (LEFT) and poisoning (RIGHT) attack.

Evasion Cora Citeseer Polblogs Blogcatalog

Clean 0.184 0.295 0.128 0.276
Random 0.189 0.301 0.153 0.280

DICE 0.205 0.308 0.202 0.329
GF-Attack 0.198 0.311 0.179 0.333

SPAC 0.220 0.314 0.212 0.354
SPAC-approx 0.212 0.305 0.208 0.341

PGD-CE 0.237 0.349 0.167 0.441
SPAC-CE 0.255 0.352 0.188 0.458

PGD-C&W 0.249 0.388 0.216 0.447
SPAC-C&W 0.260 0.395 0.229 0.464

Poison Cora Citeseer Polblogs Blogcatalog

Clean 0.184 0.295 0.128 0.276
Random 0.189 0.309 0.126 0.277

DICE 0.207 0.310 0.246 0.306
GF-Attack 0.195 0.306 0.202 0.334

SPAC 0.222 0.338 0.234 0.478
SPAC-approx 0.215 0.322 0.220 0.454

Max-Min 0.240 0.359 0.167 0.489
SPAC-Min 0.255 0.375 0.188 0.504

Meta-Train 0.290 0.392 0.274 0.360
SPAC-Train 0.285 0.412 0.298 0.377

Meta-Self 0.427 0.499 0.478 0.590
SPAC-Self 0.489 0.508 0.472 0.599
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Fig. 20: Misclassification rate under evasion (TOP) and poisoning (BOTTOM) attack with varying ϵ.

2.6.1 Structural Evasion Attack Performance In the evasion attack setting, we first trained a GCN
classifier on the small training set V0 with a clean graph Ĝ = G. Then the classifier was fixed, and
the attackers generated edge perturbations based on the classifier’s predictions on the test nodes. Table
14 summarizes the misclassification rates under ϵ = 0.05, which allows 5% edges to be perturbed.
An extensive comparison with different perturbation rates is provided in Figure 20(a), where the solid
lines with darker color denote SPAC variants while the dashed lines with lighter color represent baseline
attacks.

In the black-box setting, randomly flipping edges (Random) cannot effectively influence the classifier’s
overall performance. DICE provides an effective attack by leveraging the label information. GF-Attack
undermines the performance of GCNs by attacking its low-rank approximation. Our methods, both SPAC
and SPAC-approx, disrupt the overall spectral filters and achieve the largest misclassification rate. This
shows the effectiveness of the proposed attack principle based on the spectral distance, which reveals the
essence of vulnerability in graph convolutions.

Second in the white-box setting, SPAC-CE and SPAC-C&W stand in stark contrast to PGD-CE and PGD-
C&W: we can observe a remarkable improvement introduced by SPAC in the misclassification rate. The
evasion attack results confirm that maximizing the spectral distance can considerably disrupt the trained
classifier by changing the graph frequencies in the Fourier domain and invalidating the spectral filters.
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Fig. 22: Varying k1, k2 and m under SPAC-approx attack.

2.6.2 Structural Poisoning Attack Performance In the poisoning attack setting, we can only indi-
rectly affect the classifier by perturbing the training graph structure. We generated the edge perturbations,
and then used the poisoned structure to train the victim GCN model and reported its misclassification rate
on test nodes in a clean graph. From Table 14 and Figure 20(b), we can again verify the effectiveness of
the proposed spectral attack. Under the black-box setting, SPAC and SPAC-approx are the most effective
attacks in most cases. Under the white-box setting, Max-Min only accesses training nodes to perturb the
graph without querying test nodes. Meta-Train calculates the meta-gradient on training nodes to capture
the change of loss after retraining the surrogate GCN model. Meta-Self instead does not use the training
nodes, but only queries CGN’s prediction scores on test nodes. Among baselines, the Meta-Self attack is
shown to be the most effective, which is expected, because the current semi-supervised setting provides
a much larger set of unlabeled nodes that can be fully used by Meta-Self. Overall, our attack based on
the spectral distance still brought in a clear improvement to the misclassification rate across different
datasets and attack methods.

We empirically evaluated the efficiency of SPAC and SPAC-approx in Table 13, which compares the
average running time of 10 runs for evasion attack. Our proposed SPAC-approx can achieve a comparable
efficiency as GF-Attack. Combining with the attack performance, SPAC-approx is verified to be an
effective and efficient structural attack.

2.6.3 Analysis of SPAC Given the empirical effectiveness of the proposed attack strategy, we now
analyze the sensitivity of hyper-parameters including k1, k2 and m for SPAC-approx and β for white-
box setting. We also illustrate the behavior of SPAC in both Fourier and spatial domains.

• Sensitivity of k1, k2 and m in SPAC-approx. For SPAC-approx, the trade-off of its attack performance
and efficiency is achieved by selecting k1 low- and k2 high-frequency components and by approximating
the eigenvalue change for m steps. Figure 22 demonstrates such trade-off under SPAC-approx poisoning
attack with budget ϵ = 0.05. Left side shows the misclassification rate range when using different k1
and k2; right side compares the misclassification rate and running time when using different approxima-
tion step m. The result suggests that the attack performance does not dramatically drop with changed
parameters, and we can achieve a good balance between attack effectiveness and efficiency.

• Sensitivity of hyper-parameter β in white-box setting. Figure 21 shows the performance of SPAC-
CE under different settings of the coefficient parameter β. We can clearly observe that different β values
lead to rather stable performance, which suggests the spectral distance term can be applied to real appli-
cations without the requirement of tedious hyper-parameter tuning.

• Effect of SPAC in Fourier and spatial domain. We are interested in investigating how the changes of
the graph in the Fourier domain affect its spatial structure. To serve this purpose, we compared the output
of the perturbed graphs from SPAC-CE and PGD-CE on Cora under budget ϵ = 0.4 in Figure 23. The top
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Fig. 24: The edge perturbation generated by
SPAC on a random geometric graph with ϵ =
0.05. Green denotes edges added by the attack,
while red marks removed edges.

plots the difference between eigenvalues of the normalized Laplacian matrix for the graph perturbed by
SPAC-CE and the graph perturbed by PGD-CE. The x-axis shows the eigenvalues of the original graph.
The bottom counts the number of different types of edge perturbations, where “inter-cluster” edges are
those connecting nodes with different class labels and “intra-cluster” edges connect nodes with the same
class label. We observe that SPAC-CE perturbed graph in a direction leading to larger high eigenvalues
and smaller low eigenvalues, compared with PGD-CE. This spectral difference in the Fourier domain
is also reflected in the spatial domain: 1) more edges are added than removed; 2) specifically, more
inter-cluster edges were added while fewer inter-cluster edges were removed. To intuitively demonstrate
the perturbations generated by SPAC, we applied SPAC to attack the random geometric graph with
budget ϵ = 0.05, and the perturbed graph is visualized in Figure 24. The green edges that are added
by SPAC connect different node clusters, while red edges are removed within clusters. This shows that
maximizing the spectral distance can modify the global connectivity of the graph: for example, SPAC-CE
strengthened the connectivity between different clusters to confuse the classifier.

3 Conclusion

In this chapter, we focus on understanding and mitigating potential threats to the fairness and robustness
of machine learning models, when the graph structure is incorporated in an undesired way. To cope with
structural bias due to the influence from sensitive node attributes when the graph is generated, we propose
a principled new way for learning unbiased node embeddings from biased and observed graph. The idea
is to infer a bias-free graph where the influence from sensitive attributes is removed, and then learn the
node embeddings from it. This new perspective motivates our design of UGE-W, UGE-R and their com-
bined methods UGE-C. Extensive experiment results demonstrated strong debiasing effect from UGE as
well as better unbiasedness-utility trade-offs in downstream applications. To study the vulnerability of
graph embedding models to perturbed graph structure, we investigate an effective graph structural attack
which disrupts graph spectral filters in the Fourier domain. We define the notion of spectral distance
based on the eigenvalues of graph Laplacian to measure the disruption of spectral filters. We realize the
attack by maximizing the spectral distance and propose an efficient approximation to reduce the time
complexity brought by eigen-decomposition. The experiments demonstrate the remarkable effectiveness
of the proposed attack in both black-box and white-box settings for both test-time evasion attacks and
training-time poisoning attacks. Our qualitative analysis suggests the connection between the imposed
spectral changes in the Fourier domain and the attack behavior in the spatial domain, which provides
empirical evidence that maximizing spectral distance is an effective way to change the graph structural
property and thus disturb the frequency components for graph filters to affect the learning of GCNs.
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Conclusion and Future Work

The ubiquity of graph-structured data calls for effective and trustworthy machine learning solutions that
can make use of and learn to understand information represented in such a structured form. While the
graph structure of data brings additional information and relational inductive bias for machine learning to
better model entities, such structure also imposes complex dependency information among entities which
could be misused to threaten the trustworthiness of machine learning models. This thesis demonstrate
our understanding towards the computational question about the double-edged role of graph structure in
machine learning. By elaborating the opportunities and the potential trustworthiness issues brought by
graph structure, the outcome of this thesis can be applied to a variety of real-world problems.

In Chapter 2, we introduce our efforts in improving unsupervised machine learning with graph structural
information, including explicit pairwise link, implicit cluster and global structural property summarized
by graph spectrum. We treat the explicit edge as an indication of entity similarity, and jointly model net-
work structure and textual content of user-generated data for the task of user representation learning. We
design a generative model to integrate user representation learning with network and topic embedding.
The learned user representations are interpretable and predictive, indicated by the performance improve-
ment in many important tasks such as link prediction and expert recommendation. In the second work,
we further discover an implicit hierarchy of groups and the nodes’ affiliation to such groups. We align
the group hierarchy with the convolutional layers in GCNs and design a joint node-level and group-level
attention mechanism to aggregate the neighbor structure more accurately. Finally, we explore on improv-
ing contrastive learning with a graph augmentation scheme guided by maximizing the change of graph
spectrum. These works demonstrates our insights of harnessing different types of information encoded
in graph structure to improve unsupervised machine learning.

In Chapter 3, we study potential threats to the fairness and robustness of machine learning models,
when the graph structure is incorporated in an undesired way. To mitigate structural bias, we propose a
principled unbiased embedding model with theoretical justification to learn node embeddings from the
observed graph by inferring a bias-free graph. This new perspective motivates our design of a class of
unbiased models, including UGE-W, UGE-R and their combined methods UGE-C. We show a strong
debiasing effect from UGE as well as better unbiasedness-utility trade-offs in downstream evaluations.
Meanwhile, to study the vulnerability of graph structure, we investigate an effective graph structural
attack by disrupting graph spectral filters in the Fourier domain. We realize the attack by maximizing
the spectral distance between the original and perturbed graph, and propose an efficient approximation
to reduce the time complexity brought by eigen-decomposition. Remarkable effectiveness of the pro-
posed attack is achieved in both black-box and white-box settings for both test-time evasion attacks
and training-time poisoning attacks. Our qualitative analysis also suggests the connection between the
spectral changes in the Fourier domain and the attack behavior in the spatial domain.
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1 Future Work

My thesis studies structural properties existing in interconnected systems, which is essential to under-
standing and exploiting the dependency structure among correlated instances (nodes). Based on our
understanding of the informativeness, vulnerability, and biasedness of structure existing in relational
data, we can further design scalable frameworks to advance trustworthy, responsible, and controllable
machine learning in interconnected systems.

Large Scale Self-supervised Learning on Relational Data: Self-supervised learning empowers us to
exploit a variety of labels crafted from data for free. Our previous work jointly modeling network struc-
ture and textural contents has shown the informativeness of unlabeled data [104, 50, 103]. In the past
decade, we have observed the huge leap in AI brought by large-scale self-supervised learning models,
including the record-high performances in ImageNet challenges and the success of pre-trained language
models such as BERT and GPT-3. The OGB large-scale graph challenge is also recently published. En-
abling effective and efficient self-supervised learning over large-scale relational data becomes demanding
and influential on both industrial and scientific applications. However, training large-scale graph neural
networks remains challenging: unlike common neural networks with training loss perfectly decomposed
into individual terms on each sample, the objective of graph neural networks depends on a huge number
of neighboring nodes especially when the model goes deep. To support distributed and federated self-
supervised learning on large-scale relational data, it is of great significance to develop efficient graph
processing algorithms (e.g., segmentation, sampling and augmentation) and customized optimizers that
allow efficient (adversarial and self-supervised) training for widely used graph neural networks.

Adversarial Robustness on Discrete Data: Discrete data, such as text, graph, categorical features, per-
vasively exist in real life. Machine learning models dealing with such data can also be attacked by pertur-
bations defined in discrete space. For example in graph based tasks, an attacker may fool the graph model
by injecting unnoticeable changes to the graph structure (deleting or adding edges); in fake news detec-
tion tasks, an attacker may mislead a detector by simply changing the word “pleased” into “delighted”.
Studying the adversarial robustness of models training on discrete data is important but challenging:
finding the optimal discrete perturbation is intrinsically an NP-hard combinatorial optimization task;
gradient-based methods cannot be directly applied in discrete space. It still remains an open problem
how to perform effective and efficient searches towards the optimal solutions. We has already shown the
effectiveness of random sampling to discretize the continuous gradients on graphs [102]. To extend my
research for discrete data, the key is to properly define the perturbation distance and decision boundary
in the discrete space. It becomes essential to develop efficient search strategies to systemically explore
adversarial robustness and utilize the knowledge gained to further build robust models on discrete data.

Learnability Control of Models and Data: More and more personal data are shared with many orga-
nizations, including online social platforms to communicate with friends, healthcare providers to benefit
from personalized care and retailers to receive personal recommendations. Misusing of personal data
raises both fairness and privacy issue, and it is a challenging problem to understand and control the influ-
ence of data instances once the data or model is released. The difficulty lies in both model and data sides:
for the model side, it is unclear how it can remove the influence from a subset of data when users request
deleting their sensitive data from a serving model. This problem is exacerbated when deep learning mod-
els are known to memorize some of the training data. Machine unlearning [17] is proposed to develop an
algorithm that takes as input a trained model and outputs a new one with requested data removed. For the
data side, it is not obvious how to prevent unauthorized exploitation of personal data when realizing the
dataset. Unlearnable examples [66] is proposed to attack the learnability such that the dataset becomes
unlearnable by machine learning models with negligible data modification. Given these prior attempts on
learnability control of model and data, the next step is to study the learnability problem by investigating
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the dependency correlation between data instances and their influence on model prediction, such that the
protected data can be isolated and further removed.

Human-Out-of-the-Loop Machine learning: Machine learning certainly liberates our hands and brains
in both scientific and industrial endeavors. However, the current machine learning algorithms are not
human-out-of-the-loop: we still rely on domain knowledge and human experiences in designing and op-
timizing machine learning systems. And in many cases, we still need humans labeling the dataset for
machine learning algorithms to work. Any significant advances in automating such processes can result
in significant productivity improvements and innovations for a wide range of domains. Therefore, one
future research direction is to achieve human-out-of-the-loop machine learning. Such a goal is ambitious
but not impracticable, and progress has been made in areas such as automated machine learning (Au-
toML). However, such techniques are still far from mature and a lot of challenges are yet to be addressed.
For example, how to make sure the automation process itself is robust, trustworthy and efficient to var-
ious real-world problems. Also in cases where human labeling is not available, how to automatically
design self-supervised training schemes and pretexts.

Human-level Trustworthy and Responsible Machine Learning: One long-term future trend is to de-
velop human-level trustworthy and accountable machine learning methods without the cost of accuracy
drop. Current robust training models [202] and my work in fair model [184] usually suffer from such
trade-off while human eyes can be accurate, robust and fair. Such a difference suggests that we still have
not figured out the right way to train trustworthy and responsible models. Fortunately, recent studies
show that adversarial training could actually help improve natural accuracy in natural language process-
ing tasks, which implies that such a trade-off is not inevitable. To further understand such trade-off effects
and to finally achieve human-level robustness and fairness, I aim to study the relationship between model
prediction and other factors such as the inductive bias of the model as well as dataset properties.

2 Broader Impact

The proposed research tries to solve several key challenges of exploiting graph structure in machine
learning models. On one hand, the structure brings additional information that can advance machine
learning; on the other hand, the structure could be biased and perturbed in an undesired way which
may threaten the accountability and trustworthiness of machine learning. The significance of proposed
research is that we provide a principled way to take the advantage of structure while mitigating the poten-
tial pitfalls for a more effective and trustworthy machine learning. The proposed approaches are verified
by extensive empirical evaluation, and some of them are supported by rigorous theoretical analysis. This
line of research will establish a new foundation of machine learning with graph structure, and further
trigger new development of learning paradigm to unleash the power of relationship and graph structure
in an ethical, interpretable and trustworthy way. More generally, the proposed research can benefit a wide
spectrum of important real-world applications, including personalized recommendation, user modeling,
text understanding, cybersecurity and many more.
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[127] Nickel, M. and Kiela, D. (2017). Poincaré embeddings for learning hierarchical representations.
Advances in neural information processing systems, 30:6338–6347.



74

[128] Ou, M., Cui, P., Pei, J., Zhang, Z., and Zhu, W. (2016). Asymmetric transitivity preserving graph
embedding. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, KDD ’16, page 1105–1114, New York, NY, USA. Association for Com-
puting Machinery.

[129] Palowitch, J. and Perozzi, B. (2020). Monet: Debiasing graph embeddings via the metadata-
orthogonal training unit.

[130] Park, C., Yang, C., Zhu, Q., Kim, D., Yu, H., and Han, J. (2020). Unsupervised differentiable
multi-aspect network embedding. arXiv preprint arXiv:2006.04239.

[131] Parlett, B. N. and Scott, D. S. (1979). The lanczos algorithm with selective orthogonalization.
Mathematics of computation, 33(145):217–238.

[132] Peixoto, T. P. (2014). Hierarchical block structures and high-resolution model selection in large
networks. Physical Review X, 4(1):011047.

[133] Peng, Z., Huang, W., Luo, M., Zheng, Q., Rong, Y., Xu, T., and Huang, J. (2020). Graph rep-
resentation learning via graphical mutual information maximization. In Proceedings of The Web
Conference 2020, pages 259–270.

[134] Perozzi, B., Al-Rfou, R., and Skiena, S. (2014). Deepwalk: Online learning of social representa-
tions. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 701–710.

[135] Pfeiffer, J. J., Moreno, S., La Fond, T., Neville, J., and Gallagher, B. (2014). Attributed graph
models: Modeling network structure with correlated attributes. In Proceedings of the 23rd Interna-
tional Conference on World Wide Web, WWW ’14, page 831–842, New York, NY, USA. Association
for Computing Machinery.

[136] Poole, B., Ozair, S., Van Den Oord, A., Alemi, A., and Tucker, G. (2019). On variational bounds
of mutual information. In International Conference on Machine Learning, pages 5171–5180. PMLR.

[137] Qiu, J., Chen, Q., Dong, Y., Zhang, J., Yang, H., Ding, M., Wang, K., and Tang, J. (2020). Gcc:
Graph contrastive coding for graph neural network pre-training. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining, pages 1150–1160.

[138] Rahman, T., Surma, B., Backes, M., and Zhang, Y. (2019). Fairwalk: Towards fair graph embed-
ding. In Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence,
IJCAI-19, pages 3289–3295. International Joint Conferences on Artificial Intelligence Organization.

[139] Raman, M., Chan, A., Agarwal, S., Wang, P., Wang, H., Kim, S., Rossi, R., Zhao, H., Lipka, N.,
and Ren, X. (2021). Learning to deceive knowledge graph augmented models via targeted perturba-
tion. In International Conference on Learning Representations.

[140] Rampini, A., Pestarini, F., Cosmo, L., Melzi, S., and Rodola, E. (2021). Universal spectral ad-
versarial attacks for deformable shapes. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 3216–3226.

[141] Rellich, F. and Berkowitz, J. (1969). Perturbation theory of eigenvalue problems. CRC Press.
[142] Rendle, S. (2010). Factorization machines. In Data Mining (ICDM), 2010 IEEE 10th Interna-

tional Conference on, pages 995–1000. IEEE.
[143] Rendle, S., Freudenthaler, C., Gantner, Z., and Schmidt-Thieme, L. (2012). Bpr: Bayesian per-

sonalized ranking from implicit feedback.
[144] Rogers, L. C. (1970). Derivatives of eigenvalues and eigenvectors. AIAA journal, 8(5):943–944.
[145] Rong, Y., Huang, W., Xu, T., and Huang, J. (2020). Dropedge: Towards deep graph convolutional

networks on node classification. In International Conference on Learning Representations.
[146] Rosen-Zvi, M., Griffiths, T., Steyvers, M., and Smyth, P. (2004). The author-topic model for

authors and documents. In Proceedings of the 20th conference on UAI, pages 487–494. AUAI Press.
[147] Rossi, R. and Ahmed, N. (2015). The network data repository with interactive graph analytics and

visualization. In Proceedings of the AAAI Conference on Artificial Intelligence.
[148] Rozemberczki, B., Allen, C., and Sarkar, R. (2019). Multi-scale attributed node embedding.



75

[149] Sandryhaila, A. and Moura, J. M. (2013). Discrete signal processing on graphs: Graph fourier
transform. In 2013 IEEE International Conference on Acoustics, Speech and Signal Processing,
pages 6167–6170. IEEE.

[150] Schaub, M. T. and Segarra, S. (2018). Flow smoothing and denoising: Graph signal processing in
the edge-space. In 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP),
pages 735–739. IEEE.

[151] Schlichtkrull, M., Kipf, T. N., Bloem, P., Van Den Berg, R., Titov, I., and Welling, M. (2018).
Modeling relational data with graph convolutional networks. In European semantic web conference,
pages 593–607. Springer.

[152] Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., and Eliassi-Rad, T. (2008). Collective
classification in network data. AI magazine, 29(3):93–93.

[153] Shchur, O., Mumme, M., Bojchevski, A., and Günnemann, S. (2018). Pitfalls of graph neural
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[174] Veličković, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., and Bengio, Y. (2018a). Graph
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[209] Zügner, D. and Günnemann, S. (2019). Adversarial attacks on graph neural networks via meta
learning. In International Conference on Learning Representations (ICLR).



Chapter 5

Appendix

1 Additional Background and Result of Chapter 2, Section 3

1.1 A Review of Graph Spectrum

Graph spectrum plays a significant role in analyzing graph property (e.g., connectivity, cluster structure,
diameter etc.) and is the foundation of spectral filters in GNNs. This motivates us to guide our proposed
topology augmentation method using graph spectrum.

• Graph Spectrum and Graph Property. The graph spectrum summarizes important properties related
to a graph’s global structure, which has been studied in graph spectral theory. We list some widely
discussed properties revealed by graph spectrum to support our design: graph spectrum can be used as a
comprehensive proxy for capturing graph properties in GCL.

– Algebraic connectivity [33], also known as Fiedler eigenvalue, of a graph is the second-smallest
eigenvalue (counting multiple eigenvalues separately) of the Laplacian matrix. This eigenvalue is
greater than 0 if and only if the graph is a connected graph. A corollary is that the number of times 0
appears as an eigenvalue in the Laplacian is the number of connected components in the graph. The
magnitude of this value reflects how well connected the overall graph is.

– Diameter of a graph can be upper and lower bounded from its spectrum [33]. If the graph has r
distinct eigenvalues, its diameter d is at most r−1. Meanwhile, if the graph has m edges and n nodes,
we can bound the diameter by the first and second smallest non-zero eigenvalues as 1/2mλ1 ≥ d ≥
4/nλ2. For all k ≥ 2, we also have d ≤ k log n/λk.

– Clusterability of a graph reveals how easy it is to partition the graph, which can be captured by
the differences between the smallest successive eigenvalues of connected graphs. The difference
between the first two eigenvalues, often referred to as the spectral gap, upper and lower bounds the
graph expansion and conductance by the Cheeger inequality [75]. Nevertheless, analogous results
also hold for higher-order eigenvalues [89].

– Diffusion distance [55] between two nodes vi and vj can be defined as D(vi, vj) = ∥[ϕ(L)]i,: −
[ϕ(L)]j,:∥22 =

∑n
l=1 ϕ(λl)

2(ul[i] − ul[j])
2, where ϕ(L) = Uϕ(Λ)U⊤ and ϕ(x) is a decreasing

kernel function such as ϕ(x) = e−tx. Therefore, a map that separates nodes with a specific diffusion
distance is obtained when embedding graph nodes using eigenvectors.

• Graph Spectrum and Spectral Filter. By viewing graph embedding models from a signal processing
perspective, the normalized Laplacian Lnorm serves as a graph shift operator and defines the frequency
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domain of a graph. As a result, its eigenvectors U can be considered as the graph Fourier bases, and
the eigenvalues Λ (a.k.a., graph spectrum) correspond to the frequency components. Take one column
of node features X as an example of graph signal, which can be compactly represented as x ∈ Rn. The
graph Fourier transform of graph signal x is given by x̂ = U⊤x and the inverse graph Fourier transform
is then x = Ux̂. The graph signals in the Fourier domain are filtered by amplifying or attenuating the
frequency components Λ.

At the essence of GNNs is the spectral convolution, which can be defined as the multiplication of a signal
vector x with a spectral filter gϕ in the Fourier domain [39]:

gϕ(L) ⋆ x = g(UΛU⊤)x = Ugϕ(Λ)U⊤x (48)

The filter gϕ defines a smooth transformation function of the graph spectrum. One can apply a spectral
filter and graph Fourier transformation to manipulate graph signals in various way, such as smoothing
and denoising [150], abnormally detection [122] and clustering [179]. Here we show how the spectral
convlution is defined in two popular GNNS used in our experiments: GCN [82] and GIN [194].

The vanilla GCN [82] is a first-order approximation of Chebyshev polynomial filter [56] with gϕ(Λ) =
(2−Λ)ϕ , and the corresponding convolution for d-dimensional signal X is:

gGCN
ϕ (L) ⋆X = U(2−Λ)U⊤XΦ = (In +D−1/2AD−1/2)XΦ = D̃−1/2ÃD̃−1/2XΦ (49)

where Φ ∈ Rd×d′
is the matrix of spectral filter parameters, and by adding self-loop Ã = A+ In, a

renormalization trick In+D−1/2AD−1/2 → D̃−1/2ÃD̃−1/2 is applied. GIN [194] with equal discrim-
inative power as WL test designs spectral convolution as:

gGIN
ϕ (L) ⋆X = U(2 + ϵ−Λ)U⊤XΦ = (In(1 + ϵ) +D−1/2AD−1/2)XΦ (50)

where ϵ can be a learnable parameter or a fixed scalar. Since the spectral filters gϕ(Λ) are the key in
graph convolutions to encode graph signals that are transformed in the Fourier domain. The output of the
spectral filters is then transformed back to the spatial domain to generate node representations. Therefore,
we aim to augment graphs to influence the graph spectrum and the filtered graph signals, such that the
encoder with altered spectral filters is encouraged to stay invariant to such perturbations through GCL.

1.2 Pre-analysis Experiment Setup of Figure 13

We now introduce the detailed information to reproduce Figure 13 on Cora. This experiment is to show
that uniformly random edge perturbation adopted in many GCL methods is not effective enough to
reveal essential graph properties, described by graph spectrum. Since graph spectrum is closely related
to graph properties such as clusterability (as discussed in Appendix 1.1), in contrast to the uniform edge
perturbation, we created a node cluster based strategy as follows: We first grouped the edges among
nodes by whether the end nodes belong to the same cluster, treating nodes’ class labels as their clusters.
For intra-cluster edges, we assign a larger removing probability, while for inter-cluster edges we assign
a smaller removing probability. Note that in expectation, we remove the same amount of edges as the
uniformly random strategy, but allocate different probabilities to these two groups of edges. We should
note the purpose of this experiment is only to demonstrate the impact of graph spectrum for GCL, and
we used the class label of nodes as a proxy about the graph spectrum (due to the relation between
clusterability and graph spectrum). Our proposed solution GCL-TAGS is fully unsupervised, i.e., it does
not depend on the node labels at all.
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Table 15: Node classification dataset. The metric is accuracy.
Data Name #Nodes #Edges #Features #Classes Cluster Coefficient

Cora 2,708 5,278 1,433 7 0.2407
Citeseer 3,327 4,552 3,703 6 0.1415
PubMed 19,717 44,324 500 3 0.0602

Wiki-CS 11,701 215,863 300 10 0.4527
Amazon-Computers 13,752 245,861 767 10 0.3441
Amazon-Photos 7,650 119,081 745 8 0.4040
Coauthor-CS 18,333 81,894 6,805 15 0.3425

Specifically, an edge removing ratio σ indicated by the x-axis of Figure 13 represents the augmentation
strength: for an input graph with m edges, we remove σ · m edges to generate an augmented graph.
For the uniformly random augmentation method (Uniform), each edge is assigned an equal removing
probability as σ; for the cluster-based augmentation heuristic (Clustered), given minter inter-cluster edges
and mintra = m − minter intra-cluster edges, we increase the removing probability of each intra-cluster
edge as σintra = min{1.2σ, σ · m/mintra}, and the removing probability of each inter-cluster edge is
decreased to σinter = (σ · m − σintra · mintra)/minter to make sure that in expectation σ · m edges are
removed as in the uniform strategy.

When conducting the contrastive learning procedure following GRACE [205], one augmentation branch
used the uniformly random edge removing strategy, and the other branch adopted either the uniform or
the clustered strategy. Both branches included a random feature masking with ratio 0.3. For these two
GCL methods based on different augmentation strategies, the experiment setup is as follows: both meth-
ods used a GCN encoder with the same architecture and hyper-parameters (e.g., 2 convolutional layers
with the embedding dimension of 32). Both performed 1000 training iterations to obtain node repre-
sentations, whose quality was evaluated by using them as features for a downstream node classification
task.

We compared the clustered augmentation based GCL with the uniform augmentation based GCL from
two aspects: their performance in the downstream task and the spectral change on the augmented graphs.
When evaluating the GCL performance, we randomly split the nodes into training, validation and test set
with ratio 10%, 10% and 80% and a linear Logistic classifier was trained to conduct the task. The right-
side of Figure 13 reports the mean and standard derivation of F1 score for 10 runs with different random
seeds, which measures the downstream task performance. Meanwhile, we calculated the eigenvalues of
the normalized Laplacian matrix of the input graph (Λ), the augmented graphs with uniform strategy
(Λ′

uniform) and the augmented graphs with clustered strategy (Λ′
clustered). The left-side of Figure 13 reports

the L2 distance of eigenvalues between the input and augmented graphs (e.g., ∥Λ − Λ′
uniform∥2 and

∥Λ−Λ′
clustered∥2) to measure the spectral change.

1.3 Summary of Datasets

The proposed GCL-TAGS is evaluated on 25 graph datasets. Specifically, for the node classification
task, we included Cora, Citeseer, PubMed citation networks [152], Wiki-CS hyperlink network [119],
Amazon-Computer and Amazon-Photo co-purchase network [153], and Coauthor-CS network [153].
For the graph classification and regression tasks, we employed TU biochemical and social networks
[125], Open Graph Benchmark (OGB) [63] and ZINC [64, 48] chemical molecules, and Protein-Protein
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Table 16: TU Benchmark Datasets [125] for graph classifcation task in unsupervised learning setting.
The metric used for classification task is accuracy.

Data Type Name #Graphs Avg. #Nodes Avg. #Edges #Classes

Biochemical Molecules

NCI1 4,110 29.87 32.30 2
PROTEINS 1,113 39.06 72.82 2
MUTAG 188 17.93 19.79 2
DD 1,178 284.32 715.66 2

Social Networks

COLLAB 5,000 74.5 2457.78 3
REDDIT-BINARY 2,000 429.6 497.75 2
REDDIT-MULTI-5K 4,999 508.8 594.87 5
IMDB-BINARY 1,000 19.8 96.53 2
IMDB-MULTI 1,500 13.0 65.94 3

Interaction (PPI) biological networks [64, 207]. We summarize the statistics of these datasets and briefly
introduce the experiment settings on them.

– A collection of datasets were used to evaluate node classification performance in both unsupervised
learning and adversarial attack settings, and Table 15 summarizes the statistics of these datasets.
Cora, Citeseer, PubMed citation networks [152] contain nodes representing documents and edges
denoting citation links. The task is to predict the research topic of a document given its bag-of-word
representation. Wiki-CS hyperlink network [119] consists of nodes corresponding to Computer Sci-
ence articles, with edges based on hyperlinks. The task is to predict the branch of the field about the
article using its 300-dimension pretrained GloVe word embeddings. Amazon-Computer, Amazon-
Photo co-purchase networks [153] have nodes being items and edges representing that two items
are frequently bought together. Given item reviews as bag-of-word node features, the task is to map
items to their respective item category. Coauthor-CS network [153] contains node to be authors
and edges to be co-author relationship. Given keywords of each author’s papers, the task is to map
authors to their respective field of study. All of these datasets are included in the PyG (PyTorch
Geometric) library12.

– Two sets of datasets were used to evaluate graph prediction tasks under the unsupervised learning
setting. TU Datasets [125] provides a collection of benchmark datasets, and we used several bio-
chemical molecules and social networks for graph classification as summarized in Table 16. The
data collection is also included in the PyG library following a 10-fold evaluation data split. We used
these datasets for evaluation of the graph classification task in unsupervised learning setting. Open
Graph Benchmark (OGB) [63] contains datasets for chemical molecular property classification
and regression tasks, which are summarized in Table 17. This data collection can be load via the
OGB platform 13, and we used its processed format available in PyG library.

– A set of biological and chemical datasets were used to evaluate graph classification task under the
transfer learning setting, summarized in Table 18. Following the transfer learning pipeline in [64],
an encoder was first pre-trained on a large biological Protein-Protein Interaction (PPI) network or
ZINC chemical molecule dataset, and then was evaluated on small datasets from the same domains.

12 https://pytorch-geometric.readthedocs.io/en/latest/index.html
13 https://ogb.stanford.edu/docs/graphprop/
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Table 17: OGB chemical molecular datasets [63] for both graph classification and regression tasks in
unsupervised learning setting. The evaluation metric used for regression task is RMSE, and for classifi-
cation is ROC-AUC.

Task Type Name #Graph Avg. #Nodes Avg. #Edges #Tasks

Regression
ogbg-molesol 1,128 13.3 13.7 1
ogbg-molipo 4,200 27.0 29.5 1
ogbg-molfreesolv 642 8.7 8.4 1

Classification

ogbg-molbace 1,513 34.1 36.9 1
ogbg-molbbbp 2,039 24.1 26.0 1
ogbg-molclintox 1,477 26.2 27.9 2
ogbg-moltox21 7,831 18.6 19.3 12
ogbg-molsider 1,427 33.6 35.4 27

Table 18: Biological interaction and chemical molecular datasets [64] for graph classification task in
transfer learning setting. The evaluation metric is ROC-AUC.

Data Type Stage Name #Graph Avg. #Nodes Avg. #Degree

Protein-Protein Interaction Networks
Pre-training PPI-306K 306,925 39.82 729.62

Fine-tuning PPI 88,000 49.35 890.77

Chemical Molecules

Pre-training ZINC-2M 2,000,000 26.62 57.72

Fine-tuning

BBBP 2,039 24.06 51.90
Tox21 7,831 18.57 38.58

SIDER 1,427 33.64 70.71
ClinTox 1,477 26.15 55.76

BACE 1,513 34.08 73.71
HIV 41,127 25.52 54.93

MUV 93,087 24.23 52.55
ToxCast 8,576 18.78 38.52

1.4 Model Analysis

• Influence of Choosing Eigenvalues To reduce the time complexity of eigen-decomposition when
calculating the spectrum norm LGS(∆), we can approximate the norm by only using the K lowest- and
highest-eigenvalues. The time complexity of optimizing the augmentation scheme in Eq. Eq (15) with
T iterations is O(TKn2). This experiment shows the influence of K to the resulting GCL performance.
Since the graphs encountered in the node prediction tasks are much larger than those in graph prediction
tasks, we used the node classification datasets in Table 15 to conduct this experiment. Specifically, we test
influence of K on four large graphs representing different types of networks: PubMed citation network,
Wiki-CS hyperlink network, Amazon-Computers co-purchase network and Coauthor-CS network. We
tuned K among {50, 100, 200, 500, 1000, 5000} for each of the datasets containing n ≥ 10, 000 nodes.
The other components of GCL maintained the same, except the resulting augmentation scheme using
spectrum norm with different K.

Figure 25 demonstrates the performance of GCL-TAGS on the node classification task when different
K was used to generate the augmentation scheme. The x-axis denotes the value of K with “all” indicat-
ing that all the eigenvalues were used. The performance decreases marginally when we used a smaller
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Fig. 25: Node classification performance when choosing K lowest- and highest-eigenvalues

Table 19: Node classification performance under unsupervised setting. We plug the spectrum based aug-
mentation to different GCL frameworks, highlighted with suffix -TAGS. The metric is accuracy%. Bold
highlights that the GCL framework with plugging our augmentation method outperforms its original
version with p-value≤ 0.05.

Dataset Cora Citeseer PubMed Wiki-CS Amazon-Computer Amazon-Photo Coauthor-CS

GRACE [205] 83.33±0.43 72.10±0.54 78.72±0.13 80.14±0.48 89.53±0.35 92.78±0.30 91.12±0.20
GRACE-TAGS 84.21±0.51 72.87±0.58 79.94±0.22 80.63±0.47 89.95±0.41 92.56±0.34 91.98±0.20

BGRL [169] 83.63±0.38 72.52±0.40 79.83±0.25 79.98±0.13 90.34±0.19 93.17±0.30 93.31±0.13
BGRL-TAGS 84.34±0.42 72.73±0.44 80.78±0.32 81.04±0.22 90.12±0.21 93.58±0.39 93.77±0.21

GBT [11] 80.24±0.42 69.39±0.56 78.29±0.43 77.30±0.62 88.02±0.32 92.23±0.35 92.85±0.31
GBT-TAGS 82.43±0.51 71.12±0.48 80.05±0.49 78.89±0.54 89.04±0.43 92.78±0.43 92.95±0.37

MVGRL [59] 85.16±0.52 72.14±1.35 80.13±0.84 77.52±0.08 87.52±0.11 91.74±0.07 92.11±0.12
MVGRL-TAGS 85.86±0.57 72.76±0.63 81.54±0.24 82.13±0.15 90.09±0.32 93.52±0.26 93.91±0.24

K, and generally when K = 1000 we can still achieve a comparable performance. This suggests that
low and high eigenvalues are already quite informative in capturing graph structural properties. Similar
phenomenon is also discussed in previous works [101]: small eigenvalues carry smoothly varying sig-
nals (e.g., similar neighbor nodes within the same cluster), while high eigenvalues carry sharply varying
signals (e.g., dissimilar nodes from different clusters).

Gain of Spectrum Guided Augmentation on Other GCL Frameworks

In this experiment, we use an ablation study to evaluate the effectiveness of the graph spectrum guided
topology augmentation scheme when applied to different contrastive learning frameworks. We focus on
GCL for node-level representation learning, as this line of work adopts distinct contrastive objectives
(e.g., bootstrapping in BGRL, and Barlow twins in GBT) and contrastive modes (e.g., node v.s. node in
GRACE, and node v.s. graph in MVGRL), such that we can comprehensively demonstrate the effective-
ness of our proposed augmentation in covering a variety of GCL frameworks.

Specifically, we replace the original uniformly random edge removing augmentation in GRACE, BGRL,
GBT, and the diffusion matrix based augmentation in MVGRL with the proposed spectrum based aug-
mentation scheme, and use -TAGS as suffix to denote them. Note that MVGRL-TAGS is basically GCL-
TAGS since it uses the same contrastive objective as in MVGRL such that both node- and graph-level
representations are obtained to serve a broader range of downstream tasks.

Table 19 shows the results of plugging our augmentation scheme on four types of GCL frameworks.
We can observe that our augmentation scheme does not depend on a particular contrastive objective, but
brings a clear performance gain across different GCL frameworks. Intuitively, our augmentation cap-
tures the essential structural properties by perturbing edges that cause large spectral change. Therefore,
no matter what contrastive objective or mode is used, maximizing the correspondence of two views en-



84

courages the encoder to ignore the information carried by such sensitive edges. This demonstrates the
importance of studying graph spectral properties for graph augmentation.

2 Additional Experimental Results in Chapter 3, Section 1
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Fig. 26: Unbiasedness and utility trade-off using different regularization weights on UGE-C (x-axis).
The left columns shows unbiasedness (attribute prediction), and the right columns shows utility (link
prediction).

In Appendix 2.1, we include additional experiment results to report the trade-off between unbiasedness
and utility on the complete set of embedding models on Pokec-z. In Appendix 2.2, we show a complete
comparison among our proposed instances of unbiased graph embedding UGE-W, UGE-R and UGE-
C. In Appendix 2.3, we investigate the influence of the regularization weight on the complete set of
embedding models.

2.1 Additional Analysis on Undebiasedness

Table 20 summarizes the debiasing and utility performance of the proposed method and baselines when
using four graph neural networks on Pokec-z. Each line of attribute prediction result is followed by
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Table 20: The prediction performance of node embeddings learned on Pokec-z using four graph neural
networks as embedding models. In each row, we use bold to mark the best debiasedness on attribute
prediction or utility on link prediction.

Debiasing Method
Dataset Embedding Model Prediction Target No Debiasing

Fairwalk CFC UGE-W UGE-R UGE-C
Random

Gender (Micro-F1) 0.6232 0.6135 0.5840 0.6150 0.6094 0.5747 0.4921
Link (NDCG@10) 0.3618 0.3280 0.2757 0.3554 0.3422 0.3376 0.0570

Region (Micro-F1) 0.8197 0.8080 0.7217 0.6784 0.7660 0.6356 0.4966
Link (NDCG@10) 0.3618 0.3287 0.2757 0.3451 0.3547 0.3098 0.0570

Age (Micro-F1) 0.0526 0.0522 0.0498 0.0431 0.0545 0.0429 0.0007

GAT

Link (NDCG@10) 0.3618 0.3122 0.2757 0.3471 0.3205 0.3718 0.0570

Gender (Micro-F1) 0.6766 0.6631 0.6520 0.6822 0.6531 0.6596 0.4921
Link (NDCG@10) 0.4975 0.4461 0.4011 0.4938 0.4850 0.4765 0.0570

Region (Micro-F1) 0.7806 0.7820 0.7150 0.7402 0.7680 0.7323 0.4966
Link (NDCG@10) 0.4975 0.4460 0.4011 0.4832 0.4799 0.4644 0.0570

Age (Micro-F1) 0.0621 0.0662 0.0654 0.0606 0.0529 0.0510 0.0007

SGC

Link (NDCG@10) 0.4975 0.4461 0.4011 0.4889 0.4694 0.4630 0.0570

Gender (Micro-F1) 0.5532 0.5589 0.5493 0.5306 0.5301 0.5162 0.4921
Link (NDCG@10) 0.3865 0.2807 0.3836 0.3851 0.3727 0.3488 0.0570

Region (Micro-F1) 0.7445 0.7616 0.7693 0.5800 0.6105 0.4951 0.4966
Link (NDCG@10) 0.3865 0.2807 0.3836 0.3801 0.3360 0.3386 0.0570

Age (Micro-F1) 0.0425 0.0416 0.0391 0.0439 0.0409 0.0324 0.0007

GCN

Link (NDCG@10) 0.3865 0.2807 0.3836 0.3987 0.3550 0.3391 0.0570

Gender (Micro-F1) 0.5248 0.5347 0.5137 0.5171 0.4949 0.4982 0.4921
Link (NDCG@10) 0.5491 0.5120 0.5496 0.5430 0.5463 0.5206 0.0570

Region (Micro-F1) 0.8423 0.8462 0.8423 0.8012 0.6490 0.6372 0.4966
Link (NDCG@10) 0.5491 0.5120 0.5496 0.4816 0.5354 0.4506 0.0570

Age (Micro-F1) 0.0365 0.0404 0.0365 0.0200 0.0122 0.0068 0.0007

Pokec-z

node2vec

Link (NDCG@10) 0.5491 0.5120 0.5496 0.5173 0.5439 0.5002 0.0570

the corresponding performance on link prediction. Generally, UGE-W achieves the best link prediction
performance and UGE-R has better debiasing effect. Combining UGE-W with UGE-R produces UGE-C
with better trade-off.

2.2 Ablation Study

Figure 27 presents the performance of three proposed model (UGE-W, UGE-R and UGE-C) applied to
four graph neural networks (GAT, SGC, GCN and node2vec). We can clearly observe that in most cases
UGE-R has better debiasing effect compared with UGE-W, while UGE-W can better maintain the utility
for downstream link prediction task. UGE-C as the combination of them indeed makes the best of the
both designs.
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Fig. 27: Comparison among our proposed models on different embedding models. The left columns
shows the unbiasedness (attribute prediction) and the right columns shows the utility (link prediction).

2.3 Unbiasedness-Utility Tradeoff in UGE

We now include a complete analysis on unbiasedness and utility trade-off across embedding models in
Figure 26. It clearly shows a trade-off: as the weight increases, we obtain a stronger debiasing effect with
a cost of the utility on link prediction.

3 Proofs and Detailed Attack Objectives in Section 2

We list the detailed gradient calculation of the spectral distance term with eigen-decomposition, the proof
of Theorem 1, and the attack objectives for different white-box variants of SPAC in Section 2.

3.1 Gradient of the Spectral Distance

Recall that we obtain the following form via the chain rule:

∂LSPAC

∂∆ij
=

n∑
k=1

∂LSPAC

∂λ′
k

n∑
p=1

n∑
q=1

∂λ′
k

∂L′
pq

∂L′
pq

∂∆ij
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Here is the detailed calculation of each component:

∂LSPAC

∂λ′
k

=
λ′
k − λk

∥Λ−Λ′∥2
,
∂λ′

k

∂L′
pq

= u′
kpu

′
kq,

∂L′
pq

∂∆ij
=

Cij

2
√

d′pd
′
q

(1i=p

A′
pq

d′p
+ 1j=q

A′
pq

d′p
− 21i=p,j=q)

where d′p is the degree on node p of the perturbed graph: d′p =
∑n

k=1 A
′
kp, and similarly d′q =∑n

k=1 A
′
kq . Meanwhile, A′ is the adjacency matrix of the perturbed graph. The indication function

1condition is 1 if the condition is true, otherwise it is 0.

3.2 Proof of Theorem 1

Proof. Theorem 1. For the generalized eigenvalue problem: Lui = λiMui, if the matrix is slightly
perturbed L′ = L + ∇L, we aim to find the corresponding eigenvalue perturbation: λ′

i = λi + ∇λi.
From eigenvalue perturbation theory [157], we have

λ′
i − λi ≈ u⊤

i (∇L− λi∇M)ui

And for a normalized graph Laplacian L′ = L+∇L, we have ∇M = diag(∇L · 1n). Submitting ∇M
concludes the proof.

3.3 Attack Objectives for White-box Variants

Recall that SPAC can be flexibly combined with the white-box attack framework as shown in Eq (47),
which consists of a task-specific attack objective Lattack and the proposed SPAC objective LSPAC. We
denote the training node set as V0 and test node set as Vt. Different choices of Lattack result in the
following variants.

SPAC-CE combines SPAC with PGD-CE [193], and maximizes the cross-entropy loss on the target test
set for evasion attack:

Lattack =
∑
vi∈Vt

crossEntropy(fθ(A+∆,X)i, yi)

SPAC-C&W combines SPAC wih PGD-C&W [193], and maximizes the negative C&W score on the
target test set for evasion attack:

Lattack = −
∑
vi∈Vt

max{Zi,yi
−max

c ̸=yi

Zi,c − κ}

where Zi,c denotes the prediction logit on label c, and κ ≥ 0 is a confidence level of making wrong
decisions. Intuitively, the C&W score evaluates how good the model can differentiate the prediction on
the ground-truth label and on the label with the (second) highest likelihood. So the attack aims to confuse
the model by maximizing the negative C&W score.

SPAC-Min combines SPAC and Max-Min [193], and maximizes the cross-entropy loss on the training
set, while a surrogate model fθ′ is iteratively retrained. The perturbed graph is then used to train a victim
model, and we report the classification performance of the test set on clean graph. The poisoned graph
is generated by:

Lattack =
∑
vi∈V0

crossEntropy(fθ′(A+∆,X)i, yi)
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SPAC-Train combines SPAC with Meta-Train [209], and maximizes the cross-entropy loss on labeled
training nodes, arguing that if a model has a high training error, it is likely to generalize poorly:

Lattack =
∑
vi∈V0

crossEntropy(fθ′(A+∆,X)i, yi)

The objective is similar to SPAC-Min, but instead of retraining the surrogate model, SPAC-Train calcu-
late meta-gradients on the perturbation matrix through the surrogate model.

SPAC-Self combines SPAC with Meta-Self [209], and maximizes the cross-entropy loss on unlabeled
test nodes which are assigned pseudo labels predicted by the model trained on tbe clean graph:

Lattack =
∑
vi∈Vt

crossEntropy(fθ′(A+∆,X)i, ŷi)

where ŷi is the predicted label from the model trained on the clean graph fθ.
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