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Technical Report 

Statement of Work 
Jennifer Shern: At the start of the semester, I concentrated on writing the proposal and creating 
the poster. Following this, Wanghaotian and I researched and investigated suitable PCB 
structures. My responsibilities included drawing the schematic, laying the PCB, and placing the 
order. While awaiting the PCB's arrival, I assisted in debugging and improving the user interface. 
Wanghaotian and I collaboratively completed the hardware integration of the Smart MIDI 
Controller for the final integration. In this final report, I wrote the Abstract, Background, Project 
Description (performance objectives and specifications, most of the How It Works section, and 
the PCB Design of Technical Details), Social Impact, External Standards, and Engineering 
Insights. 
Haizhou Yu: As the team's project leader, I am responsible for various parts of the project. First, 
as a leader, I planned the features and investigated the materials and hardware to construct the 
device. Then, I researched the software and coded the MIDI section of the device. I am also 
responsible for the CAD construction, the structural planning, and design of the device. Besides, 
I worked between various groups and assisted in many project parts, such as PCB design, UI, 3D 
printing, and more. I also supervised the work split in each of the team members. I oversaw most 
of the parts and possess the know-how in the deliverables. In this report, I am responsible for the 
MIDI technical details and the CAD and structural parts. 
Wanghaotian Zhang: I wrote half of the project proposal for the first month of the semester. I 
also made the poster for the poster session. After the poster session, I helped generate ideas on 
the PCB design and figured out the structure. After the arrival of the PCB parts, I helped to 
solder the button PCBs and main PCBs and did basic testing on the connectivity of PCBs. For 
the final assembly part, I helped to correspond buttons and GPIO ports, tried to assemble the 
PCBs into final parts, and did the final testing to verify functionality. I wrote the testing plan, 
physical constraints, and costs for the final report.  
Tong Zhou: In the first half of the semester, I focused primarily on UI design. I spent the first 
two weeks researching and exploring potential libraries and IDEs, followed by implementing and 
displaying the design on the screen. Additionally, I assisted in designing, soldering, and testing 
the PCBs. During the final assembly, I tested the calibration of buttons linked to the GPIO ports 
and collaborated with all group members to test functionality. For the final report, I handled the 
technical details of the UI design. 
Jinhong Zhao: At the beginning of the semester, I focused on learning the necessary libraries for 
UI design and familiarizing myself with CircuitPython. I actively participated in discussions on 
the appearance of the user interface and ensured that the functionality of the 5-way button was 
effectively integrated with the code. Subsequently, I transitioned to working on the software side, 
contributing to implementing chord and key mapping for the MIDI controller. In the meantime, I 
spent time developing my 3D printing skills, which allowed me to access the 3D printing 
facilities at our school and ensure the timely printing of our project components. During the 
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integration phase, where the UI design was combined with the software, I tested edge cases and 
debugged potential errors to ensure seamless functionality. For the final report, my primary 
contributions included drafting sections on intellectual property issues, project timelines, and 
proposed future work.  
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Abstract 
The evolution of technology has transformed the landscape of musical composition and 

performance beyond traditional physical instrumentation. The Musical Instrument Digital 
Interface (MIDI) controller represents a significant advancement in this domain, facilitating the 
generation of digital music based on the input MIDI data. [1]  To be more specific, MIDI data 
triggers the virtual instruments or synthesizers within the Digital Audio Workstations (DAWs), 
which allows the computer to generate audio output. This project focuses on developing an 
innovative MIDI controller that encompasses the comprehensive functionality of existing 
commercial models while introducing novel features designed to enhance the learning curve for 
beginning music producers, thereby optimizing the accessibility of this technology. 

Background 
The MIDI controller plays a critical role in modern music production. This technology 

enables a more straightforward and cost-efficient approach to music production for all genres. 
Users can create a wide variety of samples without purchasing the actual instrument. Moreover, 
using MIDI over the instruments recording provides multiple advantages in terms of adjusting 
specific aspects of music, including volume, panning, and modulation [2]. As many of our team 
members had previous experiences of music production, we decided on this Smart MIDI Creator 
project, which benefits novice music producers.  

Despite the variety of models available, most of them need to be more user-friendly, 
especially for novice users. Music production demands a foundational understanding of music 
theory; harmonious music requires specific notes arranged into appropriate chord progressions.  
As each key or pad on current models only corresponds to one note, music producers must 
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memorize the corresponding notes of the chord. In addition, the relationship between notes and 
buttons often needs to be more intuitive due to the limited instructions. For MIDI controllers with 
a drum pad structure, users must familiarize themselves with the layout to learn the location of 
each note, which can harm the learning curve for beginners. Admittedly, the keyboard structure 
MIDI controllers do not have this issue, as the keys closely resemble those of a piano. However, 
these models typically provide a left-to-right layout with limited vertical options. Non- keyboard 
MIDI designs, such as drum-pad controllers, allow for more keys within a compact area, which 
enhances portability without sacrificing user experience.   

Several MIDI controller models are addressing these market deficiencies. Here, I will 
discuss two such systems. The Launchpad Pro [MK3] by Novation features a drum pad structure 
with various functionalities that are manipulated by its corresponding software [3]. Users can 
switch to chord mode through the software, enabling each pad to correspond to a chord instead of 
a note. This alleviates the need to memorize note-chord correspondence. However, the complexity 
of the software is not suitable for initial beginners, which can pose a steep learning curve. Another 
downside is that users must manage both the MIDI controller software and the DAW, leading to 
overcrowded screens and constant disruption switching. 

Furthermore, while the pads light up when pressed, identifying the corresponding notes or 
chords depends on the MIDI controller software. This design may be counterintuitive, as users are 
likely to focus on the pad instead of the screen. Although several MIDI controller software options, 
such as Dexed, include a chord mode, compatibility issues with operating systems can limit 
usability [4]. Moreover, based on our investigation into musicians’ preferences, they favor the 
experience of physical pads or keys over virtual ones on the screen. In conclusion, none of the 
current models sufficiently addresses the challenges mentioned above.   

Our Smart MIDI Controller distinguishes itself from the competition with various innovative 
features that enhance both usability and creativity. Featuring an embedded screen, the controller 
visually displays the corresponding notes or chords, enabling users to swiftly identify which notes 
or chords each button represents. Furthermore, our Chord Mode and Strum Mode provide novice 
users with a smooth experience by removing the challenges associated with chord progressions. 
These features greatly lessen the learning curve, allowing new users to concentrate more on their 
music and less on technical aspects, which promotes a more user-friendly production process. 

Our coursework has established a solid foundation for the success of this project. The project 
is divided into three main components: hardware, software, and CAD modeling. 

1. Hardware: For the hardware aspect, we utilized PCBs to transmit the input signals from 
the buttons to the microcontroller. Our understanding of circuit design and layout was 
acquired in the Fundamentals of Electrical Engineering course series. 

2. Software: In terms of the software component, our experience with embedded systems and 
various computer science courses has provided us with the skills necessary to work with 
microcontrollers. This experience enables us to effectively handle the user interface (UI) 
while generating and sending MIDI data. 
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3. CAD Modeling: Although none of us have taken a specific course in CAD modeling, one 
of our team members has prior experience in this field and was responsible for designing 
the exterior casing of the project. 

  

Project Description 

Performance Objectives and Specifications 

Our MIDI controller combines the functions of traditional MIDI controllers with 
innovative features tailored for learners, who are our intended users.  

 Screen Feature 

The proposed Smart MIDI controller sets itself apart with an advanced interactive 
screen interface. Unlike conventional MIDI controllers that are limited to keys or drum 
pads, our design incorporates a 5.62” x 9.25” display screen. The upper section of the 
screen provides comprehensive operational instructions and mode selection features. Users 
will navigate mode selection using a five-way button located next to the first row of 
buttons. More details about the modes will be elaborated in the upcoming paragraphs 
below. 

The lower screen area, located beneath transparent buttons, dynamically displays 
contextual text that adjusts based on the selected operational mode. This smart screen 
design promotes intuitive mode selection and offers guidance on the placement of certain 
chords, effectively reducing the traditional learning curve linked with complex MIDI 
controller software interfaces while also improving the overall user experience. 

 Traditional Mode 
The MIDI controller operates like current products in markets, where each button 

corresponds to a musical note. The design covers 12 chromatic notes within a single octave, 
including C, C#/Db, D, D#/Eb, E, F, F#/Gb, G, G#/Ab, A, A#/Bb, and B. 

 Chord Mode 
This represents one of the two distinctive modes unique to our Smart MIDI 

Controller. Upon mode selection, the user interface dynamically presents an array of 
musical keys for selection. Once the user selects the key, the screen beneath the buttons 
populates the corresponding chords. This innovative approach eliminates potential 
disharmonies in chord selection, providing substantial benefits for novice users with 
limited music theory comprehension. 

 Strum Mode 

The second unique feature is an advanced strum mode that simulates a guitar 
performance. Users first select a musical key and then choose three preferred chords from 
a key-specific chord inventory. In this mode, each button on a single row accurately 
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represents an individual guitar string. When users sweep in a single row, the Smart MIDI 
Controller generates MIDI data that closely mimics authentic guitar strumming techniques. 

 

How It Works 

 From a user's viewpoint, manipulating our Smart MIDI Controller shown in Figure 1 is 
akin to operating current MIDI controllers. To begin, the user needs to connect the USB cable 
located at the top of the device to a computer. Pressing a button sends MIDI data for a note or 
chord to the computer, which produces the audio output. 

 
Figure 1 Exterior View of the Smart MIDI Controller  

 Figure 2 shows the vertical cross-section view of the Smart MIDI Controller. When a 
Grid Button is pressed, it activates the corresponding switch on the Button PCB, sending an 
input signal to the Main PCB, where the Raspberry Pi Pico (referred to as Pico in the following 
paragraphs) is located. Pico then generates the appropriate NoteOn MIDI message and transmits 
it to the computer. Conversely, when a button is released, a NoteOff MIDI message is sent.

 
Figure 2 Vertical View of MIDI Controller 
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The internal operation steps are outlined in the block diagram shown in Figure 3. The 
computer supplies power to both the screen and the Main PCB. As mentioned earlier, pressing a 
Grid Button activates the corresponding mini switch on the Button PCB, which sends a signal 
that is converted into MIDI data and transmitted to the computer. This signal path is highlighted 
in light blue in Figure 3. 

For the five-way button, the up, down, left, and center directions connect to different 
GPIOs. The user directly manipulates the five-way button, which is soldered onto the upper 
Button PCB. Based on the current display, the Pico generates the appropriate instructions and 
outputs them via the DVI socket to the screen. This signal path is highlighted in orange.

 
Figure 3 Block Diagram of the Smart MIDI Controller 

Figure 4 illustrates the block diagram for designing the User Interface. The two 
constructed variables are current_page, which represents the page currently displayed on the 
screen, and next_page, which denotes the intended page that the user selects. The basic logic 
adheres to a Finite State Machine (FSM) algorithm, where current_page indicates the current 
state, while next_page signifies the intended target state. Initially, the system sets both 
current_page and next_page to 1- the default page. The FSM accepts three possible inputs based 
on user actions: Up Arrow Press, indicating the user’s desire to move to a previous page; Down 
Arrow Press, signaling the user’s desire to progress to the next page; and Select Press, which 
confirms the selected page. When the user presses the buttons, corresponding transitions are 
triggered. For the Up Arrow Press, the system navigates the user to a previous page if they are 
not already on the first page; for the Down Arrow Press, it advances the user to the next page 
unless they are already on the last page; and for select press, it concludes the FSM by confirming 
the current selection page. 
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Figure 4 Block Diagram of the User Interface 

  The circuit schematic of the Main PCB is illustrated in Figure 5. Although it is not 
shown in the schematic, the DVI socket is soldered to the Pico and occupies GPIO12 through 
GPIO19. The functions of the other GPIOs are listed below, and they connect to the through 
holes on the left edge of the Main Button PCB, as shown in the layout in Figure 6. 

 GPIO0 through GPIO4 connects to the five-way button, which corresponds to up, left, 
down, right, and center, respectively.  

 GPIO5 to GPIO8: they are designated for the four mini switches of the Button PCB on 
the top row.  

 GPIO9 to PGIO11 and GPIO28: they are designated for the four mini switches of the 
Button PCB on the middle row. 

 GPIO21, 22, 26, 27: they are designated for the four mini switches of the Button PCB on 
the bottom row. 

 GND: there are a total of three GND connections through holes, and they are connected 
to each Button PCBs.   
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Figure 5 Main PCB Circuit Schematic 

 

Figure 6 Main PCB Board Layout 

The circuit schematic of the Button PCBs is presented in Figure 7. Each mini switch on 
the Button PCB corresponds to a 3D printed Grid Button, which users can press. The five-way 
button is located on the far right of the Button PCB. All pins from the mini switches and the five-
way button connect to the through holes on the left, as illustrated in Figure 8. We connected the 
through holes on the Main PCB and Button PCBs using jumper wires to transmit the user input 
signals to Pico.  
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Figure 7 Button PCB Circuit Schematic 

 
Figure 8 Button PCB Board Layout 

Technical Details 

PCB Design 

 Component Selection  

The first step in PCB design was to gather component information. The main PCB only 
required the Pico manufactured by Adafruit [5]. For the Button PCBs, we decided to use the 
Thru-hole Navigation Switch, referred to as the five-way button in other sections, to control the 
UI display. This five-way button was selected instead of other options because it is also produced 
by Adafruit. The Button PCBs were situated below the frames between two rows of Grid 
Buttons. Therefore, we selected the 3x6x5mm Mini PCB Push Button Switch, which is the 
smallest switch we found [6].  

 PCB Design Tool Selection 
We chose KiCad as our PCB design software. It is an open-source tool, which 

offers more information online compared to Multisim. Additionally, we found the 
schematic and layout library already created for Pico, which can be directly imported into 
KiCad.  

 Footprint  
o Through-holes 

Initially, we intended to solder a 6-position right-angle receptacle 
connector onto the Main PCB [7]. This connector was meant to replace direct 
wire soldering to the through-holes, enabling us to disassemble the three-layer 
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case of the Smart MIDI Controller. Given our mission to minimize the case 
height, this type of connector is the flattest one we discovered. The through-hole 
footprint was designed according to the datasheet, featuring a hole diameter of 
1.1mm and a 0.4mm annular ring. Unfortunately, we accidentally left insufficient 
space between the through holes, which prevented us from using the connectors. 
Consequently, we modified the middle case to allow for device disassembly but 
opted to solder wires directly to connect the Main and Button PCBs instead. 

o Mini Switch 
There was no existing footprint for the Mini Switch, so we created one 

based on our measurements of the switch. As shown in Figure 9, the Mini Switch 
measures 3 x 9 mm, with a hole size of 1.2 mm and a 0.4 mm annular opening 
ring. 

 

Figure 9 Mini Switch Footprint 

o Five-way button 
We drew the footprint of the five-way button based on its datasheet [8]. 

All the holes have an annular ring of 0.4 mm. The footprint is shown in Figure 10.  

 
Figure 10 Five Way BuƩon Footprint 

 Layout  
o Main PCB 

The through-holes on the Main PCB are aligned vertically along the left 
edge. Initially, the design included two holes on the right for screws to secure the 
PCB to the back of the display screen. However, since there are a lot of wires 
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connecting to it, the Main PCB stays at a fixed location inside the case without 
using the screw holes and nails. To reduce wiring inductance, a ground plane was 
implemented on the copper underside of the board [9]. The dimensions of the 
Main PCB are 45 mm by 57 mm.  

o Button PCB 
Each Mini Switch is placed at the middle length of the 3D printed button. 

Each Mini Switch is positioned at the midpoint of the 3D printed button. The 
length of the Button PCB is designed to be slightly longer than the width of the 
display screen. The footprint of the five-way button is located at the far right of 
each Button PCB. To reduce manufacturing cost, all the Button PCB are the same; 
the five-way button is only soldered onto the Button PCB that is nearest to the 
user interface display. A ground plane is also created at the bottom of the Button 
PCBs. The five-way button is located at the very right of every Button PCB. Yet, 
the five-way button was only soldered on to the Button PCB that is located closest 
to the user interface display. The ground plane is also created at the button of the 
Button PCBs. The detailed dimensions can be found in Figure 11. 

 

Figure 11 Button PCB Layout 

 Fabrication 
We chose JLCPCB as the manufacturer of our PCBs due to budget constraints.  

Microcontroller Programming 
Raspberry Pi Pico was selected to be our microcontroller. Contrary to Raspberry Pi, 

which is a minicomputer, Raspberry Pi Pico is a programmable board without operating system 
[10]. Raspberry Pi Pico supports both MicroPython and CircuitPython. Considering that we had 
no prior experience in Raspberry Pi Pico, we chose to program with CircuitPython, which 
provides a more straightforward interface than MicroPython [11]. Additionally, CircuitPython 
includes a built-in MIDI library, making it easier to find well-documented MIDI resources [12]. 
STM32 is also one of the options we were considering since there’s an existing MIDI library 
found [13]. Yet, Raspberry Pi Pico stands out due to the simplicity of its coding language and its 
cost efficiency. We would prefer Raspberry Pi Pico 1 rather than 2 for two reasons. First, version 
2 is reported to have hardware flaws where the pin latches at 2.15V. In addition, version 2 is only 
available in backstock. Considering our time constraints, we only order parts that are not in 
backstock.  

As this is our first experience coding with the Raspberry Pi Pico, our capstone team 
assessed Thonny and Mu as Integrated Development Environments (IDEs) for CircuitPython, 
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focusing on usability, features, and compatibility. Thonny distinguished itself with its user-
friendly interface, making it ideal for team members who were unfamiliar with CircuitPython 
programming. It includes a built-in debugger that allows for step-by-step program execution, 
simplifying the identification and resolution of issues during development. Moreover, Thonny 
integrates smoothly with CircuitPython, offering features such as syntax highlighting and an 
interactive commands [14]. While Mu offers a solid alternative, Thonny's simple interface and 
effective debugging tools make it the preferred choice for our project. Additionally, there are 
many online tutorials available for Thonny, which facilitate easier learning. 
 
User Interface (UI) Design 
The UI implementation visually provides instructions for users and guides them to the intended 
functions. The design primarily consists of two components: user inputs via buttons and graphic 
output. It is built on a Raspberry Pi Pico using CircuitPython and manages multiple modes, such 
as traditional, chord, and strum, while navigating between pages. 

 Display layout 

According to the Tree Diagram shown in Figure 12, the display consists of three main 
sections: the top section, which features the current mode at the top center of the screen; the 
middle section, which contains interactive elements like chord and key selections; and the 
bottom section, which shows the chosen chord or key screen. 
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Figure 12 UI Design Tree Diagram 

 Expectation 

The key requirements for UI design are, firstly, dynamic updates that provide immediate 
feedback to the user based on their input, and secondly, intuitive usability that ensures 
instructions are clear and straightforward, minimizing the effort needed from the user to 
understand. 

 Library/Packages Selection 

When evaluating the libraries in use, hardware support is essential. The selected libraries 
must facilitate low-level communications such as I2C or SPI while also providing high-level 
abstractions to simplify the implementation process. Consequently, the primary libraries we 
utilize include Displayio [15], which manages visual components through “groups,” eliminating 
the need to redraw everything during dynamic updates and supporting a wide variety of displays 
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and protocols. We also consider Framebufferio [16] as an alternative; however, its lower-level 
implementation requires more manual oversight. Thus, we prefer Displayio over Framebufferio. 
The next significant library is Adafruit_display [17], which simplifies the creation and 
positioning of elements like text and shapes. While exploring potential packages, we also 
evaluate Terminalio [18], which is suitable for text handling but lacks advanced layout features, 
complicating its use for dynamic user interfaces. In contrast, Adafruit_display allows for 
dynamic content updates without a full-screen refresh and offers numerous useful functions, such 
as front scaling, alignment, and anchored positioning. With these factors in mind, we opt for 
Adafruit_display. Lastly, the key library, Digitalio [19], is employed to configure and read GPIO 
pins for managing button inputs. It facilitates interaction with physical buttons and provides a 
straightforward API for setting pins as inputs or outputs and configuring pull-up resistors, 
ensuring stable functionality for buttons signals. 

 Setup 
To start, we configured the screen using the implemented display library, setting the 

resolution to 320 x 240. This resolution keeps a balance between visual quality and reduced 
memory usage and processing demands. Next, we created a default text label that displays 
"Regular mode” to indicate the current mode. For the shape setup, we established a root group to 
contain all the graphical elements that will be initially displayed. This includes a rectangle frame, 
triangles that serve as navigation pointers, and grids that present lists of keys or chords. The 
position of each grid is determined by the following calculations:  

Horizontal spacing = Starting x-position + (Column index × grid width) 
Vertical spacing = Starting y-position + (Row index × grid Height) 

 User interaction handling 
To manage user interactions, we configured each button to input mode with a pull-up 

resistor, ensuring stable readings. This setup allowed each button to trigger a specific action as 
explained earlier. Next, we implemented button press detection using an infinite while loop that 
continuously checks if a button was pressed. Since the buttons are designed as active low, we 
determined their state by reading the signal: a low value indicates the button is pressed, while a 
high value indicates it is unpressed. Finally, a brief delay is implemented after detecting a button 
press to prevent multiple actions from being triggered by a single press. This delay is typically 
short, about 300 milliseconds, ensuring that it does not create a noticeable wait for users. 

 Display Update 
To provide dynamic and immediate feedback, we first updated the text label to reflect the 

new selection while clearing the previous content. Next, we adjusted the elements based on the 
user’s actions. This adjustment occurs during transitions between modes, such as when a user 
selects a mode or moves from one selection to another, including from the last selection back to 
the previous one. We removed the upper arrow for the first selection to indicate the start and 
eliminated the down arrow for the last selection to signal the end. Finally, garbage collection is 
performed to free memory after elements are removed, as they continue to consume memory 
even when they are no longer visible. 
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 Challenges faced and solutions 
We faced two significant challenges during the design phase. The first was delayed 

updates; after a button is pressed, the response time for updates is quite slow, which could 
negatively affect user experience. To address this, we optimized updates by changing only the 
elements that vary based on input, rather than refreshing the entire screen. The second challenge 
pertains to display clarity; the low resolution (320 x 240) limits the amount of information that 
can be shown. Consequently, we decided to implement a minimalist design featuring large text 
and shapes to avoid memory overuse while improving clear instructions. 
 
MIDI Transmission Programming 

 Introduction and Background 
As discussed above, one reason we chose the Raspberry Pi Pico is that we can rely on the 

versatile CircuitPython libraries to achieve our functionalities. Adafruit Industries has 
conveniently created a MIDI library that enables the Pico to communicate with MIDI-supported 
devices via a serial connection. The documentation offers many examples for self-study and 
understanding, making it easy to learn how to use them. 

 Libraries 
The primary library we used for this project is the adafruit_midi library [20]. We utilized 

the library's functions to configure the MIDI channels and ports and to send MIDI messages with 
a default velocity of 127 (maximum velocity). Another library we employed is the Digitalio 
library, which assisted us in configuring the GPIO ports. The system continuously monitors 
whether a button has been pressed, allowing it to respond to actions accordingly. 

 Functionalities 
Our device provides functions beyond the standard MIDI controller mode, requiring 

workarounds for features like chords and dynamic note splitting in the 12-button design without 
using excessive resources. The software is in an infinite loop, so we added a section that plays 
user-selected notes and chords when a button is pressed, sending a “MIDI on” message to the 
computer with each iteration. Both the detection and callback occur within the same iteration of 
the loop. 

 Traditional Mode 
The normal mode consists of an array of default MIDI notes that we predefined in the 

code. This array starts from C3, also known as central C, and moves one half-note for each 
subsequent button. Since the notes in a MIDI message are represented by two-digit numbers, this 
array is essentially a collection of integers. When the normal mode is activated, the code selects 
this array and associates it with the corresponding button. Because both the button array and the 
note array follow a matching index sequence, they can be assigned accordingly.  

 Chord Mode 
Following this logic, we developed the chord mode. First, we gather common chords for 

each key and code them into arrays of strings. Due to the extensive usage of chords across both 
the UI and MIDI programming, we kept everything as strings to unify variable names for better 
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integration. Next, we implemented a chord translation function to convert the chord name in 
string format to the exact note numbers in MIDI. When the chord mode is selected, the software 
precomputes the chord notes and stores them in a nested array. When loading the chords into 
buttons, the same logic applies as in the normal mode implementation. However, the function 
needs to incorporate a loop to retrieve the notes from the nested array so that they can be played 
at the same time. 

 Strum Mode 
The strum mode is based on the chord mode but includes slight alterations. Due to the 

buttons being arranged in a 3 by 4 grid, we can only include three chords total, with four notes 
per chord. This means that after the user selects the key, they also need to choose their chord of 
preference. This is then sent into the chord translation function and returned as an array. Another 
function adds the root note an octave higher to the array, completing the four notes per chord 
format. A special loading technique was developed so that it takes the notes in the nested for 
loop and, instead of loading them all with one button, loads them one note at a time button. 
 
CAD Modeling and Structural Design 

 Introduction and design inspirations 

To create a more flexible design and assembly option, we developed CAD designs and 
3D printed them to finalize our enclosure. We utilized Autodesk Fusion 360 to construct our 
CAD design and engaged 3D printing companies to meet our specific requirements for 
transparent materials and oversized components. One of our main goals during the device's 
design was to make the buttons transparent, allowing them to display different content based on 
their functions. We explored designs from various devices, such as stream decks, which typically 
feature transparent buttons along with an embedded screen, and a gaming arcade called Jubeat, 
which closely resembles the final design we implemented, including a display area for navigation 
information and the rest of the screen to present content for buttons. 

 Basic design description 

To facilitate assembly and manufacturing, we opted for a three-layer sandwich design. 
The bottom layer contains the main PCB and wiring while also providing structural support for 
the display screen. It features a cross-shaped beam that supports the screen, raising it to free the 
screen PCB from an uneven surface. An opening on one side allows cables to pass through the 
device, enabling USB connectivity and power supply. The middle layer has protrusions on both 
sides to secure it within the top and bottom layers, accommodating the button PCBs and offering 
structural support for the buttons. This layer also acts as a physical barrier between the display 
area and the button area. The top layer holds the buttons in place, preventing them from shifting 
or falling off, and provides a cover for the PCBs, enhancing the overall aesthetic look. 

 Button design 

The use of transparent buttons prevents us from placing a trigger mechanism directly 
underneath. As a result, we designed the buttons to have protrusions that extend from the button 
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body to press the actual triggering button on the button PCB, which is also covered by the top 
layer. Since the triggering buttons are positioned right below the transparent buttons, this means 
we can only press the lower region to activate them. To enhance the pressing experience while 
maintaining a flush fit, we designed the button to be slanted, with the side featuring the 
protrusions angled upwards while the other side keeps the original height. This design provides a 
pivot point on the button, allowing it to naturally rotate and trigger the mechanism. To ensure a 
better fit, we added grooves on the protrusions, enabling them to sit snugly onto the triggering 
surface buttons. 

 Design dimensions 

 
Figure 13  Dimension of Top Case (285mm*175mm*8.2mm) 
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Figure 14 Dimension of Middle Case (285mm*175mm*21.8mm) 

 
Figure 15 Dimension of Botton Base (285mm*175mm*33.179mm) 
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Figure 16 Button Dimension (41.027mm*27.45mm*15mm) 

Test plan 

 
Figure 17 Test plan block 

The blue arrows indicate that the previous parts of the test have passed and that the next 
part will be tested. The red arrows indicate that if the test does not pass, it will return to the initial 
stage step.  

Our test plan can be separated into 3 sections: Software, PCB, and Mechanical. 
The software testing primarily focuses on software components. First, we will verify 

whether the screen displays correctly, as this is part of the user interface. Next, we will assess 
whether the navigation functions properly. This means that if a user wants to access the 
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submenu, they simply need to click the button above that menu. After that, we will check if the 
MIDI data can be processed successfully, indicating that the microcontroller can effectively 
transfer and receive data from the computer. If any errors are found during these steps, we will 
review and debug the system code.  

The PCB testing primarily checks for any errors in the PCB design. We begin by 
verifying that everything is properly connected in Kicad. This software performs DRC and 
connectivity checks. After the PCB is produced, we will assess whether the PICO, the 
microcontroller, and the button trigger are properly soldered to ensure successful signal transfer. 
Currently, we do not design the power supply components for the PCB since the microcontroller 
is powered by the computer.  

The final test involves the mechanical component. First, we will verify whether the 3D 
printer successfully produces the desired output. For instance, 3D printers sometimes yield 
products with unstable top layers. Additionally, corners may be too sharp and pose a risk to 
users. Next, we need to assemble the outfit, ensuring it won't easily fall apart. Furthermore, when 
the user presses the button, the structure must remain stable. 

For the actual testing, we started by checking our PCB schematic and layout design in 
KiCad using the DRC check, which went smoothly. Next, we submitted our files to FreeDFM to 
ensure that no potential errors are identified. Afterward, we sent our order to the manufacturer 
JLCPCB. 

For the mechanical part, we had various drafts that were finalized into one result. 
However, due to the limitations of the school’s 3D printer, we had to send the order to a third-
party company to print our structure. The company staff discussed some design flaws with us, 
and we made adjustments and revisions accordingly.  

It took over a week for us to receive the parts we requested, which were longer than we 
anticipated. We received our PCBs first, followed by the structure. As a result, we decided to 
solder the PCBs and check whether they were functioning properly. We soldered male-to-male 
jumper wires on single-button PCBs to five-way connectors and buttons. Next, we soldered both 
the DVI expansion board and the PICO board to the main PCB. Finally, we attached the jumper 
wires to the corresponding pins on the main PCB. However, a potential problem emerged. We 
designed the sockets on the main PCB so closely that our PICO could not be inserted perfectly. 
We resolved this by gently bending the pins on the PICO. We plugged the PICO board into the 
computer to power it on and then used a multimeter to check the power supply. However, there 
was no voltage difference among any pins. We discovered that only the DVI expansion board 
was soldered to the main PCB, while the PICO board was not. We addressed this by re-soldering 
the board, and then the power supply appeared normal at 3.29V. We used the multimeter to 
verify the PCBs were connected and working properly. 

Next, we connected the DVI socket to the computer. The interface appeared correctly on 
the screen, and the display test was successful. Later, we checked our software components, 
which involved different mode functionalities. In Traditional mode, pressing the button produced 
the correct sound. Both chord mode and strum mode successfully passed. Despite our ongoing 
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use of the features, issues arose, resulting in the screen showing memory allocation error reports. 
We then researched and discovered that our background and border consumed a lot of memory 
space. As a result, we chose not to apply a background color and opted for a simple rectangular 
border to conserve memory. Consequently, all the software was successful in passing. 

The 3D-printed shells did not meet our expectations after a week of arrival. The accuracy 
of their width and height did not align, and even the positioning was not horizontal or vertical. 
Consequently, it was difficult for us to assemble the parts together. We used a grinder to reduce 
the width, which allowed the top and bottom parts to fit together smoothly. However, the height 
of the bottom parts was also insufficient for the DVI socket on the main PCB. The button parts 
for the upper section were too weak to hold. Fortunately, the buttons fit well, but the heights of 
the buttons were oversized. We attempted to match everything as closely as possible. 
Nevertheless, the overall appearance of the first design was not satisfactory. Thus, we developed 
a second draft with greater tolerance and careful consideration. 

The second design was better, but width and position still had mistakes. This time, we 
created additional width and height for more space to modify. We then soldered additional 
button PCBs with jumper wires to the main PCB and attempted to fit it into the shell. Next, we 
added the screen and buttons. Finally, we assembled the upper part, and everything aligned 
except for the buttons. This time, the space for the button was printed too large, which caused the 
buttons to slide. However, this wasn't a major issue for our design.  

Finally, we integrated all components and verified that all functions operated correctly. 
We thoroughly tested each mode multiple times to assess the memory allocation issue. The 
process was successful, with no problems encountered.  

 

Project Constraints 
 Design and manufacturing constraints 

While the design functioned well, there are still limitations. First, regarding the UI aspect, 
memory space poses a significant challenge. The background settings and border shape use a 
considerable amount of memory. Consequently, we could not further improve the UI design. We 
could only add a few instructions to the main menu, which may make it difficult for beginners to 
get started initially. Secondly, the primary PCB layout encountered the issue of the PICO board 
not fitting snugly in the sockets. Moreover, the soldered main PCB's height is problematic due to 
its three-board elevation, which may affect the design's portability. Third, the reliability of 3D 
printing cannot be assured, potentially leading to assembling issues. This could impede the 
proper fitting of the top cover. Lastly, the buttons might slide during operation, resulting in a 
poor user experience.  

 Tools Utilized 



 25

The tools utilized are detailed in the Technical Details section under Project Description. 
In summary, for the PCB design, we used Kicad for designing the schematic and layouts, as 
Kicad provided models for the Pico board. We learned how to create footprints and design the 
annular ring size. Additionally, we previously used Ultiboard for layout design, which differed 
from Kicad, so we had to learn how to design layouts in the new software. We also used a 
multimeter to check the connectivity of circuits.  

For the coding portions, CircuitPython was utilized as the programming language and 
Thonny as the IDE. Through the implementation process, we not only learned to use a new IDE, 
but also enhanced our self-learning skills in utilizing new libraries.  

We used Autodesk Fusion 360 for CAD design. Initially, we lacked sufficient knowledge 
of both design and 3D printing. The first version of the physical parts had many areas for 
improvement, such as button design and structural strength. Therefore, after learning about the 
drawbacks of the first design, we created a better version.  

 Cost constraint 

The overall cost, including shipping fees and taxes, is shown in Figures 18, 19, and 20. 
The total cost was $511.99, which slightly exceeded the $500 budget. However, this amount 
covers our prototypes and includes repeated shipping fees. We nearly have two orders of every 
part in the final prototype. In mass production, some parts will not be used, while others will 
require one for each controller. Furthermore, mass production will be more cost-effective. As a 
result, the cost for each controller in mass production will be significantly lower. However, given 
varying shipping fees and defective 3D-printed products, the price may fluctuate much. 
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Figure 1818 Total Cost for Prototype 

 
Figure 1919 Adafruit 1 Details 
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Figure 200 Adafruit 2 Details 

   

 Work for a better prototype 

Within PCB designs, we only spent $15.75, which included five button PCBs, five main 
PCBs, and shipping fees. Since one controller requires four button PCBs and one main PCB, 
mass production will be more cost-effective. We spent most of our money on 3D printing and 
printed twice. However, it was challenging to maintain the quality of the 3D-printed products, 
which may have been the most complex part of our spending. The screen was also expensive 
because we opted for a relatively high-resolution touchscreen. Unfortunately, due to the 
limitations of the PICO's processing power and the early-stage touchscreen technology, we did 
not fully utilize the screen. Consequently, there is potential for a more affordable screen 
replacement. We incurred extra costs for wiring because the height of the original 3D print 
required flexible and bendable wires. With the enhancements in structure, the second version 
showed a notable improvement, enabling us to pay less attention to wiring problems. 
Consequently, this will result in reduced wire costs. 

It would also be better if we had a larger memory space, allowing us to enhance the UI 
design and resulting in a more appealing and intuitive interface for users. For the physical 
component, a better 3D printing company is anticipated to produce an accurate and precise 
model. Regarding the PCB aspect, reducing the number of cables used could save a significant 
amount of space and improve our design portability.  
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Costs 

 
Figure 211 Costs for Parts used in Final Product 

Figure 21 illustrates the cost of the parts used in the final product, which amounts to 
$222.21. Overall, 3D printing is quite expensive, accounting for 47%. However, if companies 
aim to produce the controllers on a large scale, it would be more economical for us to use mold 
fabrication for injecting plastic or resin since the shape is fixed. Additionally, in large-scale 
production, it would lower costs for every listed item or allow for in-house manufacturing, which 
reduces production expenses. The PCB assembly may be somewhat complex for automated 
equipment, as the process requires concealing the wires under the shell. However, it would be 
easy for automated equipment to assemble most of the components, potentially reducing labor 
costs salaries. 

Societal Impact 
The stakeholders in this project include the manufacturers and retailers from whom we 

sourced components, the To: Be Continued team members, and our target customers. Although 
the project is not directly related to public health, welfare, or safety, it will significantly impact 
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music production and performance, ultimately contributing to the overall well-being of our 
audience individuals. 

Our primary customers are novice learners of MIDI controllers. As indicated in the 
Background section, composing melodic music often necessitates an understanding of proper 
chord progressions. However, after graduating from school, music training becomes less 
accessible, creating obstacles for those without a strong foundation in music theory. Our project 
aims to tackle this by providing a smart chord mode and other instructional features, allowing 
new learners to quickly develop the skills needed to compose music with a MIDI controller and 
create melodies with ease.  

This project also holds significant economic implications. Using our device, beginners 
can save on costly formal education typically needed to master a MIDI controller. Furthermore, 
if the device is commercialized, the manufacturing of the Smart MIDI Creator would generate 
job opportunities and contribute to the expansion of the music industry.  

Culturally, since the symbols for music progression are universal, the MIDI controller 
can be readily adopted worldwide. In conclusion, our MIDI controller enhances the music 
production and performance experience, fostering increased music creation and positively 
influencing the well-being of individuals globally. 

Regarding environmental impact, the three-layer exterior case and buttons are made from 
9600 resin and 8001 resin respectively. While they can be heated and remolded for a new 
purpose, they cannot be reprinted using the same printer [21]. Since resin in landfills or water 
sources can contaminate soil and water, it is crucial to dispose of the Smart MIDI Controller 
properly [22]. 

Finally, our project carries a significant ethical responsibility to make music production 
accessible to individuals with various levels of musical background. By reducing the barriers to 
entry, we aim to empower those who might otherwise be excluded from the creative process, 
fostering inclusivity and encouraging broader participation in music-making. Recognizing the 
significant influence music has on emotional wellness and personal expression, we believe this 
initiative could greatly enhance lives, positively impacting both individuals and society at large. 

External Standards 
 During the design process, we have carefully considered several important standards. For 
PCB manufacturing, the manufacturer must adhere to the IPC-2222 and IPC-2221 standards [23] 
[24]. These ensure that the manufacturer produces PCBs with appropriate tolerances, which is 
crucial for the proper functionality of the boards.  
 Given the presence of electrical wiring, we also followed the National Electrical Code 
(NEC), which sets the minimum safety requirements for electrical installations in the U.S. [25]. 
This standard guided our wiring practices, ensuring the safety and reliability of our final product. 

Regarding connectivity, we have chosen the Pico DVI socket for the interface, as the 
small size of the I2C and SPI screens was not suitable for our needs. By using the DVI socket, 
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we can select a screen of a more appropriate size, and our coding process will align with the 
DVI/HDMI interface standard [26]. 

Additionally, since our project involves generating digital music, we are committed to 
complying with the OSHA Occupational Noise Exposure Standard [27]. This ensures that the 
sound produced by the Smart MIDI Controller remains below the allowable audio exposure 
limits. 

Intellectual Property Issues 
We have reviewed three similar patents: CN218471584U, US20120031254A1, and 
US7928311B2, to analyze how their claims overlap with or differ from our project. 
 
US20120031254A1 - Keyboard for musical instrument, and instrument comprising such a 
keyboard [28] 

 Independent Claims: Covers a device for music creation and education that uses visual 
and auditory feedback to teach music theory and performance. 

 Dependent Claims: Include tools for interactive chord progressions and visual aids. 

 Comparison: While this patent aligns with our project’s educational goals, our Strum 
Mode (which simulates guitar strumming) and dynamic, beginner-friendly user interface 
offer functionality not covered in this patent. The focus on simplifying the learning curve 
for novice musicians is a significant differentiator. 

CN218471584U - MIDI controller [29] 

 Independent Claims: Utility Model of a MIDI controller with a small form factor and 
unique light guide structure. It also has a bottom plate, as well as a surface shell forming 
an accommodating space where a strip-shaped through-hole is formed on the surface 
shell. Integration of light guide strip and electric touchpad to improve interaction. 

 Dependent Claims: Specific features of the structure responsible for stabilization, where 
the cuboid light guide strip has a wing part, and that the light-emitting devices arranged 
on the circuit board, the light-forms on the light guide support for releasing all be equal 
and to suppress high light mastic and the like. 

 Comparison: This patent describes the outer design and structural features that a MIDI 
controller must possess. In contrast, our project does not include a light guide strip and 
employs a non-variable structure based on a fixed grid button layout. Our design makes it 
extremely simple for beginner musicians and is educationally driven, presenting the 
system in Chord Mode or Strum Mode with an interactive display that guides users 
through chords in real time. Additionally, we emphasize how to structure music alongside 
its visual representation, a topic not covered in this patent, as their focus is on the sound's 
structure and aesthetics rather than the intuitive interaction of the user interface with 
music education. 
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US7928311B2 - System and method for forming and rendering 3D MIDI messages [30] 

 Independent Claims: The current patent is the palm-enabled table that allows users to 
create digital musical notes with touch-sensitive surfaces. It deals with the interaction of 
an input surface and generating corresponding notes. 

 Dependent Claims: It recites specific implementations, including touch-surface feedback 
loops and complex input management systems for responsive sound modification. 

 Comparsion: Our project also generates digital musical notes, but the grid-based buttons 
for chord and strum functionalities provide a unique tactile experience suitable for 
aspiring musicians. Moreover, elements such as our dynamic chord mapping and 
beginner-friendly interface highlight an educational focus that is not captured within this 
patent. 

None of the patents we reviewed seem to cover the following potential innovations in our 
project. Chord Mode: Users select a musical key, and the device automatically assigns chords to 
buttons with a simple touch, eliminating the need to remember complex progressions. Strum 
Mode: This mode replicates the act of strumming a guitar, permitting users to compose music in 
a fun and accessible way. A dynamic display provides guidance and feedback that reduces 
learning time for new users. 

These characteristics distinguish our design from previous products, showcasing its 
freshness and originality. The project addresses a market demand for an accessible MIDI 
controller that emphasizes ease of use and education. We recommend filing a patent for the 
unique elements of our project, including the Chord Mode, Strum Mode, and educational 
interface. While we are not reinventing MIDI controllers, the specific combination of user-
friendly, beginner-focused features and unique modes overlaps to warrant investigation of their 
potential as intellectual property. 
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Timeline 

 
Figure 222 Gantt Chart from Proposal 

 
Figure 233 Final Gantt Chart 

The timeline of the project changed over the semester, which can be seen from the Gantt 
Chart from Proposal (Figure 22) in comparison with the Final Gantt chart (Figure 23). Each 
phase is described in detail below, along with the tasks that were undertaken and how timelines 
adapted for emerging developments and challenges.  
1. Proof of Concept (Prototyping Phase) 

 Initial Plan: This phase was scheduled to take place from September 2nd to September 
27th, with tasks including: 

o Pico Library Research (September 2nd to September 20th) 

o Experimental Work with MCU 

o User Feedback Investigation (September 2nd to September 27th) 
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o Product Planning (September 2nd to September 20th) 

o Purchasing 

 Changes: The original timeline for this phase was on track. We solved unforeseen 
technical problem ahead of time and make sure we were adhered to what we have 
planned. 

2. Product Engineering Phase 
 Initial Plan: This phase involved: 

o Software Development (September 9th to October 18th) 

o Appearance Design (October 21st to December 1st) 

o User Interface Engineering (September 15th to September 27th) 

o PCB (September 30th to December 1st) 

 Changes: 

o The software development tasks were extended slightly due to iterative testing 
and refinement of the MIDI and chord-mapping features. 

o The appearance design task was marked complete ahead of schedule, indicating 
efficient collaboration. It was done by November 29th. 

o The completion of User Interface Engineering was extended beyond the original 
timeline due to the need for additional time to fully integrate with the hardware. 

o We completed the PCB design ahead of time. Our first version of the PCB works 
as intended, so the second version was not needed. We finished the design by 
October 15th. However, the shipping time is longer than we expected, and thus the 
actual arrival date of the PCBs was October 25th.  

o The 3D printing task is added to the Gantt chart to manage progress for 3D 
printing (October 7th to November 8th) 

 
3. Final Phase 

 Initial Plan: This phase was allocated from November 18th to November 30th for: 

o Product Integration 

o Testing/Calibration 

 Changes: 
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o The integration timeline was longer than expected. Due to our efficient 
completion of earlier phases, we had extra time for testing, calibration, and 
refinement of the project.  

o Some testing tasks overlapped with the Product Engineering phase as the team 
adopted an agile workflow to parallelize tasks. 

4. Deliverables 
 Initial Plan: Deliverables such as the project proposal, progress report, PCB design, and 

final report/video were scheduled at regular intervals throughout the semester. 

 Changes: 

o Every deadline was on track by the end of the semester. 

Summary of Changes 
The primary shifts in the timeline were due to iterative testing and refinements, as well as 

re-evaluating what tasks needed to be prioritized in alignment with project milestones. 
Comparing the proposed Gantt chart to the ongoing Gantt chart shows that we were ahead of 
schedule in multiple tasks. Our timely completion had resulted in more time for fine testing and 
early completion. 

Final Results 
Functionality 
 The Smart MIDI Controller must be connected to a computer to generate audio. It 
features three modes that users can select from the user interface display using a five-way button. 
The up and down inputs of the five-way button navigate through the menu. The left input returns 
to the home page, where different modes can be selected. Press the five-way button to confirm 
the displayed functions menu.  

 Traditional Mode: In this mode, the device operates as a standard MIDI controller, where 
each button corresponds to a specific note. Twelve buttons are assigned to the notes C, 
C#/Db, D, D#/Eb, E, F, F#/Gb, G, G#/Ab, A, A#/Bb, and B, respectively. Pressing a 
button triggers the corresponding note until it is released. The user can also press multiple 
buttons simultaneously to generate chords. 

 Chord Mode: Once this mode is selected, the user will be prompted to choose a key from 
the major chords C, D, E, F, G, A, and B. The corresponding chord for the selected major 
will appear on the display beneath the button. Pressing the buttons will generate the 
corresponding chords.  

 Strum Mode: After selecting a major key, users can choose three guitar chords from the 
list. These chords will be displayed on the interface. Each button simulates a guitar string, 
and each row represents a chord. By swiping over the buttons, the device mimics the 
strumming of a guitar. 
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Criteria met 
We have successfully met nearly all the expectations outlined in the proposal. The Smart 

MIDI Controller can generate chords, allowing users to create music even with minimal 
knowledge of music theory. Although some sacrifices were made regarding the background 
color due to Pico's limitations, the user interface remains simple and intuitive. Navigating each 
mode is intuitive, with the five-way button providing clear directional options on the interface. 
Additionally, the Smart MIDI Controller features an aesthetically pleasing white rectangular 
case, with a compact and portable size of 285mm x 175mm x 48.179mm. In conclusion, we have 
effectively achieved all the goals set forth. 

Engineering Insights 
 We have gained valuable insights throughout the process of building this project. In 
contrast to earlier projects that depended on template files, we created, designed, and organized a 
functional PCB entirely from the ground up. We also learned to use KiCad, a completely new 
PCB design tool with which we had no prior experience. Through designing the Pico, we became 
familiar with a new microcontroller, navigating its challenges without direct guidance or 
materials from our professors. We explored libraries for screen displays and MIDI data, 
successfully programming these features while optimizing our code to prevent overloading. In 
CAD design, due to the complexity of the structure and the need to accommodate various 
components, we learned to divide and conquer this task by breaking the entire structure into three 
distinct layers. This allowed us to focus on smaller sections at a time, which we could later 
combine into the final product. This approach is similar to how large programs are coded in 
modular sections. Additionally, we learned to estimate tolerances and design with these 
inevitable variations in mind, ensuring the final assembly would fit together as well as possible 
intended. 

Time management was crucial to the success of our project. We used a Gantt chart to 
organize our schedule and track progress weekly, which helped us stay on target. Although some 
tasks were delayed due to shipping times for parts, the Gantt chart clearly showed us what was 
left to do and how much we needed to catch up on to meet our deadlines. 

For resource management, we encountered unexpected challenges with 3D printing 
errors, which required us to reorder parts, leading to slight budget overruns. This experience 
taught us the importance of allocating extra budget for unforeseen issues when planning. 
Additionally, we learned the significance of accurately estimating the number of parts needed, as 
over-purchasing can result in waste resources. 

Teamwork, communication, and morale were important to our success. Each team 
member took responsibility for their assigned tasks and completed them on time. Regular 
communication and meetings between sub-teams ensured that we stayed aligned in our progress. 
Furthermore, we supported each other in overcoming challenges, fostering a caring and 
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considerate environment. With all of the above in mind, we designed a system that functions 
cohesively after integration. 

We would like to offer advice to future Capstone students. First, we recommend starting 
the brainstorming process early. Selecting the right project is crucial for completing it on time 
with a manageable workload. We strongly suggest that groups begin generating ideas and 
discussing feasibility with professors sooner rather than later. Additionally, staying on schedule 
is vital, especially for a one-semester project. When delays occur, it's essential to catch up and 
adhere to the Gantt chart. Another key takeaway is the importance of accounting for tolerances in 
the design phase. For instance, when working with 3D printing, we anticipated errors caused by 
tolerance issues and addressed them by polishing the parts after manufacturing. Lastly, leaving 
enough time for testing is critical. Unexpected errors may occur during integration, so it’s wiser 
to complete early and allow extra time for testing instead of risking late discovery of issues 
minute. 

Future Work 
 Improvement for user interface (UI) design 

In the future, memory usage can be optimized further to integrate more interactive 
and advanced UI features that better guide users through navigation and enhance the 
aesthetic experience. Some challenges may include increasing the memory load on the 
Raspberry Pi PICO, which could lead to a memory allocation error that crashes the 
system program.  

 Add more functionality/mode to the current design 
Additional modes can also be added, such as MIDI Mapping mode, which allows 

users to customize button mappings to MIDI notes. This adds more flexibility and 
personalization to the product. However, adding additional modes requires more memory 
allocation, which increases the load on the Raspberry Pi PICO. Therefore, one must 
ensure that the PICO has enough memory to handle the additional demands modes.  

 3D printing/design Adjustment 

The structure of the outer design can be refined to ensure proper fit and assembly. 
Additionally, the design of the button and the way it is pressed can be improved to create 
a more comfortable experience. However, it's important to manage your time carefully 
and ensure you leave enough room for revisions, in case a second edition is needed. 

 Integrate wireless MIDI design 

Another possible improvement for future work is to integrate Bluetooth MIDI to 
enable the controller to connect wirelessly to devices. This expansion enhances the 
product's flexibility and portability by eliminating the need for USB cables. This requires 
exploring battery-powered operation to avoid reliance on constant USB connections 
connectivity. 
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