
Software Development: Start-Up Development Cycle

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Samer Nahed Kadih

Spring 2023

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Advisor

Briana Morrison, Department of Computer Science

Software Development: Start-Up Development Cycle

CS 4991 Capstone Report, 2023

Samer Kadih

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

snk6ej@virginia.edu

Abstract

A Baltimore, Maryland-based tech start-up that

recently acquired early-stage venture capital funding is

developing a suite of services to ensure data cleanliness

and data quality when moving big data. With different

parts of the stack abstracted for convenience, I was

tasked with building APIs so that they may adequately

communicate with each other. In order to keep up with

the fast pace of development in the start-up space, it is

necessary to build thorough automated testing for

continuous integration (CI). I used FastAPI and

Starlette to provide a seamless framework for building

and testing APIs, as well as Insomnia for accessing and

logging raw HTTP traffic when simulating the

consumer-end. The ability to actively keep track of and

modify API services based on different teams’ needs

from the back-end is invaluable to the success and pace

of that team. As the company matures, it will make

abstractions between services more clear-cut, so that

there are minimal changes to and greater reliability for

API services.

1 Introduction

It is hard to imagine on the eve of the tech

revolution in the mid-1980s, just over thirty years ago,

that only a handful of communities made use of the

internet. Only privileged groups of researchers and

academics had the skills to communicate with their

peers over the then-recently developed Advanced

Research Projects Agency Network (“ARPANET”,

2020).

The first step to commodifying the internet was to

break down its barriers to entry. In 1989, Berners-Lee

started developing a suite of protocols to standardize

how computers communicate with one another. This

set of protocols would go on to be known as the World

Wide Web, and the potential that it sowed spawned an

economic upswing driven by high investor sentiment.

As the world wide web developed, so did the

complexity of commercial products. The software

development cycle is nowadays abstracted as a

timeline of milestones that conform to their own set of

protocols. As a software engineer, one might classify

themselves as a front-end or back-end developer. With

higher granularity, a React or Python developer. In

order to build a product for use by the general public,

it is important not only to conform to the protocols

adopted by the world wide web, but to develop on

one’s own set of protocols when appropriate.

Commercial applications tend to involve a

sophisticated assortment of logical units, which

themselves might comprise complex subunits of logic.

Teams involved in the development of start-up

technologies put an emphasis on agile methodologies,

since demonstrating a Minimum Viable Product

(MVP) and meeting product deadlines is necessary for

raising funds. Scrum is a specific framework for agile

product development that values collaboration and

efficiency. At the heart of Scrum, high-level projects

are broken down into sprints, which consist of product

backlogs, sprint backlogs, and sprint goals (D.

Fernandez and J. Fernandez, 2008).

In order to keep up with the pace of development,

software engineers should sink as little time as possible

digging through the documentation of in-house

modules. Teams that thrive with this methodology do

their due diligence in high-level system design, so that

critical modules can support intuitive APIs. Thus,

building and digesting protocols for naturally

communicating between services are important skills

for software engineers to develop.

The services that I chiefly worked on are the

startup’s flagship tools for data integration. These

include safely migrating large volumes of data from

one database management system (DBMS) to another,

a tool to compare data stores with different sources to

target anomalies between the two, as well as a tool to

write “checks” for data that will handle anomalous data

accordingly as it moves downstream. These tools serve

as a protocol for consumers to move their data around

with ease and peace of mind, or as a way to run

preliminary checks on different versions of their data

to protect against data drift. Moreover, we wanted to

put power in the hands of data scientists by allowing

them to use their own languages and protocols when

using our services.

2 Related Works

The aforementioned tools for ensuring data quality

act on top of database management systems. Two

popular ways of modeling data are by a relational

database or a document database. A relational database

stores structured data that conforms to a predefined

schema, whereas a document database stores

documents that may contain unstructured data.

PostgreSQL and MongoDB are examples of a

relational DBMS and document DBMS respectively.

Thus, it is worthwhile to explore the functionality that

these systems provide out of the box.

PostgreSQL is similar to MySQL, but more

complicated in that it offers more complex data types

and functionality out of the box. In terms of validating

data whenever a service inserts or updates a record,

PostgreSQL provides functionality for specifying that

values in a column must satisfy a Boolean expression

(“Constraints”, n.d.). However, the nature of these

constraints is limited by the data types and their

respective operations in question. For example, a

column that only accepts integer fields can be

constrained to a range of values by using the supported

operators for inequalities “<” and “>”, or any other

form of static verification.

MongoDB supports unstructured data by design,

though still provides a method catered to established,

large-scale businesses for establishing schema

validation (“Schema Validation”, 2020). Similar to

PostgreSQL, document data that is stored or updated

must conform to pre-defined constraints.

Apart from database management systems, there

are third-party businesses that offer services similar to

ours. For example, Talend is a data management

service that provides functionality for unifying data

from multiple sources. It supports a variety of APIs

critical to businesses with dynamic data applications

that need to abstract away the headache involved with

moving data around (“Data Preparation Solutions”,

n.d.). They also provide a service for defining data

constraints, though it is an interface of tools already

supported by the corresponding DBMS, so it is limited

in the same capacity. This is similar but not quite as

powerful as the validation engine that we are

developing, which will allow for more freedom in the

nature of the constraints.

3 Project Design

Over the course of my summer internship, I made

use of tools that abstract away much of the boilerplate

logic involved with building web-services. Django is a

high-level, Python-based web-framework, which

provides the skeleton of our application. We made a

design decision in using Uvicorn as the web-server, as

it supports the Asynchronous Server Gateway Interface

(ASGI). The ASGI is a convention for forwarding

multiple, asynchronous requests within our

application. Starlette is an ASGI framework built on

top of Uvicorn. We integrated Django with FastAPI,

which is a framework built on top of Starlette that

provides useful features when working with high

volumes of data, such as data validation and

serialization.

The system architecture can be broken down by the

services that the startup provides. Each service is a

module, written primarily in Python, that packages

together different files to integrate with FastAPI and

CircleCI. In this way, engineers that specialize with

different services can allow themselves to silo

themselves from other services while still being able to

employ their functionality, and with faith that those

services work as intended. Outside of the product

services that this startup provides, there are also
general-purpose modules whose abstraction from the

rest of the system was deemed worthwhile enough to

separate. This chiefly consisted of logic to handle

different database management systems such as

MySQL or PostgreSQL, since part of the value

proposition is in the generality of these services.

On a higher level, these services typically involve

moving and scanning large volumes of data, and

getting notified whenever sensitive information is

gathered about or prompted of them. Apache Kafka is

a platform that is built to process real-time data streams

in a way that prioritizes high-throughput and low-

latency. The specific protocol we used when

employing Kafka was its Pub/Sub messaging service,

in which different services offered by the startup

“subscribe” to the a designated “producer,” where all

the logic is written that directly involves processing or

accessing data that belongs to the consumer. Moreover,

Kafka is a tool for distributing data infrastructure. The

logic for a module sits inside of a “broker,” also known

as a “node.” This node can be thought of as a unit of

computing resources necessary to run the logic that we

programmed into the module. An important facet of

our services, though, is their reliability, which is why

we balance the load of queued services among multiple

different nodes, called a “cluster.” This allows for an

optimized response time, and no single node is

overburdened.

When I started working for this startup, they were

just getting into their next round of funding and had a

few clients that agreed to test-drive their services. One

client approached them with a dataset so large that it

was dubbed “Big Bertha.” Until this point, all data

being processed on our end happened chronologically,

in order of the packets of data as they are received. We

realized that we needed to have a way to parallelize

scanning and processing bigger databases, given the

computational intensity of some of our most popular

database checks. The biggest challenge we

encountered was finding a way to reconcile this

parallelization with the fact that the streams of data are

forming their own hypothesis as they are being

checked. Unfortunately, the solution to this varies

depending on the check that is used on the stream of

data. For example, on some statistical checks that we

provide for their “protect” service, we would routinely

have the different nodes communicate with each other

on the expected value of the data in each node. This

typically meant generating confidence intervals

between the data and making sure they regularly sync

up between one another.

4. Results

Over the course of three months, tools that I

had a helping hand in developing were tested by small

businesses. They would be able to take advantage of

our suite of services in beta testing, and we would be

able to regularly assess customer satisfaction. Towards

the end of the internship, we had established a good

rapport with a big bank based in Hong Kong, as well

as a well-known U.S. fashion retailer. Due to the start-

up nature of this internship, the team adhered to agile

methodologies for efficiently deploying a plethora of

new services and modifications to existing services.

Because of this, it is difficult to differentiate any

improvements to customer productivity from any one

feature, but there is something to be said about the

system as a whole.

The general consensus is that these services do

a good job of centralizing different datastores for data-

driven businesses, and lessening the barriers to entry

for data analytics and exploration. Teams working with

us in beta testing found that there was less required

overhead for applying their data to different problems,

as their data pre-processing could be automated to run

over all of their data and data stores.

5. Conclusion

In conclusion, this research paper detailed the

development of a suite of services for a Baltimore-

based tech start-up aimed at ensuring data cleanliness

and data quality when moving big data. By utilizing

FastAPI, Starlette, and Insomnia, the project

successfully built and tested APIs that allowed for

seamless communication between different parts of the

stack. The start-up's services, including data migration,

anomaly detection, and data checks, provided valuable

tools for businesses to manage their data efficiently. As

the company matures, it plans to refine the abstractions

between services for increased reliability and minimal

changes. The internship experience highlighted the

importance of agile methodologies, collaboration, and

efficient system design in the fast-paced start-up

environment.

6. Future Work

Moving forward, the startup aims to

empirically determine and implement the most

pressing data quality concerns by incrementing on user

feedback, with an emphasis on scalability and

generality. A primary concern of any startup is

ensuring that they can bring value to a market in due

time. By the end of my internship, the most valuable

resource under development from a time-saving

perspective was a Dockerized tool for the testing team,

wherein they would be able to generate “flawed” data

for any environment and DBMS. Docker is a tool for

virtualizing software so that developers with different

computing environments can ensure a consistent

deployment of services. Much of the user feedback

seemed to encourage services that we already had the

back-end infrastructure to iterate upon, but catered to a

specific functionality. Thus, a tool that could abstract

away much of the boilerplate concerned with

generating anomalous data would be invaluable to the

team.

References

[1] D. Fernandez and J. Fernandez. 2008. Agile

Project Management - Agilism Versus Traditional

Approaches. Journal of Computer Information

Systems 49.

[2] Living Internet. 2020. ARPANET - The First

Internet. Retrieved May 11, 2023 from

https://www.livinginternet.com/i/ii_arpanet.htm

[3] MongoDB. 2020. Schema Validation. Retrieved

May 11, 2023 from

https://www.mongodb.com/docs/manual/core/schema

-validation/

[4] PostgreSQL. n.d. Constraints. Retrieved May 11,

2023 from

https://www.postgresql.org/docs/current/ddl-

constraints.html

[5] Talend. n.d. Data Preparation Solutions. Retrieved

May 11, 2023 from

https://www.talend.com/products/data-preparation/

https://www.livinginternet.com/i/ii_arpanet.htm
https://www.mongodb.com/docs/manual/core/schema-validation/
https://www.mongodb.com/docs/manual/core/schema-validation/
https://www.postgresql.org/docs/current/ddl-constraints.html
https://www.postgresql.org/docs/current/ddl-constraints.html
https://www.talend.com/products/data-preparation/

