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Abstract—Businesses often face uncertain costs when pursu-
ing compliance with external requirements, such as regulatory
mandates or industry standards. These uncertainties complicate
long-term planning and require decision-makers to evaluate
a wide range of operational and economic-political factors.
This research, sponsored by CapTech—a Richmond, Virginia-
based consultancy—contributes toward a decision-support tool
for problems of this nature. In particular, it provides methods
for specifying solvable optimization models in contexts where
uncertainty must be quantified using expert judgment, available
data, or a combination of both. This contribution consists of three
components: (i) a stochastic optimization model, (ii) a judgmental
forecasting procedure, and (iii) a statistical cost analysis.

A stochastic optimization model forms the core of the decision
system, selecting and sequencing multi-year mitigation projects
and mitigation instruments to reduce a compliance metric to a
target threshold with sufficiently high probability and to minimize
expected total cost. To operationalize the model for a specific
application, the uncertainty about its random inputs—future
mitigation costs and the compliance metric’s value at the end
of the planning horizon—must first be quantified. In the case
study presented here, the compliance metric is emissions, miti-
gation projects correspond to engineering or business initiatives
that reduce emissions, and mitigation instruments correspond to
emission offsets that can be purchased to meet a compliance
threshold.

Due to the absence of data, expert judgment is solely used to
quantify uncertainty about future project costs and future emis-
sions. For each, a judgmental forecasting procedure elicits expert-
assessed quantiles guided by relevant operational and economic-
political factors. For emission offset costs, limited historical data
exists and was used to identify distinct volatility regimes and to
model distributions of cost change. They provide central credible
intervals to guide the spread of expert-assessed quantiles, while
expert’s beliefs forecast the future volatility regime and the cost
change direction.

Together, the three components form a decision system for com-
pliance planning under uncertainty, the core engine of CapTech’s
decision-support tool.

Index Terms—Uncertainty quantification, stochastic optimiza-
tion, judgmental forecasting, statistical analysis.

I. INTRODUCTION

Businesses face increasing uncertainty in regulatory com-
pliance costs due to shifting governmental policies, market
volatility, and evolving industry standards. A recent report from
The Wall Street Journal highlights how regulatory scrutiny
of energy contracts has led companies to favor mitigation
efforts that avoid such uncertainty, particularly when planning
new power generation projects for data center demand [1].

More broadly, firms must balance these regulatory consider-
ations alongside operational factors such as project feasibility,
resource constraints, and internal strategic priorities. These
circumstances underscore the necessity of rigorous methods
to quantify and manage uncertainty in compliance planning—
especially when relevant data does not exist or does not fully
characterize the uncertainty.

Motivated by these challenges, CapTech, a consultancy
based in Richmond, Virginia, sponsored this research to sup-
port the development of a decision-support tool for compliance
planning under uncertainty. The tool is designed to assist
businesses in selecting and sequencing multi-year projects
to achieve a specified compliance target while minimizing
expected total cost.

A particular decision system for compliance planning under
uncertainty is developed, centered around a stochastic opti-
mization model that is supported by methods for specifying
random inputs. The model selects and sequences multi-year
mitigation projects and allocates mitigation instruments over a
planning horizon to achieve a specified compliance target with
sufficiently high probability and minimum expected total cost.
To apply the model to a specific problem, uncertainty about
its random inputs—future mitigation costs and the value of
the compliance metric at the end of the planning horizon—
must first be quantified. This paper contributes two methods
for this purpose: a judgmental forecasting procedure, used
when data is unavailable or insufficient, and a statistical
cost analysis, used when historical data provides useful but
incomplete information. In the case study presented here, the
compliance metric is emissions, mitigation projects correspond
to engineering or business initiatives that reduce emissions, and
mitigation instruments correspond to emission offsets that can
be purchased to meet a compliance threshold.

The uncertainty about future project costs, future emission
reductions, and future emission offset costs is quantified using
expert judgment. For each random variable, experts assess
three p-probability quantiles (p = 0.1, 0.5, 0.9) corresponding
to the left tail, median, and right tail of its distribution.
Variable-specific guidelines are provided to ensure that rele-
vant economic-political and operational factors are taken into
account during the assessment process. The assessed quantiles
are used to fit candidate parametric distributions from three dis-
tribution families—Gumbel, logistic, and reflected Gumbel—
selected to accommodate scenarios with right skew, symmetry,



and left skew, respectively. The best-fitting distribution is then
used to fully quantify the uncertainty about each random
variable for input to the stochastic optimization model.

For future emission offset costs, limited historical data is
available for Chicago Mercantile Exchange (CME) Global
Emissions Offset (GEO) futures, which serve as a proxy for the
emission offset spot market. While insufficient to forecast long-
term price trends, this data was found to characterize market
volatility across three distinct regimes with high, medium, and
low volatility. Within each regime, the standardized daily rate
of change forms an approximately stationary series, allowing
parametric distributions to be fitted and central credible inter-
vals to be calculated. These intervals provide users with histor-
ically consistent guidance for assessing the spread of expert-
assessed quantiles for emission offset costs, while retaining full
flexibility to specify the median based on internal beliefs about
future market behavior.

The resulting stochastic optimization model is mathemati-
cally rigorous while maintaining accessibility for non-technical
users, as it requires only inputs that can be specified through
guided expert assessment and available data. It constitutes the
core engine of a decision-support tool sponsored by CapTech,
providing organizations with a principled approach to strategic
planning in regulatory environments where uncertain costs
complicate decision-making.

II. STOCHASTIC OPTIMIZATION MODEL

The core of the decision system is a stochastic optimization
model designed to guide businesses in selecting and sequenc-
ing multi-year mitigation projects and allocating mitigation
instruments under uncertain regulatory compliance costs. The
model minimizes the expected total cost required to achieve
a specified compliance target by the end of a planning hori-
zon, while ensuring that the target is met with sufficiently
high probability. To accomplish this, the model incorporates
uncertainty about future mitigation costs and the future value
of the compliance metric, which must be quantified prior to
optimization. These uncertainties reflect the growth of project
costs over time, deviations in the compliance metric from
its historical trend, and changes in the cost of mitigation
instruments. The model integrates these elements within a
mixed-integer linear programming formulation, enabling prac-
tical solution with standard optimization software.

A. Inputs

The model requires several deterministic inputs related to
the compliance metric, available projects, and mitigation in-
struments. The compliance metric value from the previous year
is denoted by ϵ, and its historical mean annual growth rate is
denoted by µ. The number of available projects is Np, and
project i has a duration of ηi years, a current total cost of wi,
and a total compliance metric reduction of γi. Project costs are
incurred at the beginning of each year during execution, while
compliance reductions are applied at the end of each year.
The current cost to adjust reported emissions using mitigation
instruments is wc per unit.

Additional parameters define the planning horizon, com-
pliance target, and constraints for a specific application. The
planning horizon length is Ny years, and the target value for the
compliance metric to be reached by the end of the final year is
τ . The minimum acceptable probability of reaching this target
is α. The maximum proportion of the expected total cost that
can be spent in a single year is β. For operational or regulatory
reasons, a minimum number of mitigation instruments κj may
be required in year j, and a set of projects Pj may be manually
specified to start in year j.

Uncertainty enters the decision system through three random
variables that capture future deviations from current conditions.
The annual growth rate of project costs is denoted by Xp,
which multiplies project costs by a factor of (1 + Xp) each
year. The compliance metric grows multiplicatively each year
by a factor of (1+µ+Xd), where Xd reflects deviations from
the historical mean growth rate. This formulation captures an
anchor-and-adjust heuristic, in which experts use the historical
trend as a reference point when assessing uncertainty. The
annual growth rate of the cost of mitigation instruments is
denoted by Xc, which multiplies instrument costs by a factor
of (1 +Xc) each year.

B. Pre-Processing

Before solving the optimization problem, additional vari-
ables are derived to represent the behavior of projects, the
compliance metric, and mitigation instruments within the finite
planning horizon.

First, project durations and compliance reductions are ad-
justed to reflect any truncation that occurs when a project
extends beyond the final year. If project i starts in year j,
its effective duration within the horizon is ηij = min{ηi, Ny−
j + 1}. The total compliance metric reduction from project i
when started in year j is then γij = γiηij/ηi.

Next, future project costs, required compliance reductions,
and mitigation instrument costs are represented as random
variables that incorporate the effects of uncertainty. If project
i starts in year j, its total cost is given by

Wij =
wi

ηi

ηij∑
k=1

(1 +Xp)
k+j−2. (1)

The total compliance reductions required by the end of the
planning horizon to meet the target τ is denoted by Wt,
with distribution function G, which is strictly increasing and
continuous over its support.

The cost of mitigation instruments in year j is given by

Wcj = wc(1 +Xc)
j−1. (2)

The decision system requires expected values of future costs
and a critical quantile of the required compliance reductions.
These are pre-computed as follows. The expected total cost of
project i started in year j is

λij = E(Wij) =
wi

ηi

ηij∑
k=1

k+j−2∑
l=0

(
k + j − 2

l

)
E(X l

p). (3)



The expected cost of mitigation instruments in year j is

λcj = E(Wcj) = wc

j−1∑
l=0

(
j − 1

l

)
E(X l

c). (4)

Finally, the α-probability quantile of the required compliance
reductions is wtα = G−1(α). This quantile ensures that the
compliance target is reached with the specified probability.

C. Mathematical Formulation
The decision system selects and sequences projects and

allocates mitigation instruments over a finite planning horizon
to minimize the expected total cost of achieving the compliance
target with sufficiently high probability.

The model introduces binary decision variables aij to indi-
cate whether project i is started in year j, for i = 1, . . . , Np

and j = 1, . . . , Ny . A project is active in a given year if
it was started in a previous year and has not yet completed
its execution. The model also includes continuous decision
variables acj to represent the number of mitigation instruments
to be purchased in year j, for j = 1, . . . , Ny . The expected
total cost of the selected projects and mitigation instruments is
represented by the continuous variable z.

The objective function minimizes the expected total cost:

min z =

Ny∑
j=1

 Np∑
i=1

aijλij + acjλcj

 . (5)

To ensure the compliance target is reached with the specified
probability α, the total compliance reductions from selected
projects and mitigation instruments must meet or exceed the
critical quantile wtα of the required reductions random variable
Wt:

Ny∑
j=1

 Np∑
i=1

aijγij + acj

 ≥ wtα. (6)

To enforce budget discipline, the model limits the expected
expenditures in each year to a fraction β of the expected total
cost:

Np∑
i=1

aijλij + acjλcj ≤ βz, j = 1, . . . , Ny. (7)

Additional constraints allow the user to manually specify
operational requirements. For example, a minimum number of
mitigation instruments κj may be required in year j, enforced
by:

acj ≥ κj , j = 1, . . . , Ny. (8)

Similarly, a set of projects Pj may be specified to start in
year j, enforced by:

aij = 1, ∀i ∈ Pj , j = 1, . . . , Ny. (9)

Each project can only be started once over the planning
horizon:

Ny∑
j=1

aij ≤ 1, i = 1, . . . , Np. (10)

Finally, the binary nature of project selection is enforced:

aij ∈ {0, 1}, i = 1, . . . , Np, j = 1, . . . , Ny. (11)

This mathematical formulation provides a structured and
rigorous approach for project sequencing and mitigation instru-
ment allocation under uncertainty, while maintaining flexibility
for user-specified constraints and operational requirements.
The mixed-integer linear programming formulation ensures
compatibility with standard optimization software and practical
solution for real-world applications.

The case study presented henceforth considers emissions
as the compliance metric of interest. Mitigation projects cor-
respond to engineering or business initiatives that reduce
emissions, while mitigation instruments correspond to carbon
offsets that adjust reported emissions for compliance purposes.

III. JUDGMENTAL FORECASTING PROCEDURE

Experts will consider qualitative information, such as oper-
ational and economic-political factors, to quantify the uncer-
tainty about Xp, Xd, and Xc. These inputs will be assessed
using judgment provided in the form of three p-probability
quantiles (p = 0.1, 0.5, 0.9), representative of the left tail,
median, and right tail, respectively. Then, the quantiles will
be used to fit models from the Gumbel, logistic, and reflected
Gumbel families.

A. Guidelines and Instructions

Each of the three inputs will depend on the expert’s ability
to interpret various factors from both the internal and external
environment. To support this process, users will first receive
tailored guidelines for each input, providing key considerations
specific to that input. In some cases, they may be asked to
draw upon recent inflation trends and anticipated government
policies, while in others they are asked to consider internal
shifts in organizational development, leadership priorities or
realignment in company strategy.

These tailored guidelines will serve as a foundation for users
to make well-informed assessments. The following instructions
will provide a step-by-step guide for assessing each quantile
for each random variable, using the assessment of the annual
growth rate of project costs Xp as an example.

• 0.5-Probability Quantile: This represents the median es-
timate of the annual growth rate of project costs over
the planning period. You may set a positive value if you
believe the costs will increase, a zero value if you believe
they will remain the same, and a negative value if you
believe the costs will decrease. This quantile represents
your best guess of a year-over-year project cost growth
rate that is exceeded 50% of the time, or for 5 out of 10
years.

• 0.1-Probability Quantile: Consider this an optimistic sce-
nario where the annual growth rate of project costs will
be less than anticipated. This quantile represents a year-
over-year project cost growth rate that is exceeded 90%
of the time, or for 9 out of 10 years.



• 0.9-Probability Quantile: Consider this a pessimistic sce-
nario where the annual growth rate of project costs will be
greater than anticipated. This quantile represents a year-
over-year project cost growth rate that is exceeded 10%
of the time, or for 1 out of 10 years.

B. Parametric Distributions

The three quantiles provided by the expert only offer a crude
pointwise representation of a continuous distribution function.
However, these assessed quantiles suffice to estimate a para-
metric model which characterizes uncertainty about each input
completely and conveniently. For each random variable, the
judgmental parametric distribution functions can be estimated
using the pointwise representation and the appropriate sample
space [2].

Any distribution on the sample space which is the un-
bounded interval is an appropriate hypothesis for all three
inputs. Furthermore, because assessed quantiles may not neces-
sarily be centered around the median, three distribution families
may be applied: Gumbel, logistic, and reflected Gumbel. The
distribution function H for all three distributions is stated
below.

1) Gumbel Distribution: Applicable when assessed quantiles
are skewed to the right of the median,

H(x) = e−e−
x−β
α , −∞ < x < ∞. (12)

2) Logistic Distribution: Applicable when assessed quantiles
are roughly symmetric,

H(x) =
(
1 + e−

x−β
α

)−1

, −∞ < x < ∞. (13)

3) Reflected Gumbel Distribution: Applicable when assessed
quantiles are skewed to the left of the median,

H(x) = 1− e−e
x−β
α , −∞ < x < ∞. (14)

The quantile function of each distribution family—derived
from the distribution function H—is used to obtain the location
parameter β and the scale parameter α through the quantiles-
moments (QM) method [2].

The goodness of fit of the model can be evaluated using the
maximum absolute difference (MAD) between the pointwise
representation and the hypothesized parametric distribution
function. The hypothesized distribution with the best fit—the
smallest MAD—will be selected. It is important to note that the
MAD goodness-of-fit measure does not make any assumptions
about the underlying distribution of the quantiles.

C. Demonstration

For illustrative purposes, consider a scenario in which an ex-
pert anticipates that the annual growth rate of project costs, Xp,
will rise over the planning period due to recently implemented
government policies and prevailing global developments. As
a result, the expert may be inclined to assess the following
quantiles.

1) 0.5-Probability Quantile: 0.02.

2) 0.1-Probability Quantile: 0.00.
3) 0.9-Probability Quantile: 0.07.

The three distribution families are now fit to the quantiles
using the QM method. Given the right skew nature of the
assessment, the Gumbel distribution has the best fit. Fig. 1
shows the pointwise representation overlaid on the selected
parametric distribution function.

D. Method for Computing Expectations

Once the parametric distribution functions for Xp and Xc

have been selected, the expected values E(Xn
p ) and E(Xn

c )
must be calculated for n = 1, . . . , Ny so that λij and λcj can
be calculated for i = 1, . . . , Np and j = 1, . . . , Ny . These
expected values are generally computationally expensive to
calculate for large n, but they can be obtained with relative ease
for the standard Gumbel and standard logistic distributions.

For any Gumbel or logistic variate X , the standard variate
Z has parameters (β, α) = (0, 1) and can be obtained through
the transformation Z = (X − β)/α. Thus, the expected value
E(Xn) for n = 1, . . . , Ny can be written in terms of E(Zk)
for m = 1, . . . , n:

E(Xn) =

n∑
k=0

(
n

k

)
βn−kαkE(Zk). (15)

The standard Gumbel variate Z can be obtained from any
reflected Gumbel variate X through the transformation (β −
X)/α, so the expected value E(Xn) for n = 1, . . . , Ny can
be written in terms of E(Zk) for m = 1, . . . , n:

E(Xn) =

n∑
k=0

(
n

k

)
βn−k(−1)kαkE(Zk). (16)

It is necessary to consider all information when quantifying
uncertainty about these three random variables. In the case of
Xc, historical market data is available and accessible, which
can offer empirical guidance to assist the expert in their
judgment.

0.00 0.02 0.07
Annual growth rate, x

0.1

0.5

0.9
1.0

P(
X

p
≤

x)

β = 0.0117
α = 0.0227
MAD = 0.0876

Ȟ
H

Fig. 1: The selected Gumbel distribution function H and pointwise
representation Ȟ of Xp from the demonstration.



IV. STATISTICAL ANALYSIS OF GEO FUTURES

When a company wants to meet carbon footprint expecta-
tions or regulations, they can buy a Global Emissions Offset
(GEO) futures contract from the Chicago Mercantile Exchange
(CME) Group. The contract size for GEO futures is 1,000 off-
sets, with each offset representing the reduction of one metric
ton of carbon dioxide or its equivalent in other greenhouse
gases. GEO futures contracts are listed monthly for the current
year and at least the next three calendar years.

The dataset comprises front-month Global Emissions Offset
Futures contracts from the Chicago Mercantile Exchange,
spanning March 1, 2021, to January 28, 2025. It includes trade
dates, daily opening, highest, lowest, and settled prices, as well
as trading volume. Exploratory data analysis was conducted to
visualize price trends and variability over time.

A. Exploratory Data Analysis

The exploratory data analysis involved graphing key time
series aspects, including closing price, volume, daily price
change (in dollars), and daily rate of change. This analysis
revealed three separate regimes over its history, corresponding
to high, medium, and low volatility. The data were broken into
regimes according to the following date ranges.

• High: 7/6/2021–8/12/2022, N = 280 trading days.
• Medium: 8/15/2022–7/28/2023, N = 240 trading days.
• Low: 7/31/2023–4/25/2024, N = 187 trading days.

The tails of the data (3/1/2021–7/5/2021 and 4/26/2024–
1/28/2025) were excluded from statistical analysis due to low
volume. For each regime, the four time series (closing price,
volume, daily price change, and daily rate of change) were
visualized. Additionally, for each price change unit [$, rate]
within each regime, the sample median x0.5, sample mean m,
and sample standard deviation s were calculated (TABLE I).
The data were then standardized using z(n) = (x(n) −m)/s
for n = 1, . . . , N , and the standardized series were plotted.

B. Fitting Distributions

In Fig. 2, the closing price series lacks stationarity, but when
daily price rate of change is standardized using the methods
listed above, the resulting series demonstrates stationarity. This
stationarity allows the standardized daily price rate of change
to be treated as a random variable and be modeled using
parametric distributions.

The web-based distribution fitter, DFit, which accompanies
the book by Krzysztofowicz [2], enables the user to fit para-
metric distributions to a random sample. The user uploads the
sample, the bounds on the sample space (lower, upper, both,
or none), and the program provides possible distributions that
could fit the data. It then fits these distributions, estimates
their parameters, calculates the maximum absolute difference
(MAD) between the fitted parametric distribution and the
empirical distribution, and performs the Kolmogorov–Smirnov
(K–S) goodness-of-fit test. The user is then able to superimpose
the fitted distributions onto a graph of the empirical distribution
function in order to visually assess the goodness of fit.

TABLE I: The sample median x0.5, sample mean m, and sample
standard deviation s of the daily rate of change of the price of GEO
futures for each of the volatility regimes.

Volatility Regime High Medium Low

Daily Price Change [$]

Median x0.5 0.0 -0.0100 0.0
Mean m 0.0035 -0.0123 -0.0029
Standard deviation s 0.2132 0.1222 0.0623

Daily Rate of Change

Median x0.5 0.0 -0.0042 0.0
Mean m 0.0017 -0.0034 0.0004
Standard deviation s 0.0383 0.0668 0.0941
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Fig. 2: The daily closing price, rate of change, and standardized rate
of change of GEO futures during the three volatility regimes (high,
medium, and low, from left to right).

Exploratory data analysis showed that the standardized daily
rate of change and the standardized daily price change had
similar variability across three volatility regimes.

Each of these six samples (three regimes for two metrics)
was analyzed as well as one combined sample of all three
regimes for each metric. Assuming an unbounded sample
space, five distributions—logistic, Laplace, Gumbel, reflected
Gumbel, and normal—were estimated and their goodness-of-
fit was evaluated. (The equations for these distributions can be
found in [2]).

Judging each distribution based on the MAD and K–S
statistic, the Laplace and logistic fit all eight samples excep-
tionally well, better than the other three distributions. Laplace
had the lowest MAD and K–S statistic for all eight samples.
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Ȟ
H

Fig. 3: The selected Laplace distribution function H and empirical
distribution function Ȟ of the standardized daily rate of change Zc

for the combined sample of all volatility regimes.

Based on these results, the Laplace distribution was selected
to characterize the variability of the standardized daily price
change and the standardized daily rate of change (Fig. 3).

C. Calculating Central Credible Intervals

The statistical analysis of GEO futures prices is used to
provide experts with a 0.8-probability central credible interval
(CCI) for each price volatility regime. Experts forecast the
volatility regime and use the corresponding CCI as an aid to
assessing quantiles. This method adopts the expert-assessed
median exactly without guidance, but informs the expert of
the width of the 0.8-probability CCI based on historical data.
This step should help to prevent a gross underestimation
or overestimation of uncertainty in the forecasted volatility
regime.

The previous analysis showed that the Laplace distribution
fitted to the combined sample of the standardized daily rate of
change should be used to provide this guidance, but it needs
to be transformed to better match the variables introduced in
Section II.

The standardized rate of change of carbon offset credit
costs Zc represents historical fluctuations in the front-month
GEO futures contracts at the CME and is computed as Zc =
(Xc−m)/s, where m and s are the sample mean and standard
deviation of Xc within a given volatility regime. The Laplace
distribution function H of the standardized daily rate of change
is shown in Fig. 3 and its expression is:

H(z) =

{
1
2 exp

(
z+0.0265
0.4832

)
if z < −0.0265;

1− 1
2 exp

(
− z+0.0265

0.4832

)
if z ≥ −0.0265.

(17)

The quantile function for the Laplace distribution was then
used to calculate the prior 0.8-probability CCI as z0.9−z0.1 =
1.56. The width of the 0.8-probability CCI for each regime
was then calculated as x0.9 − x0.1 = s(z0.9 − z0.1).

TABLE II shows that the 0.8-probability CCI for the low
volatility regime is the widest, reflecting the highest degree
of uncertainty. In contrast, the CCI for the high volatility

TABLE II: The sample standard deviation s of the daily rate of change
of the price of GEO futures and the width of the prior 0.8-probability
CCI x0.9 − x0.1 for each of the volatility regimes.

Volatility Regime High Medium Low

Standard deviation s 0.0383 0.0668 0.0941
x0.9 − x0.1 0.0596 0.1039 0.1463

regime is the narrowest, reflecting comparatively lower un-
certainty. This is seemingly paradoxical, but is in fact easily
explained. As shown in Fig. 2, the price is highest during
the high volatility regime, followed by the medium volatility
regime, and then the low volatility regime. As such, seemingly
small fluctuations during the low volatility regime are actually
larger relative changes than those experienced during the high
volatility regime. Thus, it can reasonably be interpreted that
high volatility corresponds to times of high economic-political
activity towards emissions where absolute changes in price
are large but relative changes are low, and vice versa for low
volatility.

V. SUMMARY AND CONCLUSIONS

This paper presents a decision system that integrates judg-
mental forecasting and statistical cost analysis to quantify the
uncertainty about the inputs to a stochastic optimization model
to support compliance planning. The model fully quantifies
the uncertainty about future project costs, compliance metric
growth, and mitigation instrument costs to minimize the ex-
pected cost of achieving a compliance target.

Expert judgment is elicited through a structured forecasting
procedure, in which users assess three quantiles for each un-
certain input variable. These assessments are used to estimate
parametric distributions from selected families, enabling com-
plete quantification of uncertainty. Where available, historical
data supplements the expert’s judgment—statistical analysis
of carbon offset futures provides credible intervals to guide
quantile assessment for the cost of mitigation instruments.

Formulated as a mixed-integer linear program, the stochastic
optimization model integrates these inputs and selects an
optimal sequence of projects and mitigation instruments to
achieve the compliance target with sufficiently high probability.
This approach enables CapTech’s decision-support tool to
combine data-driven insights with expert knowledge, providing
organizations with a principled framework for regulatory cost
planning.
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