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Abstract 

A Baltimore, Maryland-based tech start-up that 

recently acquired early-stage venture capital funding is 

developing a suite of services to ensure data cleanliness 

and data quality when moving big data. With different 

parts of the stack abstracted for convenience, I was 

tasked with building APIs so that they may adequately 

communicate with each other. In order to keep up with 

the fast pace of development in the start-up space, it is 

necessary to build thorough automated testing for 

continuous integration (CI). I used FastAPI and 

Starlette to provide a seamless framework for building 

and testing APIs, as well as Insomnia for accessing and 

logging raw HTTP traffic when simulating the 

consumer-end. The ability to actively keep track of and 

modify API services based on different teams’ needs 

from the back-end is invaluable to the success and pace 

of that team. As the company matures, it will make 

abstractions between services more clear-cut, so that 

there are minimal changes to and greater reliability for 

API services. 

 

1 Introduction 

It is hard to imagine on the eve of the tech 

revolution in the mid-1980s, just over thirty years ago, 

that only a handful of communities made use of the 

internet. Only privileged groups of researchers and 

academics had the skills to communicate with their 

peers over the then-recently developed Advanced 

Research Projects Agency Network (“ARPANET”, 

2020).  

The first step to commodifying the internet was to 

break down its barriers to entry. In 1989, Berners-Lee 

started developing a suite of protocols to standardize 

how computers communicate with one another. This 

set of protocols would go on to be known as the World 

Wide Web, and the potential that it sowed spawned an 

economic upswing driven by high investor sentiment. 

As the world wide web developed, so did the 

complexity of commercial products. The software 

development cycle is nowadays abstracted as a 

timeline of milestones that conform to their own set of 

protocols. As a software engineer, one might classify 

themselves as a front-end or back-end developer. With 

higher granularity, a React or Python developer. In 

order to build a product for use by the general public, 

it is important not only to conform to the protocols 

adopted by the world wide web, but to develop on 

one’s own set of protocols when appropriate.  

Commercial applications tend to involve a 

sophisticated assortment of logical units, which 

themselves might comprise complex subunits of logic. 

Teams involved in the development of start-up 

technologies put an emphasis on agile methodologies, 

since demonstrating a Minimum Viable Product 

(MVP) and meeting product deadlines is necessary for 

raising funds. Scrum is a specific framework for agile 

product development that values collaboration and 

efficiency. At the heart of Scrum, high-level projects 

are broken down into sprints, which consist of product 

backlogs, sprint backlogs, and sprint goals (D. 

Fernandez and J. Fernandez, 2008).  

In order to keep up with the pace of development, 

software engineers should sink as little time as possible 

digging through the documentation of in-house 

modules. Teams that thrive with this methodology do 

their due diligence in high-level system design, so that 

critical modules can support intuitive APIs. Thus, 

building and digesting protocols for naturally 



 

communicating between services are important skills 

for software engineers to develop. 

The services that I chiefly worked on are the 

startup’s flagship tools for data integration. These 

include safely migrating large volumes of data from 

one database management system (DBMS) to another, 

a tool to compare data stores with different sources to 

target anomalies between the two, as well as a tool to 

write “checks” for data that will handle anomalous data 

accordingly as it moves downstream. These tools serve 

as a protocol for consumers to move their data around 

with ease and peace of mind, or as a way to run 

preliminary checks on different versions of their data 

to protect against data drift. Moreover, we wanted to 

put power in the hands of data scientists by allowing 

them to use their own languages and protocols when 

using our services. 

 

2 Related Works 

The aforementioned tools for ensuring data quality 

act on top of database management systems. Two 

popular ways of modeling data are by a relational 

database or a document database. A relational database 

stores structured data that conforms to a predefined 

schema, whereas a document database stores 

documents that may contain unstructured data. 

PostgreSQL and MongoDB are examples of a 

relational DBMS and document DBMS respectively. 

Thus, it is worthwhile to explore the functionality that 

these systems provide out of the box. 

PostgreSQL is similar to MySQL, but more 

complicated in that it offers more complex data types 

and functionality out of the box. In terms of validating 

data whenever a service inserts or updates a record, 

PostgreSQL provides functionality for specifying that 

values in a column must satisfy a Boolean expression 

(“Constraints”, n.d.). However, the nature of these 

constraints is limited by the data types and their 

respective operations in question. For example, a 

column that only accepts integer fields can be 

constrained to a range of values by using the supported 

operators for inequalities “<” and “>”, or any other 

form of static verification. 

MongoDB supports unstructured data by design, 

though still provides a method catered to established, 

large-scale businesses for establishing schema 

validation (“Schema Validation”, 2020). Similar to 

PostgreSQL, document data that is stored or updated 

must conform to pre-defined constraints. 

Apart from database management systems, there 

are third-party businesses that offer services similar to 

ours. For example, Talend is a data management 

service that provides functionality for unifying data 

from multiple sources. It supports a variety of APIs 

critical to businesses with dynamic data applications 

that need to abstract away the headache involved with 

moving data around (“Data Preparation Solutions”, 

n.d.). They also provide a service for defining data 

constraints, though it is an interface of tools already 

supported by the corresponding DBMS, so it is limited 

in the same capacity. This is similar but not quite as 

powerful as the validation engine that we are 

developing, which will allow for more freedom in the 

nature of the constraints. 

 

3 Project Design 

Over the course of my summer internship, I made 

use of tools that abstract away much of the boilerplate 

logic involved with building web-services. Django is a 

high-level, Python-based web-framework, which 

provides the skeleton of our application. We made a 

design decision in using Uvicorn as the web-server, as 

it supports the Asynchronous Server Gateway Interface 

(ASGI). The ASGI is a convention for forwarding 

multiple, asynchronous requests within our 

application. Starlette is an ASGI framework built on 

top of Uvicorn. We integrated Django with FastAPI, 

which is a framework built on top of Starlette that 

provides useful features when working with high 

volumes of data, such as data validation and 

serialization. 

The system architecture can be broken down by the 

services that the startup provides. Each service is a 

module, written primarily in Python, that packages 

together different files to integrate with FastAPI and 

CircleCI. In this way, engineers that specialize with 

different services can allow themselves to silo 

themselves from other services while still being able to 

employ their functionality, and with faith that those 

services work as intended. Outside of the product 

services that this startup provides, there are also 
general-purpose modules whose abstraction from the 

rest of the system was deemed worthwhile enough to 



 

 
 

separate. This chiefly consisted of logic to handle 

different database management systems such as 

MySQL or PostgreSQL, since part of the value 

proposition is in the generality of these services. 

On a higher level, these services typically involve 

moving and scanning large volumes of data, and 

getting notified whenever sensitive information is 

gathered about or prompted of them. Apache Kafka is 

a platform that is built to process real-time data streams 

in a way that prioritizes high-throughput and low-

latency. The specific protocol we used when 

employing Kafka was its Pub/Sub messaging service, 

in which different services offered by the startup 

“subscribe” to the a designated “producer,” where all 

the logic is written that directly involves processing or 

accessing data that belongs to the consumer. Moreover, 

Kafka is a tool for distributing data infrastructure. The 

logic for a module sits inside of a “broker,” also known 

as a “node.” This node can be thought of as a unit of 

computing resources necessary to run the logic that we 

programmed into the module. An important facet of 

our services, though, is their reliability, which is why 

we balance the load of queued services among multiple 

different nodes, called a “cluster.” This allows for an 

optimized response time, and no single node is 

overburdened. 

When I started working for this startup, they were 

just getting into their next round of funding and had a 

few clients that agreed to test-drive their services. One 

client approached them with a dataset so large that it 

was dubbed “Big Bertha.” Until this point, all data 

being processed on our end happened chronologically, 

in order of the packets of data as they are received. We 

realized that we needed to have a way to parallelize 

scanning and processing bigger databases, given the 

computational intensity of some of our most popular 

database checks. The biggest challenge we 

encountered was finding a way to reconcile this 

parallelization with the fact that the streams of data are 

forming their own hypothesis as they are being 

checked. Unfortunately, the solution to this varies 

depending on the check that is used on the stream of 

data. For example, on some statistical checks that we 

provide for their “protect” service, we would routinely 

have the different nodes communicate with each other 

on the expected value of the data in each node. This 

typically meant generating confidence intervals 

between the data and making sure they regularly sync 

up between one another. 

 

4. Results 

Over the course of three months, tools that I 

had a helping hand in developing were tested by small 

businesses. They would be able to take advantage of 

our suite of services in beta testing, and we would be 

able to regularly assess customer satisfaction. Towards 

the end of the internship, we had established a good 

rapport with a big bank based in Hong Kong, as well 

as a well-known U.S. fashion retailer. Due to the start-

up nature of this internship, the team adhered to agile 

methodologies for efficiently deploying a plethora of 

new services and modifications to existing services. 

Because of this, it is difficult to differentiate any 

improvements to customer productivity from any one 

feature, but there is something to be said about the 

system as a whole.  

The general consensus is that these services do 

a good job of centralizing different datastores for data-

driven businesses, and lessening the barriers to entry 

for data analytics and exploration. Teams working with 

us in beta testing found that there was less required 

overhead for applying their data to different problems, 

as their data pre-processing could be automated to run 

over all of their data and data stores. 

 

5. Conclusion 

In conclusion, this research paper detailed the 

development of a suite of services for a Baltimore-

based tech start-up aimed at ensuring data cleanliness 

and data quality when moving big data. By utilizing 

FastAPI, Starlette, and Insomnia, the project 

successfully built and tested APIs that allowed for 

seamless communication between different parts of the 

stack. The start-up's services, including data migration, 

anomaly detection, and data checks, provided valuable 

tools for businesses to manage their data efficiently. As 

the company matures, it plans to refine the abstractions 

between services for increased reliability and minimal 

changes. The internship experience highlighted the 

importance of agile methodologies, collaboration, and 

efficient system design in the fast-paced start-up 

environment.  

  



 

6. Future Work  

Moving forward, the startup aims to 

empirically determine and implement the most 

pressing data quality concerns by incrementing on user 

feedback, with an emphasis on scalability and 

generality. A primary concern of any startup is 

ensuring that they can bring value to a market in due 

time. By the end of my internship, the most valuable 

resource under development from a time-saving 

perspective was a Dockerized tool for the testing team, 

wherein they would be able to generate “flawed” data 

for any environment and DBMS. Docker is a tool for 

virtualizing software so that developers with different 

computing environments can ensure a consistent 

deployment of services. Much of the user feedback 

seemed to encourage services that we already had the 

back-end infrastructure to iterate upon, but catered to a 

specific functionality. Thus, a tool that could abstract 

away much of the boilerplate concerned with 

generating anomalous data would be invaluable to the 

team. 
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