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Abstract

This dissertation consists of three microwave spectroscopy experiments performed

with cold Rb Rydberg atoms in Magneto Optical Trap.

The first experiment is a systematic study of a particular type of transition which

was first observed in 2012 that involves a pair of Rydberg atoms. In this transition,

even though only one microwave photon is absorbed, both atoms in the pair change

states. In particular, we describe the transition with the configuration interaction

(CI) model and experimentally verify the scaling of fractional population transfer

predicted by the CI model.

The second experiment builds on the first experiment and reports observations

of additional single and multi photon microwave transitions that are allowed due

to the same CI as in the first experiment. The observations show clearly that this

type of transition involving a pair of Rydberg atoms are a lot more common than

initially thought. We show that the transitions can be conveniently described as

Forster resonances of Floquet states.

The last experiment reports on the technique we used to measure the ng and

nh series quantum defects and the ionic dipole and quadrupole polarizabilities of

85Rb. The technique allows us to obtain zero field intervals of (n + 1)d5/2 → ng

and (n + 1)d5/2 → nh intervals despite the fact that we can only control the stray

electric field in one direction. Using the technique, the quantum defects of ng and

nh were determined to be 0.0039741(16) and 0.0014066(57), respectively. The ionic
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dipole and quadrupole polarizabilities were determined to be 9.12(2)a3
0 and 14(3)a5

0,

respectively.
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Chapter 1

Introduction

1.1 Rydberg Atoms

Atoms that are excited to a very high principal quantum number (n > 10) are

called “Rydberg Atoms”[3]. What makes them such an interesting object of study

is the fact that many of their physical properties such as size, dipole moment, and

geometric cross section are greatly exaggerated compared to ground state atoms. For

this reason, Rydberg atoms are easily perturbed or ionized by collisions or external

fields and interact strongly with each other even at the µm scale. Table 1.1 shows

how various properties of Rydberg atoms scale with respect to the principal quantum

number.

Rubidium (more specifically, 85Rb) is the atomic species used exclusively for the

work in this dissertation. Rubidium belongs to the Alkali metal group, which has one

valence electron. When an alkali metal such as Rubidium is excited to a Rydberg
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Property Scaling
Orbital Radius n2

Dipole Moment n2

Lifetime n3

Geometric Cross Section n4

Spacing between Adjacent Levels n3

Binding Energy 1/n2

Table 1.1: The scaling for some of the properties of Rydberg atoms

state, the valence electron is located far away from the core and it sees a core with

one positive unit charge, and this results in Rydberg atoms having similar properties

to those of the hydrogen atom.

For low angular momentum states, however, the electron orbits are elliptical, and

the energies deviate from the hydrogenic levels due to core penetration and polar-

ization. A correction term, called the quantum defect (δn`j), needs to be included

in the expression for the binding energy of a hydrogenic atom to account for the

energy shift associated with the core penetration and polarization. In other words,

the following expression for the hydrogenic energy

E = −Ry

n2

needs to be modified to

E = − Ry

(n− δn`j)2

where Ry is the Rydberg constant which has a value of 109736.605 cm−1 for Rubid-

ium. The quantity n∗ = n− δn`j is called effective principal quantum number.

The value of δn`j depends strongly on ` and weakly on n and j. The quantum
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State Quantum Defect
s1/2 3.1312
p1/2 2.6549
p3/2 2.6417
d3/2 1.3481
d5/2 1.3465
f5/2 0.01652
f7/2 0.01654
g 0.00397
h 0.00141

Table 1.2: The quantum defects of 85Rb. The values are taken from Li[7], Han[4],
and Lee[6]. The fine structure splitting of ng and nh states could not be resolved.

defect increases as ` decreases because the electron orbit becomes more elliptical and

the effect of core penetration and polarization gets stronger. For ` > 3, the quantum

defect rapidly decreases.

The quantum defects can be empirically determined by measuring energy intervals

between states. Previous students in this group measured quantum defects for the s,

p, d, and f states using microwave spectroscopy[4, 7]. The measurement of quantum

defects for the g and h states is a part of this dissertation (Chapter 5). Table 1.2

lists the quantum defects of Rb that have been determined to date.

Although various properties of Rydberg atoms have been extensively studied for

decades, the advent of magneto optical trap (MOT) opened up new possibilities by

allowing experimenters to create a cold, dense sample of Rydberg atoms that is often

referred to as a “frozen” Rydberg gas. The sub mK temperature of the Rydberg

atoms in a MOT leads to the atoms only moving a small fraction of their interatomic

spacing on average during the typical experimental time scale of 1 µs. The typical
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density of 108 − 109cm−3 results in a dipole-dipole coupling that is on the order of

1 MHz. The strong interaction among the essentially static Rydberg atoms has led

to observations of many phenomena that could not be observed with isolated atoms

such as the spontaneous evolution of Rydberg atoms into a cold plasma[10], Forster

resonant energy transfer[1, 2, 11], broadening of atomic resonances due to dipole-

dipole interaction[9], dipole blockade[8], and microwave transitions between pairs of

Rydberg atoms[5, 12].

In particular, the microwave transitions between pairs of Rydberg atoms are one

of the main topics investigated this dissertation.

1.2 Thesis Outline

The rest of this dissertation is structured as follows.

In Chapter 2, an overview of the experimental apparatus and technique used

throughout this dissertation is given. The chapter is broken down into sections which

correspond to the major steps involved in conducting the experiment. In addition

to the principle of operation for various parts of the apparatus, measurement results

for the purpose of calibrating or characterizing the apparatus are provided when

applicable. Needless to say, it is crucial for an experimenter to be thoroughly familiar

with the principles behind the apparatus, their operation, as well as troubleshooting

before one can run experiments without interruptions. It takes both patience and

time to become proficient in the operation and troubleshooting of the apparatus.

Chapter 3 reports the systematic study of the microwave transition, nd5/2nd5/2 →
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(n + 1)dj(n − 2)f , between pairs of Rb Rydberg atoms. The primary goal of the

experiment was to test the scaling of fractional population transfer (FPT) for the

aforementioned transition with respect to the principal quantum number, microwave

field amplitude, and density. The scaling of FPT was found to agree well with predic-

tions of a simple theoretical model based on the configuration interaction (CI). The

zero-field resonance frequencies were obtained as well and are in excellent agreement

with the theoretical frequencies for R =∞.

Chapter 4 reports a study that is an extension of the experiment described in

Chapter 3. More specifically, it reports on the observation of single and multi photon

transitions involving pairs of Rb Rydberg atoms that are allowed due to the same

configuration interaction as in nd5/2nd5/2 → (n+ 1)dj(n− 2)f . It is shown that the

transitions can be described as Forster resonant energy transfers between Floquet

states. The Floquet-Forster model reduces to the CI model used previously.

Chapter 5 reports an experimental technique which was used to determine the

zero field intervals between high ` states of Rb in a magneto-optical trap in spite

of the fact that the stray electric field can only be controlled in one direction. The

technique was used to determine the zero field (n+ 1)d5/2− ng and (n+ 1)d5/2− nh

intervals. The quantum defects of the ng and nh states are determined from the

intervals. Lastly, using the quantum defects and the adiabatic core polarization

theory, the ionic dipole and quadrupole polarizabilities of Rb+ are determined.
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Chapter 2

Experimental Approach

Many instruments were used for the experiments described in this dissertation. As

is true for any experimental work, it is crucial to understand all components of the

apparatus and become proficient at operating and maintaining them to be able to

run experiments. In this chapter, an overview of the experimental apparatus used in

this dissertation is provided. Experiment-specific descriptions or modifications will

be given in the later chapters.

In most cases, an experiment consists of the following for major steps. First, a

sample of cold rubidium atoms is prepared in a Magneto Optical Trap (MOT). Sec-

ond, the trapped atoms are excited to a Rydberg state. Third, the Rydberg atoms

are manipulated with either microwaves or static electric fields. Lastly, the atoms

are ionized by state-selective field ionization, and the resulting ions or electrons are

pushed to the multichannel plate (MCP) detector. The signal from the MCP detec-

tor is sent to the computer for later analysis. Accordingly, this chapter is broken
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down into the following sections: 1) Magneto Optical Trap, 2) Excitation of Rydberg

Atoms, 3) Microwave Setup, and 4) Detection and Data Acquisition. Since theoreti-

cal and experimental descriptions of Magneto-Optical Traps are widely available, only

brief descriptions will be given. There are excellent references if the reader wishes to

learn in more depth about these topics. For instance, Metcalf[7] gives a good theoret-

ical description. For experimental descriptions including a more detailed description

on this particular setup, the dissertations of previous students (Anderson[1], Li[5],

Han[2], Park[8], Levac[4]) who worked on the setup can be consulted.

2.1 Magneto Optical Trap (MOT)

A magneto-optical trap is an apparatus used to make a sample of extremely cold

trapped neutral atoms. It uses a combination of laser (that provides damping force)

and magnetic fields (that provides trapping force) to trap neutral atoms. Since it was

first realized in 1987, the Magneto-Optical Trap (MOT) has been one of the most

important tools in experimental atomic physics. Its popularity arises from its simple

and relatively inexpensive construction, easy operation, and robust performance.

Its small size does not require much space, allowing table-top experiments. The

MOT used in this dissertation is a vapor-loaded type, in which the slowly moving

atoms of rubidium vapor, produced by heating a rubidium getter, are captured by a

combination of laser and magnetic field.
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2.1.1 Principle of Operation

The following two mechanisms are responsible for the operation of a MOT: Doppler

cooling and magnetic trapping. Doppler cooling is based on the law of momentum

conservation. When an atom and a photon interact, the momentum has to be con-

served. If an atom absorbs a photon propagating along a fixed direction (i.e. the

laser propagation direction), the atom gains a momentum in the direction the photon

was moving before absorption. By red detuning a laser beam, it is possible to pick

out and slow down only the atoms that are moving toward the laser (with a specific

velocity range), because only those atoms will see the correct up-shifted frequency

due to the Doppler effect. Since the atom will emit a photon in an arbitrary direction,

when repeated many times this process of absorption-spontaneous emission results

in a friction force that slows down the atom. In order to cool atoms, the slowing

down process must occur in all three Cartesian axes. This is achieved by sending

in 3 orthogonal laser beams through the center of the trap and then reflecting the

beams back along the same direction.

Magnetic trapping is based on the Zeeman shift, which is the shifting and splitting

of mf energy levels in a presence of magnetic field. In MOT, a pair of anti Helmholtz

coils creates a spatially varying quadrupole magnetic field that is zero at the center of

the trap and increases linearly in all directions. As a result, the atom that moves away

from the center of the MOT experiences an energy shift that makes the atom more

likely to absorb red-detuned photons. Different mf states will interact differently

with the two possible circular polarizations of the laser. It is important to ensure

that the correct polarizations are used so that the atoms are always pushed toward
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the center.

In order to cool the atoms by using a laser, the atom must go through many

cycles of absorption-spontaneous emission. For the atom to be able to repeatedly

go through this cycle, it needs to have a specific energy level structure known as a

closed optical loop. For 85Rb, 5s1/2, F = 3 and 5p3/2, F = 4 states form such a loop.

Due to the detuning of the laser, however, there is a nonzero probability of the laser

exciting the 5s1/2, F = 3 state to the 5p3/2, F = 3 state. When this happens, the

atom may decay from 5p3/2, F = 3 to the 5s1/2, F = 2 state, which is inaccessible to

the laser, and the atom falls out of the cooling/trapping cycle. To put these atoms

back into the cooling/trapping cycle, another “repump” laser that is tuned to the

5s1/2, F = 2→ 5p3/2, F = 3 transition is employed. The energy levels involved with

the magneto-optical trapping of rubidium 85 are shown in Fig. 2.1. The laser that

is tuned to 5s1/2, F = 3 → 5p3/2, F = 4 will be referred to as the “trap” laser. The

wavelength of the trap laser is 780.030 nm, and the wavelength of the repump laser

is 780.024 nm.

2.1.2 Vacuum Chamber

Since the collisions between the trapped atom and background gas can kick the

trapped atom out of the trap, the trapping can only be achieved in a vacuum cham-

ber kept in ultra-high vacuum (UHV) condition. We use the MCF-600-SS200408-A

vacuum chamber from Kimball Physics to house the core components of the MOT

setup including the rubidium dispenser, electrodes for field ionization and applying

static fields (when necessary), and micro-channel plate detector. The chamber has
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Figure 2.1: The energy levels involved with the magneto-optical trapping of Rubid-
ium 85.



2.1. MAGNETO OPTICAL TRAP (MOT) 13

various windows and flanges that provide optical access and allow ion pump and

detector to be connected. The pressure is constantly kept below 10−8 torr by the

ion pump manufactured by Physical Electronics. The rubidium atoms are supplied

by a Rb dispenser (or Rb getter) manufactured by SAES. When a current is passed

through the getter, the dispenser releases the Rb atoms, among which the slow mov-

ing ones are trapped by the laser and magnetic field. The typical value of current

supplied to the getter is about 4 A, although higher current is needed as the getters

age. There are four vertical stainless steel rods at the center of the vacuum chamber.

The rods are 1.65 mm in diameter and pass through the corners of a horizontal square

18 mm on a side. The two rods opposite the MCP detector are connected together

(inside the vacuum chamber) and are used primarily to apply a field ionization pulse,

although a DC bias voltage can also be applied if necessary. The two rods closest

to the MCP are also connected together and can be grounded or biased to provide

a static field. In the middle of the four rods where the trap forms the electric field

produced by the pair of rods can be approximated as uniform.

2.1.3 Electric Field

When a DC bias voltage is applied to the rods, it results in an electric field in the

interaction region where the field amplitude linearly depends on the applied bias

voltage, i.e. E = αV where α is a constant. The value of α can be experimentally

determined by comparing the DC Stark shifts of resonant peak of an atomic transition

ns → np1/2 at different values of DC bias voltage against the static polarizabilities

of the states involved in the transition. The static polarizabilities can be found in
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Figure 2.2: The magneto optical trap
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Table 2.2 of J. Pritchard’s thesis[9]. Using this method, the value of α is determined

to be 0.3324 (V/cm)/V.

2.1.4 External Cavity Diode Laser (ECDL)

As mentioned in section 2.1.1, two lasers (the trap laser and repump laser) with

operating wavelengths near 780 nm are required to trap Rb atoms in the MOT. Two

homemade cw Littrow-configuration external cavity diode lasers (ECDL) are used

for this purpose. Diode lasers do not take up much space, are inexpensive, stable

(under the right conditions), and fairly straightforward to construct. The external

cavity can reduce the linewidth to below 1 MHz. There are many helpful articles on

the use of diode lasers in atomic physics experiments[6, 10]. Fig. 2.3 shows the top

view of our Littrow-configuration ECDL. The laser diode that we use is QPhotonics

QLD-780-80S which has a typical output power of 80 mW and an output wavelength

that is centered at 782 nm. A collimation tube with optics (Thorlabs LT110P-B)

houses the laser diode. The collimation is achieved by rotating the lens in front of

the tube. The collimated output beam is directed toward the diffraction grating.

The first order reflection from the grating is directed back toward the diode. The

grating and the highly reflective back facet of the diode form the external cavity.

The zeroth order reflection is taken as the output. The grating is mounted on a

mirror mount so that the grating angle can be adjusted. A piezoelectric actuator

(Thorlabs AE0203D08F) is placed between the adjusting screw and the front plate to

fine-tune the grating angle. By adjusting the angle between the incident beam and

the grating, wavelength tuning can be achieved. The parts shown in Fig. 2.3 are fixed
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Figure 2.3: The top view of the Littrow-configuration ECDL. The figure is adapted
from Fig. 2.5 in [5].

onto an aluminum base which is placed on a large brass block with a thermoelectric

cooler (TEC) sandwiched in between. The temperature of the whole assembly on

the aluminum base is regulated by a thermoelectric cooler (TEC) controlled by a

temperature controller (ILX Lightwave LDT-5525).

For reliable operation of the MOT, the output frequencies of the diode lasers

need to be stabilized through feedback loops. Without stabilization, the output

frequencies drift (or worse yet, the lasers mode-hop) even with a small disturbance

such as a small change in ambient temperature, vibration, noise, and so on. The laser
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Figure 2.4: The saturated absorption spectroscopy (SAS) signal used to frequency
lock the lasers. The top spectrum is for the trap laser and the bottom spectrum is for
the repump laser. The black vertical arrows represent the peaks that correspond to
the transitions labeled below. The red slanted arrows represent the side-lock point.
The figure is adapted from Fig. 2.7 in [5].

frequencies, therefore, are locked using a saturated absorption spectroscopy (SAS)

signal. The SAS signal is obtained by directing a small percentage of the laser output

to a SAS setup which consists of a Rb vapor cell, a photodiode, and necessary optics.

When the laser frequency is scanned by applying a sine wave to the grating-tuning

piezo, the saturated absorption spectrum can be seen, as shown by Fig. 2.4.
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2.1.5 Magnetic Field

The magnetic field gradient is generated by a pair of anti-Helmholtz coils. The

magnetic field generated by the coils is zero at the center of the MOT, and increases

approximately linearly in all directions. The expression for the magnetic field and

magnetic field gradient can be found on page 17 of [5]. The coils are separated by

12 cm and each coil is 15 cm in diameter. The coils are formed with copper magnet

wire with Polyurethane-Nylon coating wrapped around a water cooled aluminum coil

form. The typical operating current for the coils is about 12 A. From the expression

for the magnetic field gradient from [5] and 95 turns of wire for each coil, the magnetic

field gradient is found to be 18 Gauss/cm.

Depending on the type of experiments, the magnetic field is either always on

(“non-switching” mode) or turned off during the experiment (“switching” mode).

The non-switching mode is suitable when the experiment demands a high density

MOT. In other cases, the magnetic field is unwanted because its inhomogeneity causes

broadening (∼5 MHz) of the resonances. In switching mode, a circuit designed by a

former researcher[5] is used to turn off the magnetic field 3 or 4 milliseconds before the

excitation laser pulse comes in and turns the field back on 1 ms after the excitation

laser pulse. It is necessary to turn off the magnetic field several ms before because the

induced magnetic field, due to Eddy currents, goes away slowly. Direct measurement

of the residual magnetic field by Li using a small pick-up coil [5] shows that there is

still a residual magnetic field more than 300 µs after turning off the magnetic field.

Park[8] and Levac[4] investigated how the shape of the resonant peak of an atomic

transition ns1/2 → np1/2 changes with different switch-off delay times. They found
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that the effect of residual magnetic field is highly visible unless the magnetic field is

switched off at least 3 ms before the excitation. With that said, although increasing

the switch-off delay does reduce the residual magnetic field, it also results in a lower

number of trapped atoms. For that reason, a compromise needs to be made and a

switch-off delay of 3 or 4 ms is used.

2.1.6 Determining the Trap Parameters

It is important to know the density of the Rydberg atoms in the MOT because it is

directly related to the strength of dipole-dipole interaction, which plays a key role in

many of the experiments involving Rydberg atoms in MOT. The appendix of Han’s

thesis[2] has a detailed description about how various parameters of MOT can be

determined. Therefore, only a brief description will be provided. The values given

here are measured with the same technique.

The number of atoms in MOT can be determined by measuring the power of the

fluorescence. Once the power is known, the total number of atoms in MOT can be

calculated by

N = 2× P

E

where P is the total power of the fluorescence, and E is the power emitted by a single

5p3/2 atom. The factor of 2 is added because half of the atoms are in 5p3/2 while

the other half are in 5s1/2 (assuming that the trap laser saturates the 5s1/2 → 5p3/2

transition) and only the atoms in 5p3/2 can emit a a photon. From the measured
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total power of the fluorescence of 4.58 µW and the value of 9.4x10−12 for E, we get

N = 4.87× 105 (Total Number of Trapped Atoms)

The size of the trap can be measured with a linear CCD array connected to an

oscilloscope. The linear CCD array has a pixel size of 0.014 mm, which corresponds

to 5 µs on the oscilloscope. The density distribution of the trapped atoms is assumed

to be Gaussian. Fig. 2.5 shows a Gaussian fit of the image of trapped atoms. From

the full width at half maximum (FWHM) of 0.22 ms, the conversion factor given

above, and the magnification introduced by the focusing lens (which is 1 in this case

because the lens is placed exactly midway between the linear CCD array and the

trapped atoms), the size of the trap (FWHM) is determined to be 0.62 mm.

Size of the Trap (FWHM) = 0.62 mm

Once the total number of trapped atoms and the size of the trap are known, it is

straightforward to calculate the density. It is given by

N
4
3
πw3

T

=
4.87× 105

4
3
π(0.616 mm

2
)3

= 8.2× 109 cm−3 (Trap Avg. Density)

where wT is the radius of the MOT.

The risetime of the trap can be measured by recording the fluorescence of the trap

as a function of time with a photodiode when one of the lasers is suddenly unblocked.

The risetime of the trap represents how quickly the trap can be replenished and is
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Figure 2.5: The image of trapped atoms and a Gaussian fit.
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largely dependent on the number of Rubidium atoms present in the vacuum chamber.

In turn, the getter current mostly determines the risetime. The recorded fluorescence

vs. time data is fitted with an expression of the form N(t) = Nmax(1−e
t
τ ) to extract

the value for τ . The risetime was measured to be between 1 and 2 s depending on

the getter current.

The number of Rydberg atoms can be determined from the following equation:

NRydberg = (Nmax −Navg)Rload∆t

where Nmax is the number of trapped atoms, Navg is the number of trapped atoms

with 480 nm excitation laser, Rload = 1
τ

is the loading rate which is the inverse of

the risetime, and ∆t is the time interval between two adjacent laser shots. Using

Nmax = 4.87× 105, Navg = 0.45×Nmax, Rload = 1
1.5 s

, and ∆t = 0.05 s,

NRydberg = 8.9× 103 (Number of Rydberg Atoms)

Once the number of Rydberg atoms is known, the density of Rydberg atoms at

trap center can be determined from the following equation:

ρ0 =
N√

π3wTw2
L

where wT is the radius of the MOT and wL is the radius of the 480 nm laser beam.

wL can be measured with knife edge method and is found to be 197 µm. Therefore,

the density of Rydberg atoms at trap center is
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ρ0 =
8.9× 103

√
π3(0.305 mm)(98.5 µm)

= 5.40× 108 cm−3 (Density of Rydberg Atoms)

The Rydberg atom density as a function of the position has the following form:

ρ(x, y, z) = ρ0e
−(x2+y2+z2)/w2

T e−(x2+y2)/w2
L , where x, y, and z are the Cartesian dis-

placements from the center of the trap. The 480 nm beam propagates in the z

direction.

The density of Rydberg Atoms is related to the average spacing between the

Rydberg atoms by the following expression:

Rav =

(
3

4πρ

)1/3

A density of 5.40× 108 leads to the average spacing of 7.6 µm.

Another useful expression is the most probable nearest neighbor separation as-

suming random distribution and is given by:

Rnn =
1

(2πρ)1/3

Rav and Rnn are related by

Rnn = 0.874×Rav
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2.2 Excitation of Rydberg Atoms

The trapped atoms in the 5p3/2 state are excited to Rydberg states by a laser pulse

with a wavelength near 480 nm. The laser pulse is generated by pulse amplifying, at a

20 Hz repetition rate, and then frequency doubling the output of a tapered amplifier

seeded by a 960 nm single mode diode laser. The resulting pulse has an energy of

10 µJ, is 10 ns long, and has a bandwidth of 150 MHz. In certain situations, a dye

laser can be used instead when a quick tuning of the wavelength is required.

2.2.1 Dye Amplified Diode Laser

The Toptica DL100 external-cavity diode laser with an output wavelength centered

at 960 nm provides the seed beam. The coarse tuning of the wavelength can be

achieved by slowly turning the screw that changes the diffraction grating angle. After

the coarse tuning, fine tuning is done by changing current, temperature, and the DC

voltage applied to the piezo that changes the diffraction grating angle. To get a stable

Rydberg signal, the output has to be single-mode and be free from mode hops near

the resonance. The laser has a typical output power of 50 mW. The output beam is

sent through two isolators which are used to prevent any reflected beam from entering

the laser. The output is then amplified with a tapered amplifier, which is capable of

amplifying the power upto 0.5 W. A portion of the beam is directed to a Fabry-Perot

cavity (Coherent Spectrum Analyzer) to check that the laser is operating with single

mode and to monitor any shift in output frequency. The beam is further amplified

by two dye cells pumped by the second harmonic of a Nd:YAG laser (Quanta-Ray
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Wavelength Dye Pumped with Concentration Solvent

960 nm LDS 965 532 nm 0.12 g/L 0.85 Propylene Carbonate
0.15 Ethylene Glycol

480 nm Coumarin 480 355 nm 0.4 g/L 1.00 Methanol

Table 2.1: The list of dyes used for dye amplification stages

DCR-2A), and focused onto a Potassium Niobate (KNbO3) crystal to double the

frequency. The frequency doubled 480 nm laser beam is sent through one more

dye amplification stage which is pumped by the third harmonic of a Nd:YAG laser

before it is directed toward the vacuum chamber. The list of the dyes used for dye

amplification stages is given in Table 2.1. The beam enters the vacuum chamber

from the top.

2.2.2 Dye Laser

Although the dye amplified diode laser is the preferred method to excite Rydberg

atoms, it is sometimes beneficial to use a dye laser instead. Dye lasers use organic

molecules as the active medium. Depending on the desired output frequency and

the pumping source (which is typically a harmonic of Nd:YAG laser), different dyes

need to be used. Since the excitation of Rb atoms from 5p3/2 to Rydberg states is

in the vicinity of 480 nm, we use Coumarin 480 pumped by the third harmonic (355

nm) of the Nd:YAG laser.

The main selling point of the dye laser is its easy tunability. In order to change

the wavelength of the diode laser, it is typically necessary to change three parameters:

current, temperature, and the grating angle. On the other hand, it is much more

straightforward to change the wavelength of a dye laser, as it usually only requires
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the grating angle to be changed slightly. The trade off is the fact that the dye laser

is inherently multi-mode, with a linewidth in excess of 10 GHz, and fine tuning of

the wavelength is impossible.

We use a dye laser with the Littman configuration that is constructed from home-

built aluminum mounts, UV cell assembly, and a diffraction grating. An end mirror,

a diffraction grating mounted at grazing incidence, and a tuning mirror form a cavity.

The zeroth order reflection from the grating is the output of the laser, while the first

order reflection is sent to the tuning mirror which reflects it and sends it back to the

cavity. The tuning of the wavelength is achieved by turning the tuning mirror.

2.3 Microwave Setup

Since the energy differences between neighboring states of atoms excited to Ryd-

berg states often fall in the microwave frequency range (0.3 - 300 GHz), it makes

using microwaves an attractive choice to probe transitions between Rydberg states.

Through the use of various frequency multipliers, we are able to generate microwaves

with frequencies up to 110 GHz. The microwaves are generated in an Agilent 83622B

(or Agilent E8247E) synthesizer, which has a maximum frequency of 20 GHz, and a

General Microwave DM862B switch is used to form the microwaves into pulses. A

typical microwave pulse length is 1 µs. Depending on the desired output frequency

range, different frequency multipliers are used. Table 2.2 shows the list of frequency

multipliers we have as well as their input and output frequency ranges. The relative

microwave power is controlled in the final waveguide with a precision attenuator for
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Model Number Type Input Range Output Range
(GHz) (GHz)

HP 83554A passive doubler 13.25 - 20 26.5 - 40
Narda DBS2640X220 active doubler 13.25 - 20 26.5 - 40
Narda DBS4060X410 active quadrupler 10 - 15 40 - 60

HP 83556A passive tripler 13.3 - 20 40 - 60
Pacific Millimeter V2 passive doubler 25 - 37.5 50 - 75

Pacific Millimeter W3WO passive tripler 25 - 36.67 75 - 110

Table 2.2: The list of microwave frequency multipliers used throughout the exper-
iments in this dissertation. Pacific Millimeter V2 and W3WO need to be used in
conjunction with an active doubler (Narda DBS 2640X220).

the frequency range being used. The microwaves are emitted from a horn outside

the vacuum chamber and propagate through a window to the trapped sample of

atoms. The vertical rods that are used to apply field ionization pulse can scatter

the microwaves to some degree, and this can result in the polarization’s not being

perfectly linear. Additional information about the microwaves scattering from the

rods may be found in Chapter 4 of Levac’s thesis[4].

The active frequency multipliers are capable of producing higher power than

passive frequency multipliers. Both the active doubler and quadrupler have a typical

output power of +20 dBm given an input power of +15 dBm. As a comparison,

the HP 83554A passive doubler and the HP 83556A passive tripler have maximum

leveled output power of +8 dBm and +3 dBm, respectively. Although it is difficult to

measure the output power from the horn accurately, several methods are employed

in order to estimate the microwave field amplitude at the trap center. The first

method is computing the field directly by using the microwave power right before

the horn, the known gain of the horn antenna, and the estimated distance from



2.4. DETECTION AND DATA ACQUISITION 28

the horn to the trap center. The second method is relating the full width at half

maximum of a resonant peak of an atomic transition to the Rabi frequency. Lastly,

the third method is using the AC Stark shift of a transition and computing how

much field is required to produce the observed shift. All three methods produce a

reasonably consistent value. For example, the maximum microwave field amplitude

at trap center that can be produced by Narda DBS4060X410 active quadrupler is

found to be approximately 0.7 V/cm.

2.4 Detection and Data Acquisition

2.4.1 Field Ionization

We use state-selective field ionization and a microchannel plate (MCP) detector to

detect Rydberg atoms. A home-made circuit generates a high voltage pulse which

has a typical risetime of 3.5 µs and a maximum peak amplitude in excess of 4 kV.

The trapped atoms are located at the center of four rods as shown by Fig. 2.2,

and the pulse is applied to the pair of rods farthest from the MCP detector. The

pulse ionizes the Rydberg atoms and drives the resulting ions or electrons toward

the MCP detector. The circuit generates the pulse by first storing electrical energy

in a capacitor then releasing it into the primary coil of a trigger transformer. A

silicon controlled rectifier (SCR) is used as a switch and releases the stored charge

at a desired time. Fig. 2.6 shows the circuit diagram. The diagram shows only one

of many possible designs for the circuit. Different components and/or design can be

adopted to meet specific requirements.
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Figure 2.6: Field ionization circuit diagram. It is taken from Fig. 2.17 of [4]. The
parameters are R1: 8 Ω, R2: 51.8 Ω, R3: 100 kΩ (Optional), and C1: 47 µF. CONN1,
CONN2, and CONN3 are DC Voltage, trigger pulse, and output, respectively. The
trigger transformer has a turns-ratio of 30.

Slow and Fast Field Ionization Pulse

The typical risetime of the circuit shown in Fig. 2.6 is 3.5 µs. Although this provides

excellent state-selectivity, a field ionization pulse with a shorter risetime is useful

at times. For instance, Han performed an experiment in which she compared the

ionization signal from slow rising and fast rising pulses and reported that if the initial

rise of the field ionization pulse is slow, the passage through the molecular avoided

crossings can be adiabatic[3]. The fast field ionization pulse can be generated by

connecting the output of a pulse generator that is capable of generating high voltage

pulse directly to the primary coil of a trigger transformer. By using a HP 214B pulse

generator, which is capable of generating 100 V square pulses, in conjunction with

30 turns-ratio trigger transformer, we are able to get a field ionization pulse with a
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risetime of 1 µs and a maximum peak amplitude of around 500 V. The limiting factor

is the maximum amplitude of the square pulse input. In practice, the maximum peak

amplitude of 500 V means that we cannot ionize states with n∗ < 38. In order to

ionize the n∗ < 38 states using a fast field ionization pulse, a more complicated

scheme is needed. In contrast, the slow pulse can reach a peak amplitude in excess

of 4 kV. The lowest state that can be ionized with the current setup 22d. However,

arcs start to appear inside the vacuum chamber at this voltage which limits us from

increasing the voltage further.

2.4.2 Ion Detection and Electron Detection

The experimental setup is capable of detecting either ions or electrons. A minor

modification is necessary to change from ion detection to electron detection. The

steps are given on page 31 of Levac’s thesis [4]. Since electrons are much lighter than

ions, electrons reach the detector almost instantaneously after ionization whereas

ions take several microseconds. A noteworthy thing about ion detection is that it

becomes increasingly more difficult to distinguish between the signals from different

states with high n∗. Figs. 2.8 and 2.9 show the times at which the ionization signal

appears as the excitation laser tuning with respect to the ionization limit of Rubidium

is changed. They clearly show that we lose state-selectivity with ion detection at laser

tuning of -1750 GHz and above. Increasing the risetime by reducing the DC voltage

input can alleviate this problem to some degree, yet it is important to be aware of

this limitation with ion detection.
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Figure 2.7: Fast and slow field ionization pulses. The fast pulse has a risetime of 1
µs and the slow pulse has a risetime of 3.5 µs.
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Figure 2.8: This figure shows the times at which the ionization signal appears as the
excitation laser tuning with respect to the ionization limit of Rubidium is changed
when ions are being detected. The slow field ionization pulse with a peak amplitude
of 500 V was used to obtain this data. It is clear that at laser tuning of -1750 GHz
and above, the ionization signals always appear at 5.7 µs. This shows that we lose
state-selectivity of the states with high n∗.
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Figure 2.9: This figure shows the times at which the ionization signal appears
as the excitation laser tuning with respect to the ionization limit of Rubidium is
changed when electrons are being detected. The slow field ionization pulse with a
peak amplitude of 500 V was used to obtain this data. Different from ion detection,
there is no loss of state-selectivity.

2.5 The Timing Diagram

Fig. 2.10 shows a timing diagram for a typical experiment. Since the 480 nm pulse,

which produces Rydberg atoms, has a 20 Hz repetition rate, the experiment is re-

peated at the same rate. A Stanford Research Systems DG535 digital delay gener-

ator, which is triggered by the Q-Switch pulse from the Nd:YAG laser, is used to

control the timings of the magnetic field switching, microwave pulse, and the field
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ionization pulse. As mentioned previously, the magnetic field is switched off 3 or 4

ms before the 480 nm pulse when we use the “switching” mode.

Figure 2.10: The timing diagram for a typical experiment. T is the delay between
the Rydberg excitation and the beginning of the microwave pulse. Typically, the
microwave pulse is sent in immediately following the 480 nm excitation. The mi-
crowave pulse typically has a width that is on the order of 1 µs. The whole sequence
repeats at 20 Hz frequency, which is the repetition rate of the 480 nm pulse.
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Chapter 3

Molecular Transition

3.1 Introduction

There is substantial interest in molecules composed of one or more Rydberg atoms.

The most well studied are the trilobite molecules in which a ground state atom

or molecule is bound to a Rydberg atom by its short range interaction with the

Rydberg electron [2, 8, 20]. Less well studied are molecules composed of more than

one Rydberg atom. The first proposed were macrodimers based on the long range

van der Waals interactions of two Rydberg atoms in the same state [3, 18]. Later

proposals for even longer range molecules were based on dipole-dipole interactions of

atoms in different states [12, 13]. While no experimental evidence for stable bound

double Rydberg molecules has been presented, there is evidence for the existence of

transient macrodimers. In laser excitation spectra, signatures of transient molecules

formed by dipole-dipole, van der Waals, and dipole-quadrupole interactions have
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been observed [4, 7, 16]. Forster resonant energy transfer involving two, three, and

even four atoms has been observed [1, 6, 9, 15]. Finally, microwave transitions

involving pairs of Rydberg atoms have been observed [24].

Here we report a systematic study of microwave transitions in which a pair of

atoms absorbs a microwave photon, with the result that both atoms change state.

Specifically, we have examined the process

nd5/2nd5/2 → (n+ 1)dj(n− 2)f7/2. (3.1)

Here n is the principal quantum number, and the molecular states are labelled by

the atomic states of the two atoms. The process of Eq. (3.1) is observable due to

the dipole-dipole configuration interaction (CI) between the nd5/2nd5/2 state and the

energetically nearby (n+ 2)p3/2(n− 2)f7/2 state.

nd5/2nd5/2 ↔ (n+ 2)p3/2(n− 2)f7/2 (3.2)

For completeness, we have also verified that the molecular transition

nd5/2nd5/2 → (n+ 2)p3/2(n− 1)d5/2 (3.3)

occurs, due to the same CI. The CI enabled microwave transition is roughly analogous

to a two photon transition, with the (n + 2)p3/2(n− 2)f7/2 state playing the role of

the off resonant intermediate state, and the dipole-dipole interaction of Eq. (3.2)

playing the role of one of the photons.



3.2. THEORY - CONFIGURATION INTERACTION MODEL 38

Figure 3.1: Energy levels for the nd5/2nd5/2 → (n+ 1)dj(n− 2)f7/2 microwave tran-
sition, shown by the solid arrow. This transition is allowed due to the configuration
interaction between the nd5/2nd5/2 and (n + 2)p3/2(n − 2)f7/2 state, shown by the
broken double headed arrow.

Systematic measurements of the microwave transition of Eq. (3.1) over the range

35 ≤ n ≤ 42 show that the transition probability for the process of Eq. (3.1) can

be described by a simple CI matrix element, in spite of the fact that over this range

of n the microwave power required to drive the transition changes by more than

three orders of magnitude. In the sections which follow we present a model for the

transition of Eq. (3.1), describe our experimental procedure, and present our results.

3.2 Theory - Configuration Interaction Model

The relevant energy levels for the microwave transition nd5/2nd5/2 → (n + 1)dj(n−

2)f7/2 are shown in Fig. 3.1. All other levels can be ignored. This transition is
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n ∆ (GHz)
34 1.8798
35 1.4820
36 1.1548
37 0.8849
38 0.6621
39 0.4778
40 0.3253
41 0.1991
42 0.09465
44 −0.06288

Table 3.1: Energy detunings (∆) between nd5/2nd5/2 and (n+ 2)p3/2(n− 2)f7/2

allowed because the nd5/2nd5/2 state is coupled to the nearby (n+ 2)p3/2(n− 2)f7/2

state by the dipole-dipole interaction, shown by the double headed broken arrow in

Fig. 3.1, and some of the (n+ 2)p3/2(n− 2)f7/2 state is admixed into the nd5/2nd5/2

state. The dipole matrix element connecting the nd5/2 state to the (n− 2)f5/2 state

is a factor of four smaller than the one connecting it to the (n− 2)f7/2 state [5]. For

this reason we see no evidence for transitions to final states containing an (n−2)f5/2

state. At finite internuclear separation R, the nd5/2nd5/2 state can be written as

∣∣nd5/2nd5/2

〉
R

=
∣∣nd5/2nd5/2

〉
+ ε
∣∣(n+ 2)p3/2(n− 2)f7/2

〉
, (3.4)

where the molecular states without the subscripts are the R = ∞ states and the

admixture coefficient ε is given by

ε =

〈
nd5/2nd5/2

∣∣µµ′ ∣∣(n+ 2)p3/2(n− 2)f7/2

〉
R3∆

=

〈
nd5/2

∣∣µ ∣∣(n+ 2)p3/2

〉 〈
nd5/2

∣∣µ′ ∣∣(n− 2)f7/2

〉
R3∆

.

(3.5)



3.2. THEORY - CONFIGURATION INTERACTION MODEL 40

Here µ and µ′ are the dipole moments of atoms 1 and 2. We ignore exchange effects.

The admixture coefficient is the ratio of the dipole-dipole coupling to the energy

detuning ∆ between the nd5/2nd5/2 and (n + 2)p3/2(n − 2)f7/2 states at R = ∞, as

shown in Fig. 3.1. Explicitly, the detuning is given by

∆ = Wnd5/2nd5/2 −W(n+2)p3/2(n−2)f7/2 . (3.6)

The detunings between the nd5/2nd5/2 and (n+ 2)p3/2(n− 2)f7/2 states are given in

Table 3.1. The energies of the atomic states have been calculated using the quantum

defects given by Refs. [11, 14]. The nd5/2nd5/2 − (n + 1)dj(n − 2)f7/2 microwave

transition matrix element is

〈
nd5/2nd5/2

∣∣
R
µE
∣∣(n+ 1)dj(n− 2)f7/2

〉
= εE

〈
(n+ 2)p3/2

∣∣µ |(n+ 1)dj〉
〈
(n− 2)f7/2

∣∣(n− 2)f7/2

〉
, (3.7)

where E is the microwave field amplitude. In this microwave transition, the (n −

2)f7/2 atom is a spectator. Since all the dipole matrix elements are approximately

proportional to n2, the microwave transition matrix element is given by

〈
nd5/2nd5/2

∣∣
R
µE
∣∣(n+ 1)dj(n− 2)f7/2

〉
=
βn6E

∆R3
(3.8)

where β is a numerical constant of order one.

To compute the fractional population transfer (FPT) we follow an approach used

by Pillet et al. [17]. Consider for a moment two nd5/2 atoms separated by R. They
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are coupled to the (n + 1)dj(n − 2)f7/2 state by the coupling matrix element of

Eq. (3.8), and a pair initially excited to the nd5/2nd5/2 state oscillates between it and

the (n+ 1)dj(n− 2)f7/2 state at the Rabi frequency Ω, given by

Ω =
βn6E

|∆|R3
. (3.9)

If the microwave field is present for a time T , the nd5/2nd5/2 pair makes half a Rabi

oscillation and is left in the (n + 1)dj(n − 2)f7/2 state if ΩT = π, which occurs for

R = RT , where RT is defined by

ΩT =
βn6ET

|∆|R3
T

= π. (3.10)

If R < RT the pair oscillates more rapidly, and on average the probability of making

the transition is 1/2. On the other hand, if R > RT , the probability of making the

transition drops very rapidly due to the 1/R3 dependence of the coupling matrix

element of Eq. (3.8). In sum, only pairs with R < RT undergo the transition. As-

suming the fraction of pairs making the transition is small, the fractional population

transfer (FPT) from the nd5/2nd5/2 state to the (n+ 1)dj(n−2)f7/2 state is given by

FPT =
R3
T

R3
av

, (3.11)

where Rav is the average spacing of the pairs, which is related to the density ρ by

ρ =
3

4πR3
av

. (3.12)
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We implicitly assume that Rav � Rblockade, where Rblockade is the radius of the block-

ade sphere [22]. This condition is easily met for our Rydberg atom density . Finally,

FPT =
β′n6Eρ

|∆|
, (3.13)

where β′ = 4βT/3. The fractional population transfer is bilinear in the density of

the Rydberg atoms and the microwave field amplitude. As n is changed from 35 to

42, n6/∆ changes by a factor of 50. Therefore, at a constant density ρ the microwave

power needed to observe the same fractional population transfer should change by a

factor of 2500.

While it is straightforward to make relative microwave field or power measure-

ments at a fixed frequency, comparing the microwave fields over the broad frequency

range we have used presents more of a problem since we do not know how efficiently

the microwave power is transmitted to the interaction region from the horn. The

AC Stark shift of the observed resonances, analogous to that observed in two pho-

ton spectroscopy, provides a way to calibrate absolutely the microwave field. The

nd5/2nd5/2 → (n + 1)d5/2(n − 2)f7/2 transition is nearly resonant with the atomic

(n+ 2)p3/2 → (n+ 1)dj transition, and the AC Stark shift of these two atomic levels

shifts the (n+1)dj(n−2)f7/2 and (n+2)p3/2(n−2)f7/2 states in opposite directions,

as shown in Fig. 3.2, which is drawn for ∆ > 0.

For a linearly polarized microwave field the azimuthal angular momentum number

mj is fixed and there are two AC Stark shifts, for |mj| = 1/2 and 3/2. The Stark

shifts of the (n+ 1)dj(n− 2)f7/2 state are easily calculated using a Floquet approach
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Figure 3.2: AC Stark shift of the (n+ 1)dj(n− 2)f and (n+ 2)p3/2(n− 2)f7/2 states

and are given by [19]

∆W(n+1)dj(n−2)f7/2 =
(
〈
(n+ 1)d5/2mj

∣∣µz ∣∣(n+ 2)p3/2mj

〉
E)2

4∆
(3.14)

For |mj| = 1/2 and 3/2 the Stark shifts are given by

∆W(n+1)dj(n−2)f7/2 =
γn4E2

∆
, (3.15)

with γ = 0.0801 and 0.0534 for |mj| = 1/2 and 3/2, respectively, when n = 39.

The constant γ includes all the angular factors and the scaling of the radial matrix

elements, and γ ranges from 0.07997 to 0.0802 for |mj| = 1/2 and 0.05331 to 0.05347

for |mj| = 3/2 as n is increased from 35 to 42. The radial matrix elements for〈
(n+ 1)d5/2

∣∣µz ∣∣(n+ 2)p3/2

〉
are given in Ref. [23].
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Lastly, it is worthwhile to point out that while minimal shift with Rydberg atom

density is observed experimentally, the Van der Waals shifts of
∣∣nd5/2nd5/2

〉
and∣∣(n+ 2)p3/2(n− 2)f

〉
states are not zero and may need to be taken into account

at higher densities. It is straightforward to calculate the Van der Waals shifts by

calculating the eigenvalues of the two-by-two Hamiltonian matrix with
∣∣nd5/2nd5/2

〉
and

∣∣(n+ 2)p3/2(n− 2)f
〉

as basis states:

H =

 0 Vdd

Vdd −∆

 . (3.16)

The eigenvalues are

λ± =
−∆±

√
∆2 + 4V 2

dd

2
. (3.17)

The shifts are given by the differences between λ± and the eigenvalues without

dipole–dipole interaction (i.e. 0 and −∆). For our typical maximum density of

5×108cm−3, Vdd ∼5 MHz, which leads to the Van der Waals shift of 0.08 MHz when

n = 44, where ∆ has the smallest value of 62.88 MHz among the states we used for

the experiment. Since the shift is much smaller than the FWHM of the resonant

peaks, we ignore the Van der Waals shifts.

When n = 43, ∆ =8 MHz, the same density leads to the shift of 0.58 MHz, which

is much greater than the shifts for other states. However, we skip n = 43, because

there is a large adiabatic population transfer to higher n during the field pulse which

completely overshadows the resonant signal.
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3.3 Experimental Procedure

In the experiment 85Rb atoms are trapped in a magneto-optical trap (MOT) which

is vapor loaded. The MOT provides a steady population of Rb atoms in the 5p3/2

state. Atoms are excited to the nd5/2 state by a 10 µJ 480 nm laser pulse which

is generated by pulse amplifying, at a 20 Hz repetition rate, the output of tapered

amplifier seeded by a 960 nm diode laser and then frequency doubling it. The optical

pulse is 10 ns long and has a bandwidth of 150 MHz. Approximately 4 ms before

the pulsed laser excitation, the trap magnetic fields are switched off to reduce the

residual field in the MOT to less than 50 mG during the experiment. Subsequent to

laser excitation, the atoms are exposed to a 1µs long microwave pulse to drive the

nd5/2nd5/2 → (n+ 1)dj(n− 2)f7/2 or nd5/2nd5/2 → (n+ 2)p3/2(n− 1)d5/2 transition.

Fifty nanoseconds after the end of the microwave pulse, a 700 ns rise time voltage

pulse is applied to the rods to field ionize the Rydberg atoms and drive the resulting

ions to a microchannel plate (MCP) detector. The signal from the MCP is recorded

with either a gated integrator or an oscilloscope and stored in a computer for later

analysis.

The cloud of cold Rb atoms is held at the center of four vertical rods which pass

through the corners of a horizontal square 18 mm on a side. The rods allow the

application of the field ionization pulse. The density of the Rydberg atoms in the

MOT is determined by the methods described in Section 2.1.6. In these experiments,

the maximum value of the density, ρ0, is 4× 108cm−3, and the density measurement

uncertainty is a factor of three.

The microwaves are generated in an Agilent 83622B synthesizer, which has a
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maximum frequency of 20 GHz, and a General Microwave DM862B switch is used to

form the microwaves into 1µs long pulses. A Hewlett Packard (HP) 83554A passive

doubler is used for the 26.5 to 40 GHz range, covering 37 ≤ n ≤ 44, and a Narda

DBS4060X410 active quadrupler is used for the 40 to 60 GHz range, covering 35 ≤

n ≤ 37. The relative microwave power is controlled in the final waveguide with a HP

R832A or U832A precision attenuator. The microwaves have horizontal polarization

and propagate from a horn outside the vacuum system through a window to the MOT

volume. The vertical rods used to apply field ionization pulse scatter the microwaves

to some extent, and this may result in the polarization’s not being perfectly linear. As

mentioned earlier, there is an AC Stark shift due to near resonance of the microwaves

to the (n + 2)p3/2 → (n + 1)dj transition. It is straightforward to extrapolate the

location of the resonance peaks to zero microwave power, and the power shift is used

to calibrate absolutely the microwave fields over the range of frequencies employed.

To field ionize atoms in states above n = 41 we apply a positive voltage pulse to

the rods farther from the MCP while the two rods nearer the MCP are grounded.

To ionize atoms in states of 37 ≤ n ≤ 41 we also apply a negative voltage pulse with

the same 700 ns risetime to the rods nearer to the MCP. This two pulse scheme is

implemented because the output of one circuit for generating the pulse with a rapid

initial rise is limited to 500 V, which is not enough to ionize the Rydberg states of

n ≤ 41. The field ionization pulse has a rapid initial rise and is similar to the fast

pulse used for the experiment by Han [10]. Using this type of pulse with rapid initial

rise allows us to suppress adiabatic transitions through molecular avoided crossings

on the rising edge of the field pulse. Such transitions, which occur with slowly rising
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field pulses [10, 21] (and also from private communication with Noel and Brune), lead

to field ionization signals almost identical to the resonant signals we wish to detect.

Since they originate from pairs of closely spaced atoms, they artificially suppress the

resonant signals due to the processes of Eqs. (3.1) and (3.3). For 35 ≤ n ≤ 37 we

have used a field ionization pulse which has a higher amplitude but a slow initial rise

[10].

3.4 Results and Analysis

Our signals are time resolved state-selective field ionization signals. As an example,

ionization signals from atoms excited to 39d5/2 with no microwaves (broken line) and

with microwaves tuned to the 39d5/239d5/2 → 40d5/237f7/2 resonance (solid line) are

shown in Fig. 3.3. Time t = 0 is when the field ionization circuit is triggered. The

large peak at t = 4.36 µs is from atoms in the 39d5/2 state. With microwaves on,

a peak earlier in time at t = 4.29 µs, corresponding to atoms in the 40d5/2 state

appears, and a decrease in the 39d5/2 signal is observed. Careful examination of

Fig. 3.3 reveals a small signal at t = 4.29 µs with no microwaves due to the non

adiabatic transitions during the field pulse.
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Figure 3.3: Field ionization signal for the 39d5/239d5/2 → 40d5/237f7/2 transition
with microwaves off (broken line) and microwaves on (solid line). The microwaves
are tuned to 33.613 GHz, the resonance frequency for 39d5/239d5/2 → 40d5/237f7/2

transition.

By setting the gate of the integrator on the 40dj signal at t = 4.29 µs and sweeping

the microwave frequency over many shots of the laser we obtain the 39d5/239d5/2 →

40dj37f7/2 traces of Fig. 3.4, which show the resonances for a range of microwave

field amplitudes. There is no signal at the frequencies of the 41p3/2 → 40d3/2 and

41p3/2 → 40d5/2 atomic transitions (Those atomic transitions are not within the scan

range for Fig. 3.4). As the microwave field amplitude is raised, the transitions exhibit

AC Stark shifts to higher frequency as well as splitting and broadening. The origin

of the AC Stark shift is the near resonance with the atomic 41p3/2− 40dj transition.

We attribute the splitting to the difference in the AC Stark shifts of the 40d5/2 state

of |mj| = 1/2 and |mj| = 3/2, as discussed earlier. The broadening is due, at least

in part, to inhomogeneities in the microwave field. The relative microwave fields of
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the traces shown in Fig. 3.4 are easily determined from the setting of the attenuator,

and the absolute fields are determined by comparing the observed shifts to those

calculated assuming the shifts to originate from the 41p3/2 − 40dj transitions, as

described in an earlier section.

Figure 3.4: Observed 39d5/239d5/2 → 40dj37f7/2 resonances for a range of microwave
field amplitudes. The dotted lines represent the calculated resonance frequencies for
the transitions at zero microwave power and R =∞.

Fig. 3.5 shows the 45d signal vs. microwave frequency for the 44d5/244d5/2 →

45dj42f transitions for a range of microwave field amplitudes. Again, there is no sig-

nal at the frequencies of the 46p3/2 → 45d3/2 and 46p3/2 → 45d5/2 atomic transitions,

indicated by the arrows. For n=44, ∆ < 0 and an AC Stark shift of the resonances

in the opposite direction is observed. As in Fig. 3.4, the relative microwave fields are

determined from the attenuator, and they are put on an absolute basis using the AC

Stark shift.
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Figure 3.5: Observed 44d5/244d5/2 → 45dj42f7/2 resonances for a range of microwave
field amplitudes. The dotted lines represent the calculated resonance frequencies for
the transitions at zero microwave power and R =∞.

To obtain the zero microwave power resonance frequency for a transition, the

frequency of the resonance peak at different microwave field amplitudes is extrapo-

lated back to zero power. Fig. 3.6 shows an example of the extrapolation, for the

37d5/237d5/2 → 38d5/235f7/2 transition. Tables 3.2 and 3.3 give the zero microwave

power frequencies for our measurements. All frequencies agree well with the cal-

culated R → ∞ values, which are calculated using the quantum defects of Refs.

[11, 14].
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Figure 3.6: Resonance frequency vs. microwave power for the 37d5/237d5/2 →
38d5/235f7/2 transition.

n Calculated(MHz) Observed(MHz) Difference(MHz)
34 49897.9 49898.4 0.5
35 45916.0 45915.0 1.0
36 42344.0 42341.0 3.0
37 39131.0 39130.7 0.3
38 36233.3 36232.8 0.5
39 33613.3 33613.6 −0.3
40 31238.7 31238.3 0.4
41 29081.9 29080.0 1.9
42 27117.9 27116.0 1.9
44 23688.6 23689.6 −1.0

Table 3.2: Resonance frequencies for the nd5/2nd5/2 → (n+ 1)d5/2(n− 2)f7/2 transi-
tions
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n Calculated(MHz) Observed(MHz) Difference(MHz)
34 49618.3 49617.4 0.9
35 45659.8 45659.6 0.2
36 42108.8 42106.2 2.6
37 38914.4 38911.9 2.5
38 36033.5 36030.8 2.7
39 33428.6 33427.7 0.9
40 31067.6 31066.2 1.4
41 28922.9 28920.6 2.3
42 26970.2 26968.2 2.0
44 23560.3 23563.0 −2.7

Table 3.3: Resonance frequencies for the nd5/2nd5/2 → (n+ 1)d3/2(n− 2)f7/2 transi-
tions

While there is an evident microwave power shift, there is minimal shift with

Rydberg atom density. As an example, Fig. 3.7 shows scans of the 40dj signal vs.

microwave frequency for the 39d5/239d5/2 → 40dj37f7/2 transitions for a range of

Rydberg atom densities.
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Figure 3.7: Observed 39d5/239d5/2 → 40dj37f7/2 resonances for a range of peak Ryd-
berg atom densities. The dotted lines represent the calculated resonance frequencies
for the transition at zero microwave power and R =∞.

To test the CI model we have measured the FPT from the nd5/2nd5/2 to the

(n+ 1)dj(n− 2)f7/2 states. The model is valid for small FPT. At very high densities

other processes begin to occur. For example, transfer to not only the (n+ 1)dj state

but also the (n+ 2)dj state is observed. Accordingly, we have kept the density below

ρ0 = 5 × 108cm−3, where the observations are consistent with our CI model. To

measure the FPT for 37 ≤ n ≤ 42, the ratio of the increase in the (n + 1)dj signal

when microwaves are tuned to resonance to the area of the nd5/2 signal without the

microwaves is used. For n = 44 even with the fast field ionization pulse there is

appreciable population transfer to higher lying states in the field pulse, so we do not

include n = 44 in the FPT measurements. For 35 ≤ n ≤ 37 we have used the higher

amplitude slow field ionization pulse and measured the depletion of the nd5/2 signal

with the microwaves at the resonance frequency. For n = 37, the state for which the
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FPT was measured both ways, the fractional depletion of the 37d5/2 signal is slightly

over twice as large as the increase in the 38dj signal (A factor of two is expected, since

population must go down in energy to the 35f7/2 state). Using the same factor used

to normalize the n = 37 depletion data we normalize the n = 35 and 36 depletion

data for inclusion in Fig. 3.8 and Fig. 3.9. For each state, the absolute microwave

field amplitude is obtained by using the AC Stark shift, as described previously.

Figure 3.8: FPT vs. microwave field amplitude for n = 35 (4), n = 37 (+), n = 40
(◦), and n = 42 (2) at similar densities of ρ0 = 1.7× 108cm−3
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Figure 3.9: FPT vs. n6ρE
∆

for 35 ≤ n ≤ 42

Fig. 3.8 shows the FPT vs. microwave field amplitude for n = 35, 37, 40, and 42

at similar densities of ρ0 = 1.7 × 108cm−3. Between n = 35 and 42, the microwave

field amplitude required to produce the same FPT drops by more than a factor of

thirty. As suggested by Eq. (3.13), plotting the FPT vs n6ρE
|∆| should result in the

data points’ falling on the same straight line. As shown by Fig. 3.9, the points are

close to falling on the same line, but at higher n the points are systematically low.

This deviation from the expectation based on Eq. (3.13) may be due to a slightly

larger adiabatic population transfer to higher n during the field pulse, which is more

likely at higher n and suppresses the resonant signal. It is primarily the decrease in

∆ which leads to the larger adiabatic transfer as n is raised. In any event, Fig. 3.9

demonstrates that the CI description of the process is quite good.

Since the CI couples the nd5/2nd5/2 state to the (n + 2)p3/2(n − 2)f7/2 state it

should be possible to drive transitions in which the (n− 2)f7/2 atom undergoes the
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transition while the (n + 2)p3/2 atom is a spectator, as shown by the energy level

diagram of Fig. 3.10. To verify that such transitions are possible we have driven

the 39d5/239d5/2 → 41p3/238d5/2 transition of Fig. 3.10. As shown in Fig. 3.10, the

transition is to a molecular state lower in energy, but the atomic 41p3/2 state lies

above the initial 39d5/2 state, so at resonance the 41p3/2 signal appears earlier in time

than the 39d5/2 signal, approximately as shown in Fig. 3.3. The observed resonance

is shown in Fig. 3.11. The location of the peak, at 43.922 GHz (extrapolated to

zero microwave power), is in good agreement with the calculated R = ∞ interval

of 43.9213 GHz. However, the origin of the pedestal seen in Fig. 3.11 is not yet

understood.

(0.478 GHz)

43.921 GHz

Figure 3.10: Energy level diagram for the 39d5/239d5/2 → 41p3/238d5/2 transition
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Figure 3.11: Observed 39d5/239d5/2 to 41p3/238d5/2 transition

3.5 Conclusion

We have observed resonant microwave transitions between pairs of atoms in which

a single microwave photon is absorbed, yet both of the constituent atoms in the

molecule change state. Specifically, we have observed the processes nd5/2nd5/2 →

(n + 1)dj(n − 2)f7/2 and nd5/2nd5/2 → (n + 2)p3/2(n − 1)d5/2. These transitions

are allowed due to the dipole-dipole induced configuration interaction between the

nd5/2nd5/2 state and the energetically nearby (n + 2)p3/2(n − 2)f7/2 state, which

admixes some of the latter into the former. The strengths of the transitions are in

good agreement with a simple CI description of the process.
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Chapter 4

Multiphoton Molecular Transitions

4.1 Introduction

Microwave fields provide a convenient way to probe and control Rydberg atoms and

their interactions, as shown by a few examples. The observation of the motion of Rb

Rydberg atoms on a repulsive van der Waals potential has been observed by Teix-

eira et al.[6] who followed the changing frequency shift of a microwave transition.

Microwaves and radio frequency fields have been used to control Forster resonant

energy transfer, recently in cold Rydberg atom samples by van Ditzhuizen[7], and

some time ago in samples of room temperature atoms by Pillet et al.[4]. Microwaves

have also been used to select pairs of atoms with well defined dipole–dipole inter-

actions. In Chapter 3, the microwave spectroscopy of pairs of Rydberg atoms was

reported. In particular, we observed transitions in which a pair of Rb nd5/2 atoms, in

the nd5/2nd5/2 molecular state, absorbed a single microwave photon and underwent
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the transition to the (n+1)dj(n−2)f state. In spite of the fact that only one photon

was absorbed, both atoms changed state. We described the process in terms of a

configuration interaction (CI) model, in which the dipole–dipole interaction induced

admixture of the energetically nearby (n + 2)p3/2(n − 2)f state into the nd5/2nd5/2

state allows the microwave transition to the (n+ 1)dj(n− 2)f state.

In this chapter, we describe the extension of the observations to other single

photon transitions between pairs of Rb Rydberg atoms, and to multiphoton tran-

sitions between pairs of atoms. All of these processes can be described in terms

of Forster resonant dipole–dipole energy transfers between Floquet, or microwave

dressed, states. In this approach we treat the interaction of the atoms with the

microwave field first, and then the dipole–dipole interaction between the resulting

Floquet states. This approach is similar to that followed by van Ditzhuizen et al.[7]

and Pillet et al.[4], but it differs in that the microwave field interacts with only

one of the two atoms of the pair; the other is simply a spectator. The spectator

atom is analogous to the spectator Rydberg electron in isolated core excitation of

two electron Rydberg atoms. The Floquet approach[5] provides a convenient way

to treat multiphoton processes, and it reduces to the CI model for single photon

transitions. In the sections which follow we present the Floquet model, describe the

experimental approach, present our experimental observations and compare them to

the expectations from the model.



4.2. FLOQUET MODEL OF FORSTER ENERGY TRANSFER 62

4.2 Floquet Model of Forster Energy Transfer

In Fig. 4.1 we show one, two, and three photon microwave transitions from nd5/2nd5/2

pairs to other states of the form n′s1/2(n − 2)f and (n + 3)pj(n − 2)f . Previously

we described one photon transitions using a CI model, in which the dipole–dipole

interaction of the nd5/2nd5/2 state with the nearby (n+ 2)p3/2(n− 2)f state admixes

some of the latter into the nominal nd5/2nd5/2 state. With this admixture a relatively

weak microwave field can drive the nd5/2nd5/2 to (n + 3)s1/2(n − 2)f transition.

In the case of the two and three photon transitions, a stronger microwave field is

required, and except for the most closely spaced pairs, the interaction with the

microwave field is much stronger than the dipole–dipole interaction. Accordingly, our

approach is to treat the interaction of the atoms with the microwave field first, using a

Floquet approach and ignoring the dipole–dipole interaction, and then introduce the

dipole–dipole interaction between the resulting Floquet states. When the microwave

frequency brings Floquet states into degeneracy, Forster resonant energy transfer

occurs due to the dipole–dipole interaction. For the case in which a single microwave

photon is absorbed or emitted the Floquet approach reduces to the result given by

the CI approach used previously.

For concreteness we consider the system shown in Fig. 4.1. Specifically the one,
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Figure 4.1: One, two, and three photon microwave transitions from nd5/2nd5/2

state. The transitions to (n + 3)pj(n − 2)f states are two-photon transitions, and
the transition to (n+ 4)s1/2(n− 2)f state is a three-photon transition. The diagram
is approximately to scale.
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two, and three microwave photon transitions

nd5/2nd5/2 + ~ω → (n+ 3)s1/2(n− 2)f (4.1a)

nd5/2nd5/2 + 2~ω → (n+ 3)p1/2(n− 2)f (4.1b)

nd5/2nd5/2 + 2~ω → (n+ 3)p3/2(n− 2)f (4.1c)

nd5/2nd5/2 + 3~ω → (n+ 4)s1/2(n− 2)f (4.1d)

All of these transitions are allowed due to the dipole–dipole interaction of the nd5/2nd5/2

state with the nearby (n + 2)p3/2(n− 2)f state, as shown by the double headed ar-

row in Fig. 4.1. We ignore the (n + 2)p1/2(n − 2)f state since it is not coupled

to the nd5/2nd5/2 state by the dipole–dipole interaction and its inclusion does not

significantly affect the Floquet levels at the resonant frequencies.

Unless stated otherwise we use atomic units, and for compactness in notation we

introduce the shorthand

nd5/2 → d

(n+ 2)p3/2 → p

(n+ 3)s1/2 → s

(n+ 3)p1/2 → p′1

(n+ 3)p3/2 → p′3

(n+ 4)s1/2 → s′

(n− 2)f → f

(4.2)

With this notation the transition of Eq. (4.1a) is written as dd+ ~ω → sf .

The wave functions for the molecular states are direct products of the two atomic
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wave functions, and we ignore exchange. The energies of the molecular states at

R=∞ are obtained by adding the energies of the two atomic states, which are easily

calculated using the known Rb quantum defects. For simplicity in notation we specify

energies relative to Wdd, the energy of the dd state.

The molecular dipole matrix elements which are important for the microwave

coupling are

〈pf |µ |sf〉 = 〈p|µ |s〉 〈f |f〉 = 〈p|µ |s〉 = µps

〈sf |µ |p′1f〉 = 〈s|µ |p′1〉 〈f |f〉 = 〈s|µ |p′1〉 = µsp′1

〈sf |µ |p′3f〉 = 〈s|µ |p′3〉 〈f |f〉 = 〈s|µ |p′3〉 = µsp′3

〈p′1f |µ |s′f〉 = 〈p′1|µ |s′〉 〈f |f〉 = 〈p′1|µ |s′〉 = µp′1s′

〈p′3f |µ |s′f〉 = 〈p′3|µ |s′〉 〈f |f〉 = 〈p′3|µ |s′〉 = µp′3s′

(4.3)

At R=∞ the frequencies of these transitions are equal to the atomic frequencies,

and in each of these transitions one atom undergoes the transition while the other

remains a spectator in the (n − 2)f state. These molecular matrix elements are

reminiscent of isolated core excitation of the two electron Rydberg atoms. The

frequencies relevant to the transitions shown in Fig. 4.1 are not near any atomic

frequencies for either the atomic f or d states. For this reason the (n− 2)f atom is

simply a spectator in the microwave transitions, and a nd atom is unaffected by the

microwave field.

The dipole–dipole interaction which is important for all transitions shown in

Fig. 4.1 is

Vdd =
〈
nd5/2nd5/2

∣∣ µµ′
R3

∣∣(n+ 2)p3/2(n− 2)f
〉

(4.4)
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where µ and µ′ are the dipole matrix elements of the two atoms, and R is the distance

between them. It can be written as

Vdd =

〈
nd5/2

∣∣µ ∣∣(n+ 2)p3/2

〉 〈
nd5/2

∣∣µ′ |(n− 2)f〉
R3

=
µdpµdf
R3

(4.5)

Before we begin the description of the Floquet model for the transitions shown

in Fig. 4.1, it is useful to summarize the CI model for the single photon dd → sf

transition. Specifically, we are interested in calculating the fractional population

transfer (FPT) from the dd to the sf state at resonance. To calculate the FPT from

the dd state at resonance we calculate the transition probability for a pair of atoms

spaced by R and then average over the spacings in the trap volume, as explained in

some detail in Section 3.2.

From the six bare states shown in Fig. 4.1 we construct six Floquet states which

are periodic, with the period of the microwave driving field. The Floquet energies are

obtained by adding and subtracting integral multiples of the microwave frequency ω

to the bare energies. We are interested in the Forster resonances shown in Fig. 4.1,

which occur when the Floquet states based on the sf , p′1f , p′3f , and s′f states are

degenerate with the dd state. For R=∞ and zero microwave field these degeneracies

occur when

Wsf − ω = Wdd

Wp′1f
− 2ω = Wdd

Wp′3f
− 2ω = Wdd

Ws′f − 3ω = Wdd

(4.6)
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Figure 4.2: Floquet energy levels for n=39 as a function of the microwave frequency
for zero microwave field amplitude. No dipole–dipole interaction is included.

Accordingly, we restrict our attention to the Floquet energies Wdd, Wpf , Wsf −ω,

Wp′1f
−2ω, Wp′3f

−2ω, and Ws′f −3ω. Ignoring Floquet energies in which other mul-

tiples of ω have been added or subtracted is equivalent to making the rotating wave

approximation. Fig. 4.2 shows the Floquet energy levels for n=39 as a function of

the microwave frequency for vanishing microwave field. The microwave resonances

of Fig. 4.1 correspond to the level crossings of the 42s37f , 42p1/237f , 42p3/237f ,

and 43s37f Floquet states with the 39d5/239d5/2 state at frequencies 57.879, 55.137,

55.850, and 55.249 GHz. These are the Forster dipole–dipole energy transfer reso-

nances from the dd state to the Floquet states.

Equally important are the 42p1/237f−43s37f and 41p3/237f−42s37f crossings at
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55.473 and 58.356 GHz. These crossings are dipole allowed single photon microwave

resonances, and in any finite field they become avoided crossings as can be seen

in Fig. 4.3, altering all the energy levels but that of the 39d5/239d5/2 state. These

avoided crossings lead to AC Stark shifts of the Forster resonances.

In the presence of the linearly polarized microwave field E cosωt all the levels are

coupled, by the matrix elements of Eq. (4.3), except dd, and the Floquet Hamiltonian

matrix can be written as

HF =



Wdd 0 0 0 0 0

0 Wpf µspE/2 0 0 0

0 µspE/2 Wsf − ω µp′1sE/2 µp′3sE/2 0

0 0 µp′1sE/2 Wp′1f
− 2ω 0 µs′p′1E/2

0 0 µp′3sE/2 0 Wp′3f
− 2ω µs′p′3E/2

0 0 0 µs′p′1E/2 µs′p′3E/2 Ws′f − 3ω


(4.7)

Diagonalizing this matrix yields the eigenvalues and eigenvectors. Since we have

ignored the dipole–dipole interaction in this Floquet treatment, the energy Wdd does

not depend on the microwave field and one of the eigenstates is |dd〉. Each of the

other five eigenstates we label as |ψF 〉, where |ψF 〉 is the linear combination

|ψF 〉 = a1 |pf〉+ a2 |sf〉+ a3 |p′1f〉+ a4 |p′3f〉+ a5 |s′f〉 (4.8)

In Fig. 4.3 we show the Floquet energies over the same frequency range as shown in
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Figure 4.3: Floquet energy levels for n=39 as a function of the microwave fre-
quency for microwave field amplitude of 415 mV/cm. No dipole–dipole interaction
is included.

Fig. 4.2, but with a microwave field amplitude E = 415 mV/cm.

The dipole moments of Eq. (4.7) are matrix elements of z, to correspond to the

microwave polarization. We obtained the radial parts from Saffman and Walker[8]
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and the angular parts from Edmonds[1]. The specific values used are:

µs′p′3 =

√
2

3
(1681)

µs′p′1 = −1

3
(1650)

µp′1s = −1

3
(1752)

µp′3s =

√
2

3
(1728)

µsp =

√
2

3
(1598)

(4.9)

With the microwave field of 415 mV/cm the matrix element µsp leads to mi-

crowave coupling of 200 MHz, i.e. µspE/2 = 200 MHz.

Comparing Fig. 4.3 to Fig. 4.2, we can see that the single photon microwave

resonances at 55.473 and 58.356 GHz have become obvious avoided crossings, and

the two photon 41p3/237f − 42pj37f resonances are visible. At the single microwave

photon resonances the separation between Floquet levels, and the level shifts, are

linear in the microwave field. Far from them, for example at the Forster level crossings

with the 39d5/239d5/2 state, the level shifts are quadratic in the microwave field. In

Fig. 4.4 we show an expanded view of the portion of Fig. 4.3 containing the two and

three photon Forster resonances (marked by a dashed box), in zero field and E=415

mV/cm. At the frequency of the 39d5/239d5/2−42p3/237f Forster resonance at 55.850

GHz, the 42p3/237f state lies about halfway between the 43s1/237f and 42s1/237f

states, and the AC stark shifts due to these two states almost cancel, leading to a

small AC stark shift of this Forster resonance. In contrast, at the frequency of the

39d5/239d5/2 − 42p1/237f Forster resonance at 55.137 GHz, the 42p1/237f state is
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Figure 4.4: An expanded view of the region marked by dashed box in Fig. 4.2
and Fig. 4.3 containing the two and three photon Forster resonances. Solid lines
and dotted lines represent microwave coupling of 0 and 200 MHz, respectively. For
W42p3/237f − 2ω, the solid line and the dotted line overlap.
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below both the 42s1/237f and 43s1/237f states, so the AC stark shifts add. More

important, the Forster resonance is very close to the single photon 42p1/237f −

43s1/237f resonance, leading to a large frequency shift.

For small microwave fields the AC stark shifts of the Forster resonances are

quadratic in the microwave field amplitude, and the calculated AC stark shifts are

presented with the experimental results in the next section.

To calculate the fractional population transfer (FPT) from the laser excited dd

state to a Floquet state at a Forster resonance, we follow a procedure similar to

that used in the development of Eqs. (3.9) to (3.12). We compute the transition

probability for a pair of atoms spaced by distance R and then average over the

distribution of the spacings in the trap volume.

We calculate the transition probability at resonance for a transition from the dd

state to the Floquet state for a pair as follows. The microwave field is switched on and

off in 10 ns, which is fast compared to the dipole–dipole interaction. Thus, when the

microwave field is switched on the population oscillates between |dd〉 and |ψF 〉 at the

frequency Ω given by the dipole–dipole coupling matrix element Ω = 〈dd| µµ′
R3 |ψF 〉.

Since only |pf〉 of the |ψF 〉 eigenfunction contributes to this matrix element,

Ω = 〈dd| µµ
′

R3
|ψF 〉 = a1 〈dd|

µµ′

R3
|pf〉 (4.10)

where a1 is the coefficient given in Eq. (4.8). For ΩT > π, on average half the

oscillating population is in the ψF state and is left there when the microwave field

is turned off, in 10 ns. As in the earlier development of Eqs. (3.9) to (3.12), the
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condition ΩT = π is met for R = RT where

ΩT = a1 〈dd|
µµ′

R3
T

|pf〉T = π (4.11)

For R < RT , ΩT > π, and the average transition probability is one half. For R > RT

the transition probability falls rapidly with R. Accordingly, pairs with R < RT

undergo the transition, and the FPT is again

FPT =
R3
T

R3
av

(4.12)

Where Rav is related to the density by

ρ =
3

4πR3
av

(4.13)

The population oscillation frequency Ω and the FPT are proportional to the Rydberg

atom density and a1, the coefficient of the pf component of ψF . In the low microwave

field limit, at each of the Forster resonances a1 is proportional to EM , where M is

the number of the photons absorbed or emitted.

To verify that the Floquet model gives the same result as the CI model discussed

earlier, we restrict our attention to the one photon case treated using the CI model.

For the one photon dd − sf Forster resonance the microwave power is sufficiently

low that only three states need be considered, dd, pf , and sf . In this case the only

coupling in the Floquet matrix of Eq. (4.7) is that between the pf and sf states,
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and

a1 =
µpsE

2(Wdd −Wpf )
. (4.14)

Consequently,

Ω =
µpsµdpµdfE

2∆R3
, (4.15)

which is precisely the CI result of Eq. (3.9). In sum, the Floquet model allows us to

predict the AC Stark shifts of the multiphoton resonances and the fractional popu-

lation transfers, which scale as EM , where M is the number of microwave photons

emitted or absorbed. Furthermore, the Floquet description is equivalent to the CI

model presented previously to describe one photon transitions.

To compute the microwave fields required to observe the different transitions

shown in Fig. 4.1, a useful criterion is the field required to produce a fixed value of

a1. In Table 4.1 we give the microwave fields required to produce a1=0.05 for n=39.

As a comparison, the microwave field amplitude of 415 mV/cm was used to generate

Fig. 4.3. From Table 4.1 it is apparent that similar microwave field strengths are

required to observe the two photon transitions dd → p′1f and dd → p′3f , since the

detuning from the intermediate sf state is large in both cases. However, the AC

stark shift of the dd → p′1f resonance is much larger due to the proximity of the

dd→ p′1f Forster resonance to the single microwave photon p′1f → s′f resonance.

4.3 Experimental Approach

The essential notion of the experiment can be understood with the aid of Fig. 4.5,

which shows the relevant energy levels of single microwave photon transitions from
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Table 4.1: Microwave field amplitude required to produce a1=0.05.

Transition Required Microwave Field Amplitude (mV/cm)

nd5/2nd5/2 → (n + 3)s1/2(n− 2)f7/2 49.8

nd5/2nd5/2 → (n + 3)p1/2(n− 2)f7/2 622.5

nd5/2nd5/2 → (n + 3)p3/2(n− 2)f7/2 456.5

nd5/2nd5/2 → (n + 4)s1/2(n− 2)f7/2 1369.5

the nd5/2nd5/2 state. Pulsed laser excitation of atoms to the nd5/2 state produces

nd5/2nd5/2 pairs, which are coupled by the dipole–dipole interaction to the energet-

ically nearby (n + 2)p3/2(n − 2)f state. A 1 µs long microwave pulse drives one of

the four transitions, labelled A to D, in Fig. 4.5. The transitions are allowed due

to the admixture of the (n + 2)p3/2(n − 2)f state into the nd5/2nd5/2 state by the

dipole–dipole interaction. One of the atoms in the admixture interacts with the mi-

crowave field while the other remains a spectator. As shown by Fig. 4.5, which is

approximately to scale, the microwave field can drive the pair to a lower or higher

energy state. We detect that the pair has undergone the transition by applying a

field ionization after the microwave pulse. We assume that the field ionization pulse

projects the atoms onto isolated atomic states. For a transition to be observable

one of the atoms in the final state pair must have an energy above the energy of

the initially excited nd state so that it is ionized earlier in the field ionization pulse.

The (n + 2)p3/2, (n + 1)dj, and (n + 3)s1/2 states meet this criterion. It is useful

to note that in transition D although the microwave transition removes energy from

the pair, the transition is detectable since the result is an (n + 2)p3/2 atom, which

lies above the nd state. The resonances corresponding to the transitions shown in

Fig. 4.5 are recorded by setting the gate of a gated integrator on the signal due to
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field ionization of the (n+ 2)p3/2, (n+ 1)dj, or (n+ 3)s1/2 state and slowly sweeping

the microwave frequency over many shots of the laser.

Figure 4.5: The observed one photon transitions originating from nd5/2nd5/2. The
(n + 2)p3/2(n − 2)f state is nearly degenerate with nd5/2nd5/2 level. For n = 39,
(n+ 2)p3/2(n− 2)f level is detuned by 477.8 MHz.

Since this experiment is an extension of the work described in Chapter 3, the
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experimental procedure is largely unchanged from the description in Section 3.3.

Some of the transitions require low frequencies, in the vicinity of 1 GHz. For

those transitions, the output of the Agilent E8247C synthesizer is directly connected

to the pair of rods closest to the MCP after going through Mini-circuits ZHL-42W

amplifier and E&M Labs L30Y circulator.

4.4 Observations

One Photon Transitions from nd5/2nd5/2

In Fig. 4.5 we show the single photon transitions from the nd5/2nd5/2 state. In all

cases these transitions are possible due to the dipole–dipole induced admixture of

the nearly degenerate (n+ 2)p3/2(n− 2)f state into the nd5/2nd5/2 state.

The nd5/2nd5/2 → (n+ 3)ns1/2(n− 2)f Transition (A)

Fig. 4.6 shows the observed 40d5/240d5/2 → 43s1/238f7/2 resonances for a range of mi-

crowave field amplitudes. This transition corresponds to the transition A in Fig. 4.5

when n=40. As the microwave field amplitude is raised, the transition exhibits AC

Stark shifts to higher frequency. The AC Stark shift is caused by the fact that this

transition is nearly resonant with the atomic 42p3/2 → 43s1/2 transition. The relative

microwave fields are determined from attenuator settings, whereas the absolute fields

given in Fig. 4.6 are determined by calculating how much field is required to pro-

duce the observed shifts. In Table 4.2 we also present the AC Stark shifts calculated

from our Floquet model as well as the maximum AC Stark shifts observed and the
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Figure 4.6: Observed 40d5/240d5/2 → 43s1/238f7/2 resonances for a range of mi-
crowave field amplitudes. The calculated resonance frequency for the transition at
zero microwave power and R =∞ is 53.721 GHz.

estimated maximum field amplitude. The resonance frequency at zero microwave

power is obtained by extrapolating the frequency of the resonance peak at different

microwave field amplitudes back to zero power. The zero microwave power frequen-

cies for our measurements are summarized in Table 4.2. Based on either the CI or

Floquet model for a single photon transition, the fraction of atoms that is trans-

ferred to (n + 3)s1/2(n− 2)f state is expected to depend linearly on the microwave

field amplitude. Fig. 4.7 shows the plot of FPT vs. the microwave field amplitude,

exhibiting the expected linear behavior.
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Figure 4.7: Fractional Population Transfer (FPT) vs. microwave field amplitude
for the 40d5/240d5/2 → 43s1/238f7/2 transition
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The nd5/2nd5/2 → (n+ 1)dj(n− 2)f Transition (B)

Transition B in Fig. 4.5 was first reported by Yu et al. [9] in 2013. Further investi-

gation of transition B as well as the observation of transition D were reported in the

previous paper[2].

The nd5/2nd5/2 → (n+ 2)p3/2(n− 2)g Transition (C)

Unlike transitions A and B of Fig. 4.5, in this case it is the (n − 2)f atom which

undergoes the transition. Fig. 4.8 shows the resonant peak for the 41d5/241d5/2 →

43p3/239g transition, which corresponds to transition C in Fig. 4.5. Due to the low

frequency range required for the transition, the output of the microwave synthesizer

is connected directly to the pair of rods closest to the MCP, as mentioned in the

previous section. The transitions exhibit an AC Stark shift, linear in the radio

frequency power, of up to 3 MHz, and the resonance frequencies at zero power are

obtained by extrapolating to zero power. The results are summarized in Table 4.2.

The ng-series quantum defect that is needed to calculate the intervals was taken from

the paper by Lee et al.[3].

The nd5/2nd5/2 → (n+ 2)p3/2(n− 1)d5/2 Transition (D)

There are two notable aspects to this transition. In addition to the (n − 2)f atom

undergoing the transition, the transition is to a molecular state lower in energy than

the nd5/2nd5/2 state. However, the atom left in the (n + 2)p3/2 state gains energy

and can be distinguished from an nd5/2 atom by field ionization. The observation

of this transition has already been reported in Chapter 3. In Table 4.2, we report
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Figure 4.8: Observed resonance for the 41d5/241d5/2 → 43p3/239g transition. The
peak is shifted to higher frequency by 1.4 MHz due to AC Stark shift. The calculated
frequency for the transition is 1190.4 MHz.

more systematic measurements made to determine the transition frequencies at zero

microwave power.

One Photon Transitions from ns1/2ns1/2

For the transitions originating from nd5/2nd5/2, it is the dipole–dipole induced con-

figuration interaction with the nearby (n + 2)p3/2(n − 2)f state that allows the

transitions. If we start with the ns1/2ns1/2 state, the nearest dipole–dipole cou-

pled state np3/2(n− 1)p3/2 is much further away. As a concrete example, for n=40,
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Table 4.2: Resonance frequencies and AC Stark shift values for one photon tran-
sitions. Calculated shifts are obtained from our Floquet model. The estimated
maximum field amplitudes are calculated from the maximum observed shifts and
calculated shifts. As a point of comparison, the unattenuated microwave field am-
plitude with at the center of the trap is estimated to be 693 mV/cm by using the
following parameters: Output power of the active doubler/quadrupler = 15 dBm,
gain of the horn antenna = 20 dBi, distance from the horn to the center of trap =
0.2 m.

Transition n Calculated Observed Calculated Shift Max. Observed Estimated Max. Field
(GHz) (GHz) (MHz/(V/cm)2) Shift (MHz) Amplitude (mV/cm)

nd5/2nd5/2 → (n+ 3)s1/2(n− 2)f7/2 39 57.879 57.876(9) 486.8 18.4 194
40 53.721 57.718(11) 791.1 73.4 305

nd5/2nd5/2 → (n+ 2)p3/2(n− 1)d5/2 39 43.921 43.923(8) 348.4 29.4 290
40 40.415 40.417(8) 570.6 20.1 188

nd5/2nd5/2 → (n+ 2)p3/2(n− 1)d3/2 39 44.138 44.139(3) 455.3 12.8 168
40 40.615 40.616(6) 745.7 10.7 120

nd5/2nd5/2 → (n+ 2)p3/2(n− 2)g 41 1.190 1.190(11) 130.9 3.3 159
42 1.193 1.190(5) 305.2 3.6 109

ns1/2ns1/2 → (n− 1)d5/2(n− 1)p3/2 39 34.010 34.010(9) 36.7 < 1
40 31.441 31.441(10) 44.9 < 1

∆40s1/240s1/2−40p3/239p3/2=5.45 GHz, whereas ∆40d5/240d5/2−42p3/238f7/2=325 MHz. The

large detuning for ns1/2ns1/2 − np3/2(n − 1)p3/2 results in a small admixture co-

efficient. Nonetheless, it is possible to observe transitions similar to the observed

transitions originating from nd5/2nd5/2.

The ns1/2ns1/2 → (n− 1)d5/2(n− 1)p3/2 Transition

Fig. 4.9 shows the energy levels involved in ns1/2ns1/2 → (n − 1)d5/2(n − 1)p3/2

transition which is one of the possible transitions originating from ns1/2ns1/2. The

diagram is approximately to scale, and the large detuning between ns1/2ns1/2 and

np3/2(n− 1)p3/2 is evident. Fig. 4.10 shows the observed resonance for n = 40. The

resonant peak does not observably shift when the microwave power is raised because

the microwave frequency is not near the 40p3/2 → 39d5/2 resonant frequency.
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Figure 4.9: One photon transition originating from ns1/2ns1/2 that was observed.
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Figure 4.10: Observed resonance for 40s1/240s1/2 → 39d5/239p3/2 transition. The
calculated frequency for the transition is 31.441 GHz. The peak is not observably
shifted.
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Multiphoton Transitions from nd5/2nd5/2

In addition to the transitions discussed so far, transitions that involve more than one

microwave photon have been observed. Fig. 4.1 shows the observed single and multi

photon transitions originating from nd5/2nd5/2 state. Observing the multiphoton

transitions requires higher microwave field amplitude.

The nd5/2nd5/2 → (n+ 3)p1/2(n− 2)f Transition

Fig. 4.11 shows the observed 39d5/239d5/2 → 42p1/237f7/2 resonances for a range of

microwave field amplitudes. This is a two photon transition, and the resonances

exhibit a large AC Stark shift to lower frequency. The microwave field amplitudes

involved here are greater than those in Fig. 4.6 by more than an order of magnitude.

The microwave field amplitudes were estimated from the observed shifts. As dis-

cussed earlier, for a two photon transition, the fraction of atoms that is transferred

to (n + 3)pj(n − 2)f state is expected to scale as the square of the microwave field

amplitude, or linearly in the microwave power. Fig. 4.12 shows the plot of FPT vs.

microwave field amplitude squared and exhibits the expected scaling. The obtained

zero power frequencies are given in Table 4.3.

The nd5/2nd5/2 → (n+ 3)p3/2(n− 2)f Transition

Fig. 4.13 shows the observed 39d5/239d5/2 → 42p3/237f7/2 resonances for a range

of microwave field amplitudes. Although the frequency for this transition lies near

the nd5/2nd5/2 → (n + 3)p1/2(n − 2)f transition frequency, there is an important

difference: The resonant peak for this transition does not observably shift when the
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Figure 4.11: Observed 39d5/239d5/2 → 42p1/237f7/2 resonances for a range of mi-
crowave field amplitudes. The calculated two photon resonance frequency for the
transition at zero microwave power and R =∞ is 110.273 GHz.
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Figure 4.12: Fractional Population Transfer (FPT) vs. microwave field amplitude
squared for the 39d5/239d5/2 → 42p1/237f7/2 transition
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Figure 4.13: Observed 39d5/239d5/2 → 42p3/237f7/2 resonances for a range of mi-
crowave field amplitudes. The calculated two photon resonance frequency for the
transition at zero microwave power and R =∞ is 111.699 GHz.
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Table 4.3: Resonance frequencies and AC Stark shift values for two photon tran-
sitions. Calculated shifts are obtained from our Floquet model. The estimated
maximum field amplitudes are calculated from the maximum observed shifts and
calculated shifts. As a point of comparison, the unattenuated microwave field am-
plitude with at the center of the trap is estimated to be 693 mV/cm by using the
following parameters: Output power of the active doubler/quadrupler = 15 dBm,
gain of the horn antenna = 20 dBi, distance from the horn to the center of trap =
0.2 m.

Transition n Calculated Observed Calculated Shift Max. Observed Estimated Max. Field
(GHz) (GHz) (MHz/(V/cm)2) Shift (MHz) Amplitude (mV/cm)

nd5/2nd5/2 → (n+ 3)p1/2(n− 2)f7/2 39 110.273 110.280(51) 419.9 118.6 531
40 102.294 102.294(31) 482.1 50.8 325

nd5/2nd5/2 → (n+ 3)p3/2(n− 2)f7/2 39 111.699 111.697(18) 8.6 < 1
40 103.616 103.615(10) 15.5 < 1

microwave power is raised. As discussed earlier, the suppression of the AC Stark shift

is caused by the fact that the (n+3)p3/2 state lies approximately halfway between the

(n+ 3)s1/2 and (n+ 4)s1/2 states. As a result, the AC Stark shift contributions due

to the (n+3)s1/2 and (n+4)s1/2 states nearly cancel. The calculated AC Stark shifts

are given in Table 4.3 as well as the observed and calculated zero power frequencies.

The nd5/2nd5/2 → (n+ 4)s1/2(n− 2)f Transition

Fig. 4.14 shows the observed resonance for the 40d5/240d5/2 → 44s1/238f transition.

The peak is shifted to higher frequency by 25MHz due to the AC Stark shift. This

three-photon transition requires a high microwave field amplitude, and the resonance

peaks can only be obtained for the microwave field amplitudes close to the maximum

possible value. The calculated AC Stark shifts are given in Table 4.4 as well as the

observed and calculated zero power frequencies.
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Figure 4.14: The observed resonance for 40d5/240d5/2 → 44s1/238f transition. The
peak is shifted to higher frequency by 25 MHz due to AC Stark shift.

Table 4.4: Resonance frequencies and AC Stark shift values for three photon transi-
tion. Calculated shifts are obtained from our Floquet model. The estimated maxi-
mum field amplitudes are calculated from the maximum observed shifts and calcu-
lated shifts. As a point of comparison, the unattenuated microwave field amplitude
with at the center of the trap is estimated to be 693 mV/cm by using the following
parameters: Output power of the active doubler/quadrupler = 15 dBm, gain of the
horn antenna = 20 dBi, distance from the horn to the center of trap = 0.2 m.

Transition n Calculated Observed Calculated Shift Max. Observed Estimated Max. Field
(GHz) (GHz) (MHz/(V/cm)2) Shift (MHz) Amplitude (mV/cm)

nd5/2nd5/2 → (n+ 4)s1/2(n− 2)f7/2 40 153.768 153.767(79) 87.2 40.2 679
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4.5 Conclusion

These measurements show that it is straightforward to drive microwave transitions

between pairs of atoms even when the dipole-dipole detuning is large, ∼5 GHz. Both

single photon and multiphoton transitions can be described as Forster resonances of

Floquet states tuned into resonance with the microwave frequency. While the Floquet

approach is particularly convenient for multiphoton transitions as it is easily extended

to stronger fields, it reduces to the CI approach used previously for single photon

transitions.
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Chapter 5

Quantum Defects and Ionic Dipole

and Quadrupole Polarizabilities

5.1 Introduction

Precise values for the quantum defects of the high angular momentum states are im-

portant in the calculations of the Stark effect, which are particularly important for

Förster resonant dipole-dipole energy transfer involving Rydberg atoms [4, 25, 29].

Moreover, the ionic dipole and quadrupole polarizabilities of atoms can be deter-

mined from the same quantum defects since they arise from polarization of the core

[22]. The dipole polarizabilities of alkaline earth ions are of interest for clock appli-

cations, and the dipole polarizabilities of alkali atoms are of interest as benchmarks

for atomic structure calculations relevant to parity violation measurements and atom

interferometry [6, 10, 12, 14, 23, 24]. While most of the polarizability of the ground
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state of an alkali atom is due to the valence electron, the contribution of the ionic

core is not insignificant. For example, the Rb+ dipole polarizability represents 3% of

the Rb 5s ground state polarizability [31]. For this reason, it is important to measure

the dipole polarizabilities of alkali ions.

Previous experimental values for the Rb+ dipole and quadrupole polarizabilities

were determined from the Rb nf and ng quantum defects in spite of the inverted fine

structure of the nf states [13, 17], the typical signature of the highest ` core pene-

trating state [33]. Here ` is the orbital angular momentum of the Rydberg electron.

A third measurement used only the nf series, and it is difficult to extract the polar-

izabilities from one ` series [16]. In all cases, the residual core penetration of the nf

series leads to a large uncertainty in the Rb+ dipole and quadrupole polarizabilities

in previous work [13, 16, 17]. To obtain better values for the core polarizabilities it

would be desirable to measure the quantum defects of non penetrating ` > 3 states.

However, as ` is increased the intervals between the ` states decrease, and the Stark

shifts due to small stray fields become a significant problem. To observe the inter-

vals in zero field the field must be nulled in all directions. However, it is often the

case that in an existing apparatus the field can only be nulled in one direction, leav-

ing an unknown field in the plane perpendicular to that direction, and an unknown

frequency shift.

Here we report the use of an experimental technique to determine zero field inter-

vals in spite of the fact that we can only null the field in one direction. Specifically,

we measure a low field parameter which depends on the static field ES, not its square

E2
S. This approach enables us to determine the remaining perpendicular field and
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extrapolate the observed frequencies to zero field. We have used this approach to

measure the Rb zero field (n + 1)d5/2 → ng and nh intervals. We are not able to

resolve the ng and nh fine structure intervals. Based on the ` dependence of the fine

structure intervals in other alkali atoms, we expect them to be close to the hydro-

genic values. For example, the 28g and 28h intervals are 0.40 MHz and 0.27 MHz for

hydrogen [5, 8, 11, 35]. Combining these intervals with the known Rb nd quantum

defects we derive the quantum defects of the Rb ng and nh states of 27 ≤ n ≤ 30.

From these quantum defects we extract substantially improved values for the Rb+

ionic dipole and quadrupole polarizabilities. In the sections which follow we describe

the principle of the approach, the experimental method, our observations, and the

core polarization analysis.

5.2 Principle

To illustrate the principle of the approach, as an example we describe extracting the

zero field (n+ 1)d5/2 → ng intervals. The Stark shifts of the levels and the frequency

shift of the (n+1)d5/2 → ng transition are proportional to E2
S the squared magnitude

of the static field ES. It is convenient to write E2
S as

E2
S = E2

z + E2
⊥, (5.1)

where the field ~E⊥ lies in the plane perpendicular to the z direction. The frequency

νd5/2→g of the (n+ 1)d5/2 → ng transition is given by
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νd5/2→g = ν0,d5/2→g + PE2
S, (5.2)

where P is half the difference in the polarizabilities of the d and g states, and ν0,d5/2→g

is the zero field interval. The direction of ~ES is unimportant. By applying the bias

voltage Vb we are able to control the static field in the z direction (Ez), and if we

measure the resonance frequency as a function of bias voltage Vb, or bias field Eb, we

observe a parabola, with the maximum frequency ν0,d5/2→g + PE2
⊥. This procedure

leaves us with an unknown frequency shift of PE2
⊥ because we cannot extrapolate

E2
S to zero if only Ez is altered, as shown by Eq. (5.1).

In contrast, if we measure a property X which is simply related to ES, given

explicitly by

ES =
√
E2
z + E2

⊥, (5.3)

we can extrapolate to ES = 0 and determine E2
⊥. As an example, we consider the

case in which X is proportional to ES. The procedure is to measure the resonance

frequency νd5/2→g and X as functions of Vb, or Eb, and plot νd5/2→g vs X2. The

observed frequencies should fall on a straight line, as shown by Eq. (5.2), and the

X2 = 0 intercept is the zero field (n+ 1)d5/2 → ng interval.

The challenge is to identify the appropriate property X, and we have explored

two different ones. In the first approach, X is the separation between Stark states.

We take advantage of the fact that, for the high ` states, the quantum defects are

very small. Therefore, the zero field ` states are converted to Stark k states, which

exhibit linear Stark shifts, even in very small electric fields. A Stark state is assigned
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the label k, equal to the ` of the zero field state to which it is adiabatically connected.

The separation between adjacent Stark states, ∆νS = 3nES, is linear in the field ES

[2]. We observe the microwave transitions from the (n + 1)d states to the nk Stark

states and implicitly determine ES from ∆νS, the separation between adjacent Stark

states. For each bias voltage we obtain the value of ∆νS from the Stark spectrum,

and we measure the (n + 1)d5/2 → ng resonance frequency νd5/2→g. Plotting the

measured frequency νd5/2→g vs ∆ν2
S allows extrapolation to the zero field interval, as

shown by Eq. (5.2). An attractive feature of this approach is that only frequencies

are measured.

In the second approach, X is the amplitude of the resonance signal. This method

is based on the electric resonance method, first used in molecular beams to observe

electric dipole transitions between states of the same parity [15]. It has also been

used to measure Rydberg fine structure intervals using radio frequency electric fields

[9]. The essential idea is that the (on resonance) Rabi frequency Ω for the transition

is proportional to the static field ES; i. e. Ω ∝ ES. In the presence of the static field

ES a single microwave photon can be used to drive the (n+ 1)d5/2 → ng transition,

and the Rabi frequency is given by

Ω =
〈(n+ 1)d|µEmw|nf〉〈nf |µES|ng〉

Wng −Wnf

, (5.4)

from which it is evident that if Emw is fixed, Ω ∝ ES. We ignore the small variations

due to the relative orientations of ~ES and ~Emw.

If the microwave field is present for a time T , and ΩT � π, then the transi-

tion probability, and the magnitude of the (n + 1)d5/2 → ng resonance signal S, is
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proportional to (ΩT )2, which is proportional to E2
S, so in this case X ∝ E2

S. In sum,

S ∝ E2
S. (5.5)

A plot of the resonance frequency νd5/2→g vs S should be a straight line, the intercept

of which is the zero field (n + 1)d5/2 → ng interval. As we shall see, this method,

which requires lower fields and thus smaller extrapolations, is the preferred approach.

5.3 Experimental Approach

In the experiment, 85Rb atoms in a vapor-loaded magneto-optical trap (MOT) are

held at the center of four vertical rods as shown in Fig. 5.1 [28]. The rods pass

through the corners of a horizontal square 18 mm on a side. The two rods opposite

the microchannel plate (MCP) detector are connected together (inside the vacuum

chamber) and are used primarily to apply a field ionization pulse, although a DC

bias voltage can also be applied. The two rods closest to the MCP are also connected

together and can be grounded or biased to provide a static field.

The direction of the applied field is horizontal and parallel to the axis of the MCP.

For simplicity, throughout this chapter, we define the horizontal axis along the static

electric field as the z direction as shown in Fig. 5.1. With this rod configuration,

which is functionally equivalent to a pair of plates, we can only null the stray field

in the z direction.

The 780 nm trap lasers are on continuously, and Rb 5p3/2 atoms in the MOT

are excited to the Rydberg (n + 1)d5/2 states by the a 10 µJ 480 nm laser pulse
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at a 20-Hz repetition rate. The laser pulse is 10 ns long with bandwidth of 150

MHz. The trap magnetic fields are switched off ∼ 4 ms before the laser pulse is

fired. The trap fields in the MOT have fallen to less than 50 mG by the time the

pulsed laser fires. After the laser is fired, atoms are exposed to the 500-ns microwave

pulse to drive the (n + 1)d5/2 → ng and nh transitions, as shown in Fig. 5.2. The

continuous microwaves are generated by an Agilent E824C PSG CW synthesized

signal generator which produces frequencies up to 20 GHz. The microwaves are

then formed into a 500-ns pulse by a General Microwave DM862B switch. The

microwave frequency is doubled by a Narda 2640X220 active doubler and then tripled

by Pacific Millimeter W3WO passive tripler to reach frequencies in the range of 75-

110 GHz. The microwave pulse propagates through WR10 waveguide and is launched

from outside the vacuum chamber into the MOT volume by the WR10 horn. The

polarization of the microwave field is nominally in the z direction, although, due

to scattering from the rods the polarization is not well known when the microwaves

reach the atoms in the MOT. During the experiment the applied static electric field is

always present. We ionize the Rydberg atoms and detect ions by applying a 3-µs rise

time positive high voltage pulse to the rods ∼ 50 ns after the end of the microwave

pulse. The resulting ions are driven to the MCP detector. The signal from the MCP

is recorded with a gated integrator and stored in a computer for analysis.
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Figure 5.1: MOT configuration of this experiment.

Figure 5.2: Schematic of the Rydberg energy levels of this experiment.
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5.4 Experimental Observations and Discussion

5.4.1 Comparison of methods for determining the zero field

(n+ 1)d5/2 − ng intervals

In this subsection we use the 29d5/2 → 28g transition as a concrete example of

different approaches to finding the zero field intervals. Since the MOT configuration

allows us to control the static field in only one direction ( ~Ez), we first observe the

frequency of the 29d5/2 → 28g transition as a function of bias voltage applied to

the rods, changing the field in the z direction from positive to negative. Although

d5/2 → g transitions are more commonly driven as two microwave photon transitions

[8], we drive them using one microwave photon and a static field, which we can vary

by changing the bias voltage Vb. The observed frequencies of the resonances show the

expected quadratic dependence on the bias voltage, as shown in Fig. 5.3. Fitting

the observed frequencies to a quadratic dependence on the bias voltage gives 104

371.08(40) MHz as the maximum frequency at a bias voltage of Vb = V0 = 0.24 V

and 104367.74(40) MHz as the frequency when there is no bias voltage (Vb = 0). At

Vb = V0 = 0.24 V the stray field in the z direction is nulled. For our rod geometry

the conversion between bias voltage and bias field, the correction to Ez, at the MOT

is Eb(V/cm) = 0.406Vb(V). Accordingly, the original stray field in the z direction is

97 mV/cm, which leads to frequency shift of 3.34 MHz. The frequency 104371.08

MHz is only a lower limit to the 29d5/2 − 28g frequency since the stray field in the

x − y plane, E⊥, is unknown. One might reasonably assume that the original stray

field had approximately equal components in all three directions, in which case the
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Figure 5.3: The frequency of the microwave 29d5/2 → 28g transition vs bias electric
field in the z direction. The maximum frequency is 104 371.08(40) MHz at a bias
voltage of Vb = V0 = 0.24 V. At this bias, Ez is nulled.

uncompensated stray field would be 137 mV/cm, leading to an additional frequency

shift of 6.68 MHz. Correcting for this assumed uncompensated shift gives a zero field

29d5/2−28g interval of 104377.76 MHz. Assigning an uncertainty presents a problem,

but an uncertainty equal to correction for E⊥, 6.7 MHz does not seem unreasonable,

yielding 104377.8(67) MHz as the final result for the zero field interval.

To take into account the fields in all directions we use the approaches described in

Section II. In the first approach we implicitly determine ES from ∆νS, the separation

of adjacent Stark states. For each bias voltage we observe a Stark spectrum, as shown

in Fig. 5.4(a), and the d5/2 → g transition with a lower microwave power in Fig.
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5.4(b). The d5/2 → g transition also appears in Fig. 5.4(a), but it is power broadened

when the high k states are visible. The frequency separation ∆νS between adjacent

Stark states is proportional to ES. For each bias voltage we obtain values of the

d5/2 → g frequency νd5/2→g and ∆νS, taken from the high k states indicated in Fig.

5.4(a). From these pairs of points we construct the parametric plot of the d5/2 → g

frequency vs ∆ν2
S. As shown in Fig. 5.5, the result is a straight line, as expected

from Eq. (5.2), and its intercept is the zero field d5/2 → g interval. From Fig. 5.5,

we obtain the zero field 29d5/2 → 28g transition frequency to be 104 378.9(62) MHz.

This approach has the attraction that we are measuring frequencies, but it has

the obvious problem that the fields must be large enough to obtain good values for

the separation between the Stark states. The relatively large fields require a long

extrapolation, 40 MHz, to zero field, and they introduce the possibility that the Stark

shift of the transition frequency may not be adequately represented by Eq. (5.2).

A variant of this technique is to conduct the Stark spectroscopy at higher n, where

the separations are larger, allowing the use of smaller fields. This approach has been

used by Stevens and Lundeen to monitor static fields [34].

To conduct measurements in lower static fields we use the second approach

described in Section II. Specifically, we measure the signal amplitude S of the

(n + 1)d5/2 → ng transition at different bias voltages. Since we are driving the

transition with one microwave photon and a static field, for a fixed microwave am-

plitude the Rabi frequency is proportional to the static field, as shown by Eq. (5.4).

The experiment is conducted in the low transition probability regime in which S is

proportional to E2
S. The procedure is similar to that used for the Stark spectroscopy
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(a)

(b)

Figure 5.4: (a) The 29d5/2 → 28k Stark spectrum at bias voltage of Vb = −1.3 V at
the relative microwave power 1. The high k states are indicated in the graph. (b)
The 29d5/2 → 28g transition at the same bias field as (a) but a relative microwave
power of 0.032.
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Figure 5.5: The 29d5/2 → 28g transition frequency vs the square of the Stark splitting
of the high k states (∆ν2

S) obtained from Stark spectroscopy. At ∆ν2
S=0, the stray

field is zero and the 29d5/2 → 28g transition frequency is 104 378.9(62) MHz.
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approach. For each bias voltage we observe the d5/2 → g resonance, as shown in Fig.

5.6(a) for bias voltages between 0.34 and 0.61 V. As shown by Fig. 5.6(a), the sig-

nal amplitude S increases and the resonance frequency νd5/2→g shifts with increasing

bias voltage. Since S ∝ E2
S, a parametric plot of νd5/2→g vs S yields a straight line,

the intercept of which is the zero field d5/2 → g frequency as shown in Fig. 5.6(b).

From Fig. 5.6(b), the zero field 29d5/2 → 28g frequency is 104 372.70(28) MHz. The

extrapolation in this method is ∼4 MHz which is much less than the aforementioned

approach, which results in a smaller uncertainty in determining the the zero field

29d5/2 → 28g frequency.

In Fig. 5.6 we have not explicitly used the bias voltages, but from them we can

extract the values of the perpendicular stray field. When the observed frequencies

are plotted vs the bias voltages Vb we obtain a parabola similar to Fig. 5.3, with the

maximum frequency of 104369.87(44) MHz occurring at Vb = V0 = 0.875 V. Since S

is proportional to E2
S, we write

S = aE2
S = a(E2

z + E2
⊥), (5.6)

where a is a constant. In Fig. 5.7 we plot S vs (Vb−V0)2, which is in effect a plot of S

vs E2
z , as shown by the horizontal scale at the top of the figure. At the S intercept of

the graph Ez = 0 and E2
S = E2

⊥. The slope a = dS/dE2
S, combining these two values

from Fig. 5.7, we obtain E⊥ = 91 mV/cm. We can check this value for E⊥ using

a different approach. With Vb = 0 the observed frequency is 104326.05 MHz. With

Vb = V0 = 0.875 V, so that Ez = 0 mV/cm, results in a shift of 43.82 MHz. To reach

the zero field value requires a further shift of 2.83 MHz, which implies that E⊥ = 90
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Figure 5.6: (a) The observed the 29d5/2 → 28g resonance signals with different bias
voltages. As shown by the slanted line, the signal amplitude varies linearly with
the observed resonance frequency. The resonance frequency increases and the signal
amplitude decreases as the bias voltage is reduced from Vb = 0.61 V to 0.34 V,
which reduces Ez from 150 mV/cm to 41 mV/cm. (b) The 29d5/2 → 28g microwave
transition frequency as a function of the relative 28g signal amplitude. From the
graph, the 29d5/2 → 28g transition frequency at zero stray field is 104 372.70(28)
MHz.
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mV/cm, in good agreement with the value given above. It is instructive to apply the

same method of analysis to the data of Fig. 5.3, which leads to E⊥ = 68 mV/cm.

The data shown in Fig. 5.3 and Fig. 5.6 were taken with opposite polarity field

ionization pulses, which result in different bias fields in the z direction. Nonetheless

the values for E⊥ are similar. In addition the values for E⊥ are smaller than the

bias field in the z direction due to the fact that the bias field in the z direction is

determined by an external circuit.

At this point it is useful to compare the three approaches we have described. The

first method, measuring transition frequency as a function of bias voltage, allows the

determination of the 29d5/2 → 28g frequency with high precision, but the observed

frequency is the zero field 29d5/2 − 28g interval altered by an unknown Stark shift

due to the uncanceled stray field E⊥. Estimating the Stark shift due to E⊥ by

assuming that the magnitudes of the stray field |Ex|, |Ey| and |Ez| are the same, we

arrived at a zero field 29d5/2−28g interval of 104377.8(67) MHz. The second method,

measuring transition frequency as a function of separation of adjacent Stark states,

yields a 29d5/2 → 28g frequency transition of 104 378.9(62) MHz. This method has

the distinct advantage of actually measuring |E⊥|, but it has the disadvantage of

requiring a long extrapolation to zero field, which results in an uncertainty of 6.2

MHz, not really much better than the estimated uncertainty of the first method. The

third method, measuring transition frequency as a function of the signal amplitude,

yields a 29d5/2 → 28g frequency transition of 104 372.70(28) MHz. The shorter

extrapolation results in a smaller uncertainty, 0.28 MHz, of the the zero field 29d5/2 →

28g frequency and using this method we estimate E⊥ to be 91 mV/cm, slightly



5.4. EXPERIMENTAL OBSERVATIONS AND DISCUSSION 109

Figure 5.7: The graph of the relative 28g signal amplitude (S) as a function of squared
voltage (Vb− V0)2 and squared static field E2

z in the z direction of the system. Since
S = a(E2

z + E2
⊥), from the intercept and slope of the graph we determine E⊥ to be

91 mV/cm.
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less than our estimate of 137 mV/cm made on the basis of simply measuring the

frequency vs the bias voltage Vb. Comparing the three methods shows that the third

method, unlike the first method, has a known uncertainty and it is a factor of twenty

smaller than the uncertainty of the second method. Consequently, we use the third

method to determine the zero field intervals in the sections that follow. Finally, we

note that, although the stray field varies from day to day, the zero field intervals

extracted remain constant, within their uncertainties.

5.4.2 The (n+ 1)d5/2 − ng intervals and ng quantum defects

While measuring signal strengths is less appealing than measuring frequencies, as in

the separation between the Stark states, the much lower static fields make the signal

amplitude method more attractive, and we have used it to measure the (n+1)d5/2 →

ng transition frequencies for 27 ≤ n ≤ 30, as shown in Table 5.1. To find the

quantum defects of the ng states, we add the known quantum defects of the nd

states from Ref. [20] and the (n+ 1)d5/2 → ng transition frequencies. The values of

the quantum defects of the ng states of 27 ≤ n ≤ 30 are shown in Table 5.1. Ref

[1, 13, 17] measured quantum defects of the ng states to be 0.00400(9), 0.00405(6)

and 0.00402(8), respectively. Ref [13, 17] did not consider n dependence and Ref.

[1] measured only the 30g quantum defect. As seen from Table 5.1, our values of

the quantum defect have improved upon the previous measurements by an order of

magnitude.

Our quantum defects show a slight n dependence, and we fit them to a Ritz
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Table 5.1: The (n + 1)d5/2 → ng microwave transition frequencies in zero stray
electric field and the extracted quantum defects of ng.

n Transition frequency (MHz) Quantum defect
27 116 464.54(35) 0.0039737(11)
28 104 372.70(28) 0.0039701(10)
29 93 895.75(34) 0.0039746(13)
30 84 775.26(65) 0.0039778(27)

formula,

δg = δ0 +
δ1

(n− δ0)2
, (5.7)

which yields the values δ0 = 0.00400(2) and δ1 = −0.018(15).

5.4.3 The (n+ 1)d5/2 − nh intervals and nh quantum defects

We obtain the zero field (n + 1)d5/2 → nh intervals in much the same way as we

obtained the (n+1)d5/2 → ng intervals. We drive the d5/2 → h transitions using one

microwave photon and a static field. The Rabi frequency Ω is given by

Ω =
〈d|µEmw|f〉〈f |µEs|g〉〈g|µEs|h〉

(Wng −Wnf )(Wnh −Wng)
. (5.8)

In this case Ω ∝ E2
S, and in the small transition probability regime S ∝ E4

S. The

experiment is conducted in much the same way as the d5/2 → g measurements; for

different bias voltages the signal amplitude S and resonance frequency νd5/2→h are

measured while keeping the microwave field amplitude fixed. Fig. 5.8 shows the

29d5/2 → 28h transition as an example. A parametric plot of νd5/2→h vs
√
S should

give a straight line, the intercept of which is the the zero field d5/2 − h interval, and



5.4. EXPERIMENTAL OBSERVATIONS AND DISCUSSION 112

105.08 105.10 105.12 105.14

0.00

0.05

0.10

0.15

0.20

 

 

0.2 V
0.26 V

0.35 V

0.43 V
28

h 
Si

gn
al

 (a
rb

. u
ni

ts
)

Microwave Frequency (GHz)

Figure 5.8: The observed amplitude as the 29d5/2 → 28h resonance changes in
different bias voltages.

in Fig. 5.9 we present this plot for the 29d5/2 → 28h transition. As shown, the plot

matches our expectation and yields the zero field interval of 105 140.87(77) MHz.

Following the same procedure we have measured the (n + 1)d5/2 → nh intervals for

28 ≤ n ≤ 30, with the results shown in Table 5.2. In Table 5.2 we also give the

nh quantum defects, obtained in a manner analogous to that used to obtain the ng

quantum defects.
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Figure 5.9: The frequency of the observed 29d5/2 → 28h resonances as a function

of the square root of the relative 28h signal amplitude,
√
S. From the graph, the

29d5/2 → 28h transition frequency at zero stray field is 105 140.87(77) MHz.

Table 5.2: The (n + 1)d5/2 → nh microwave transition frequencies in zero stray
electric field and the extracted quantum defects of nh.

n Transition frequency (MHz) Quantum defect
28 105 140.9(8) 0.0014078(27)
29 94 591.0(22) 0.0013982(82)
30 85 400.3(15) 0.0014137(62)
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5.4.4 The Rb+ ionic dipole and quadrupole polarizabilities

We use the values of quantum defects that we have determined and the adiabatic core

polarization model of Mayer and Mayer to extract the ionic dipole and quadrupole

polarizabilities of Rb+ [22]. For the high ` states, where ` > 3, the energy levels

of the Rb atoms are depressed from the hydrogenic levels only by core polarization;

core penetration is negligible. In Rb the Rydberg electron moves much more slowly

than the electrons in the core, and the Rb+ core is polarized by the slowly varying

field from the Rydberg electron. The polarization interaction between the Rydberg

electron and the ion core depresses the energy of the Rb n` Rydberg state below the

energy of a hydrogenic n` state by

Wpol,n` = −αd
2
〈1/r4

n`〉 −
αq
2
〈1/r6

n`〉, (5.9)

where αd and αq are the ionic dipole and quadrupole polarizabilities. The expectation

values of 〈1/r4
n`〉 and 〈1/r6

n`〉 are the squares of the field and the field gradient of the

Rydberg electron in the n` state at the core. The resulting energy of the Rb n` state

is given by

Wn` = −1/2n2 +Wpol,n`. (5.10)

The energy levels of the Rydberg n` state can also be expressed as

Wn` = −1/2(n− δn`)2, (5.11)



5.4. EXPERIMENTAL OBSERVATIONS AND DISCUSSION 115

where δn` is the quantum defect of the Rydberg n` state. Since n is much larger

than δn`, using a Taylor expansion we can express the polarization energy as

Wpol,n` = 1/2n2 +Wn`
∼= −

δn`
n3
. (5.12)

From Eqs. (5.9) and (5.12), we get

δn`
n3

=
αd
2
〈1/r4

n`〉+
αq
2
〈1/r6

n`〉. (5.13)

We can rewrite Eq. (5.13) as

2
δn`

n3〈1/r4
n`〉

= αd + αq
〈1/r6

n`〉
〈1/r4

n`〉
. (5.14)

Eq. (5.14) implies that a graph of 2δn`/(n
3〈r−4

n` 〉) vs 〈r−6
n` 〉/〈r

−4
n` 〉 is linear, with

αd as the intercept and αq as the slope of the graph. Here the values of δn` are the

experimentally determined values given above for 27 ≤ n ≤ 30, l = 4 and 5. We

use the known analytic expressions for 〈r−4
n` 〉 and 〈r−6

n` 〉 for the n` states of hydrogen

[3, 7]. In Fig. 5.10 we plot the graph of 2δn`/(n
3〈r−4

n` 〉) vs 〈r−6
n` 〉/〈r

−4
n` 〉, and we de-

termine the ionic dipole and quadrupole polarizabilities to be αd = 9.12(2) a3
0 and

αq = 14(3) a5
0, respectively. In Table 5.3, we compare the Rb+ ionic dipole and

quadrupole polarizabilities obtained from our work to other theoretical and exper-

imental work. Our ionic dipole polarizability agrees with the earlier experimental

determinations but has a much smaller uncertainty, and it agrees very well with the

theoretical predictions. Refs. [24, 31] contain excellent summaries of the theory of
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Figure 5.10: A plot of the measured ng and nh quantum defects scaled by n3〈r−4
n` 〉/2

vs 〈r−6
n` 〉/〈r

−4
n` 〉 using Eq. (5.14). There are 3 data points for the nh quantum defects,

28 ≤ n ≤ 30, and 4 data points for the ng quantum defects, 27 ≤ n ≤ 30. A fit to
the straight line yields the y-intercept and slope, which are αd and αq, respectively.
The resulting fit values are αd = 9.12(2) a3

0 and αq = 14(3) a5
0.

ionic polarizabilities. The experimental values for the ionic dipole polarizability from

Refs. [13, 16, 17] are determined from the nf and ng energy levels using the core

polarization model. Although the nf states are core penetrating states which should

not be treated using the core polarization analysis alone, the values obtained for αd

are consistent with ours.

Our ionic quadrupole polarizability falls within the broad limits set in Refs.

[13, 17] but is about a factor of two lower than the theoretical prediction. In the lat-
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Table 5.3: The Rb+ dipole (αd) and quadrupole (αq) polarizabilities obtained from
this work and other theoretical (Th) and experimental (Exp) results.

αd (a3
0) αq (a5

0)
This work 9.12(2) 14(3)
Other works 8.9< αd <9.3 (Exp) [13] 0< αq <43 (Exp) [13]

8.5< αd <9.7 (Exp) [17] 0< αq <55 (Exp) [17]
8.98 (Exp) [16] 35.4 (Th) [31]
9.1 (Th) [31] 38.37 (Th) [32]
9.11 (Th) [21] 35.41 (Th) [18]
9.076 (Th) [18]

ter connection it is noteworthy that core polarization analyses of Rydberg quantum

defects of other elements have consistently yielded ionic quadrupole polarizabilities

that are lower than theoretically predicted [5, 19, 26, 27, 30]. It is a worthy theo-

retical challenge to pinpoint the source of the discrepancy between the theoretical

and experimental values. We believe that the core polarization model needs to be

reexamined closely. We hope this will motivate theorists to take a closer look at the

core polarization model.

5.5 Conclusion

We have presented an experimental technique to determine zero field transition fre-

quencies in spite of our inability to completely cancel the stray field. We use the tech-

nique to measure the microwave transition frequencies from the Rydberg (n+ 1)d5/2

states to the Rydberg ng and nh states, 27 ≤ n ≤ 30. The ng and nh quantum

defects of the measured n states are determined from the observed microwave tran-

sition frequencies. We extract the Rb+ ionic dipole and quadrupole polarizabilities
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from the values of quantum defects to be αd = 9.12(2) a3
0 and αq = 14(3) a5

0, re-

spectively. The Rb+ dipole polarizability agrees well with recent theoretical values.

However, the Rb+ αq is about a factor of 2 lower than the theoretical prediction.

The discrepancy between theoretical and experimental values is consistent with the

determined αq of other elements using the core polarization analysis. We hope this

work will motivate theoretical work to locate the source of discrepancy between the

experimental and theoretical values of αq in the core polarization analysis.
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Chapter 6

Future Work

6.1 Introduction

This chapter describes some interesting experimental observations that were made

throughout the course of my studies that I would like to pursue further in the future.

6.2 ns1/2ns1/2 → np1/2np3/2 Transition

Figs. 6.1 and 6.2 show the 39p signal at high and low microwave power (with density

kept at maximum value) and at high and low density (with microwave power kept

at maximum value), respectively, as the microwave frequency is swept across the

resonance frequencies of the two atomic transitions 39s1/2 → 39p1/2 and 39s1/2 →

39p3/2.

Fig. 6.1 shows that at low microwave power the atomic 39s1/2 → 39p1/2 and

39s1/2 → 39p3/2 transitions occur at the calculated frequencies of 66.5696 and 68.3787
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Figure 6.1: The figure shows the 39p signal at high (blue trace) and low (black
trace) microwave power as the microwave frequency is swept across the resonance
frequencies of the two atomic transitions 39s1/2 → 39p1/2 and 39s1/2 → 39p3/2. The
Rydberg atom density is kept the same. At high microwave power, there is a new
peak at 67.474 GHz.

Figure 6.2: The figure shows the 39p signal at high (blue trace) and low (black trace)
Rydberg atom densities as the microwave frequency is swept across the resonance
frequencies of the two atomic transitions 39s1/2 → 39p1/2 and 39s1/2 → 39p3/2. The
microwave power is kept the same. At high density, there is a new peak at 67.474
GHz.
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Figure 6.3: FPT vs. power for the 39s1/239s1/2 → 39p1/239p3/2 transition.

GHz as expected. When the microwave power is increased, the Rabi frequencies

of the atomic resonances are increased to about 400 MHz. The resonant peak

that corresponds to 39s1/2 → 39p3/2 is broader because the oscillator strength for

39s1/2 → 39p3/2 is about 2 times greater than for 39s1/2 → 39p1/2. At the high

microwave power, however, there is an additional peak at the frequency that is ex-

actly halfway between 39s1/2 → 39p1/2 and 39s1/2 → 39p3/2 transition frequencies.

The frequency matches the transition frequency for the transition between the pair

states 39s1/239s1/2 and 39p1/239p3/2. Fig. 6.2 shows that the additional peak disap-

pears when the Rydberg atom density is reduced by attenuating the excitation laser

intensity.
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Figure 6.4: FPT vs. density for the 39s1/239s1/2 → 39p1/239p3/2 transition.
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To investigate this transition further, systematic measurements of the fractional

population transfer (FPT) when the microwave frequency is tuned to the 39s1/239s1/2 →

39p1/239p3/2 resonance at different microwave powers and Rydberg atom densities

were made. Figs. 6.3 and 6.4 show plots of FPT vs. microwave power and FPT vs.

density.

In both cases, the FPT scales linearly. Since the microwave power is proportional

to the square of the field amplitude, the fact that FPT scales linearly with the

microwave power means that FPT is proportional to the square of the microwave

field amplitude. This suggests that the transition is likely a two photon transition,

for which the FPT depends on the square of the field amplitude. The fact that FPT

scales linearly with the density suggests that the transition probability is proportional

to the number of atoms squared, which implies that this is likely a process that

involves two atoms rather than one.

The resonant peak does not shift or broaden when the microwave power is raised.

The resonant peak does not shift with the density either, but the linewidth decreases

slightly when density is reduced. When the relative density is changed from 1 to

0.15, the linewidth changes from 24 to 11 MHz.

One aspect of this transition that is difficult to understand is the asymmetric

shape of the resonant peak. Fig. 6.5 shows the resonant peaks at different densities.

The “wing”on the lower frequency side is clearly visible.

Several features of the obtained data led us to believe that this is the 39s1/239s1/2 →

39p1/239p3/2 transition between pair states. First, the frequency of the observed res-

onance peak matches the 39s1/239s1/2 → 39p1/239p3/2 transition to within 1 MHz. It
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had also been checked that there are no other possible atomic or molecular transi-

tions at or near the frequency of the observed transition. Second, the linear scaling of

the FPT with the density suggests that this process involves two atoms. Third, the

linear scaling of the FPT with the microwave field amplitude squared combined with

the relatively high microwave field amplitude required to observe the transition (the

minimum microwave field amplitude required to be able to observe the transition is

75 mV/cm) suggests that this is a two photon process.

With those being said, we were unable to determine what mechanism was allow-

ing this process to occur. Many simulation attempts using the 2-atom Floquet model

and/or 2-atom configuration interaction model did not produce sensible results. How-

ever, until now we have been making a few assumptions. First, we assumed that two

dipoles are aligned along the z-axis. Second, we assumed that the microwaves only

have linear polarization. Both may be oversimplifications - because the two dipoles

are not necessarily aligned along the z-axis and the rods used to apply field ionization

pulse scatters microwaves which could results in the polarization’s not being perfectly

linear. Future simulations without making these assumptions may provide insights

on how this transition occurs. Finding out how the transition occurs would be a

very interesting project that builds upon the previous experiments on the microwave

transition between pair states of Rydberg atoms.
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Figure 6.5: The resonant peaks at different densities. The “wing” on the lower
frequency side is clearly visible.
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Figure 6.6: Time resolved field ionization signals from a sample of atoms excited to
the 42d state at high and low density. Ions are being detected.
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6.3 Formation of (n+2)p atoms

Fig. 6.6 shows oscilloscope traces of the signal from the MCP detector when the

trapped atoms in the MOT are excited to the 42d5/2 state. At low density, there is

only one peak. However, at high density there are additional peaks that come earlier

in time at 6.1 µs and 6.3 µs. The timing of the peak at 6.1 µs corresponds to either

free ions or Rydberg atoms in higher lying states. The timing of the peak at 6.3

µs corresponds to either (n + 2)p or (n + 1)d states. Although the origin of both

peaks are unknown, only the peak at 6.3 µs (shown by the arrow) will be discussed

here. This phenomenon of additional features appearing in field ionization signal is

not only restricted to the case of 42d5/2. This has been also observed with a sample

excited to 44d5/2, 41d5/2, 40d5/2, and 39d5/2 states.

For convenience, we shall refer to this signal as the “apparent” (n+2)p signal. The

ratio of the “apparent” (n+ 2)p signal to the time integrated signal was measured as

either the density of Rydberg atoms or the time delay of the field ionization pulse was

changed. They are shown in Figs. 6.7 and 6.8. It can be seen that the ratio increases

linearly in both cases. The fact that the ratio increases linearly with density means

that the size of the “apparent” (n+ 2)p signal scales quadratically with density.

Han[1] suggested that the field ionization pulse with slow initial rise can lead to an

appearance of (n + 2)p signal by allowing adiabatic passage through the molecular

avoided crossings between ndnd and (n + 2)p(n − 2)f states. While this seems

reasonable, especially given the fact that the y-intercept of Fig. 6.8 is not zero, we

suspect that there is another mechanism at work that is producing free (n + 2)p

atoms even before the field ionization pulse comes in.
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Figure 6.7: The ratio of the “apparent” (n + 2)p signal vs. time integrated signal
as the density of Rydberg atoms is changed.
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Figure 6.8: The ratio of the “apparent” (n + 2)p signal vs. time integrated signal
as the delay of the field ionization pulse is changed.
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The claim that there are free (n+2)p atoms before the field ionization is based on

an observation that it is possible to drive the two photon atomic transition (n+2)p→

(n+ 3)p and detect the signal from the resulting (n+ 3)p atoms. Fig. 6.9 shows the

field ionization signal from the 42d state with the microwaves turned on and off. The

microwave frequency is tuned to the transition frequency of the two photon transition

44p3/2 → 45p3/2. It is clear that the 44p signal decreases and the 45p signal increases

when the microwaves are turned on. In addition, Fig. 6.10 shows the resonant peak

for the 44p3/2 → 45p3/2 transition that was observed by placing the gate of a boxcar

integrator on the 45p3/2 signal while sweeping the microwave frequency. The observed

transition frequency of 44.870 GHz shows an excellent agreement with the calculated

frequency of 44.870 GHz.
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Figure 6.9: The ionization signal from a sample of atoms excited to 42d state
with microwave turned on and off. Microwave frequency is tuned to the transition
frequency of the two photon transition 44p3/2 → 45p3/2.
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Figure 6.10: The resonant peak for the 44p3/2 → 45p3/2 transition. The observed
transition frequency, from the Lorentzian fit, is 44.872 GHz which shows a good
agreement with the calculated frequency of 44.870 GHz.
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While the observation of this transition suggests that free (n + 2)p atoms are

being produced shortly after the excitation to nd Rydberg state, the mechanism is

not yet understood. It was suspected that the presence of hot, room-temperature

atoms in the MOT and their colliding with the Rydberg atoms may be responsible

for the formation of (n+2)p. However, an attempt to purposely increase the number

of “hot” atoms into the MOT did not noticeably affect the number of (n+2)p atoms

produced.

There are a few additional experiments that can be done to gain more insight.

The first is to make a systematic measurements of how (n + 2)p3/2 → (n + 3)p3/2

resonant peak changes as the density of Rydberg atoms is increased. The second is

to modify the field ionization pulse profile slightly (by adding some noise or spikes)

to observe what effects it has on the “apparent” (n+ 2)p signal.
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Chapter 7

Conclusion

The unique condition created as a result of combining the exaggerated properties of

Rydberg atoms and cold, dense environment provided by the magneto optical trap

leads to observation of new phenomena. The microwave transitions between pair

states, which was extensively studied in Chapter 3 and Chapter 4 of this dissertation,

is one such example. This transition could only be observed because the dense sample

of Rydberg atoms in a magneto optical trap led to a strong dipole–dipole interaction

between nd5/2nd5/2 and nearby (n + 2)p3/2(n − 2)f states. It was shown that the

configuration interaction (CI) model can be used to describe the single photon case

quite well and give predictions that are consistent with the experimental results. In

more general case with multi-photon transitions, Floquet-Forster picture provides

convenient description of the transitions.

The values of quantum defects obtained from the experiment described in Chap-

ter 5 were extracted from the systematic measurements of the zero field (n+1)d→ ng
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and (n+1)d→ nh intervals. A new experimental technique, which allowed us to ob-

tain the zero field interval despite the fact that the stray field can only be controlled

in one direction, was adopted to get the intervals. From the quantum defects, the

ionic dipole and quadrupole polarizabilities were determined.

The observations in Section 6.2 suggests that there may be transitions between

pair states that occur due to different mechanism, as the configuration interaction

model does not provide a satisfactory explanation for the observed 39s1/239s1/2 →

39p1/239p3/2 transition. The observations in Section 6.3 suggests that there may be

a process, similar to spontaneous evolution of cold Rydberg atoms to plasma, but

occurring in a shorter time scale that result in production of (n+2)p atoms as well as

higher lying states and/or free ions. In the future, it would be interesting to further

investigate these phenomena.
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