
Software Development Internship: Replacing Legacy Software

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Harshil Pareek

Spring, 2023

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Briana Morrison, Department of Computer Science

Software Development Internship: Replacing Legacy Software

CS4991 Capstone Report, 2023

Harshil Pareek
Computer Science

The University of Virginia
School of Engineering and Applied Science

Charlottesville, Virginia USA
hp3be@virginia.edu

ABSTRACT
The main objective during my tenure as a Java
Developer Intern at SAIC was to convert
legacy software systems into cloud-integrated
modern systems to protect critical user
information and promote SAIC as a
technology-driven and modernized firm. As
Java was the required language for
development, I chose the Spring Boot
Framework as the most optimal codebase for
the backend operations and React Typescript
for the frontend and UI operations. A major
outcome of development was the completion
of a fully functional web application that
authenticates and authorizes users based on
their credentials. One such security measure
that was developed was the generation and
decryption of JWTs (JSON Web Tokens) in
order to distinguish between individual users
and allow for SSO (Single Sign-On) processes.
Future work needed would be to continue with
publication of the website on a web domain
using AWS as the application was a prototype
running on local computers. In addition,
continuous integration would need to be added
in order to keep the website functioning bug-
free at all times.

1. INTRODUCTION
During the summer of 2022, I was an intern
working at SAIC in their headquarters of
Reston, VA. My role was to develop a full-
stack web application that replaced legacy
software with modernized solutions. The
overarching problem with this task was

finding a service and domain that kept
confidential contractor information private
and secure. This could not be done through a
simple Cloud-based service like Heroku that
would host the website, as this would leave
many security vulnerabilities and constantly
be backed up from multiple requests at once. I
immediately understood that this architecture
needed to be complex and would require
numerous services running simultaneously to
prioritize client confidentiality and real-time
user interactions without delay.

The next biggest challenge to tackle in the
solution would be to discover a method for
restricting unauthorized user access. As I
learned from my CS 3710 Cybersecurity class
at UVA, this should be able to reject DoS,
Malware, Phishing, and Spoofing attacks.
Using a simple sign-on page that many web
applications use would not suffice and would
lead to further implications down the line with
leaked contractor data. This would require
hours of research and an in-depth analysis of
secure domains to gain an understanding of
how to develop a truly secure web application.

2. RELATED WORKS
There are several tutorial modules available
online that go through developing such a
service that I developed for my internship, but
they all mainly fail to include the relevancy for
developing a JWT token.

Singh (2018) configures Spring Security as
well as JWT authentication to allow users to
register and login to the application. My
project utilized Singh’s approach to build an
Authentication Manager which configured a
password encoder and JWT filter, along with
other functionality to build the application. In
addition, my project also incorporates Singh’s
algorithm to generate and verify the JWT
coming in from requests. This process
essentially receives the token from the request,
validates it, loads the user associated with the
token and then passes it to Spring Security to
authorize the said user. My project also
borrowed a portion of Singh’s design to build
a login What differs between my project and
his is that I utilize a front-end interacting with
the user, while he utilizes Postman to send
GET and POST requests to the backend.

Aytin (2022) develops an intuitive React
application that incorporates JWT
Authentication with login and logout
parameters. I took inspiration from Aytin in
applying “Axios” API calls to call my backend
server. In addition, my project also
incorporated Aytin’s approach to define
private routes with RouteGuard Components
for access control management of pages
accessing contractor data, as I intended for
certain contractors to only access their own
data and not modify others. What differs
between my project and Aytin’s is that they
use local storage to store their JWT token,
while I take it beyond that and apply the JWT
token into various endpoints that users can
access, and either be authorized/unauthorized
to enter. They also don’t have a real server to
make requests, so they access a fake API to
handle the server side of their demo
application. I developed a backend server that
handles the security aspect of the token and
returns data back to the user on React.

3. PROJECT DESIGN

3.1 Review of System Architecture
The application first needed a functional
backend that operates the requests made by
the user and processes the data into a
database that holds contractor data. To
interact with this backend and process the
requests, there needed to be an attractive
User Interface (UI) that met the demands
and expectations of the user,
predominantly contractors purchasing the
software from SAIC. With the
development of the application complete,
this service will need to be hosted on a
cloud-operated instance for clients to
access, which was managed and given
security provisions by SAIC outside of my
internship. The application will follow a
MVCS protocol (Model, View, Controller,
Service) within the backend operations
that will allow for greater code readability.

3.2 Requirements
The clients that require this web
application are contractors assigned to the
United States Department of Defense in
the Border Control division. The work I
was tasked with did not entirely relate to
their division as I did not possess a security
clearance. Despite this, I needed to
develop secure provisions within the
application so contractor data can be stored
efficiently and readily available when
requested. The application needed to
function similar to a Microsoft-owned
service with the domain of jwt.ms. In
addition, the manager overseeing this
development required the backend
services to be run with Spring Boot, a web
framework used to enhance security
protocols.

3.3 Back-End Operations
The backend of the web application is
coded with the Java Spring Boot
framework and contains most of the
functionality needed for the clients. The

Spring Boot application was locally run
from the 8080 port and was listening to and
sending requests from the front-end (Port
3000).

The initial functionality developed was the
ability to generate and decode a JWT given
parameters from the user via the Frontend.
I implemented a JWT Utility package that
configured tokens according to various
claims hardcoded, as well as an expiration
date and HS-256 signature to make the
token truly private and encrypted. This
token is now returned to the front-end via
a POST request to fulfill the generation
aspect of the project. The decoding aspect
is essentially the same process but reversed
with the decrypting of the token to reveal
user claims, which is also returned to the
front-end via a POST request. A Request
Filter is embedded into the Backend which
works synchronously to any request being
transmitted. Within this, a series of checks
to ensure the JWT generated matches the
User Details when logged in and
authenticated before returning the token
back to the front-end. This filter is only
applicable to the aspect of the application
to view contractor data.

An MVCS architecture was followed
throughout development. The models
developed consisted of Token, Employee
as well as Authentication Request (handles
the username and password during login)
and Response (handles the token
component) models. The views consist of
the JWT utility functions that build or
deconstruct the token, as well as the
security configure protocol that builds the
filter, encodes the password, and oversees
the authentication process. The controller
is simply the file that handles the route
management to the front-end, both to
receive and transmit data back and forth to
the front-end via Port 3000. The service

loads a specific user by a username (used
during login) and builds granted
authorities based on the role assigned
within the JWT token.

3.4 Database Service
The database for this application is an in-
memory data storage platform called H2. It
is embedded within the Spring framework
and is configured with the Java
programming language. Originally, the
plan was to use a cloud-based service like
PostgreSQL, but the issue of hosting
confidential information online presented
itself. For development, it was found to be
more optimal and fully functional with the
H2 database, especially with the issues my
company computer was giving.

The SQL queries were developed and
placed in the codebase, varying by the
functionality needed for the CRUD
application (Create, Read, Update,
Delete). The Create functions applied the
INSERT INTO statement of the SQL
language, the Read functions applied the
SELECT FROM statement, the Update
functions applied the UPDATE function,
and the Delete functions applied the
DELETE FROM function. Possible
CRUD functions were regarding
contractor names, addresses, roles, etc.
With the main Contractor table, there
exists a supplemental reference table
which possesses IDs of Addresses and
Phone numbers that were repeated. This
allowed for easier table readability and
quicker load-up times.

3.5 Front-End Operations
The front-end framework for this web
application was React and written in
Typescript, a variant to JavaScript that
requires defining variable types and
greater code readability. The React
application was locally run from the 3000

port, and requests for data from the
backend (Port 8080) was done through the
Axios library.

The UI needed to be simplified and easily
updated with future revisions to applied
packages. When accessing the page, the
user meets a login page where they needed
to input a valid email and password to
proceed. This would synchronize with
SAIC’s credential process in the future to
authenticate SAIC employees and
contractors. There were four accessible
tabs on the web application once logged in;
two pages to generate and decode a JWT
token, a page to view all Contractor data in
a table format, and a page to update
specific information that would also check
to make sure the user possessed authority
to access the page (as determined by their
Roles in their designated JWT token).

The page to generate a JWT token
contained a dynamic form to input email,
first and last names, their Role (limited to
Admin, Customer, or Other), and other
keys and values the user could add as they
will. Once the user submitted the form
with a submit button, they received a token
on the bottom of the page which was
acquired from the request being sent to the
backend and returned almost
instantaneously. The page to decode a
JWT token contains a simplified form with
an input box for the JWT token. The user
would then submit their information and
receive their claim on the bottom of the
page, which is essentially the opposite
result as the generate page.
The contractor table page presents a React
Table containing all Contractor data as
well as Pie and Bar charts describing the
data. The fourth and final page allows the
user to edit or delete a contractor entry that
they have authority to do so. This is
determined by their Role designation in

their JWT token assigned earlier in the
generation page of the application. Even if
the user authenticated, they need to be
authorized to enter specific endpoints.

4. RESULTS
The newly-designed system allows contractors
to input their required data into a form and
save it into a relational database. It also
ensures that their information will be kept
confidential in the interests of the U.S.
Department of Defense, while also being
easily accessible for their own records.
Mainly, however, the replacement of this new
application to legacy software is the most
surprising result. What would have taken 5
minutes with the old process would now take
less than a minute with this application. The
process for a user to be authenticated and
authorized to enter an endpoint is
instantaneous and only depends on how fast a
user inputs the required fields. After speaking
with potential clients as well as Project
Managers, they stressed how time-consuming
the old process of generating JWTs were and
how practical and effortless it is now with this
newly developed software.

5. CONCLUSION
Largely, this web application built an
accessible and seamless approach towards
SAIC employees and contractors to input their
necessary information and provision it with
security measures like a uniquely generated
token that proves one’s authentication and
authorization to enter an endpoint and modify
data. It incorporated various technologies and
software to come together as an intuitive web
application that processes requests sent by the
user instantaneously, renders it through a
multi-layered database system, and provides
inner functionality to decompose and compute
a simplified and legitimate solution back to the
user.

Working on this project gave me a prolific
sense of how working in the Software
Engineering industry will operate, with
weekly Sprint checks and on-demand learning
to generate effective solutions and the ability
to debug and decipher through countless error
messages. I learned to stay composed and
patient in my hunt for a solution, as I
understood that I needed to present the most
optimal solution to the customers.

6. FUTURE WORK
Future improvements to this application
include hosting the site on a public domain for
clients to use. This would be embedded into
SAIC’s client application and would also
include SAIC authorization protocols, as
previously mentioned with additional login
parameters to ensure only SAIC employees
can access the site. Hosting this site on a cloud-
integrated service would likely cost a minimal
amount and could be provisioned with an
Elastic Load Balancer to cut costs to the
company.

Another possible improvement in the future
would be to add more security provisions to
the SQL database and eliminate any threat of a
SQL Injection Attack. Without these
suggested improvements, however, the
application I built over the summer was
complete and fully functional for early usage
and organization of data.

REFERENCES

Aytin, E. (2022, August 7). JWT
Authentication in React. Permify.
Retrieved on April 21, 2023, from
https://www.permify.co/post/jwt-
authentication-in-react

Singh, R. (2018, February 18). Spring Boot +
Spring Security + JWT + mysql + react
full stack polling app - part 2.
CalliCoder. Retrieved on April 21,

2023, from
https://www.callicoder.com/spring-
boot-spring-security-jwt-mysql-react-
app-part-2/.

