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Abstract  
 
Polyunsaturated fatty acids (PUFAs) and their metabolites play critical roles in various 

aspects of human physiology and health and coronary artery disease (CAD) is a leading 

cause of mortality worldwide. In my dissertation work, I leveraged multi-omics data to 

understand genetic and biological mechanisms underlying Fatty Acid metabolism and 

coronary artery disease using multiple statistical approaches. In the first chapter, I 

described the different types of molecular ‘omics data, the available analytical 

techniques, and the backgrounds of PUFAs and CAD. In the second chapter, I 

estimated the global proportional of Amerind ancestry in 1102 Hispanic Americans from 

the Multi-Ethnic Study of Atherosclerosis (MESA), and demonstrated strong negative 

associations between Amerind genetic ancestry and PUFA levels. In the third chapter, I 

performed a meta-analysis of Genome-wide association study (GWAS) of PUFAs in 

Hispanic Americans and African Americans to identify multiple novel signals spanning 

a > 9 Mb region on chromosome 11 (57.5 Mb ~ 67.1 Mb) and demonstrated that multiple 

associations are unique to Hispanic Americans. In the fourth chapter, I applied 

colocalization analysis and correlation network analysis to prioritize seven potential 

causal genes of coronary artery diseases and subclinical atherosclerosis using MESA 

multi-omics data. In the last chapter, I summarized my research work and discussed the 

future direction of leveraging the molecular ‘omics data to provide a comprehensive 

insight of the biological mechanism of the complex human diseases.   
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Introduction 

Sections of this chapter are adapted from:  
Yang C, Hallmark B, Chai JC, O'Connor TD, Reynolds LM, Wood AC, Seeds M, Chen YI, Steffen LM, 
Tsai MY, Kaplan RC, Daviglus ML, Mandarino LJ, Fretts AM, Lemaitre RN, Coletta DK, Blomquist SA, 
Johnstone LM, Tontsch C, Qi Q, Ruczinski I, Rich SS, Mathias RA, Chilton FH, Manichaikul A. Impact of 
Amerind ancestry and FADS genetic variation on omega-3 deficiency and cardiometabolic traits in 
Hispanic populations. Commun Biol. 2021 Jul 28;4(1):918. doi: 10.1038/s42003-021-02431-4 
 
Yang C, Veenstra J, Bartz TM, Pahl MC, Hallmark B, Chen YI, Westra J, Steffen LM, Brown CD, 
Siscovick D, Tsai MY, Wood AC, Rich SS, Smith CE, O'Connor TD, Mozaffarian D, Grant SFA, Chilton 
FH, Tintle NL, Lemaitre RN, Manichaikul A. Genome-wide association studies and fine-mapping identify 
genomic loci for n-3 and n-6 polyunsaturated fatty acids in Hispanic American and African American 
cohorts. Commun Biol. 2023 Aug 16;6(1):852. doi: 10.1038/s42003-023-05219-w. 
 
Chilton FH, Manichaikul A, Yang C, O'Connor TD, Johnstone LM, Blomquist S, Schembre SM, Sergeant 
S, Zec M, Tsai MY, Rich SS, Bridgewater SJ, Mathias RA, Hallmark B. Interpreting Clinical Trials With 
Omega-3 Supplements in the Context of Ancestry and FADS Genetic Variation. Front Nutr. 2022 Feb 
8;8:808054. doi: 10.3389/fnut.2021.808054.  
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1.1 Human genetics  

1.1.1  Background of human genetics 

Human genetics is the study of how human traits are influenced by genetic factors. 

The origins of the field of human genetics can be historically traced to the year 1949,  

marked by two seminal discoveries of paramount significance.1 Firstly, sickle cell 

anemia was classified as an autosomal recessive phenotype by James V. Neel.2 

Secondly,  this disorder was described as a “molecular” disease by Linus Pauling.3 

Notably, it was also in 1949 that the American Journal of Human Genetics was 

founded.1 

There are enormous advancements in the evolution of modern human genetics. For 

example, the first advancement is widely attributed to the field of cytogenetics, including 

substantial progress in cell culture techniques and preparation of mitotic chromosomes 

suitable for examination under light microscopy. These breakthroughs demonstrated 

that a multitude of human disorders can be attributed to specific aberrations in the 

numerical or structural integrity of chromosomes.4,5 Secondly, the advancements in 

high-throughput sequencing technologies, commonly referred to as next-generation 

sequencing (NGS), have facilitated the generation of extensive and diverse genomic 

data (as discussed in Section 1.1.5). These data types include DNA Sequencing Data 

(Whole-Genome Sequencing and Exome Sequencing), Transcriptome data, Proteome 

data, DNA Methylation Data and Functional Genomics Data (ChIP-Seq Data and ATAC-

seq Data). These data play a pivotal role in offering valuable insights into the structure 

and function of different levels of molecular targets.6–8 Thirdly, the advancement of 

analytical approaches applied to molecular omics data, including Genome-wide 
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association study (GWAS, as discussed in Section 1.1.4), statistical fine-mapping (as 

discussed in Section 1.6.1.1), Quantitative Trait Loci (QTL, as discussed in Section 

1.6.1.2) mapping and integrative analysis (as discussed in Section 1.6.1.3 and Section 

1.6.1.3), have substantially enhanced our capacity to interpret the genetic 

underpinnings of traits and phenotypes by enabling better interpretation of their genetic 

basis.  

Table 1.1 demonstrates the major advances in human genetics from 1949 to 2020.1 

Collectively, these advancements have provided critical insights into the biological 

mechanisms and pathways of human diseases, underscoring the crucial importance of 

human genetics in the field of medicine. For example, human genetics enables early 

disease diagnosis, often before symptoms manifest and further allows for timely 

interventions and appropriate treatments, especially in cases of hereditary conditions 

and certain cancers. 9–11 

 New concepts and approaches in human genetics Main author(s) 

1949  
First "molecular" disease. Sickle cell anemia genetics L Pauling, JV Neel 

Term "Human Genetics". First textbook Human Genetics C. Stern 

1950 First Medical Genetics Unit at Montreal Children´s Hospital C Scriver, FC Fraser 

1952  
First human enzyme defect C Cori & G Cori 

First autosomal linkage group in man (Lutheran/Secretor) J Mohr 

1953 Dietary therapy in phenylketonuria H Bickel 

1954  
Leukocyte drumsticks Davidson & Smith 

Book on Counseling in Medical Genetics Sheldon Reed 

1955 Buccal smear X-Chromatin analysis Moore, Barr, Marberger 

1956  
Concept of genetic heterogeneity CF Fraser; H. Harris 

Heritable Disorders of Connective Tissue VA McKusick 

1957 Triplets encode the 20 amino acids S Brenner 

1958  
HLA antigen genetic system J Dausset; PI Terasaki 

Somatic cell genetics G Ponetcorvo 

1959  
First chromosomal aberrations (Trisomy 21 / XXY / XO) J Lejeune; PA Jacobs; CE Ford 

Pharmacogenetics as a new concept AG Motulsky; F Vogel; ES Vesell 
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1960 New autosomal trisomy 18 and trisomy 13. JH Edwards; K Patau 
 Philadelphia chromosome PC Nowell & D Hungerford 
. . . . . . . . . 

2004 Evolutiionary Medicine PD Glucksman & MA Hanson 

2005  
X-inactivation profile / X-chromosome sequenced I Carrel & HF WIllard; MT Ross et al 

DNA sequence of the human X-cromosome MT Ross et al 

2006 Human genome chromosome by chromosome Nature Suppl. 1 June 2016 

2008 Epigenome Project  /  Fanconi anemia protein complex D Schindler & H Hoehn 

2009 Principles of Evolutionary Medicine P Gluckman, A Beadle, M Hanson 

2011 Chromothripsis in oncogenesis PJ Stephens 

2012 Topological domains in chromatin structure JR Dixon; RE Thurmann 

2013 Cancer  genomics B Vogelstein 

2015 Cancer Genome  Atlas National Cancer Institute (NIH) 

2017 Autologous transgenic skin gene therapy M De Luca, T Hirsch 

2018 GTEx-Genotype-Tissue Expression Project/ Cancer 
immunotherapy NIH Common Fund 

2019  
Mutated cell clones in normal tissues K Yizhak et al (Science 

364(6444)p970 
Diabetes type 2 associated with more than 400 gene variants M Roden & GI Shulman 

2020 Structural variation in 17,795 human genomes HJ Abel et al (Nature 583:83-89) 
 Embryonic neurodevelopment disrupted in Chorea Huntington M Barnat et al 

 
Table 1.1: The major advances relevant to Human Genetics from 1949 to 2020. Table 
adapted from Passarge E et al. 2021. 
 
 
1.1.2  Heritability 

Heritability is the most common measurement used to study the genetic contribution 

to quantitative traits and disease outcomes.12,13  Heritability estimates range from zero 

to one. A heritability estimate of zero implies that the majority of the variability observed 

in a trait among individuals is primarily attributable to environmental factors, with 

minimal influence stemming from genetic distinctions, while estimate of one indicates 

that nearly all of the variability observed in a trait is driven by genetic differences among 

individuals. One of the approaches of qualifying heritability is to use the liability 

threshold model to explain how a large number of environmental and genetic factors 
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result in a disease. The liability threshold model uses a continuous latent liability, 

capturing genetic and environmental factors that influence disease risk, to describe the 

disease status. This model assumes that the disease occurs when the subject’s liability 

exceeds a certain threshold, which means the disease prevalence can be represented 

by the probability of liability exceeds the threshold. Moreover, this model assumes that 

the genetic and environmental risks are independent and normally distributed. Thus, in 

this model, the liability is normally distributed with mean zero and reflects the sum of the 

variance of genetic and environmental risks. Based on the liability threshold model, 

heritability is defined as the ratio of genetic variation to phenotypic variation.14–17 

 
1.1.3  Genetic ancestry and population structure 

Genetic ancestry is one of the most critical topics in human genetics and refers to an 

individual's ancestral origins as quantified by genetics. Individuals who share similar 

ancestral origins exhibit common genomic signatures.18 Compared to the traditional 

self-reported race/ethnicity, genetic ancestry is increasingly utilized in modern human 

genetics due to its precise characterization of individuals’ biological ancestry.19,20 Box 

1.1 demonstrates the concepts and differences among race, ethnicity and genetic 

ancestry. Genetic ancestry studies have conclusively shown disparities between 

estimation of an individual's genetic ancestry and the self-reported race or ethnicity 

information provided by the same individuals.21 For example, self-identified African 

Americans can exhibit significant variation in their levels of African and European 

ancestry.22–25  

Interestingly, Hispanic Americans, constituting the largest ancestral minority 

population in the United States, exhibit a complex genetic structure and genetic 
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admixture, with large variation in the contributions from Amerind, European, and African 

ancestry. Manichaikul A, et al. conducted a population structure analysis for Hispanic 

Americans in the Multi-Ethnic Study of Atherosclerosis (MESA), with MESA Hispanic 

Americans representing six major countries/regions of origin: Central America, Cuba, 

the Dominican Republic, Mexico, Puerto Rico, and South America. This study revealed 

that the global proportion of European ancestry in MESA Hispanic Americans ranged 

from 37% in Central Americans to 73% among Cubans. The global proportion of African 

ancestry was 43% in Dominicans, while the global proportion of Amerind ancestry was 

45 and 48% in Central Americans and Mexicans, respectively.26   

Genetic ancestry can be estimated based on an individual's genetic information, for 

example, the individual's genotypes as compared to genotypes from global references 

of human genetic variation (including the Human Genetic Diversity project [HGDP]27 and 

the 1000 Genomes project28). Principal component analysis (PCA)29 and model-based 

cluster analysis (ADMIXTURE30 , STRUCTURE31) are employed routinely for the 

investigation of population structures. The key feature of PCA is to reduce the 

dimensionality of genetic data to identify the patterns of genetic variation among the 

individuals. Unlike PCA, model-based cluster analysis aims to identify a specific number 

of clusters and assign the individual to these clusters probabilistically.  

Diverse ancestral groups comprise a spectrum of distinct disease prevalence 

profiles, highlighting the complexity of health disparities across ancestry groups. For 

example, African Americans exhibit a lower level of coronary artery calcium (CAC) but  

greater level of carotid intima-media thickness (cIMT) compared to European 

Americans.32 On the other hand, Hispanic Americans tend to show reduced CAC 
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compared to African Americans and lower levels of cIMT compared to African 

Americans.32 In addition, Hispanic Americans exhibit notably elevated prevalence of 

both diabetes and nonalcoholic fatty liver disease (NAFLD) in comparison to other 

ancestral groups within the United States.33,34 

  Incorporating genetic ancestry into human genetic studies plays an critical role in 

advancing human health. Firstly, genetic ancestry enhances precision medicine, which 

could provide improvements in efficacy and accuracy of medical treatments and 

interventions for individuals from diverse ancestral groups. Secondly, genetic ancestry 

offers a comprehensive perspective on health disparities among various ancestral 

groups. Thirdly, genetic ancestry can enable a better understanding of historical 

migration patterns and admixture events.18,20,35–39 

 
Box1.1: the concepts and differences among ‘race’, ‘ethnicity’ and ‘genetic ancestry’, 
Box adapted from Peterson RE O et al. 2019. 
 
 
1.1.4 Genome-Wide Association Studies 

Genome-wide association studies (GWAS) have become an established approach 

for testing comprehensively the association between genetic variants or single 

nucleotide polymorphisms (SNPs) and particular traits. GWAS have been applied to 

study a variety of human diseases, including breast cancer, coronary artery disease and 
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type 2 diabetes.40,41 The NHGRI-EBI GWAS Catalog (www.ebi.ac.uk/gwas) is a curated 

collection of all human genome-wide association studies, produced by a collaboration 

between EMBL-EBI and NHGRI. The NHGRI-EBI GWAS Catalog is a Findable, 

Accessible, Interoperable, and Reusable (FAIR) knowledgebase, which contains 

∼400,000 SNP-trait associations across > 5,000 human traits from > 45,000 individual 

GWAS.42,43  

The steps of conducting GWAS involve: (1) Selection of study cohorts, phenotypes 

and covariates measurements -- notably, large sample sizes are required for GWAS to 

have sufficient statistical power; (2) Obtaining individual-level genotype for GWAS using 

microarray-based genotyping and next-generation sequencing -- in most cases, 

imputation is required for the variants that have not been assayed directly using a 

reference panel such as the 1000 Genomes Project or TOPMed; and (3). Association 

testing between the phenotypes and genotypes using appropriate models, such as 

linear or logistic regression models. In addition, covariates can be adjusted in the 

models, for example, age, sex and genetic ancestry. Multiple comparison correction is 

applied routinely after the association testing, to take into account the vast number of 

statistical associations examine by GWAS analysis. Figure 1.1 demonstrates the 

workflow of conducting GWAS.40 

GWAS results exhibit a wide spectrum of applications within the field of genetics 

research, prominently exemplified by their utility in disease risk prediction. Notably, the 

development of Polygenic Risk Scores (PRS), derived from GWAS summary statistics, 

has emerged as a valuable tool for prediction of disease risk, which can enable the 

identification of individuals at high risk of disease for clinical interventions and 

http://www.ebi.ac.uk/gwas
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preventions. In addition, GWAS results provide a foundation for comprehensive insights 

for understanding genetic architecture of traits and estimating their heritability, 

representing the proportion of trait variance attributable to genetic factors within the 

population. These applications can guide pharmaceutical research and the development 

of targeted therapies, ultimately improving treatment efficacy and reducing side 

effects.44–47  

However, GWAS approaches alone fall short in identification of causal variants due 

to linkage disequilibrium (LD) which complicates identification of the disease-causing 

molecular targets. In addition, the majority of lead associated variants from GWAS lie 

within non-coding regions, making it difficult to predict their functions and interpret the 

biological significance.44 Follow-up analyses including statistical fine-mapping and 

integrative analysis using molecular ‘omics data are necessary for the identification of 

the causal variants and downstream target genes.  
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Figure 1.1: Overview of steps for conducting GWAS. Figure adapted from Uffelmann, E 
et al. 2021. 
 
 
1.1.5 Molecular ‘omics data  

Advancements in high-throughput sequencing technology offer an opportunity to 

obtain the molecular phenotypes within a tissue or cell and the types of molecular 

‘omics data include genomics, transcriptomics, proteomics, metabolomics and 

epigenomics. The genome is the complete sequence of DNA and genomics mainly 

focuses on identifying genetic features associated with disease, including identification 

of genomic variants by genome-wide association study. The transcriptome represents 

the entire set of RNA transcripts derived from DNA, including messenger RNA (mRNA), 

non-coding RNA and more. Transcriptomics consists of both qualitative aspects, 
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involving the identification of which transcripts are present, the discovery of novel splice 

sites, and the detection of RNA editing sites, as well as quantitative aspects, involving 

the measurement of the abundance of each transcript expressed within a biological 

sample. The proteome represents the complete set of proteins expressed by a cell or 

tissue and proteomics is employed for the quantification of peptide abundance, the 

investigation of protein modification and interaction.48–50 Figure 1.2 demonstrates 

multiple molecular ‘omics data types. Multiple analytic approaches can be conducted for 

the investigation of molecular omics data, such as integrative analysis (see Section 

1.1.6.3 and 1.1.6.4), correlation network analysis, machine learning and deep learning. 

Additionally, studying multi-omics data offers a more comprehensive view of the 

downstream effects of genetic variation compared to studies of a single omics type. For 

example, genetic effects on plasma protein abundance are often, but not exclusively, 

driven by regulation of mRNA and pQTL associations without corresponding eQTL 

evidences may reflect genetic effects on processes other than transcription, including 

protein degradation, binding, secretion, or clearance from circulation.48,51 

Integration of different types of molecular omics data can prioritize a list of candidate 

disease-altering biomarkers and molecular targets, which can help us come to an 

improved understanding of the biological mechanisms and pathways of human disease 

and offer guidance in the diagnosis and prognosis of diseases, such as stroke, 

cardiovascular diseases, diabetes and others.51,52 For example, in cancer research, G 

protein-coupled receptor clusters have been identified as breast cancer-associated 

biomarkers by studying the proteomics data, providing useful insight in guiding breast 
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cancer therapy.53,54 Figure 1.3 demonstrates the application of multi-omics in multiple 

research areas.  

 

Figure 1.2: multiple molecular ‘omics data types. Figure adapted from Hasin, Y et al. 
2017. 
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Figure 1.3: The application of multi-omics in disease, aging, and natural drug target 
identification. Figure adapted from Chen C, et al. 2020. 
 
 
1.1.6 Follow-up analysis of GWAS leveraging molecular ‘omics data  

1.1.6.1 Identification of causal variants using statistical fine-mapping  

Genome-wide association studies (GWAS) have emerged as a powerful tool for 

uncovering a multitude of genetic associations with complex diseases and the primary 

goal of fine-mapping is to discern the genetic variants that causally affect the examined 

traits. However, determining the causal variants is challenging as the genetic variants 

within a locus can be highly correlated due to linkage disequilibrium among neighboring 

SNPs.55–57  

One of the popular approaches in statistical fine-mapping is ‘sum of single effects’ 

model (SuSiE), which introduces multiple single-effect vectors and constructs the 

overall effect vector as the sum of these single effects.  A key feature of this model is 

that it can generate "Credible Sets" (CSs), which are each designed to have high 

probability to contain a signal with non-zero effect, while at the same time being as 

small as possible. The fitting procedure of this model is Iterative Bayesian Step-wise 

Selection (IBSS), which is a simple and intuitive procedure.58 Box 1.2 shows the IBSS 

algorithm. Compared with currently available methods, for example, DAP-G, FINEMAP 

and CAVIAR, SuSiE offers several significant advantages in terms of computational 

efficiency and its capacity to yield credible sets capturing the causal variants. For 

example, SuSiE operates at approximately four times the speed of DAP-G, 30 times the 

speed of FINEMAP, and a staggering 4000 times the speed of CAVIAR. Additionally, 



 22 

the credible sets generated by SuSiE consistently outperform those produced by DAP-

G, exhibiting higher power, smaller size, and greater purity.58 

 
Box 1.2: IBSS algorithm. Box adapted from Wang et al. 2020. 
 
 
1.1.6.2 Quantitative Trait Loci (QTL) mapping of high-throughput molecular 

‘omics traits  

Most common disease-associated genetic variants identified by GWAS are located 

within non-coding genomic regions, suggesting they may affect gene regulation.59 This 

observation has promoted studies of the relationship between regulatory variants and 

potential downstream molecular targets (QTLs). Advancements in high-throughput 

sequencing technology have provided data on various molecular phenotypes (gene 

expression, protein abundance, metabolites, and DNA methylation). The goal of 

quantitative trait loci (QTL) mapping is to examine the association between genetic 

variants and downstream molecular phenotypes (e.g., gene expression [eQTL], protein 

abundance [pQTL] and DNA methylation [mQTL]). QTL mapping is of paramount 

importance because they yield invaluable resources with diverse downstream 

applications. These resources empower researchers to identify and prioritize 
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therapeutic targets for complex diseases, facilitating the development of more effective 

treatments. Additionally, they enable the implementation of precision medicine 

strategies, allowing healthcare professionals to tailor medical interventions to individual 

genetic profiles, thereby enhancing patient outcomes.60–62  

MatrixeQTL and FastQTL are commonly used approaches to perform the QTL 

mapping. MatrixeQTL is employed to assess the associations between SNPs and gene 

expression by implementing either additive linear model or ANOVA model with various 

covariates adjustment. The computation time of Matrix eQTL is relatively faster due to 

its specific processing and its use of large matrix operations.63 FastQTL further 

incorporates permutation strategies, including a direct permutation scheme, an adaptive 

permutation scheme and a beta approximation to address the issues of multiple testing 

of correlated SNPs.64 QTL mapping is computationally intensive due to the complexity 

of analyzing large scale of datasets containing genetic information for numerous traits 

and individuals. It involves the exploration of numerous genetic variants across the 

genome for the identification of associations with specific traits or diseases. This 

process requires extensive computational power and time, especially as datasets 

continue to grow and complexity. Recently, TensorQTL was developed to conduct QTL 

mapping, which is a tool designed to implement on GPU, which is 100 times faster than 

CPU.  

 
1.1.6.3 Bayesian colocalization analysis  

Integrating molecular QTLs with GWAS represents an important step for interpreting 

the biological and clinical relevance of the GWAS results.65,66 Bayesian colocalization 

analysis has proven a rigorous and efficient computational approach for identification of 
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downstream molecular targets underlying GWAS loci.67 Colocalization analysis 

quantifies the probability that a single variant is causally linked to both disease and 

molecular traits, with the following hypotheses: H0. neither GWAS nor molecular QTL 

has a genetic association in the region; H1. only GWAS has a genetic association in the 

region; H2. only molecular QTL has a genetic association in the region; H3. both GWAS 

and molecular QTL are associated, but with different causal variants; H4. both GWAS 

and molecular QTL are associated and share a single causal variant. Figure 1.4 shows 

the example of one configuration under different hypotheses. A distinguishing feature of 

this approach is the minimal input data requirement, which includes p-values of the trait-

associated SNPs and their minor allele frequencies (MAFs), or effect size of SNPs and 

the corresponding standard error. Compared to the original implementation of 

colocalization analysis, one recent methodological improvement involves incorporation 

of statistical fine-mapping (SuSiE), which can account for multiple causal variants 

underlying the GWAS and molecular QTL signals in a region.68  
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Figure 1.4: Example of one configuration under different hypotheses.. Figure adapted 
from Giambartolomei C et al. 2014. 
 
 
1.1.6.4 Transcriptome-wide association studies or PrediXcan 

The transcriptome-wide association study (TWAS) or PrediXcan framework 

represents a gene-based association method designed to identify trait-associated genes 

by predicting genetically regulated gene expression and quantifying the effect of 

predicted gene expression on the phenotype on interest. An individual's gene 

expression level can be dissected into distinct components. These components 
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encompass (1) a genetically regulated expression (GReX) component, which signifies 

the portion of gene expression influenced by genetic variants, (2) a component subject 

to alteration by the phenotypes/traits under investigation, (3) a component that accounts 

for variations in gene expression attributable to environmental influences and other 

pertinent factors. PrediXcan examines the mediating role of gene expression on the 

phenotype of interest by quantifying the association between GReX and the specific 

phenotype of interest.69,70 Figure 1.5 demonstrates the workflow of PrediXcan.  

The prediction model is a fundamental component in PrediXcan because it enables 

the estimation of gene expression levels in tissues that might not be directly measured 

in a particular study. By using this model, researchers can predict the gene expression 

levels for various tissues based on genetic information. This prediction is crucial 

because it allows for the assessment of how genetic variants influence gene expression 

and, consequently, impact complex traits or diseases. Prediction models for gene 

expression were developed for incorporation in the PrediXcan framework using large-

scale transcriptome study data sets, including DGN71, GEUVADIS72 and GTEx73. The 

advantages of PrediXcan include a smaller multiple-testing burden compared to single-

variant tests, independence from actual transcriptome data and straightforward 

construction of informative priors and groupings of functional units. In addition, 

PrediXcan provides effect estimates and direction of effect, which can enhance 

interpretation of the phenotype-gene expression relationship and inform downstream 

therapeutic development.  
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Figure 1.5: The workflow of PrediXcan. Figure adapted from Gamazon E et al. 2015. 
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1.2  Fatty Acid Metabolism  

1.2.1  Background of Polyunsaturated Fatty Acids 

Polyunsaturated fatty acids (PUFAs) are critical structural components of cell 

membranes. PUFAs, along with the signaling metabolites originating from them, hold 

pivotal roles in processes associated with inflammation and thrombosis. These 

processes are implicated in the pathogenesis of various medical conditions, 

encompassing cardiovascular disease (CVD), Alzheimer's disease (AD), type 2 

diabetes, autoimmune disorders, cancer, hypersensitivity conditions, skin and 

gastrointestinal disorders, and infectious diseases such as COVID-19.74,75  

Polyunsaturated fatty acids (PUFAs) are characterized by the position of their first 

double bond counted from the methyl terminal, often referred to as omega (ω) or 

n−FAs. These PUFAs are typically categorized into two primary families, known as n-3 

and n-6. Within the n-3 PUFA family, the most prevalent members include alpha-

linolenic acid (ALA), eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA), and 

docosahexaenoic acid (DHA). Conversely, the primary n-6 PUFAs encompass linoleic 

acid (LA), gamma-linolenic acid (GLA), dihomo-γ-linolenic acid (DGLA), and arachidonic 

acid (AA). ALA is synthesized in plants and once produced and subsequently consumed 

by humans, ALA can be converted to EPA, DPA, and DHA. and their metabolic 

products have different and often opposing effects. Indeed, n-3 and n-6 PUFAs and 

their corresponding metabolic products exert diverse and frequently contradictory 

effects, as supported by numerous studies. Metabolites derived from the n-6 PUFA 

arachidonic acid (ARA) primarily operate at localized sites to stimulate inflammatory 

responses. Conversely, n-3 LC-PUFAs, including eicosapentaenoic acid (EPA) and 
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docosahexaenoic acid (DHA), along with their metabolites, possess anti-inflammatory 

properties and actively promote the resolution of inflammation.76,77 In addition to their 

effects on inflammation, circulating levels of n-3 LC-PUFAs, including EPA and DHA, 

are inversely associated with fasting and postprandial serum TG concentrations, largely 

through attenuation of hepatic very-low-density lipoprotein (VLDL)-TG production.78  

 

1.2.2 Previous GWAS of Polyunsaturated Fatty Acids 

Genome-wide association studies (GWAS) of n-3 and n-6 PUFAs were 

performed by the CHARGE consortium in European ancestry (EUR) participants.79,80  

The CHARGE GWAS of n-3 PUFAs in 8,866 European Americans across 

population-based cohorts identified that SNPs in/near FADS cluster are showing the 

significant association with higher levels of ALA (p = 3 x 10⁻⁶⁴) and lower levels of EPA 

(p = 5 x 10-58) and DPA (p = 4 x 10-154) as well as SNPs in/near ELOVL2 strongly 

associated with higher EPA (p = 2 x 10-12) and DPA (p = 1 x 10-43) and lower DHA (p = 

1 x 10-15). Overall, the most significantly associated SNPs on chromosome 11 explained 

3.8%, 2.0%, 8.6% of total variation in ALA, EPA and DPA, respectively and the most 

significantly associated SNPs on chromosome 6 explained 0.4%, 2.8%, 0.7% of total 

variation in EPA, DPA and DHA, respectively. This GWAS results of n-3 PUFAs 

suggested that the genetic variation in FADS cluster affect the conversion of ALA to 

EPA and DPA, while the genetic variation in ELOVL2 decrease the conversion of EPA 

and DPA to DHA, which provided a comprehensive insight of genetic variation in 

shaping the circulating levels of n-3 PUFAs. Figure 1.6 demonstrates the major 

metabolic pathway connecting n-3 polyunsaturated fatty acids and presents a summary 

of genome-wide associations overlapping that pathway. 
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For n-6 PUFAs, a CHARGE GWAS was performed in five prospective studies 

comprising 8,631 European Americans. In addition to the confirmation of the genetic 

association of FADS cluster in LA and AA, which explained a large proportion of total 

variation in n-6 PUFA (8.7% -11.1% for DGLA), this study identified that multiple novel 

significant SNPs in/near NRBF2 on chromosome 10 associated with LA (rs10740118, p-

value = 8.1x10-9) and in/near NTAN1 on chromosome 6 associated with LA, GLA, 

DGLA and AA (rs16966952, p-value = 1.2×10−15, 5.0×10−11, 7.6×10−65, and 2.4×10−10). 

Overall, NRBF2 variant rs10740118 explained 0.2-0.7% of total variation in LA and 

NTAN1 rs16966952 explained 0.1-0.6% to 2.0-4.5% of total variation in AA and DGLA. 

Figure 1.6 demonstrates the n-6 polyunsaturated fatty acid metabolic pathway and 

presents a summary of genome-wide associations overlapping that pathway.81 

Collectively, these findings of n-3 and n-6 PUFAs in European Americans provide 

a valuable foundation for guiding future investigations into the genetic and metabolic 

pathways that potentially affect the levels of n-3 and n-6 PUFAs. However, one of the 

limitations of these GWAS of n-3 and n-6 PUFAs is the paucity in non-European 

ancestry cohorts, for example, Hispanic American and African American. Due to the 

potential difference of genetic associations with ancestry, it is important to perform the 

GWAS of n-3 and n-6 PUFAs across diverse ancestry groups.82 
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Figure 1.6: n-3 and n-6 polyunsaturated fatty acid metabolic pathway and summary of 
genome-wide associations in pathway. Figure adapted from Lemaitre RN et al. 2011 
and Guan W et al. 2014 
.  
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1.3 Coronary Artery Disease (CAD) 

1.3.1 Background of Coronary Artery Disease (CAD) 

Coronary artery disease (CAD) is a leading cause of death and disability worldwide. 

About 18.2 million Americans adults suffer from coronary artery disease and half of all 

deaths correlated with cardiovascular disease arise from coronary artery disease.83,84 

Figure 1.7 shows the heart disease death rate. CAD represents an archetypal common 

complex disease with both genetic and environmental determinants. It is usually caused 

by atherosclerosis, which is the buildup of plaque inside the arteries. Atherosclerotic 

plaque is composed of a complex mixture, such as, cholesterol, fatty substances, waste 

products, calcium deposits, and the clot-making substance fibrin. Over time, as plaque 

accumulates along the inner walls of arteries, it induces a narrowing and stiffening of 

these vessels. The presence of plaque can lead to significant arterial obstruction and 

damage, thereby obstructing the flow of blood to the heart muscle. Without an adequate 

blood supply, the heart becomes starved of oxygen and the vital nutrients it needs to 

work properly. 85–89 The most common symptoms of CAD include angina, chest pain, 

shortness of breath and back breath.  

Risk factors for CAD can be categorized into non-modifiable risk factors, which 

include male gender, family history of heart disease, advanced age and race, and 

modifiable factors, which include cigarette smoking, high blood pressure, overweight 

and unhealthy diet. Primary prevention and treatment strategies are designed to reduce 

the modifiable risk factors of CAD, including smoking cessation, promoting healthy 

dietary habits, encouraging regular physical activity, monitoring and controlling high 

blood pressure and managing cholesterol levels. 90,91  
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Coronary artery disease, characterized by the narrowing of the arteries in the heart, 

is a prevalent factor contributing to heart failure.92  Several epidemiological studies 

suggest that coronary artery disease account for 23-73% of the heart failure in the 

patients evaluated.93 In addition, a population-based study of incidence and aetiology of 

heart failure shows that CAD is usually the major cause on patients with a reduced left 

ventricular ejection fraction.94 Moreover, a GWAS meta-analysis of heart failure 

estimated that the genetic correlation between heart failure and CAD is 0.67, which 

suggests they are sharing the genetic aetiology.95 

 

1.3.2 Previous GWAS of Coronary Artery Disease (CAD)  

GWAS for CAD have yielded numerous significant and promising findings, tracing 

their origins back to 2007 when the risk locus on chromosome 9p21 risk locus was 

identified.96–98 Starting form 2011, multiple large GWAS consortia including Coronary 

ARtery DIsease Genome-wide Replication and Meta-analysis (CARDIoGRAM) 

Consortium,99 the Coronary Artery Disease (C4D) Genetics Consortium100 and UK 

Biobank (UKBB) performed their individual GWAS of CAD with a large sample size and 

identified multiple loci associating with CAD at a genome-wide level of significance. In 

2017, Pim van der Harst et al. conducted a meta-analysis GWAS of CAD using 

CARDIoGRAMplusC4D and UK Biobank resourcese comprising 34,541 CAD cases and 

261,984 controls of UK Biobank resource and 88,192 cases and 162,544 controls from 

CARDIoGRAMplusC4D. They identified 64 novel genetic loci of CAD.101 In 2022, 

Tcheandjieu, C. et al. performed a large scale GWAS of CAD in genetically diverse 

population using Million Veteran Program (MVP), UK Biobank, CARDIoGRAMplusC4D 
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and Biobank Japan. This large-scale multi-ethnic study includes European, African 

American, Hispanics and Asian and they identified 95 novel genetic loci of CAD. This 

study provides the significance of including diverse population in the genetic study to 

understand genetic architecture of CAD.102 Collectively, these GWAS of CAD findings 

offers valuable and comprehensive insights into the genetic basis of CAD, further 

enhance our understanding of the potential biological mechanism and pathway of 

CAD.103 Figure 1.8 demonstrates milestones in cardiovascular genome research from 

2007 to 2017 and beyond. However, the molecular consequences of the GWAS 

variants of CAD and their relevance to subclinical atherosclerosis have not been 

explored comprehensively in human cohorts. 

  

Figure 1.7: Heart disease death rate. 2014-2016. Figure adapted from Centers for 
Disease Control and Prevention.  
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Figure 1.8: Milestones in cardiovascular genome research from 2007 to 2017 and 
beyond. Figure adapted from Erdmann J et al. 2018  
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1.4 Summary and motivation for original research 

The overarching objective of human genetics is to explore the impact of genetic 

factors on human traits. The progress in high-throughput sequencing technologies has 

empowered us to access various types of molecular omics data, while the availability of 

diverse analysis methods facilitates the exploration of these molecular omics data. This, 

in turn, provides a comprehensive understanding of the underlying biological 

mechanisms and pathways involved in complex diseases, which can enable a better 

diagnosis, prevention and treatments.  

Polyunsaturated fatty acids (PUFAs) play vital roles in innate immunity, energy 

homeostasis, brain development and cognitive function and coronary artery disease 

(CAD) is a leading cause of death and disability worldwide. Previous genetic studies 

including genome-wide association study of PUFAs and CAD demonstrate valuable 

foundation of genetic basis in PUFAs and CAD. However, numerous gaps in knowledge 

of PUFAs and CAD remain. For example, the impact of population differences in allele 

frequencies on population-specific risk of traits deficiency/diseases have not beenwell 

examined; (2), most of the genetic information gathered to date is mainly focus on 

European ancestry and the paucity of genetic studies in non-European ancestry cohorts 

may cause the challenges of achieving precise diagnosis and further treatments; (3), 

although GWAS have identified multiple genetic variants of PUFAs and CAD, the follow-

up identification of trait/disease-related causal variants and molecular targets remains 

elusive. Overall, these limitations have contributed to the relatively limited success of 

genetic studies in the realm of human health.  
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In my dissertation work, I aimed to apply various and novel statistical approaches to 

address these biological questions and limitations using the molecular omics data in the 

following studies: 

(1). In chapter 2, I estimated the global proportion of Amerind ancestry in MESA 

Hispanic Americans and further investigated the impact of Amerind ancestry and FADS 

genetic variation on polyunsaturated fatty acids.  

(2). In chapter 3, I conducted a meta-analysis of GWAS of PUFAs in Hispanic 

Americans African American and follow-up analysis including fine-mapping and 

integrative analysis to identity the potential causal variants and genes.  

(3). In chapter 4, I leveraged the multi-omics data to prioritize a list of candidate 

genes associated with CAD and subclinical atherosclerosis by integrative analysis and 

correlation network analysis.  

(4). In chapter 5, I share my ideas and thoughts on future directions for improvement 

of applying statistical methods on molecular omics data to enable a better 

understanding of the genetic basis of complex diseases/traits.  
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2.1 Abstract 

Long chain polyunsaturated fatty acids (LC-PUFAs) have critical signaling roles 

that regulate dyslipidemia and inflammation. Genetic variation in the FADS gene cluster 

accounts for a large portion of interindividual differences in circulating and tissue levels 

of LC-PUFAs, with the genotypes most strongly predictive of low LC-PUFA levels at 

strikingly higher frequencies in Amerind ancestry populations. In this study, we examined 

relationships between genetic ancestry and FADS variation in 1,102 Hispanic American 

participants from the Multi-Ethnic Study of Atherosclerosis. We demonstrate strong 

negative associations between Amerind genetic ancestry and LC-PUFA levels. The 

FADS rs174537 single nucleotide polymorphism (SNP) accounted for much of the AI 

ancestry effect on LC-PUFAs, especially for low levels of n-3 LC-PUFAs. Rs174537 was 

also strongly associated with several metabolic, inflammatory and anthropomorphic traits 

including circulating triglycerides (TGs) and E-selectin in MESA Hispanics. Our study 

demonstrates that Amerind ancestry provides a useful and readily available tool to identify 

individuals most likely to have FADS-related n-3 LC-PUFA deficiencies and associated 

cardiovascular risk. 
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2.2 Introduction 

Human diets in developed countries have changed dramatically over the past 75 

years, leading to increased obesity, inflammation, cardio-metabolic disorders and 

cancer risk, possibly due to interactions between genotype with diet and other factors. 

Certain racial/ethnic groups carry a disproportionate burden of preventable negative 

outcomes and associated mortality.1–3  Hispanic populations represent the largest 

racial/ethnic US minority where, compared to non-Hispanic whites, they have higher 

rates of obesity4, poorly controlled high blood pressure5, and elevated circulating 

triglycerides (TGs)6, Hispanic populations also demonstrate a higher prevalence of 

diabetes and nonalcoholic fatty liver disease (NAFLD) than other racial/ethnic 

populations in the United States.7,8 Hispanic Americans represent a heterogenous 

group with respect to ancestry, with notable differences in cultural/ lifestyle factors and 

disease prevalence based on country of origin. In particular, Hispanics identifying with 

the higher Amerind (AI)-ancestry origin have demonstrated enhanced urine albumin 

excretion9, heart failure10,  lupus erythematosus risk11, and prevalence of NAFLD 

compared to other Hispanic populations12, supporting the critical need to conduct 

studies in these large, rapidly growing populations. 

Omega-3 (n-3) and omega-6 (n-6) long chain (20-22 carbon; LC-) polyunsaturated 

fatty acids (PUFAs) and their metabolites play vital roles in innate immunity, energy 

homeostasis, brain development and cognitive function.13–19 LC-PUFAs are critical 

signaling molecules for immunity and inflammation with most evidence showing that n-3 

and n-6 LC-PUFAs and their metabolic products have different and often opposing 

effects.20–24 Metabolites of the n-6 LC-PUFA arachidonic acid (ARA) typically act locally 

to promote inflammatory responses25–27, while n-3 LC-PUFAs, such as eicosapentaenoic 
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acid (EPA) and docosahexaenoic acid (DHA) and their metabolites, have anti-

inflammatory and pro-resolution properties (meaning that they promote resolution of 

inflammation)28,29. In addition to their effects on inflammation, circulating levels of n-3 LC-

PUFAs, including EPA and DHA, are inversely associated with fasting and postprandial 

serum TG concentrations, largely through attenuation of hepatic very-low-density 

lipoprotein (VLDL)-TG production.30,31 Dietary supplementation with these n-3 LC-PUFAs 

has been shown consistently to reduce fasting circulating TG levels and improve lipid 

accumulation associated with NAFLD.32,33 

The biosynthesis of n-3 and n-6 LC-PUFAs transpires via alternating desaturation 

(D6, D5, and D4) and elongation enzymatic steps encoded by fatty acid desaturase  

(FADS) cluster genes (FADS1 and FADS2), and fatty acid elongase genes (ELOVL2 and 

ELOVL5), and there is a limited capacity for biosynthesis through this pathway.34–36 As a 

result, the primary dietary PUFAs that enter this pathway (linoleic acid [18:2n-6; LA], a-

linolenic acid [18:3n-3; ALA], and their metabolic intermediates) compete as substrates 

for the desaturation and elongation steps. Additionally early studies with deuterated 

substrates indicated there is a saturation point where additional dietary quantities of 18 

carbon dietary substrates had no effect on circulating LC-PUFA levels.37 These studies 

also estimated that conversion of dietary ALA provided 75-85%  of total n-3 LC-PUFAs 

needed to meet daily requirements.37  

In 1961, a major effort was initiated to reduce levels of saturated fatty acids and 

replace them with PUFAs in an attempt to reduce circulating LDL-cholesterol and TGs.38–

40 This in turn led to a dramatic increase in eighteen carbon (18C-) PUFA-containing 

vegetable oils such as soybean, corn, and canola oils that contain high levels of n-6 LA 
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relative n-3 ALA. It has been estimated that dietary LA increased from 2.79% to 7.21% of 

energy, whereas there was only a modest elevation in ingested ALA (from 0.39% to 

0.72%), resulting in a ~15:1 ratio of LA to ALA entering the LC-PUFA biosynthetic 

pathway and an estimated 40% reduction in total circulating n-3 LC-PUFA levels.41 Since 

LA and ALA compete for the same desaturation and elongation steps and there is a 

limited capacity for n-6 and n-3 LC-PUFA biosynthesis through the pathway, several 

human and animal studies suggested that the dramatic shift in quantities and ratios of 

dietary LA and ALA could lead to imbalances in n-6 to n-3 LC-PUFAs and, potentially, n-

3 LC-PUFA deficiencies 42–46 Thus, as certain populations moved from traditional to 

modern Western diets (MWD), it was suggested excess LA would lead to ‘Omega-3 

Deficiency Syndrome’.47 

The rate limiting step of LC-PUFA biosynthesis has long been recognized to be 

the FADS-encoded D6 and D5 desaturation steps. Over the past decade, GWAS and 

candidate gene studies have shown that variation in the FADS gene locus on human 

chromosome 11 is strongly associated with plasma levels of ARA and EPA and the 

efficiency by which LC-PUFA precursors (18C dietary PUFAs) are metabolized to n-6 and 

n-3 LC-PUFAs.48,49 FADS cluster genetic variation is associated with numerous molecular 

phenotypes that impact human disease as well as the risk of several diseases, including 

coronary heart disease50, diabetes51–53 and colorectal cancer54. FADS cluster genetic variation is 

strongly associated with circulating TG and VLDL concentrations in young healthy Mexicans.55  

Our previous studies revealed that African (compared to European) ancestry 

populations had elevated levels of LC-PUFAs, an increased frequency of the associated 

FADS genetic variants and a more efficient LC-PUFA biosynthesis (termed the derived 
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haplotype).56 In contrast, FADS variants associated with more limited capacity to 

synthesize LC-PUFAs (termed ancestral haplotype) are nearly fixed in Native American 

and Greenland Inuit populations and found at high frequencies in Amerind (AI) Ancestry 

Hispanic populations.56 These distinct patterns of haplotypes have resulted in part from 

positive selection for the ancestral haplotype among Indigenous American populations.56 

While the role of FADS variation in modulating circulating fatty acid levels has been 

documented previously48,49, prior studies have not examined the impact that population 

differences in FADS allele frequencies have in downstream population-specific risk of 

fatty acid deficiency, The hypothesis tested in this paper is that ancestral FADS variation 

in the context of MWD is associated with low (perhaps inadequate) circulating levels of 

LC-PUFAs (particularly n-3 LC-PUFAs) in a large proportion of high AI-Ancestry Hispanic 

populations compared to other Hispanic populations, with downstream effects on 

numerous cardiometabolic and inflammatory risk factors. To address this question, we 

first examined the relationship between the genomic proportions of AI ancestry and 

circulating phospholipid LC-PUFA levels in self-reported Hispanic individuals from the 

Multi-Ethnic Study of Atherosclerosis (MESA)57, which includes Hispanic groups with 

varying levels of AI ancestry. Second, we assessed the extent to which this relationship 

is explained by genetic variation within the FADS1/2 locus, and also examined the impact 

of FADS genetic variation on cardiometabolic and inflammatory risk factors (lipids, 

anthropometric and inflammatory markers). Third, we tested whether these FADS genetic 

associations replicated in two high AI-Ancestry Hispanic cohorts, the Arizona Insulin 

Resistance (AIR) Registry58, and the Hispanic Community Health Study/Study of Latinos 

(HCHS/SOL)59,60. 
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2.3 Results 

2.3.1 Participant Characteristics 

The MESA participants57,61 included in this analysis comprised 1,102 unrelated 

individuals aged 45 to 84 years at baseline of self-reported Hispanic race/ethnicity with 

country-specific classification based on the birthplace of parents and grandparents 

corresponding to Central American (n=80), Cuban (n=45), Dominican (n=145), Mexican 

(n=572), Puerto Rican (n=167) and South American (n=93) (Table 2.1). MESA Hispanic 

participants were recruited primarily from three field centers in the United States 

(Columbia University, University of California – Los Angeles (UCLA) and the University 

of Minnesota). The global proportions of AI, African, and European genetic ancestry in 

each individual were estimated using genome-wide SNP data (Table 2.1). Higher 

frequencies of the rs174537 T allele in the FADS cluster (corresponding to the ancestral 

allele) were observed in subjects with country/region-specific origins in Central America 

(0.59), South America (0.56) and Mexico (0.59) compared to those of Dominican (0.27), 

Cuban (0.28) or Puerto Rican origin (0.40) (Table 2.1).  

 

2.3.2 LC-PUFA levels are associated with Amerind genetic ancestry 

Higher proportions of AI genomic ancestry were associated with lower levels of 

LC-PUFAs in MESA Hispanics participants. Figure 2.1 (panels a, c and e) shows levels 

of EPA, DHA and ARA (expressed as the percentage of total fatty acids here and 

throughout the entire manuscript) as a function of inferred AI ancestry. Overall, AI 

ancestry explained 12.32%, 12.30% and 12.48% of total variation in EPA, DHA and ARA, 

respectively. Each 10% increase in AI ancestry was associated with a decrease of EPA 
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(0.049), DHA (0.185) and ARA (0.401) in phospholipids. Between subjects with the lowest 

and highest proportions of AI ancestry, the n-3 LC-PUFAs decreased by 60.6% (for EPA) 

and 46.8% (for DHA) and the n-6 LC-PUFAs decreased by 30.7% (for ARA). 

Consequently, the nadir in predicted fatty acids levels in plasma phospholipids among 

those with 100% AI ancestry was ~0.3 and ~2 for EPA and DHA, respectively, compared 

to ~8.6 for the n-6 LC-PUFA, ARA.  

Given the prior evidence that key genetic determinants of LC-PUFAs mapping to 

the FADS locus show strong variation in frequency between populations, we sought to 

determine the role of FADS variation in the relationships between LC-PUFA levels and 

global AI ancestry. LC-PUFAs were adjusted for rs174537 genotype (Figure 2.1; panels 

b, d and f); rs174537 is selected as a representative proxy SNP for the well documented 

associations between the FADS locus and LC-PUFAs62,63. The rs174537 SNP has a 

strong effect on the ancestry-related decline in all LC-PUFAs. After adjusting for rs174537 

genotype, an inverse association remains between global proportion of AI ancestry and 

EPA (β = -0.30, 95% Confidence Interval [Ci] = [-0.39, -0.22], P = 9.05 x 10-12 calculated 

using a two-sided t-test for the regression coefficient derived with n = 1102), DHA (β = -

1.42, 95% CI = [-1.76, -1.08], P = 6.76 x 10-16 calculated using a two-sided t-test for the 

regression coefficient derived with n = 1102) and ARA (β = -0.99, 95% CI = [-1.59, -0.38], 

P = 0.0015 calculated using a two-sided t-test for the regression coefficient derived with 

n = 1102). Regression analysis of n-3 and n-6 LC-PUFAs with global proportion of AI 

ancestry, accounting for covariates: age, sex and fish intake (Model 1), resulted in inverse 

relationships between the global proportion of AI ancestry with EPA (β = -0.48,	P = 3.7 x 

10-23 calculated by a Z-test from inverse variance weighted meta-analysis with a total of 
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n = 1057), DPA (β	=	-0.18, P = 7.6 x 10-6 based on a Z-test from inverse variance weighted 

meta-analysis with a total of n = 1057), DHA (β	=	-0.63, P = 0.0007 based on a Z-test 

from inverse variance weighted meta-analysis with a total of n = 1057) and ARA (β	=	-

4.06, P = 1.3 x 10-16 based on a Z-test from inverse variance weighted  meta-analysis 

with a total of n = 1057) (Supplementary Table 2.1). These effects were consistent 

across study sites in MESA, with the largest effects observed at the University of 

Minnesota field center (Supplementary Table 2.1). Accounting for rs174537 genotype 

(Model 2), there remained an inverse association between the global proportion of AI 

ancestry with EPA (β = -0.28, P = 3.7 x 10-08 based on a Z-test from inverse variance 

weighted  meta-analysis with a total of n = 1057) (Supplementary Table 2.1), while the 

relationship of global proportion of AI ancestry with ARA, DPA and DHA was no longer 

significant (Supplementary Table 2.1). In a model further accounting for local AI ancestry 

in addition to rs174537 (Model 3), EPA continued to be inversely associated with global 

proportion of AI ancestry (β = -0.34, P = 8.4 x 10-07 based on a Z-test from inverse 

variance weighted  meta-analysis with a total of n = 1057), while the associations with 

DPA, DHA and ARA were not statistically significant (Supplementary Table 2.1). In 

additional analysis examining global and local ancestry as potential modifiers of the effect 

of rs174537 on circulating fatty acid levels, we did not observe statistically significant 

evidence of interaction (Supplementary Table 2.2). 

As other studies have suggested different specific variants as potentially 

functional within the FADS region, we further repeated the analysis presented in Figure 

2.1 through sensitivity analysis focused on the FADS region variant rs174557 

(Supplementary Figure 2.1), a common variant that diminishes binding of PATZ1, a 
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transcription factor conferring allele-specific downregulation of FADS1.64 After adjusting 

for rs174557 genotype, we observed association between global proportion of AI 

ancestry and LC-PUFA levels (EPA: β = -0.30, P = 2.19 x 10-11; DHA: β = -1.39, P = 

2.54 x 10-15; ARA: β = -1.02, P = 0.0012 calculated using a two-sided t-test for the 

regression coefficient derived with n = 1102) similar to that seen after adjusting for 

rs174537. 

 

2.3.3 Association of global Amerind ancestry with triglycerides 

Higher global proportions of AI ancestry were significantly associated with higher 

levels of circulating triglycerides (TG) in MESA Hispanic participants (𝛽 = 65.40 mg/dL, 

95% CI = [42.28, 88.52] P = 3.58 x 10-8 based on a two-sided t-test for the regression 

coefficient derived with n = 1101) (Figure 2.2a). This relationship was attenuated after 

adjusting for rs174537 (Figure 2.2b), although there remained a significant relationship 

between global proportions of AI ancestry and TG levels (𝛽 = 39.47 mg/dL, 95% CI = 

([2.62, 52.05], P = 8.16 x 10-04 based on a two-sided t-test for the regression coefficient 

derived with n = 1101). In sensitivity analysis, circulating triglycerides (TG) were adjusted 

for the variant rs174557. The relationship between global proportion of AI ancestry and 

TG levels (Supplementary Figure 2.2; 𝛽 = 38.93 mg/dL, P = 9.59 x 10-04 based on a two-

sided t-test for the regression coefficient derived with n = 1101) is similar with the 

association adjusting for rs174537. Examining the unadjusted relationship between 

triglyceride levels and rs174537 genotype, we observed mean triglyceride levels 

increased with the number of copies of the rs174537 effect allele T (Figure 2.3a). In 

analysis that incorporated adjustment for age and sex, the rs174537 T allele was 
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significantly associated with higher levels of TG (GT vs GG: 𝛽 = 21.27 mg/dL, 95% CI = 

[10.29, 32.25], P = 0.0001, TT vs GG: 𝛽 = 29.94 mg/dL, 95% CI = [17.98, 41.88], P = 1.01 

x 10-6 based on a two-sided t-test for the regression coefficient derived with n = 1101) 

(Table 2.2 and Figure 2.3c).  

 

2.3.4 Association of PUFAs with FADS cluster SNPs 

We performed genetic association analysis adjusting for rs174537 genotype to 

determine if there was any residual association in the FADS region for the MESA Hispanic 

participants. In each of the Hispanic subgroups, after accounting for the rs174537 SNP, 

no additional genetic variants in the region were associated with EPA, DPA, DHA or ARA 

(Supplementary Figure 2.3). The rs174537 SNP is in strong linkage disequilibrium with 

other FADS cluster SNPs; thus, subsequent analyses are focused solely on the rs174537 

SNP. 

 

2.3.5 Effects of rs174537 on Inflammatory Biomarkers, Fasting Lipids and 

Anthropometrics 

The effect of the FADS cluster SNP rs174537 on height, weight, body mass index 

(BMI), waist-hip ratio, s-ICAM, E-Selectin and HDL-C was estimated in the MESA Hispanic 

participants. Initially, we examined unadjusted relationships which showed, for example, 

that mean E-selectin levels increased with the number of copies of the rs174537 effect 

allele T (Figure 2.3b). In a model adjusted for age and sex, the rs174537 T allele was 

significantly associated with lower levels of HDL-C, higher waist-hip, lower height and 

weight, and higher levels of the inflammatory markers E-Selectin and s-ICAM (Table 2.2, 
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Figure 2.3d and Supplementary Table 2.3). In regression analysis with adjustment for 

principal components of ancestry, the rs174537 T allele remained significantly associated 

with higher TGs and lower height, while the associations with weight, waist-hip ratio, s-

ICAM, E-Selectin and HDL-C were no longer statistically significant (Supplementary 

Figure 2.4 and Supplementary Table 2.3). In sensitivity analysis, we also examined the 

effect of rs174557 on the same set of phenotypes as examined for rs174537. Similar to 

the rs174537 T allele, the rs174557 A allele was significantly associated with lower levels 

of HDL-C, higher waist-hip, lower height and weight, and higher levels of the inflammatory 

markers s-ICAM (Supplementary Table 2.4 and Supplementary Figure 2.4). In 

regression analysis with adjustment for principal components of ancestry, the rs174557 

A allele remained significantly associated with higher TGs and lower height, while the 

associations with weight, waist-hip ratio, s-ICAM, E-Selectin and HDL-C were no longer 

statistically significant (Supplementary Table 2.4).  

 

2.3.6 Replication in the AIR registry and HCHS/SOL cohort 

We conducted analyses in the AIR registry (n = 497) and HCHS/SOL (n = 12,333) 

cohorts to examine the genotypic effect of rs174537 on multiple phenotypic traits 

including TGs and waist-to-hip ratio (Supplementary Tables 2.5-2.6). In regression 

analyses adjusted for age and sex (and inclusion of random effects for household block 

and unit sharing in HCHS/SOL), the rs174537 T allele was significantly associated with 

TGs (AIR: 𝛽 = 10.4 mg/dL, P = 0.03, HCHS/SOL: 𝛽	= 8.75 mg/dL, P = 5.84 x 10-25 

based on a two-sided t-test for the regression coefficient derived with n = 12,333) 

(Supplementary Table 2.7). The rs174537 T allele was also significantly associated 
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with reduced height (𝛽 = -1.33, P = 4.47 x 10-56 calculated using a two-sided t-test for 

the regression coefficient derived with n = 12,333) and weight (𝛽 = -1.25, P = 2.61 x 10-

08 calculated using a two-sided t-test for the regression coefficient derived with n = 

12,333), and increased waist-to-hip ratio (𝛽 = 0.003; P = 2.77 x 10-05 calculated using a 

two-sided t-test for the regression coefficient derived with n = 12,333) in the HCHS/SOL 

cohort. The direction of effect was consistent, but not statistically significant, in the much 

smaller AIR cohort (Supplementary Table 2.7). The association of rs174537 with TGs 

remained statistically significant after adjustment for principal components of ancestry 

(𝛽 = 4.05 mg/dL, P = 1.26 x 10-05 calculated using a two-sided t-test for the regression 

coefficient derived with n = 497) and the effects were consistent across the HCHS/SOL 

study sites (Supplementary Table 2.8). We did not replicate these findings in the 

smaller AIR registry (Supplementary Table 2.7). S-ICAM and E-Selectin were not 

measured in either AIR or HCHS/SOL and thus could not be evaluated for replication of 

the findings from MESA. 
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2.4 Discussion 

While prior studies have identified genetic variants within the FADS locus with 

strong impact on fatty acid levels48,49, prior literature has not examined directly the impact 

of population differences in allele frequencies on population-specific risk of fatty acid 

deficiency. In light of dramatic differences in genetic variation within the FADS locus 

across worldwide populations56 and the marked changes in dietary n-6 and n-3 PUFA 

levels and ratios over the past 75 years, we carried out a study of to examine genomic 

proportion of AI ancestry as a predictor of n-3 and n-6 LC-PUFA levels and related 

cardiometabolic and inflammatory risk in the Hispanic participants from MESA. Our study 

first illustrates that certain Hispanic populations and particularly high AI-Ancestry 

populations have high frequencies of the ancestral allele at T at rs174537. Importantly, 

the frequency of the TT genotype associated with limited LC-PUFA biosynthesis ranges 

from <1% in African-Ancestry populations including African Americans to 40-55% in 

high AI-Ancestry Hispanics, and ~11% in European-Ancestry populations.65 In light of 

high ancestral frequencies in certain Hispanic populations together with elevated 

dietary n-6 (LA) to n-3 (ALA) PUFAs ratios (>10:1) from the MWD entering the pathway, 

we postulated that these populations would be most likely to saturate their capacity to 

synthesize LC-PUFAs and particularly n-3 LC-PUFAs. Our statistical analyses 

demonstrated that global proportion of AI ancestry is predictive of reduced LC-PUFA 

phospholipid levels in the Hispanic population of the United States, accounting for ~12% 

of total variation in EPA, DHA and ARA. Further, we showed that this relationship can be 

explained in large part by genetic variation within the FADS cluster. Given that many 

Hispanic individuals will have reasonable knowledge of their AI ancestry, our work 
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suggests a practical way to identify individuals likely to carry the homozygous TT 

genotypes, and for whom follow-up FADS genotyping assays may be warranted. 

While both n-6 and n-3 LC-PUFAs are impacted, relatively high levels of ARA 

(~8.6% of total fatty acids) remain in circulating phospholipids in even the highest AI-

Ancestry populations. In contrast, n-3 LC-PUFAs including EPA and DHA are reduced to 

the low (perhaps inadequate) levels of ~0.3% [EPA] and ~2% [DHA] of total fatty acids in 

circulating phospholipids in high AI-Ancestry individuals. It is not possible to say with 

certainty what levels of EPA and DHA or ratio of EPA + DHA/ ARA would be inadequate 

(deficient) and have pathophysiologic impact, but these are certainly quantitatively very 

low concentrations and ratios of n-3 LC-PUFAs. It has been recognized that  high levels 

of dietary LA relative to ALA from the modern Western diets (MWD) entering the LC-

PUFA biosynthetic pathway are  reciprocally related to levels of n-3 LC-PUFAs due to 

substate saturation of the enzymatic pathway.66,67 Such a scenario was proposed by both 

Okuyama and colleagues and Lands and colleagues three decades ago to give rise to 

Omega-3 Deficiency Syndrome and chronic pathophysiological events.20,47,68 We 

propose that a limited LC-PUFA synthetic capacity in a greater proportion of AI-Ancestry 

Hispanics (due to the ancestral haplotype) in the context of excess dietary LA levels and 

high LA/ALA ratios renders inadequate n-3 LC-PUFAs more likely in this population. 

Our study also suggests that FADS variation has large effects on some critical 

cardiometabolic and inflammatory risk factors. Specifically, the proportion of AI ancestry 

was positively related to levels of circulating TGs and much of this effect was explained 

by variation in the FADS locus. While other studies have found associations between 

numerous genetic loci including FADS SNPs and circulating TGs69–78, the high frequency 
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of the ancestral FADS alleles (associated with elevated TGs) and their effect size in AI-

Ancestry Hispanic populations that suggest that FADS variation is particularly relevant to 

TG levels in this population. The presence of the T allele at rs174537 had a large effect 

on circulating TG (GT vs GG: 𝛽 = 21.27 mg/dL, P = 0.0002, TT vs GG: 𝛽 = 29.94 mg/dL, 

P = 1.01 x 10-6) and this genotypic effect was replicated in both the AIR registry and 

HCHS/SOL cohort. Circulating TG are primarily synthesized in the liver and deficiencies 

of n-3 LC-PUFAs and imbalances of n-6 relative to n-3 PUFAs have been associated with 

elevated TGs and NAFLD.79 Elevating n-3 LC-PUFA by diet or supplementation reduces 

TG by promoting hepatic fatty acid oxidation and reducing synthesis (via reducing de novo 

lipogenesis and decreasing fatty acid and adipokine release from adipocytes).80–82 These 

current data suggest that inadequate levels of n-3 LC-PUFAs in AI-Ancestry Hispanic 

populations may impact TG formation in the liver resulting in higher levels of circulating 

TG and potentially NAFLD. 

Waist-to-hip ratio, used to describe the distribution of body fat, has been shown to 

be closely associated with hypertension, diabetes, dyslipidemia and cardiovascular 

disease.83 A previous study examined genetic loci associated with BMI and waist-to-hip 

ratio and found nine BMI and seven central adiposity loci in Hispanic women.84 To date, 

variation within FADS has not been associated with waist-to-hip ratio. While our study 

demonstrated that the ancestral rs174537 T allele was strongly associated with a higher 

waist-to-hip ratio and this risk factor was replicated in HCHS/SOL, the relationship was 

not statistically significant after adjusting for principal components of ancestry. Thus, 

waist-hip-ratio is an example of a trait for which the association with AI-Ancestry is not 

explained in large part by FADS variation.  
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The rs174537 allele T further demonstrated association with reduced height and 

weight in the large HCHS/SOL cohort (n = 12,333). Fumagalli and colleagues examined 

indigenous Greenland Inuit and found strong signals of natural selection within the FADS 

cluster.85 The identified FADS variants were also strongly associated with anthropometric 

traits including body weight and height in the Inuit, and those associations were replicated 

in Europeans.  

A wide variety of biomarkers of inflammation were measured in MESA, and there 

was a strong association between rs174537 and E-selectin which maintained suggestive 

evidence of association even after adjustment for population structure using genetic 

principal components of ancestry. E-Selectin (CD-62E) plays a pivotal role in the 

activation and adhesion of the migrating leukocytes to the endothelium.86 These 

membrane bound adhesion molecules also undergo proteolytic cleavage that generate 

soluble forms that can be measured in the blood.87 Serum levels of E-Selectin increase 

in many pathologies involving chronic inflammation including obesity88, cardiovascular 

disease89, bronchial asthma90 and cancer91,92.   

Limitations of the study include a focus on primarily urban Hispanic American 

populations represented by the MESA cohort, potential confounding by diet and lifestyle 

habits across the six Hispanic subgroups in MESA, and systematic differences in PUFA 

levels across MESA study sites. To address the observable variation across Hispanic 

subgroups and study site, we included additional analyses stratified by these factors and 

demonstrated that our results were consistent across strata. Additionally, we used food 

frequency questionnaire data to confirm participants included in our analyses did not have 

self-reported use of fish oil supplements, and we performed analyses adjusted for self-
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reported fish intake in MESA. Still, we recognize there are inherent limitations with the 

quality of self-report-based measures of diet and supplement use. Further, we did not 

consider additional measures of dietary intake of n-3 and n-6 PUFAs in our regression 

analyses, in part because we determined that we did not have reliable measures available 

for these parameters in the MESA participants. Therefore, future studies should examine 

further the impact of dietary differences on the relationship between AI ancestry, FADS 

variation, and LC-PUFA levels. 

Despite these limitations, our study reveals that FADS variation in AI-Ancestry 

Hispanic populations is inversely associated with dyslipidemia and inflammation, risk 

factors for a wide range of pathologies including cardiovascular and metabolic diseases. 

These associations are observed strongly in these Hispanic populations in part because 

of the high frequencies of ancestral FADS alleles. It may be that LC-PUFAs or their 

metabolites (eicosanoids, docosanoids, resolvins, protectins, etc.) are responsible for 

these genetic effects given the direct relationship between FADS variation and LC-PUFA 

levels. Alternatively, we have recently combined genetic and metabolomic analyses to 

identify the FADS locus as a central control point for biologically-active LC-PUFA-

containing complex lipids that act as signaling molecules such as the endocannabinoid, 

2-AG, and such endocannabinoids are known to impact anthropomorphic and other 

phenotypic characteristics.93  

Our results also suggest that targeting recommendations for n-3 and n-6 LC-PUFA 

intake/supplementation within AI-Ancestry Hispanic populations may be particularly 

effective. This premise is supported by the fact that  numerous mechanistic studies 

directly link low levels of n-3 LC-PUFAs and high n-6 to n-3 ratios to elevated tissue and 
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circulating TGs and NAFLD, and several recent reviews and meta-analyses suggest that 

n-3 LC-PUFA supplementation improves circulating and tissue levels of TG and 

NAFLD.94,95 Prior research demonstrates that mean proportions of Amerind ancestry vary 

greatly by self-identified regions of origin among Hispanic Americans, with Mexican, 

Central American and South American Hispanics showing the greatest proportions, and 

individuals identifying as Cuban, Dominican and Puerto Rican showing considerably 

lower proportions.61,96 While a long term goal of  applying precision nutrition may include 

genotyping of rs174537 (or related FADS region variants)_in routine health care 

screening, current health care practice does not provide adequate resources to genotype 

most individuals. Thus, a priori information predictive of ancestry such as country or origin 

or otherwise, may serve as a preliminary tool to prioritize those who are most likely to 

have low circulating and tissue levels of n-3 LC-PUFA and would benefit from additional 

screening either through genotyping or screening for n-3 LC-PUFA deficiency. Despite 

the current limitations of precision nutrition including inadequate genetic testing, the 

translational implications of this work are to point out that a large proportion of AI-Ancestry 

Hispanic populations have low (perhaps deficient) levels of n-3 LC-PUFAs and increased related risk factors. 

Thus, because of FADS-related deficiencies, these populations may be particularly responsive to diets or 

supplements enriched in n-3 LC-PUFAs. 
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2.5 Methods 

2.5.1 Study participants 

MESA is a longitudinal cohort study of subclinical cardiovascular disease and risk 

factors that predict progression to clinically overt cardiovascular disease or progression 

of subclinical disease 57. Between 2000 and 2002, MESA recruited 6,814 men and women 

45 to 84 years of age from Forsyth County, North Carolina; New York City; Baltimore; St. 

Paul, Minnesota; Chicago; and Los Angeles. Participants at baseline were 38% White, 

28% African American, 22% Hispanic and 12% Asian (primarily Chinese) ancestry. This 

manuscript focuses on Hispanic American participants from MESA. Among the MESA 

Hispanic participants, self-reported birthplaces for parents’ and grandparents’ 

country/region of origin were used to assign country/region of origin to the following 

categories Central America, Cuba, the Dominican Republic, Mexico, Puerto Rico and 

South American origin were assigned for the MESA Hispanic participants. 

 

2.5.2 Fatty Acid measurements 

The fatty acids were measured by gas chromatography in EDTA plasma frozen at 

–70°C.97  

Lipids were extracted from the plasma using a chloroform/methanol extraction method 

and the cholesterol esters, triglyceride, phospholipids and free fatty acids are separated 

by thin layer chromatography. The fatty acid methyl esters were obtained from the 

phospholipids and were detected by gas chromatography flame ionization.  Individual 

fatty acids were expressed as a percent of total fatty acids. A total of 28 fatty acids were 

identified. Here, we focus on the following n-3 and n-6 fatty acids: eicosapentaenoic acid 
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(EPA), docosapentaenoic acid (DPA), docosahexaenoic acid (DHA), and arachidonic 

acid (ARA).  

 

2.5.3 Additional phenotypes in MESA 

We considered additional phenotypes in analysis of the MESA data including lipids 

(HDL-C and triglycerides), anthropometric (height, weight, waist-hip ratio), and 

inflammatory markers (soluble E-Selectin and soluble ICAM-1). Details of measurement 

and treatment of outliers are provided in the Supplementary Methods and 

Supplementary Figures 5-6. 

 

2.5.4 Genotyping, genetic association and ancestry analysis 

Participants in the MESA cohort who consented to genetic analyses and data sharing 

(dbGaP) were genotyped using the Affymetrix Human SNP Array 6.0 (GWAS array) as 

part of the NHLBI SHARe (SNP Health Association Resource) project. Genotype quality 

control for these data included filter on SNP level call rate < 95%, individual level call rate 

< 95%, heterozygosity > 53%.98 The cleaned genotypic data was deposited with MESA 

phenotypic data into dbGaP (study accession phs000209.v13.p3); 8,224 consenting 

individuals (2,685 White, 2,588 non-Hispanic African-American, 2,174 Hispanic, 777 

Chinese) were included, with 897,981 SNPs passing study specific quality control (QC). 

SNP coverage from the original GWAS SNP genotyping array was increased through 

imputation using the 1,000 Genomes Phase 3 integrated variant set completed using the 

Michigan Imputation Server (https://imputationserver.sph.umich.edu).  

https://imputationserver.sph.umich.edu/
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Prior studies have highlighted multiple different FADS variants for their role in 

regulation of fatty acid synthesis, including rs17453748 and rs17455764; however, the 

relevant variants at the primary signal within the FADS region exhibit extended linkage 

disequilibrium across the region.99 Therefore, we focused our genetic analyses primarily 

on the variant rs174537, with additional sensitivity analyses using similar models for the 

variant rs174557.  Imputed genotype data were used for genetic association analysis of 

the rs174537 and rs174557 SNPs (for which the imputation R-squared in MESA 

Hispanics were both 0.99). Our statistical analyses used genotype dosage information 

from imputation, except where noted otherwise. For analyses that required us to stratify 

by genotype, including those presented in Table 2 and Figure 3, we used the estimated 

most likely genotype from imputation. Principal components of ancestry were computed 

using genome-wide genotype data.98 Global proportions of Amerind ancestry were 

estimated in MESA participants by leveraging reference samples from the 1000 

Genomes100 and the Human Genome Diversity Project (HGDP)101,102. Local ancestry for 

each individual was defined as the genetic ancestry at the position of FADS SNP 

rs174537, where each individual can have 0, 1 or 2 copies of an allele derived from each 

of the three possible ancestral populations (European, African and Amerind). Local 

ancestry, was estimated using the RFMix package.103 Details are provided in the 

Supplementary Methods.  

 

2.5.5 Regression modeling of n-3 and n-6 PUFAs 

As we observed a strong effect of study site in regression analysis of all LC-PUFAs 

(Supplementary Table 9), we performed regression analyses stratified by study site and 
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combined by inverse-variance weighted meta-analysis. In order to examine the effect of 

global Amerind ancestry on the levels of n-3 and n-6 PUFAs in the MESA Hispanic 

participants, we carried out linear regression analyses using three different models for 

each of the PUFA levels as follows: 

1) PUFA ~ age + sex + fish intake + global proportion of Amerind ancestry, 

2) PUFA ~ age + sex + fish intake + global proportion of Amerind ancestry + rs174537 

genotype, and 

3) PUFA ~ age + sex + fish intake + global proportion of Amerind ancestry + rs174537 

genotype + FADS region local proportion of Amerind ancestry.  

 

2.5.6 Regression modeling for genotypic effects of FADS cluster SNP rs174537 on 

proximal traits 

To examine the effect of FADS SNP rs174537 on lipids (HDL-C and triglycerides), 

anthropometric (height, weight, and waist-to-hip ratio), and inflammatory markers (s-

ICAM and E-Selectin) in MESA Hispanic participants, we performed linear regression 

analysis with covariate adjustment for (1) age and sex, and (2) age, sex and the first four 

principal components of ancestry.   

 

2.5.7 Replication analysis in the AIR registry and HCHS/SOL cohort 

We conducted follow-up regression analyses to examine the association of 

rs174537 with phenotypic traits in both the AIR registry and the HCHS/SOL cohort. The 

variant rs174537 was genotyped directly in both AIR and HCHS//SOL. Details are 

provided in the Supplementary Methods.  
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2.5.8 Statistics and Reproducibility 

All of our statistical analyses were carried out on biologically independent 

samples from MESA (n=1,102), AIR (n=497) and HCHS/SOL (n=12,333). Analyses in 

MESA were carried out for an unrelated subset of participants constructed by retaining 

at most one individual from each group of first-degree relatives. We did not perform 

relationship inference and removal of first -degree relatives in AIR, as there were no 

genome-wide data available to infer relationship among individuals. In HCHS/SOL, all 

individuals (both related and unrelated) were included in analyses, as we accounted for 

their relationships using linear mixed models. Regression analyses presented 

throughout the manuscript included adjustments for relevant covariates as stated for 

each model presented in the text. 

 

2.5.9 Ethical review 

All MESA participants provided written informed consent for participation at their 

respective MESA study sites, and the MESA study was also reviewed and approved by 

the Institutional Review Boards (IRBs) at each of the participating study sites. The current 

investigation including activities for analysis of LC-PUFA levels in MESA was reviewed 

and approved by the Institutional Review Board (IRB) at the University of Virginia. The 

AIR registry was approved by the IRB at the University of Arizona and all subjects gave 

written informed consent before their participation. The HCHS/SOL was approved by the 

IRBs at all participating institutions including the Albert Einstein College of Medicine, and 

all participants gave written informed consent.  
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2.6 Data availability 

Genome-wide genotype data for the Multi-Ethnic Study of Atheroslerosis 

(MESA)57,61,98 and the Hispanic Community Health Study / Study of Latinos 

(HCHS/SOL)60,96,104 are available by application through dbGaP. The dbGaP accession 

numbers are: MESA phs000209 and HCHS/SOL phs000810. All other data are 

available from the corresponding author (or other sources, as applicable) on reasonable 

request. 

 

2.7 Competing Interests  

Floyd H. Chilton is a co-founder of Tyrian Omega Inc. All other authors declare no 

competing interests. 
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Table 2.1: Participant Characteristics for individuals of self-identified Hispanic origin 
from the MESA cohort. 
 

 

Table 2.1 shows the phenotypic descriptive statistics are presented as percentages for dichotomous 
variables and mean (standard deviation) for continuous variables. 
* For comparison, the rs174537 effect allele frequencies were 0.007, 0.328 and 0.858 in the 1000 
Genomes AFR, EUR and AMR populations, respectively, where the allele frequency calculation was 
restricted to the cleaned set of samples that were included in the reference set for local ancestry analysis 
(see Supplementary Methods for details).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Characteristics 
Self-reported Hispanic country/region of origin 

Total 
(N=1102) Cuba  

(N=45) 
Dominican 
(N=145) 

Puerto Rico 
(N=167) 

South Amer. 
(N=93) 

Central Amer. 
(N=80) 

Mexico 
(N=572) 

Sex (Female) 42.2% 53.1% 52.7% 54.8% 58.8% 48.3% 50.6% 
Age (years) 69.8 (9.1) 58.8 (10.1) 59.3 (9.4) 62.9 (10.3) 58.7 (8.1) 61.8 (10.2) 61.2 (10.1) 

Study Site: Columbia 
University 

73.33% 99.31% 86.24% 60.22% 20% 0.54% 35.93% 

Study Site: University of 
Minnesota 

15.56% 0.69% 11.37% 15.05% 13.75% 38.98% 24.95% 

Study Site: UCLA 11.11% 0 2.39% 24.73% 66.25% 60.48% 39.12% 

Height (cm) 163.1 (9.7) 163.3 (9.4) 162.6 (9.3) 160.4 (8.9) 159.6 (9.2) 161.7 (9.5) 161.8 (9.4) 

Weight (kg) 75.3 (13.9) 75.4 (14.3) 79.5 (17.4) 71.4 (12.3) 74.9 (15.3) 77.7 (15.8) 76.8 (15.6) 

Waist-to-hip ratio 0.98 (0.06) 0.93 (0.08) 0.94 (0.08) 0.94 (0.07) 0.96 (0.06) 0.97 (0.07) 0.96 (0.07) 

BMI (kg/m^2) 28.3 (5.3) 28.2 (4.6) 29.9 (5.7) 27.7 (4.1) 29.3 (5.2) 29.6 (5.2) 29.3 (5.1) 

HDL-C (mg/dl) 49.8 (18.1) 47.2 (10.7) 49.7 (14.2) 50.8 (13.9) 48.0 (12.1) 45.9 (12.5) 47.4 (13.0) 

LDL-C (mg/dl) 121.1 (26.1) 124.7 (35.5) 118.0 (33.3) 115.8 (29.6) 120.9 (38.3) 119.4 (32.8) 119.8 (33.2) 

Triglycerides (mg/dl) 154.2 (100.4) 132.9 (69.9) 134.4 (72.1) 151.5 (168.8) 144.1 (75.5) 173.6 (113.4) 157.5 (107.6) 

s-ICAM (ng/ml) 311.7 (71.8) 262.4 (88.2) 307.6(110.6) 276.4 (72.3) 286.6 (69.4) 298.7 (80.6) 293.2 (86.2) 

E-Selectin (ng/ml) 64.05 (32.8) 54.15 (17.9) 63.65 (27.4) 57.96 (29.8) 62.74 (26.1) 67.07 (29.3) 63.06 (27.4) 

Fish intake (servings/day) 0.19 (0.28) 0.21 (0.22) 0.21 (0.25) 0.20 (0.28) 0.22 (0.23) 0.15 (0.21) 0.18 (0.23) 
EPA (% of total fatty acids) 0.90 (0.55) 0.87 (0.68) 0.76 (0.55) 0.72 (0.43) 0.58 (0.38) 0.52 (0.29) 0.64 (0.46) 
DPA (% of total fatty acids) 0.98 (0.24) 0.95 (0.26) 0.90 (0.20) 0.89 (0.22) 0.83 (0.18) 0.84 (0.19) 0.88 (0.21) 

DHA (% of total fatty acids) 3.71 (1.51) 4.15 (1.31) 3.58 (1.23) 3.76 (1.25) 3.24 (1.15) 2.69 (0.90) 3.19 (1.23) 
ARA (% of total fatty acids) 12.18 (2.58) 12.84 (2.52) 12.00 (2.65) 10.53 (2.26) 11.04 (2.40) 10.64 (2.36) 11.22 (2.56) 

Global Proportion of 
Amerind ancestry 

0.06 0.06 0.12 0.33 0.39 0.41  0.30 

Global Proportion of  
African ancestry 

0.19 0.41 0.23 0.09 0.16 0.04 0.14 

Global Proportion of 
European ancestry 

0.75 0.53 0.65 0.58 0.45 0.55 0.56 

rs174537 frequency* of 
effect allele T (versus G 

allele) 
0.28` 0.27 0.40 0.56 0.59 0.59 0.51 
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Table 2.2. Genotypic effects of rs174537 on fasting lipids, anthropometrics and 
inflammatory traits.  
 

 
Table 2.2 shows the regression analysis results for the effect of rs174537 genotype on Fasting Lipids, 
Anthropometrics and inflammatory with adjustment for age and sex. For the effect sizes, the effects of GT 
and TT are in reference to GG. The sample size is 1102 (GG: 293; GT: 484; TT: 325) for waist-hip ratio; 
height; weight and BMI, 1101 (GG: 293 ;GT: 483 ;TT: 325) for triglycerides and HDL-C, 439 (GG: 112; 
GT: 194; TT: 133) for s-ICAM and 183 (GG: 48; GT: 76; TT: 59) for E-Selectin. P-values are calculated 
using two-sided t test for the regression coefficient. 
 
 

 

 

 

 

 

 

 

 

   Beta       P value 

Fasting Lipids 

Triglycerides 
(mg/dL) 

GT 21.27 0.0001 
TT 29.94 1.01 x 10-06 

HDL-C (mg/dL) 
GT -1.30 0.141 
TT -2.48 0.010 

Anthropometrics 

waist-hip ratio 
GT 0.006 0.152 
TT 0.013 8.94 x 10-03 

Height (cm) 
GT -1.36 0.002 
TT -3.46 6.59 x 10-12 

Weight (kg) 
GT -1.89 0.077 
TT -3.12 7.48 x 10-03 

BMI (kg/m^2) 
GT -0.25 0.50 
TT -0.002 0.99 

Inflammatory 

s-ICAM 
(ng/mL) 

GT 30.64 0.002 
TT 26.09 0.018 

E-Selectin 
(ng/mL) 

GT 10.00 0.048 
TT 11.50 0.032 
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Figure 2.1. Relationship of LC-PUFA levels with global proportion of Amerind ancestry before and 
after adjustment for rs174537 genotype. The regression effect estimates (𝛽 expressed as % of total 
fatty acids) and P-values are shown in the upper right corner of each panel. The relationship of LC-PUFA 
levels with Global Proportion of Amerind Ancestry as estimated from genome-wide SNP data is shown for 
(a) EPA - raw, (b) EPA – genotype-adjusted, (c) DHA – raw, (d) DHA – genotyped-adjusted, (e) ARA – 
raw, and (f) ARA – genotype-adjusted. Here, the rs174537 genotype-adjusted LC-PUFA levels were 
obtained as residuals after regression against rs174537 genotype and re-centered around the raw 
means. P-values are calculated using a two-sided t-test for the regression coefficient derived with n = 
1102 biologically independent samples. 
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Figure 2.2. Relationship of triglycerides with global proportion of Amerind ancestry before and 
after adjustment for rs174537 genotype. The regression effect estimates (𝛽 in mg/dL) and P-values are 
shown in the upper right corner of each panel. The relationships are shown for each of (a) raw triglyceride 
levels, and (b) genotype-adjusted triglyceride levels with Global Proportion of Amerind Ancestry. Here, 
rs174537 genotype-adjusted triglyceride levels were obtained as residuals from regression accounting for 
rs174537 genotype, and re-centered around the raw means. P-values are calculated using a two-sided t-
test for the regression coefficient derived with n = 1101 biologically independent samples. 
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Figure 2.3: Genotypic effects of rs174537 on triglycerides and E-selectin. The mean and standard 
deviation are shown for (a) triglycerides, and (b) E-selectin stratified by rs174537 genotypes. The 
estimated effect and standard error among participants carrying one or two copies of the ancestral allele 
T (compared to the reference of zero), after covariate-adjustment for age and sex are shown for (c) 
triglycerides, and (d) E-selectin. Numbers of independent samples for the analyses presented are 1101 
(GG: 293 ;GT: 483 ;TT: 325) for triglycerides and 183 (GG: 48; GT: 76; TT: 59) for E-selectin. Source 
data for the figure are provided in Supplementary Data 1. 
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Chapter 3 

Genome-wide association studies and fine-mapping identify genomic loci for n-3 

and n-6 polyunsaturated fatty acids in Hispanic American and African American 

cohorts 

 
Published in: Yang C, Veenstra J, Bartz TM, Pahl MC, Hallmark B, Chen YI, Westra J, Steffen LM, 
Brown CD, Siscovick D, Tsai MY, Wood AC, Rich SS, Smith CE, O'Connor TD, Mozaffarian D, Grant 
SFA, Chilton FH, Tintle NL, Lemaitre RN, Manichaikul A. Genome-wide association studies and fine-
mapping identify genomic loci for n-3 and n-6 polyunsaturated fatty acids in Hispanic American and 
African American cohorts. Commun Biol. 2023 Aug 16;6(1):852. doi: 10.1038/s42003-023-05219-w. 
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3.1 Abstract 

Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) play 

critical roles in human health. Prior genome-wide association studies (GWAS) of n-3 

and n-6 PUFAs in European Americans from the CHARGE Consortium have 

documented strong genetic signals in/near the FADS locus on chromosome 11. We 

performed a GWAS of four n-3 and four n-6 PUFAs in Hispanic American (n = 1454) 

and African American (n = 2278) participants from three CHARGE cohorts. Applying a 

genome-wide significance threshold of P < 5 x 10−8, we confirmed association of the 

FADS signal and found evidence of two additional signals (in DAGLA and BEST1) 

within 200 kb of the originally reported FADS signal. Outside of the FADS region, we 

identified novel signals for arachidonic acid (AA) in Hispanic Americans located in/near 

genes including TMX2, SLC29A2, ANKRD13D and POLD4, and spanning a >9 Mb 

region on chromosome 11 (57.5Mb ~ 67.1Mb). Among these novel signals, we found 

associations unique to Hispanic Americans, including rs28364240, a POLD4 missense 

variant for AA that is common in CHARGE Hispanic Americans but absent in other 

race/ancestry groups. Our study sheds light on the genetics of PUFAs and the value of 

investigating complex trait genetics across diverse ancestry populations. 
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3.2 Introduction 

 Omega-3 (n-3) and omega-6 (n-6) polyunsaturated fatty acids (PUFAs) are 

critical structural components of cell membranes, which can influence cellular activities 

by promoting the fluidity, flexibility, and the permeability of a membrane.1–3 Additionally, 

PUFAs affect a variety of other biological processes and molecular pathways, including 

modulating membrane channels and proteins, regulating gene expression through 

nuclear receptors and transcription factors, and conversion of the PUFAs themselves 

into bioactive metabolites.4 Levels of circulating PUFAs and long chain (>20 carbons) 

PUFAs (LC-PUFAs) are associated with reduced risk of cardiovascular disease5,6, type 

2 diabetes mellitus7, cognitive decline8,  Alzheimer's disease9, metabolic syndrome10 

and breast cancer11, as well as all-cause mortality.12 

 PUFAs and LC-PUFAs are characterized by the position of the first double bond 

from the methyl terminal (omega; ω; or n−FAs) and fall into two primary families, n-3 

and n-6. The most abundant n-3 PUFAs are alpha-linolenic acid (ALA), 

eicosapentaenoic acid (EPA), docosapentaenoic acid (DPA) and docosahexaenoic acid 

(DHA), while the primary n-6 PUFAs are linoleic acid (LA), gamma-linolenic acid (GLA), 

dihomo-γ-linolenic acid (DGLA) and arachidonic acid (AA). ALA and LA are essential n-

3 and n-6 PUFAs consumed from the diet and these then can be converted to more 

unsaturated LC-PUFAs through a set of desaturation and elongation enzymatic steps. 

For example, DGLA and AA can be synthesized from LA, while EPA, DPA and DHA can 

be produced from ALA. The precursors LA and ALA are essential fatty acids that must 

be provided by the diet. Due to the lower abundance of ALA in Western diets and the 

inefficiency of conversion of ALA to longer chain n-3 LC-PUFAs such as EPA and DHA, 
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dietary intake of these via fatty fish or marine oil supplementation is often 

recommended.13,14  

 Previous studies have shown that African ancestry populations have higher 

circulating levels of LC-PUFAs compared to European Americans.15 These large 

differences can be explained in part by variation in the allele frequencies of FADS 

variants associated with different biosynthetic efficiencies in these two populations.16 

Mathias et al. also revealed that African Americans have significantly higher levels of 

AA and lower levels of the AA precursor DGLA, and that FADS1 variants were 

significantly associated with AA, DGLA and the AA/DGLA ratio in a sample of fewer 

than 200 African Americans from the GeneSTAR study.15 In addition, African ancestry 

populations have higher frequencies of the derived FADS haplogroup (represented by 

the variant rs174537 allele G)17 that is associated with more efficient conversion for 

PUFAs.16 In contrast, Amerind ancestry Hispanic populations have higher frequencies 

of the ancestral FADS haplogroup (represented by rs174537 allele T) that has a 

reduced capacity to synthesize PUFAs. Accordingly, we demonstrated that higher 

global proportions of Amerind ancestry are associated with lower levels of PUFAs in 

Hispanic populations.17  

Genome-wide association studies (GWAS) of n-3 and n-6 PUFAs were 

performed by the CHARGE consortium in European ancestry (EUR) participants.18–20 

The CHARGE GWAS of n-3 PUFAs in 8,866 European Americans identified genetic 

variants in/near FADS1 and FADS2 associated with higher levels of ALA and lower 

levels of EPA and DPA, as well as SNPs in ELOVL2 associated with higher EPA and 

DPA and lower DHA. The CHARGE GWAS of n-6 PUFAs in 8,631 European Americans 



 98 

confirmed that variants in the FADS gene cluster were associated with LA and AA, and 

it revealed that variants near NRBF2 were associated with LA and those in NTAN1 were 

associated with LA, GLA, DGLA, and AA (Figure 1). In the Framingham Heart Offspring 

Study, variants in/near PCOLCE2, LPCAT3, DHRS4L2, CALN1 FADS1/2, and ELOVL2 

were associated with PUFAs in European ancestry participants.21,22 Collectively, these 

studies played an important role in identifying the genetic associations of n-3 and n-6 

PUFAs in European ancestry populations.   

To address the paucity of GWAS of PUFAs in non-European ancestry cohorts, 

we performed a meta-analysis of genome-wide association studies for n-3 and n-6 

PUFAs for Hispanic American (HIS) and African American (AFA) participants from three 

CHARGE consortium cohorts: the Multi-Ethnic Study of Atherosclerosis (MESA), the 

Cardiovascular Health Study (CHS) and the Framingham Heart Study (FHS) Omni 

cohort. The major goals of the study were (1) to examine whether the major loci 

identified in European Americans are shared across race/ancestry groups, and (2) to 

examine evidence for genetic association unique to HIS and AFA populations. As 

GWAS approaches are not sufficient to identify the causal variants and determine the 

number of independent signals, especially in the context of long stretches of linkage 

disequilibrium (LD) within the FADS locus15,23, we conducted statistical fine-mapping24 

to identify the most likely causal variants within each n-3 and n-6 PUFA-associated 

locus. We performed cross-ancestry replication analysis in CHARGE and MESA, with 

validation using the multi-ancestry GWAS of lipids from the Global Lipids Genetics 

Consortium (GLGC).25 Subsequently, we performed integrative analysis leveraging 

gene expression data from MESA26,27 and the Genotype-Tissue Expression (GTEx) 
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project28 to identify genes that could contribute to our identified genetic association 

results. Finally, we examined open chromatin defined by ATAC-seq to determine the 

impact and physical contact of the identified variants with nearby genes (Figure 2). Our 

study demonstrates the vital importance of diverse ancestry genetic studies for the 

study of complex traits, and particularly for metabolites that have been subject to 

evolutionary pressures and are closely regulated by specific protein-coding genes.  
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3.3 Results 

3.3.1 Participant characteristics 

The participants in the meta-analysis of GWAS for PUFAs included 1,454 HIS 

and 2,278 AFA unrelated participants (Table 3.1; fatty acid levels are expressed as the 

percentage of total fatty acids throughout the entire manuscript). There were some 

differences in the distributions of fatty acid levels observed across cohorts, which were 

likely due to the sources of biospecimens for the assays (plasma phospholipids for 

MESA and CHS versus erythrocytes for FHS). For example, mean levels of DPA varied 

from 0.85% (CHS: plasma phospholipids) to 2.54% of total fatty acids (FHS: 

erythrocytes) in AFA and AA from 11.01% (MESA:  plasma phospholipids) to 16.56% 

(FHS: erythrocytes) in HIS (Table 3.1). In addition, n-6 PUFAs, especially LA and AA, 

have relatively higher mean levels than n-3 PUFAs in all cohorts (Table 3.1).  

Regardless of whether the fatty acids were measured in plasma phospholipids or 

erythrocytes, AFA populations had higher levels of AA and elevated ratios of AA to 

DGLA and AA to LA relative to Hispanic populations. This result would be expected 

given the frequency differences in the derived (efficient) to ancestral (inefficient) FADS 

haplogroups between these two populations. As expected, due to the lower levels of 

dietary ALA relative to LA entering the biosynthetic pathway, levels of n-3 LC-PUFAs 

including EPA, DPA and DHA were significantly lower than the n-6 LC-PUFA, AA. 

Additionally, African Americans had higher levels of n-3 LC-PUFAs than Hispanic 

Americans, again likely due to differences in the ratio of the derived to ancestral FADS 

haplogroups. These differences are similar to those observed examining the same 
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PUFAs and LC-PUFAs and ratios when comparing African Americans and European 

Americans.15,29  

 
3.3.2 Confirmation of top variants identified in prior CHARGE EUR GWAS of 

PUFAs  

We began by examining associations of seven known PUFA-associated signals 

from CHARGE EUR (summarized in Figure 3.1) in our current study of CHARGE HIS 

and AFA. Multiple variants identified by previous CHARGE EUR GWAS meta-

analyses19,20 were also identified in CHARGE HIS (FADS1/2 region: rs174547 and 

rs174538, PDXDC1 variant: rs16966952 and GCKR variant: rs780094) and AFA 

(FADS1/2 region: rs174547, PDXDC1 variant: rs16966952, GCKR variant: rs780094 

and ELOVL2 variant: rs3734398) after adjusting for multiple testing for the number of 

variants examined across the eight PUFAs (P < 0.05/8 = 0.006) (Supplementary Data 

3.1). The directions of effect observed in HIS and AFA for these variants were 

consistent with those reported for European ancestry populations in prior CHARGE 

GWAS meta-analyses of n-3 and n-6 PUFAs (Supplementary Data 3.1).  

 

3.3.3 GWAS and fine-mapping identify novel PUFA-associated genetic signals in 

CHARGE HIS and AFA 

 Based on a genome-wide significance threshold of P < 5 x 10-8, our complete 

GWAS of n-3 and n-6 PUFAs identified associations on chromosomes 11, 15 and 16 in 

CHARGE HIS (Table 3.2, Supplementary Figure 3.1 and Supplementary Figure 3.2) 

and chromosomes 6, 7, 10 and 11 in CHARGE AFA (Table 3.3, Supplementary 

Figure 3.3 and Supplementary Figure 3.4). For regions with more than one genome-
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wide significant variant, we applied statistical fine-mapping to identify the independent 

putative causal signals (credible sets) for each genome-wide significant locus. We 

carried out these analyses separately for our CHARGE HIS and CHARGE AFA GWAS 

meta-analysis results.  

We identified multiple independent putative causal signals for the PUFA traits 

[AA: 8 signals (credible sets); ALA: 1; DGLA: 5, DPA: 2; EPA: 1; GLA: 1; LA: 6] in HIS 

and [AA: 5; DGLA: 2, DPA: 2, LA: 1] in AFA (Table 3.2, Table 3.3, Supplementary 

Data 3.2 and Supplementary Data 3.3). We examined the overlap of signals identified 

from fine-mapping in HIS versus AFA. We observed that the credible sets were 

generally smaller in AFA (average number of variants in credible set: HIS:3.4; AFR:2.2) 

possibly driven by the lower average LD in AFA. 

Among the independent credible sets identified, most were novel associated 

signals within a +/- 5 Mb region of the previously reported FADS signal on chromosome 

11 (Tables 3.2-3.3). Examining all the signals for PUFAs in HIS and AFA, we observed 

that the lead signal (reflecting the strongest evidence of association) on chromosome 11 

represents the FADS signal reported in the previous GWAS.20 For example, rs174547, 

the FADS1 variant reported in the previous CHARGE EUR GWAS, is one of the 

variants in the first credible set for AA in HIS.19,20 In addition to the known FADS signals, 

we also observed multiple novel independent signals at other regions of chromosome 

11 for PUFAs [AA: 6 novel signals (credible sets) and LA: 3] in HIS, for example, in/near 

ANKRD13D, TMX2, POLD4 and SLC29A2 and spanning a long range (57.5Mb ~ 

67.1Mb) on chromosome 11 for AA in HIS (Table 3.2). Additionally, we observed 

several novel independent signals on other chromosomes showing associations with 
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the PUFA traits in AFA [AA: 1 novel signal on chromosome 7 and DPA: 1 on 

chromosome 6] (Table 3.3).  

 

3.3.4 Additional independent PUFA-associated signals on chromosome 11 

demonstrate chromatin contacts with FADS and other genes  

 While prior studies have represented the FADS signal as primarily one signal,19,20 

our study demonstrates numerous independent signals within the region (Table 3.2). 

For example, for AA we report signals intronic to BEST1 and DAGLA within the FADS 

region (+/- 1Mb of the lead variant, rs102274; Figure 3.3a). We examined this region to 

identify the subset of variants that may affect cis-regulatory elements in physical contact 

with nearby genes. Four variants within the credible sets in this region were located in 

regions of open chromatin defined by ATAC-seq and were in contact with gene 

promoters defined by Promoter Capture C in multiple metabolic-relevant cell types 

(human mesenchymal stem cells [hMSC], adipocytes derived from in vitro from the 

hMSC [hMSC_Adipocytes], induced pluripotent stem cell derived Hepatocytes 

[iPSC_Hepatocytes], embryonic stem cell derived Hypothalamic Neurons 

[hESC_HypothalamicNeurons], Enteroids, and HepG2s). Almost all of the interactions 

we detected were bait-to-bait interactions, meaning that they reflected physical contact 

between promoters of two different genes (Supplementary Data 3.4). For example, the 

region surrounding rs2668898 near BEST1 showed evidence of physical contact with 

the TMEM258, FADS1 and FADS2 region in multiple cell types and TMEM258 region 

also showed evidence of physical contact with the FADS1 and FADS2 region (Figure 

3.4a and Supplementary Data 3.4). Besides the FADS region, we further found 
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evidence of physical contact between POLD4 and ANKRD13D (Figure 3.4b and 

Supplementary Data 3.4), corresponding to the regions surrounding two signals 

identified in fine-mapping of AA in HIS (Figure 3.3a).  

 

3.3.5 Novel signals on chromosome 11 identified in HIS show evidence of cross-

ancestry replication or validation 

 We investigated evidence of cross-ancestry replication for signals identified in 

our present GWAS of CHARGE HIS and AFA by examining evidence of genetic 

association in European Americans (CHARGE EUR19,20 and MESA EUR), African 

Americans (CHARGE AFA), Hispanic Americans (CHARGE HIS) and Chinese 

Americans (MESA CHN). Replication analysis was performed with multiple testing 

correction (HIS: P < 0.05/19 signals = 0.0026 and AFA: P < 0.05/11 signals= 0.004; 

Supplementary Data 3.5 and Supplementary Data 3.6).   

As noted previously, the first credible set identified in our present GWAS of HIS 

and AFA for each trait (reflecting the strongest evidence of association) generally 

coincided with the region of chromosome 11 reported in prior CHARGE GWAS efforts. 

These signals showed evidence of genetic association in European Americans, as well 

as across race/ancestry groups. For example, rs102274 for AA was replicated in the 

MESA EUR, CHARGE AFA and MESA CHN groups (MESA EUR: P = 1.04 x 10-151, 

CHARGE AFA: P = 2.36 x 10-47, MESA CHN: P = 8.75 x 10-92) (Supplementary Data 

3.5).  

Additionally, three novel signal were also replicated across race/ancestry groups 

(Table 3.4). Specifically, the DAGLA variant rs198434 and MYRF variant rs198461 in 
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credible sets 3 and 4, respectively, for DGLA were replicated in analysis of MESA EUR 

(rs198434: P = 2.54 x 10-03 and rs198461: P = 7.37 x 10-09). TMX2 variant rs518894 in 

credible set 6 for LA was replicated in CHARGE EUR (P = 2.50 x 10-03). 

Some of the novel signals without cross-ancestry replication demonstrated large 

differences in allele frequencies across groups. For example, the effect allele frequency 

of rs28364240, a POLD4 missense variant in credible set 3 for AA in Hispanics, is 0.204 

in our CHARGE HIS group, but close to zero in the other race/ancestry groups 

examined (EUR: 0.003, AFR: 0.007, CHN: 0.005) (Figure 3.3b, Supplementary Data 

3.5 and 3.7) and the effect allele frequency of rs142068305, a ANKRD13D intron 

variant, is 0.196 in our CHARGE HIS group while 0.007, 0.004 and 0.005 in AFR, EUR 

and CHN, respectively. These results suggest evidence of genetic association signals 

unique to HIS or other groups carrying Amerindian ancestry or admixture. 

As some variants could not be interrogated using independent GWAS of PUFA 

traits, given those studies’ focus on specific race/ancestry groups which may not include 

our variants of interest and/or limited sample sizes, we performed validation analyses 

using the results of multi-ancestry GWAS of lipid levels from the GLGC25 including 

~1.65 million individuals from five genetic ancestry groups (admixed African or African, 

East Asian, European, Hispanic and South Asian). We focused on the most significant 

putative causal variants from each credible set and applied multiple testing correction 

for the number of validated variants (HIS: P < 0.05/19 = 0.0026 and AFA: P < 0.05/11 = 

0.004). Interestingly, we observed that multiple novel signals without cross-ancestry 

replication did demonstrate association with one or more lipid levels. For example, the 

LA associated LRP4 variant rs11039018 was validated based on its association with 
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HDL and Triglycerides (HDL: P = 2.85 x 10-74 and Triglycerides: P = 4.50 x 10-43), while 

the LA associated MARK2 intron variant rs10751002 was validated based on its 

association with LDL and Total Cholesterol (LDL: P = 3.31 x 10-12 and Total Cholesterol: 

P = 5.74 x 10-09) (Table 3.4, Supplementary Data 3.8 and Supplementary Data 3.9).  

 

3.3.6 Integrative analyses identify putative causal genes and pathways for the 

PUFA loci 

Using colocalization with eQTL resources, we identified candidate genes 

underlying the genetic association signals for the PUFA traits. In HIS, we found 

colocalization with expression of the genes MED19, TMEM258, PACS1, RAD9A, 

C11orf24, CTTN on chromosome 11 and PDXDC1 on chromosome 16 based on MESA 

multi-ancestry eQTL resources26 (Table 3.5 and Supplementary Data 3.10). In further 

analysis using eQTL resources from GTEx whole blood28, we confirmed colocalization 

with TMEM258 and MED19 identified using the MESA multi-ancestry eQTLs, and also 

identified colocalization with FADS1, RPS4XP13, AP001462.2, PGA5, PGA5, TPCN2, 

MEN1 on chromosome 11 and RP11-156C22.5 on chromosome 16. (Table 3.5 and 

Supplementary Data 3.11).  

We also performed complementary integrative analysis using PrediXcan, 

identifying significant associations for predicted expression of TMEM258 with AA, ALA, 

DGLA, DPA, EPA, GLA and LA (after multiple testing correction for all genes examined: 

P < 0.05/4470 = 0.00001), based on integration with eQTL from both MESA and GTEx. 

PrediXcan also identified TMEM109, ZBTB3, TTC9C, POLD4, INCENP and FERMT3 

on chromosome 11 and PDXDC1 on chromosome 16 as putative genes associated with 
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PUFAs in HIS (Table 3.5, Supplementary Data 3.12 and Supplementary Data 3.13). 

For AFA, colocalization and PrediXcan analyses did not identify any genes of interest 

that met our pre-specified thresholds for statistical significance. 

 Incorporating the prior chromatin contacts identified (Supplementary Data 3.4), 

we found that several of our GWAS regions had physical contact with one or more 

genes identified by integration with eQTL resources. For example, RAD9A was 

supported by colocalization with MESA eQTL26 and also showed chromatin contact with 

POLD4 in nearly all cell types examined (Figure 3.4b). In addition, INCENP was 

supported by PrediXcan using both MESA26 and GTEx30 resources and also showed 

chromatin contact with TMEM258, FADS1 and FADS2 in nearly all cell types examined 

(Figure 3.4a). We further observed that CLCF1, RAD9A, FADS2, TMEM258, INCENP, 

FADS1 identified from colocalization or PrediXcan were additionally supported by 

chromatin contact analyses (Figure 3.4, Supplementary Data 3.4). 

 To follow-up on the genes of interest identified by colocalization and PrediXcan 

analyses, we examined their co-expression with FADS1 using GTEx whole blood gene 

expression28 with multiple testing correction for the number of genes under 

consideration (HIS: P < 0.05/39 = 0.0012). In both unadjusted and age/sex-adjusted 

regression models, multiple genes showed statistically significant co-expression with 

FADS1, for example, TMEM258, MED19, POLD4, RAD9A and SSH3 (Supplementary 

Data 3.14), suggesting these genes have shared patterns of expression.  

We further applied gene set enrichment analysis to the set of genes identified by 

our integrative colocalization and PrediXcan analyses using the Molecular Signatures 

Database (MSigDB)31–33 gene sets (Supplementary Data 3.15). The most significantly 
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enriched gene set (NIKOLSKY_BREAST_CANCER_11Q12_Q14_AMPLICON) 

comprised the set of genes within amplicon 11q12-q14 identified in a copy number 

alterations study of 191 breast tumor samples34 (P = 6.71 x 10-17), which included 

twelve genes from among those identified by the integrative follow-up analyses of our 

GWAS results: RAD9A, CTTN, PGA5, TPCN2, TMEM109, POLD4, CLCF1, SSH3, 

TBC1D10C, CCS, BBS1, and DPP3. The second most significantly enriched gene set 

(PEA3_Q6) represents the set of genes having at least one occurrence of the motif 

ACWTCCK in the regions spanning 4 kb centered on their transcription starting sites (P 

= 3.25 x 10-09), which included eight genes from among those identified in our  

integrative analyses: TMEM258, C11orf24, FERMT3, POLD4, TBC1D10C, CCDC88B, 

MAP4K2 and DPP3.  
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3.4 Discussion  

To address the relative lack of prior studies examining genetics of PUFA levels in 

non-European ancestry populations, we carried out a meta-analysis of GWAS of n-3 

and n-6 PUFAs in HIS and AFA across three cohorts: MESA, CHS and FHS. Examining 

genetic variants identified in prior CHARGE GWAS of the same traits in European 

Americans19,20, we demonstrated evidence of association with n-3 and n-6 PUFAs for 

the signals in/near FADS1/2 on chromosome 11, PDXDC1 on chromosome 16, and 

GCKR on chromosome 2 in both HIS and AFA from our current CHARGE GWAS, as 

well as for ELOVL2 on chromosome 6 in AFA only. 

Through genome-wide analysis and subsequent statistical fine-mapping of our 

ancestry-specific results, we demonstrated evidence of multiple independent novel 

signals within the FADS1/2 locus in both HIS and AFA, and in/near ELOVL2 in AFA. 

Among these independent novel signals, we found three signals identified in HIS 

demonstrated evidence of replication in AFA based on association with the same PUFA 

traits in MESA and CHARGE (LA: rs518804 intronic to TMX2 [Thioredoxin related 

transmembrane protein 2];  DGLA: rs198461 intronic to MYRF [Myelin regulatory factor] 

and rs198434 intronic to DAGLA [Diacylglycerol lipase alpha]). Additionally, multiple 

novel signals without cross-ancestry replication did show evidence of validation based 

on association with lipid levels in GLGC25. For example, rs11039018, a LRP4 (LDL 

receptor related protein) intron variant associated with AA and LA was validated based 

on its association with HDL and Triglycerides. This finding is supported by animal 

studies showing that deficiency of Lrp4 in adipocytes increased glucose and insulin 

tolerance and reduced serum fatty acids.35 Prior studies from the FORCE consortium 
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have shown that LA is associated with lower risk of diabetes, thus it is possible that the 

association of LRP4 on diabetes risk factors is mediated by LA.36 In addition, a MARK2 

(microtubule affinity regulating kinase 2) intron variant rs10751002 associated with LA 

was validated based on its association with LDL and total cholesterol. We chose to 

perform validation analysis using association results for lipid levels from the GLGC25 

due to (1) the large sample size (>1 million) which made our validation effort very well 

powered to detect associations with the selected lipid traits, and (2) the association 

between fatty acids and lipid traits, for example, fish oil supplements lowering 

triglycerides37 and dietary linoleic acid lowering cholesterol38,39.  

While we identified three signals in HIS with evidence of cross-ancestry 

replication, we also found a large number of signals in HIS that could not be replicated 

across race/ancestry groups (European, African American and Chinese), in part to 

differences in allele frequencies. For example, the chromosome 11 POLD4 (DNA 

polymerase delta 4, accessory subunit) missense variant rs28364240 and ANKRD13D 

(ankyrin repeat domain 13D) intron variant rs142068305 identified in association with 

AA have minor allele frequencies of 0.204 and 0.196 in HIS, compared to frequencies 

close to zero in other race/ancestry groups. 

Examining the distance between the putative causal variants in different credible 

sets identified in HIS, we observed that the signals on chromosome 11 span a long 

range (57.5Mb ~ 67.1Mb). The extended physical distance covered by these 

independent PUFA-associated variants, combined with their subsequent validation in 

association with selected lipid traits, suggests there may be long-range chromatin 

interactions or other forms of physical interaction that may have yielded distinct genetic 
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associations across this region.40 Interestingly, prior studies have reported the FADS 

signal on chromosome 11 as primarily just one genetic signal.19,20 However, our study 

provides evidence of two more independent signals (BEST1 and DAGLA) within this 

FADS region. In order to understand the chromatin interactions of the FADS region on 

chromosome 11, we used ATAC-seq peaks and chromatin loops to perform the 

chromatin contact analyses. We identified multiple genes from colocalization or 

PrediXcan also supported by chromatin contacts, including CLCF1, RAD9A, FADS2, 

TMEM258, INCENP and FADS1, providing support for the role of our identified genetic 

signals in regulating these genes. In addition, we observed evidence of chromatin 

contacts among multiple distinct credible sets identified based on our fine-mapping of 

genetic signals on chromosome 11. For example, the region surrounding rs2668898 

near BEST1 also showed evidence of physical contact with the TMEM258, FADS1 and 

FADS2 region in multiple cell types and TMEM258 also showed evidence of physical 

contact with the FADS1 and FADS2 region. This support for physical contact among 

some of the multiple independent signals within the FADS region opens the possibility 

of coordinated regulation among these distinct genetic signals. Besides the FADS 

region, POLD4 also showed evidence of physical contact with the ANKRD13D region in 

multiple cell types. The cell types examined for chromatin interaction correspond to 

pancreas, liver, and other cell types that could play a role in synthesis and regulation of 

fatty acids. While the cell types used to examine chromatin interactions are distinct from 

those used for our integrative eQTL analyses, the chromatin interaction results do 

provide support for the plausible role of the genes identified by colocalization and 

PrediXcan. 
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Through integrative analyses, including colocalization analysis and PrediXcan, 

that examined overlap of our GWAS of PUFA levels with selected eQTL resources26,28, 

we identified putative candidate genes that may shed light on the functional 

mechanisms of our identified genetic association signals. On chromosome 11 

containing the FADS genes, we identified overlap with eQTL for multiple other genes 

including MED19 (Mediator Complex Subunit 19), TMEM258 (Transmembrane Protein 

258), PACS1 (Phosphofurin Acidic Cluster Sorting Protein 1), RAD9A (RAD9 

Checkpoint Clamp Component A) and CTTN (Cortactin) suggesting additional 

complexity within this region beyond the FADS genes. For the signals on chromosome 

16 identified based on analyses of DGLA in HIS and AFA, in/near NTAN1 and 

PDXDC1, our integrative PrediXcan analyses identified PDXDC1 (Pyridoxal Dependent 

Decarboxylase Domain Containing 1) (but not NTAN1) as a putative gene for DGLA. 

Additionally, having identified association with AA in HIS for the POLD4 missense 

variant rs28364240, our subsequent identification of POLD4 (DNA Polymerase Delta 4, 

Accessory Subunit) based on the PrediXcan analyses brings additional support for this 

gene. To follow-up on the genes of interest identified by colocalization and PrediXcan 

analyses, we examined their co-expression with FADS1 using GTEx whole blood gene 

expression. Multiple genes on chromosome 11 identified in our integrative analyses 

combining the GWAS of PUFAs with whole blood expression from GTEx showed 

evidence of co-expression with FADS1, for example, TMEM258, POLD4, TMEM109 

and ZBTB3. This finding suggests some genomic regions at a considerable distance 

from FADS1 may play a role in regulating its expression, and ultimately influence 

circulating PUFA levels. Downstream pathway analysis of the genes identified by our 
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integrative analyses further highlighted common features of these genes, including their 

regulation by transcription factors41 and their relevance to breast cancer34, UV 

radiation42, and cell states or perturbations within the immune system. 43,44 As a recent 

Mendelian randomization study highlighted the relationship between genetically 

elevated PUFA levels and risk of cancer,45 our current work provides further support for 

that connection. 

While our genetic association study of PUFA levels in HIS and AFA provides 

novel insights, our work has several limitations. First, while we have combined data 

from multiple CHARGE cohorts, the overall sample size of our study is still relatively 

small for a GWAS. Second, as we began this GWAS effort some years ago, our work 

makes use of older imputation panels based on the 1000 Genomes. We expect future 

work could leverage newer resources including imputation based on the Trans-omics for 

Precision Medicine (TOPMed) reference panel or newer whole genome sequence data 

from TOPMed46. Third, the circulating PUFA levels examined in this study are derived 

from heterogeneous sources (plasma phospholipids in MESA and CHS vs. erythrocytes 

in FHS), which could have resulted in heterogeneity of genetic associations across the 

included studies and overall loss of power. Finally, while our integration of GWAS with 

eQTL proved useful in some cases, our efforts were driven in part by the available 

resources. We made use of multi-ancestry eQTL resources based on purified 

monocytes in MESA, as we knew these resources were well-matched with our GWAS 

cohorts in terms of LD structure, although purified monocytes were likely not the most 

relevant cell type for our study. We complemented those efforts with whole blood eQTL 

from GTEx through which we were able to capture colocalization of FADS1 that was not 
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observed in MESA due to the lack of significant cis-eQTL for FADS1. This limitation 

underscores the need for more diverse ancestry eQTL resources across a wider range 

of tissues and cell types. 

In summary, working with the CHARGE Consortium, we conducted a consortium-

based GWAS of circulating PUFA levels in HIS and AFA cohorts. Our study 

demonstrated evidence of shared genetic influences on PUFA levels across 

race/ancestry groups, and demonstrated a large number of distinct genetic association 

signals within a neighborhood of the well documented FADS region on chromosome 

11.19,20 Our findings provide insight into the complex genetics of circulating PUFA levels 

that reflect, in part, their response to evolutionary pressures across the course of human 

history.47,48 Overall, our study demonstrates the value of investigating complex trait 

genetics in diverse ancestry populations and highlights the need for continued efforts for 

expanded genetic association efforts in cohorts with genetic ancestry that reflects that of 

the general population within the United States and worldwide. In future work, genetic 

loci identified in this study could be leveraged to examine gene x fatty acid interactions 

on disease outcomes, or to construct more precise genetic predictors of sub-optimal or 

deficient fatty acid levels which could be central to efforts in precision nutrition.17,49 

Additionally, we anticipate the results from this work could help to motivate downstream 

studies focused on fatty acids as a mediator of specific genes’ influences on identified 

pathways, including cancer and immune responses, as well as the long-range 

regulation of gene function by other genes located in distinct and distant portions of the 

same chromosome. 
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3.5 Methods  
 
3.5.1 Study participants 

 The participants in this study were recruited from three population-based cohorts: 

the Multi-Ethnic Study of Atherosclerosis (MESA), the Cardiovascular Health Study 

(CHS) and the Framingham Heart Study (FHS). This manuscript focuses on HIS 

participants from MESA (N = 1,243) and FHS (N = 211) and AFA participants from 

MESA (N = 1472), CHS (N = 603) and FHS (N = 203).  

MESA is a longitudinal cohort study of subclinical cardiovascular disease and risk 

factors that predict progression to clinically overt cardiovascular disease or progression 

of subclinical disease.50 Between 2000 and 2002, MESA recruited 6,814 men and 

women 45 to 84 years of age from Forsyth County, North Carolina; New York City; 

Baltimore; St. Paul, Minnesota; Chicago; and Los Angeles. Participants at baseline 

were 38% White, 28% African American, 22% Hispanic and 12% Asian (primarily 

Chinese) ancestry. 

 CHS is a population-based cohort study of risk factors for coronary heart disease 

and stroke in adults ≥65 years conducted across four field centers.51 The original 

predominantly European ancestry cohort of 5,201 persons was recruited in 1989-1990 

from random samples of the Medicare eligibility lists; subsequently, an additional 

predominantly African-American cohort of 687 persons was enrolled in 1992-1993 for a 

total sample of 5,888. Analyses were limited to those with available DNA who 

consented to genetic studies. 

 FHS is a population-based longitudinal study of families living in Framingham, 

Massachusetts which originated in 1948 and consisted of individuals of predominantly 



 116 

European ancestry.52 In 1994, the Omni Cohort 1 enrolled 507 men and women of 

African-American, Hispanic, Asian, Indian, Pacific Islander and Native American origins, 

who at the time of enrollment were residents of Framingham and the surrounding towns.  

 

3.5.2 Fatty Acid measurements 

Circulating PUFA levels were quantified from plasma phospholipids in MESA and 

CHS, and from erythrocytes in FHS. Measurements were taken from biologically 

independent distinct samples.  

MESA: The fatty acids were measured in EDTA plasma, frozen at –70°C.53 Lipids 

were extracted from the plasma using a chloroform/methanol extraction method and the 

cholesterol esters, triglyceride, phospholipids and free fatty acids are separated by thin 

layer chromatography. The fatty acid methyl esters were obtained from the 

phospholipids and were detected by gas chromatography flame ionization. Individual 

fatty acids were expressed as a percent of total fatty acids. A total of 28 fatty acids were 

identified. 

 CHS:  Blood was drawn after a 12-hour fast and stored at –70°C. Total lipids 

were extracted from plasma using methods of Folch54, and phospholipids separated 

from neutral lipids by one-dimensional TLC. Fatty-acid-methyl-ester (FAME) samples 

were prepared by direct transesterification using methods of Lepage and Roy55, and 

separated using gas chromatography (Agilent5890 gas- chromatograph-FID-detector; 

Supelco fused-silica 100m capillary column SP-2560; initial 160°C 16 min, ramp 

3.0°C/min to 240°C, hold 15 min).56 Identification, precision, and accuracy were 

continuously evaluated using model mixtures of known FAMEs and established in-
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house controls, with identification confirmed by GC-MS at USDA (Peoria, IL). A total of 

42 fatty acids were identified. Fatty acid levels were expressed as percent of total fatty 

acids. CVs were <3% for most fatty acids. 

 FHS: Red blood cells (RBCs) were isolated from blood drawn after a 10–12 h 

fast and frozen at −80 °C immediately after collection. RBC fatty acid composition was 

analyzed by gas chromatography (GC) with flame ionization detection.57 Unwashed, 

packed RBCs were directly methylated with boron trifluoride and hexane at 100 °C for 

10 min. The fatty acid methyl esters thus generated were analyzed using a GC2010 

Gas Chromatograph (Shimadzu Corporation, Columbia, MD) equipped with an SP2560, 

fused silica capillary column (Supelco, Bellefonte, PA). Fatty acids were identified by 

comparison with a standard mixture of fatty acids characteristic of RBC (GLC 727, 

NuCheck Prep, Elysian, MN) which was also used to determine individual fatty acid 

response factors. The omega-3 index is defined as the sum of EPA and DHA expressed 

as a percent of total identified fatty acids. The coefficients of variation were 6.2% for 

EPA, 4.4% for DHA and 3.2% for the omega-3 index. All fatty acids present at >1% 

abundance had CVs of ≤7%. 

 

3.5.3 Genotyping and imputation 

Each of the participating cohorts had genome-wide genotype data based on a 

GWAS array, followed by imputation based on the 1000 Genomes Phase 1 v3 (for CHS) 

or Phase 3 (for MESA and FHS) Cosmopolitan reference panel.58  

MESA: Participants in the MESA cohort who consented to genetic analyses and 

data sharing (dbGaP) were genotyped using the Affymetrix Human SNP Array 6.0 
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(GWAS array) as part of the NHLBI CARe (Candidate gene Association Resource) and 

SHARe (SNP Health Association Resource) projects. Genotype quality control for these 

data included filter on SNP level call rate < 95%, individual level call rate < 95%, 

heterozygosity > 53%.59 The cleaned genotypic data was deposited with MESA 

phenotypic data into dbGaP (study accession phs000209.v13.p3); 8,224 consenting 

individuals (2,685 White, 2,588 non-Hispanic African-American, 2,174 Hispanic, 777 

Chinese) were included, with 897,981 SNPs passing study specific quality control (QC). 

SNP coverage from the original GWAS SNP genotyping array was increased through 

imputation using the 1,000 Genomes Phase 3 integrated variant set completed using 

the Michigan Imputation Server.60,61 

CHS: DNA was extracted from blood samples drawn on all participants at their 

baseline examination. In 2010, genotyping was performed at the General Clinical 

Research Center's Phenotyping/Genotyping Laboratory at Cedars-Sinai using the 

Illumina HumanOmni1-Quad_v1 BeadChip system on African-American CHS 

participants who consented to genetic testing, and had DNA available for genotyping. 

Genotyping was attempted in 844 participants, and was successful in 823. Participants 

were excluded if they had a call rate<=95% or if their genotype was discordant with 

known sex or prior genotyping (to identify possible sample swaps). Genotype quality 

control excluded SNPs with a call rate < 97%, HWE P < 1x10-5, > 1 duplicate error or 

Mendelian inconsistency (for reference CEPH trios), heterozygote frequency = 0, which 

resulted in a final set of 963,248 SNPs (940,567 autosomal). Imputation to the 1,000 

Genomes Phase I integrated variant set was completed using IMPUTE version 2.2.2. 

Variants with insufficient effective minor alleles are filtered prior to analysis, with a 
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threshold set at 5 effective alleles resulting in 14,191,388 variants for analysis.  

FHS: Direct genotypes were obtained using the Affymetrix 500K and MIPS 50K 

chips, and were analyzed at the Affymetrix Core Laboratory. Genotype quality control 

for these data included filter on SNP level call rate < 95%, individual level call rate < 

95%, HWE P < 10-5, and genotypes with Mendel errors were set to missing. The 

cleaned genotypic data consisted of N= 414 (211 Hispanic, 203 African-American) with 

628,076 SNPs passing study specific quality control (QC). SNP coverage from the 

original GWAS SNP genotyping array was increased through imputation using the 1,000 

Genomes Phase 3 integrated variant set completed using the Michigan Imputation 

Server60,61.  

 

3.5.4 Data transformation and detection of outliers in measured PUFA Levels  

 After examining the raw phenotype distributions for each of the phenotypes of 

interest, we applied variable transform for traits exhibiting deviation from normality. Log-

transformation was applied for ALA, EPA and GLA. In addition, outliers for all of the 

PUFA levels were identified by the limits of median +/- 3.5 * MAD’, where MAD’ is 

computed with a scale factor constant of 1.4826 [default for the mad() function in R]. 

The value of MAD’ = 1.4826 * MAD0 where MAD0 is the raw value of median absolute 

deviation (MAD). For all the PUFAs, outliers were winsorized to the value of (median +/- 

3.5 * MAD’). 

 

3.5.5 Genome-wide Association Study (GWAS) and Meta-analysis  

Participants who were not in the self-reported African American or Hispanic 
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American groups of interest to this manuscript were excluded from the primary GWAS 

analyses. To construct clean race/ancestry groups for stratified GWAS analyses, self-

reported race/ethnicity groups were cleaned by removing outliers for principal 

components (PCs) of ancestry based on the limited of mean +/- 3.5 * standard 

deviation, separately for each of the participating cohorts. GWAS was then carried out 

separately in each cohort and stratified by race/ancestry with covariate adjustment for 

age, sex, study site and PCs of ancestry. Cohort-specific GWAS results were filtered 

using EasyQC based on minor allele count (MAC) > 6 and imputation R-squared > 0.3. 

Cohort-specific results were combined using weighted sum of z-score meta-analysis in 

METAL62 and filtered using Effective Heterozygosity Filter (effHET) > 60. A threshold of 

P < 5 x 10−8 was applied to identify genome-wide significant loci.  

 

3.5.6 Statistical fine-mapping using SuSiE 

 For each chromosome with more than one genome-wide significant variant (at P 

< 5 x 10−8), we carried out statistical fine-mapping to identify the putative causal variants 

and estimate the number of independent signals. We used Sum of Single Effect model 

(SuSiE)24 to identify the credible set of putative causal variants, providing as input all 

variants with P < 5 x 10−8 from the meta-analysis results . For fine-mapping of signals 

identified in our meta-analysis of HIS and AFA, we used imputed genotype dosage for 

the same set of variants in MESA HIS and AFA, respectively. To select the parameter L 

(prior number of independent signals) for fine-mapping in SuSiE, DAP-G (Deterministic 

Approximation of Posteriors)63 was conducted to provide a starting value for L based on 

the number of credible sets that the threshold of posterior inclusion probability was 
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greater than 0.95. 

 

3.5.7 Identification of Novel versus Previously Reported Signals 

To distinguish novel versus previously reported signals, we used the results from 

our previously published CHARGE GWAS n-3 (n=8,866)19 and n-6 (n=8,631)20 PUFAs 

in European ancestry to define the set of known signals. For each trait in the present 

GWAS effort, credible sets that included at least one variant reported in the previous 

CHARGE GWAS of the same trait in European ancestry were considered known, while 

the remaining signals were considered novel in the current study. 

 

3.5.8 Cross-ancestry Replication analysis  

 Following statistical fine-mapping, cross-ancestry replication analyses were 

conducted for the most highly supported putative causal variant from each credible set 

using data on n-3 and n-6 PUFAs from other race/ancestry groups. To do so, we 

examined results from the prior CHARGE GWAS meta-analysis of European American 

cohorts (CHARGE EUR), as well as GWAS results of HIS (CHARGE HIS) and AFA 

(CHARGE AFA) from the present study. As prior GWAS were performed using earlier 

imputation panels, we further used available measures of n-3 and n-6 PUFAs in self-

reported European American (MESA EUR) and Chinese Americans (MESA CHN) from 

MESA as an additional source of replication having genotype imputation based on 1000 

Genomes Phase 3, for consistency with our current work. The resources used for 

replication analyses were as follows. European Americans (MESA EUR and 

CHARGE EUR): 2344 self-reported European American participants from MESA (using 
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1000 Genomes Phase 3 imputation, for comparison with the current study), as well as 

summary statistics from the previously published CHARGE GWAS meta-analysis of n-3 

(n=8,866)19 and n-6 (n=8,631)20 PUFAs based on imputation from the HapMap Phase I 

and II; African Americans (CHARGE AFA): summary statistics from the present 

GWAS of PUFAs in AFA to examine cross-ancestry replication of variants identified in 

the present GWAS of HIS; Hispanic Americans (CHARGE HIS): summary statistics 

from the present GWAS of PUFAs in HIS to examine cross-ancestry replication of 

variants identified in the present GWAS of AFA; and Chinese Americans (MESA 

CHN): 649 self-reported Chinese American participants from MESA (using 1000 

Genomes Phase 3 imputation, for comparison with the current study). 

The genetic association analyses performed for replication in each of these 

studies included covariate adjustment for age, sex, study site (where appropriate) and 

PCs of ancestry. Multiple testing correction was applied to account for the number of 

variants examined in cross-ancestry replication (HIS: P < 0.05/19 = 0.0026 and AFA: P 

< 0.05/11 = 0.004). 

 

3.5.9 Validation Analysis  

Given the limited number of cohorts available for ancestry-specific and cross-

ancestry replication of PUFA traits, additional validation analyses were conducted for 

the same set of variants using multi-ancestry genetic association with lipid traits (HDL, 

LDL, total cholesterol and triglycerides) from the Global Lipids Genetics Consortium 

(GLGC).25 The GLGC aggregated GWAS results of lipid traits from 1,654,960 

individuals from 201 primary studies. The genetic ancestry groups include admixed 
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African or African, East Asian, European, Hispanic and South Asian. The genetic 

analyses performed by GLGC included covariate adjustment for age, age2, PCs of 

ancestry and any necessary study-specific covariates. Multiple testing correction was 

applied to account for the number of variants examined in cross-ancestry validation 

(HIS: P < 0.05/19 = 0.0026 and AFA: P < 0.05/11 = 0.004). 

 

3.5.10 Bayesian colocalization analysis  

Bayesian colocalization analysis has proven an effective approach for 

identification of downstream genes underlying GWAS loci.35 We used the R/coloc 

package to conduct Bayesian colocalization analysis64 to identify the putative gene(s) 

corresponding to each credible set of variants using MESA multi-ancestry eQTL data 

from purified monocytes26 and GTEx multi-ancestry whole blood tissue eQTL data.65 

Bayesian colocalization analysis tested the following hypotheses: H0. neither GWAS of 

PUFAs nor eQTL has a genetic association in the region (within 1 Mb of the 

transcription start site); H1. only GWAS of PUFAs has a genetic association in the 

region; H2. only eQTL has a genetic association in the region; H3. both GWAS of 

PUFAs and eQTL are associated, but with different causal variants; H4. both GWAS of 

PUFAs and eQTL are associated and share a single causal variant. Colocalization for 

variants in credible sets was defined by (1) a posterior colocalization probability of 

hypothesis 4 (PP.H4) > 0.80, or (2) a PP.H4 > 0.50 and the ratio of PP.H4 / PP.H3 > 5.  

 

3.5.11 PrediXcan model.  

 PrediXcan, a gene-based association method focused on identifying trait-
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associated genes by quantifying the effect of gene expression on the phenotype on 

interest.66 In this study, we applied summary-statistics based PrediXcan (S-PrediXcan)30 

using reference gene expression prediction models from MESA purified monocytes26 

and GTEx multi-ancestry whole blood30. S-PrediXcan associations were considered 

genome-wide significant if they passed the multiple testing correction for all genes 

(MESA: P < 0.05/4470 = 0.00001 and GTEx: P < 0.05/4350 = 0.00001).  

 

3.5.12 Chromatin Contact Analysis  

 To identify variants located in open chromatin regions in contact gene promoters, 

we used GenomicRanges (v. 1.46.1; R version 4.1.1) to intersect the genomic 

coordinates (hg19) of the variants contained in the credible sets with the open 

chromatin peaks (called using the ENCODE pipeline) in significantly enriched contact 

with gene promoter determined by Promoter Capture C (Chicago Score > 5). We 

queried chromatin accessibility and promoter contacts in human mesenchymal stem 

cells (hMSC) and Adipocytes differentiated in vitro from these (hMSC_Adipocytes), 

embryonic stem cell derived hypothalamic neurons (hESC Hypothalamic Neurons), 

induced pluripotent-dervived Heptocytes (IPS-Hepatocytes), Enteroids, and the hepatic 

carcinoma HepG2 cell line.67–72 

 

3.5.13 Gene Co-expression Analysis. 

 We used the GTEx whole blood gene expression version 8 TPM dataset to 

examine co-expression with FADS1 for genes identified by integrative analyses, 

including colocalization and PrediXcan. Two models for gene co-expression analysis 
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were used for each expression trait of interest: Model 1 - an unadjusted model FADS1 

~ gene expression; and Model 2 - a covariate adjusted model FADS1 ~ age + gender + 

gene expression.  

Gene co-expression associations were considered statistically significant if they 

passed the multiple testing correction for all genes examined from colocalization and 

PrediXcan (P < 0.05/39 = 0.0012). 

 

3.5.14 Gene set enrichment analysis  

We applied gene set enrichment analysis for the combined set of genes identified 

by our integrative analyses (colocalization and PrediXcan) using the Molecular 

Signature Database (MSigDB) including hallmark gene sets (H), curated gene sets 

(C2), regulatory target gene sets (C3), computational gene sets (C4), ontology gene 

sets (C5), oncogenic signature gene sets (C6), immunologic signature gene (C7), cell 

type signature gene sets (C8). 31–33 

 

3.5.15 Statistics and Reproducibility 

Throughout the manuscript, statistical analyses and reported sample sizes reflect the 

number of biologically independent samples, with no single individual (person) 

contributing more than one data point to any given analysis. All P-values are presented 

based on two-sided statistical tests.  

 

3.5.16 Ethical Review 

All relevant ethical regulations were followed for the study of human participants. 
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All MESA, FHS and CHS participants provided written informed consent for participation 

at their respective study sites, including consent to participate in genetic studies. The 

MESA, FHS and CHS studies were also reviewed and approved by the Institutional 

Review Boards (IRBs) at each of the participating study sites. The current investigation 

including genetic analysis of n-3 and n-6 PUFA levels was reviewed and approved by 

the Institutional Review Boards (IRB) at the University of Virginia, the University of 

Washington and the Fatty Acid Research Institute. 

 

3.5.17 Data availability 

Genome-wide genotype data for the Multi-Ethnic Study of Atherosclerosis (MESA), the 

Framingham Heart Study (FHS) and the Cardiovascular Health Study (CHS) are 

available by application through dbGaP. The dbGaP accession numbers are: MESA 

phs000209, FHS phs000007 and CHS phs000287. Summary statistics resulting from 

our GWAS meta-analysis as presented in this manuscript will be available on the 

CHARGE Summary Results site by application through dbGaP under the accession 

number phs000930. Summary statistics from the prior CHARGE GWAS of n-3 and n-6 

fatty acids19,20 were obtained from the CHARGE Consortium Results site73. Summary 

statistics from the GLGC GWAS of lipid levels25 are available publicly74. All other data 

are available from the corresponding author (or other sources, as applicable) on 

reasonable request. 

 

3.5.18 Code availability 

Statistical fine mapping of GWAS loci was conducted using SuSiE24 as implemented 
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using susieR version 0.12.27.76 DAP-G63 was used to choose the starting values for 

SuSiE and implemented using DAP-G version 1.0.0.77 Bayesian colocalization 

analysis64 was implemented using R/coloc version 5.1.0.1.78 S-PrediXcan analysis was 

implemented using S-PrediXcan version 0.6.11.79 Gene set enrichment analysis was 

implemented using MSigDB v7.5.1.80 
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Table 3.1.  CHARGE cohort descriptives. 
 MESA/Hispanic 

Americans FHS/Hispanic 
Americans 

MESA/African 
Americans CHS/African 

Americans FHS/African 
Americans 

Participant 
characteristics      

No. subjects 1243 211 1472 603 203 
Women 629 (50.6) 129 (61.1) 788 (53.5) 390 (64.7) 130 (64.0) 

Age, years 61 [53, 69] 53 [44, 60] 63 [53, 70] 74 [71, 79] 58 [50, 67] 
n-3 
Polyunsaturated 
Fatty Acids 

    
 

ALA (% of total 
fatty acids) 0.16 [0.12, 0.20] 0.21 [0.16, 0.27] 0.15 [0.12, 0.19] 0.13 [0.11, 0.17] 0.18 [0.15, 0.23] 

EPA 0.53 [0.37, 0.74] 0.57 [0.47, 0.78] 0.68 [0.51, 0.98] 0.53 [0.39, 0.67] 0.68 [0.48, 1.01] 
DPA 0.86 [0.73, 1.00] 2.49 [2.13, 2.79] 0.93 [0.80, 1.07] 0.85 [0.75, 0.97] 2.54 [2.25, 2.89] 
DHA 2.96 [2.29, 3.77] 4.21 [3.45, 5.13] 4.05 [3.25, 4.95] 3.46 [2.87, 4.17] 5.23 [4.21, 6.47] 

n-6 
Polyunsaturated 
Fatty Acids 

     

LA 20.92 [18.87, 23.07] 14.32 [12.24, 16.76] 18.88 [17.12, 20.84] 17.84 [16.46, 19.40] 12.53 [10.88, 15.16] 
GLA 0.11 [0.08, 0.14] 0.15 [0.10, 0.18] 0.10 [0.08, 0.13] 0.07 [0.05, 0.09] 0.10 [0.07, 0.15] 

DGLA 3.57 [3.04, 4.13] 1.95 [1.63, 2.35] 2.89 [2.47, 3.33] 2.76 [2.39, 3.24] 1.51 [1.32, 1.78] 
AA 11.01 [9.37, 12.84] 16.56 [15.17, 17.74] 13.21 [11.65, 14.82] 12.64 [11.57, 13.86] 17.17 [15.95, 18.48] 

 
Table 3.1 shows the participant characteristics of the Hispanic Americans and African Americans from 
each cohort (MESA, CHS and FHS). Data are presented as n (%) for binary measures or median [IQR] 
for continuous measures. Summary statistics are reported for the subset of individuals with data available 
for at least one of the fatty acid traits examined in genetic analyses. Fatty acids were measured in plasma 
phospholipids in MESA and CHS and in erythrocytes in FHS. 
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Table 3. 2. Genome-wide significant signals (Credible sets) for PUFAs in CHARGE 
Hispanic Americans. 

  Lead variant 
(Chr:Pos:EFF:OTH) EAF Zscore P-value Clus

ter 
# Of 
SNP 

Novel/ 
Known 

Nearest 
Gene 

AA 

rs102274 
(11:61557826:C:T) 0.506 -24.26 5.1E-130 1 7 Known TMEM258 

rs142068305 
(11:67065755:T:G)  0.196 -7.06 1.63E-12 2 1 Novel ANKRD13D 

rs28364240  
(11:67120530:G:C) 0.204 -7.04 1.88E-12 3 1 Novel POLD4 

rs2668898 
(11:61725498:G:A) 0.402 -5.83 5.32E-09 4 1 Known BEST1 

rs180792704 
(11:67325239:C:G) 0.199 -7.56 3.81E-14 5 1 Novel NA 

rs198434 
(11:61483417:A:G) 0.710 -8.97 2.80E-19 6 1 Novel DAGLA 

rs518804 
(11:57494487:C:A) 0.420 -7.73 1.01E-14 7 1 Novel TMX2 

rs3177514 
(11:66130358:G:T) 0.699 -5.60 2.06E-08 8 1 Novel SLC29A2 

ALA rs174562 
(11:61585144:G:A) 0.503 7.84 4.30E-15 1 23 Known FADS1 

DGL
A 

rs174538 
(11:61560081:A:G) 0.488 14.70 6.03E-49 1 1 Known TMEM258 

rs174585 
(11:61611694:A:G) 0.274 9.82 8.72E-23 2 1 Known FADS2 

rs198434 
(11:61483417:A:G) 0.710 6.27 3.57E-10 3 1 Novel DAGLA 

rs198461 
(11:61524366:C:A)  0.363 -5.95 2.54E-09 4 1 Novel MYRF 

rs57112407 
(15:78088914:T:C) 0.255  -5.86 4.46E-09 NA NA Novel LINGO1 

rs4985155 
(16:15129459:G:A) 0.524 -7.72 1.16E-14 1 25 Known PDXDC1 

DPA 
rs1535 

(11:61597972:G:A) 0.520 -11.31 1.07E-29 1 18 Known FADS2 

rs198434 
(11:61483417:A:G) 0.710 -6.26 3.67E-10 2 1 Novel DAGLA 

EPA rs102274 
(11: 61557826:C:T) 0.506 -11.56 6.18E-31 1 17 Known TMEM258 

GLA rs174576 
(11: 61603510:A:C) 0.546 -7.73 1.07E-14 1 19 Known FADS2 

LA 

rs174564 
(11:61588305:G:A) 0.520 15.11 1.23E-51 1 10 Known FADS2 

rs10751002 
(11:63617634:G:T) 0.664 6.06 1.36E-09 2 1 Novel MARK2 

rs2668898 
(11:61725498:G:A) 0.402 5.54 2.99E-08 3 1 Known BEST1 

rs28364240 
(11:67120530:G:C) 0.204 5.90 3.44E-09 4 1 Novel POLD4 

rs11039018 
(11:46909524:A:C) 0.67 -6.10 1.01E-09 5 1 Novel LRP4 

rs518804  
(11:57494487:C:A) 0.420 6.03 1.62E-09 6 1 Novel TMX2 

 
Table 3.2 shows the signals (credible sets) of putative causal variants identified for each of the PUFAs by 
fine mapping using SuSiE in HIS (n = 1,454). All variant positions are presented based on Human 
Genome Build 37. Variants previously documented in the CHARGE GWAS meta-analysis of n-3 and n-6 
PUFAs were considered known prior to the current meta-analysis. The remaining variants were 
considered novel in the current study. There was only one genome-wide significant variant on 
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chromosome 15 for DGLA (rs57112407) in HIS, and this signal was not carried forward for fine-mapping. 
P-values are calculated using a two-sided test for the z-score derived by meta-analysis including a total of 
n = 1454 biologically independent samples. 
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Table 3.3. Genome-wide significant signals (Credible sets) for PUFAs in CHARGE 
African Americans. 

  Lead variant 
(Chr:Pos:EFF:OTH) EAF Zscore P-value Clus

ter 
# Of 
SNP 

Novel/ 
Known 

Nearest 
Gene 

AA 

rs174585 
(11:61611694:A:G) 0.060 -9.32 1.08E-20 1 1 Known FADS2 

rs174607 
(11:61627321:C:G) 0.078 -6.49 8.47E-11 2 1 Known FADS2 

rs174564 
(11:61588305:G:A) 0.133 -14.85 6.43E-50 3 1 Known FADS2 

rs174559 
(11:61581656:A:G) 0.078 -13.68 1.27E-42 4 1 Known FADS1 

rs17161592 
(7:9388418:C:G) 0.085 -6.31 2.75E-10 1 2 Novel NA 

DGL
A 

rs174560 
(11:61581764:C:T) 0.216 9.12 7.51E-20 1 1 Known FADS1 

rs1136001 
(16:15131974:T:G) 0.220 -6.11 9.69E-10 2 17 Known PDXDC1 

DPA  
rs717894 

(6:22119292:A:G) 0.250 -5.48 4.11E-08 1 1 Novel CASC15 

rs9295741 
(6:10997166:T:C) 0.223 5.54 2.89E-08 2 2 Known ELOVL2 

DHA rs114622288 
(10:14663844:A:G) 0.050 -5.71 1.16e-08 NA NA Novel FAM107B 

LA rs1535 
(11:61597972:G:A) 0.163 7.88 3.14E-15 1 2 Known FADS2 

 
Table 3.3 shows the signals (credible sets) of putative causal variants identified for each of the PUFAs by 
fine-mapping using SuSiE in AFA (n = 2,278). All variant positions are presented based on Human 
Genome Build 37. Variants previously documented in the CHARGE GWAS meta-analysis of n-3 and n-6 
PUFAs were considered known prior to the current meta-analysis. The remaining variants were 
considered novel in the current study. There was only one genome-wide significant variant on 
chromosome 10 for DHA (rs114622288) in AFA, and this signal was not carried forward for fine-mapping. 
P-values are calculated using a two-sided test for the z-score derived by meta-analysis including a total of 
n = 2278 biologically independent samples. 
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Table 3.4. Novel PUFA-associated signals (credible sets) from analysis of HIS 
with external cross-ancestry replication or multi-ancestry validation evidence. 

Traits Variants 
(chr:pos:effect:other) Discovery Replication Validation Direction Nearest 

Gene 

AA 
rs518804 

(11:57494487:C:A) 
HIS:  

P = 1.01E-14 NS HDL: P = 1.96E-06 
logTG: P = 0.001 

HIS: (-) 
HDL: (-) 

logTG: (+) 
TMX2 

rs198434 
(11:61483417:A:G) 

HIS:  
P = 2.80E-19 NS logTG: 

P = 1.65E-03 
HIS: (-) 

logTG: (+) DAGLA 

 
DGLA 

rs198461 
(11:61524366:C:A)  

HIS:  
P = 2.54E-09 

EUR: 
P = 7.37E-09 

HDL: P = 4.81E-13 
LDL: P = 1.92E-13 

logTG:  
P = 1.19E-18 

TC: P = 5.63E-14 

HIS: (-) 
EUR: (-) 
HDL: (+) 
LDL: (+) 

logTG: (-) 
TC: (+) 

MYRF 

rs198434 
(11:61483417:A:G) 

HIS:  
 P = 3.57E-10 

EUR: 
P = 2.54E-03 

logTG: 
P = 1.65E-03 

HIS: (+) 
EUR: (+) 

logTG: (+) 
DAGLA 

DPA rs198434 
(11:61483417:A:G) 

HIS:  
P = 3.67E-10 NS logTG: 

P = 1.65E-03 
HIS: (-) 

logTG: (+) DAGLA 

LA 

rs518804 
(11:57494487:C:A) 

HIS:  
P = 1.62E-09 

EUR: 
P = 2.50E-03 

HDL: P = 1.96E-06 
logTG: P = 0.001 

HIS: (+) 
EUR: (-) 
HDL: (-) 

logTG: (+) 

TMX2 

rs10751002 
(11:63617634:G:T) 

HIS:  
P = 1.36E-09 NS LDL: P = 3.31E-12 

TC: P = 5.74E-09 
HIS: (+) 
LDL: (+) 
TC: (+) 

MARK2 

rs1039018 
(11:46909524:A:C) 

HIS:  
P = 1.01E-09 NS 

HDL: P = 2.85E-74 
logTG:  

P = 4.5E-43 

HIS: (+) 
HDL: (+) 
logTG: (-) 

LRP4 

 
Table 3.4 shows the novel putative causal variants in each signal (credible set) identified from fine-
mapping for PUFAs with replication and validation evidence in HIS (n = 1,454). All variant positions are 
presented based on Human Genome Build 37. Variants that were not previously documented in the 
CHARGE GWAS meta-analysis of n-3 and n-6 PUFAs and were not in LD with known GWAS variants 
were considered novel in the current study. P-values corresponding to discovery (in HIS) and replication 
(in EUR) are calculated using a two-sided test for the z-score derived by meta-analysis including a total of 
n = 1,454 or n=2,344 biologically independent samples, respectively. Validation P-values are extracted 
directly from the GWAS summary statistics corresponding to the GLGC publication.133  
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Table 3.5. Integrative analysis (Colocalization and PrediXcan) in the Hispanic 
Americans using multi-ancestry resources from MESA and GTEx. 

 Colocalization Analysis  PrediXcan  

 
MESA multi-

ancestry 
eQTLs 

GTEx eQTLs MESA  GTEx 

AA 

Chromosome 11 

MED19, 
TMEM258, 

PACS1, 
RAD9A 

RPS4XP13, 
AP001462.6 

TMEM258, TMEM109, ZBTB3, TTC9C, 
FERMT3, MED19, POLD4, CLCF1, 
INCENP, MADD, SSH3, C11orf24, 
PRPF19, TBC1D10C, BANF1, CCDC86, 
NXF1, MS4A6E, CCS, COX8A, 
CCDC88B, ACP2, MAP4K2 

TMEM258, TMEM223, NXF1, 
INCENP, MUS81, C11orf84, MED19, 
MEN1, BBS1, NEAT1, DPP3, SSH3, 

ACP2, ASRGL1, RNASEH2C 

ALA 

Chromosome 11 

TMEM258, 
MED19 

MED19, 
PGA5, 

TMEM258 
TMEM258, TMEM109 TMEM258 

DGLA 

Chromosome 11 

TMEM258  TMEM258, ZBTB3 TMEM258, FADS1, FADS2 

Chromosome 16 

PDXDC1 RP11-
426C22.5 PDXDC1 NPIPA2 

DPA 

Chromosome 11 

TMEM258, 
C11orf24, 
RAD9A 

PGA5 TMEM258, TMEM109 TMEM258, SSH3, TMEM223 

EPA 

Chromosome 11 

TMEM258 TPCN2 TMEM258, FERMT3, TMEM109 TMEM258, SSH3, TMEM223 

GLA 
Chromosome 11 

TMEM258 MEN1 TMEM258 TMEM258 

 Chromosome 11 

LA 
MED19, CTTN, 

C11orf24, 
RAD9A 

MED19, 
TPCN2, 
FADS1, 

RPS4XP13, 
AP001462.6 

TMEM258, TMEM109, FERMT3, ZBTB3, 
COX8A, MADD, POLD4, TBC1D10C, 

INCENP, TTC9C, MED19, CLCF1, 
SSH3, ACP2 

TMEM258, INCENP, SSH3, 
C11orf84, TMEM223, GIF, NXF1, 

MED19, MUS81, ACP2 

 
Table 3.5 shows the results of integrative analysis including colocalization analysis and PrediXcan in HIS 
by using MESA and GTEx eQTL data. For colocalization analysis, eQTL resources include MESA multi-
ancestry eQTL from purified monocytes and GTEx European ancestry whole blood tissue eQTL. GWAS 
signals with posterior colocalization probability of hypothesis 4 (PP.H4) > 0.80, or PP.H4 > 0.50 and the 
ratio of PP.H4 / PP.H3 > 5 were considered colocalized with eQTL. For PrediXcan, reference gene 
expression prediction models include MESA purified monocytes and GTEx European ancestry whole 
blood, and multiple testing correction was applied across all genes tested (MESA: P < 0.05/4470 = 
0.00001 and GTEx: P < 0.05/4350 = 0.00001). 
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Figure 3.1 PUFAs metabolic pathway and summary of genome-wide association from previous 
CHARGE GWAS of n-3 and n-6 PUFAs in European Americans. The summary of results from 
previous CHARGE GWAS of n-3 and n-6 PUFAs in European Americans. + and − signs indicate the 
direction of the associations for the minor allele of the most significant variant at each locus. The variants 
used to determine the directions of effect at each locus are as follows: 
FADS1 and FADS2: rs174547 (ALA, DPA, LA, GLA, DGLA and AA); rs174538 (EPA) 
ELOVL2: rs780094 (DPA); rs3798713 (EPA); rs2236212 (DHA) 
NTAN1/PDXDC1: rs16966952 (LA, GLA, DGLA and AA) 
NRBF2: rs10740118 (LA). 
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Figure 3.2. Study design. GWAS of PUFAs was applied for each cohort stratified by HIS and AFA. 
Ancestry-specific GWAS meta-analysis and statistical fine-mapping were applied separately for HIS and 
AFA to identify the potential causal signals. Multiple follow-up analyses were conducted for the causal 
signals, including cross-ancestry replication, validation, chromatin contact analysis and integrative 
analyses.    
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Figure 3.3. Summary of signals (credible sets) identified in association with AA on chromosome 
11 in Hispanic Americans. Panel (a) shows detailed information for the identified signals. The upper 
display shows the P-value of the putative causal variants of each signal (credible set) on chromosome 11 
from GWAS based on data for a total of n = 1,454 biologically independent samples; middle display 
shows the Posterior Inclusion Probability (PIP) of the putative causal variants from statistical fine-mapping 
using SuSIE; bottom display shows the Gene near/in the putative causal variants of each signal. Panel 
(b) shows the effect allele frequencies (EAF) in MESA across four self-reported race/ethnic groups 
(African American [n = 2,278], Chinese [n = 648], Hispanic American [n = 1,454], and European ancestry 
[n = 2,344]) for the most significant putative causal variant from each signal (credible set). Source data for 
the figure are provided in Supplementary Data 7. 
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Figure 3.4. Chromatin contact analysis of selected genome-wide significant variants identified on 
Chromosome 11. The chromatin contacts for the putative causal variants within the selected signals 
(Figure 4a: FADS region and Figure 4b: POLD4 region) located in open chromatin defined by ATAC-seq 
with gene promoters defined by Promoter Capture C (implicated genes highlighted in red) in multiple 
metabolic-relevant cell types. The cell types examined include: human mesenchymal stem cells (hMSC), 
which were also differentiated in vitro to adipocytes (hMSC_Adipocytes), induced pluripotent stem cell 
derived Hepatocytes (iPSC_Hepatocytes), embryonic stem cell derived Hypothalamic Neurons 
(hESC_HypothalamicNeurons), Enteroids, and HepG2s. The y axis shows the ATAC-seq read density 
normalized using the reads per genomic content (RPGC) method. All variant positions are presented 
based on Human Genome Build 37. 
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4.1 Abstract 

Coronary artery disease (CAD) is a leading cause of death and disability 

worldwide. Prior genome-wide association studies (GWAS) of CAD have identified over 

300 independent loci. However, the molecular consequences of the multi-ancestry 

GWAS variants and their relevance to subclinical atherosclerosis have not been 

explored comprehensively in human cohorts. In this study, we applied Bayesian 

colocalization analysis to overlap results from multi-ancestry CAD GWAS with 

transcriptomic data from the Trans-Omics for Precision Medicine (TOPMed) Multi-Ethnic 

Study of Atherosclerosis (MESA). Combined with additional follow-up validation 

approaches, we prioritized 6 candidate genes (DDX59, CAMSAP2, AC018816.3, 

BICC1, EIF2B2 and PLEKHJ1) associated with CAD and subclinical atherosclerosis 

traits (CAC, IMT and carotid plaque). We also conducted weighted gene co-expression 

network analysis (WGCNA) on the TOPMed MESA transcriptomics data followed by 

regression analyses to identify 9 modules related to subclinical atherosclerosis. These 

modules were enriched in pathways related to the up-regulation of genes in response to 

IFNG and alpha interferon proteins, as well as up-regulation by IL6 via STAT3 during 

acute phase response. We further identified one module from WGCNA significantly 

enriched for genes colocalized CAD GWAS signals. One of colocalized genes, RBC, 

was also identified as the only plaque-related hub gene for this module. Our findings 

enhance our understanding of genetic mechanisms and pathways implicated for CAD 

and subclinical atherosclerosis and consequently provide valuable insights into potential 

therapeutic interventions and treatments for CAD.  
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4.2 Introduction 

Coronary artery disease (CAD) is a common complex disease with both genetic 

and environmental determinants and is a leading cause of death and disability 

worldwide.1,2 The primary cause of CAD is atherosclerosis, characterized by the 

accumulation of plaque within the coronary arteries. Atherosclerotic plaque is composed 

of a complex mixture, including cholesterol, fatty deposits, calcium deposits, and the 

clot-making substance fibrin.3–7 In addition, the identification of atherosclerotic lesions 

within the carotid arteries demonstrates a strong correlation with CAD.8–10 Notably, the 

quantification of coronary artery calcifications (CAC) through a calcium score serves as 

a widely acknowledged marker indicative of CAD. Multiple studies demonstrated that 

the presence of carotid plaques and increased carotid intima-media thickness (IMT) 

significantly associated with the concurrent presence of CAC.8,11,12 Risk factors 

contributing to CAD susceptibility can be categorized into two primary categories: non-

modifiable and modifiable determinants. Non-modifiable risk factors include male sex, a 

familial history marked by instances of heart disease and advanced age. In contrast, 

modifiable risk factors are amendable to intervention through lifestyle adjustments and 

medical management. These factors include cigarette smoking, elevated blood 

pressure, excess body weight or obesity, and dietary patterns characterized by an 

unhealthy composition.13–15 Understanding and addressing these risk factors are 

essential in CAD prevention, diagnosis, and management, as they significantly influence 

the disease's onset, progression, and prognosis. Primary prevention and treatment 

strategies are designed to reduce the modifiable risk factors of CAD, including smoking 
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cessation, promoting healthy dietary habits, and encouraging regular physical 

activity.16,17 

Investigating the genetic mechanisms and pathways of CAD not only enhances 

our understanding of disease etiology but also provides crucial insights into disease 

susceptibility, progression, and potential therapeutic targets.18 Previous Genome-wide 

association studies (GWAS) of CAD have yielded numerous significant genetic loci. 

Notably, the transatlantic Coronary ARtery DIsease Genome Wide Replication and 

Meta-analysis (CARDIoGRAM) consortium was established in 2011 to conduct a meta-

analysis GWAS of CAD comprising 22,233 cases and 64,762 controls and identified 13 

novel genetic loci exhibiting significant associations with CAD.19 In 2017, Pim van der 

Harst et al. conducted a meta-analysis GWAS of CAD leveraging the resources of 

CARDIoGRAMplusC4D and the UK and identified 64 novel genetic loci of CAD.20 More 

recently, in 2022, Tcheandjieu, C. et al. performed a large scale GWAS of CAD in 

genetically diverse population including European, African American, Hispanics and 

Asian by using the resources of Million Veteran Program (MVP), UK Biobank, 

CARDIoGRAMplusC4D and Biobank Japan and identified 95 novel genetic loci of 

CAD.21 Collectively, these GWAS endeavors have identified over 300 independent 

genetic loci of CAD and substantially broadened our knowledge of the genetic basis of 

CAD.19–22  

Despite the significant advances made in identifying genetic variants and causal 

genes associated with CAD through GWAS and follow-up colocalization analysis in 

European ancestry,23,24 a comprehensive exploration of the molecular consequences of 

novel multi-ancestry GWAS variants of CAD and their relevance to subclinical 
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atherosclerosis remains largely uncharted in human cohorts. To bridge this knowledge 

gap, it is imperative to perform integrative analyses by leveraging multi-omics data 

including transcriptomics, proteomics, metabolomics, and epigenomics, which is crucial 

for identification of the molecular targets causally linked to CAD and further provide 

critical guidance in enhancing the accuracy of disease diagnosis and prognosis.   

In this study, we aimed to prioritize CAD-related molecular targets and 

investigate their relationship with subclinical atherosclerosis using molecular 'omics data 

from the Trans-Omics for Precision Medicine (TOPMed) Multi-Ethnic Study of 

Atherosclerosis (MESA). To achieve this goal, we first applied Bayesian colocalization 

to overlap TOPMed MESA eQTL resources with a large scale multi-ancestry GWAS of 

CAD21,25–27, identifying genes of interest for the CAD genetic loci. We further performed 

several follow-up validation analyses to prioritize a list of candidate causal genes of 

CAD. Second, we applied the weighted gene co-expression network analysis (WGCNA) 

to the TOPMed MESA transcriptomic data to identify gene expression modules and 

investigate their association with subclinical atherosclerosis traits in MESA. Third, we 

examined the modules identified by WGCNA for enrichment of the colocalized genes 

identified by Bayesian colocalization analysis.  
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4.3 Results 

4.3.1 Identification of cell type specific colocalized genes underlying GWAS of 

CAD.  

There were 47, 26 and 29 colocalized genes identified by Bayesian colocalization 

analysis leveraging GWAS of CAD and eQTL resources from the TOPMed MESA 

derived based on PBMCs, T cells and monocytes, respectively (Figure 4.1a). Among 

these, 6 genes were identified across all three cell types, including DDX59, CCDC30, 

NHSL1, ZNF100, VN1R84P and NRIP1. However, it is important to note that several 

colocalized genes were unique to specific cell types (PBMC: 26 unique colocalized 

genes, T cell: 10, Monocyte: 10), which can be attributed to variations in sample sizes of 

the eQTL data (Figure 4.1b) and differences in gene expression profiles across distinct 

cell types.  

Statistical fine-mapping (using SuSiE28,29) was incorporated in our colocalization 

analysis, which enhanced the identification of shared causal variants from GWAS of 

CAD and eQTL. The example of PLEKHJ1, a gene identified by colocalization with CAD 

GWAS, highlights the benefit of incorporating fine-mapping in the colocalization 

analysis. Fine-mapping successfully identified a total of 3 potential causal variants 

associated with CAD and 27 potential causal variants linked to PLEKHJ1 gene 

expression. Two of these variants are overlapping and exhibit robust associations with 

both CAD and the expression levels of PLEKHJ1 (Figure 4.1c). This finding suggests a 

potential mechanistic link between these causal genetic variants, CAD risk, and the 

regulation of PLEKHJ1. In another example, SCARB1 is a colocalized gene that would 

have remained unidentified without the incorporation of statistical fine-mapping. There 
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were multiple credible sets from both the GWAS of CAD and the eQTL signals within 

the region of SCARB1. After performing colocalization analysis based on each pair of 

credible sets, one shared causal signal demonstrated strong associations with both 

CAD risk and expression of SCARB1 (Figure 4.1d).  

 

4.3.2 Follow-up validation analyses prioritize the casual genes of CAD and 

subclinical atherosclerosis. 

Several follow-up validation analyses focusing on the identified colocalized genes 

were conducted to prioritize 6 causal genes of CAD and subclinical atherosclerosis 

(DDX59, CAMSAP2, AC018816.3, BICC1, EIF2B2 and PLEKHJ1) (Table 4.1). Follow-

up validation analyses included (a) exploration of the colocalized genes in GWAS of 

subclinical atherosclerosis, (b) investigation of colocalized genes in Artery tissue from 

GTEx, (c) examination of causal CAD variants for evidence of pQTL and mQTL 

associations for the corresponding colocalized genes in TOPMed MESA, (d) 

examination of the association of colocalized genes with subclinical atherosclerosis 

traits in MESA, (e) study of the colocalized genes in mouse genome.  

Colocalized genes in GWAS of subclinical atherosclerosis: Colocalization 

analysis leveraging GWAS of subclinical atherosclerosis (CAC30 and cIMT31) and the 

TOPMed MESA PBMC eQTL resource was performed to investigate the relationship 

between CAD colocalized gene and subclinical atherosclerosis. Based on this analysis, 

PLEKHJ1, one of the colocalized genes for CAD, also showed evidence of 

colocalization with cIMT (PPH4 = 87.7%). From this result, we found that multiple 

shared causal variants (rs2301798, rs76064118 and rs191615952) demonstrated 
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significant associations with CAD, cIMT, as well as expression of PLEKHJ1 (Figure 

4.1a).  

Colocalized genes in Artery tissue: The CAD colocalized genes were also 

carried forward for colocalization analyses examining overlap of CAD GWAS signals 

with eQTL from GTEx artery tissues, including coronary, aorta and tibial. Multiple CAD 

colocalized genes, including ZHF100, DDX59, OPRL1, RBM23, EIF2B2, KIAA0753, 

CCDC30, CAMSAP2, DHDDS and LIPA, identified using the TOPMed MESA PBMC 

eQTL, also demonstrated colocalization with eQTL from artery tissues (Table S4.1). For 

example, DDX59 (Figure 4.2b), one CAD colocalized gene identified using the 

TOPMed MESA PBMC eQTL was also identified based on colocalization with eQTL 

from GTEx artery tissues (coronary: PPH4 = 0.984 and aorta: 0.983).  

pQTL and mQTL associations of colocalized genes: Further, the overlapping 

causal variants, identified by statistical fine-mapping in GWAS of CAD and eQTL, were 

carried forward to examine their evidence as pQTL or mQTL for the proteins and CpG 

sites corresponding to CAD-colocalized genes. From this analysis, we found 

rs11213945, one of the causal variants associated with CAD and gene expression of 

LAYN, demonstrated the strong association with the corresponding protein (LAYN) and 

CpG site (cg21703322) as a pQTL and mQTL, respectively (Figure 4.2c). 

Association of colocalized genes with subclinical atherosclerosis: Linear 

regression analysis was performed to examine the association between measured 

expression of CAD colocalized genes and subclinical atherosclerosis traits (CAC, cIMT 

and plaque) in MESA revealed nominal significant relationships for multiple genes, 
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including CAMSAP2, HMGN2, CARCRL, VN1R84P, EIF2B2, FDX, CNPY2, PARP12, 

BICC1, MLX and others (Table S4.2). 

Colocalized genes in mouse genome: Additionally, three CAD colocalized 

genes (SCARB1, BICC1 and PAN2) showed significant associations with heart and 

cardiovascular-related functions in the mouse genome, as evidenced by data from the 

International Mouse Phenotyping Consortium (IMPC). For example, mouse knockouts 

for SCARB1 demonstrated decreased heart rate, abnormal sinus arrhythmia and 

cardiovascular system traits. The cardiovascular system traits included the observable 

morphological and physiological characteristics of the mammalian heart, blood 

vessels, or circulatory system that are manifested through development and 

lifespan. 

 Considered together, our discovery analyses and additional validation analyses 

identified six colocalized genes, including DDX59, CAMSAP2, AC018816.3, BICC1, 

EIF2B2, and PLEKHJ1, as candidate causal variants associated with CAD and 

subclinical atherosclerosis. These genes were selected based on the criterion that they 

were colocalized with the CAD GWAS in our primary discovery analysis, and also 

passed our specified thresholds in at least three of the follow-up validation analyses 

(Table 4.1). 

 

4.3.3 Identification of subclinical atherosclerosis related modules using WGCNA 

 WGCNA for the TOPMed MESA PBMC transcriptomics data identified 31 

modules of highly corelated genes (Figure 4.3a). Among these, 9 modules were 

associated with subclinical atherosclerosis in MESA (Table S4.3). For example, the 
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‘darkolivegreen4’ module was nominally associated with CAC and cIMT. Pathway 

enrichment analysis using Molecular Signature Database (MSigDB) was showed the 

‘darkolivegreen4’ module was enriched in pathways related to the up-regulation of 

genes in response to IFNG, up-regulation in response to alpha interferon proteins, up-

regulation by IL6 via STAT3 during acute phase response, regulation by NF-kB in 

response to TNF, and inflammatory response.  

 

4.3.4 Module identified from WGCNA significantly enriched for colocalized gene 

from colocalization analysis.  

 Enrichment analysis was performed to investigate whether the co-expression 

modules identified by WGCNA were enriched for genes colocalized with CAD GWAS 

signals. One module demonstrated significant enrichment for colocalized genes 

(‘maroon’: P = 0.011; Figure 4.3b). Pathway enrichment analysis demonstrated the 

genes in the ‘maroon’ module are enriched for the G2/M checkpoint, as in progression 

through the cell division cycle, cell cycle related targets of E2F transcription factors and 

protein secretion pathway (Table S4.4).  

 Additionally, module membership (MM) was measured to identify 577 hub genes 

in the ‘maroon’ module based on the threshold of module membership great than 0.8. 

Regression analysis was performed to identify each hub gene’s relationship with 

subclinical atherosclerosis traits in MESA. Interestingly, RDX, one of the CAD 

colocalized genes, was also a hub gene in the ‘maroon’ module (MM > 0.8) and 

nominally associated with one subclinical atherosclerosis trait, plaque, in MESA. 
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4.4 Discussion  

 While previous GWAS of CAD have made significant progress by identifying over 

400 independent genetic loci associated with CAD, there remains a need for systematic 

prioritization of CAD-related genes and a comprehensive investigation into their 

potential relationship with subclinical atherosclerosis. This critical gap in research has 

prompted the current study to explore and elucidate the genetic mechanisms linking 

CAD and subclinical atherosclerosis in greater detail. In an effort to bridge this 

knowledge gap, our study employed Bayesian colocalization analysis, followed by 

multiple validation analyses, to prioritize 6 candidate genes (DDX59, CAMSAP2, 

AC018816.3, BICC1, EIF2B2, and PLEKHJ1) associated with CAD and subclinical 

atherosclerosis by leveraging multi-omics data from TOPMed MESA. Additionally, we 

utilized WGCNA to identify 9 modules of genes exhibiting nominal association with 

subclinical atherosclerosis, allowing us to explore potential pathways linked to these 

genes in greater depth. Additionally,  we conducted the enrichment analysis to 

demonstrate one module (‘maroon’) demonstrated significant enrichment for colocalized 

genes and we found that RDX, a plaque-related hub gene in this module, was also one 

of the CAD colocalized genes.  

 Our study illustrates the significance of incorporating statistical fine-mapping into 

the Bayesian colocalization analysis.32 This approach allowed us to address a common 

scenario, where multiple independent signals are present within a specific region 

(typically defined as the transcript start site +/- 1Mb). Such a situation often arises when 

conducting GWAS and eQTL mapping, as we aim to establish associations between 

genetic variants, phenotypes, and gene expression levels. By incorporating statistical 
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fine-mapping, our colocalization analysis systematically evaluated all potential pairs of 

credible sets between GWAS and eQTL results. This strategic approach enhanced our 

ability to identify colocalized genes in cases where both the GWAS and eQTL datasets 

exhibit multiple independent signals. For example, SCARB1, one of colocalized gene of 

CAD, was identified by incorporating statistical fine-mapping into colocalization analysis. 

Within the region of SCARB1, statistical fine-mapping identified multiple credible sets for 

both the GWAS of CAD and the eQTL signals. Following colocalization analysis 

involving each pair of credible sets revealed one shared causal signal showing .strong 

associations with both CAD risk and expression of SCARB1 It is worth noting that in 

situations where the sample size or the statistical power of GWAS and eQTL does not 

allow for the confident detection of credible sets by SuSiE, basic colocalization analysis 

can still play a valuable role in identifying colocalized genes. Two validation analyses in 

our study, colocalization analysis using GWAS of subclinical atherosclerosis and 

colocalization analysis using eQTL from GTEx artery tissues, were performed by basic 

colocalization analysis under the single variant assumption, as the relatively small 

sample size limited our ability to apply statistical fine-mapping.  

 Our study further performed several validation analyses focusing on the colocalized 

genes of CAD to prioritize a list of candidate causal genes of CAD and subclinical 

atherosclerosis. Among the prioritized genes, PLEKHJ1 (Pleckstrin Homology Domain 

Containing J1), involved in cellular processes associated with endosome dynamics and 

intracellular trafficking and implicated in the organization of endosome and the recycling 

of receptors, is a colocalized gene that can be identified using GWAS of both CAD and 
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cIMT. This result suggests that PLEKHJ1 influences the shared pathophysiological 

mechanisms of both IMT thickening and CAD. 

 EIF2B2 (Eukaryotic Translation Initiation Factor 2B Subunit Beta), is involved in 

protein synthesis and exchanges GDP and GTP for its activation and deactivation. This 

colocalized gene was identified using both MESA PBMC eQTL and well as GTEx Aorta 

and tibial eQTL. Prior studies demonstrated EIF2B2, a candidate causal CAD gene, is a 

key driver of gene regulatory co-expression network (GRN) in subcutaneous fat tissue 

in Stockholm-Tartu Atherosclerosis Reverse Network Engineering Task (STARNET) 

and the top phenotypic associations related to this GRN include body mass index (BMI), 

waist-to-hip ratio (WHR), high-density lipoprotein cholesterol (HDL-C), and low-density 

lipoprotein cholesterol (LDL-C).23 Additionally, EIF2B2 has been identified as a gene 

target in CAD using Mendelian randomization (MR), suggesting a potential role for 

EIF2B2 in the pathogenesis of CAD and related cardiovascular traits.33  

 DDX59 (DEAD-Box Helicase 59) and CAMSAP2 (Calmodulin Regulated Spectrin 

Associated Protein Family Member 2) are two genes identified through colocalization 

analysis using both TOPMed MESA PBMCs and GTEx artery tissue data. Each of these 

genes have also shown associations with subclinical atherosclerosis traits in MESA. 

DDX59 is predicted to enable both RNA binding activity and RNA helicase activity, 

suggesting its involvement in crucial cellular processes related to RNA metabolism. 

Notably, dysregulation or mutations in the DDX59 gene have been linked to various 

medical conditions. Among these are Orofaciodigital Syndrome V, a rare genetic 

disorder characterized by facial and digital abnormalities, and Oliver Syndrome, a 

condition characterized by developmental anomalies.34,35 These associations 
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underscore the potential significance of DDX59 in normal physiological development 

and highlight its relevance as a candidate gene for investigating and understanding 

these specific pathologies. CAMSAP2 is predicted to facilitate microtubule minus-end 

binding activity. The depletion of CAMSAP2 has been associated with a notable 

escalation in microtubule dynamics, particularly evident during the intricate process of 

dendritic development.36,37 Additionally, these two genes are located in close proximity 

to one another within the genome, with DDX59 located in the region chr1:200623896-

200669969 and CAMSAP2 in the region chr1:200739558-200860704. The proximity of 

these genes suggests the possibility of chromatin contacts, implying potential 

interactions or regulatory relationships between them. Prior research has indicated that 

both DDX59 and CAMSAP2 encode proteins that are expressed in smooth muscle 

cells. This observation raises the hypothesis that biological processes occurring in the 

arterial wall, particularly those involving smooth muscle cells, may be of significant 

importance in coronary atherogenesis, which is a key factor in CAD development.38  

 BICC1 (BicC family RNA binding protein 1) is a colocalized gene was additionally 

validated using eQTL of artery tissues. BICC1 demonstrated that its association with 

abnormal heart morphology and abnormal heart looping in the mouse genome from 

IMPC. BICC1, a gene encoding an RNA-binding protein, plays a crucial role in the 

intricate regulation of gene expression by modulating protein translation, particularly 

during the critical period of embryonic development. Notably, previous studies have 

provided compelling evidence linking the knockout of Bicc1 in mice to the onset of 

polycystic kidney disease (PKD) and cystic renal dysplasia, shedding light on its 

significant implications in renal health.39,40 Further investigations into the role of BICC1 
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in osteoblastogenesis revealed that the reduction in Bicc1 expression correlates with 

decreased areal bone mineral density (BMD). This effect is primarily attributed to 

diminished cortical thickness and cortical tissue mineral density.41 These findings 

underscore the importance of BICC1 in maintaining the delicate balance of cellular 

processes critical for embryonic development, renal function, and skeletal health. 

 LAYN (Layilin) is a protein coding gene involved in hyaluronic acid binding activity. 

Our analyses revealed that multiple genetic variants identified in GWAS of CAD and 

eQTL of LAYN also demonstrated significant associations as pQTL and mQTL for the 

corresponding protein and CpG sites, respectively. This result suggests these CAD 

GWAS variants may have downstream effects on gene expression, protein functionality, 

and DNA methylation patterns.42 LAYN is a protein coding gene with the capacity for 

enabling carbohydrate and hyaluronic acid binding. Previous investigations have 

underscored the pivotal role of LAYN in the pathogenesis of colorectal and gastric 

cancers and tumor-immune interactions.43 Interestingly, CAD is a chronic inflammatory 

disease that marked by accumulation of atherosclerotic plaques containing immune 

cells exhibiting diverse states of activation and differentiation.44 Prior studies 

demonstrated that LAYN is associated with the suppressive function of tumor 

Regulatory T (Treg) cells and exhausted CD8 T cells.45,46 

 Another distinguishing feature of our study is the utilization of multi-ancestry GWAS 

of CAD and multi-ancestry MESA eQTL resources, with both resources having been 

constructed using data sets spanning individuals of European, African, Hispanic and 

Asian race/ancestry. To date, most statistical genetic studies have focused primarily on 

a single ancestry group, predominantly emphasizing European ancestry. This single 
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ancestry approach can be underpowered to detect certain genetic signals due to 

differences in allele frequencies, LD patterns and effect sizes across ancestries.47–50 

The incorporation of multi-ancestry resources in our study conferred several noteworthy 

advantages. For example, use of multi-ancestry resources allowed for increased sample 

sizes by incorporating participants from different ancestry groups, which further 

enhance the statistical power in subsequent fine-mapping and colocalization analyses. 

Moreover, use of multi-ancestry resources can reduce the risk of missing important 

genetic variants that may be prevalent in specific ancestry groups and may play a 

significant role in CAD susceptibility or treatment response. PLEKHJ1, one of our 

candidate genes of CAD and cIMT, was identified through the utilization of  multi-

ancestry GWAS of CAD and multi-ancestry MESA eQTL resources. The reason 

PLEKHJ1 had not been identified in previous GWAS and integrative analysis within the 

European population can be attributed to the difference in allele frequencies of the 

causal variants across various ancestry groups. For instance, two shared causal 

variants (rs76064118 and rs191615952) of CAD risk and expression of PLEKHJ1, have 

allele frequencies of approximately 0.05 in European ancestry, whereas they are closed 

to 0.12 in Asian ancestry.   

 Given the limited number of genes identified through Bayesian colocalization, 

which posed challenges in examination of pathways, our study applied Correlation 

network analysis (WGCNA) leveraging the TOPMed MESA transcriptomics data to 

identify modules related to subclinical atherosclerosis and further utilized Molecular 

Signature Database (MSigDB) to explore the pathways among genes within the 

modules of interest. We found one plaque-related hub gene, RDX, in the ‘maroon’ 
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module, which was also one of the genes identified by colocalization analysis. RDX 

(Radixin) is a cytoskeletal protein that plays a potentially crucial role in connecting actin 

filaments to the plasma membrane. Our study demonstrates the value of contextualizing 

genes implicated by GWAS using correlation network approaches to identify the key 

drivers.  

 Despite the numerous strengths, our study also faces several limitations. Our 

discovery analysis for identification of colocalized genes of CAD relied on eQTL 

resources derived from circulating cells. Although blood and circulating cells can provide 

valuable insights, they may not represent the most directly relevant sources for studying 

CAD. To address this limitation, we performed follow-up colocalization analysis 

leveraging the eQTL resources from GTEx to investigate the effects of CAD colocalized 

genes in artery tissue. This analysis revealed multiple colocalized genes with 

overlapping evidence based on eQTL from circulating cells as well as artery tissues. 

However, to further enhance the relevance and comprehensiveness of our discovery 

analysis, it would be advantageous to leverage eQTL data from other disease-related 

tissues available in existing databases. For instance, the Stockholm-Tartu 

Atherosclerosis Reverse Network Engineering Task (STARNET) study represents a 

valuable eQTL resource for our primary analysis. STARNET recruited 600 well-

characterized CAD patients and sequenced RNA isolated from various tissues, 

including blood, atherosclerotic-lesion-free internal mammary artery (MAM), 

atherosclerotic aortic root (AOR), subcutaneous fat (SF), visceral abdominal fat (VAF), 

skeletal muscle (SKLM), and liver (LIV), which identified ~8 million cis-eQTLs.51 

Incorporating data from these resources could further enrich our genetic studies and 
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provide a more targeted and comprehensive understanding of the genetic factors 

associated with CAD. Finally, we had limited power for some of the follow-up validation 

analyses examining associations with subclinical atherosclerosis in MESA. Thus, we 

made use of a nominal p-value threshold (P<0.05) for these validations, which did not 

meet the most rigorous standards afforded by formal correction for multiple 

comparisons.  

 In summary, our study employed a diverse array of statistical analyses leveraging 

the multi-omics data from TOPMed MESA to prioritize candidate genes associated with 

CAD and subclinical atherosclerosis. The follow-up experimental validation focusing on 

the candidate genes of CAD we identified can be conducted to advance understanding 

of these prioritized candidates in the future. Collectively, these findings can provide a 

better understanding of genetic mechanisms and pathways implicated by GWAS of 

CAD and subclinical atherosclerosis and consequently provide valuable insights into 

potential therapeutic interventions and treatments.  

 

 

 

 

 

 

 

 

 



 169 

4.5 Methods  

4.5.1 Study participants 

 MESA is a longitudinal cohort study of subclinical cardiovascular disease and risk 

factors that predict progression to clinically overt cardiovascular disease or progression 

of subclinical disease. Between 2000 and 2002, MESA recruited 6,814 men and women 

45 to 84 years of age from Forsyth County, North Carolina; New York City; Baltimore; 

St. Paul, Minnesota; Chicago; and Los Angeles. Participants at baseline were 38% 

White, 28% African American, 22% Hispanic and 12% Asian (primarily Chinese) 

ancestry.52  

 

4.5.2 Primary analysis for identification of CAD colocalized gene 

4.5.2.1 TOPMed MESA transcriptomics and eQTL 

 MESA transcriptomics and cis-eQTL were obtained through TOPMed Freeze 

1RNA. Freeze 1RNA TOPMed cis-eQTL results were generated in a collaboration 

between the TOPMed Informatics Research Center, TOPMed Multi-Omics working 

group, and the TOPMed parent studies contributing RNA-seq and distributed to 

TOPMed investigators. The cis-eQTL mapping was performed using tensorQTL53 for 

PBMCs (n = 1256), T cells (n = 368) and monocytes (n = 352), and for each gene, 

genetic variants within 1Mb of the gene TSS were tested. The covariates for cis-eQTL 

mapping included sex, 15 genotype PCs and 30 gene expression PCs. Samples for the 

cis-eQTL scan were selected via the following procedure: (1) exclude samples that did 

not pass the PC-based outlier filter, (2). exclude samples without a known WGS match, 
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(3). exclude samples where the subject (WGS match) is not in the unrelated subject set, 

and (4) exclude samples with unclear sex based on gene expression.  

 

4.5.2.2 GWAS of coronary artery disease (CAD) 

 We leveraged a recently published publicly available large-scale multi-ancestry of 

GWAS of CAD comprising of 243,392 cases and 849.686 controls.41 This study used 

METAL to conduct a fixed-effect inverse variance-weighted meta-analysis for the clinical 

CAD phenotype, including Million Veteran Program (MVP) European participants MVP 

Black participants, MVP Hispanic participants and Biobank Japan, 

CARDIoGRAMplusC4D 1000G study, the UK Biobank CAD study and Biobank Japan.  

 

4.5.2.3 Statistical Fine-mapping  

 Statistical fine-mapping, an approach for the identification of the casual variants 

from GWAS, was incorporated into Bayesian colocalization analysis. Sum of Single 

Effect model (SuSiE28,29) was performed to identify the credible sets of putative causal 

variants by using the summary statistic results including effect size, standard error and 

minor allele frequencies in GWAS of CAD and eQTL with L = 10 (SuSiE default).  Each 

credible set is constructed to have high probability to contain a signal with non-zero 

effect, while at the same time being as small as possible. The follow-up colocalization 

analysis systematically evaluated all potential pairs of credible sets between GWAS and 

eQTL results.  

 

4.5.2.4 Bayesian colocalization analysis  
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 Bayesian colocalization analysis32,54 was used to identify the downstream genes of 

CAD leveraging MESA eQTL and GWAS of CAD by using R/coloc.susie package.  

Bayesian colocalization analysis tested the following hypotheses: H0. neither GWAS 

nor eQTL has a genetic association in the region; H1. only GWAS has a genetic 

association in the region; H2. only eQTL has a genetic association in the region; H3. 

both GWAS and eQTL are associated, but with different causal variants; H4. both 

GWAS and eQTL are associated and share a single causal variant. A posterior 

colocalization probability of hypothesis 4 (PP.H4) > 0.80 was used as the threshold of 

colocalization. 

 

4.5.3 Follow-up validation approaches 

4.5.3.1 Colocalization analysis for identification of subclinical atherosclerosis 

colocalized genes  

 Colocalization analysis focusing on the CAD colocalized genes from primary 

analysis was performed to identify the downstream genes of subclinical atherosclerosis 

leveraging MESA eQTL and GWAS of subclinical atherosclerosis (CAC30 and cIMT31) 

by using R/coloc package. For GWAS of CAC, we leveraged a published publicly 

available meta-analysis GWAS of CAC comprising 9961 participants from 5 

independent community-based cohorts (Age, Gene/Environment Susceptibility–

Reykjavik Study [AGES-Reykjavik], the Framingham Heart Study [FHS], the Rotterdam 

Study I [RS I], and the Rotterdam Study II [RS II], Genetic Epidemiology Network of 

Arteriopathy Study [GENOA]).30 For GWAS of cIMT, we leveraged a published publicly 
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available meta-analyses of GWAS of cIMT in 71,128 individuals of European ancestry 

from 31 studies for cIMT.31 

 

4.5.3.2 Investigation of CAD colocalized genes in Artery tissue from GTEx  

 Colocalization analysis focusing on the CAD colocalized genes from primary 

analysis was performed to identify the downstream genes of CAD in artery tissues 

leveraging GTEx eQTL55 and GWAS of CAD by using R/coloc package. The tissues of 

GTEx eQTL we used in colocalization analysis included artery-coronary tissue (n = 

213), artery-aorta tissue (n = 387) and artery-tibial (n = 584). GTEx eQTL can be found 

and downloaded at https://www.gtexportal.org/home/downloads/adult-gtex. 

 

4.5.3.3 Examination of causal CAD variants for evidence of pQTL and mQTL 

associations for the corresponding colocalized genes 

 Statistical fine-mapping in GWAS of CAD and MESA eQTL from the primary 

analysis identified shared causal variants. These shared causal variants were further 

investigated to assess their potential impact as MESA pQTL or MESA mQTL for the 

proteins and CpG sites corresponding to CAD-colocalized genes. TOPMed MESA multi-

ancestry pQTL resources included 1,305 proteins measured by a SOMAscan assay and  

971 unique individuals (African American [n = 183], Chinese [n = 71], European [n = 

416], and Hispanic/Latino [n = 301]).56 TOPMed MESA multi-ancestry mQTL resources 

included the whole blood DNA methylation (DNAm) data for 747,868 CpG sites (CpG 

sites passing QC - 740,291) and 900 unique individuals.57  

 

https://www.gtexportal.org/home/downloads/adult-gtex
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4.5.3.4 Association of colocalized genes with subclinical atherosclerosis  

 CAD colocalized genes identified from primary analysis were carried forward to 

examine the association with subclinical atherosclerosis traits (CAC, IMT and carotid 

plaque) in MESA exam 5 using linear regression model and the covariates included 

age, gender and study sites. A nominal p-value (0.05) was used as the threshold of 

association. In MESA exam5, CAC was measured with either electron-beam computed 

tomography (EBT) at 3 field centers or multidetector computed tomography (MDCT) at 3 

field centers.52,58,59 The amount of calcium was quantified with the Agatston scoring 

method.  IMT was defined as the intima-media thickness measured as the mean of the 

mean left and right mean far wall distal CCA wall thicknesses. Carotid plaque was 

defined as a discrete, focal wall thickening ≥1.5 cm or focal thickening at least 50% 

greater than the surrounding IMT.  

 

4.5.3.5 Investigation of CAD colocalized genes in mouse genome 

 The International Mouse Phenotyping Consortium (IMPC)64 was leveraged to study 

the biological function of CAD colocalized genes in mouse genome. IMPC is an 

international effort by 21 research institutions, consisting of 85M data points and over 

95,000 statistically significant phenotype hits mapped to human disease, to identify the 

function of every protein-coding gene in the mouse genome. 

https://www.mousephenotype.org 

 

4.5.4 Primary analysis for identification of modules using correlation network 

4.5.4.1 Weighted gene co-expression network analysis (WGCNA) 

https://www.mousephenotype.org/
https://www.mousephenotype.org/
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 Weighted gene co-expression network analysis (WGCNA)65 is an approach to 

study biological networks of genes, which can find the clusters (modules) of highly 

correlated genes and summarize the node profiles using the module eigengene or an 

intramodular hub node.  The rationale behind correlation network methodology is to use 

network language to describe the pairwise relationships (correlations) among the 

molecular omics traits. Our study applied WGCNA on MESA PBMC transcriptomic data 

including 1,256 unique individuals and 24,410 genes to identify the modules of highly 

correlated genes. The steps for conducting WGCNA include: (1). Identification of soft 

thresholding power based on the criterion of approximate scale-free topology; (2) 

Calculation the adjacencies based on the soft thresholding power (Power = 5); (3) 

Transformation of the adjacency into Topological Overlap Matrix and calculation of the 

corresponding dissimilarity; (4). Generation of a hierarchical clustering tree 

(dendrogram) of genes. Module membership (MM) was measured to identify hub genes 

for each module by examining the correlation between the module eigengene and the 

gene expression profile. Hub genes are highly correlated with many other module genes 

and have been shown to be important in disease and in controlling module behavior.67 

Additionally, hub genes were further carried forward to identify subclinical 

atherosclerosis traits related hub genes by investigating the relationship with subclinical 

atherosclerosis traits (CAC, IMT and carotid plaque) in MESA exam 5.  

 

4.5.4.2 Pathway enrichment analysis for identification of biological pathways  

 We applied pathway enrichment analysis to investigate the biological pathways 

for the genes within the module of interest identified by our WGCNA using the Molecular 
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Signature Database (MSigDB).68,69 MSigDB includes multiple categories, for example, 

hallmark gene sets (H), curated gene sets (C2), regulatory target gene sets (C3), 

computational gene sets (C4), ontology gene sets (C5), oncogenic signature gene sets 

(C6), immunologic signature gene (C7), cell type signature gene sets (C8).   
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Figure 4.1. Identification of colocalized genes for CAD across different cell types.  

 

 

Figure 4.1: Identification of colocalized genes for CAD across different cell types. Panel a shows the 

colocalized genes for CAD identified using eQTL from TOPMed MESA for PBMCs, T cells and 

monocytes. Panel b shows the sample size of eQTL for PBMCs, T cells and monocytes. Panel c and d 

show two examples of colocalized genes (PLEKHJ1 and SCARB1).  
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Figure 4.2. Prioritization of causal genes for CAD and subclinical atherosclerosis.  
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Figure 4.2: Prioritization of causal genes for CAD and subclinical atherosclerosis using different validation 

analyses. Panel a shows PLEKHJ1 was identified as a colocalized gene using both GWAS of CAD (left) 

and cIMT (right). Panel b shows DDX59 was identified as a colocalized gene using both eQTL of PBMC 

(top) and eQTL of coronary (bottom left) and aorta (bottom right). Panel c shows the shared causal 

variant has strong associations in GWAS of CAD, eQTL, pQTL and mQTL for LAYN.   
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Figure 4.3. Module identification using MESA PBMC transcriptomics data. 

 

Figure 4.3: Module identification using MESA PBMC transcriptomics data. Panel a shows the hierarchical 

clustering tree (dendrogram) of the MESA PBMC transcriptomics data. Panel b shows the distribution of 

colocalized genes in each module identified by WGCNA (left) and the enrichment analysis of genes within 

the maroon module for colocalized genes. 
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Table 4.1. Prioritization of causal gene of CAD and subclinical atherosclerosis 

 

Table 4.1 shows the prioritization of the causal gene list of CAD and subclinical atherosclerosis. 

Coloc_Athero: colocalization analysis using GWAS of subclinical atherosclerosis. Asso_Athero: 

association analysis between colocalized gene and subclinical atherosclerosis in MESA. Coloc_Artery: 

colocalization analysis using eQTL from GTEx artery tissues. MousePhe: function of colocalized gene in 

mouse genome using IMPC. pQTL/mQTL: association study of shared causal variants from GWAS of 

CAD and eQTL in pQTL and mQTL.  
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5.1 Summary and conclusion  

 This thesis has provided a deeper insight into the genetic and biological 

mechanisms underlying fatty acid metabolism and coronary artery disease by 

leveraging different types of molecular omics data (genomics, transcriptomics, 

proteomics, and methylation) and using various statistical approaches (genome-wide 

association study, statistical fine-mapping and integrative analysis). Additionally, there 

are multiples distinguishing features of this thesis: (1). Investigation of global and local 

proportions of genetic ancestry for Hispanic Americans; (2). Involvement of non-

European ancestry (Hispanic Americans and African Americans) for genome-wide 

association study and follow-up validation analysis; and (3). Integration of different types 

of molecular ‘omics data for identification of disease-causing genes. 

 In chapter 2, we estimated the global proportions of Amerind ancestry for MESA 

Hispanic participants using ADMIXTURE and further carried out linear regression 

analysis to reveal a significant association between higher proportions of Amerind 

ancestry and lower levels of LC-PUFAs in MESA Hispanic participants. Additionally, we 

demonstrated that FADS variation rs174537 SNP has a strong effect on the ancestry-

related decline in all LC-PUFAs. Furthermore, we also showed that the FADS cluster 

SNP rs174537 T allele was significantly associated with lower HDL-C levels, higher 

waist-hip ratio, reduced height and weight, and elevated levels of the inflammatory 

markers E-Selectin and s-ICAM. In conclusion, our research underscores the utility of 

Amerind ancestry as a readily accessible tool for identifying individuals who are at a 

higher risk of FADS-related deficiencies in n-3 LC-PUFAs and the associated 

cardiovascular risks.  
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 In chapter 3, we performed meta-analysis of GWAS for n-3 and n-6 PUFAs in 

Hispanic Americans and African Americans. Our study confirmed that the genetic 

variants identified in prior CHARGE GWAS of PUFAs in European ancestry could be 

identified in Hispanic Americans and African Americans (FADS1/2, PDXDC1, GCKR 

and ELOVL2). Indeed, as established, the FADS region is well-documented for its 

significant association with PUFAs, and our study further revealed a considerable 

number of independent genetic association signals within neighborhood of FADS region 

on chromosome 11. Our study also found a large number of signals in Hispanic 

Americans that could not be replicated across race/ancestry groups, which can be 

attributed to dramatic differences in allele frequencies. For example, the chromosome 

11 POLD4 (DNA polymerase delta 4, accessory subunit) missense variant rs28364240 

identified in association with AA have minor allele frequencies of 0.204 in Hispanic 

Americans, compared to frequencies close to zero in other race/ancestry groups. In 

conclusion, our findings offer valuable insights into the complex genetics of PUFA levels 

that reflect, in part, their response to evolutionary pressures across the course of human 

history. Overall, our study underscores the importance of exploring the genetics of 

complex traits within diverse ancestry populations. Our study also emphasizes the 

necessity for ongoing and expanded genetic association research in cohorts with 

genetic ancestry that reflects that of the general population within the United States and 

worldwide.  

 In chapter 4, we performed Bayesian colocalization analysis and correlation 

network analysis (WGCNA) to prioritize 7 candidate genes (colocalization analysis: 

DDX59, CAMSAP2, AC018816.3, BICC1, EIF2B2 and PLEKHJ1, WGCNA: RBC) of 
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CAD and subclinical atherosclerosis using multi-omics data from the TOPMed Multi-

Ethnic Study of Atherosclerosis (MESA). In conclusion, our study illustrated the value of 

incorporating statistical fine-mapping into the Bayesian colocalization analysis, which 

allow us to identify colocalized genes in cases where both the GWAS and eQTL 

datasets exhibit multiple independent signals. Our study further demonstrated the 

importance for utilization of multi-ancestry GWAS of CAD and multi-ancestry MESA 

eQTL resources, which can reduce the risk of missing important genetic variants that 

may be prevalent in specific ancestry groups. Overall, these findings can provide a 

better understanding of genetic mechanisms and pathways implicated by GWAS of 

CAD and subclinical atherosclerosis and consequently provide valuable insights into 

potential therapeutic interventions and treatments.  
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5.2 Limitations and future directions  

Although this thesis has provided deeper insights into the genetic and biological 

mechanisms underlying fatty acid metabolism and coronary artery disease, it is 

essential to acknowledge certain limitations. Future studies should aim to address these 

limitations and further enhance these lines of research.  

In chapter 2, our study primarily focuses on urban Hispanic American 

populations, as represented by the MESA cohort, which include six major 

countries/regions of origin: Central America, Cuba, the Dominican Republic, Mexico, 

Puerto Rico, and South America. The differences of diet and lifestyle habits across the 

six Hispanic subgroups in MESA could be potential confounding factors in studying the 

effect of global proportion of Amerind ancestry on PUFAs. Additionally, it is important to 

note that we did not incorporate additional measures of dietary intake of n-3 and n-6 

PUFAs in our regression analyses due to the unavailability of reliable measures for 

these dietary parameters among the MESA participants. However, measuring and 

quantifying dietary intake of n-3 AND PUFAs is potentially important for the further 

examination of the impact of dietary differences on the relationship between Amerind 

ancestry, FADS variation, and LC-PUFA levels.1–3 For future research directions, it is 

advisable to develop a professional and detailed questionnaire aimed at assessing the 

dietary intake of n-3 and n-6 PUFAs. This questionnaire should include detailed 

information, such as a list of specific seafood and fish varieties available in the areas 

under investigation. Additionally, it should encompass items related to the consumption 

of walnuts, flaxseed, flaxseed oil, cod liver oil, and canola oil. Furthermore, the 

questionnaire should consider portion sizes and the frequency of consumption as 
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crucial factors for accurately quantifying dietary intake of n-3 and n-6 PUFAs. By 

implementing such a questionnaire, future studies could achieve a more robust and 

accurate assessment of the dietary factors influencing PUFA metabolism and their 

associations with health outcomes. 

 In the chapter 3, while we have incorporated the GWAS results from multiple 

CHARGE cohorts (MESA, CHS and FHS), the overall sample size of our study is still 

relatively small for a meta-analysis of GWAS, especially for Hispanics Americans 

(Hispanic Americans: N = 1,454 and African Americans: N = 2,278). For the future work, 

we may incorporate other cohorts that include (1) Hispanic Americans/African 

Americans and (2) measurements of PUFAs, which can increase our sample size for 

GWAS of PUFAs. For instance, within our collaborative team, we have the expertise of 

Dr. Ski Chilton, who examines how genetic and epigenetic variations interact with 

human diets (especially the modern Western diet) to drive inflammation and 

inflammatory disorders (including cardiovascular disease and cancer). Dr. Chilton's 

work includes the measurement of PUFAs in Arizona, a region of particular significance 

due to its self-reported Hispanic and Amerind ancestry populations. It is worth noting 

that among all U.S. Hispanic populations, those residing in states in the Southwest, 

particularly those bordering Mexico, such as Arizona, exhibit the highest levels of Native 

American ancestry, which are not well represented in MESA.4 Through collaboration 

with Dr. Chilton, we may be able to significantly increase our sample size for Hispanic 

Americans, which holds the potential to substantially enhance the statistical power of 

our genetic studies related to PUFAs. By leveraging a larger and more diverse dataset, 
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we can enhance the robustness of our research and provide deeper insights into the 

genetic factors influencing PUFA metabolism within the Hispanic American population. 

In our GWAS of PUFAs, our primary focus has been on studying the Hispanic 

American and African American populations. However, we have yet to explore the 

genetic impacts of PUFAs within the Asian population. It is important to note that African 

ancestry and certain South Asian populations exhibit a high frequency of a derived 

haplotype associated with efficient PUFA biosynthesis.5–7 Furthermore, Figure 5.1 

illustrates a substantial degree of variability in the frequency of ancestral and derived 

FADS variants within Asian populations. Notably, the frequency of the derived haplotype 

exhibits a wide range, approximately 0.4 in East Asian populations to around 0.8 in 

South Asian populations. In the South Asian population, Kothapalli et al. conducted 

research that revealed positive selection for an insertion-deletion mutation (rs66698963) 

in FADS2, which leads to a more efficient biosynthesis of highly PUFAs.8,9 These 

findings demonstrate that it may be worthwhile to extend our genetic studies to include 

some biobanks of Asian in the future, for example, Biobank Japan10 and China Kadoorie 

Biobank11. Such an expansion would not only enrich our understanding of the genetic 

factors underpinning PUFA metabolism but also enable us to explore potential genetic 

links and variation across diverse ancestral backgrounds. 
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Figure 5.1: Presence and absence of the derived allele (G) at rs174537 in 80 globally 
diverse populations. Figure adapted from Chilton FH, 2022.  
 
 

In the chapter 4, our study included Bayesian colocalization analysis by 

leveraging a large scale of multi-ancestry GWAS of CAD. It is worth noting, however, 

that the sample size of the eQTL resource we utilized in this analysis was somewhat 

limited. For instance, the TOPMed MESA included approximately 1200 samples for 

PBMCs and around 300 samples for each of T-cells and monocytes. Indeed, sample 

sizes can significantly impact the power to detect true associations, with smaller sample 

sizes leading to higher rates of false negatives. This limitation not only diminishes the 

statistical power of our study but also reduces the overall reliability and robustness of 

the research findings. To address the issue of limited sample size, the TOPMed MESA 

Principal Investigators, Dr. Stephen Rich and Dr. Jerome Rotter have worked towards 

expanding our sample size for the QTL analyses in MESA. Once these updated and 

larger resources become available, I will be able to conduct more comprehensive 
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statistical analyses. Such efforts would enable us to compare the results obtained with 

the expanded sample size to the findings from our current research, potentially yielding 

deeper insights from our genetic investigations.  

It is worth noting that machine learning and deep learning techniques are gaining 

increasing popularity in the field of genomics. These approaches offer multiple 

applications, including the imputation of molecular omics data. The utilization of 

machine learning and deep learning algorithms can enhance our ability to impute and 

analyze complex molecular data, providing valuable tools for advancing genetic 

research.12 For example, a novel deep learning model known as the Sparse 

Convolutional Denoising Autoencoder (SCDA) has been developed for genotype 

imputation, eliminating the necessity for a reference panel. The SCDA model employs 

convolutional layers within the general autoencoder framework to effectively capture 

local data correlations and it addresses the challenges posed by high-dimensional 

genomic data through the incorporation of model sparsity.13 Additionally, DeepImpute, a 

deep neural network-based imputation algorithm, was proposed for the imputation of 

single-cell RNA-seq data. This approach incorporates dropout layers and specialized 

loss functions to effectively learn and capture patterns within single-cell RNA-seq data, 

which significantly enhances the accuracy and power of imputation, making it a valuable 

tool for researchers working with single-cell RNA-seq data.14 Single omics imputation 

methods serve as effective tools for mitigating the challenges posed by missing data 

within molecular omics datasets. For instance, variations in the number of proteins 

quantified using different versions of the SomaScan assay may lead to disparities, 

resulting in the absence of certain proteins in a particular SomaScan version. 
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In addition to single omics imputation methods, there is a growing trend towards 

integrative imputation techniques that leverage multi-omics data. For example, 

EpiXcan15 for integrating epigenomic and transcriptomic data and cTP-net (single cell 

Transcriptome to Protein prediction with deep neural network)16 for integrating 

transcriptomic and proteomic data. These multi-omics imputation methods are similar 

with PrediXcan, which is to predict the missing gene expression values leveraging large 

reference panels, including both genotype and gene expression information. Indeed, the 

application of these novel machine learning and deep learning techniques may help to 

address the issues of limited sample sizes in molecular omics data, providing a valuable 

foundation for to further understanding of molecular and genetic mechanisms underlying 

complex disease phenotypes.   

Another notable limitation of our study is the use of eQTL resources based on 

blood tissue for the discovery analysis. While blood offers valuable insights, it may not 

be the tissue most directly related to CAD. To further enhance the relevance of our 

research, it would be advantageous to leverage eQTL data from disease-related tissues 

available in existing databases. For instance, GTEx provides a broad eQTL resource 

covering 53 human tissues, including Aorta, Coronary, and Tibial tissues, which are 

more closely associated with CAD. Additionally, the Stockholm-Tartu Atherosclerosis 

Reverse Network Engineering Task (STARNET) study represents another valuable 

eQTL resource that could be incorporated in future efforts to augment our primary 

analysis. STARNET recruited 600 well-characterized CAD patients and sequenced RNA 

isolated from various tissues, including blood, atherosclerotic-lesion-free internal 

mammary artery (MAM), atherosclerotic aortic root (AOR), subcutaneous fat (SF), 



 203 

visceral abdominal fat (VAF), skeletal muscle (SKLM), and liver (LIV), identifying ~8 

million cis-eQTLs.17 Incorporating data from these resources could further enrich our 

genetic studies and provide a more refined understanding of the genetic factors 

associated with CAD.  

Moreover, the colocalization analysis within this study has been primarily directed 

towards the intersection of expression quantitative trait loci (eQTL) and genome-wide 

association studies (GWAS). Nevertheless, it is noteworthy that the TOPMed MESA 

dataset encompasses multiple molecular quantitative trait loci (QTL) resources, 

including eQTL, protein QTL (pQTL), and methylation QTL (mQTL) data. The 

integration of GWAS summary data with more than one molecular QTL resources 

simultaneously provided the capacity of the identification of regulatory effects at GWAS 

risk loci.18,19 For example, integration of GWAS, eQTL and mQTL is able to identify the 

candidate genes that influence the diseases under investigation through methylation. An 

efficacious Bayesian statistical framework, denoted as Multiple-trait-coloc (moloc), has 

been employed in this context. Moloc serves to quantify the degree of evidence in 

support of a common causal variant within a specific risk region, across a multitude of 

traits (molecular traits or complex disease traits) by utilizing summary-level information 

derived from genetic association datasets.19 (Figure 5.2) Through this stratification of 

data, moloc not only enhances statistical power but also furnishes valuable insights into 

the functional significance of implicated genes, which improve our understanding of the 

genetic determinants of complex diseases. 
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Figure 5.2: Multiple-trait-coloc (moloc): Graphical representation of four possible 
configurations at a locus with eight SNPs in common across three traits. Figure adapted 
from Giambartolomei C, 2018.  
 

Furthermore, the current study did not undertake a comprehensive exploration of 

the impact of the admixed genome structure on eQTL mapping. This limitation has the 

potential to introduce an increased occurrence of false positive eQTL associations, not 

attributed to the genetic variants under investigation, but rather to their associations with 

specific local ancestral backgrounds.20,21  An illustrative example of this significance is 

found in the work of Zhong Y et al., who introduced a robust statistical framework known 

as Joint-GaLA-QTLM. This approach incorporates variant-level local ancestry as a 

covariate in eQTL mapping, shedding light on the impact of uncertainty in local ancestry 

estimation on the regulatory effects of genetic variations on gene expression. 



 205 

Incorporating local ancestry can increase the power of eQTL mapping, leading to the 

detection of more genuine genetic associations and the reduction of the risk of spurious 

associations arising from different local ancestral backgrounds.20 In essence, the 

integration of local ancestry information not only refines the precision of eQTL mapping 

but also advances our comprehension of how population structure exerts its influence 

on genetic associations. Furthermore, it enriches our understanding of the intricate 

genetic foundations underlying complex traits in the context of diverse and admixed 

populations.20,22–24  

Additionally, this study primarily employed Bayesian colocalization analysis for 

the identification of causal genes associated with CAD and subclinical atherosclerosis. 

However, it is noteworthy that there exist alternative approaches to further prioritize the 

causal genes implicated in these complex traits. One such approach is Mendelian 

Randomization, which is specifically designed for the investigation of functionally 

relevant genes within the loci identified in GWAS for complex traits.25,26 Mendelian 

Randomization leverages genetic variants as instrumental variables, enabling the 

rigorous assessment of causal relationships between exposures, such as specific 

genes, and outcomes, in this case, CAD. The steps of Mendelian Randomization 

include (1). Identification of genetic variants associated with the gene of interest, which 

is believed to be a potential driver of CAD; (2). It is important to ensure that the selected 

genetic variants strongly associated with the gene of interest but not significantly 

associated with any known confounding factors. (3). Investigating whether the gene of 

interest has a causal effect on CAD risk by assessing the relationship between the 

genetic variants (linked to the gene of interest) and CAD outcomes using Mendelian 
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Randomization techniques, such as two-stage least squares regression or the inverse-

variance weighted analysis.27 The application of Mendelian Randomization can provide 

robust evidence of causality, helping to establish whether specific genes have a causal 

role in the development or progression of CAD. Furthermore, the findings of Mendelian 

Randomization have the capacity to serve as a guidance for the development of precise 

therapeutic interventions designed to modulate the activity of these genes, with the 

ultimate aim of diminishing CAD risk.28–31  

	 It is crucial to emphasize the importance of extensive collaboration between 

computational scientists and experimental scientists in the pursuit of scientific 

excellence. As a computational biologist, my role involves applying statistical methods 

to identify various disease-associated variants and biomarkers. However, the full 

understanding of the biological background and significance of these findings often 

requires experimental validation, a task that falls within the expertise of experimental 

scientists. 

In the context of our research outlined in Chapter 4, I have identified a promising 

list of candidate causal genes for CAD and subclinical atherosclerosis using Bayesian 

colocalization analysis and correlation network analysis. To advance understanding of 

these prioritized candidates, we need to work further to foster collaborations with 

experts in experimental cardiovascular research, including Dr. Clint Miller, Dr. Coleen 

McNamara, and Dr. Weibin Shi. These distinguished investigators possess specialized 

knowledge and experience in cardiovascular diseases. By collaborating closely with 

these experts for follow-up experimental validation, we have the potential to gain in-

depth insight into the genetic mechanisms underlying CAD and subclinical 
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atherosclerosis. Overall, such collaborative efforts would foster connections between 

computational and experimental sciences, ultimately advancing our understanding of 

complex biological processes and contributing to scientific progress in the field of 

complex diseases. 

 In conclusion, this PhD work demonstrates insights that can be gained through 

generation of a large scale of molecular ‘omics data coupled with development and 

application of a statistical and computational methods for interpretation of these data, 

Our studies enhance the identification of causal disease-related variants and 

biomarkers, and further deepen our understanding of genetic mechanisms and 

pathways for the diseases under investigation. Ultimately, these collective efforts hold 

the potential to make substantial contributions to the development and advancement of 

prevention strategies and therapeutic treatments.  
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Supplementary Data 2.1. Regression of n-3 and n-6 PUFAs on global ancestry, also accounting for local 

ancestry and rs174537 SNP genotype. 

Supplementary Data 2.2. Interaction of rs174537 with global and local ancestry 

Supplementary Data 2.3. Genotypic effects of rs174537 on fasting lipids, anthropometric and 

inflammatory traits 

Supplementary Data 2.4. Genotypic effects of rs174557 on Fasting Lipids, Anthropometrics and 

Inflammatory Traits. 

Supplementary Data 2.5. Participant characteristics for the AIR registry. 

Supplementary Data 2.6. Participant characteristics for the HCHS/SOL cohort. 

Supplementary Data 2.7. Analysis of rs174537 effects on triglycerides and waist-hip ratio in AIR registry 

and HCHS/SOL. 

Supplementary Data 2.8. Stratified analysis of rs174537 effects on triglycerides and waist-hip ratio 

HCHS/SOL, with additional adjustment for principal components of ancestry. 

Supplementary Data 2.9. Regression of n-3 and n-6 PUFAs on Study Site in MESA Hispanic Participants 

Supplementary Data 3.1. Examination of variants identified in prior CHARGE European American GWAS 

of PUFAs. 

Supplementary Data 3.2. Credible sets of putative causal variants for each of the PUFAs in Hispanic 

Americans 

Supplementary Data 3.3. Credible sets of putative causal variants for eachof the PUFAs in African 

Americans. 

Supplementary Data 3.4. Chromatin Contact Analysis for Understanding the Chromatin Interaction on 

Chromosome 11. 

Supplementary Data 3.5. Cross-ancestry Replication for lead variants from credible sets of putative 

causal variants in Hispanic Americans. 

Supplementary Data 3.6. Cross-ancestry Replication for lead variants from credible sets of putative 

causal variants in African Americans. 

Supplementary Data 3.7. Source Data for Figure 3.3b 
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Supplementary Data 3.8. Association with lipid traits for lead variants from credible sets of putative causal 

variants in Hispanic Americans. 

Supplementary Data 3.9. Association with lipid traits for lead variants from credible sets of putative causal 

variants in African Americans. 

Supplementary Data 3.10. Colocalization analysis using MESA multi-ancestry eQTL in Hispanic 

Americans.  

Supplementary Data 3.11. Colocalization analysis using GTEx multi-ancestry eQTL in Hispanic 

Americans. 

Supplementary Data 3.12. PrediXcan results using MESA expression prediction models in Hispanic 

Americans. 

Supplementary Data 3.13. PrediXcan results using GTEx expression prediction models in Hispanic 
Americans. 
 
Supplementary Data 3.14. Gene set enrichment analysis for genes implicated by colocalization and 
PrediXcan analysis. 

Supplementary Data 4.1. Identification of colocalized genes in Artery tissues 

Supplementary Data 4.2. Association of colocalized genes with subclinical atherosclerosis 

Supplementary Data 4.3. Association of modules from WGCNA with subclinical atherosclerosis 

Supplementary Data 4.4. Pathway enrichment analysis of subclinical atherosclerosis related modules.  
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Supplementary Figure 2.1 Relationship of LC-PUFA levels with Global Proportion of Amerind 
Ancestry before and after adjustment for rs174557 genotype The regression effect estimates (𝛽 
expressed as % of total fatty acids) and P-values are shown in the upper right corner of each panel. The 
relationship of LC-PUFA levels with Global Proportion of Amerind Ancestry as estimated from genome-
wide SNP data is shown for (a) EPA - raw, (b) EPA – genotype-adjusted, (c) DHA – raw, (d) DHA – 
genotyped-adjusted, (e) ARA – raw, and (f) ARA – genotype-adjusted. Here, the rs174557 genotype-
adjusted LC-PUFA levels were obtained as residuals after regression against rs174557 genotype and re-
centered around the raw mean. P-values are presented based on two-sided t-tests for each regression 
coefficient derived with n = 1102 biologically independent samples. 
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Supplementary Figure 2.2 Relationship of triglycerides with Global Proportion of Amerind 
Ancestry before and after adjustment for rs174557 genotype. The regression effect estimates (𝛽 in 
mg/dL) and P-values are shown in the upper right corner of each panel. The relationships are shown for 
each of (a) raw triglyceride levels, and (b) genotype-adjusted tryglyceride levels with Global Proportion of 
Amerind Ancestry. Here, rs174557 genotype-adjusted triglyceride levels were obtained as residuals from 
regression accounting for rs174557 genotype, and re-centered around the raw means. P-values are 
presented based on two-sided t-tests for each regression coefficient derived with n = 1101 biologically 
independent samples. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 218 

 
 
Supplementary Figure 2.3 Conditional local association plots for n-3 and n-6 PUFAs in the 
FADS1/2 region, accounting for the rs174537 SNP. The plots present -log10 p-values for the 
association of each genetic variant within the region shown with the fatty acid traits. P-values were 
derived based on two-sided t-tests for the genetic additive effects with n = 1,102 biologically independent 
samples. Genetic coordinates on the x-axis are denoted based on human genome Build 37. 
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Supplementary Figure 2.4 Genotypic effects of rs174537 on triglycerides and E-selectin. Mean and 
standard deviation of (a) triglycerides, and (b) E-selectin stratified by the genotypes of rs174537. 
Estimated effect and standard error among participants carrying one or two copies of the ancestral allele 
T (compared to the reference of zero) for (c) triglycerides, and (d) E-selectin after adjustment for age and 
sex. Estimated effect and standard error among participants carrying one or two copies of the ancestral 
allele T (compared to a reference of zero) for (e) triglycerides; and (f) E-selectin, after adjustment for age, 
sex and principal components of ancestry. The sample sizes are 1101 (GG: 293 ;GT: 483 ;TT: 325) for 
triglycerides and 183 (GG: 48; GT: 76; TT: 59) for E-Selectin.  
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Supplementary Figure 2.5 Raw distribution of n-3 and n-6 PUFAs in MESA Hispanic participants. 
Values for (a) EPA, (b) DPA, (c) DHA, and (d) ARA are presented in units of % of total fatty acids. 
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Supplementary Figure 2.6: Distribution of n-3 and n-6 PUFAs in MESA Hispanic participants after 
winsorizing at median +/- 3.5 Median Absolute Deviation (MAD). Values for (a) EPA, (b) DPA, (c) 
DHA, and (d) ARA are presented in units of % of total fatty acids.  
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Supplementary Figure 3.1 Manhattan plot of meta-analysis of GWAS for PUFAs in the Hispanic 
Americans. Manhattan plots for PUFAs exhibiting one or more genome-wide significant association in the Hispanic 
Americans. The red line shows the genome-wide significance threshold of (–log10(5 x 10-8)). 
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Supplementary Figure 3.2. Local association plot of most significant for each PUFAs on each 
chromosome in the Hispanic Americans. Local association plots of the most significant region for each PUFA 
on each chromosome harboring at least one genome-wide significant signal in the Hispanic Americans. Reference 
panel used to color LD is 1000 Genomes Ad Mixed American (AMR) and the color scheme is red for strong linkage 
disequilibrium (LD; r2≥0.8) and blue color for lower LD. 
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Supplementary Figure 3.3 Manhattan plot of meta-analysis of GWAS for PUFAs in the African 
American population. Manhattan plots for PUFAs exhibiting one or more genome-wide significant association in 
the African Americans. The red line shows the genome-wide significance threshold of (–log10(5 x 10-8)).  
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Supplementary Figure 3.4 Local association plot of most significant for each PUFAs on each 
chromosome in the African Americans. Local association plots of the most significant region for each PUFA 
on each chromosome harboring at least one genome-wide significant signal in the African Americans. Reference 
panel used to color LD is 1000 Genomes African (AFR) and the color scheme is red for strong linkage disequilibrium 
(LD; r2≥0.8) and blue color for lower LD. 
 


