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Abstract  

Highway congestion is still a major problem in traffic operations and management, and the 

search for feasible mitigation measures continues to evolve with advancement in technology and 

better understanding of traveler behavior. Many congestion mitigation strategies have been 

implemented in the past; but they were unable to improve traffic conditions for entire 

transportation corridors due to lack of coordination among corridor stakeholders. These 

strategies were implemented on individual transportation facilities in a corridor and often ended 

up improving conditions on one facility at the expense of others. Therefore, coordinating the 

management of transportation facilities within a corridor offer an opportunity to operate and 

improve traffic conditions in the entire system as opposed to individual facilities. This concept of 

congestion management is referred to as Integrated Corridor Management (ICM).  

While ICM holds the potential to mitigate highway congestion, a major problem faced by 

transportation agencies who intend to adopt its use is the identification and selection of the most 

beneficial strategies to implement in a corridor. This research proposed a five-step ICM 

evaluation methodology based on which strategies that will benefit the operational needs of a 

transportation corridor can be identified. The proposed evaluation methodology was applied to a 

real-world transportation corridor in northern Virginia (section of I-95/I-395) to determine the 

feasibility of ICM implementation in this corridor using a simulation. Based on the analysis of 

simulation results, variable speed limit system, increasing transit and parking capacity, HOV 

lanes, and HOT lanes were identified as the most beneficial strategies under both incident and 

non-incident conditions. As a result of ICM implementation, average corridor person flow 

increased by 6,860 persons per hour (+37.8%) and 3,286 persons per hour (+14.4%) under 

incident and non-incident conditions respectively. 

The use of pricing to influence driver behavior through the HOT lane concept has been identified 

as a very important ICM strategy by most ICM initiatives. The evaluation of the impact of 

pricing in the ICM methodology developed in this research (as well as those developed for 

pioneer ICM sites) was based on long-term average mode and route shifts associated with pricing 

due to limited published knowledge on how tolls affect drivers’ decision to use/not to use HOT 

lanes in real-time. This research investigated how drivers responded to tolls using data from four 

HOT lane facilities in the U.S. The purpose of this approach was to determine if there is a 

general pattern in driver behavior in terms of their response to tolls.  Analysis results revealed 

that, elasticity of HOT lane demand with respect to tolls is positive and statistically significant 

but inelastic (below +0.2). During peak periods, the elasticity further reduced to an average of 

+0.07. This implies that drivers’ decision to use/not to use HOT lanes is not greatly influenced 

by toll prices but by other factors such as travel time reliability, level of congestion, etc. The 

positive and inelastic relationship observed in this research goes against conventional wisdom 

that drives use of HOT lanes: tolls are supposed to discourage drivers from using HOT lanes. 

This suggests the probability that the tolls are not allowed to rise to a level where supply/demand 

can take place.  

For ICM to be effective, it must be possible to anticipate the results of any implemented strategy. 

This research developed models to predict the demand for HOT lane use for each of the studied 

facilities based on tolls and changing traffic conditions. As expected, the performance of the 

model in predicting absolute demand wasn’t outstanding due to the weak relationship between 



ii 
 

HOT lane demand and tolls. However, the models fairly predict (about 70% of the time) the 

expected level of service conditions on HOT lanes. 

  



iii 
 

Contents 

 

Table of Contents 

Contents ........................................................................................................................................ iii 

List of Tables .............................................................................................................................. vi 

List of Figures ............................................................................................................................ ix 

1 Introduction ................................................................................................................................ 1 

1.1 Research Objective and Scope .............................................................................................. 2 

1.2 Research Motivation ............................................................................................................. 3 

1.2.1 ICM and the Selection of Potential Strategies ................................................................ 3 

1.2.2 HOT Lane Driver Behavior ............................................................................................ 5 

1.2.3 Predicting HOT Lane Demand ....................................................................................... 6 

1.3 Research Contributions ......................................................................................................... 6 

1.4 Report Organization .............................................................................................................. 7 

2 Literature Review ...................................................................................................................... 8 

2.1 ICM Concept ......................................................................................................................... 8 

2.1.1 ICM Implementation ...................................................................................................... 9 

2.1.2 Concept of Operations (Con Ops) ................................................................................ 10 

2.2 HOT Lane Driver Behavior................................................................................................. 19 

2.2.1 HOT Lane Driver Behavior with Non-Dynamic Pricing: Stated Preference ............... 19 

2.2.2 HOT Lane Driver Behavior with Dynamic Pricing– Stated Preference ...................... 20 

2.2.3 HOT Lane Driver Behavior with Dynamic Pricing—Revealed Preference ................. 21 

2.2.4 HOT Lane Driver Behavior with Dynamic Pricing—Revealed/Stated Preference ..... 22 

2.2.5 HOT Lane Driver Behavior—Other Studies ................................................................ 22 

2.3 HOT Lane Demand Prediction ............................................................................................ 22 

2.3.1 HOT Lane Demand Prediction at Planning Stage ........................................................ 23 

2.4 Summary ............................................................................................................................. 23 

3 Development of ICM Evaluation Methodology .................................................................... 24 

3.1 Description of Proposed ICM Evaluation Methodology .................................................... 24 

3.2 Test Corridor for Proposed ICM Evaluation Methodology ................................................ 31 



iv 
 

3.3 Development and Validation of Simulation Network ......................................................... 34 

3.4 Evaluation of Candidate ICM Strategies ............................................................................. 35 

3.5 Simulation Results and Analysis ......................................................................................... 41 

3.5.1 Impact of ICM in Non-Incident Conditions ................................................................. 41 

3.5.2 Impact of ICM during Incident Conditions .................................................................. 48 

3.5.3 Effects of Transit Signal Priority on Bus Travel Times ............................................... 53 

3.6 Summary ............................................................................................................................. 54 

4 Multi-HOT Lane Driver Behavior Analysis .......................................................................... 55 

4.1 Economic Theory behind HOT Lanes ................................................................................ 55 

4.2 HOT Lane Facilities Studied ............................................................................................... 56 

4.2.1 I-394 MnPASS Express Lanes – Minneapolis ............................................................. 56 

4.2.2 I-15 Fast Trak Express Lanes – San Diego .................................................................. 59 

4.2.3 I-85 Express Lanes - Atlanta ........................................................................................ 60 

4.2.4 I-95 Express Lanes - Miami ......................................................................................... 62 

4.3 VTTS Analysis .................................................................................................................... 64 

4.3.1 Data Needs for VTTS Analysis .................................................................................... 64 

4.3.2 Methodology for VTTS Estimation .............................................................................. 65 

4.3.3 Results and Discussions................................................................................................ 66 

4.4.1 Possible Reasons for VTTS Similarities/Differences ................................................... 74 

4.4.2 Comparing VTTS Estimates with Hourly Wages ........................................................ 84 

4.5 Driver Elasticity .................................................................................................................. 85 

4.5.1 Data Needs for Driver Elasticity Determination .......................................................... 86 

4.5.2 Methodology ................................................................................................................. 86 

4.5.3 Results and Discussions................................................................................................ 88 

4.5.3.1 Relative Impacts of Tolls and GP Density on HOT Lane Demand ....................... 90 

4.5.3.2 Comparison between HOT Facilities ..................................................................... 94 

4.6 Summary ............................................................................................................................. 98 

5 HOT Lane Demand Prediction ............................................................................................... 99 

5.1 Candidate Modeling Approaches ........................................................................................ 99 

5.2 Data Needs ........................................................................................................................ 101 

5.3 Data Preparation ................................................................................................................ 101 



v 
 

5.3.1 Spurious Regression ................................................................................................... 101 

5.3.2 Autocorrelation (Serial Correlation) ........................................................................... 102 

5.4 Methodology for Model Development .............................................................................. 104 

5.4.1 Correcting for Serial Correlation (Prais-Winsten estimation) .................................... 105 

5.4.2 Forward Stepwise Regression .................................................................................... 106 

5.4.3 Model Performance Evaluation .................................................................................. 106 

5.5 Results and Analysis ......................................................................................................... 107 

5.5.1 I-394 MnPASS Lanes, Minneapolis ........................................................................... 108 

5.5.2 I-15 Fast Trak Lanes, San Diego ................................................................................ 116 

5.5.3 I-85 HOT Lanes, Atlanta ............................................................................................ 124 

5.5.4 I-95 HOT Lanes, Miami ............................................................................................. 132 

5.6 Summary ........................................................................................................................... 140 

6 Conclusions ............................................................................................................................. 141 

6.1 Evaluation Methodology for Selecting Beneficial ICM Strategies ................................... 141 

6.2 HOT Lane Driver Behavior............................................................................................... 143 

6.3 Predicting HOT Lane Demand .......................................................................................... 145 

6.4 Summary ........................................................................................................................... 147 

7 Contributions and Future Research..................................................................................... 148 

7.1 Research Contributions ..................................................................................................... 148 

7.1.1 Main Contributions ..................................................................................................... 148 

7.1.2 Other Contributions .................................................................................................... 150 

7.2 Future Research ................................................................................................................. 152 

7.2.1 HOT Lane VTTS and Elasticity ................................................................................. 152 

7.2.3 Summary ..................................................................................................................... 154 

References .................................................................................................................................. 155 

Appendix A ................................................................................................................................ 164 

 

 

 



vi 
 

List of Tables 

2.1  Examples of ICM strategies and approaches ......................................................................... 13 

3.1  Hypothetical sensitivity rankings ........................................................................................... 30 

3.2  I-95/I-395 corridor hot spots .................................................................................................. 32 

3.3  Parking facilities in analysis segment .................................................................................... 33 

3.4  Transit routes in analysis segment ......................................................................................... 34 

3.5  Model validation results ......................................................................................................... 35 

3.6  Variable speed limits and density ranges ............................................................................... 37 

3.7  Impact of Diversion of I-95 N and U.S. 1N ........................................................................... 42 

3.8  Travel time savings due to ICM............................................................................................. 43 

3.9   Impact of ICM on vehicular flow ......................................................................................... 44 

3.10 Speed improvement due to ICM ........................................................................................... 44 

3.11 ICM strategies sensitivity values .......................................................................................... 46 

3.12 T-statistic values for ICM strategies ..................................................................................... 46 

3.13 ICM strategies sensitivity rankings ....................................................................................... 47 

3.14 Impact of ICM on fuel economy and emissions ................................................................... 48 

3.15 Traffic conditions on I-95 corridor during modeled incident (No diversions) ..................... 49 

3.16 Impacts of diversion on I-95 and U.S. 1N ............................................................................ 49 

3.17 Average travel times for diverted vehicles ........................................................................... 49 

3.18 Impact of ICM during conditions ......................................................................................... 50 

3.19 ICM strategies sensitivity values during incidents ............................................................... 52 

3.20 T-statistic values for ICM strategies during incidents .......................................................... 52 

3.21 ICM strategy rankings........................................................................................................... 52 



vii 
 

3.22 Impacts of ICM during incidents on fuel economy and emissions ....................................... 53 

3.23 Impact of TSP on average bus travel times .......................................................................... 54 

4.1   MnPASS toll rate algorithm.................................................................................................. 58 

4.2  VTTS for morning and evening periods ................................................................................ 66 

4.3  VTTS for morning and evening peak periods........................................................................ 67 

4.4   Results of hypothesis testing ................................................................................................. 74 

4.5   Comparing average annual incomes with peak VTTS estimates .......................................... 79 

4.6   RPP-adjusted annual incomes and VTTS estimates ............................................................. 82 

4.7    Travel time reliability measures…………………………………………………………...84 

4.8   Mean VTTS vs. BLS hourly wages ...................................................................................... 85 

4.9   Elasticity for morning and evening periods .......................................................................... 88 

4.10   Peak period elasticity (7:30 AM - 8:30 AM/5:00 PM - 6:00 PM) ...................................... 89 

4.11 Results of hypothesis testing (toll elasticity vs. GP congestion elasticity) ........................... 93 

4.12 Results of hypothesis testing (facility-pairs comparison) ..................................................... 95 

5.1   Level of service and corresponding flow rates ................................................................... 107 

5.2   Stepwise regression procedure (I-394 MnPASS) ............................................................... 109 

5.3   Model summary statistics (I-394 MnPASS lanes) .............................................................. 110 

5.4   Model coefficients and summary statistics (I-394 MnPASS lanes) ................................... 111 

5.5   Model performance evaluation (I-394 MnPASS lanes) ...................................................... 115 

5.6   Stepwise regression variable selection (I-15 Fast Trak lanes) ............................................ 118 

5.7   Model summary statistics (I-15 Fast Trak lanes) ................................................................ 118 

5.8   Model coefficients and summary statistics (I-15 Fast Trak lanes) ..................................... 120 

5.9   Model performance evaluation (I-15 Fast Trak lanes)……………………………………121 

5.10   Stepwise variable selection (I-85 express lanes) .............................................................. 126 



viii 
 

5.11  Model summary statistics (I-85 express lanes) .................................................................. 126 

5.12  Model coefficients and summary statistics (I-85 express lanes) ....................................... 128 

5.13  Model performance evaluation (I-85 express lanes) .......................................................... 131 

5.14  Stepwise selection of variables (I-95 express lanes).......................................................... 134 

5.15  Model summary statistics (I-95 express lanes) .................................................................. 134 

5.16  Model coefficients and summary statistics (I-95 express lanes) ....................................... 136 

5.17  Model performance evaluation (I-95 express lanes) .......................................................... 139 

 

 

 

 

 

 

 

 

 

 

 

 

 



ix 
 

List of Figures 

 

1.1  Generic ICM corridor (Source: ICM implementation Guidance, FHWA, 2006) .................... 4 

3.1  ICM evaluation methodology ................................................................................................ 25 

3.2  Latin hypercube sampling ...................................................................................................... 28 

3.3   ICM test corridor……………………………………………………………………………33 

3.4  Typical VSL layout ................................................................................................................ 37 

3.5  A plot of travel time savings due to ICM .............................................................................. 43 

3.6  Improvement in travel speeds due to ICM ............................................................................. 45 

3.7  Travel time due to ICM strategies ......................................................................................... 50 

3.8  Impact of ICM strategies on speed during incident conditions ............................................. 51 

4.1  I-394 MnPASS express lanes (Source: MnDOT) .................................................................. 57 

4.2  Map of I-15 express lanes ...................................................................................................... 60 

4.3  Map of I-85 express lanes ...................................................................................................... 61 

4.4  A map of I-95 express lanes ................................................................................................... 63 

4.5  Toll rate variations on I-85 express lanes .............................................................................. 68 

4.6  Average travel time savings on I-85 express lanes ................................................................ 70 

4.7  VTTS distribution for studied HOT facilities ........................................................................ 71 

4.8   Comparing GP lane congestion levels .................................................................................. 75 

4.9   Annual income distribution for Hennepin County (Minneapolis area) ................................ 77 

4.10 Annual income distribution for San Diego ........................................................................... 77 

4.11 Annual income distribution for Miami Dade County ........................................................... 78 

4.12 Annual income distribution for Gwinnet County (Atlanta area) .......................................... 79 

4.13 Comparison between HOT and GP lane speeds on I-85 SB ................................................. 91 



x 
 

4.14 Relative impacts of tolls and GP congestion on HOT lane demand ..................................... 92 

4.15 Relative distribution of HOT lane users on I-15 express lanes ............................................ 96 

4.16 Relative distribution of HOT lane users on I-85 express lanes ............................................ 98 

5.1   Differentiating between stationary and non-stationary time series..................................... 102 

5.2   A plot of positive and negative serial correlations .............................................................. 103 

5.3  Scatter plot of response and explanatory variable (I-394 MnPASS lanes) .......................... 108 

5.4  A histogram of regression residuals (I-394 MnPASS lanes) ............................................... 113 

5.5  P-P plot of regression residuals (I-394 MnPASS lanes) ...................................................... 113 

5.6  A scatter plot of regression residuals/predicted values (I-394 MnPASS lanes) .................. 114 

5.7  Model performance evaluation (I-394 MnPASS lanes) ....................................................... 116 

5.8  Scatter plots of response and explanatory variables (I-15 Fast Trak lanes) ........................ 117 

5.9   Model performance evaluation (I-15 Fast Trak lanes) ....................................................... 122 

5.10 Histogram of regression residuals (I-15 Fast Trak lanes) ................................................... 123 

5.11 P-P plot of regression residuals (I-15 Fast Trak lanes) ....................................................... 123 

5.12 A scatter plot of regression residuals and predicted values (I-15 Fast Trak) ...................... 124 

5.13 Scatter plots of response and explanatory variables (I-85 express lanes) ........................... 125 

5.14 Histogram of regression residuals (I-85 express lanes) ...................................................... 129 

5.15 P-P plot of regression residuals (I-85 express lanes) .......................................................... 130 

5.16 Scatter plot of regression residuals and predicted values (I-85 express lanes) ................... 130 

5.17 Performance of naive and predictive models (I-85 express lanes) ..................................... 132 

5.18 Scatter plot of response and explanatory variables (I-95 express lanes) ............................ 133 

5.19 Histogram of regression residuals (I-95 express lanes) ...................................................... 137 

5.20 P-P plot of regression residuals (I-95 express lanes) .......................................................... 138 



xi 
 

5.21 Regression residuals against predicted values (I-95 express lanes).................................... 138 

5.22 Model performance evaluation (I-95 express lanes) ........................................................... 140 

 

 

 

 

 

 

 

 

 

 

 

 

 



xii 
 

Acknowledgements 

I will like to thank my advisor Brian Smith for his guidance, tolerance and encouragement over 

the past three years. His unflinching support in both academic and personal issues was 

remarkable, and will always be remembered. My sincere gratitude goes to Michael Fontaine for 

his critical role in all aspects of my development as a student. Though not my advisor, he made 

himself readily available anytime I needed his insights, and provided me with opportunities for 

knowledge enrichment through numerous collaborations. I will forever be grateful, Mike. The 

service of other members of my dissertation committee is also greatly appreciated: Byungkyu 

Park, John Miller, and James Lambert. Finally, a big thank you to my family for their prayers, 

selflessness and patience. 

 

 

  



1 
 

Chapter 1 

Introduction 

Highway congestion continues to be a major problem in traffic operations and management, and 

the search for feasible mitigation measures keeps evolving with advancement in technology and 

better understanding of traveler behavior. According to the Texas Transportation Institute’s 

(TTI) Urban Mobility Report 2012, travel delay per commuter was 38 hours, total delay was 5.52 

billion hours, and total fuel wasted was 2.88 billion gallons, amounting to $121.2 billion for the 

entire U.S. in 2011. Between 1982 and 2011, the cost of congestion increased by over 400% (1) 

despite investments in different congestion mitigations strategies during this time period. 

Demand for highway travel by Americans continues to grow as population increases, particularly 

in metropolitan areas (2); therefore, transportation professionals must develop innovative means 

of realizing the full capacity benefits of existing facilities since the addition of new physical 

capacities alone cannot keep up with the pace of this rising demand. 

Many congestion mitigation strategies have been proposed and implemented over the years. 

These strategies comprises both operational improvements and travel demand management. 

Operational improvement strategies such as incident management (3), ramp metering (4), 

variable speed limit (5), real-time traveler information (6), etc. have been found to lessen the 

impacts of highway congestion. Similarly on the demand side, some of the congestion mitigation 

strategies include High Occupancy Vehicle (HOV) facilities (7), congestion pricing (8), transit 

fare policies (9), etc. Until recently, a disjointed approach towards congestion management in a 

transportation corridor has been the modus operandi. Managers of different transportation 

facilities (e.g. freeways, arterials, etc.) in a corridor mitigated congestion by focusing only on 

improving conditions of those facilities that fall under their jurisdiction. This frequently results in 

inefficiencies at network junctions (e.g. freeway/arterial junctions), and fails to achieve the 

maximum possible benefits of such mitigation measures on the entire transportation system. 

Integrated Corridor Management (ICM) provides an opportunity to effectively mitigate 

congestion by coordinating the management and operation of multimodal transportation facilities 

to improve traffic conditions in the entire corridor. This ensures that existing capacities on the 

different facilities/modes within a corridor are effectively utilized. Identifying the right 

combination of ICM strategies to mitigate congestion in a corridor can be quite challenging; 

however, this is very crucial to the success of an effective ICM.  

High Occupancy Toll (HOT) lanes have been identified by most of the ICM pioneer sites as a 

critical congestion mitigation strategy with high benefit-cost ratio (10,11). This strategy employs 

pricing to regulate use of the extra capacity on HOV lanes by Single/Low-Occupant vehicles 

(SOV/LOV) in order to prevent the HOV lanes from becoming gridlocked. Supposedly, the tolls 

are required to discourage SOV/LOVs from using the HOT lanes. However, there is limited 

published knowledge on how the tolls affect drivers’ decision to use/not to use the HOT lanes. 

Many of the existing research efforts on this topic have focused on specific HOT lane facilities, 

making their findings site specific (12–15). Therefore, there is the need to investigate how 

drivers from different locations/regions respond to tolls and changing traffic conditions; this will 

help to determine if there is a general pattern in driver behavior in terms of their response.  
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Managing highway congestion effectively requires a proactive approach. For ICM to be effective 

in congestion mitigation, the system must be able to anticipate how drivers/travelers will react to 

strategies before their implementation. Although pricing is used in HOT lanes, it only reacts to 

driver/traveler behavior; that is, when demand for HOT lane use increases, tolls are increased 

and vice versa. If the HOT lane concept is to be a critical component of ICM, then the demand 

for its use by drivers/travelers must be predictable. Knowing the expected level of demand on the 

HOT lanes will enable managers to put in place strategies to avoid traffic breakdown. Till date, 

HOT lane demand prediction is carried out only when the feasibility of HOT lane 

implementation is under consideration. The intended purpose of such prediction is to estimate the 

expected revenue from HOT lane use once it is built (16). Predicting HOT lane demand in real-

time (e.g. every 5 minutes) for operational purposes (managing demand in real-time) is not a 

common practice. 

As a result of discussions in the preceding paragraphs, this dissertation focused on how to make 

ICM more effective as a congestion management tool by investigating some of its key 

components. These include how to identify the right strategies during the planning stages of ICM 

implementation, exploring the general behavior of traveler response to HOT lane tolls (pricing) 

and changing traffic conditions, and how to make ICM more proactive by predicting expected 

demand for HOT lane use. 

 

1.1 Research Objective and Scope 

The specific objectives of this research are as follows: 

1. To develop an evaluation methodology based on which beneficial ICM strategies can be 

identified. 

 

2. To investigate driver behavior in terms of how they respond to HOT lane tolls (pricing) 

and changing traffic conditions using data from multiple HOT facilities. This will help to 

determine if there is a general pattern in the behavior of HOT lane users’ response to 

pricing. 

 

3. To develop a predictive model that can be used to estimate HOT lane demand levels in 

real-time for effective ICM. 

The scope of this research is focused on HOT lane facilities with real-time dynamic tolling 

capabilities. These are facilities in which the tolls charged are dynamic and not pre-determined. 

The tolls are based on real-time conditions on the HOT lanes and fluctuate at regular short 

intervals (e.g. every 5 minutes). Therefore when density on HOT lanes increases, tolls are also 

increased and vice versa. Drivers using corridors with HOT lanes have no prior knowledge of the 

actual toll amount at any point in time; they are only notified through dynamic message signs 

(DMS) when they approach HOT lane entry points and have a short period of time to decide 

whether to use it or not. 

In this dissertation, the words “drivers”, “users” and “travelers” will be used interchangeably. 

They all refer to people who travel on transportation corridors with HOT lanes and parallel 
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General Purpose (GP) lanes operating side by side. These people are potential users of the HOT 

lanes depending on their choice behaviors. 

 

1.2 Research Motivation 

ICM has gained traction in recent years as a potential congestion management tool, and as the 

pioneer sites continue to demonstrate its use and expected benefits,  a couple of observations 

have been made. These observations, as explained below provided the motivation for this 

research.  

 

1.2.1 ICM and the Selection of Potential Strategies 

Integrated Corridor Management (ICM) can be described as the coordination of the day-to-day 

operation of distinct transportation networks/facilities (freeways, arterials, transit systems, etc.) 

within a clearly defined geographical region (corridor), with the aim of improving mobility, 

safety and efficiency of the existing transportation system (17). Transportation corridors often 

contain underutilized capacity in the form of parallel routes (freeways, arterials, and HOV lanes), 

single-occupant vehicles, and transit systems operating below capacity that could be tapped to 

help reduce congestion (18). ICM utilizes real-time information integration and dissemination 

technologies - combining fragmented traffic information together and delivering it to travelers - 

so that they can make sound travel decisions, by either changing their travel mode, departure 

time, or even destination, to avoid congestion (19). Figure 1 describes a generic ICM corridor 

composed of freeways (managed by the State DOT), arterials (managed by individual cities), rail 

lines (managed by regional rail agency), and bus transit (managed by the bus company).  
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Figure 1.1: Generic ICM corridor (Source: ICM implementation Guidance, FHWA, 2006) 
 

Selection of the most beneficial combination of strategies to implement is very critical to the 

success of ICM as a congestion management tool. An Analysis, Modeling and Simulation 

(AMS) methodology has been developed for three of the ICM pioneer sites (Dallas, TX; 

Minneapolis, MN; and San Diego, CA) to help identify the most beneficial ICM strategies. In 

Integrated Corridor Management Analysis, Modeling, and Simulation Experimental Plan for the 

Test Corridor, Alexiadis (2008) outlined details of the AMS methodology and its application to 

ICM sites (20). A summary of the methodology is provided below.  

The AMS methodology applies macroscopic trip table manipulation for the determination of 

overall trip patterns, mesoscopic analysis of the impact of driver behavior in reaction to ICM 

strategies (both within and between modes), and microscopic analysis of the impact of traffic 

control strategies at roadway junctions (such as arterial intersections or freeway interchanges). 

The methodology also includes a simple pivot-point mode shift model and a transit travel-time 

estimation module, the development of interfaces between different tools, and the development 

of a performance measurement and benefit/cost module.  

In this AMS framework, macroscopic, mesoscopic, and microscopic traffic analysis tools can 

interface with each other, passing trip tables and travel times back and forth looking for natural 

stability within the system. Absolute convergence may not be achieved because of inherent 

differences at the various modeling levels. This methodology will seek a natural state for 

practical convergence between different models, and the iterative process will be terminated or 

truncated at a point where reasonable convergence is achieved. 

The AMS methodology described above, though comprehensive, is a high level conceptual 

framework with little guidance on implementation. Therefore, most transportation agencies 

currently considering the adoption of ICM have to come up with their own methodologies to 
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identify beneficial strategies. This dissertation presents a five-step evaluation methodology based 

on which the most beneficial combination of ICM strategies can be identified.  

 

1.2.2 HOT Lane Driver Behavior 

HOT lanes use electronic toll collection and traffic information systems that make it possible to 

provide variable, real-time toll pricing for SOVs and LOVs (16). The pricing information 

enables potential users to decide whether or not to use the HOT or GP lanes. That is, the pricing 

is intended to influence travelers’ behavior in terms of the decision to use/not to use the HOT 

lanes. Many of the research efforts in how HOT lane toll pricing affect the behavior of travelers 

have focused on specific HOT lane facilities, making their findings site specific (12–15). HOT 

lane driver behavior has often been evaluated in two ways: in terms of their Value of Travel 

Time Savings (VTTS) /willingness to pay and HOT lane demand elasticity with respect to price.    

Brownstone et al. (2003) investigated the behavior of drivers on the I-15 Fast Trak express lanes 

in San Diego for a two-month period, in October and November 1998. The study found that, the 

median cost of hour of travel time savings that drivers were willing to pay was $30.0 per hour 

(21). Another study on the I-394 MnPASS HOT lanes in Minneapolis by Burris et al. (2012) 

examined travelers’ willingness to pay for travel time savings using three years of data from 

2008. The authors found that, travelers’ VTTS averaged $73 per hour in the morning and $116 

per hour in the afternoon (12). VTTS for users of I-85 express lanes in Atlanta were also studied 

by Sheikh et al (2014) using 9 months of toll and travel time data. The study concluded that the 

median VTTS was $36 per hour in the morning peak and $26 per hour in the afternoon peak 

(13). Although the above mentioned findings are important and contribute to the state-of-

knowledge of HOT lane driver behavior, they are site specific and do not apply to driver 

behavior on other HOT lane facilities. Additionally, since each of the research efforts was 

conducted for a specific site, it is difficult to identify possible reasons for the similarities and 

differences in their findings. For example, the VTTS obtained for the study on 1-85 express lanes 

during the morning period ($36 per hour) (13) is almost half the VTTS reported for I-394 

MnPASS HOT lanes for the same time period ($73 per hour) (12). However, reasons for such a 

huge difference in VTTS estimates cannot be readily determined because both facilities were not 

examined together.   

As a result of the limitations of the site specific HOT lane driver behavior findings, there is the 

need to investigate the behavior of drivers across multiple HOT lane facilities in different 

locations. Such a study will help to determine if there is a general pattern in HOT lane driver 

behavior in terms of their response to toll prices and changing traffic conditions. Furthermore, 

studying multiple HOT lane facilities together affords the opportunity to identify factors that 

causes users of any pair of HOT facilities to be similar or different in their behavior. 

Understanding the underlying causes of the observed behavior in HOT lane users will provide 

significant insights about the use of pricing in ICM. 



6 
 

 

1.2.3 Predicting HOT Lane Demand  

Prediction of HOT lane demand has been usually done at the planning stages of HOT lane 

implementation where demand forecasting is done for both HOVs and SOVs. Predicting HOT 

lane demand at the planning stage serves a dual purpose: first, it allows the project sponsor to 

determine the combination of pricing and occupancy requirements that maximizes transportation 

benefits for all motorists traveling in the HOT lane corridor. Secondly, it allows the project 

sponsor to forecast revenue streams and then evaluate financing approaches (16). Currently, 

there are no known models in the existing HOT lane literature that predict dynamically-priced 

HOT lane demand for operational purposes. That is, there are no known models that can help 

transportation professionals to determine the expected demand for dynamically-priced HOT lane 

use at different toll prices and traffic conditions in real-time. Many of the models found in the 

HOT lane literature have been developed to identify factors that influence the decision of drivers 

to use HOT lanes (22,23). For ICM to be effective and proactive, it should be possible to 

anticipate the consequences of implemented strategies. For example, during peak periods, it 

should be possible for transportation professionals to know the expected level of HOT lane 

demand for a certain toll price and traffic condition in order to prevent the lanes from been 

gridlocked. The purpose of this dissertation is to help fill the knowledge gap in HOT lane 

demand models useful for real-time traffic control management.  

 

1.3 Research Contributions 

This dissertation will add to the body of knowledge of ICM and HOT lane systems. The specific 

contributions include the following: 

1. This research provided an evaluation methodology based on which transportation 

agencies will select the most beneficial combination of ICM strategies to implement in 

their corridors. 

 

2. Previous efforts in HOT lane driver behavior research have either focused on one or two 

HOT facilities, making their findings site specific and less generalizable. This 

dissertation used data from multiple HOT lane facilities located in different geographical 

regions to determine whether or not there is a general pattern in HOT lane driver 

behavior. 

 

3. Prediction of HOT lane demand has traditionally been conducted at the planning stages 

of HOT lane implementation mainly for financial feasibility purposes. Hence, there are 

no known predictive models that can be used to effectively manage HOT lane demand in 

real-time. In this dissertation, predictive HOT lane demand models that can be used to 

estimate expected Level of Service (LOS) on the lanes were developed. Such predictive 

models will help to make ICM proactive. 
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1.4 Report Organization 

The remaining chapters of this dissertation are organized as follows: 

Chapter 2 reviews existing literature on the ICM concept, HOT lane driver behavior and the 

prediction of its demand. Chapter 3 presents an ICM evaluation framework based on which 

transportation agencies will select strategies that are beneficial to the operational needs of their 

corridors. Chapter 4 analyzes driver behavior across four HOT lane facilities to determine if 

there is a general pattern. In Chapter 5, development of HOT lane demand models for 

operational purposes is discussed. Chapter 6 summarizes the research and its key findings. 

Finally, Chapter 7 discusses the major research contributions arising from this dissertation, and 

identifies areas for future research. 
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Chapter 2 

Literature Review 

Literature on past research works on Integrated Corridor Management (ICM), High Occupancy 

Toll (HOT) lane driver behavior and HOT lane demand prediction were reviewed to understand 

the current state-of-knowledge in these areas. Detailed discussions on each area are presented 

below. 

 

2.1 ICM Concept  

The ICM concept enables transportation agencies to optimize the use of available infrastructure 

by providing travelers with real-time information on traffic conditions in a corridor based on 

which informed travel decisions can be made. The information provided to travelers may help 

them to change trip departure times, routes, mode of travel etc. The success of ICM hinges on 

three main pillars: 

1. Intelligent Transportation Systems (ITS): Technology is an essential ingredient in ICM.  

Recent advancements in ITS technologies provide the opportunity to integrate network 

operations so as to manage total corridor capacity (24). ITS technologies such as real-

time traveler information, parking management systems, transit signal priority, and 

electronic tolling systems enhance holistic optimization of transportation systems.  This 

presupposes that investment in ITS technology must precede the implementation of ICM.  

The ability of ICM to be proactive rather than being reactive is made possible through 

ITS, which facilitates the capture and rapid processing of traffic information in order to 

make informed decisions. 

 

2. Stakeholders Partnership: ICM employs a collective approach to optimize the 

transportation system in a corridor.  To accomplish the goals of ICM, all partner agency 

representatives must put aside their bias as they strive to operate the corridor in a true 

multimodal, integrated, efficient, and safe fashion where the focus is on the transportation 

customer. A stakeholder is a person or group with a direct interest in the integration of 

the corridor and the associated networks and network linkages. These include 

municipalities, counties, Metropolitan Planning Organizations (MPO), transit authorities, 

Traffic Management Centers (TMC), etc.  It is important to identify all stakeholders as 

early as possible so as to incorporate their needs and views in the concept development 

phase.  The number and types of corridor stakeholders depend on the transportation 

networks included in the corridor and the proposed ICM concepts (25). 

 

3. Information Sharing: As part of the partnership between stakeholders, there is the need to 

share real-time traffic and incident information within the corridor for the purpose of 

enhanced decision making.  Comparative real-time corridor data on freeways, HOV 

lanes, arterials, and transit facilities need to be shared among the various operating 

agencies in order to determine the appropriate strategies to be implemented.  Information 
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can be shared through voice, data, video and other media depending on the protocols 

adopted (25). 

 

2.1.1 ICM Implementation 

A generic 2006 ICM implementation guide by Neudorff et al. outlined the steps involved in 

implementing ICM (26)
 
.The procedure is based on the principles of systems engineering, a 

formal process by which quality is continuously promoted.  The systems engineering process is 

often portrayed as a “V” so as to relate the different stages in the system life cycle to one 

another.  The V-shaped model helps to show the relationship between the works done on each 

side of the “V”; for example, the testing of activities on the right side of the “V” is based on the 

results (e.g., concept of operations, system requirements, etc.) from the corresponding steps on 

the left side of the “V”.   

The individual components of the V-shaped systems engineering process include: 

 Concept Exploration:  Identifying the need for corridor management based on an 

existing regional ITS architecture and establishing corridor stakeholder group.  

Consequently, potential corridors and initial boundaries are identified. 

 

 Systems Engineering Management Plan: Involves the development of a management 

plan that will be used to implement ICM. 

 

 System Conception: This is an important stage in the systems engineering process 

since it explicitly defines the ICM concept.  It involves inventorying existing systems, 

identifying existing corridor conditions, the establishment of corridor vision and 

goals, identifying potential ICM approaches and strategies, etc.  Systems conception 

leads to the development of the concept of operations for ICM.   

 

 System Requirements: This stage of the process looks into defining system level 

requirements (standards) that will be applicable to the already developed concept of 

operations.  It includes high level ICM requirements, detailed ICM requirements, 

institutional requirements, and performance analysis.  This stage results in a system 

requirements document. 

 

 ICM High-Level Design: Decomposition of requirements into alternative 

architectures and identifying system interfaces.  This results in the development of an 

ICM architecture that is consistent with the regional ITS architecture. 

 

 ICM Detailed Design: Decomposition of system and subsystems into hardware, 

software, database, and other individual components.  Subsequently, technologies and 

design features of each component are laid out. 

 

 Implementation and Deployment: This stage transforms ICM designs into an 

operating system by verifying and integrating units and subsystems through hardware 
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fabrication, software engineering, and coding.  ICM is then deployed and verified for 

acceptance based on already defined requirements and standards. 

 

 Operations and Maintenance/Evaluation: Managing effectively, the day-to-day 

operations of the ICM in accordance with operations and maintenance plan.  The 

performance of the system is evaluated continuously, and changes/replacements are 

made when necessary. 

 

Numerous literatures are available from the pioneer sites on the development of the concept of 

operations, system requirements, and analysis, modeling, and simulation methodology for ICM.  

The remaining stages of the systems engineering process for ICM are still in development. 

 

2.1.2 Concept of Operations (Con Ops) 

According to Neudorff et al. (2006), the concept of operations is a formal document that 

provides a user-oriented view of ICM, its approaches and strategies, and the associated 

operations (25).  The concept of operations answers the following questions: 

 

 What: the known elements and the high-level capabilities of the system. 

 

 Where: the geographical and physical extents of the system. 

 

 When: the time-sequence of activities that will be performed. 

 

 How: resources needed to design, build, operate, and maintain the system. 

 

 Who: the stakeholders involved with the system and their respective responsibilities. 

 

 Why: justification for the system, identifying what the corridor currently lacks, and what 

the system will provide. 

 

The Con Ops does not delve into the technological requirements of the ICM system, but 

addresses the operational scenarios and objectives, information needs, and overall functionality.  

It must also address the institutional environment in which ICM must be deployed, operated, and 

maintained.  Some of the benefits of Con Ops include: 

 

 Providing a means for engaging ICM stakeholders in order to solicit their views on 

existing problems and possible solutions. 

 

 Providing a means of describing stakeholders’ operational needs for ICM without getting 

into details. 

 

 Identifying institutional, technical, and operational environment in which ICM will 

function. 

 

 Formulating definitions and descriptions for ICM and its associated operations. 



11 
 

 

The development of Con Ops is divided into the following tasks: 

 

Identification of ICM Corridor Boundaries and Travel Characteristics 

The boundaries of the proposed corridor must be clearly defined.  Corridor boundary definition 

include its length, constituent individual transportation networks (such as freeways, arterials, 

railway lines, frontage roads, bus transit systems, toll roads, park-and-ride lots, etc.), any natural 

features such as rivers within a specified proximity, the geographical orientation (north-south or 

east-west), the adjoining cities and suburbs, and any other feature or infrastructure whose 

proximity will affect the corridor’s operation. 

The travel characteristics of individual transportation networks within the corridor and the areas 

they serve need to be identified as well.  These include capacities of freeways and arterials, the 

kind of service they provide (commuter, local or regional traffic), economic activities that might 

influence travel patterns, etc. 

 

 

Identification of Corridor Stakeholders and Users 

By default, the operating agencies of all the individual transportation networks that constitute the 

corridor are stakeholders. These include State DOTs, City department of public 

works/transportation, railway agencies, transit agencies, etc.  Another category of stakeholders 

provide support service and law enforcement.  These stakeholders include City and State police, 

and Fire departments (ambulance and hazardous materials services).  Administrative and federal 

agencies such as MPOs, the Department of Homeland Security (DHS), the Federal Emergency 

Management Agency (FEMA), Virginia Department of Emergency Management (VDEM), the 

Virginia Department of Environmental Quality (VDEQ), the Federal Transit Agency (FTA), and 

the Federal Highway Administration (FHWA) are also part of the corridor stakeholders. 

 

Additionally, institutions and businesses whose activities will be impacted by the corridor’s 

operations will have to be involved in the development of the Con Ops.  Examples of such 

institutions and businesses are courier fleets (U.S. Postal Service, Federal Express, etc.), 

information service providers, and visitors bureau (representing tourists that use the corridor). 

 

 

Identification of Needs and the Potential for ICM 

The inefficiencies and bottlenecks affecting transportation operations within the corridor have to 

be outlined, and the potential for ICM to provide the necessary remedies must be demonstrated.  

Typical issues that undermine efficient transportation systems include congestion during peak 

periods, bus schedules that are not adhered to, underutilization of existing capacity, lack of 

coordination and information-sharing among various operating agencies, sparse and disintegrated 

real-time traveler information, etc.  Hence, there is the need for real-time information-sharing 

(data, video) between all agencies, more of a “corridor-wide” and multi-modal view of  ITS 

operations, improved operational coordination of networks in the corridor, increased transit 

usage, coordinated and efficient responses to incidents among all stakeholders, and improved 

dissemination of real-time traveler information across all networks from a single source.  The 
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needs listed are not exhaustive and must reflect the existing conditions of the corridor.  ICM has 

the potential to address all these needs, since it focuses on the operational, institutional, and 

technical coordination of multiple transportation networks and cross-network connections within 

a corridor. 

 

 

ICM Vision, Goals, and Objectives 

A vision statement outlining the goals and objectives of ICM and the benefits corridor users 

stand to gain after its implementation must be developed by stakeholders.  Using the vision 

statement as a starting point and taking into consideration the current operating conditions of the 

corridor, stakeholders will develop specific goals and objectives of the ICM project.  The ICM 

goals and objectives generally revolve around the following: 

 

 Corridor perspective:  Corridor goals and objectives take precedence over that of 

individual transportation facilities. 

 

 Corridor mobility and reliability: Improving travel time predictability and reducing travel 

times by enabling multi-modal travel and the utilization of spare capacity. 

 

 Corridor traveler information: Providing accurate, reliable, and timely travel time 

information regarding the entire corridor to enhance traveler decision-making.   

 

 Corridor event and incident management: Providing a corridor-wide and integrated 

approach to event and incident management, so as to minimize traffic disruptions and the 

impacts of such incidents. 

 

 

ICM Operational Approaches and Strategies 

After setting the goals and objectives of ICM, stakeholders must identify means of achieving 

those targets by enumerating specific strategies that can be used. Examples of ICM strategies and 

the approaches adopted to implement them are shown in Table 2.1 below. 
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Approach Idea Strategy(ies) 

Information sharing/Distribution 1.  Sharing of real-time  

information among 

stakeholders 

2.  Formation of a corridor-

based advanced traveler 

information system that can 

be accessed by travelers and 

value-added entities 

1.  Pre-trip websites, 511 

2.  En-route Dynamic 

Message Signs (DMS), 

transit public 

announcement systems 

Optimizing operations at network 

junctions and interfaces 

1.  Improving cross-network 

operations 

2.  Encouraging multi-modal 

travel 

3.  Improving communications 

and protocols among 

agencies 

1.  Transit signal priority 

2.  Transit hub connection 

protection (e.g.,  

holding buses at rail 

terminals) 

3.  Coordinated operation 

between ramp meters 

and arterial signals 

 

Table 2.1: Examples of ICM strategies and approaches 

 

ICM Concept Operational Description 

This explains how ICM will function operationally after its implementation.  To ensure effective 

ICM operation, a central corridor decision-making body referred to as the Corridor Operating 

Panel (COP) must be established.  This body will be composed of delegates from each of the 

stakeholders of the corridor.  Second, a control center that will manage the daily operation of 

ICM must be put in place.  This could be a physically centralized (a dedicated building facility) 

or virtual control center.   

Any of the participating corridor agencies with available space in their building facilities can 

house the control center, or else a new facility should be acquired.  However, as a result of high 

costs associated with the acquisition of new building facilities or lack of available space, a virtual 

ICM control center would be a cost-effective alternative.   

 

Regardless of the type of ICM control center, there must be a well-defined communication 

platform based on which real-time data exchange among participating agencies can be carried 

out.  In the event that a participating agency provides space to house the ICM control center, that 
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agency can be the lead agency for the daily operation of ICM.    Functions of the control center 

would include:  

 

 Investigate and prepare response plans for various scenarios that are likely to occur in the 

corridor. 

 

  Identify performance measures based on which the effectiveness of ICM strategies can 

be evaluated. 

 

 Develop and deploy a decision support system for rapid response to changing corridor 

traffic conditions. 

 

 Monitor corridor travel conditions, implement response plans, and inform participating 

corridor agencies on prevailing traffic conditions and the impacts of implemented 

response plans. 

 

The ICM control center would be run by a chief corridor operating officer to be appointed by the 

COP and supported by either existing staff within respective participating agencies or dedicated 

staff.  Finally, an effective communication channel between corridor traffic managers and 

travelers as well as among participating ICM agencies is very important to successful ICM 

operation.  Travelers must be kept informed in real-time about prevailing traffic conditions 

through 511, DMS, websites, radio stations, mobile applications, etc.  A real-time 

communication protocol and standards for information-sharing among agencies and critical 

support staff must also be adopted. 

 

 

Required Assets and ICM Implementation Issues 

This concerns the identification of ITS asset gaps and potential problems that may affect ICM 

implementation.  The potential problems are grouped into three categories: 

 

1. Technological issues: e.g., Adoption and implementation of ITS standards for the center-

to-center (C2C) connections, integration of these standards, bandwidth requirements for 

C2C communications, etc. 

 

2. Operational issues: Procedure for the shared use of resources/ shared control of ITS 

assets, policies for implementing demand/capacity management strategies, potential 

safety concerns for ICM strategies, etc. 

3. Institutional issues: Establishment of a more formal institutional structure to bridge the 

differences between the various operating agencies, establishment of protocols among 

operating agencies for real-time data-sharing, decision-making and implementation, 

recruitment of dedicated staff for ICM operations, etc. 
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ICM Concept Institutional Framework 

This relates to the institutional framework based on which ICM will be implemented, operated, 

managed, and maintained.  This framework establishes the leadership of the corridor decision 

making body (i.e., COP), project initiation and selection, corridor operating policies and 

procedures, budget development, and overall administration of ICM within a corridor. 

An important aspect of the institutional framework is the roles and responsibilities of 

participating agencies in the daily operation of ICM.  This must be clearly defined in order to 

maximize the potential benefits of ICM.  While all participating agencies in a corridor will be 

collaborating on the implementation of all of the proposed ICM strategies, a lead agency will be 

assigned for the implementation of a particular strategy.  The lead agency will be responsible for 

the daily operation of the strategy it is in charge of and will coordinate with other agencies that 

are involved in the operation of such strategy.  When issues occur, the lead agency will be 

responsible for reporting the issues to the ICM control center and will assist the center to resolve 

the issues. 

 

 

System Requirements 

This is the next step in developing an ICM after producing the Con Ops document.  The system 

requirements describe what the system is to do (functional requirements), how well it must 

perform (performance requirements), and under what condition (functional or non-functional). 

Once the system is described in the Con Ops, and these requirements specifications are deployed 

and integrated among agencies, the new ICM will become fully operational. The following are 

the key aspects of the system requirement stage in the development of ICM (27). 

 

 

Functional Requirements 

Functional requirements refer to how the ICM is supposed to function once it becomes 

operational, especially how it functions to improve the operating conditions of the corridor.  It 

includes the following: 

 

 Identification of ICM Subsystems & ICM Requirements.  ICM is a system of systems 

functioning together as a unit.  It is therefore important to identify the core 

subsystems that are critical to its operation.  According to the high-level system 

requirements developed for the U.S.-75 ICM project in Dallas, Texas,
 
the core 

subsystems for the project were an ICM database subsystem, an evaluation model 

subsystem, a decision support subsystem, and a web subsystem.  The ICM database 

subsystem will store data within the ICM system; the types of data to be stored 

include data coming from a data warehouse (historic data), current network data 

provided by the ICM agencies in the corridor, and output data from the decision 

support subsystem including response plans and predictive conditions of the network.  

The evaluation model will be used to evaluate the overall performance of the corridor.  

The decision support subsystem will be used as a tool for the coordination of 

responses to events, to evaluate current network conditions, and predict network 

conditions in order to proactively manage the corridor.  Finally, the web subsystem 

will be a tool to enable the viewing, reporting, and sending of ICM data.  The web 
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subsystem will provide an “ICM web interface” for approved users to interact with 

the ICM data and provide a data feed of current network conditions to corridor ATIS. 

 

 System Requirements for Individual Systems.  The individual networks that comprise 

the corridor are operated as systems by their respective agencies.  For them to 

function as a unit under the ICM there will be the need for some enhancements to 

their infrastructure and technology in order to deliver the desired benefits.  This 

involves analyzing the current operations and conditions of the individual network 

assets and proposing the needed improvements required to upgrade them to the 

standard of an ICM component.  The I-394 ICM project in Minneapolis, Minnesota, 

termed this as “existing systems and field devices” and “planned systems and field 

devices” in its high-level system requirement document (28). Additionally, the daily 

roles of each individual network in the ICM must be specified. 

 

 User Characteristics and Needs.  The characteristics of the users of the ICM are 

critical to the design and development of a system that supports their needs.  The 

main users of the ICM include agency operators, administrators, third parties 

(additional service providers), and the travelling public.  The needs of these users are 

embodied in the vision, goals, and objectives developed by stakeholders during the 

Con Ops stage.  Hence, the ICM must function in a way to address these needs as 

thoroughly as possible. 

 

 Major System Constraints.  This is meant to bring the challenges faced by the 

corridor into the development of the functional system requirements.  It exposes 

prevailing operational, technical, and institutional obstacles that might hinder the 

smooth implementation and operation of an ICM.  Once these difficulties are known, 

it is expected that stakeholders will devise strategies to fix them, and those strategies 

will be part of the system requirements. 

 

 Operational Scenarios.  Hypothetical operational scenarios of the corridor and how 

ICM will respond to these scenarios are required in the systems requirement stage.  

This involves identifying problematic locations within the corridor and their 

respective traffic conditions, as well as defining how the ICM is supposed to function.  

This stage is based on the experience of the stakeholders with regard to operating 

conditions within the corridor. 

 

 Hardware Requirements.  Hardware components of the individual networks as well as 

the ICM must function at certain standards.  These requirements are intended to 

ensure that there are no frequent breakdowns in the operations of the ICM.  An 

example of a hardware requirement could be the accommodation capacity of the 

message transmission hardware of the ICM traffic operations. 

 

 Interface Requirements.  ICM involves the exchange of data among subsystems and 

other systems by following protocols and standards established for communication.  

Usually, the interface of exchange follows national ITS standards; however, when 
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necessary, additional requirements can be placed on the system depending on the 

uniqueness of the ICM. 

 

 Documentation and Training Requirements.  This was found only in the system 

requirement document for the I-394 ICM project in Minneapolis, Minnesota.  It is 

likely that separate developers might develop different portions of the overall ICM, 

and, during operations, each agency will operate their system as part of the overall 

ICM.  Therefore, there must be documentation of how the individual systems operate 

and how to train staff who will manage the systems. 

 

 

Performance Requirements 

These are target thresholds set by stakeholders to ensure that ICM is achieving the desired 

results.  These thresholds are embodiments of the vision, goals, and objectives for the corridor.  

They are usually long-term targets that provide authorities the opportunity to know whether the 

performance of ICM is moving in the expected direction or not.  For example, stakeholders of 

the U.S.-75 ICM project in Dallas, Texas have targeted increasing corridor throughput 

(persons/trips per hour) by 2% (27).  It must be noted that the targets must be realistic so as to 

avoid over-expectations. 

 

 

Analysis, Modeling, and Simulation (AMS) 

The purpose of this step is to design a simulation model that can replicate existing operating 

conditions and quantify the benefits of proposed ICM strategies.  This will help in selecting the 

best combination of strategies to generate the most benefits.  A 2008 report by Alexiadis Vassili 

entitled Integrated Corridor Management Analysis, Modeling and Simulation (AMS) 

Methodology laid out some general principles to be followed (20). 

 

The methodology centers on the following core values: integrating existing modeling and 

analysis tools, recognizing limitations in the available tools, development of AMS framework 

that is vendor-neutral, and development of consistent analytical approaches and performance 

measures.  Essential details of the AMS methodology are summarized here. 

 

 

Performance Measures and Analysis Approach 

The AMS methodology includes the capability to convert all impact/performance measures to 

non-mode specific measures such as person trips.  These mode-independent performance 

measures will be produced by an interface tool that can translate AMS model components 

outputs into non-mode specific performance measure output.   

 

Since ICM is multimodal, the operational impacts need to be measured beyond the traditional 

network-based measures.  This will help to evaluate and compare operations among the 

alternative paths and properly portray the corridor-wide performance.  The performance 

measures must provide an understanding of existing traffic conditions and demonstrate the 
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ability of ICM strategies to improve the corridor’s operating conditions.  When necessary, 

performance measures should be reported by mode (transit, single-occupancy vehicle, etc.), 

facility type (freeway, arterial, etc.), jurisdiction (e.g., County), and peak-periods or by hour of 

day.  The proposed performance measures should focus on: 

 

 Mobility: how well the corridor moves people and freight, e.g., delay, travel time. 

 

 Reliability: predictability of travel time, e.g., buffer index. 

 

 Safety: safety characteristics of the corridor, e.g., crash rate. 

 

 Environment: emissions and fuel consumption, e.g., CO2 emissions. 

 

 

As part of the analysis approach, adequate data for modeling recurring and non-recurring 

congestion is needed to establish baseline conditions.  Geometric data such as number of lanes 

on the freeways and parallel arterials, lane and shoulder widths, configurations of key 

intersections on parallel arterials, and other vital information about the physical structure of the 

roadway are also required. 

 

 

Modeling and Limitations 

The modeling and simulation step is a critical component of the ICM, since it is the only 

available means to justify the investments in ICM prior to implementation.  It has been observed 

that each available simulation tool type has different advantages and limitations, and is better 

than other tool types in some analysis capabilities. There is no single tool type that can 

successfully address the analysis capabilities required by ICM.  An integrated approach can 

support corridor management planning, design, and operations by combining the capabilities of 

existing tools.  The existing tools are made up of three different types: 

 

1. Macroscopic models: Models traffic from a global perspective and covers large areas 

compared to mesoscopic and microscopic models.  Effective in estimating mode-shift, 

e.g., TransCAD. 

 

2. Mesoscopic models: Models individual vehicles but their movement is based on average 

link speed.  They are able to model larger areas compared to microscopic models, and are 

effective in evaluating traveler information systems (pre-trip and en-route), e.g., 

Dynasmart-P. 

 

3. Microscopic models: Model and simulate individual vehicles based on theories of car-

following and lane-changing.  Microscopic models capture detailed driver-driver and 

driver-road interactions and cover less area compared to macroscopic and mesoscopic 

models.  They are effective in evaluating operational control strategies (like ramp 

metering), e.g., VISSIM. 
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All these models vary in resolution (detail of analysis) and the geographical scope of application.  

Less detailed tool types (macroscopic models) are tractable for large networks, while more 

detailed tool types (microscopic and mesoscopic models) are restricted to smaller networks.  

Depending on corridor size and the types of analyses required, all tool types are potentially 

valuable for ICM AMS.  Consequently, a proposed AMS framework that integrates all three 

types is recommended.  Combining the strengths of all the three different models will help to 

better quantify the benefits of ICM. 

 

The proposed AMS methodology includes macroscopic trip table manipulation for the 

determination of overall trip patterns, mesoscopic analysis of the impact of driver behavior in 

reaction to ICM strategies (both within and between modes), and microscopic analysis of the 

impact of traffic control strategies at roadway junctions (such as arterial intersections or freeway 

interchanges).   

 

The proposed methodology also includes the development of a simple pivot-point mode shift 

model and a transit travel time estimation module, the development of interfaces between 

different tools, and the development of a performance measurement/benefit-cost module.  In the 

AMS framework, macroscopic, mesoscopic, and microscopic traffic analysis tools will interface 

with each other, passing trip tables and travel times back and forth until convergence is achieved 

between consecutive iterations that produce travel times and number of trips that differ less from 

one iteration to the next.   

 

Once convergence is achieved, performance measures will be calculated and benefits (such as 

travel time savings) will be evaluated and compared to deployment costs to produce benefit-cost 

ratios associated with each scenario/ alternative.  With the help of benefit-cost information, 

alternatives can be ranked and a roadmap can be produced outlining the implementation timeline 

for ICM strategies.  In the ICM analysis, it is important to differentiate between short-term and 

long-term mode shifts in order to determine if ICM has the potential to impact the choices of 

travelers in the long-term. 

 

 

2.2 HOT Lane Driver Behavior 

The review of literature on HOT lane driver behavior was grouped into four main categories 

based on the type of tolling system (dynamic or non-dynamic pricing) used and the type of 

research approach (stated preference or revealed preference) adopted. Details of each category 

are provided below. 

 

2.2.1 HOT Lane Driver Behavior with Non-Dynamic Pricing: Stated Preference  

Justice Appiah conducted a stated preference survey to determine the factors driving HOT lane 

utilization on the Katy Freeway (I-10) and Northwest Freeway (US 290), both in Houston, 

Texas. Both facilities have fixed toll rates which did not vary with traffic conditions on the HOT 

lanes. Based on the response of survey participants, the author concluded that the $2.00 toll 

charged on the HOT lanes was not a major deterrent to HOT lane usage. The study also found 

that the following factors affect HOT lane usage: driver’s perception of travel time savings 
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offered by HOT lanes, frequency of travel in the freeway corridor, trip purpose, age and level of 

education, occupation and hourly wage rate (29). 

Patil et al. (2011) used stated preference data from the Katy Freeway in Houston, Texas to 

determine HOT lane utilization factors as well driver willingness to pay for HOT lane use. It was 

shown that as travelers household income increases, their likelihood of using the HOT lanes 

increases. Additionally, drivers who are late for an appointment or have an important 

appointment tend to have the highest willingness to pay for HOT lane use (30). Another study on 

the same facility by Devarasetty et al. (2012) examined driver willingness to pay for travel time 

savings and reduced travel variability. The study compared user’s stated preference survey 

responses to real world data on the facility’s usage. The stated preference results yielded a 

willingness to pay value of $22/hour for travel time savings and $28/hour for reduced variability. 

Analysis of the real world data found an average willingness to pay value of $51/hour of travel 

time savings on the lane — surprisingly close to the combined value for travel time savings and 

reduced variability (31).  

Sullivan (2000) conducted a stated preference survey on SR 91 express lanes in Orange County, 

California. The pricing system used on this facility is not completely static; it varies based on the 

time of day in hourly intervals and was therefore not considered as a true dynamically-priced 

facility. The author found that a traveler’s primary reason for using the 91 express lanes was for 

travel time savings. However, one third of the respondents cited reasons other than simply travel 

time savings. Easier driving and safety ranked highly among the other reasons noted by the 

drivers who paid to use the lane during off-peak periods. About 58% of express lane users felt 

the lanes were safer than the free lanes. A very small percentage of the respondents cited reasons 

like enjoying passing others, feeling prestige, or a low risk of a speeding ticket. Less congestion, 

less aggressive driving, no large vehicles, better enforcement and better emergency response 

were among the reasons why respondents think the express lanes were safer than the free 

General Purpose (GP) lanes (32). 

 

2.2.2 HOT Lane Driver Behavior with Dynamic Pricing– Stated Preference  

A panel-based stated preference survey conducted by Supernak et al (2002) on the I-15 Fast Trak 

express lanes in San Diego found that Fast Trak customers mainly used the facility for travel 

time savings. The need to be on time at their destination was a matter of concern to a significant 

number of commuters: 21% of respondents said that they could not be late without consequences 

and an additional 10% said that they had only a 10-min window or less for being on time. The 

study also found that Fast Trak customers were from higher income households, more highly 

educated (bachelor’s degree or higher), mostly between 35 to 54 years, more likely to be 

homeowners and more likely to be middle-aged women (33). 

An attitudinal panel survey was designed by Zmud et al. (2007) to measure the attitudes, 

perceptions and travel behaviors of I-394 MnPASS lane users. Analysis of the response from 

participants showed a significant increase in the willingness to pay a toll for travelers who earned 

more than $100,000 per year. Younger travelers had a higher value of travel time savings than 

older travelers. The value of travel time also varied depending on the time of the day a trip is 

made; morning commuters were more willing to pay for time savings compared to afternoon 

commuters (34). 
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2.2.3 HOT Lane Driver Behavior with Dynamic Pricing—Revealed Preference 

Janson and Levinson (2013) conducted three field experiments on the I-394 and I-35W MnPASS 

lanes between October 2012 and January 2013 to measure drivers’ response to tolls. During 

these experiments, drivers were not made aware of any changes in the pricing plan. In the field 

experiments, toll prices were deliberately altered without regards to traffic conditions on the 

HOT lanes. Therefore there were times during the experiment when toll prices were raised above 

the normal prices although traffic conditions on both the HOT and GP lanes were near free-flow. 

In addition, two years of toll and traffic data were analyzed to measure drivers’ responses to toll 

prices. Results of both experimental and historic data analysis revealed that, driver elasticity to 

price was positive with magnitude less than 1.0. Also, drivers consistently paid between $60-

$120 per hour for travel time savings, much larger than the average value of time ($15.6 per 

hour) often used by the Minnesota Department of Transportation (MnDOT) (14).  

Burris et al (2012) also used historical tolling data from 2008 for the I-394 MnPASS lanes to 

estimate drivers’ willingness to pay for travel time savings. The research found that users of the 

I-394 MnPASS lanes paid an average of $73/hour in the morning and $116/hour in the afternoon 

commutes. Based on how large these values are, the authors concluded that it is likely travelers 

are paying for more than just travel time savings; possibly travel time reliability. These means 

that these lanes likely have an added value to travelers beyond travel time savings (12).  

Driver value of travel time savings on I-85 express lanes was studied by Sheikh et al (2014) 

using historical traffic and tolling data between September 2012 and May, 2013. The results 

indicate median values of travel time savings of $36/hour in the southbound morning peak and 

$26/hour in the northbound afternoon peak. The authors also mentioned that, the value HOT 

users attributed to their time saved exceeded the time-value using the average wage rate in the 

region (13). Another study on the same facility by Wood et al (2014) using 8 months of historic 

traffic and tolling data found similar results. The analysis found the median value of travel time 

savings to be $33.17/hour for southbound morning peak and $19.45/hour across all time periods 

(15). 

Burris et al (2012) used historic data from I-15 Fast Trak lanes between March 2009 and June 

2010 to determine drivers’ willingness to pay for travel time savings. The median value of travel 

time savings obtained were $49/hour in the morning and $54/hour in the afternoon. The study 

also found considerable variation in toll rates during the morning and afternoon peak hours with 

tolls ranging from $0.5 to $8.0. Conversely off-peak times showed little to no variations (12). 

Finally, Perk et al (2011) used five days of historic traffic and toll data from I-95 express lanes to 

develop a discrete choice model based on which drivers’ value of travel time savings were 

estimated. The five days of historical data were based on responses to an online survey which 

asked users of when they traveled on the facility, how much they paid, and their approximate 

speed. The responses were compared with actual data to validate the information provided by 

survey respondents. The survey also asked questions related to demographics and attitude of 

express lane users. Results of the analysis indicated that drivers’ value of travel time savings 

ranged from $2.27/hour $79.32/hour, with an average of $32.00/hour. The authors also 

concluded that the value of travel time savings was approximately 49% of drivers’ average 

hourly wage based on annual household income (35). 
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Song and Smith used traffic sensor and count data from March 2008 to study the factors 

contributing to HOT lane utilization rates on the I-394 MnPASS HOT lanes. The authors 

developed a decision model based on which SOV drivers decide to use/not use the HOT lanes. 

The elasticity analysis revealed that HOT lane drivers’ response to changes in toll rate was 

negligible, implying that there might be other factors which contribute strongly to the decision to 

use the HOT lanes (36).  

 

2.2.4 HOT Lane Driver Behavior with Dynamic Pricing—Revealed/Stated Preference 

The San Diego I-15 Fast Trak lanes were studied by Brownstone, et al. (2003) over a two month 

period, in October and November 1998. Travel time data was compared with survey data asking 

respondents on what days and times they traveled, and whether they used HOT lanes. The 

authors discovered that higher toll rates were signaling drivers, indicating increased congestion 

downstream. Higher tolls only served to reduce HOT lane usage when the travel time variability 

(measured as the 90th percentile travel time less the 50th percentile travel time) for that time 

period is less than 7.21 minutes. Also when drivers encountered a toll rate higher than the 

average for that time of day, they tended to use the HOT lanes in greater numbers. Similarly, if 

they encountered a toll rate lower than expected, they used the HOT lanes in lower numbers. The 

median cost drivers were willing to pay for travel time savings on this facility was $30 per hour 

(21).  

 

2.2.5 HOT Lane Driver Behavior—Other Studies 

Brownstone and Small (2005) studied the value of reliability of HOT lane users using both stated 

and revealed preference data from SR 91 express lanes (variably-priced) and I-15 Fast Trak lanes 

(dynamically-priced). To better capture the significant expense of being late for work, they 

focused on the difference between the 90th and 50th percentile of morning travel time to capture 

the upper tail of the travel time distribution. Their results suggested that that travel time savings 

was worth about two-thirds of overall service quality of HOT lanes, while reliability made up 

another third (37). 

In an attempt to better understand whether stated preference survey estimates underestimate 

value of travel time savings, Brownstone and Small found that survey participants often 

overestimated the time savings they would get using express lanes by a value of two. The 

misperception of travel time savings could be a key factor in the difference between RP and SP 

values of time. Brownstone and Small theorized that drivers that experience ten minutes of 

congestion may perceive an experience of twenty minutes, and may therefore be willing to pay a 

higher toll to avoid congestion on the GP lanes (37). 

 

2.3 HOT Lane Demand Prediction 

Demand for HOT lane use is typically predicted only at the planning stages of HOT lane 

implementation. The prediction includes both SOV and HOV demand. First, it allows the project 

sponsor to determine the combination of pricing and occupancy requirements that maximizes 
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transportation benefits for all motorists traveling in the priced managed lane corridor. Secondly, 

it allows the project sponsor to forecast revenue streams and then evaluate financing approaches 

(16). A search in the literature for research works on short-term HOT lane demand prediction 

proved futile. The next section provides a brief overview of how HOT lane demand is predicted 

at the planning stages of its implementation.  

 

2.3.1 HOT Lane Demand Prediction at Planning Stage 

Predicting demand on the priced managed lane corridor is accomplished by using a travel 

demand forecasting model. Travel demand models are mathematical tools that estimate roadway 

and transit travel based on projected population levels, land use trends, and expected roadway 

and transit characteristics such as cost and travel time. Forecasting travel demand for priced 

managed lanes is challenging because traditional travel models use simplified representations of 

pricing and have limited capabilities for predicting how travelers would change mode, route, 

departure time, destination, or trip frequency in response to pricing. In addition, forecasting 

demand for priced managed lanes is very sensitive to future conditions, such as land use, 

population growth, characteristics of alternative road and transit modes, and even macro-

economic cycles. The complexity of the forecast is compounded by the sensitivity of demand for 

priced managed lanes to travel conditions in the general-purpose lane and to the extent to which 

multiple-occupant vehicle trips are made in the corridor. How well the model predicts demand 

for the priced managed lane and the resulting revenues depends on the structure of the model, 

how well it is calibrated and validated, and how it is applied to quantify the uncertainty inherent 

in any forecast of future economic activity. In the case of priced managed lanes, three model 

structural characteristics are most important: representation of relevant travel choice decisions 

(route choice, mode choice and travel time choice), representation of travel costs (value of travel 

time, cost of fuel, etc.), and representation of travelers’ willingness to pay. 

 

2.4 Summary 

In this chapter, an extensive review of important research in ICM, HOT lane driver behavior, and 

prediction of HOT lane demand was conducted. An overview of ICM implementation as well as 

identification of most beneficial strategies was discussed. The behavior of HOT lane users in 

terms of their response to pricing (tolls) was also reviewed and gaps in the research noted. 

Finally, HOT lane demand, which is usually predicted only at the initial stages of HOT 

implementation, was reviewed, and the lack of short-term predictions for operational purposes 

noted. The next chapter presents a novel ICM evaluation methodology based on which the most 

beneficial ICM strategies can be identified. 
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Chapter 3 

Development of ICM Evaluation Methodology  

The concept of ICM revolves around the integration of multi-modal strategies to help mitigate 

congestion and increase person throughput. Prior to its implementation, transportation agencies 

are often faced with the dilemma of selecting from the plethora of available strategies, the best 

combination to generate the most operational benefits. Given the complexity of ICM and the 

required interrelationship of systems, an accurate evaluation of the effectiveness of ICM requires 

a detailed methodology that can help to identify those strategies that will be beneficial to the 

needs of a transportation corridor. Although an evaluation methodology has been developed for 

ICM pioneer sites, it is a high level conceptual framework with little guidance on its 

implementation. Therefore, transportation agencies who intend to adopt ICM are faced with the 

challenge of coming up with their own evaluation methodology. This research developed an 

evaluation methodology based on which transportation agencies can identify the most beneficial 

ICM strategies. The developed methodology was then used to evaluate the feasibility of ICM 

implementation on a test corridor in northern Virginia. The application of the proposed 

methodology to a real-world transportation corridor provided useful lessons on how ICM can be 

implemented to achieve the intended purpose of increasing person throughput. 

 

3.1 Description of Proposed ICM Evaluation Methodology 

The proposed approach is a five-step evaluation methodology that provides adequate support to 

evaluate and quantify the benefits of ICM strategies.  The methodology includes the modeling of 

base conditions, the application of candidate ICM strategies to base conditions, sensitivity 

analysis of ICM strategies, a test of statistical significance of the effects of candidate strategies, 

and recommendation of combination of strategies to implement.  The chart in Figure 3.1 below 

describes the proposed methodology. 
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                              Figure 3.1 ICM evaluation methodology 

                                

ICM operates within a multidimensional framework with several candidate strategies and 

varying levels of application.  It is therefore difficult to determine a good combination of 

applicable strategies based solely on expert judgment or random selection.  There must be an 

unambiguous causal relationship between traffic improvement indicators (e.g. person 

throughput) and a set of ICM strategies to justify their selection; such inferences can only be 

drawn from an experimental design.  Experimental designs provide an efficient procedure for 

planning experiments so that data obtained can be analyzed to give valid and objective 

conclusions (38).  The evaluation methodology described implicitly entails the experimental 

design process. In order to better understand the evaluation methodology, it will be explained 

through an illustrative example: 

 

Consider a corridor that is made up of a 10-mile freeway and an adjacent arterial across the 

entire length of the freeway.  The freeway has six single-lane on-ramps that are not metered, but 

the signals on the arterial have optimization capabilities. The corridor experiences excessive 

congestion during peak periods, partially due to a significant percentage of SOVs, and a small 

number of operating buses (two buses every hour). Stakeholders in the corridor have agreed to 

implement a set of ICM strategies and these are: ramp metering, Variable Speed Limit (VSL) 

system, provision of parking facilities, increasing transit capacity by adding more buses, and 

subsidizing transit and parking fees.   

 

How will the evaluation methodology described in Figure 3.1 apply to this ICM initiative? Each 

of the five steps of the proposed methodology is hereby explained using the above example. 
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Modeling of Base Conditions 

Prior to evaluating any ICM strategy, the base operating conditions of the transportation corridor 

must be established.  The base case should include all modes and facility types in the corridor.  

In this example, these include transit, freeways, and arterials.  The use of the micro-simulation 

software VISSIM (and other such as Dynasmart) enables the execution of this task.  Performance 

metrics, which are indicative of corridor operating conditions, are determined from this step.  

These include average vehicle flow, person throughput, average travel times, average delays, 

average emissions of CO2, NOx, etc.    

 

 

Application of ICM Strategies 

After determining the prevailing operating conditions of the corridor as captured by the 

performance metrics, the ICM strategies agreed on by the corridor’s stakeholders are 

implemented (modeled).  Each strategy in this example is modeled by the characteristic 

described below: 

 

1. Ramp metering (X1) – this strategy regulates the flow of vehicles onto the freeway in 

order to improve freeway traffic flow and safety during merging conditions.  The 

metering rate, which is between 240 and 900 vehicles/hour for a single-lane ramp meter 

(4) is the main attribute being modeled.  

 

2. Variable speed limit (X2) – the VSL strategy seeks to promote dense traffic flow by 

varying speed limits across the length of the freeway to avoid traffic flow breakdown.  

The percentage of driver compliance with the posted speed limits will be varied to 

determine its impact. Therefore, driver compliance is the attribute being modeled. 

 

3. Increasing transit capacity (X3) – the corridor stakeholders want to increase transit 

capacity by increasing the number of buses from two to six buses every hour.  This will 

decrease the headways from 30 minutes to 10 minutes per bus stop.  The capacity of the 

transit system is the variable being modeled.   

 

4. Provision of parking facilities (X4).  The main attribute of interest is the opportunity 

provided to drivers who decide to park and use the bus, and that opportunity is quantified 

in terms of parking capacity. 

 

5. Subsidized transit and parking fees (X5).  The cost of parking and bus fares may deter 

potential transit users.  Corridor stakeholders have decided to subsidize these costs to 

make transit use attractive.  The attribute being modeled is how travelers respond to these 

financial incentives, in terms of mode shift.   

 

It can be inferred from strategies 3, 4, and 5 (transit and parking capacity increase, financial 

incentives through subsidy) that traveler behavior is expected to be influenced in order to benefit 

the transit mode in real-time.  However, the magnitude of traveler response is unknown.  

Therefore, assumptions of percentage shift (range of traveler responses) in mode from SOVs to 

buses (based on existing literature) will be made in order to continue with the modeling process.  
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From this, it will be possible to estimate the limit of effectiveness of influencing traveler 

behavior toward mode shifts. 

 

 

Sensitivity Analysis of Strategies 

It is worth noting that the individual effects of the five strategies on corridor performance are of 

less significance within the context of ICM.  The underlying principle of interest is how all five 

strategies combine to improve the operating performance of the corridor.  Additionally, there are 

some strategies whose effects diminish once they are combined with other strategies; such 

strategies are not worth investing in and must be identified.  Therefore, it is necessary to identify 

among the five strategies those that are critical to the improvement of corridor operating 

performance.  Also, the extent to which unknown traveler behavior (response to subsidized 

transit and parking fees, extra transit capacity) can improve corridor performance is an important 

piece of needed information.  Estimating the combined effect of the five strategies, identifying 

those strategies that are critical to improving corridor performance and testing for the limits of 

effectiveness of unknown traveler behavior can be achieved through sensitivity analysis.  The 

next logical question is how to conduct the sensitivity analysis? 

 

As described earlier, ICM is composed of several strategies; therefore, accurate quantification of 

its impact requires intensive computation and large amounts of data.  For example, in order to 

estimate the impact of the five ICM strategies (assuming each strategy has a range of 6 values), 

6
5
 (7,776) different combinations (trials) of these strategies will have to be tested.  Additionally, 

each of these combinations will have to be run at least 5 times in VISSIM to reduce the effect of 

stochastic variability (39).  An experimental design technique (referred to as the Latin Hypercube 

Sampling [LHS]), which minimizes the amount of data and computational intensity, but enables 

accurate estimation of the sensitivity of corridor performance to ICM strategies can be used.  

This sampling technique helps to achieve the same level of accuracy in sensitivity analysis with 

fewer number of strategy combinations (trials).   

 

The LHS was developed by McKay and Conover in 1979 as an alternative to simple random 

sampling in Monte Carlo Studies (MCS) (40). In MCS, values of parameters are selected at 

random from their assumed probability distributions, and dynamic simulations of the system are 

repeated for all sampled input parameters.  The accuracy of such Monte Carlo simulations 

depends on the number of model runs, making it less suitable for application to complex systems 

with many parameters.   

 

In the LHS approach, the range of each of the five variables (strategies) X1, X2, X3, X4, and X5 is 

divided into N (e.g., 6) intervals in such a way that the probability of the variable falling in any 

of the intervals is 1/6.  Then, one value is selected at random from each interval.  The 6 values 

obtained for the first variable X1 are paired randomly with the 6 values of the second variable X2.  

These pairs are furthermore randomly combined with the sampled values of the third variable, 

and so on, which finally results in 6 combinations of five variables.  This set of five tuples is the 

Latin hypercube sample that is used for successive execution of model runs.  It is convenient to 

think of this sample as forming a (6 X 5) matrix of input where the i
th

 row contains specific 

values of each of the 5 input variables to be used in the i
th

 run of the micro-simulation model 
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(41). Thus, with LHS, a smaller number of trials achieve the same accuracy as a larger number of 

Monte Carlo trials.   

 

As shown in Figure 3.2, each of the cells represents a combination of strategies that could be run 

in a micro-simulation model.  The LHS technique helps select a smaller number of combinations 

(cells with yellow polygons) that will result in the same accuracy level as the maximum possible 

number of combinations.  The LHS technique can be coded in MATLAB and statistical packages 

such as R and SAS. 

                                      

                                      
                                      Figure 3.2 Latin hypercube sampling 

  

Once the required feasible number of strategy combinations has been determined using LHS, 

they are used as inputs to run the micro-simulation model (VISSIM).  The outputs and inputs of 

the micro-simulation runs are used to develop regression and correlation equations (sensitivity 

analysis techniques) based on which:  

 

1. The combined effect of the five ICM strategies on corridor performance is estimated. 

2. The limits of effectiveness of unknown traveler behavior are determined. 

3. The most critical ICM strategies among the proposed five are identified. 

 

Three sensitivity techniques are used (standardized regression coefficient, linear correlation 

coefficient, and semi-partial correlation coefficient) to identify the most beneficial combination 

of ICM strategies.    

 

 

Standardized Regression Coefficient (SRC) 

Multiple linear regression models are often used to determine the relationship between model 

parameters and model output.  The coefficients of regression (bi) of model parameters, which is 

interpreted as the amount of change in model output based on a unit change in a model parameter 

(while all other parameters are held constant) are in different units; preventing any meaningful 

comparison between the significance of model parameters (42).  To make these coefficients 
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comparable, they must be standardized.  Standardization of regression coefficients (bs) can be 

achieved by multiplying ordinary regression coefficients (bi) by the ratio between the standard 

deviation of the respective model parameters (sp) and the standard deviation of model output (so).   

 

Assuming an ordinary linear regression equation is developed from the micro-simulation outputs 

and inputs as shown in equation 3.1: 

 

                                      A= b0 +∑ bi(Xi)                                                                                (3-1) 

Where: 

         A = the micro-simulation output of a performance measure (e.g. person throughput) 

         bo = the regression constant 

         bi = the parameter (ICM strategies) coefficients for I = {1, 2, 3, 4, 5}. 

 

Then, the SRC will be 

                                          

                                       bs =  bi (sp/so)                                                                                   (3-2) 

 

The mathematical form of a standardized regression is as shown in equation 3-3. 

 

                                  A= b1(X1) + b2(X2) + b3(X3) + b4(X4) + b5(X5)                                 (3-3)     

                                              

The standardized coefficients are interpreted as the standard deviation change in the dependent 

variable (corridor performance indicators) when an independent variable (ICM strategy) is 

changed by one standard deviation, holding all other variables constant.  Instead of comparing 

changes by one unit, the comparison is between changes in standard deviation (42).
 

 

Once the coefficients become comparable, a ranking (in terms of absolute coefficient values) of 

all the coefficients of the five ICM strategies is made.  The accuracy level of the SRC as a 

relative sensitivity measure depends on how well the regression fits the parameter data, the level 

of correlation among parameters, and how realistic estimated parameter variance is.   

 

A quality of fit close to 1 and a weak or zero correlation among model parameters make SRC a 

valid measure of sensitivity.  In order to ensure that model parameters are not correlated 

(multicolinearity), the Variance Inflation Factor (VIF) of the standardized regression typically 

should be less than or equal to four or at most less than 10. 
 

 

Linear Correlation Coefficient (LCC) 

The LCC is the most simple and widely used measure that reflects the linear relationship 

between model output (A) and model parameters (Xi).  It can be expressed as the ratio between 

the covariance of model output and parameters (cov (A, Xi)), and the product of the variances of 

model output (var (A)) and parameters (var (Xi)).  This can be written mathematically as 

 

                             LCC = cov (A, Xi)/(var [A]* var [Xi])                                                      (3-4)                                                            
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The LCC is computed for each of the five ICM strategies, based on which a ranking (in terms of 

absolute LCC values) of the importance of these strategies to corridor performance improvement 

is developed.   

 

The LCC is used as a sensitivity measure since it expresses the relative change of a quantity with 

relation to its standard deviation (taking into account the effects of correlation among 

parameters).  If the relationship between Xi and A is almost linear and if the correlation between 

the parameters Xi is weak, then the LCC is a measure to quantify sensitivity and will be 

approximately equal to the SRC.  LCC value ranges between 1 and -1, with the sign indicating 

positive or inverse correlation. 

 

 

Semi-partial Correlation Coefficient (SPC)  

SPC is similar to LCC, but corrects model parameters for the effects of correlation among each 

other.  If the correlation between the corrected parameters is weak, the SPC is approximately 

equal to the LCC and the SRC.  In case of a strong correlation between the corrected parameters, 

this measure can give a misleading impression of parameter sensitivity.  Similarly, ranking the 

importance of the five ICM strategies based on SPC absolute values is developed.  The SPC can 

be expressed mathematically as 

 

                                     SPC = SRC/√VIF                                                                                 (3-5) 

 

At the completion of any parameter sensitivity analysis, a ranking of the input parameters sorted 

by the amount of influence each has on the model output is generated.  The model output of 

interest in this research as far as ICM strategy sensitivity analysis is concerned is corridor person 

throughput; this is because it is not mode-specific and measures the ultimate objective of a 

corridor – to transport people.  The different sensitivity analysis measures (SRC, LCC, and SPC) 

might produce varying rankings; however, the actual position in the ranking (based on the 

different measures) is not as important as is the specification of which strategies consistently 

appear near the top of the list regardless of which measure was used (43). An example of the 

results of model parameter (parameters for the different strategies) rankings using the different 

sensitivity measures is as shown in Table 3.1.  The rankings and coefficients are hypothetical and 

meant for illustration purposes only. 

 

                                             

ICM Strategy SRC Ranking LCC Ranking SPC Ranking 

Ramp Metering (X1) 155 1 0.88 1 0.74 3 

VSL (X2) 148 2 0.65 3 0.91 1 

Transit Capacity (X3) 110 3 0.35 5 0.44 5 

Parking Capacity (X4) 50 4 0.75 2 0.62 4 

Subsidies (X5) 30 5 0.55 4 0.81 2 

Table 3.1 Hypothetical sensitivity rankings 

 

It can be inferred from Table 3.1 that ramp metering (X1) and VSL (X2) consistently appeared 

near the top of the rankings regardless of which sensitivity measure was used.  If the coefficients 
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of these two strategies are statistically significant (as will be shown in the next section), then, it 

implies that they are the most critical among the five ICM strategies intended to be introduced in 

the hypothetical corridor. 

 

 

Test of Statistical Significance of the Effects of Strategies   

In order to ascertain that the coefficients of the ICM strategies as shown in Table 3.1 are not due 

to chance, they must be tested for statistical significance.  Two types of t-statistic are used to test 

for statistical significance at 5% significance level.   

 

Model coefficients obtained from LCC and SPC are tested for statistical significance using a t-

statistic defined mathematically as 

 

                                                    t = r √ (N-2)/ (1-r2)                                                                  (3-6)       

                                                               

where: 

         r = the correlation coefficient 

        N = the sample size 

        N-2 = the degrees of freedom. 

 

For model coefficients generated based on SRC, the t-statistic is computed by the formula 

          t = Regression coefficient (bi)/Standard error of bi                                                 (3-7)      

   

 

                                                

Recommended Combination of Strategies  

After identifying the most critical of the five ICM strategies and testing for statistical 

significance, any of the strategies that were not statistically significant can be dropped so that the 

model can be re-run.  New sets of outputs are obtained based on which sensitivity analysis and 

the tests of statistical significance are conducted again.  This procedure will be repeated until the 

best set of ICM strategies that will improve the corridor operating performance is identified.   

 

 

3.2 Test Corridor for Proposed ICM Evaluation Methodology 

The ICM evaluation methodology described in section 3.1 was applied to a real-world 

transportation corridor to determine the feasibility of ICM implementation as well as identify the 

most beneficial strategies. The description and potential application of ICM in the corridor is 

discussed in the following paragraphs. 

 

The I-95/I-395 corridor is a major north-south corridor located in the Northern region of Virginia 

and connects downtown Washington, D.C. to many of the suburban cities south of Washington, 

D.C.  The corridor begins at the intersection of U.S. 1 and I-95 at Spotsylvania (Mile Marker 

[MM] 126), terminating at the intersection of the 14th Street Bridge and I-395 in Washington, 

D.C. (MM 10).  The corridor is composed of three segments: 
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1. U.S. 1/17 to Route 610 (MM 126-144) 

2. Route 610 to Interstate 495 (MM 144-170) 

3. Interstate 495 to 14th Street (I-395[MM0-10]). 

 

The corridor is composed of freeways (I-95 and I-395); a primary arterial (U.S. 1); commuter rail 

(Virginia Railway Express [VRE]) along the entire length of the corridor (but some segments lie 

far from I-95), Metrorail from Franconia to Washington, D.C.; bus services (e.g., Fairfax 

connector, Potomac and Rappahannock Transportation Commission [PRTC] buses); and park-

and-ride facilities.  The freeways are made up of six to eight General Purpose (GP) lanes and two 

reversible High Occupancy Vehicle (HOV) lanes (expansion to three in the future for high 

occupancy tolling operation).  The primary arterial, U.S. 1, is a relatively convenient alternate 

route for transportation between Spotsylvania and Woodbridge.  Additionally, the corridor 

operation includes transportation demand management strategies such as vanpooling, carpooling, 

“slugging,” and real-time ride sharing (pilot).  About 40,771 spaces are available at the park-and-

ride facilities in the corridor and 3,000 more have been proposed for construction by 2015.    

 

Currently, the operating conditions along the corridor deteriorate as one travels north.  Volume to 

capacity (V/C) ratios on I-95 exceed 1:0 near and inside I-495, with operating speeds ranging 

from 20%-25% of free flow speeds during the morning peak (northbound) and 14%-23% of free 

flow speeds during the evening peak (southbound).  Similarly, the number of crashes is also 

higher at the northern end of the corridor.  Table 3.2 shows a list of hot spots along the corridor 

and their operating conditions. 
                                                       
 

 

 

Hot Spot Location 

 

Volume/Capacity 

AM (NB/SB)     PM (NB/SB) 

% of Operating Speed to Free   

Flow Speed 

AM (NB/SB)       PM (NB/SB) 

 

 

Crashes 

Route 17 (MM 134-136) 0.8/0.9                0.92/0.88 70/60                      48/65 165 

Route 619-234 (MM 151-153) 0.88/0.8              0.93/0.88 62/73                      49/66 276 

Route 123 (MM 157-161) 1.0/0.82              0.92/1.02 25/67                      53/21 390 

Route 7100 (MM 166-170) 1.1/0.93              0.94/1.04 20/30                      27/23 644 

I-495-Route 236 (MM 0-3) 1.04/0.8              1.05/1.15 20/56                      25/14 388 

Table 3.2 I-95/I-395 corridor hot spots 

 

In order to test as many ICM strategies as possible in the simulation environment, a northbound 

segment of the corridor beginning at MM 152 (exit 152 on I-95N) and ending at MM 163 

(intersection of I-95 N and Lorton Road) was selected as the analysis segment  as shown  below 

in Figure 3.3.   

 

A key consideration in selecting this segment was the relative proximity of I-95N to the primary 

arterial, U.S. 1N, as well as the VRE commuter line.  On average, the distance between the 

freeway and the arterial along the entire length of this segment is 1.5 miles, making it a desirable 

alternative route should a traveler choose to change routes.  Also, a shorter segment of the entire 

I-95/I-395 corridor was used as a result of the computational limitations of the adopted 

microscopic simulation software (VISSIM).  
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                       Figure 3.3: ICM test corridor 

 

Tables 3.3 and 3.4 show the parking and transit facilities located in the analysis segment.
 

 
 

Commuter Lot/Park-and-Ride Number of Spots Filled by 8:00 AM? Available Spots 

Horner Road 2363 Yes 0 

PRTC Transit Center 145 Yes 0 

Telegraph Road 200 No Unknown 

Potomac Mills 275 Yes 0 

SR234/SR 1 843 Yes 0 

Lakeridge 638 Yes 0 

Oldbridge/SR 123 580 Yes 0 

SR 123/I-95 N 580 Yes 0 

VRE (Rippon Station) 676 No 229 

VRE (Woodbridge Station) 738 No 221 

Total 7038 -- 450 

Table 3.3: Parking facilities in analysis segment (Source: PRTC and VRE websites) 
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Route 

Number of 

Trips (AM 

Period) 

Person 

Capacity 

Capacity 

Used 

Available 

Capacity 

PRTC (Lakeridge-Washington) 10 570 293 277 

PRTC (Lakeridge-

Pentagon/Crystal City) 

6 342 203 139 

PRTC (Dale City-Washington) 25 1425 867 558 

PRTC (Dale City-

Pentagon/Crystal City) 

9 513 312 201 

PRTC (Dale City-Navy Yard) 6 342 220 122 

PRTC (Lakeridge-Capitol Hill) 1 57 25 32 

PRTC (South Route 1-

Washington) 

4 228 155 73 

VRE (Fredericksburg Line) 7 5626 4921 705 

Total 68 9103 6996 2107 

 Table 3.4: Transit routes in analysis segment (Source: PRTC and VRE websites) 

                       
From Table 3.4, it can be seen that there is extra passenger capacity in the transit system.  In 

general, many factors affect transit ridership.  These include transit service quality, transit fares, 

gas prices, proximity of bus stops to residential areas, availability of parking spots at park-and-

ride facilities, etc.  Using Table 3.3 as the basis of argument and without any further 

considerations, the unused transit capacity could be attributed to the limited availability of 

parking spots (a deficit of 2065 compared to transit capacity).  Additionally, early transit 

departure times could also limit the full utilization of existing transit capacity.  A careful 

examination at the operating schedule for PRTC buses
 
(44) and VRE trains (45) as presented on 

their websites indicates that 21 of the 68 transit trips (19 buses, 2 commuter trains) start and end 

before 6:00 AM.  Such a transit operating schedule might not be convenient for many travelers.  

Regardless of the reason for unused transit capacity, there is a clear potential to institute some 

transit-oriented ICM strategies that will take advantage of the extra capacity in order to increase 

corridor person throughput. 

 

3.3 Development and Validation of Simulation Network 

A comprehensive network of all the road facilities within the analysis segment described in the 

previous section was coded in VISSIM 5.4.  In developing the network, the Google Earth 

application was used to collect geometric characteristics of the road facilities.   

 

The facilities coded include I-95 N  GP and HOV lanes, the primary arterial U.S. 1N, VRE rail 

line, the intersecting arterials (running east-west and west-east) that include Dumfries road (SR 

234), Lorton road (SR 642), Dale Blvd (SR 784), Prince William Pkwy (SR 294), Gordon Blvd 

(SR 123), and the bus transit routes.  Traffic flow data were obtained from the most recent 

VDOT Average Annual Daily Traffic (AADT) estimates to develop vehicle origins and 

destinations.  Travel time data provided by INRIX was obtained from the vehicle probe suit of 
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Regional Integrated Transportation Information System (RITIS).  The travel time and traffic 

flow data were used to calibrate and validate the model against actual driving conditions.  The 

candidate ICM strategies were then incorporated into the simulation model. 

 

A total of 50 VISSIM simulation runs were conducted to aid in the calibration process, and the 

results are as shown in Table 3.5.  The simulation was run for a 90-minute period of the morning 

commute but data collection was scheduled to begin after the warm-up period of 30 minutes.  

For acceptable calibration results, travel times and speeds must be within 15% of the 

corresponding field values.  The GEH, a modified chi-squared test, compared the simulated 

vehicle flow per hour with traffic data obtained from VDOT’s AADT estimate.  The GEH 

statistic must be less than 5 in order to be considered acceptable (46).
 

 
                                         
 

 

 

Segment 

Average Travel Time 

(minutes) 

 

Average Speed (mph) 

 

Flow (Vehicles/Hour) 
 

Base 

 

Model 

% 

Change 

 

Base 

 

Model 

% 

Change 

 

Base 

 

Model 

GEH 

Value 

I-95 N (SR234-

SR123) 

16.3 17 4.3 38 37 2.6 5416 5542 1.7 

I-95 N (SR123-

SR642) 

10.6 10.1 4.7 26.5 25.3 4.5 5652 5668 0.2 

I-95 N 

HOV(SR234-

SR123) 

8 7.6 5 60.3 58 3.8 2047 1901 3.3 

I-95 N 

HOV(SR123-

SR642) 

4 4 0 55.8 54 3.2 3965 3759 3.3 

U.S. 1N(SR234-

SR123) 

19.8 20.6 4 32.8 33.2 1.2 1931 2060 2.9 

U.S. 1N(SR123-

SR642) 

9.7 10.1 4.1 28 26.8 4.3 2566 2488 1.6 

Table 3.5: Model validation results 

 

3.4 Evaluation of Candidate ICM Strategies 

Eight ICM strategies were selected for evaluation in the simulation environment based on their 

relative ease of implementation, proven effectiveness in reducing congestion, and ability to 

interact and complement other congestion mitigation techniques.  For those strategies that sought 

to influence traveler behavior in real-time/short-term, assumptions about traveler responses were 

made based on information from published literature.  The eight strategies are VSL, ramp 

metering, increasing transit and parking capacity, high occupancy vehicle/toll lanes, financial 

incentives, ramp meter bypass/high occupancy access treatments and transit signal priority. Each 

of the candidate ICM strategies is briefly discussed below. 
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Variable Speed Limits (VSL) 

VSLs have been used as a congestion mitigation measure for some time now, making it easier to 

have access to its implementation algorithms/codes.  This research modified a publicly available 

VSL code, as described here (47). 

 

All VSL signs were set to display 55 mph during the first cycle in the simulation’s warm-up 

phase.  Each detector then gathered data and recorded the instantaneous speed data for every 

vehicle that crossed over the detector, as well as volume (which are tallied up into a cumulative 

volume [cum_vol] value).  This instantaneous speed data is then converted into space mean 

speed (speed = (1/vf), where vf = the instantaneous speed of a vehicle recorded over a detector), 

which was added up during the course of the cycle to obtain a cumulative speed value 

(cum_speed).   

 

Using the cumulative data from the end of each cycle (a cycle being the time period between 

speed limit updates – 5 minutes in this case) space mean speed, flow, and density values were 

calculated for the data from each detector using the following equations:   

 

                                                                                       (3-8) 

Where: 

         space_mean_speed = the total space mean speed at a detector over the course of one 5-

minute cycle 

         cum_vol = volumes accumulated over the course of one 5-minute cycle 

         cum_speed = accumulated speed values over the course of one 5-minute cycle 

 

                                             Flow = 12*cum_vol                                                                    (3-9) 

 

Where: 

         flow = The equivalent hourly flow based on a cycle’s volume (in this case, 12 is used in the 

equation due to a 5-minute cycle time) 

         cum_vol = volumes accumulated over the course of one 5-minute cycle; 

 

                                                                                               (3-10) 

 

Where:  

          density = the calculated density used to determine posted speed limits. 

 

The next step is to determine the worst (highest) density at each VSL sign location (which is 

where detectors are located).  As there is a detector in each mainline lane at each sign location, 

the worst density represents only one lane, but is used to represent the entire location.    

  

Once the worst density has been determined for each location, the desired speed can be 

determined based on downstream density (for example, location 3’s desired speed is based on the 

density at location 4, the next downstream location.  This is to allow vehicles to prepare for 



space_mean_ speed
cum_vol

cum_speed



density 
flow

space _mean _ speed
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upcoming conditions).  Desired speeds to which each VSL sign is set are derived from pre-

determined density ranges that are appropriate for optimal speeds.  The Greenshield and 

Greenberg equations were used to determine an average optimal density that corresponded to 

five ranges of speed as shown in Table 3.6. 

                                   
 

Density (pc/mi/lane) Speed Range (mph) Speed Limit (mph) 

0 to 34.2  Greater than 52.5  55  

34.2 to 45  Between 47.5 and 52.5  50  

45 to 56.4  Between 42.5 and 47.5  45  

56.4 to 68.5  Between 37.5 and 42.5  40  

Greater than 68.5  Below 37.5  35  

    Table 3.6: Variable speed limits and density ranges 

 

Figure 3.4 is an example of the downstream and upstream VSL system layout for a typical 

bottleneck location.  The reason for placing the detectors immediately upstream of the bottleneck 

was to identify as close to the time as possible when the bottleneck was activated so that 

mitigation techniques might be implemented.  This was done to allow sufficient time and 

distance for vehicles to reduce their speed in case of any downstream congestion.   

 

 

 
 Figure 3.4 Typical VSL layout 

  

Driver compliance rates are critical in determining the impact of VSL systems on highway traffic 

conditions.  VISSIM offers the capability to define the percentage of the driver population who 

will/will not adhere to speed limits.  The driver population that does not comply with VSLs was 

labeled Non-Compliant (NC) in the model.  The compliance rates modeled ranged from 45% to 

90% to evaluate the range of expected performance.   

 

 

Ramp Metering (RM) 

The concept of ramp metering was selected to regulate the flow of vehicles from side streets onto 

the freeway.  The metering rate can range from 240 to 900 veh/hr for a single-lane on-ramp (4). 
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In order to hold the metering rate constant for each scenario, a fixed ramp metering operation 

was used.  The range of metering rates tested was between 500 and 900 veh/hr.  To make the 

ramp metering operation more realistic, meters were turned off for the first 30 minutes of the 

simulation because the freeway was operating at/near free flow conditions.  Similarly during the 

simulation of incident conditions, ramp meters were only turned on after the incident had 

occurred so that congestion on the freeway was not exacerbated.  Ramp meters were provided at 

all 10 on-ramps within the analysis segment. 

 

 

Transit and Parking Capacity (TPC) 

Park-and-ride facilities and associated transit services along with park-and-pool facilities 

formalize and make readily available the option of mixed-mode travel.  The combination they 

facilitate allows the use of a low-occupancy mode, most often driving alone, where travel 

densities are low and high-occupancy modes are inconvenient.  It allows transfer to a high 

occupancy mode—rail transit, bus, vanpool, or carpool—where travel densities become higher 

and more supportive of high-occupancy mode efficiencies (48). Since transit and parking 

facilities are complimentary in mixed-mode travel, the ability of available capacities to attract 

new transit riders was the attribute of interest.  Turnbull et al. (2004) cited two studies that 

suggested that an added park-and-ride space attracts 0.22 new transit riders (48).  This traveler 

response does not represent decisions taken by travelers in real-time.  Rather, they are indicative 

of long-term traveler behavior in response to the increase in parking capacity.  However, this 

served as a guide in choosing the traveler response rate to test, taking into account the proposed 

addition of 3000 new parking spots within the corridor.  The research team assumed an attraction 

between 7.5% and 23% of SOVs to transit.   

 

A new “vehicle type” group labeled TPC in VISSIM was created to model the impact of transit 

and parking capacities.  For the purposes of real-time/short-term application, TPC vehicles 

behave as SOVs during the first 30 minutes (warm up period) of the simulation, and begin to exit 

toward parking facilities and transit stops when congestion begins to build (after warm up 

period). 

 

 

High Occupancy Vehicle (HOV) Lanes  

HOV facilities provide preferential treatment for transit, vanpools, carpools, and other designated 

vehicles by providing lanes and roadways reserved for their use. HOV lanes usually carry two to 

five times as many persons as GP lanes, and have the potential to double the capacity of roadway 

to move people (49). The analysis segment contains two reversible HOV lanes that operate in the 

analysis direction (north) during the morning peak with an occupancy requirement of three or 

more.  The HOV lanes carry about 25% of the vehicle traffic (compared with GP lanes) and still 

have extra capacity to attract new users (over 1,000 veh/hr between SR 234 and SR 123; over 

500 veh/hr between SR 123 and SR 642).  The ability of this extra capacity to attract new users is 

the attribute of interest.  Therefore, a new “vehicle type” group called HOV-E was created in 

VISSIM to model the attraction of new HOV users from the existing SOVs.  The attraction of 

new HOV users is possible through real-time information dissemination.  The assumed range of 
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new users modeled was from 0% to 15%.  Similar to TPC vehicles, HOV-E vehicles become 

operational after the first 30 minutes of the simulation. 

 

 

High Occupancy Toll (HOT) Lanes 

The use of market forces to allocate limited highway capacity among users by their need to travel 

and willingness to pay, usually referred to as congestion pricing in the literature is a known 

congestion mitigation measure.  Drivers who are not willing to pay may choose not to travel or 

select an alternative time, route, or mode, and those who pay receive the value of being able to 

drive, when they choose to, with reduced congestion.  The concept of HOT lanes seek to achieve 

better utilization of special lanes such as HOV lanes by making them accessible to low occupant 

vehicles (LOVs) who are willing to pay.  The research team is not interested in which toll 

amounts result in better utilization of HOT lanes, but rather in the impact of the HOT lane 

concept in increasing carpools and ridesharing.   

 

One reason for this impact is because it is believed that drivers get a tangible sense of the cost 

savings offered by carpooling when tolling is introduced rather than paying alone to enjoy the 

better services of the HOT lanes (50). Therefore, the ability of HOT lanes to reduce the 

percentage composition of LOVs and SOVs through carpool and ridesharing formations was 

modeled.  A reduction range of 0% to 15% was assumed.  To model this, a new “vehicle type” 

group called HOT was created in VISSIM.  This strategy was considered because of plans by 

VDOT to introduce HOT lanes in the corridor in future.  HOT vehicles also become operational 

after 30 minutes (after the warm up period) of simulation. 

 

 

Financial Incentives 

Transit and parking pricing play an important role in transit ridership.  The most common 

objective of transit pricing and fare changes is to increase revenues in response to actual or 

forecasted increases in operating costs.  Such changes usually involve fare increases for most 

transit users.  An associated objective is to minimize the ridership loss usually involved in fare 

increases (51). Similarly, the primary objective for setting a price on parking for parking facility 

owners/operators is to cover cost and earn a reasonable return on investment (52).  

 

In this research, it is believed that these costs may stifle transit ridership increases.  For example, 

if a traveler decides to park at a parking facility in order to use transit, he/she must pay for 

parking and transit costs, as well as a reduced level of comfort compared to driving alone.  

Providing financial incentives to travelers to cover parking and transit costs may help to increase 

transit ridership and reduce congestion in the corridor.  Therefore, the power of financial 

incentives to reduce the percentage of SOVs was the attribute modeled.  In VISSIM, a “vehicle 

type” group labeled Financial Incentives (FI) was created to aid in the modeling.  The assumed 

range of reduction in SOVs modeled was between from 0% and 7.5%.  FI vehicles also became 

operational only after 30 minutes of the simulation. 

 

It is important at this stage to clearly outline the similarities and differences between TPC, HOV-

E, HOT, and FI as modeled in this study.  Both TPC and FI are strategies meant to induce mode 
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shifts (from SOV to transit).  However, they are two different strategies.  According to the 

literature, some travelers shift to transit because of available spots at park-and-ride lots or seats 

in transit vehicles (48).  Similarly, there is another group of travelers who shift to transit because 

of reduction in transit (51) and parking (52)
 
fees.  It is possible there are some travelers who are 

induced by both strategies but the extent of intersection is unknown.  Independently, each of the 

two strategies has been discussed in the literature, but their combined effect is also unknown; this 

knowledge, in conjunction with other implemented ICM strategies, is what is been sought after 

in this research.  Similarly, HOV-E and HOT are both intended to facilitate mode shifts from 

SOVs to HOVs.  The HOT strategy in this study catalyzes the formation of carpools/vanpools as 

a result of travelers getting a tangible reason for carpooling due to the tolls being charged (50).  

On the other hand, some travelers form carpools/vanpools because of congestion on the GP 

lanes, the travel time reliability afforded by HOV lanes, etc., and not because of tolls (49).  Just 

as in the case of TPC and FI, there are some travelers who might be susceptible to both HOT and 

HOV-E.  Within the framework of ICM, the desired objective is to determine the combined 

effect of these strategies, which have traditionally been implemented as stand-alone strategies. 

 

 

Ramp Meter Bypass and HOV Access Treatments 

This strategy gives HOVs priority at metered freeway entrance ramps by providing either a 

separate lane located adjacent to the metered GP lane or a separate HOV entrance ramp.  Either 

way, they allow HOVs to move around the traffic queue at the meter or otherwise directly enter 

the freeway.  These techniques may be used in combination with a freeway HOV lane or as a 

stand-alone measure.  Direct access ramps from adjacent roadways, park-and-ride lots, and 

transit stations are also employed in some areas to provide buses, and sometimes vanpools and 

carpools, with extra travel time savings and trip time reliability (49). This strategy was modeled 

by providing separate lanes adjacent to the metered lanes, and restricting the use of the separate 

lane to only HOVs and buses.  The evaluation of this strategy was tied to the ability of HOV 

lanes to attract new HOV users because it seeks to reduce the percentage of SOVs in the analysis 

segment. 

 

 

Transit Signal Priority (TSP) 

TSP is an operational strategy that facilitates the movement of transit vehicles (usually those in-

service), either buses or streetcars, through traffic signal-controlled intersections.  Objectives of 

TSP include improved schedule adherence and improved transit travel time efficiency while 

minimizing impacts to normal traffic operations (53).
 
The main TSP control strategies modeled 

were green extension and early green (active priority).  A constant extension period of 15 

seconds was established to facilitate the operation of TSP in VISSIM.    

 

Only one of the transit routes (South Route 1) is on the primary arterial (U.S. 1).  This route 

starts from Fox Lair/Route 1, travels south, and connects to the HOV lanes through SR 234. The 

effect of TSP on the corridor will be implicitly captured by the number of bus trips recorded 

during the analysis period.  Additionally, bus travel times will also be used to evaluate the effect 

of TSP. 

 



41 
 

3.5 Simulation Results and Analysis 

The analysis of simulation results focused on highlighting the impacts of ICM in the analysis 

segment.  Using the LHS technique, 50 scenarios of ICM strategy combinations were tested, 

with each scenario having different combinations of the ICM parameters (See Appendix A).   

 

Several performance measures including individual facility average travel times, average speeds, 

average vehicular flow, average vehicle delay, corridor person flow, fuel economy and emissions 

were collected.  It is important to note that the analysis was not focused on the performance of 

individual strategies but on how they perform as a system; therefore, no special attention was 

paid to any individual strategy during the analysis, unless something unusual about a strategy is 

observed.  In selecting the most critical ICM strategies, corridor person flow per hour was the 

main performance measure used.  This performance measure was chosen because it is not mode-

specific and satisfies the performance measure requirement prescribed in the AMS framework. 

 

The simulation model did not incorporate any information dissemination strategy.  In carrying 

out the analysis, it was assumed that all the necessary means by which real-time traveler 

information is disseminated were employed.  Additionally, those strategies meant to influence 

traveler behavior (TPC, HOV-E, FI, and HOT) were not intended for only SOVs on  I-95 N GP 

lanes.  Rather, they were meant to influence all SOVs in the corridor.  For example, some of the 

SOVs that would have eventually ended up on the GP lanes exited to a parking facility while 

traveling on U.S. 1N.   

 

ICM can be beneficial during both incident-induced and recurring congestion periods.  

Therefore, the ICM strategies were tested under both non-incident and incident conditions.  The 

analyses of simulation results under both conditions are discussed next. 

 

3.5.1 Impact of ICM in Non-Incident Conditions 

Limited access facilities such as freeways are designed to operate at higher performance 

standards (in terms of speed, travel time, flow, etc.) than, for instance, arterials.  In the absence 

of inter-agency coordination among corridor operating agencies, freeway operators (usually the 

State DOTs) will want to shift freeway traffic to any parallel arterial in order to improve its 

operating performance.  This strategy was tested before incorporating ICM strategies into the 

simulation model, and the results are as shown in Table 3.7.     
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I-95 N U.S. 1N 

% 

Diverging 

Average 

Travel Time 

(min) 

Average  

Speed (mph) 

Flow 

(veh/hr) 

Average Travel 

Time (min) 

Average 

Speed 

(mph) 

Flow 

(veh/hr) 

0 27.1 31 5668 30.7 30 2488 

5 25 36 5594 32 31 2390 

10 24 39 5748 33.5 30 2380 

15 22.3 40 5673 35 32 2350 

20 22.5 40 5721 37 29 2156 

Table 3.7: Impact of Diversion of I-95 N and U.S. 1N 

 

from Table 3.7, it will take 15% of vehicles diverting from I-95 N to U.S. 1N in order to reduce 

average travel time on the freeway by about 4.8 minutes and increase corresponding average 

speed by 9 mph.  This will adversely affect traffic conditions on U.S. 1N, resulting in 

corresponding increase in average travel time of 4.3 minutes.  In terms of vehicular flow, neither 

the freeway nor arterial experience any significant changes. The ICM strategies tested under non-

incident conditions showed significant improvements in most of the performance measures for 

the individual road facilities as well as the entire corridor. 

 

 

Average Travel Times 

 I-95 N experienced a reduction in average travel times for all the 50 tested scenarios.  The 8-

mile segment between SR 234 and SR 123 experienced a travel time reduction of about 7 

minutes, whereas the travel time for the 3-mile segment between SR 123 and SR 642 was 

reduced by 6 minutes, resulting in a combined travel time reduction of 13 minutes.  For the 

primary arterial, U.S. 1N, average travel times between SR 234 and SR 123 were reduced by 

almost 6 minutes in scenarios where the percentage of vehicles parking in order to use transit 

(TPC and FI vehicle types) is high.  This reduction in travel time is reasonable because there are 

less vehicles on the roadway due to those exiting U.S. 1N in order to park and use transit, 

enabling the remaining cars to travel at or near design speeds.  The second segment of U.S. 1N 

(between SR 123 and SR 642) recorded an average travel time reduction of 3 minutes.   

 

The reversible HOV lanes were not significantly impacted by the ICM strategies in any of the 50 

scenarios.  The average travel times were not significantly different from the base conditions.  

This was expected because none of the ICM strategies was directly intended to improve HOV 

travel times.  It is likely that as the percentage of HOV-E and HOT vehicles increases, average 

travel times on HOV lanes might increase.  Table 3.8 and Figure 3.5 show the travel time savings 

for the individual road facilities. 
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Segment Average Travel Time 

Savings (min) 

Condition(s) 

I-95 N (SR 234-SR 123) 7 All scenarios 

I-95 N (SR 123-SR 642) 6 All scenarios 

I-95 N HOV (SR 234-SR 642) 0 All scenarios 

U.S. 1N (SR 234-SR 123) 6 When TPC and FI % are high 

U.S. 1N (SR 123-SR 642) 3 All scenarios 

Table 3.8: Travel time savings due to ICM 

 

 

         
            Figure 3.5: A plot of travel time savings due to ICM 

 

Vehicular Flow and Speed 

Vehicular traffic volumes generally decreased along the entire length of the I-95 N GP lanes.  

This is not unexpected, because most of the ICM strategies modeled are meant to reduce the 

percentage of SOVs in the traffic stream.  Consequently, most of the vehicles exit toward a 

parking facility in order to use the PRTC buses or VRE commuter trains.   

 

The 3-mile segment of the I-95 N GP lanes only experienced vehicular flow levels close to the 

base conditions when the percentage of TPC, HOV-E and FI are very low (that is, only a small % 

of LOV reduction).  The HOV lanes occasionally experienced reductions in flow, especially 

when the percentage of vehicles exiting to parking facilities (TPC) is high.  This might be due to 

the high level of interactions that occur when drivers decide to exit.  This usually begins with a 

reduction in speed, followed by the search for safe gaps in order to carry out lane changes.  

Therefore, if there are a lot of vehicles trying to exit, it might impact flow conditions.  Visual 

inspection of the simulation revealed that, when the % of vehicles exiting from the GP lanes to 
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SR 234 is large, it reduces the opportunity for HOVs, HOV-Es, and HOTs to access the HOV 

on-ramp south of SR 234.   

 

Conversely, the segment along U.S. 1N between SR 234 and SR 123 experienced an average 

vehicular increase of about 500 veh/hr in almost all of the 50 test scenarios.  The remaining 

segment between SR 123 and SR 642 did not experience any significant changes in vehicular 

flow.  Table 3.9 shows a summary of the impact of ICM on vehicular flow. 
 

Segment Impact on Flow 

I-95 N (SR 234-SR 123)  Decreased in all scenarios(17%-25%) 

I-95 N (SR 123-SR 642) Only increased when TPC, HOV-E, FI % are low  

I-95 N HOV (SR 234-SR 642) Increased when TPC % is low 

U.S. 1N (SR 234-SR 123) Increased in all scenarios (18%-29%) 

U.S. 1N (SR 123-SR 642) No significant changes 

      Table 3.9: Impact of ICM on vehicular flow 

 

As a result of the reduction in vehicular flow along I-95 N GP lanes, average speed increased 

along its entire length.  An average speed increase of 10 mph was recorded for the segment 

between SR 234 and SR 123 and 23.5 mph for the segment between SR 123 and SR 642.   
 

The I-95 N HOV lanes experienced a slight speed increase of 2.9 mph, which is consistent with 

the corresponding travel times reported earlier.  The primary arterial also recorded significant 

speed increases of 7.9 mph and 8.6 mph between SR 234 and SR 123, and SR 123 and SR 642, 

respectively.  Table 3.10 and Figure 3.6 show the benefits of ICM in terms of speed increases.                    
 

 

Segment Speed Increase (mph) 

I-95 N (SR 234-SR 123) 10.0 

I-95 N (SR 123-SR 642) 23.5 

I-95 N HOV (SR 234-SR 642) 2.9 

U.S. 1N (SR 234-SR 123) 7.9 

U.S. 1N (SR 123-SR 642) 8.6 

                  Table 3.10 Speed improvement due to ICM 
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      Figure 3.6: Improvement in travel speeds due to ICM 

  

Selection of Critical ICM Strategies under Non-Incident Conditions 

As described earlier, ICM consists of different congestion mitigation strategies operating 

together over a large geographical area.  It is important to know those strategies that are most 

critical to the success of the ICM operation.  The evaluation methodology developed in this 

research was used to identify the critical ICM strategies.  The main performance measure used in 

identifying the critical ICM strategies was corridor person flow per hour.  The corridor person 

flow obtained was as follows: 

 

Corridor Person flow (Persons/hr) = GPPF + HOVPF + US1PF  + VREPF                         (3-11) 

 

 Where: 

  GPPF  = Total person flow on the GP lanes in 1 hour 

        HOVPF = Total person flow on the HOV lanes in 1 hour 

            US1PF  = Total person flow on U.S. 1 in 1 hour 

           VREPF  = Total person flow on the VRE Commuter rail in 1 hour. 

 

VISSIM enables the determination of the number of persons traveling at specific points in a 

network.  Since the direction of travel modeled was toward Washington, D.C. (north), person 

flow data were collected at the end of the analysis segment, which is the intersection of SR 642 

and the individual rail and road facilities.  The corridor person flow under base conditions is 

22,755 per hour compared with 26,041 per hour when ICM strategies are implemented, resulting 

in an increase of 3,286 persons per hour (14.4%).   
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The three sensitivity measures discussed earlier were calculated using results from the 50 test 

scenarios.  From Table 3.11, it can be seen that HOV-E and HOT have larger coefficients than 

the remaining ICM strategies based on all the three sensitivity measures (SRC, LCC, and SPC).  

For the SRC, the R
2
 value obtained was 0.985, which implies that the assumption of a linear 

relationship between corridor person flow and the ICM strategies is justified and that the ICM 

strategies adequately describe the variability in corridor person flow.  Variance inflation factors 

for the ICM strategies were also less than 4, signifying insignificant correlation among the 

strategies. 

 

 
                                                

Strategy SRC LCC SPC 

RM 0.00185 -0.0555 0.003071 

TPC 30721.15 0.3687 0.243221 

HOT 117623.5 0.5389 0.293893 

HOV-E 142695.9 0.6567 0.394323 

FI 128937.7 0.083 0.025769 

VSL 17222.5 0.3867 0.206324 

                            Table 3.11: ICM strategies sensitivity values 

 

There is a need to test the statistical significance of the coefficients of ICM strategies before 

ranking them.  Table 3.12 shows the t-statistic for the coefficients of ICM strategies at a 

significance level of 0.05.  This implies that for a strategy’s coefficient to be statistically 

significant, the t-statistic must be greater than 1.96. 

 

   

Strategy SRC LCC SPC 

RM *3.0 0.4 0.02 

TPC *8.7 *2.7 *1.98 

HOT *29.5 *4.4 *2.13 

HOV-E *34.2 *6.0 *2.97 

FI *7.6 0.6 0.18 

VSL *24.7 *2.9 *1.97 

                           Table 3.12: T-statistic values for ICM strategies 

                  *Statistically significant at 5% significance level 

 

Finally, the ICM strategies were ranked based on the sensitivity measures and their statistical 

significance.  Table 3.13 shows the ranking from most sensitive (rank equals 1) to least sensitive 

(rank equals 6) strategies based on the different sensitivity measures. 
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Parameter SRC LCC SPC 

RM 6 6 6 

TPC 4 4 3 

HOT 2 2 2 

HOV-E 1 1 1 

FI 5 5 5 

VSL 3 3 4 

                                                       Table 3.13: ICM strategies sensitivity rankings 

                                                                  

From Tables 3.12 and 3.13, it was established that HOV-E and HOT were statistically significant 

and consistently ranked first and second, respectively, based on all three sensitivity measures.  It 

was also evident that RM consistently ranked last in all the three rankings.  The exact position of 

a strategy in the rankings is not as important as how consistently a strategy appears near the top.  

Based on all the three sensitivity measure rankings, four of the six ICM strategies were 

statistically significant.  These strategies can be considered as the most critical among the six 

strategies modeled.  They are TPC, HOT, HOV-E, and VSL.  Note, when implemented in the 

field, some “shifts” from SOV’s to transit or HOV’s may be incentivized by more than one of 

these strategies.  In other words, there is likely some “double-counting” in this analysis.  

However, given the goal of this work to explore feasibility, it can be concluded that each of these 

strategies does hold significant potential. 

 

The fact that RM was not identified to be critical was not surprising.  This is because; the 

presence of ICM strategies such as TPC and FI ensures that less vehicles get on to the freeway 

due to the availability of parking and transit capacity.  Therefore, the need to meter entry of 

vehicles onto the freeway wasn’t necessary. 

 

Another phenomenon that is worth mentioning is the heavy traffic demand from the east-bound 

on-ramp of SR 123.  From visual inspection during the calibration process, the ramp queue 

usually spills onto the arterial even though there was no metering.  Therefore, it was expected 

that the queue length would grow with the introduction of ramp meters.  However, there were no 

queues when ramp meters were in operation.  Again, this might be due to the fact that the ramp 

meter was not operating in isolation but in conjunction with other ICM strategies such as TPC 

and FI. 

 

The use of financial incentives was only statistically significant for the SRC sensitivity measure.  

This does not necessarily mean that this strategy has no ICM benefits.  In this research, financial 

incentives were used to encourage travelers to park and use transit.  Instead, it could have been 

used to influence travelers to use the HOV lanes.  This strategy has been employed in Atlanta, 

and it proved to be beneficial (54). Therefore, the final decision to discard a strategy must be 

taken after all practical uses of the strategy have been exhausted. 

 

 



48 
 

Fuel Economy and Emissions 

The impact of ICM on fuel usage and vehicular emissions was very significant as shown in Table 

3.14.  In all 50 tested scenarios, significant reductions were experienced.  Table 3.14 summarizes 

the impact of ICM strategies on fuel economy and emissions during non-incident conditions. 

 

 

Condition Fuel (gallons) CO (g) NOx (g) VOC (g) 

Without ICM 12346 863009.4 167910.3 200010.8 

With ICM 8111 566988 110315 131405 

                         Table 3.14: Impact of ICM on fuel economy and emissions 

  

Limits of Effectiveness of Unknown Traveler Responses to ICM Strategies 

As stated earlier, responses to those strategies that were meant to influence traveler behavior 

(TPC, HOT, HOV-E, FI) were purely based on assumptions from published literature.  However, 

it is imperative to know the limits of effectiveness of such responses in terms of how they help 

improve the corridor’s operating performance (increase person flow).  It was difficult to establish 

a clear pattern for the limits of effectiveness taking into account that the modeling experiment 

was designed to minimize the number of trials. 

 

3.5.2 Impact of ICM during Incident Conditions 

Incident-induced congestion accounts for a significant proportion of travel delays, and it is 

therefore necessary to ascertain how ICM can help lessen its impact.  In order to achieve this, an 

incident was created in the simulation by activating a red light on three of the four GP lanes on I-

95 N between the west-bound off-ramp onto SR 123 and west-bound on-ramp from SR 123.  

This location was chosen so that all the ICM strategies could be adequately modeled.   

 

The incident was scheduled to occur after the 30 minutes “warm-up” period.  The incident lasted 

for one hour, and data collected during the one hour period were analyzed.  Table 3.15 

summarizes the impact of incidents on travel conditions on I-95 GP lanes. 

 

    
 

Segment 

Average Travel 

Time (min) 

Average Speed 

(mph) 

Vehicle Flow 

(veh/hr) 

Corridor Person Flow 

(persons/hr) 

I-95 N (SR 234-

SR 123) 

32 23.9 2531 -- 

I-95 N (SR 123-

SR 642) 

6.2 47.0 3468 18107 

      Table 3.15: Traffic conditions on I-95 corridor during modeled incident (No diversions) 
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From Table 3.15, corridor person flow per hour during incident conditions was 18,107; 

compared to non-incident conditions, corridor person flow decreased by 4,648 persons per hour. 

One of the most common approaches in addressing incident-induced congestion is to divert 

traffic onto adjacent/parallel routes.  Usually, this is done without knowledge of traffic 

conditions on these parallel routes.  In the end, corridor flow is significantly reduced.  To 

replicate this condition, the incident was first modeled without incorporating the ICM strategies. 

 

If traffic has to be diverted onto U.S. 1N in order to mitigate congestion on I-95 N GP lanes, 

what percentage of diversion will result in improved traffic operating conditions? Table 3.16 

shows the impacts of different diversion percentages on both I-95 N and U.S. 1N. 

 
                          

I-95 N U.S. 1N 

% 

Diverting 

Average Travel 

Time (min) 

Average 

Speed (mph) 

Flow 

(veh/hr) 

Average Travel 

Time (min) 

Average 

Speed (mph) 

Flow 

(veh/hr) 

0 38.2 36 3468 30.7 30 2488 

5 36.4 36 2762 30.5 28 2054 

10 35.7 34 2869 33.5 27.3 2080 

15 33.9 37 2813 35 26 2022 

20 32.9 37.5 2876 37 24 2017 

Table 3.16: Impacts of diversion on I-95 and U.S. 1N 

 

From Table 18, 15% of the traffic has to be diverted onto U.S. 1N in order to reduce average 

travel time by 5 minutes coupled with no significant increase in speed.  These diversions can 

increase average travel times on U.S. 1N up to 7 minutes and reduce average speeds by 6 mph.  

Regardless of the diversion percentage, there was no significant increase in the vehicular flow on 

I-95.  In contrast, vehicular flow on U.S. 1N reduced by as much as 471 vehicles per hour.  For 

those vehicles that do divert, their average travel times are as shown in Table 3.17. 

 

 
 

Diversion Point End Point Average Travel Time (min) 

I-95/SR-234 I-95/SR-642 29.9 

I-95/SR-769 I-95/SR-642 29.8 

I-95/SR-294 I-95/SR-642 23.2 

I-95/SR-123 I-95/SR-642 18.7 

                           Table 3.17: Average travel times for diverted vehicles 

              

Even though there were travel time savings for those who exited onto SR 234, only a few 

vehicles (less than 20) recorded this travel time during the analysis period. Incorporating ICM 
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strategies into the modeled incident resulted in the findings in Table 3.18.  The next section 

discusses these results. 
          

 

 

Segment Average Travel 

Time (min) 

Average 

Speed (mph) 

Vehicle Flow 

(veh/hr) 

Corridor Person 

Flow (persons/hr) 

I-95 N (SR 234-

SR 123) 

15.2 47.2 2823  

I-95 N (SR 123-

SR 642) 

7.2 50.6 3624 20598 to 29315 

       Table 3.18: Impact of ICM during conditions 

   

Average Travel Time 

Average travel time between SR 234 and SR 123 was reduced by 16.8 minutes, with the second 

segment experiencing an insignificant increase of 1 minute as shown in Table 3.18.  Overall, 

average travel time on I-95 was reduced by 15.8 minutes when ICM strategies were operational.  

Figure 3.7 shows a graphical plot of the travel time savings. 

 

 
Figure 3.7: Travel time due to ICM strategies 

                    
 

Vehicular Flow and Speed 

 

There was a significant increase in the vehicular flow of over 300 veh/hr between SR 234 and 

SR 123 and about 150 veh/hr between SR 123 and SR 642.  However, there was a significant 

increase in average travel speeds by 23.3 mph in the first section and a reduction of 3.6 mph in 

the second section.  Figure 3.8 shows a graphical plot of the impact of ICM strategies on travel 

speeds during incident conditions.   
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    Figure 3.8: Impact of ICM strategies on speed during incident conditions 

  

 

Selection of Critical ICM Strategies during Incident Conditions 

 

The same methodology used in selecting critical ICM strategies during non-incident conditions 

was used in selecting that of incident conditions shown in Table 3.19.  Similarly, the main 

performance measure used was corridor person flow per hour.  The average corridor person flow 

experienced when ICM strategies were implemented was 24,967 persons per hour.  Compared to 

the case where there were no ICM strategies implemented, corridor person flow increased by 

6860 persons per hour (37.8%).  For the SRC, it is worth noting that the R
2
 value obtained was 

0.97; this implies that the assumption of a linear relationship between corridor person flow and 

the ICM strategies is justified and that the ICM strategies adequately describe the variability in 

corridor person flow.  Also, variance inflation factors computed for each of the 

variables/strategies was less than 4, implying that there were no significant correlations among 

the implemented ICM strategies. 
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Strategy SRC LCC SPC 

RM 0.00172 -0.1727 0.056993 

TPC 26926.81 0.3352 0.234578 

HOT 108109.1 0.6038 0.550437 

HOV-E 146257.9 0.7716 0.712401 

FI 72983.78 0.0201 0.100495 

VSL 5147.182 0.2578 0.15004 

                                     Table 3.19: ICM strategies sensitivity values during incidents  

 

Table 3.20 shows the t-statistic of the coefficients of ICM strategies at a significance level of 

0.05.  This implies that for a strategy’s coefficient to be statistically significant, the t-statistic 

must be greater than 1.96. 

 
                      

Parameter SRC LCC SPC 

RM *2.16 -1.21 0.40 

TPC *5.10 *2.46 *1.98 

HOT *20.85 *5.25 *4.57 

HOV-E *26.98 *8.40 *7.03 

FI *3.81 0.14 0.70 

VSL *5.68 *1.99 *1.97 

                        Table 3.20: T-statistic values for ICM strategies during incidents 

                *Statistically significant at 5% significance level 

 

The ICM strategy rankings are as shown in Table 3.21 below. 

 
 

Parameter SRC LCC SPC 

RM 6 5 6 

TPC 4 3 3 

HOT 2 2 2 

HOV-E 1 1 1 

FI 3 6 5 

VSL 5 4 4 

                        Table 3.21: ICM strategy rankings  
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From Tables 3.20 and 3.21, the ramp metering strategy appeared to be less critical among the 

rest.  Similarly, FI was statistically significant only under the SRC ranking criteria.  The four 

ICM strategies that were statistically significant under all three ranking criteria are HOV-E, 

HOT, TPC, and VSL.  Based on the ranking criteria, these four ICM strategies are the most 

critical. 

  

 

Fuel Economy and Emissions 

The impact of ICM on fuel usage and vehicular emissions was very significant as shown in Table 

3.22:  In all 50 test scenarios, significant reductions were experienced.   
 

 

 

Condition Fuel (gallons) CO (g) NOx (g) VOC (g) 

Without ICM 13190 922014.1 179390.4 213685.7 

With ICM 8828 617079.1 120061.2 143014 

              Table 3.22: Impacts of ICM during incidents on fuel economy and emissions 

 

Limits of Effectiveness of Unknown Traveler Response to ICM Strategies 
 

As experienced during non-incident conditions, the limits of effectiveness of traveler responses 

to ICM strategies during incident conditions could not be clearly determined. 

 

3.5.3 Effects of Transit Signal Priority on Bus Travel Times 

The impact of the TSP strategy was evaluated by comparing average bus travel times with and 

without TSP.  It is important to note that the impact of TSP within this context is affected by the 

other ICM strategies modeled.  Hence, the effectiveness of TSP as a stand-alone strategy is not 

the sought after objective, rather it is how TSP performs within an ICM framework.  The 

reductions in average travel time were modest for buses traveling between Dale City and the 

Washington, D.C. area (2.5 minutes), and between South Route 1 (Dumfries) and Washington, 

D.C (2.1 minutes).  Conversely, the routes between Lakeridge and the Washington, D.C. area 

experienced an average travel time increase of 3.4 minutes.  Buses using this route have stops at 

three park-and-ride facilities.  Roads leading to these park-and-ride facilities experience heavy 

traffic when the % of vehicles wanting to park and use transit is high.  This might slow down 

buses and increase their travel times.  Table 3.23 shows the impact of TSP on average bus travel 

times. 
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Bus Route 

Average 

Travel Time  

(min) No TSP 

Average Travel 

Time (min) With 

TSP 

Change in 

Average Travel 

Time (min) 

Dale City-Washington 25.3 22.8 2.5 

Dale City-Pentagon/Crystal City 25.3 22.8 2.5 

Dale City-Navy Yard 25.3 22.8 2.5 

Lakeridge-Washington 19.1 22.5 *3.4 

Lakeridge-Pentagon/Crystal City 19.1 22.5 *3.4 

Dale City/Lakeridge-Capitol Hill 19.1 22.5 *3.4 

South Route 1-Washington 27 24.9 2.1 

Table 3.23: Impact of TSP on average bus travel times 

*Increase in average travel time 

 

3.6 Summary 

 

This chapter focused on the development of an ICM evaluation methodology based on which 

most beneficial ICM strategies can be selected. The proposed methodology was applied to a real-

world transportation corridor in northern Virginia (I-95 corridor) to evaluate the feasibility of 

ICM implementation. Using a microscopic simulation tool (VISSIM), the effectiveness of ICM 

under both incident and non-incident conditions was evaluated for the test corridor. Also, the 

most beneficial ICM strategies that can help to mitigate congestion on the test corridor were 

identified. The analysis of simulation results revealed that implementation of ICM has the 

potential to mitigate highway congestion, especially during incident conditions. The next chapter 

uses data from multiple HOT lane facilities in the U.S. to investigate the behavior of HOT lane 

users in terms of their response to pricing (tolls). The purpose of the multi-facility analysis 

approach is to help determine if there is a general pattern in the behavior of HOT lane users. 
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Chapter 4  

Multi-HOT Lane Driver Behavior Analysis 

Among the numerous Integrated Corridor Management (ICM) strategies which can help mitigate 

congestion, the use of High-Occupancy Toll (HOT) lanes has gained ground in recent years. The 

HOT lanes use price, occupancy and access restrictions to manage the number of vehicles 

traveling on them, thereby maintaining free-flow traffic conditions, even during peak travel 

periods (32). As a result of the additional travel option provided by HOT lanes, mobility is 

improved for all people in a corridor including transit, freight and drivers in the General Purpose 

(GP) lanes. HOT lanes encourage carpooling and other transit alternatives (which increases 

person throughput) while offering vehicles that do not meet standard occupancy requirements 

another option for more reliable travel times (55). Although there are numerous HOT lane 

facilities operated currently in the U.S., the behavior of drivers who use these facilities is not 

completely understood. Many research efforts (stated and revealed preferences) have been 

conducted to identify factors that influence the decision to use/not to use HOT lanes; however, 

most of these investigations have focused on individual HOT lane facilities, making their 

findings site specific (12–15). Effective ICM requires that transportation system managers take 

action to fully utilize available capacity in a corridor. There is a need to understand how drivers 

will react to options (i.e. whether to use the HOT lanes or not) and how much they are willing to 

pay for HOT lane use. This research seeks to understand the choice behavior of HOT lane 

drivers using revealed preference data from multiple HOT lane systems in the U.S. The objective 

of this approach is to determine if there is a general pattern in the behavior of HOT lane drivers 

in terms of how they respond to tolls and changing corridor traffic conditions as well as their 

willingness to pay for HOT lane use.  

This chapter is organized into two main sections. The first section focused on HOT lane driver 

willingness to pay for travel time savings and explored the differences and similarities observed 

for the multiple HOT lane facilities considered in this research. HOT lane driver response to toll 

rates and changing traffic conditions on GP lanes is thoroughly examined in the second section. 

That is, estimation of the elasticity of HOT lane demand with respect to (w.r.t) toll rates and GP 

lane congestion. Consequently, differences and similarities between HOT lane demand 

elasticities for the different facilities were analyzed. 

 

4.1 Economic Theory behind HOT Lanes  

The primary purpose of HOT lanes is to serve High Occupant Vehicles (HOV) while regulating 

use of the extra capacity by non-HOVs through pricing. As supply of unused capacity on the 

HOT lanes becomes scarce, there will be a demand at higher price. Therefore, pricing (charging 

of tolls) is used as a mechanism to keep HOT lane demand at levels just enough to use the extra 

capacity. The demand-based tolls charged by HOT lanes vary based on prevailing traffic 

conditions (dynamic pricing) and are usually updated at shorter intervals (e.g. every 5 minutes). 

Arguably, the decision to pay for HOT lane use follows rational choice theory since drivers 

calculate the likely benefits and costs before making a choice between HOT and GP lanes (56). 

Travel time savings is often cited by HOT lane users as the major benefit they derive from using 
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HOT lanes (32,33). Therefore, the amount of money drivers are willing to pay for travel time 

savings is their Value of Travel Time Savings (VTTS).  Willingness to pay for travel time 

savings tend to differ among individuals and across time for the same individual depending on 

prevailing conditions, trip purpose, etc. (57,58). At any point in time, if tolls are set too high 

(above drivers’ willingness to pay levels) very few drivers will use the HOT lanes (leading to 

loss in potential revenue and efficient use of capacity). Conversely, if tolls are set too low, too 

many drivers may use the lanes resulting in over-use of the extra capacity (which defeats the 

purpose of HOT lanes). Therefore, setting tolls to ensure that HOT lane demand is kept at 

optimum levels (just enough to use the extra capacity) is very critical to the success of HOT 

lanes. 

 

4.2 HOT Lane Facilities Studied 

Four HOT lane facilities with dynamic electronic tolling systems were studied in this research. 

These are the I-394 MnPASS express lanes in Minneapolis, Minnesota; I-15 Fast Trak express 

lanes in San Diego, California; I-85 express lanes in Atlanta, Georgia; and I-95 express lanes in 

Miami, Florida. Each facility is briefly described below. 

 

4.2.1 I-394 MnPASS Express Lanes – Minneapolis  

The I-394 MnPASS express lane (Figure 4.1) is an 11-mile HOT facility which was opened in 

May 2005 by converting existing HOV lanes to HOT lanes. It runs east-west and serves as the 

most direct link for commuting between downtown Minneapolis and parts of the Minneapolis-

Saint Paul metropolitan area. The HOT facility is made up of two distinct segments. The first 

segment, which runs from Wayzata Boulevard to State Highway 100 (8 miles) comprises a 

single HOT lane in each direction and is separated from the GP lanes by double-striped white 

lines. The first segment is commonly referred to as the “diamond’ lane section, operating 

Monday through Friday, from 6:00 AM to 10:00 AM in the eastbound direction and 2:00 PM to 

7:00 PM in the westbound direction. 

The second segment is between State Highway 100 and I-94 (2.7 miles) and operates as a two 

lane barrier-separated reversible facility. The reversible section collects tolls at all times, 

including weekends, except when the direction is been changed. The HOT lanes are operated in 

the eastbound direction from 6:00 AM to 1:00 PM, and in the westbound direction from 2:00 PM 

to 5:00 AM. The reversible lanes remain westbound Friday afternoon and early Saturday 

morning. They are switched to eastbound at 8:30 AM Saturday morning, where they remain until 

1 PM on Monday. This segment of the facility was used in the analysis. A map of the facility is 

as shown below in Figure 4.1 (59). 
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        Figure 4.1: I-394 MnPASS express lanes (Source: MnDOT) 

 

Usage of the HOT lanes is restricted to carpools of two or more passengers, transit vehicles and 

SOVs which are equipped with MnPASS transponders. Carpools and transit vehicles are allowed 

to use the facility at no cost while SOVs are required to pay between $0.25 and $8.00 per trip 

(60).  

 

Dynamic Tolling Strategy 

 The stated goal of MnPASS's toll rates is to maintain a Level-of-Service (LOS) C in the HOT 

lanes based exclusively on density. To achieve this goal, the toll is automated, and will 

reevaluate itself every three minutes based on the traffic density in the HOT lanes and adjust if 

necessary. To determine its new rate, first the level-of-service in the HOT lanes is determined. 

For each density level-of-service A through F, the toll rate initiates at a default rate. Within any 

particular level-of-service, the toll rate may either increase or decrease based on the increasing or 

decreasing traffic density. Table 4.1 below outlines the toll rate algorithm used by MnPASS (61). 
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Table 4.1: MnPASS toll rate algorithm 
 

With the density in the HOT lanes at LOS D, the default toll rate begins at $3.00. As long as the 

LOS remains D, the toll rate cannot go below the minimum of $2.50 or the maximum of $3.50. 

Should the traffic density increase by 2 vehicles/lane/mile, the toll rate will increase by the 

corresponding LOS D and Δ2 value of $0.50, provided in Table 4.1, resulting in a total toll of 

$3.50. Had the density instead decreased by 2 vehicles/lane/mile from the previous three 

minutes, the toll rate would have decreased by the same amount, from $3.00 to $2.50. The 

algorithm is designed to be sensitive to changes in densities, but still be a step-wise algorithm 

that avoids rapid fluctuations in toll rates (61). 

 

HOT Lanes Usage 

Along the reversible section of the HOT facility, an average of about 4740 eastbound vehicles 

trips were experienced between 6:00 AM and 9:00 AM during the fourth quarter of 2013. This 

includes about 2,250 car/van pools, 2,065 tolled SOVs, 241 SOV violators and 184 transit buses. 

These vehicle trips translate to about 12,147 person trips for the same analysis period. The 

reverse direction (westbound) registered 4,027 vehicle trips (between 3:00 PM and 6:00 PM), 

comprising 2,066 car/van pool trips, 1,477 tolled SOV trips, 308 SOV violators, and 176 bus 

transit trips. Person trips amounted to about 10,964 (62). 

 

Revenue 

MnPASS express lanes revenue mainly comes from tolls and transponder fees. The average toll 

paid to use the HOT lanes is between $1.5 and $2.0 (63) while the monthly lease for a 

transponder costs $1.50. In 2012, total revenue of $3 million was generated: About $ 2.5 million 

from tolls and $500,000 from transponder fees. Operations and maintenance during the same 

period was $2.4 million, resulting in a surplus of $600,000. In general, revenue in excess of 

operations and maintenance costs gets split evenly between the Minnesota Department of 

Transportation (MnDOT) and the metropolitan council for highway and transit improvements 

(64). 

 



59 
 

4.2.2 I-15 Fast Trak Express Lanes – San Diego 

The I-15 express lanes, referred to as Fast Trak lanes, run north-south from SR 163 in the south 

to SR 78 in Escondido for 20 miles (Figure 4.2). They are made up of four lanes (two in each 

direction) with a movable barrier for maximum flexibility. The Express Lanes were built in three 

segments. The middle segment was the first to be constructed and opened to traffic in two 

phases. The first phase from SR 56 to Rancho Bernardo road opened in September 2008. The 

second phase from Rancho Bernardo Road to Centre City Parkway opened in early 2009. The 

North Segment (Center City Parkway-SR 78) and the south segment (S 163-SR 78) opened to 

traffic in 2011 and 2012, respectively. A 4 mile stretch of the facility, specifically between Mira 

Mesa Boulevard and Sabre Springs transit center, was analyzed in this research. This section 

contains the most traveled gantry (plaza 23NB/53SB) of the express lanes. A map of I-15 express 

lanes is shown in Figure 4.2 (65).  

The HOT lanes are in operation 24 hours a day all year round in both directions. Car/Van pools 

(two or more people), zero-emission vehicles with an approved clean air vehicle sticker issued 

by the California department of motor vehicles, motorcycles, and Metropolitan Transit System 

(MTS) buses can use the HOT lanes at no cost (no preregistration or transponder required). In 

order to use the HOT lanes, SOVs are required to be equipped with electronic transponders 

which can be obtained by opening a prepaid Fast Trak account. Employing a dynamic distance-

based electronic tolling system, the toll paid by an SOV is based on rate per mile at the time 

SOVs enter the lanes and the total distance travelled. The toll rates are recalculated and updated 

every three minutes based on the level of traffic density in the HOT lanes, ensuring that traffic 

flows freely in the lanes. Typical toll rates range between $0.5 and $8.0. To help drivers realize 

the value of the tolls paid, average travel times on the HOT lanes are provided at the entry points 

of the lanes) (66). 

 

HOT Lanes Usage 

The I-15 express lanes experienced an average daily traffic of about 27,556 vehicles between 

January 2011 and December 2011. Out of this total, about 80% (22,026) of the vehicles were not 

tolled (mostly HOVs). Only 20% (5,530) of the total average daily traffic paid tolls. The number 

of Fast Trak accounts (people registering to use facility) continues to increase. For example, the 

total Fast Trak accounts increased by 10% (1,450) from 14,300 in January 2011 to about 15,750 

in December 2011. In terms of transit usage, ridership on I-15 commuter express routes have 

been steadily rising and totaled approximately 300,000 one-way passenger trips in financial year 

2011 (which represents approximately 1,200 daily transit trips or roughly 600 unique drivers) 

(67). 

 

Revenue 

The main sources of revenue include tolls and fines, congestion mitigation and air quality 

(CMAQ) funds, transit cooperative research program (TCRP) funding, etc. For the financial year 

2011, the total revenue generated was $4.4 million. Similarly, the annual operating cost for the 

same time period was $4.4 million, so there was no surplus. The revenue generated was spent on 
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staff salaries, benefits, and indirect expenses; TransCore system operations and maintenance; 

materials and equipment; and other direct costs. Additionally, an amount of $800,0001 was given 

out as a transit subsidy (67). 

 

                             
                            Figure 4.2: Map of I-15 express lanes 

 

4.2.3 I-85 Express Lanes - Atlanta 

The I-85 express lane (separated from GP lanes by double striped white lines) consists of a single 

lane in each direction (northbound and southbound) and was opened for use in October 2011. 

Prior to opening, the facility was a standard HOV-2 lane that routinely became congested (13). 

The 15.5 mile HOT facility is located in the northeast Atlanta metropolitan area, stretching from 

Chamblee-Tucker road, just south of I-285, to old Peachtree road in Gwinnett County as shown 

in Figure 4.3 below (68). The segment analyzed in this study was between Chamblee-Tucker 

road and Beaver Ruin road for the northbound section (6.8 miles) and between Old Peach road 

and Jimmy Carter Blvd. (9.6 miles) for the southbound section. The express lanes operate 

continuously for 24 hours in a day and 7 days in a week. In order to use the express lanes for 

free, transit buses, carpools with three or more occupants, motorcycles, emergency vehicles, and 

alternative fuel vehicles with proper license plates must pre-register (PeachPass account). 

Vehicles that do not meet occupancy requirements (less than three occupants) will be able to use 



61 
 

the express lanes by paying a toll. The price to use the express lanes ranges from 0.01 cent per 

mile to 0.90 cents per mile (69). 

The dynamic tolling algorithm used on the I-85 express lanes continuously monitors the changes 

in traffic flow and speeds for vehicles  to determine the appropriate toll required to maintain an 

average speed of 45 mph (13). Depending on the prevailing conditions in the corridor, the 

dynamic tolling algorithm may consider changes in traffic flow and speeds on the GP lanes in the 

determination of tolls to be charged on the HOT lanes. The tolls are recalculated and updated 

every five minutes. 

 

 
 Figure 4.3: Map of I-85 express lanes 

 

HOT Lane Usage 

As of February 2013, the I-85 express lanes experienced about 395,744 monthly trips of which 

14% were non-tolled trips. Weekday trips also averaged 17,777. Compared to February 2012, 

monthly and daily trips increased by 13.3% and 21.5% respectively. The total PeachPass 

accounts created also increased from 219,410 in February 2012 to 224,808 in February 2013 

(+2.5%) (70). 
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Revenue 

Tolls charged for the use of the express lanes are the main source of revenue since the cost of 

opening a PeachPass account is free. Average daily toll paid by users in February 2013 was 

$1.49, which is a 26.2% increase compared with $1.18 paid by users in February 2012 (70). At 

the end of the 2013 fiscal year, the I-85 express lanes took in $5.7 million in operating revenue 

and spent $7.4 million in operations and maintenance (71). Enforcement cost has been identified 

as a major driving factor in the high cost of running the express lanes. 

 

4.2.4 I-95 Express Lanes - Miami 

The I-95 express lanes (Figure 4.4) were first opened for use in 2008. The first phase of the 

project converted a single HOV lane into two express lanes while maintaining the same number 

of GP lanes. Phase 1A opened on December 2008 and ran northbound from SR-112 to the 

Golden Glades Interchange (GGI) area just north of NW 151
st 

street in Miami-Dade County. 

Phase 1B began tolling in January 2010 and runs southbound from the GGI area to I-395. Phase 

1B also extended the northbound express lanes further to the south so that the northbound lanes 

now run from north of I-395 to the GGI area. The second phase (phase 2) which began 

construction in November 2011 will also create HOT lanes in both directions between the GGI 

area in Miami-Dade County and Davie road in Broward County. The section analyzed in this 

research was between SR-112 and GGI area in both directions (about 7.3 miles). A map of the I-

95 express lanes is shown in Figure 4.4. The express lanes are separated from the GP lanes by 

flexible plastic poles (72). 

The express lanes are in operation at all times of the day and week. Until March 1, 2014, toll 

rates ranged between $0.25 and $7.0. Due to increasing driver demand for the use of the HOT 

lanes, new tolls ranging from $0.5 to $10.50 (73) are currently charged. The dynamic tolling 

algorithm used monitors traffic conditions exclusively on the express lanes and updates the toll 

rates every 15 minutes based on changes in express lane traffic density. The express lanes are 

open for use at no cost by pre-registered vehicles such as vanpools/carpools (3+), hybrid 

vehicles, Miami-Dade and Broward County buses, regular transit buses, school buses, and over-

the-road buses. Motorcycles and emergency vehicles can use the express lanes without the need 

for pre-registration. Vehicles which do not qualify for toll exemptions must create and own a 

SunPass electronic transponder in order to access the express lanes. These vehicles will be 

charged a toll that will be deducted from the prepaid SunPass account. Trucks with three or more 

axles are not allowed on the express lanes (74). 
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                                     Figure 4.4: A map of I-95 express lanes 

 

HOT Lane Usage 

About 1,738,838 vehicle trips were recorded on the I-95 express lanes for the month of February 

2013. Out of the total trips recorded, southbound and northbound directions constituted 51.3% 

and 48.7% respectively. Toll-exempt trips constituted approximately 1.9% of the total vehicle 

trips for the same time period. Average weekday volumes for southbound and northbound 

directions were 35,374 and 33,390 respectively (75). 

 

Revenue 

Total revenue generated from tolls from the opening of the express lanes to February 2013 is $55 

million. For the month of February 2013 alone, an amount of $1.72 million was realized from 

tolls. Average weekday peak period toll rate was $2.33 for southbound and $2.90 for 

northbound. In all, the southbound direction accounted for 51.7% of the total monthly revenue 

compared to 48.3% for the northbound direction (75). 
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4.3 VTTS Analysis 

As mentioned in the introductory part of this chapter, HOT lanes provide a relatively faster and 

reliable travel alternative to SOV drivers but at a cost. It is therefore necessary for transportation 

professionals to be knowledgeable about how much drivers are willing to pay in order to benefit 

from the premium service provided by HOT lanes. SOV drivers have a choice when a HOT 

facility is available – they can travel for free on GP lanes and experience a delayed travel time, 

or pay a toll to use HOT lanes and experience a lower travel time.  Based on how much drivers 

are willing to pay for HOT lanes access, the value they place on their travel time savings can be 

inferred. This metric is advantageous since it captures both the driver response to traffic 

conditions as well as toll rate. 

 

4.3.1 Data Needs for VTTS Analysis 

Two main types of data were needed to estimate HOT lane users’ VTTS. The two data types are 

traffic and tolling data. Each data type and how it was obtained for the study areas are briefly 

discussed below. 

 

Traffic Data  

Data describing the traffic conditions on both the GP and HOT lanes enables the determination 

of their respective travel times. If the length of the analysis segment is known, average speed can 

be used to estimate the average travel time traveled on GP and HOT lanes from which travel 

time savings can be computed.  Travel time savings for two of the facilities (I-394 MnPASS 

lanes and I-95 express lanes) were generated using the above-mentioned procedure. On I-394 

MnPASS lanes, average speed data was obtained from MnDOT’s “data extract” tool. The speed 

data covered the reversible section (2.7 miles) of the HOT lanes between October 2012 and 

February 2013. In total, speed data was obtained from 12 detector stations at three minute 

intervals, 6 each from GP (S1125, S1126, S1127, S1128, S1129, and S1130) and HOT lanes 

(S280, S281, S282, S284, S286, and S288). The speed data was used in estimating the respective 

travel times on GP and HOT lanes, and the resulting HOT lane travel time savings. Similarly, 

average speed data for I-95 express lanes was obtained from Florida department of 

transportation’s (FDOT) central data warehouse, STEWARD, which is maintained by the 

University of Florida. Seven detector stations each from GP (600301, 600471, 600521, 600641, 

600781, 600791, and 600851) and HOT lanes (690421, 690471, 690511, 690551, 690641, 

690791, and 690841) were used to obtain the speed data at 15 minute intervals from October 

2012 to February 2013. The speed data was used in estimating travel time savings experienced 

by users of the I-95 express lanes. 

The data for both I-394 MnPASS and I-95 express lanes were screened for outliers using several 

key standards set by the Texas Transportation Institute (TTI) in their Monitoring Urban 

Freeways in 2003 report (76). About 95% of the original data was retained after screening 

process. The standards include: 

1. Setting maximum and minimum speeds at 80 mph and 5 mph respectively; 
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2.  Removing data points associated with controller error codes; 

3. Consistency of elapsed time between records; 

4. Removal of duplicate records when detector and timestamp are identical for multiple 

records ; 

5. No more than 8 consecutive identical volume-occupancy-speed;  

6. Removal of records with zero volume values when speed is non-zero; and 

7. Removal of records with zero speed value when volume is non-zero. 

 

For I-85 express lanes (Atlanta, GA) and I-15 Fast Trak express lanes (San Diego, CA), average 

travel times for both GP and HOT lanes were directly provided by State Road Tollway Authority 

(SRTA) and San Diego association of governments (SANDAG) respectively. SRTA and 

SANDAG are the agencies which manage I-85 express lanes and I-15 Fast Trak express lanes 

respectively. The travel times were provided at 5-minute intervals for I-85 express lanes and 3-

minute intervals for I-15 Fast Trak express lanes. Consequently, travel time savings were 

calculated for each HOT facility. 

 

Tolling Data 

Toll amounts paid by users of HOT lanes were obtained for a 5-month period; between October 

2012 and February 2012 excluding weekends and holidays. For I-85 express lanes, the toll data 

was provided at 5-minute intervals, which is the frequency at which toll rates are calculated and 

updated. Toll data for I-394 MnPASS lanes and I-15 Fast Trak express lanes was provided at 3-

minute intervals with that of I-95 express lanes at 15-minute intervals. Time intervals during 

which no tolls were charged as a result of an incident or technical failures were excluded from 

the dataset. This constituted only 1% of the tolling data for all HOT facilities studied. 

 

4.3.2 Methodology for VTTS Estimation 

Both GP and HOT lanes generally operate at similar traffic conditions prior to congestion, with 

the later offering superior travel alternative during the peak and congested periods. It is possible 

that the VTTS for travelers might differ between congested and non-congested periods. 

Therefore, it was  essential to estimate VTTS for the entire morning (6:00 AM to 10:00 AM) and 

evening (3:00 PM to 7:00 PM) periods as well as for the morning and evening peak periods (7:30 

AM-8:30 AM/5:00 PM-6:00 PM). This will help to establish if travelers’ VTTS changes with 

congestion. Data from the entire 5-month analysis period was used in calculating VTTS; 

however, holidays, weekends, and days with weather-related incidents (e.g. snow) were 

excluded. 

VTTS can be expressed mathematically as:  

                                                      VTTS = 
          (  

                    (      
                                  (4-1) 
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For each HOT facility, mean VTTS was calculated as the ratio of average toll paid ($) to average 

travel time savings (hours). Both average toll paid and average travel time savings were 

calculated by weighting the toll or travel time savings by the number of users who experienced 

it.  Mean VTTS estimation results and discussion are presented in the section below. 

 

4.3.3 Results and Discussions 

Tables 4.2 and 4.3 display mean VTTS estimates for the four HOT lane facilities during the 

entire morning/evening periods and peak periods respectively.  

                              

FACILITY DIRECTION LOCATION AVERAGE 

TOLL 

($/mile) 

AVERAGE 

TT 

SAVINGS 

(min/mile) 

MEAN 

VTTS 

($/hour) 

MEDIAN 

VTTS 

($/HOUR) 

I-394  EB (AM) Minneapolis 0.41 0.37 66.5 55.1 

 

I-15  

NB (PM)  

San Diego 

0.25 0.25 59.6 51.2 

SB (AM) 0.35 0.38 55 45.5 

 

I-95 

NB (PM)  

Miami 

0.37 0.49 45.1 41.2 

SB (AM) 0.36 0.43 49.7 43.8 

 

I-85  

NB (PM)  

Atlanta 

0.22 0.43 30.6 18.5 

SB (AM) 0.45 0.5 53.4 38.1 

Table 4.2: VTTS for morning and evening periods 

 

EB: Eastbound direction;  

NB: Northbound direction;  

SB: Southbound direction 

AM: Morning period;  

PM: Evening period 
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FACILITY DIRECTION LOCATION AVERAGE 

TOLL 

($/mile) 

AVERAGE 

TT 

SAVINGS 

(min/mile) 

MEAN 

VTTS 

($/hour) 

MEDIAN 

VTTS 

($/hour) 

I-394  EB (AM) Minneapolis 0.51 0.43 71.2 60.8 

I-15  NB (PM)  

San Diego 

0.41 0.37 66 59.7 

SB (AM) 0.54 0.41 79 72.4 

I-95 NB (PM)  

Miami 

0.5 0.61 48.6 43.4 

SB (AM) 0.43 0.52 50.9 44.2 

I-85  NB (PM) Atlanta 0.28 0.40 42.0 34.8 

SB (AM) 0.59 0.59 59.8 42.5 

Table 4.3: VTTS for morning and evening peak periods 

 

The results in Tables 4.2 and 4.3 were further analyzed to determine if there was a general 

trend/behavior among travelers from the various HOT facilities in terms of average tolls paid, 

travel time savings, and VTTS. Details of the analysis are presented below. 

 

Trends in Average Toll Rate 

In order to compare average toll rate values from the different studied HOT facilities, they were 

normalized by the lengths of the HOT lanes, hence the unit $/mile. With the exception of I-85 

express lanes, there was no huge difference between the average tolls paid during the morning 

and evening (as well as their peak) periods. The average toll paid on I-85 express lanes during 

the morning period ($0.45 per mile) was about twice what was paid during the evening period 

($0.22 per mile). A possible explanation for the uniqueness of I-85 express lanes is the stark 

difference between congestion levels during morning and evening commute on the parallel GP 

lanes as shown in Figure 4.5. Average density on GP lanes parallel to I-85 express lanes during 

the morning period (55 veh/mi/l) was significantly higher than that of the evening period (35 

veh/mi/l). It is expected that more eligible HOT lane users will shift to the HOT lanes when the 

GP lane becomes congested, causing higher morning period tolls than that of the evening period. 

On the remaining facilities, the difference between GP lane congestion levels during morning 

and evening periods wasn’t as huge as that experienced on I-85 express lanes. For example, 

average density on GP lanes parallel to I-15 Fast Trak express lanes was similar for both 

morning (30 veh/mi/l) and evening (29 veh/mi/l) periods.  
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              a) Morning Period 

               
              b) Evening Period 

              Figure 4.5: Toll rate variations on I-85 express lanes 

 

Tolls paid during peak periods were found to be higher than that of entire morning/evening 

periods. This makes sense since the level of congestion on GP lanes during peak periods are 

usually high; this causes many vehicles to shift to the HOT lanes, leading to an increase in tolls 

in order to avoid breakdown of traffic in the HOT lanes. For example, the difference was 

significant for I-15 express lanes where average toll paid during the morning period was $0.35 

per mile compared with $0.54 per mile for the peak period.  

From the discussion above, it can be said that average toll paid on most facilities during morning 

and evening periods were almost the same as observed on I-15 Fast Trak and I-95 express lanes. 

However, when difference in levels of GP lanes congestion significantly differ between the 

morning and evening periods, the average toll paid also differs significantly between the two 

time periods (as observed on I-85 express lanes). Also, travelers on all the studied facilities were 

observed to pay higher tolls during the peak/congested periods regardless of morning or evening 

commute and the magnitude of the difference varied among the studied facilities. Finally, 
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average toll paid by travelers on the different HOT facilities were generally similar in magnitude 

and there seem to be no trend in terms of geographical location of the HOT facilities. 

 

Variations in Travel Time Savings 

There was no significant difference in travel time savings between morning and evening period 

commute for all facilities studied. As shown in Figure 4.6, the difference in travel time savings 

on I-15 between morning and evening periods was only 0.15 minutes per mile. Therefore, total 

difference in travel time savings for the entire study length of 4 miles was 0.6 minutes (36 

seconds). Similar insignificant directional differences in travel time savings were observed 

during the peak periods as well. Also, peak period travel time savings were generally higher than 

non-peak periods. On average travel time savings between the peak and entire/morning evening 

periods was 0.1 minute/mile.  

Average travel time savings on I-95 (0.47 minutes/mile) and I-85 (0.46 minutes/mile) express 

lanes were found to be higher than corresponding average travel time savings on I-394 MnPASS 

(0.37 minutes/mile) and I-15 Fast Trak (0.32 minutes/mile) express lanes during the morning and 

evening periods. The difference in average travel time savings between the two groups of HOT 

facilities was about 0.1 minute/mile. Similar observation was made during the peak periods as 

well. 

Consequently, it can be said that there is no significant directional difference in average travel 

time savings for the HOT facilities studied. Also, average travel time savings were higher during 

peak periods for all studied facilities. Finally, the range of average travel time savings for all the 

studied HOT facilities were generally between 0.05 and 0.65 minutes per mile.  
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              b) Evening Period 

               Figure 4.6: Average travel time savings on I-15 express lanes 

 

VTTS Distribution 

Distributions of VTTS were developed for all the studied HOT facilities. All the distributions 

were positively skewed (skew values between 0.9 and 1.32) regardless of direction of travel. 

That is, there were a few travelers with extremely high VTTS values extending the tail of the 

distribution farther to the right. This implied that, the mean VTSS for the studied facilities were 

higher than their respective median estimates. VTTS values were generally within similar ranges 

for each of the facilities ($0/hour to $400/hour) except for I-15 Fast Trak lanes which had a 

narrower range between $0/hour and $230/hour. The standard deviations of VTTS estimates for 

each of the facilities generally ranged between $30/hour and $50/hour. For each of the HOT 

facilities, about 70% of VTTS estimates were less than $100/hour and 90% were below $200 

/hour. This suggests that only a few travelers had extremely high VTTS estimates. The higher 

VTTS estimates were as a result of travelers using the HOT lanes when travel time savings were 

very little (sometimes as low as 30 seconds). Figure 4.7 shows VTTS distributions for the 

different HOT lane facilities studied.  

0

1

2

3

4

5

6

3
:0

0
:0

0
 P

M

3
:1

5
:0

0
 P

M

3
:3

0
:0

0
 P

M

3
:4

5
:0

0
 P

M

4
:0

0
:0

0
 P

M

4
:1

5
:0

0
 P

M

4
:3

0
:0

0
 P

M

4
:4

5
:0

0
 P

M

5
:0

0
:0

0
 P

M

5
:1

5
:0

0
 P

M

5
:3

0
:0

0
 P

M

5
:4

5
:0

0
 P

M

6
:0

0
:0

0
 P

M

6
:1

5
:0

0
 P

M

6
:3

0
:0

0
 P

M

6
:4

5
:0

0
 P

M

7
:0

0
:0

0
 P

M

Tr
av

e
 T

im
e

 S
av

in
gs

 (
m

in
u

te
s)

 

Time of Day 



71 
 

             

I-95 Express lanes (Evening period)                                                                 I-85 Express  lanes (Morning period)                                                     

             

I-394 MnPASS lanes (Morning period)                                                     I-15 Express lanes (Morning period) 

Figure 4.7: VTTS distribution for studied HOT facilities  
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STDEV = 20.3 
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In terms of directional effects, average VTTS estimates (both mean and median) were generally 

higher during the morning periods than the evening periods for all the study sites except for I-15 

Fast Trak express lanes. However, the directional differences in VTTS estimates were not 

significant for all the facilities except for I-85 express lanes where the VTTS estimate for the 

morning period ($53.4/hour) was almost twice the estimate for the evening period ($30.6/hour). 

This was mainly due to the relatively high tolls charged during the morning period when GP lane 

congestion caused more travelers to shift to the HOT lanes. Accordingly, I-85 express lanes had 

the highest ratio of mean (1.75) and median (2.0) VTTS estimates between morning and evening 

periods.  

I-394 MnPASS lane users paid a mean and median VTTS of $66.5/hour and $55.1/hour 

respectively during the morning period. This value is pretty close to the $53/hour median VTTS 

reported by Cho et al (2011) (77) for the same analysis segment of the facility. For I-15 Fast 

Trak express lanes, the $45.5 per hour median VTTS obtained in this research during the 

morning period is slightly lower than the median VTTS ($49.22 per hour) reported by Burris et 

al (2012). The analysis period for that study was between 5:30 AM and 12:00 PM while that of 

this research was between 6:00 A.M. and 9:00 A.M. The evening period median VTTS ($51.2 

per hour) was also slightly less than the median VTTS ($54.39 per hour) reported Burris et al 

(2012) (12) . The median VTTS estimate for I-85 express lanes ($38.1 per hour during the 

morning period) was not significantly different from what has been reported for this facility in 

existing literature. Sheikh et al (2014) reported a median VTTS estimate of $36 per hour for 

users of I-85 express lanes (13) while Wood et al (2014) reported a median VTTS estimate of 

$33.17 per hour for the same facility (15). The only literature on VTTS estimate for users of I-95 

express lanes used data from 208 individual trips which occurred between August 17
th

 2011 and 

August 21
st
 2011. The authors reported a mean VTTS estimate of $32/hour (35). This estimate is 

lower than the mean VTTS estimate obtained in this research ($47.4 per hour). The small sample 

size (only 5 days) used by the authors may not have covered the entire spectrum of VTTS 

distribution on I-95 express lanes, and may be the reason for the observed disparity in the VTTS 

estimate. 

Generally, VTTS estimates during the peak period were relatively higher than that of entire 

morning/evening periods for all HOT facilities analyzed. For the morning commute direction, 

peak mean VTTS was about $5/hour more for all HOT facilities except I-15 Fast Trak lanes 

where the mean peak VTTS was $24 per hour more. The higher cost of using I-15 express lanes 

during the morning peak period was as a result of the small travel time savings it provided 

despite the hike in toll price. The evening commute was similar to the morning commute in 

terms of difference between peak and non-peak VTTS estimates. Peak VTTS estimates were 

$5/hour more except for I-85 express lanes whose peak VTTS estimate was $12 per hour more 

than the non-peak period.  

Two operational and geometric characteristics of the HOT facilities analyzed could influence the 

relative values of VTTS estimates. The length of analysis segments for I-394 MnPASS (2.7 mile) 

and I-15 Fast Trak express lanes (4 miles) were shorter than the corresponding analysis lengths 

of I-95 (7.3 miles) and I-85 (6.8 miles and 9.6 miles for southbound and northbound 

respectively). It is possible that the shorter lengths on I-394 MnPASS and I-15 Fast Trak express 

lanes might influence drivers to use the HOT lanes (because of the notion that short lengths cost 

less) even when there are no apparent travel time savings. However, considering the fact that 
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most of the HOT facility users are commuters and might have used the facility for a longer 

period of time, they should be aware of the true costs for using even shorter segments. Secondly, 

HOV usage is relatively higher on I-394 MnPASS (51%) and I-15 Fast Trak express lanes (80%) 

than on I-95 (1.9%) and I-85 (14%) express. Therefore, high usage of the HOT facilities by 

HOVs (on I-394 MnPASS and I-15 Fast Trak express lanes) might inflate the VTTS estimates 

for these two facilities since aggregate data was used. However, past research efforts on I-394 

MnPASS and I-15 Fast Trak express lanes using SOV only data resulted in similar VTTS 

estimates (12). Therefore, the impact of HOV usage on the VTTS estimates calculated in this 

research might be less profound. 

 

Hypothesis Testing of VTTS Distributions 

VTTS tend to differ among individuals and across time (57,58) and may differ among different 

regions/localities. However, it is also possible that some different geographical regions/locations 

may have similar distributions of VTTS. Regardless of whether or not VTTS estimates vary 

across geographical regions, the most important insight is the cause of such variance/invariance. 

In order to achieve this purpose, hypothesis tests were conducted between VTTS distributions of 

all HOT facilities studied in this research. Statistical distributions are employed in hypothesis 

testing to estimate the probabilities of observing the sample data, given an assumption of what 

“should have” occurred. When observed results are extremely unlikely to have occurred under 

assumed conditions, then the assumed conditions are considered unlikely (78). A two-tail 

hypothesis test investigating whether the average VTTS for a pair of HOT facilities are the same 

or not was used at 5% significance level.   

If 

                     µ1 is the average VTTS for users of HOT facility in location A; and 

                     µ2 is the average VTTS for users of HOT facility at location B 

  Then the competing hypotheses are: 

                                      Null hypothesis: Ho: µ1 - µ2 = 0 

                                     Alternate hypothesis: Ha: µ1 - µ2 ≠ 0 

Since the sample size for each of the VTTS distribution was large (>=1000), an approximate 

normal distribution could be assumed; therefore, the test statistic used for the hypothesis testing 

was the Z-statistic. Also, the hypothesis testing was conducted assuming unequal variance. The 

results of the hypothesis test are as shown below in Table 4.4. 
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FACILITY PAIR Z-STATISTIC 

(toll elasticity) 

P(Z<z) two-

tail 

Z Critical 

two-tail 

RESULT 

I-394 VS. I-15 1.691 .071 1.96 Equal 

I-394 VS. I-95 4.280 .020 1.96 Not equal 

I-394 VS. I-85 2.972 .016 1.96 Not equal 

I-15 VS. I-95 5.654 .034 1.96 Not equal 

I-15 VS. I-85 3.176 .039 1.96 Not equal 

I-85 VS. I-95 1.81 .068 1.96 Equal 

      Table 4.4: Results of hypothesis testing 

The null hypothesis (average VTTS estimates are equal for each pair of HOT facilities) is 

rejected if the Z statistic is greater than the critical Z value and vice versa. Based on Table 4.4 

above, there is no evidence to reject the assumption that I-394 MnPASS lanes and I-15 Fast Trak 

have the same average VTTS since the Z statistic (1.691) is less than the critical Z value (1.96) at 

5% significance level. Similarly, there isn’t enough evidence to reject the null hypothesis that the 

average VTTS estimates for I-85 and I-95 express lanes are equal. The remaining HOT facility 

pairs appear to have statistically significant differences between their respective average VTTS 

estimates based on the results of the hypothesis test. Having identified statistically significant 

differences and similarities among the studied HOT facilities in terms of their average VTTS 

estimates, the next logical step is to explore the factors that might have contributed to such 

findings. The next section discusses some of the potential factors that may directly or indirectly 

influence the observed differences/similarities between average VTTS estimates of the studied 

HOT facilities. 

 

4.4.1 Possible Reasons for VTTS Similarities/Differences 

A lot of factors (travel-related and socio-economic) have been identified to influence variation in 

VTTS. These include travel related factors such as trip purpose (commuting trips, business trips 

and private trips), travel time (length of journey), level of comfort during travel (e.g. weather 

condition during travel), travel mode (transit, automobile, etc.),  travel costs and time of day trip 

is made. The individual socio-economic factors include income level, age and gender (which 

influences perception of time), household level composition and level of education. Among the 

numerous factors listed above, trip purpose and income level have been found to be very 

influential in VTTS variations (57). However, the impact of travel time is worth considering 

alongside trip purpose and income level in this research. This is because travel time savings were 

found to be different for I-394 MnPASS/I-15 Fast Trak express lanes and I-95/I-85 express 

lanes; this implies that congestion levels on parallel GP lanes might be different for the two 

groups of HOT facilities. It is therefore necessary to explore how GP lane congestion levels 

affect VTTS for each HOT facility. Also, travel reliability (level of variation in travel conditions) 

could play an important role in the magnitude of VTTS estimates. If travel time variability is 

very high on the GP lanes, then drivers may tend to use the HOT lanes regularly in anticipation 

of unreliable travel conditions on the GP lanes.  

The data used in generating VTTS estimates for all the studied HOT facilities was between 6:00 

AM-10: 00 AM and 3:00 PM to 7:00 PM. These are the typical time periods during which 
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morning and evening commutes take place. Therefore, trips on all of the HOT facilities analyzed 

have the same purpose—commuting; this implies that trip purpose wouldn’t be a differentiating 

factor for the observed similarities/differences between VTTS estimates of the studied HOT 

facilities. Therefore level of congestion on GP lanes, income level, and travel reliability were 

further investigated to determine their impacts on the observed similarities/differences between 

VTTS estimates. 

 

Level of Congestion on GP Lanes 

Travel time savings were found to be relatively higher for users of I-95 and I-85 express lanes 

compared to the travel time savings enjoyed by users of I-394 MnPASS and I-15 Fast Trak lanes. 

The difference in travel time savings arose from the relatively higher levels of congestion on the 

GP lanes parallel to I-95 and I-85 express lanes than those parallel to I-394 MnPASS and I-15 

Fast Trak express lanes as shown in Figure 4.8 below.  

               
               a) I-394 MnPASS lanes 

               
              b) I-95 Express lanes 

              Figure 4.8: Comparing GP lane congestion levels  
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From Figure 4.8 above, the difference in speed between MnPASS and parallel GP lanes is at 

most 21 mph during the peak period. On the contrary, a larger speed difference of about 35 mph 

is observed between I-95 express lanes and the parallel GP lanes. Obviously, travel time savings 

will be higher for I-95 express lane users than those using I-394 MnPASS lanes; this 

consequently leads to a relatively lower VTTS on I-95 express lanes than I-394 MnPASS lanes. 

The differences in the level of GP lane congestion between the two groups of HOT facilities 

could be explained by the level of highway use at each HOT facility’s location. Vehicle Miles 

Traveled (VMT) is an indicator of the travel levels on the roadway system by motor vehicles. As 

the amount of vehicle travel increases, the time wasted on congested roadways increases 

accordingly (79). According to Texas Transportation Institute’s (TTI) urban mobility report 

2012, VMTs for Miami (I-95 express lanes) and Atlanta (I-85 express lanes) areas were higher 

than those of Minneapolis-St. Paul (I-394 MnPASS) and San Diego (I-15 Fast Trak). Daily total 

(Freeway and principal arterials) VMTs in 2011 for Miami and Atlanta were 92,702,000 and 

94,300,000 respectively. The corresponding total daily VMTs for Minneapolis-St. Paul and San 

Diego were 54,302,000 and 59,483,000 respectively (1). Although these are not the VMTs for 

the studied HOT corridors, they are an indication of the level of demand for highway travel at 

their respective locations/regions. A lot of factors can influence VMTs (e.g. population, travel 

cost such as fuel, low levels of public transit, sprawl, etc.) (79); however, their considerations 

were beyond the scope of this research. 

 

Income Levels and Regional Economy 

Income levels tend to influence the value travelers place on their travel time savings (34,58). In 

order to ascertain if it played a role in the observed similarities/differences between VTTS 

estimates of the studied HOT facilities, annual income data for locations of the studied facilities 

were obtained from the 2012 American Community Survey (ACS). Additionally, employment 

data for the locations of each studied HOT facility was obtained from ACS’ 5-year estimates 

(2008-2012). Discussions of the income levels and employment distribution for the studied 

locations are presented in the next sections. 

 

I-394 MnPASS Lanes, Minneapolis 

Minneapolis is part of Hennepin county, Minnesota with civilian employed population (16 years 

and over) of about 620, 758. Significant proportion of the jobs in the county fall into the 

following industries: educational, healthcare, and social assistance services (22.9%); 

manufacturing (11.9%); retail trade (11.7%); and finance, insurance, real estate, rental, leasing 

(9.9%). The mean and median incomes for the county in 2012 were $89,008 and $63,559 

respectively. As shown in the income distribution in Figure 4.9 below, about 17.3% of the 

working population earned between $50,000 and $74,999 (modal income level). On average, 

about 30% of the working population earned over $100,000 in 2012 while 28% earned below 

$35,000 (80). Since the mean income is higher than the median income, the income distribution 

appeared to be positively skewed i.e. small percentage of the population have extremely high 

annual incomes.  
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      Figure 4.9: Annual income distribution for Hennepin County (Minneapolis area) 

 

I-15 Fast Trak HOT Lanes, San Diego 

The city of San Diego is located within the San Diego county, and has a working population (16 

years and over) of about 1,386,825. The major sources of employment include: educational, 

healthcare, and social assistance services (20.9%); professional, scientific, management, 

administrative, and waste management services (14.2%); retail trade (11.1%); and manufacturing 

(9.4%). The mean and median incomes for the year 2012 were $95,806 and $73,969 

respectively. The modal income (between $50,000 and $74,999) was earned by about 17.3% of 

the population. About 30% of the working population earned at least $100,000 while 28% earned 

below $35,000 (80). The income distribution appeared to be positively skewed with a small 

percentage of the working population earning extremely high incomes. Figure 4.10 shows the 

2012 income distribution for San Diego County. 

 

                 
             Figure 4.10: Annual income distribution for San Diego City  
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I-95 Express Lanes, Miami 

I-95 express lanes connect cities in the northern part of Miami Dade County (as well as nearby 

cities in Broward County) to the downtown areas of Miami. The working population (16 years 

and over) in Miami-Dade county is about 1,132,783 of which 72.4% are male and 27.6% female. 

The major industries providing employment are: educational, healthcare, and social assistance 

services (20.2%); professional, scientific, management, administrative, waste management 

services (12.4%); retail trade (12.4%); and arts, entertainment, recreation, accommodation and 

food services (10.5%). The mean and median incomes for 2012 were $65,799 and $43,464 

respectively. For the nearby Broward County where significant proportions of I-95 express lane 

users come from, the mean and median incomes were $72,122 and $51,603 respectively in 2012. 

The modal income range for both counties was between $50,000 and $74,999. Additionally, 

about 19% of the working population from both counties earned at least $100,000 while 28% 

earned below $35,000 (80). As observed for San Diego and Hennepin counties, the income 

distributions for both Miami-Dade and Broward counties were positively skewed as shown 

below in Figure 4.11. 

 

                     
                 Figure 4.11: Annual income distribution for Miami Dade County 
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respectively. On average, about 27% of the working population earned at least $100,000 while 

26% earned below $35,000. About 19.4% of the working population earned between $50,000 

0.0%
2.0%
4.0%
6.0%
8.0%

10.0%
12.0%
14.0%
16.0%
18.0%
20.0%

%
 o

f 
P

o
p

u
la

ti
o

n
 

Personal Income ($) 



79 
 

and $74,999 (modal income) (80). Figure 4.12 shows the 2012 income distribution for Gwinnet 

County. 

 

                  
              Figure 4.12: Annual income distribution for Atlanta area 

 

Table 4.5 provides a summary of the annual average income of all the regions/locations under 

study. It also compares the mean and median incomes with VTTS estimates of HOT facilities. 

 

FACILITY LOCATION 

(COUNTY) 

2012 

MEAN 

INCOME 

($) 

2012 

MEDIAN 

INCOME 

($) 

PEAK 

MEAN 

VTTS 

($/hour) 

PEAK 

MEDIAN 

VTTS 

($/hour) 

INCOME 

DISTRIB

UTION 

I-394 Minneapolis 

(Hennepin) 

89,008 63,559 71.0 60.8 Positive-

skewed 

 

I-15 

San Diego 

(San Diego) 

 

95,806 

 

73,969 

 

72.5 

 

65.9 

 

Positive-

skewed 

 

I-95 

Miami/Browar

d Counties 

 

68,960 

 

47,534 

 

49.5 

 

43.8 

 

Positive-

skewed 

 

I-85 

 

Atlanta 

(Gwinnett) 

 

78,204 

 

61,944 

 

50.9 

 

38.7 

 

Positive-

skewed 

Table 4.5: Comparing average annual incomes with peak VTTS estimates 
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Generally, the annual income distribution for all HOT facilities analyzed appeared to be 

positively skewed; implying the tail of the distribution is extended far to the right as a result of 

high annual incomes earned by a small percentage of the population. Another commonality 

between all the studied locations was the sources of employment for the population.  

Educational, healthcare, and social assistance industry was consistently the first or second major 

source of employment in all of the four locations. The retail trade industry was also among the 

top four sources of employment at all the studied locations. Although the percentage 

distributions of these jobs are not uniform across the studied locations, there appear to be no 

stark difference between the respective local economies of all HOT facilities analyzed.  

In terms of annual average income earnings, Miami-Dade is ranked lowest while the San Diego 

area is ranked highest. There is about 16.3% difference in annual median income between San 

Diego and Hennepin County/Minneapolis (second highest annual income) as well as 19.4% 

difference between San Diego and Gwinnet County (Atlanta area). Before any meaningful 

comparisons could be made between income levels, it was necessary to consider variations in the 

purchasing power of money across geographical locations. If the income data in Table 4.5 is to 

be analyzed as it is, an implicit assumption has to be made; the assumption is that a dollar in San 

Diego and Minneapolis (or Atlanta and Miami) can buy the same quantity of a particular good. 

In reality however, price levels vary across geographical locations; therefore it is necessary to 

correct for these price disparities before any meaningful comparison of annual average income 

levels could be made. Regional Price Parities (RPPs) help to account for the differences in price 

levels in personal incomes across geographical locations. RPPs measure the differences in the 

price levels of goods and services across states and metropolitan areas for a given year. They are 

expressed as a percentage of the overall national price level for each year, which is equal to 

100.0 (81). Mathematically, RPPs can be expressed as: 

                                                         RPP = (Pi/PUS) *100                                                       (4-2) 

Where:  

          Pi is the price level for location i 

          PUS is the national average price level for the entire U.S. 

 

The RPPs are constructed in two stages. The first stage uses price and expenditure inputs 

collected for the Bureau of Labor Statistics (BLS) Consumer Price Index (CPI) program and the 

BLS Consumer Expenditure Survey (CE). CPI price data are available for 38 urban areas, while 

CPI expenditure weights, derived from CE survey data, are available for the 38 urban areas plus 

four additional rural regions. In this stage, price levels are estimated for CPI areas.
 
In the second 

stage, the price levels and expenditure weights are allocated from CPI areas to all counties in the 

United States. They are then recombined for regions, such as states and metropolitan areas, for 

which final RPPs, including an all item RPP, are estimated. This stage incorporates data for 

housing from the Census Bureau’s ACS. The ACS provides snapshots of the entire U.S. 

population, with a focus on demographic and housing conditions. 

To account for price differences in personal incomes, the personal income must be divided by the 

RPP for a given year and region. If the RPP for area A is 140 and for area B is 90, then on 
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average, prices are 40% higher and 10% lower than U.S. average for A and B respectively. 

Therefore, if the personal income for area A is $14,000 and for area B is $10,000, then the RPP-

adjusted incomes are $10,000 ($14,000/1.4) and $11,111 ($10,000/0.9) respectively. Although 

area A has a higher personal income than area B, the purchasing power for area B’s income is 

higher than that of area A’s income.  

The RPPs for all the study locations were obtained from the Bureau of Economic Analysis 

(BEA) and used to adjust their respective personal annual average incomes. The adjusted-

personal annual average incomes can now be compared because they have been corrected for the 

differences in price levels. Table 4.6 shows the RPP-adjusted incomes.
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FACILITY LOCATION 

(COUNTY) 

2012 MEAN 

INCOME 

($) 

RPP RPP-

ADJUSTED 

MEAN 

INCOME 

($) 

RPP-

ADJUSTED 

MEDIAN 

INCOME 

($) 

PEAK 

MEAN 

VTTS 

($/hour) 

PEAK 

MEDIAN 

VTTS 

($/hour) 

I-394 Minneapolis 

(Hennepin) 

89,008 1.022 87,092 62, 190 71.0 60.8 

 

I-15 

 

San Diego (San Diego) 

 

95,806 

 

1.143 

 

83,820 

 

64,715 

 

72.5 

 

65.9 

 

I-95 

 

Miami-Dade/Broward 

Counties  

 

68,960 

 

1.045 

 

65,990 

 

45,487 

 

49.5 

 

43.8 

 

I-85 

 

Gwinnett (Atlanta) 

 

78,204 

 

0.978 

 

79,963 

 

63,337 

 

50.9 

 

38.7 

Table 4.6: RPP-adjusted annual incomes and VTTS estimates 

 

.
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From Table 4.6 above, Minneapolis and San Diego areas have almost the same RPP-adjusted 

mean (difference of 3.9%) and median (difference of 4.1%) annual incomes. The insignificant 

difference between the annual incomes of the two locations (Minneapolis and San Diego areas) 

might be a contributing factor to the similarity in their high VTTS estimates.  The RPP-adjusted 

mean incomes of $87,092 and $83,820 for Minneapolis and San Diego areas suggest that 

residents of these locations are likely to have enough income to pay for HOT lane use even when 

there are no significant travel time savings. As a result, their average VTTS estimates were found 

to be relatively high especially during peak periods ($71/hour for MnPASS users and $72.5/hour 

for I-15 Fast Trak users). Although Miami and Gwinnet (Atlanta) County areas both have RPP-

adjusted annual incomes below $80,000, the difference between their average annual incomes 

(21%) is higher than that observed between Minneapolis and San Diego areas (about 4%). 

Notwithstanding the above observation, the annual income level of both locations is still a causal 

factor in their relatively low VTTS estimates. However, the magnitude of the impact of annual 

income on VTTS estimates might be higher for Minneapolis/San Diego areas than for the 

Miami/Gwinnet (Atlanta) County areas. The impact of income levels on VTTS is well 

documented in literature, reaffirming the findings in this research.  Zmud et al (2007) conducted 

a stated preference survey of I-394 MnPASS users and found that VTTS estimates increase 

sharply with income above $100,000 levels (34). Patil et al (2011) also conducted a stated 

preference survey of users of the Katy managed lanes in Houston, Texas. The authors concluded 

that the likelihood of using the managed lanes increases as a traveler’s household income 

increases (30).  

It can therefore be concluded that the high income levels of Minneapolis and San Diego areas 

contributed to the high VTTS estimates of I-394 MnPASS and I-15 Fast Trak users respectively. 

Users of these facilities have high income levels and are likely to pay for HOT lane use even 

when the travel time savings were insignificant. Similarly, the relatively low income levels of the 

Miami and Atlanta areas contributed to the low VTTS estimates. In this instance, users of I-95 

and I-85 express lanes usually paid for HOT lane use when travel time savings were relatively 

significant. 

 

Travel Reliability 

The level of variability in travel conditions on the GP lanes has the potential to influence HOT 

lane usage. Commuters are usually aware of the average levels of congestion on routes they use, 

and tend to account for it in travel time estimation or change departure times in order to avoid it. 

However, if the GP congestion levels have high variability (less reliable) then the possible 

alternative is regular use of the HOT lanes which guarantee reliable travel times at least 95% of 

the time. Three reliability measures were calculated for parallel GP lanes on each HOT facility 

analyzed. They include Planning Time Index (PTI: ratio of 95
th

 percentile travel time to free-

flow travel time), Travel Time Index (TTI: ratio of peak travel time to free-flow travel time) and 

Coefficient of Variation (CV: ratio of travel time standard deviation to average travel time). High 

values of these reliability measures indicate high travel variability on the GP lanes and vice 

versa. The results are as shown below in Table 4.7.  
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FACILITY PTI TTI CV 

I-394 MnPASS Lanes 2.82 1.72 0.50 

I-15 Express Lanes 2.11 1.63 0.64 

I-85 Express Lanes 1.65 1.26 0.21 

I-95 Express Lanes 1.75 1.33 0.26 

                    Table 4.7: Travel time reliability measures 

From Table 4.7, the magnitudes of the reliability measures for GP lanes parallel to I-95 and I-85 

express lanes are relatively smaller than those found on GP lanes parallel to I-394 MnPASS and 

I-15 express lanes. Based on CV values for example, standard deviation of travel times on GP 

lanes parallel to I-394 MnPASS and I-15 express lanes is at least 50% of the average travel time 

compared with 21% on corresponding GP lanes parallel to I-85 express and I-95 express lanes. 

This suggests that, travel conditions on GP lanes parallel to I-95 and I-85 express lanes have less 

variability (high reliability) than what is experienced on GP lanes parallel to I-394 MnPASS and 

I-15 express lanes. With low travel reliability (high variability) on GP lanes parallel to I-394 

MnPASS and I-15 express lanes, drivers may tend to use the HOT lanes even when the GP lanes 

are less congested in order to be guaranteed reliable travel conditions (less variability). That is, 

although congestion levels on GP lanes parallel to I-394 MnPASS and I-15 express lanes maybe 

relatively low, travel conditions are less reliable; therefore travelers may shift to HOT lanes even 

when there are no apparent travel time savings, leading to high VTTS estimates. 

 

4.4.2 Comparing VTTS Estimates with Hourly Wages 

An important piece of information often used by transportation agencies to gauge driver 

willingness to pay values /VTTS is the average wage rate.  A research by Small et al. (2005) 

suggested that value of time for work trips is about 93% of average wage (82). That is, average 

wage is often used as a surrogate for how much drivers are willing to pay for travel time savings, 

and the toll rates on HOT lanes are likely to be set based on these values. However, the average 

wage is only an indication of the earnings of average residents; it does not capture completely, 

the high income earners at the far right tail of the income distribution. The VTTS estimates 

obtained in this research were compared with 2012 Bureau of Labor Statistics (BLS) average 

hourly wages for each HOT facility’s location. This approach was adopted to determine if 

average VTTS of HOT lane users is the same as the hourly wage of an average resident. Table 

4.8 shows the results of the comparison. 
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FACILITY LOCATION MEAN 

VTTS 

($/hour) 

BLS HOURLY 

WAGE 

($/hour) 

% MORE 

I-394  Minneapolis 71.0 24.2 193 

 

I-15  

 

San Diego 

 

72.5 

 

24.4 

 

 

197 

 

I-95 

 

Miami 

 

49.5 

 

20.6 

 

 

139 

 

I-85  

 

Atlanta 

 

50.9 

 

22.8 

 

 

123 

    Table 4.8: Mean VTTS vs. BLS hourly wages 

 

 

As evident in Table 4.7 above, HOT lane users’ VTTS estimates was at least more than twice the 

average hourly wages. For Minneapolis and San Diego, VTTS estimates were almost a triple of 

the average hourly wages. The stark difference between VTTS estimates and average hourly 

wages imply that HOT lane users are likely to earn more income than the average resident. As a 

result, they value their travel time savings more than the average resident. Therefore, 

transportation agencies must design tolls that are indicative of the true driver willingness to pay 

and not based on average hourly wages. 

 

4.5 Driver Elasticity 

The analyses in the previous sections have shed light on the behavior of HOT lane users in terms 

of their willingness to pay for travel time savings (i.e. VTTS differences/similarities across 

different facilities). However, it does not provide any insight into how the demand for HOT lane 

use will vary with changes in tolls and traffic conditions. Although it has been established (from 

previous section) that HOT lane users generally have higher VTTS (i.e. willing to pay more in 

order to use HOT lanes), it is not known how this behavior influences the drivers’ real-time 

decision to use/not to use the HOT lanes. Elasticity enables the determination of the 

responsiveness of HOT lane users (i.e. demand for HOT lane use) to changes in toll prices and 

traffic conditions. An additional factor which hasn’t been explored so far is how the level of 

congestion on parallel GP lanes affects HOT lane demand. Some of the relevant questions which 

this section seeks to answer include 1) whether HOT lane users have the same sensitivity to tolls 

and GP lane congestion, and 2) whether HOT lane users are sensitive to high toll rates even 

when the level of congestion on GP lanes is high. Details of the elasticity analysis are hereby 

presented.  
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4.5.1 Data Needs for Driver Elasticity Determination 

Three different types of data were used to estimate HOT lane driver elasticity. These include 

HOT lane volume/demand, toll rates, and GP congestion levels. Average density was selected as 

the surrogate for GP lane congestion since it is the most stable variable among the three traffic 

state variables (83). The data types are described below. 

 

HOT Lane Volume/Demand  

For the reversible I-394 MnPASS lanes and I-15 Fast Trak express lanes, volume was obtained at 

three minute intervals from the same detectors used in the VTTS analysis. Similarly, volume data 

for I-95 and I-85 express lanes were also obtained at 15-minute and 5-minute intervals 

respectively from the same detectors used in the VTTS analysis.  All data were screened for 

outliers using the data processing standards outlined in the VTTS analysis. 

 

GP Congestion (Density) 

Average density on the GP lanes was obtained using detector occupancy data. For I-394 and I-95 

express lanes, detector occupancy data were obtained from the same GP detectors used in the 

VTTS analysis. For I-85 and I-15 express lanes, detector occupancy data were obtained from 

Georgia’s Remote Traffic Microwave Sensor (RTMS) database and California’s freeway 

performance management system (PeMS) respectively. The occupancy data was converted to 

density using average field length of traffic sensors. It is important to note that, the densities used 

in this research were provided by the managing agencies of the studied HOT facilities. All data 

were screened for outliers using the same procedure employed in the VTTS analysis. 

 

Tolling Data 

Toll rates used in the elasticity analysis were the same as those used in the VTTS analysis in 

terms of both duration (October 2012 to February 2013) and intervals for each HOT facility. 

 

4.5.2 Methodology 

HOT lane driver elasticity was estimated for two factors: changes in toll rates and changes in GP 

congestion level (density). For elasticity with respect to price (toll rates), it was calculated in 

such a way that the effect of traffic fluctuations in the GP lanes can be accounted for. Therefore, 

HOT lane demand was obtained by normalizing HOT lane volume by the total volume on both 

HOT and GP lanes to obtain the percentage of HOT lane use in the corridor as shown below in 

equation 4-3. 

                       % of HOT Use (HOTD) = 
               

                         
                                      (4-3) 
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The driver elasticity of demand (ƐT) was subsequently calculated as: 

                            ƐT      =       (HOTDi+2- HOTDi+1)/ 0.5*(HOTDi+1   +HOTDi+2)                                (4-4) 
                                                (TRi+1  - TRi)/ 0.5*(TRi + TRi+1)  
                                             

 Where:  

           HOTDi+1    = % of HOT use at time i+1 

           HOTDi+2 = % of HOT use at time i+2 

           TRi = Toll rate been charged at time i 

           TRi+1 = Toll rate been charged at time i+1 

 

As seen in equation 4-4, the elasticities were calculated as midpoint arc elasticities instead of 

point elasticities. This is because; point elasticities are sensitive to which of the two points is 

chosen as the new point. This results in different elasticity values depending on whether the 

value at time i or i+1 is chosen as the new point. Midpoint arc elasticities account for this 

problem by using the midpoint of the values at i and i+1. This ensures that, the same elasticity 

value is obtained regardless of which point is chosen as the new/old point. Additionally, it is 

important to note that the elasticities are intended to measure changes in HOT lane demand as a 

result of changes in toll prices and not vice versa. 

Similarly, driver elasticity of demand w.r.t GP congestion level (density) was calculated as 

shown below in equation4-5. 

                ƐGP     =        (HOTVi+2 – HOTVi+1)/ 0.5*(HOTVi +2  + HOTVi +1)                                    (4-5) 
                                     (GPDEN i+1 - GPDENi )/ 0.5*(GPDENi+1+ GPDENi ) 
 

Where: 

         ƐGP = HOT lane driver elasticity w.r.t to GP congestion (density) 

         HOTVi = HOT lane volume at time i 

         HOTVi+1 = HOT lane volume at time i+1 

         HOTVi+2 = HOT lane volume at time i+2 

         GPDENi  = GP lane density at time i 

        GPDENi+1 = GP lane density at time i+1 
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Finally, the elasticity values were computed for the entire morning and evening periods as well 

as their respective peak periods. This helps to ascertain HOT lane driver reaction to the two 

factors under varying traffic conditions. 

 

4.5.3 Results and Discussions 

The results of HOT lane driver elasticity w.r.t prices (toll rates) and GP congestion level 

(density) is shown below in Tables 4.9 and 4.10.  

                              

FACILITY DIRECTION LOCATION AVEAGE PRICE 

ELASTICITY OF 

DEMAND 

 

 

AVERAGE 

ELASTICITY 

W.R.T GP 

DENSITY 

 

 

I-394  EB  (AM ) Minneapolis 0.11* 0.10* 

 

I-15  

NB (PM )  

San Diego 

0.16* 0.19* 

SB (AM ) 0.17* 0.21* 

 

I-95 

NB (PM )  

Miami 

0.09* 0.40* 

SB (AM ) 0.15* 0.48* 

 

I-85  

NB (PM )  

Atlanta 

0.08* 0.45* 

SB (AM ) 0.12* 0.50* 

AVERAGE   0.13 0.34 

Table 4.9:  Elasticity for morning and evening periods 

* Statistically significant 
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FACILITY DIRECTION LOCATION AVERAGE PRICE 

ELASTICITY OF 

DEMAND 

AVERAGE 

ELASTICITY 

W.R.T GP 

DENSITY 

 

I-394  EB (AM) Minneapolis 0.10* 0.12* 

 

I-15  

NB (PM)  

San Diego 

0.09* 0.23* 

SB (AM) 0.08* 0.22* 

 

I-95 

NB (PM)  

Miami 

0.03 0.53* 

SB (AM) 0.07* 0.68* 

 

I-85  

NB (PM)  

Atlanta 

0.06* 0.61* 

SB (AM) 0.04* 0.72* 

AVERAGE   0.07 0.45 

Table 4.10:  Peak period elasticity (7:30 AM – 8:30 AM/5:00 PM – 6:00 PM) 

 

An important finding revealed by this analysis is the magnitude and direction of the impacts of 

tolls on HOT lane demand. During the morning and evening periods, HOT lane demand 

elasticity w.r.t toll was positive for all HOT facilities analyzed. This implies that, an increase in 

tolls tend to increase the use of the HOT lanes. Under the HOT lane concept, tolls are supposed 

to discourage SOVs from using the HOT lanes. In other words, tolls are meant to have a negative 

impact on HOT lane demand, by disincentivizing SOVs from using it. A positive relationship 

between tolls and HOT lane demand defeats this purpose. The magnitude of the elasticity 

estimates was very low, depicting a highly inelastic relationship with HOT lane demand. 

Evidence from Table 4.9 shows that none of the HOT facilities analyzed had a price elasticity of 

demand that exceeded +0.2. The range of HOT lane demand elasticities w.r.t tolls across all 

studied facilities was between +0.08 and +0.17, with an average of +0.13. Therefore a 10% 

increase in HOT lane toll will increase its demand by only 1.3%. The impact of tolls on HOT 

lane demand diminished further during peak conditions with an average elasticity value of +0.07 

as shown in Table 4.10. This observation was consistent across all studied HOT facilities and 

presents a unique challenge to transportation policy makers. It is apparent that, the current 

pricing structure/levels do not discourage drivers from using the HOT lanes. Therefore, to make 

the concept of pricing serve its intended purpose in HOT lanes (discourage drivers), toll prices 

must be set in such a way that it accounts for the low demand elasticities found in this research. 

The impacts of GP lane congestion on HOT lane demand was also studied; it was found that GP 

lane congestion has a positive relationship with HOT lane demand, with increasing impact 

during peak periods. Average HOT lane demand elasticity w.r.t GP congestion was +0.34 during 

morning/evening periods and +0.45 during peak periods.  The range of the elasticities was 

between +0.1 and +0.5 during morning/evening periods and between +0.12 and +0.72 during 

peak periods. The elasticities w.r.t GP density appeared to be relatively higher for I-95 and I-85 
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express lanes (which have relatively higher congestion levels) with values ranging between 0.4 

and 0.72.  

In conclusion, HOT lane demand exhibited a positive but inelastic relationship with tolls and GP 

congestion. The next sections provide detailed discussions of the relative impacts of tolls and GP 

lane congestion on HOT lane demand. Additionally, similarities and differences between the 

studied HOT facilities in terms of their elasticities were explored, and the possible factors behind 

such similarities/differences investigated. 

 

4.5.3.1 Relative Impacts of Tolls and GP Density on HOT Lane Demand 

In all HOT facilities analyzed, it was observed that the impact of GP lanes congestion (density) 

on HOT lane demand was either higher than that of tolls charged (I-15 Fast Trak express lanes, I-

85 express lanes, I-95 express lanes) or approximately equal (I-394 MnPASS express lanes). As 

shown in Table 4.9 above, the elasticity of HOT lane demand w.r.t tolls was statistically 

significant at 5% significance level for each of the HOT facilities for the entire morning and 

evening periods, indicating that tolls charged do affect HOT lane demand. However, the size of 

the effect, as depicted by the elasticities is very small. Similarly, HOT lane demand elasticity 

w.r.t GP lane congestion was statistically significant at 5% significance level for all facilities and 

both directions of travel. Across the four studied facilities and both directions of travel, average 

elasticity of HOT lane demand w.r.t tolls was +0.13 compared to +0.34 for elasticity w.r.t GP 

density (160% difference). This implies that on average, a 10% change in tolls charged will 

change HOT lane demand by 1.3% while a similar percentage change in GP density will result in 

a change of 3.4% in HOT lane demand. The magnitudes of both elasticities are less than one 

which indicates that HOT lane demand has an inelastic relationship with tolls charged and GP 

density; however, the level of inelasticity is very high w.r.t tolls charged. This implies that, 

among the two factors, toll is the least predictor of HOT lane usage. 

The magnitude of the difference between the relative impacts of tolls and GP lane congestion on 

HOT lane demand even gets bigger during peak periods. As shown above in Table 4.10, the 

impact of tolls on HOT lane demand further diminishes during the peak periods; resulting in 

relatively smaller elasticity estimates (average elasticity of +0.07). This suggests that, most 

drivers tend to be even less sensitive to the tolls been charged during peak/congested periods, 

and may use the HOT lanes to enjoy travel time savings as shown in the peak period (7:30 AM – 

8:30 AM) of I-85 express lanes in Figure 4.13.  
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        Figure 4.13: Comparison between HOT and GP lane speeds on I-85 SB 

 

Figure 4.14 displays plots of the relationships between HOT lane demand and toll rates/GP lane 

density for all studied HOT facilities. 
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I-394 MnPASS Lanes                                                                                   I-15 Fast Trak Express Lanes 
 

          
I-95 Express Lanes                                                                       I-85 Express Lanes  

Figure 4.14: Relative impacts of tolls and GP congestion on HOT lane demand 
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Figure 4.14 above shows that, the relative impacts of tolls and GP lane congestion on HOT lane 

demand is approximately equal on I-394 MnPASS lanes. The flat nature of the plots for both 

variables suggest their influence on HOT lane demand is small (inelastic relationship); hence the 

elasticity values of +0.11 (w.r.t tolls) and +0.10 (w.r.t GP density). The plot of I-15 Fast Trak 

express lanes is similar to I-394 MnPASS lanes; especially the inelastic behavior between 

tolls/GP congestion and HOT lane demand during high tolls (data appoints appear scattered 

without a trend). However, I-85 and I-95 express lanes appear to be different from the other two 

HOT facilities in terms of the impacts of GP congestion on HOT lane demand. As shown in 

Figure 4.14, the relationship between GP density and HOT lane demand for I-85 and I-95 

express lanes appear to have a relatively steeper slope than those observed for I-15 Fast Trak and 

I-394 MnPASS lanes. This suggests that, the impact of GP congestion on HOT lane demand for 

I-85 and I-95 express lanes is relatively higher than the corresponding impacts on I-394 

MnPASS and I-15 Fast Trak lanes. 

Although differences and similarities (among studied HOT facilities) about the relative impacts 

of tolls and GP lane congestion have been mentioned, accurate conclusions about these 

observations can only be made after statistical analysis of the elasticity distributions of all HOT 

facilities has been conducted. Therefore, comparisons were made between HOT lane demand 

elasticity distribution w.r.t tolls and HOT lane demand elasticity distribution w.r.t GP density for 

each HOT facility using hypothesis testing. The hypothesis test is used to assess the evidence on 

whether a population parameter (e.g. mean) between two or more groups is likely to have arisen  

by chance or whether some other factors is responsible for the difference (78). For each HOT 

facility, the following competing hypotheses were formulated: 

If  

            µ1 is the average HOT lane elasticity of demand w.r.t tolls in location A; and 

            µ2 is the average HOT lane elasticity of demand w.r.t GP congestion at location A 

  Then the competing hypotheses are: 

                     Null hypothesis: Ho: µ2 > µ1  

              Alternate hypothesis: Ha: µ2 ≤ µ1 

The specific goal here is to determine if the relative impact of GP congestion on HOT lane 

demand is greater than the   impact of tolls on HOT lane demand. Consequently, a hypothesis 

test assuming unequal variances was used to examine the statistical significance of the 

differences between the average elasticity of HOT lane demand w.r.t tolls and GP congestion. 

The result of the hypothesis testing is shown below in Table 4.11. 

Facility Z-STATISTIC P(Z<=z) one-tail Z Critical one-tail 

I-394 2.12 .035 1.644 

I-15 3.34 .028 1.644 

I-95 1.25 .059 1.644 

I-85 1.14 .068 1.644 

Table 4.11: Results of hypothesis testing (toll elasticity vs GP congestion elasticity) 
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The null hypothesis (HOT lane demand elasticity w.r.t GP congestion is greater than HOT lane 

demand elasticity w.r.t tolls) is rejected if the Z statistic is greater than the critical Z value and 

vice versa at 5% significance level. From Table 4.11 above, the null hypothesis was rejected for 

I-394 MnPASS lanes and I-15 Fast Trak express lanes. This implies that, the HOT lane demand 

elasticity w.r.t GP congestion was not greater than the corresponding elasticity w.r.t tolls for 

those two facilities (the difference in impacts on HOT lane demand is statistically insignificant). 

On the contrary, the null hypothesis couldn’t be rejected for I-95 and I-85 express lanes; 

suggesting the relative dominance of HOT lane demand elasticity w.r.t GP congestion over that 

w.r.t tolls. 

As observed from the results of the hypothesis test, I-394 MnPASS lanes and I-15 Fast Trak 

Lanes appear to be alike in terms of the relative impacts of tolls and GP congestion on HOT lane 

demand (equal impacts) but different from the remaining two facilities (I-95 and I-85 express 

lanes) which were also similar to each other. It is possible that I-394 MnPASS lanes and I-15 

Fast Trak lanes might have something in common (e.g. driver behavior, local economy, etc.) 

which makes them different from I-95 and I-85 express lanes. Based on this assumption, it is 

necessary that the individual facilities are compared with each other and the possible reasons for 

similarities/differences explored. The next section discusses the comparison between the 

individual HOT facilities. 

 

4.5.3.2 Comparison between HOT Facilities 

A hypothesis test, comparing the individual HOT facilities in terms of the impacts of tolls and 

GP congestion on HOT lane demand (elasticity) was conducted at 5% significance level. This 

test will help to establish if HOT lane demand elasticity w.r.t tolls and GP lanes is consistent or 

different across multiple HOT facilities. Comparisons in terms of HOT lane demand elasticity 

w.r.t tolls and GP congestion were carried out separately. The competing hypotheses for each 

pair of HOT facilities (A and B) were: 

               Ho: Average HOT elasticity w.r.t tolls for A = Average HOT elasticity w.r.t tolls for B 

               Ha: Average HOT elasticity w.r.t tolls for A ≠ Average HOT elasticity w.r.t tolls for B 

The same set of hypotheses was used for HOT lane demand elasticity w.r.t GP congestion. The 

test was conducted assuming unequal variances and approximate normal distribution because of 

the large sample size (>= 1000). Results of the test are shown below in Table 4.12. 
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FACILITY PAIR Z-

STATISTIC 

(Toll 

elasticity) 

Z-STATISTIC 

(GP congestion 

elasticity) 

P(Z<z) 

two-tail 

Z Critical 

two-tail 

RESULT 

I-394 VS I-15 1.082 1.309 .083 1.96 Similar 

I-394 VS I-95 2.834 3.824 .021 1.96 Different 

I-394 VS I-85 3.562 2.991 .032 1.96 Different 

I-15 VS I-95 2.329 4.804 .015 1.96 Different 

I-15 VS I-85 5.963 3.615 .044 1.96 Different 

I-85 VS I-95 1.481 1.230 .069 1.96 Similar 

Table 4.12: Results of hypothesis testing (facility-pairs comparison) 

The null hypothesis (that two HOT facilities are equal in terms of average HOT lane demand 

elasticity w.r.t tolls and GP congestion) is rejected if the Z statistic is greater than the critical Z 

value at 5% significance level or otherwise. From Table 4.12, I-394 MnPASS lanes and I-15 Fast 

Trak lanes appear to have equal average HOT lane demand elasticity w.r.t to tolls and GP 

congestion since the Z statistic was less than the critical Z value (i.e. failure to reject the null 

hypothesis). The same could be said of I-85 and I-95 express lanes where the null hypothesis of 

equality couldn’t be rejected. The remaining HOT facility-pairs were found to be different in 

terms of their average HOT lane demand elasticity w.r.t tolls and GP congestion.  

The similarity in average HOT lane demand elasticities for I-15 Fast Trak express lanes and I-

394 MnPASS lanes was not surprising. For both HOT facilities, demand elasticity w.r.t tolls and 

GP lane congestion was highly inelastic, with elasticities not exceeding +0.17 and +0.21 

respectively during morning and evening periods. The inelastic behavior did not change during 

peak periods where elasticities (w.r.t tolls and GP congestion) fell below +0.1 and +0.23 

respectively. The lack of significant changes in elasticities (w.r.t tolls and GP lane congestion) 

between off-peak and peak periods suggest that travelers used the HOT lanes with little or no 

regards to tolls and changing congestion levels on GP lanes. In order to test this assumption, data 

describing the distribution of eligible HOT lane users (SOVs and zero emission vehicles with 

transponders) was obtained for I-15 Fast Trak lanes. This data provides the percentage split of 

eligible HOT lane users between GP and HOT lanes at any point in time. For example, at 6:30 

AM on a HOT facility, 70% of eligible HOT lane users may be on the HOT lanes while the 

remaining 30% use the GP lanes. The data covered the 5-month analysis period and was used to 

develop plots as shown in Figure 4.15 below.  
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          a) Morning period 
              

            
          b) Evening period 
         Figure 4.15: Relative distribution of HOT lane users on I-15 express lanes 

  

From Figure 4.15 above, about 90% of eligible HOT lane users consistently patronized the lanes 

even when the GP lanes were operating at LOS A regardless of direction of travel. It appears the 

HOT lane users were not responding to changes in tolls and level of congestion on GP lanes 

during both peak and non-peak periods. The constant usage of the HOT lanes with high 

insensitivity towards tolls and GP lane congestion explains the low demand elasticities observed 

on this HOT facility.  
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Goodall and Smith (2008) conducted a research which investigated the behavior of SOVs using 

the reversible section of I-394 MnPASS lanes (same segment of MnPASS facility used in this 

research). The authors developed a two-component model to predict the percentage of SOVs 

using the HOT lanes in time interval t at cost per hour of travel time saved c. When the model 

was applied to dataset obtained from the 2.7 mile reversible section of MnPASS, it was revealed 

that about 87.5% of HOT lane users were not sensitive to tolls been charged. The non-sensitive 

drivers used the HOT lanes even when the GP lanes were operating above the speed limit of 55 

mph. The authors concluded that under the congestion levels experienced on the MnPASS 

system, pricing has negligible influence on behavior. This finding on the I-394 MnPASS lanes is 

similar to what was found on the I-15 Fast Trak express lanes in this research. It is therefore not 

surprising that, the two were found not to be statistically different from each other in terms of 

their elasticities w.r.t tolls and GP lane congestion. The common factors behind the similarities 

of the two HOT facilities will deepen our understanding of HOT lane user behavior. An 

important commonality between the two facilities is their average annual incomes. As mentioned 

earlier, the locations of both HOT facilities have high RPP-adjusted annual average incomes of 

$87,092 (I-394 MnPASS, Minneapolis) and $83,820 (I-15 Fast Trak, San Diego). As a result the 

current price levels of the HOT lanes might not influence the choice behavior of such high 

income HOT lane users. Consequently, it was found in the VTTS analysis that users of these two 

HOT facilities have high mean VTTS estimates during morning/evening periods ($65 for I-394 

MnPASS, $57.5 for I-15 Fast Trak). This implies that, they use the HOT lanes even when there 

are no significant travel time savings. Looking at these commonalities in unison, it is likely that 

the high VTTS estimates are due to the high annual average incomes, and this eventually may 

lead to HOT lane users not been sensitive to tolls and changing GP congestion (low elasticities 

w.r.t tolls and GP congestion). 

 

I-85 and I-95 express lanes which were also found to be similar from the results of the 

hypothesis test were also analyzed. Both HOT facilities appear to have relatively high HOT lane 

demand elasticity w.r.t GP lane congestion (around +0.5 during morning/evening periods) than 

w.r.t tolls (less than +0.12 during morning evening period). For both facilities, HOT lane demand 

elasticity w.r.t GP lane congestion appears to increase during peak period (around +0.7) while 

the corresponding elasticity w.r.t tolls decreases (average elasticity of +0.06).  In addition, users 

of both HOT facilities have relatively low mean VTTS estimates ($49.5/hour and $50.9/hour for 

I-95 and I-85 express lanes users respectively) compared to what was observed for I-394 

MnPASS and I-15 Fast Trak lanes. Also, their income levels were relatively low; RPP-adjusted 

annual incomes of $65,900 and $79,963 for Miami (I-95 express lanes) and Atlanta (I-85 express 

lanes) respectively. Congestion levels on GP lanes may also be a significant contributing factor 

to the similarities between I-95 and I-85 express lanes. For the segments analyzed in this 

research, congestion levels on GP lanes parallel to I-85 and I-95 express lanes  were generally 

higher (average density of 50 veh/mi/l) than what was experienced on I-15 Fast Trak/I-394 

MnPASS lanes (average density of 30 veh/mi/l). As a result of the low operating speeds on GP 

lanes (due to high congestion levels), eligible users of I-85 and I-95 HOT facilities tend to shift 

to the HOT lanes; hence the relatively higher elasticities w.r.t GP lane congestion for both 

facilities.  

 

In order to further understand the difference in user behavior between I-394 MnPASS/I-15 Fast 

Trak lanes and I-85/I-95 express lanes, data on eligible HOT lane user distribution was also 
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obtained for I-85 express lanes. As shown in Figure 4.16, use of the I-85 express lanes was not 

consistent as observed on I-15 Fast Trak lanes; rather, percentage of eligible users on I-85 

express lanes fluctuated with changing traffic conditions on the GP lanes and tolls. Although 

data was not available for I-95 express lanes in terms of eligible user distribution, it is likely that 

users may exhibit a similar choice behavior.  
 

 
Figure 4.16: Relative distribution of HOT lane users on I-85 express lanes 

 

 

4.6 Summary 

This chapter was focused on behavior of HOT lane users across multiple HOT lane facilities in 

the U.S. The purpose was to determine if there was a general pattern in the behavior of HOT lane 

users in terms of their response to pricing (tolls) and changing traffic conditions. Using 5 months 

of toll and traffic data from four different HOT lane facilities, VTTS and elasticity estimates 

were obtained for each HOT facility. Statistical comparison of these estimates resulted in two 

different groups of HOT lane facilities, with members of each group having similarities in how 

drivers responded to tolls and changing traffic conditions. Three important factors which were 

found to differentiate between the two groups of HOT facilities were income levels of where 

these facilities are located, the level of congestion in the HOT corridor and travel reliability on 

GP lanes. The next chapter presents the development of models that could be used to predict the 

expected level of demand on HOT lanes. 
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Chapter 5 

HOT Lane Demand Prediction 

For Integrated Corridor Management (ICM) to be very effective in mitigating highway 

congestion and ensuring efficient use of transportation facilities, it must be proactive rather than 

reactive. The ICM system should be able to anticipate the impacts of any implemented strategy 

on traffic conditions in a corridor. This valuable piece of information can then be shared in real-

time with ICM partner agencies as well as with the traveling public. Currently, High Occupancy 

Toll (HOT) lane systems do not predict into the future, the expected levels of demand on the 

lanes based on tolls and changing traffic conditions. Instead, the effects of tolls are evaluated in 

retrospect. This chapter is intended to develop short-term HOT lane demand/flow predictive 

models using tolls and the level of congestion on the General Purpose (GP) lanes (density) as 

explanatory variables. The developed model will help to predict the expected Level of Service 

(LOS) or demand on HOT lanes in real-time (e.g. every 5-minute period).  

 

5.1 Candidate Modeling Approaches 

An important step in the development of any predictive model is the selection of modeling 

approach. The choice of modeling approach often depends on the desired purpose of the 

predictive model and the type of data to be used. Over the years, a lot of different modeling 

approaches have been used in highway traffic prediction. The three main types of modeling 

approaches identified in the literature include parametric techniques, non-parametric techniques, 

and hybrid methods. Brief discussions of the different modeling approaches and the criteria for 

selecting the approach to be used in this research are discussed below. 

 

Parametric models are models whose functional forms (established based on theoretical 

considerations) are known prior to model development (84). Some of the common parametric 

models used in traffic prediction include smoothing techniques (85), autoregressive linear 

processes such as the auto-regressive integrated moving average (ARIMA) family of models 

(86), state-space (Kalman filter) models (87), linear and non-linear regression models (78), etc. 

Although smoothing techniques (linear and exponential filters) are generally used to eliminate 

the unwanted effects of randomness in a time series data, these filters can also be used for 

predictive purposes. ARIMA models describe the behavior of a phenomenon in terms of its past 

values and are useful for traffic prediction even in the absence of explanatory variables (78). 

According to Smith and Demetsky (1997), ARIMA models rely on an uninterrupted series of 

data ; making it less useful for datasets with missing values (88). State-space (Kalman filter) 

models allow the selected state variable to be updated continuously and sometimes show 

superiority over simple ARIMA formulations when modeling traffic data from different periods 

of the day (89). Parametric regression (e.g. linear regression) is a widely used technique, and is 

often the first modeling approach to be tested in the model selection process (78). Depending on 

whether the regression model is linear or non-linear, parameter estimation is respectively based 

on methods from linear algebra and search methods that minimize the magnitude of residual 

errors. 
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Non-parametric modeling approaches do not assume any specific functional form that explains 

the relationship between the dependent and independent variables. Instead, the phenomenon of 

interest is modeled by allowing it to have a general form which is gradually approximated with a 

certain precision using a growing dataset. Non-parametric models are data driven; hence, their 

successful implementation is strongly related to the quality of available data (84). Notable 

examples of this modeling approach are non-parametric regression, neural networks, 

classification and regression trees (CART), etc. In non-parametric regression, the approach 

locates the state of the system (defined by independent variables) in a “neighborhood” of past, 

similar states. The past cases in the neighborhood are used to estimate the future value of the 

dependent variable. This implies that, the quality of this procedure is dependent on the ability of 

past datasets to represent the spectrum of all possible future conditions (85). Neural networks are 

extremely popular in traffic forecasting and transportation research as a whole. They are mainly 

used to forecast complex, mostly non-linear, and non-stationary phenomena. Neural network 

models are data-driven and are based on the principles of artificial intelligence with exceptional 

pattern classification and recognition abilities (84). A major issue with models developed by 

neural networks is the interpretation of its parameter because of the so-called “black box” 

phenomenon (90). CART models identify optimum break points within predictor variables, 

separating them into groups inside which the values of the dependent variable are as 

homogeneous as possible. The main disadvantage of CART models is the subjectivity involved 

in choosing the optimum tree size (91).  

 

Hybrid models offer an alternative to traffic prediction by combining different methods to 

produce more efficient models. An example of a hybrid model in traffic prediction include the 

combination of clustering technique and linear regression in developing the ATHENA model 

(92). Fuzzy logic and genetic algorithms also provide an opportunity for the development of 

hybrid models (84). 

 

Although most of the modeling techniques described above can be used to develop HOT lane 

demand/flow predictive models, the final choice was based on two main criteria. 

 

1. The objective of this research is to explicitly model the impacts of toll rates on HOT lane 

demand/flow taking into account congestion on GP lanes. As a result, the model must not 

include any lagged variables (i.e. time effects are not considered). 

 

2. The desired model must be simple enough so that it can be clearly understood and its 

parameter estimates clearly interpreted.  

 

Based on the first criterion, parametric models such as the smoothing and ARIMA family of 

models will not be used. This is because, the ARIMA models are usually based on lagged 

variables of the dependent variable while the smoothing techniques do not make use of 

explanatory variables. Non-parametric (e.g. neural network models) and hybrid models tend to 

have superior predictive capabilities than parametric models; however, they are relatively more 

complex and data intensive. As a result, their parameter estimates (especially neural networks) 

are very difficult to interpret. Therefore, non-parametric and hybrid models were excluded from 

consideration.  
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Multiple linear regression was finally settled on as the choice of modeling approach for this 

research effort for many reasons. To begin with, linear regression is suitable for modelling a 

wide variety of relationships between variables and its assumptions are often satisfied in many 

applications. Secondly, linear regression model outputs are relatively easy to interpret and 

communicate to others. Thirdly, numerical estimation of linear regression models is relatively 

easy (and well understood) and softwares are readily available to carry out the estimation task 

(78). Lastly, it is always useful to begin the model building process with simple models; 

increasing the level of complexity as and when the need arises. Hence, it is a step in the right 

direction to begin the model development with a linear regression method. 

 

5.2 Data Needs  

In order to predict HOT lane demand/flow, traffic data from the GP and HOT lanes as well as 

data on tolls charged for the use of the HOT lanes were gathered. The traffic data included GP 

lanes average density and HOT lanes average traffic flow. These traffic data were the same as 

those used in VTTS and elasticity analysis in Chapter four. The traffic data were obtained at the 

same time intervals used to update tolls charged on the HOT lanes (e.g. every three minutes on I-

394 MnPASS lanes, every 5 minutes on I-85 express lanes in Atlanta, etc.). Both traffic and toll 

data used in the model development covered a 5-month period; that is from October 2012 to 

February 2013. Data during inclement weather and other suspicious data were removed using the 

same procedure employed in the VTTS and elasticity analysis in Chapter four. 

 

 

5.3 Data Preparation 

The 5-month data for both the response (HOT lane demand/flow) and explanatory (GP density 

and toll rate) variables were obtained at regular time intervals (e.g. every three minutes for I-394 

MnPASS lanes) and can therefore be considered as a time series data. In order to use time series 

data to develop linear regression models, some technical concerns must first be addressed. These 

concerns are described in the next sections. 

 

5.3.1 Spurious Regression 

Regression models built using time series data are seriously hampered when non-stationary 

variables are used. When non-stationary independent variables are used in linear regression 

models, the statistical significance of parameters tends to be overestimated. As a result, one may 

obtain apparently significant relationships from unrelated variables. This phenomenon is referred 

to as spurious regression (78). A stationary process is one whose statistical properties do not 

change over time. There are two types of stationarity in time series. For a strictly stationary 

stochastic process, the joint statistical distribution of a time series at times t1 and t2 is the same as 

the joint statistical distribution at times t6 and t7. On the other hand, a weak stationary process 

has the property that the mean, variance, and autocovariance do not change over time (93). This 

implies a flat looking series without trend, with constant variance over time and with no periodic 

fluctuations. The condition of stationarity must be achieved before a time series data can be used 

in a linear regression. Figure 5.1 below differentiates between a stationary and non-stationary 

time series data. 
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                       Figure 5.1: Differentiating between stationary and non-stationary time series  

 

There are many tests that can be conducted to determine whether a time series is stationary or 

not. These include Elliot-Rothenberg test, Philips-Perron test, Schmidt-Phillips test, Augmented 

Dickey-Fuller (ADF) test, etc. However, the ADF test is more popular and widely used. The 

ADF statistic used in the test is a negative number. If the test statistic is more negative than the 

critical value at a certain confidence level, then the null hypothesis that there is a unit root (non-

stationarity) in the time series can be rejected (93). 

 

If a time series is found to be non-stationary, it must be corrected before it can be used for 

regression analysis. A common approach to achieving stationarity is to difference the series 

between time intervals. Mostly the first difference (i.e. difference between the time series at 

successive time intervals) of a time series tends to be stationary (94).  

 

5.3.2 Autocorrelation (Serial Correlation) 

An important assumption in linear regression models is the independence of 

residuals/disturbances across observations .The correlation of a series with its past observations 

results in serial or autocorrelation. This implies that the errors associated with a given time 

period carry over into future time periods (78). For example, an overestimate in traffic flow in 

one time period is likely to lead to overestimates in subsequent time periods. Serial correlation 

does not affect the unbiasedness or consistency of ordinary least square (OLS) estimates but it 

does affect their efficiency (78). With positive serial correlation, the OLS estimates of the 

standard errors will be smaller than they really are; resulting in inflated t values of parameter 
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estimates. This will lead to the conclusion that the parameter estimates are more precise than 

they really are and often result in rejecting the null hypothesis when it should not be rejected. 

The most used test statistic for detecting serially-correlated errors is the Durbin-Watson (DW) 

statistic (95). This statistic can be expressed mathematically as shown below in equation 5.1. 

                                                               

                                                                DW = [∑ (et – et-1)2]/∑et2                                              (5.1) 

Where:  
          et is the residual at time t 

          et-1 is the residual at time t-1 

 

The DW statistic usually lies between 0 and 4. If it is substantially less than 2, there is evidence 

of positive serial correlation (successive residuals are close in value to each other). However, if 

DW statistic is greater than 2, successive error terms are much different in value from each other 

(negative serial correlation). To test for serial correlation at a certain level of statistical 

significance, the DW statistic must be compared with the critical upper and lower values for that 

significance level provided by the DW statistic look up table (78). Positive and negative serial 

correlations are explained in Figure 5.2 below. 

 

  

 
                        Figure 5.2: A plot of positive and negative serial correlations 

 

There are various procedures for correcting serially correlated time series data. These include 

generalized differencing, the Cochrane-Orcutt procedure, the Hildreth-Lu procedure, the Prais-

Winsten estimation, etc. (95). 

 

Positive Correlation Negative Correlation 
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5.4 Methodology for Model Development 

The procedure used in developing and testing the HOT lane demand/flow predictive model is as 

shown below: 

 

1. For each HOT lane facility, 70% of the dataset was set aside to develop (train) the 

predictive model while the remaining 30% was held back to test its performance. Both 

the training and “hold back” data were selected in such a way that they are truly 

representative of general traffic conditions on each HOT lane facility. Therefore both 

training and validation data were comprised of data from all months, weekdays, and time 

of day. 

 

2. The traffic and toll rate data were tested for stationarity using the ADF test. If a variable 

was found to be non-stationary, the appropriate corrective/transformative procedure was 

applied. 

 

3. The data was also tested for serial correlation using the DW test. When serial correlation 

was found to be present in the data, the Prais-Winsten estimation was employed to 

provide the necessary corrections to the data. After corrections have been applied, the 

DW statistic is calculated again and compared with critical values at 5% significance 

level in order to reject the null hypothesis that serial correlation is zero or otherwise. 

 

4. After the data have been tested for both stationarity and serial correlation, scatter plots of 

the response (HOT lane demand/flow) and explanatory (toll rate and GP density) 

variables were developed. This helped to identify if there is any relationship between the 

response and explanatory variables as well as the functional form (linear, exponential, 

etc.) of the relationship. 

 

5. In order to use the linear regression technique, non-linear relationships were linearized 

through logarithmic transformations. This ensured that the basic assumptions of linear 

regression were not violated. 

 

6. A forward stepwise regression method was used to select the “best” HOT lane 

demand/flow predictive model. This procedure allows the inclusion of explanatory 

variables in the model through a stepwise manner. In the end, only explanatory variables 

that improve the model will be included. 

 

7. Finally, the predictive performance of the “best” model was evaluated using the “hold 

back” data.  

 

Detailed explanations of the Prais-Winsten estimation, forward stepwise regression procedure, 

and performance evaluation procedure of the HOT lane demand/flow predictive models are 

covered in the next sections. 
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5.4.1 Correcting for Serial Correlation (Prais-Winsten estimation) 

Prais-Winsten estimation is a procedure meant to take care of the serial correlation of type AR 

(1) in a linear model. This estimator improves on the Cochrane-Orcutt method in that the first 

observation is preserved in the estimation routine (96). Consider the linear model 

    

                                          Yt  = α + Xtβ + Ɛt                                                                                                   (5.2) 

 

Where:  

          Yt is the time series of interest at time t 

          β is a vector of coefficients 

          Xt is a matrix of explanatory variables 

          Ɛt is the error term 

 

The error term can be serially correlated over time, that is: Ɛt = ρƐt-1 + et where et is a white noise 

and ρ is the autocorrelation coefficient (between 0 and 1). The Cochrane-Orcutt transformation 

can be used to correct for the serial correlation as shown in equation 5-3 below. 

                                                             

                                    Yt – ρYt-1 = α (1-ρ  + β (Xt –ρXt-1) + et                                                           (5-3) 

For t = 2,3,….,T. 

From the Cochrane-Orcutt transformation equation above, it can be seen that the differencing 

occurs between successive time intervals; hence, the first observation is always excluded since it 

has no observation before it. The Prais-Winsten procedure makes a reasonable transformation for 

t=1 (first observation) as shown in equation 5-4 below. 

 

                          √1-ρ2Y1 = α√1-ρ2 + (√1-ρ2X1 β + √1-ρ2Ɛ1                                                                      (5-4) 

The impact of preserving the first observation can be advantageous when regression is carried 

out on small samples. Both Cochrane-Orcutt and Prais-Winsten transformations use an initial ρ 

(autocorrelation coefficient) value (e.g. 0) to correct for serial correlation. An iterative process is 

then initiated in which the values of ρ and regression parameters are recalculated at each 

iteration. Least squares estimation is employed in the iterative process. The Prais-Winsten 

estimation procedure in STATA software was used to correct for serial correlation (96). 
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5.4.2 Forward Stepwise Regression 

Stepwise regression is a procedure that relies on a user-defined criterion, such as R-squared, F-

ratio, or other goodness of fit measures to select a “best” model among competing models 

generated by the procedure. Stepwise regression procedures can either be backward or forward. 

Backward stepwise regression starts by comparing models with large numbers of independent 

variables and sequentially removing one independent variable at each step. The variable removed 

is the one that contributes least to the goodness of fit criterion. The procedure iterates until a 

regression model is obtained in the final step. The user can then compare “best” models of 

different sizes. On the other hand, forward stepwise begins with a simple regression model and 

sequentially grows the regression by adding the variable with the largest contribution to the 

goodness of fit criterion (78). The forward stepwise regression procedure in SPSS software was 

used in this research. A description of forward stepwise regression procedure is as follows (97): 

 

1. Set a significance level for deciding when to enter a predictor into the stepwise model; 

this is called alpha-to-enter (αE ). The significance level in this research was set at 0.05. 

 

2. Fit each of the one-predictor models; that is regress the dependent variable (y) on each of 

the independent variables (x1, x2, x3, x4, …..,xn) separately. 

 

3. Of those predictors whose t-test P-value is less than αE = 0.05, the first predictor put in 

the stepwise model is the predictor that has the smallest t-test P-value. If no predictor has 

a t-test P-value less than αE = 0.05, the procedure stops. 

 

4. Suppose x1 had the smallest t-test P-value below αE = 0.05 and therefore was deemed the 

"best" one predictor arising from the second step; now, fit each of the two-predictor 

models that include x1 as a predictor. That is regress y on x1 and x2 , y on x1 and x3, etc. 

 

5. Of those predictors whose t-test P-value is less than αE = 0.05, the second predictor put in 

the stepwise model is the predictor that has the smallest t-test P-value. 

 

6. If no predictor has a t-test P-value less than αE = 0.05, the procedure stops. The model 

with the one predictor obtained from the third step becomes the final model. 

 

7. But, suppose instead that x2 was deemed the "best" second predictor and it is therefore 

entered into the stepwise model; now, fit each of the three-predictor models that include 

x1 and x2 as predictors. 

 

8. Continue the steps as described above until adding an additional predictor does not yield 

a t-test P-value below αE = 0.05. 

 

5.4.3 Model Performance Evaluation 

The performances of the predictive models developed were tested against the “hold back” data 

for each HOT lane facility. Using the “hold back” data, the expected HOT lane demand/flow was 

estimated. These estimates were then used to determine the expected LOS of the HOT lane 
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facility. Finally, the predicted LOS was compared with the actual LOS experienced on the HOT 

lane facility for a given time period.  

 

In chapter four, it was established that there was a weak causal relationship between HOT lane 

demand/flow and the explanatory variables (toll rate and GP congestion) based on the elasticity 

analysis. Therefore, the predictive model developed in this research was highly inaccurate in 

terms of predicting absolute HOT lane demand/flow. However, the LOS measure has broad 

intervals and was better suited to the predictive capabilities of the developed model. Hence, LOS 

was chosen as the performance measure in the evaluation process. Most HOT lane systems are 

mandated under federal regulations not to operate below 45 mph (i.e. LOS C for 95% of the 

time) (98). Therefore the use of LOS as the performance evaluation measure will help 

transportation professionals to easily monitor compliance of their HOT systems with this federal 

requirement. The highway capacity manual (HCM 2010) provides guidance on the range of per 

lane flow rates for each LOS as shown in Table 5.1 (99). These ranges of values were used as a 

basis to evaluate the performance of the predictive model in determining the expected LOS of a 

HOT facility.  

 

 

 

Level of Service 

Range of Flow Rates (veh/hr/l) 

Lower Value Upper Value 

A 0 820 

B 821 1310 

C 1311 1750 

D 1751 2110 

E &F 2111 2400 

Table 5.1: Level of service and corresponding flow rates 

The performance of HOT lane demand/flow in predicting LOS was also compared with a naïve 

model. The naïve model did not contain any explanatory variables; however, it predicts the 

expected LOS for a time period based on the historic average HOT lane demand/flow for that 

time period. 

 

5.5 Results and Analysis  

The methodology described for this research effort was used to develop and evaluate predictive 

models for each HOT lane facility studied. The results of the model development as well analysis 

of predictive performance for each HOT lane facility is discussed below. 
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5.5.1 I-394 MnPASS Lanes, Minneapolis 

Out of 80 days of data, 70% (56 days) was used to develop the predictive model for the 2.7 mile 

reversible section of I-394 MnPASS lanes. A test for stationarity was conducted for all the 

variables involved in the model using the ADF test. Using a critical value of -1.950 at 5% 

significance level, the null hypothesis of the presence of a unit root in the data was rejected. 

Hence, all the variables were found to be stationary. Additionally, the presence of serial 

correlation was also tested. A DW statistic of 0.74 indicated the presence of positive serial 

correlation among the error terms. Consequently, the Prais-Winsten estimation procedure was 

used to correct for the serially correlated data, resulting in a new DW statistic of 2.28. At 5% 

significance level, the critical DW lower and upper statistic values are 1.92447 and 1.92847 

respectively. Since the DW statistic value of 2.28 is bigger than the critical upper value, the null 

hypothesis (ρ = 0) cannot be rejected.  

 

Scatter plot of the response (HOT lane demand/flow) and explanatory (toll rate and GP lane 

density) variables was constructed as shown in Figure 5.3. Both toll rate and GP lane density 

appeared to have a positive correlation with HOT lane demand/flow; indicating an increase in 

HOT lane demand/flow as both toll rates and GP density increases. Additionally, it was observed 

from the scatter plots that both explanatory variables appear to have a second-order polynomial 

(quadratic) relationship with HOT lane demand/flow. 

 

                    

 
 Figure 5.3: Scatter plot of response and explanatory variable (I-394 MnPASS lanes) 

 

Model Building 

A forward stepwise regression method was used to develop a HOT lane demand/flow predictive 

model for this facility. Since both explanatory variables appeared to have a quadratic relationship 

with HOT lane demand/flow, squared terms of toll rates and GP density were also considered in 

the model. Additionally, the possibility of an interaction between toll rates and GP density was 
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also tested by considering an interaction term in the model. The dependent variable (HOT lane 

demand/flow) was log-transformed in order to satisfy the assumptions of linear regression. Using 

SPSS statistical package, the stepwise building of the predictive model is as shown below in 

Table 5.2. 

 
 

Variables Entered/Removed
a
 

Model Variables Entered Variables Removed Method 

1 

GPDEN   

Forward 
(Criterion: 
Probability-of-
F-to-enter <= 
.050) 

2 

GPDEN2   

Forward 
(Criterion: 
Probability-of-
F-to-enter <= 
.050) 

3 

TR   

Forward 
(Criterion: 
Probability-of-
F-to-enter <= 
.050) 

4 

TR2   

Forward 
(Criterion: 
Probability-of-
F-to-enter <= 
.050) 

a. Dependent Variable: LNHOTF 

Table 5.2: Stepwise regression procedure (I-394 MnPASS lanes) 

Where:  

         GPDEN= GP density 

         GPDEN2= GP density squared 

         TR= Toll rate 

         TR2= Toll rate squared 

         LNHOTF= natural log of HOT lane demand/flow 

 

As evident in Table 5.2, all the explanatory variables except the interaction term (between toll 

rate and GP density) were included in the predictive model at 5% significance level. GP density 

been the first explanatory variable to be included in the model implies that it has the most 

statistically significant correlation with the dependent variable (HOT lane demand/flow). In the 

same vein, the squared toll rate term has the least statistically significant correlation with HOT 

lane demand/flow. Table 5.3 below shows the model summary. 
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Model Summary 

Model R R Square 
Adjusted R 

Square 
Std. Error of 
the Estimate 

1 .516
a
 .266 .266 .254 

2 .542
b
 .294 .294 .226 

3 .735
c
 .540 .540 .220 

4 .736
d
 .542 .542 .219 

a. Predictors: (Constant), GPDEN 

b. Predictors: (Constant), GPDEN, GPDEN2 

c. Predictors: (Constant), GPDEN, GPDEN2, TR 

d. Predictors: (Constant), GPDEN, GPDEN2, TR, TR2  
NB: Adjusted R

2 
values reducing at the fourth decimal place 

Table 5.3: Model summary statistics (I-394 MnPASS lanes) 
 

The “best” model based on the adjusted R
2 

values is model four which includes a constant term, 

GP density, GP density squared, toll rate, and toll rate squared. This model explains about 54.2% 

of the variance in HOT lane demand/flow. The second “best” model which does not include a 

squared toll rate term almost explains the same percentage of the variance (54%) in HOT lane 

demand/flow as the “best” model. Although addition of the squared toll rate term only increased 

the explanatory power of the model by 0.2%, it was still retained in the model. This is because, 

its exclusion is inconsistent with the quadratic relationship observed in the scatter plots in Figure 

5.3. Additionally, despite its infinitesimal improvement in the model’s explanatory power 

(adjusted R
2
), it is statistically significant at 5% significance level.  Consequently, model four 

was chosen as the HOT lane demand/flow predictive model for this HOT facility. This model 

had an F-statistic of 1512.6 which is greater than the critical F value (2.61) at 5% significance 

level. 

 

Another important observation from the model summary statistics in Table 5.3 is the individual 

contributions of toll rate (and its squared term) and GP density (and its squared term). GP density 

and its squared term alone accounts for about 29.4% of the variance in HOT lane demand/flow 

while toll rate and its squared term account for the remaining 24.8%. This implies that, the 

decision by drivers to use/not to use HOT lanes appears to be equally influenced by the level of 

congestion on GP lanes and toll rates since the difference is only 4.6%. This observation 

confirms earlier findings in Chapter four in which the elasticity of HOT lane demand with 

respect to GP density (+0.11) was similar in value to the elasticity of HOT lane demand to toll 

rates (+0.10).  

 

The coefficients of the explanatory variables and their corresponding statistical significance are 

as shown below in Table 5.4. Each of the explanatory variables in the selected model (model 

four) was found to be statistically significant at 5% significance level. Also, the variance 

inflation factors (VIF) for all the explanatory variables in the selected model were less than 5; 

implying little or no multicollinearity (78).  
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                                                                                                  Coefficients
a
 

Model 

Unstandardized Coefficients 
Standardized 
Coefficients 

t Sig. 

95.0% Confidence Interval for B Collinearity Statistics 

B Std. Error Beta Lower Bound Upper Bound Tolerance VIF 

1 (Constant) 1.860 .022   84.545 .000 1.817 1.903     

GPDEN 0.056 .023 .005 2.435 .000 .011 .101 1.000 1.000 

2 (Constant) 2.380 .057   41.754 .000 2.267 2.492     

GPDEN .075 .135 .002 15.000 .000 .065 .085 .320 3.125 

GPDEN2 -.002 .022 -8.8E-06 -2.000 .000 -.004 -4E-05 .340 2.941 

3 (Constant) 2.890 .056   51.607 .000 2.780 3.000     

GPDEN .096 .133 .013 3.200 .000 .037 .155 .352 2.841 

GPDEN2 -.0001 .022 -4.5E-09 -10.000 .000 -1.2E-04 -8E-05 .350 2.857 

TR .022 .013 3E-04 7.333 .000 .016 .028 .899 1.112 

4 (Constant) 3.410 .056   60.893 .000 3.300 3.520     

GPDEN .096 .132 8.7E-04 48.808 .000 .092 .099 .251 3.984 

GPDEN2 -.0001 .022 -4.6E-09 -10.000 .000 -1.2E-04 -8E-05 .242 4.132 

TR .012 .016 1.1E-04 6.000 .000 .008 .016 .221 4.524 

TR2 -.001 .010 -1.4E-06 -3.330 .000 -.002 -4.1E-04 .230 4.348 

a. Dependent Variable: LNHOTF 
Table 5.4: Model coefficients and summary statistics (I-394 MnPASS lanes) 

 

Using the coefficients from Table 5.4, model four (which was selected as the HOT lane demand/flow predictive model for this HOT 

facility) can be expressed mathematically as: 

 

         LN (HOTF) = 3.410 + 0.096*GPDEN – 0.0001*GPDEN2 + 0.012*TR – 0.001*TR2                                             (5-5)
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Since the dependent variable was log-transformed, the interpretation of above equation is 

different from the usual regression output interpretation. The general interpretation is that the 

dependent variable changes by 100*(coefficient) percent when an independent variable changes 

by a unit while all other variables in the model are held constant. For example, it can be stated 

from equation 5-5 that if GP density increases/decreases by 1 veh/mile/l then HOT lane 

demand/flow will increase/decrease by about 9.6%. Similarly, if toll rate increases/decreases by 

$1, HOT lane demand/flow will increase/decrease by about 1.2%. In order to obtain the 

predicted HOT lane demand/flow in vehicles per hour using the above model, an exponential of 

the dependent variable must be taken (e
LN (HOTF

). 

 

The above predictive model makes sense even though the squared GP density term has a 

negative coefficient. The magnitude of the coefficients of GP density and GP density squared are 

such that the net impact of GP lane congestion on HOT lane demand/flow remains positive. For 

example if GP density is 100 vehicles per mile per lane, then based on the model, GPDEN will 

yield a value of 9.6 (0.096*100) while the squared term GPDEN2 will yield -1 (-0.0001*10000). 

The net value will be 8.6. Therefore, for all practically possible density values, the impact of GP 

density on HOT lane demand/flow will be positive. The same can be said of toll rates.  

 

It is worth noting that the variable “toll rate” had a positive sign in the predictive model, 

implying toll rate increase leads to an increase in HOT lane demand/flow. This observation is 

contrary to how toll rates are expected to influence HOT lane driver behavior. In the HOT lane 

concept, the tolls charged are supposed to deter drivers from using the HOT lanes; therefore it 

was expected that toll rate will have a negative sign in the predictive model. However, the reality 

is that most drivers see high tolls as a sign of congestion in the GP lanes (14,21) and will use the 

HOT lanes in order to experience reliable travel conditions. Hence, the positive sign in the 

predictive model. This brings into question whether the current toll levels are high enough to 

deter drivers from using the HOT lanes. 

 

Since linear regression modeling technique was used, it was necessary to check if the key 

assumptions have been met. Figures 5.4 and 5.5 show a histogram and P-P plots of model 

residuals. Both plots appear to suggest that the linear regression assumption of normally 

distributed residuals was fairly satisfied.  
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             Figure 5.4: A histogram of regression residuals (I-394 MnPASS lanes) 

 

 

 

 
                      Figure 5.5: P-P plot of regression residuals (I-394 MnPASS lanes) 

 

Also, a plot of standardized residuals against standardized predicted values (Figure 5.6) shows 

that the residuals are generally around zero. This implies that the linearity assumption in the 

regression was not considerably violated. 
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Figure 5.6: A scatter plot of regression residuals/predicted values (I-394 MnPASS lanes) 

 

 

Model Performance Evaluation 

The developed model was used to predict expected HOT lane demand/flow using the “hold 

back” data (24 days). The predicted demand was then used to determine the expected LOS for 

the HOT facility. As mentioned earlier, the relationship between HOT lane demand/flow and the 

explanatory variables was not very strong (especially for toll rate); therefore, the model’s 

performance in predicting absolute HOT lane demand/flow was not encouraging, often 

over/under-predicting by as much as 25% of the true HOT lane demand/flow. However, the 

performance in terms of predicting the expected HOT lane LOS was relatively better. A 

comparison was made between performances of the predictive model and a naïve model which 

uses only average time-based HOT lane demand/flow values to predict expected HOT lane LOS. 

Table 5.5 shows results of the performance evaluation for both models. 
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DAY % 

CLASSIFIED 

CORRECTLY 

(NAÏVE) 

% 

CLASSIFIED 

CORRECTLY 

(PREDICTED) 

10/23/2012 90 55 

10/24/2012 85.7 52.4 

10/25/2012 86.2 93.1 

10/29/2012 77.8 66.6 

10/30/2012 72 75.9 

10/31/2012 81.4 82 

11/27/2012 94.2 85.7 

11/28/2012 96.7 70 

11/29/2012 87.5 79.1 

11/30/2012 85.7 82.9 

12/10/2012 81 74 

12/27/2012 44 100 

12/28/2012 32 100 

01/17/2013 68 77 

01/23/2013 54.5 51.5 

01/24/2013 91.3 78.3 

01/25/2013 76 92 

02/5/2013 79 82 

02/11/2013 81 85 

02/13/2013 65 75 

02/22/2013 56.1 69.4 

02/26/2013 80 86.7 

02/27/2013 90.3 83.4 

02/28/2013 93.1 82.8 

AVERAGE 77 78.3 

                          Table 5.5: Model performance evaluation (I-394 MnPASS lanes) 

 

 

The performance of the predictive model in terms of predicting expected LOS was almost the 

same as that of the naïve model as shown in Figure 5.7 below. The average accuracy rate for 

both the predictive and naïve models were 78.3% and 77% respectively. The predictive model 

was only superior to the naïve model when traffic conditions deviated considerably from average 

conditions (e.g. days after holiday periods or days with unexpectedly high HOT lane demand). 

During such atypical traffic conditions (i.e. extremely low or high HOT lane demands), the 

performance of the predictive model is about 89% accuracy rate compared with 50% of the naïve 

model. The performance of the predictive model was consistent and did not show any systematic 

bias in terms of time of day, day of week, or month of year. 
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Figure 5.7: Model performance evaluation (I-394 MnPASS lanes) 

 

5.5.2 I-15 Fast Trak Lanes, San Diego 

Data from 42 out of the 60 days was used as training dataset. Test for stationarity using the ADF 

test was conducted on all the variables to be used for model development. At 5% significance 

level, all variables had ADF statistic values which were more negative than the critical value of -

1.95. This implies that none of the variables had unit roots and therefore all had stationary 

properties. The data was also tested and corrected for serial correlation using Prais-Winsten 

estimation. After correction, the DW statistic changed from 1.039 to 2.32 (indicating the absence 

of serial correlation at 5% significance level). 

 

In order to examine the relationships between the response and explanatory variables, the scatter 

plot shown in Figure 5.8 was developed. Both toll rate and GP density exhibited a moderate 

positive correlation with HOT lane demand/flow.  This implies that HOT lane demand/flow 

increases as toll rates and GP density also increase. The nature of the correlation exhibited 

appeared to follow a polynomial distribution of second order (quadratic). 
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 Figure 5.8: Scatter plot of response and explanatory variables (I-15 Fast Trak lanes) 

 

Model Building 

Five explanatory variables were considered for the forward stepwise regression model 

development. Based on the quadratic relationship revealed in the scatter plots, toll rate and GP 

density as well as their squared terms were tested for inclusion in the model. The fifth 

explanatory variable was an interaction term of toll rate and GP density. The dependent variable 

(HOT lane demand/flow) was log-transformed so that the model could satisfy the linear 

regression assumptions. The stepwise addition of the explanatory variables is as shown in Table 

5.6 below. 

0 20 40 60 80 100

-1

0

1

2

3

4

5

6

7

0

1

2

3

4

5

6

7

0 0.2 0.4 0.6 0.8 1 1.2

GP Density (veh/mi/l) 
N

at
u

ra
l L

o
g 

o
f 

H
O

T 
La

n
e

 F
lo

w
 

Toll Rate ($/mile) 

Toll Rate

GP Density

Poly. (Toll Rate)

Poly. (GP Density)



118 
 

 

                                                              

 
  

Model Variables Entered Variables Removed Method 

1 GPDEN  Forward 
(Criterion: 
Probability-of-F-
to-enter <= .050) 

2 GPDEN2  Forward 
(Criterion: 
Probability-of-F-
to-enter <= .050) 

3 TR2  Forward 
(Criterion: 
Probability-of-F-
to-enter <= .050) 

4 TR  Forward 
(Criterion: 
Probability-of-F-
to-enter <= .050) 

a. Dependent Variable: LNHOTF   

Table 5.6: Stepwise regression variable selection (I-15 Fast Trak lanes) 

With the exception of the interaction term, all variables were included in the model. GP density 

and its squared term were selected as the first and second variables while toll rate squared and 

toll rate followed in that order. The order of selection of variables in stepwise regression is very 

important because it signifies the relative significance of each variable in the model. According 

to the order of variable selection in this model, the influence of GP density and its squared term 

on HOT lane demand/flow is more than the influence of toll rate/toll rate squared. Summary 

statistics for the various models is as shown below in Table 5.7. 
 
 
 

Model Summary
e
 

Model R R Square 
Adjusted R 

Square 
Std. Error of the 

Estimate 

1 .452
a
 .204 .204 .951 

2 .547
b
 .300 .300 .761 

3 .751
c
 .564 .564 .751 

4 .762
d
 .681 .681 .748 

a. Predictors: (Constant), GPDEN 

b. Predictors: (Constant), GPDEN, GPDEN2 

c. Predictors: (Constant), GPDEN, GPDEN2, TR2 

d. Predictors: (Constant), GPDEN, GPDEN2, TR2, TR 

e. Dependent Variable: LNHOTF 
NB: Adjusted R

2 
values reducing at the fourth decimal place 

Table 5.7: Model summary statistics (I-15 Fast Trak lanes) 

About 68.1% of the variance in HOT lane demand/flow was explained by model four, which is 

made up of a constant term, GP density and its squared term, and toll rate and its squared term. 

However, model three (similar to model four with the exclusion of toll rate) explains nearly the 

same percentage of the variance (56.4%) in HOT lane demand/flow as that explained by model 

Variables Entered/Removed
a 
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four. However, model four was selected for this HOT facility because it is consistent with the 

quadratic relationship observed in the scatter plot in Figure 5.8 and the toll rate term is 

statistically significant as well.  

 

Additionally, from the model summary statistics in Table 5.7, both GP density (and its squared 

term) and toll rate (and its squared term) appear to equally explain the variance in HOT lane 

demand/flow. Prior to the inclusion of toll rate, GP density (and its squared term) alone 

explained about 30% of the variance in HOT lane demand/flow. Subsequently, toll rate (and its 

squared term) improved the model’s explanatory power by 38.1%. This may suggest that the 

effect of GP lane congestion (GP density) on the demand for HOT lane use is almost the same as 

the effect of tolls.  This finding is consistent with earlier findings in Chapter four where the 

elasticity of HOT lane demand w.r.t GP density (0.14) was similar to the toll elasticity of HOT 

lane demand (0.12). 

 

Coefficients for all the four models that resulted from the stepwise regression models are as 

shown below in Table 5.8. All coefficients for the variables in model three were found to be 

statistically significant at 5% significance level. 
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Coefficients
a
 

Model 

Unstandardized Coefficients 
Standardized 
Coefficients 

t Sig. 

95.0% Confidence Interval for 
B Collinearity Statistics 

B Std. Error Beta Lower Bound 
Upper 
Bound Tolerance VIF 

1 (Constant) 2.804 .018   155.778 .000 2.768 2.834     

GPDEN .117 .001 1.2E-04 117.000 .000 .115 .119 1.000 1.000 

2 (Constant) 2.226 .017   130.941 .000 2.192 2.259     

GPDEN .195 .002 5.1E-04 97.500 .000 .191 .199 .461 2.167 

GPDEN2 -.001 .000 -1.3E-07 -10.000 .000 -.001 -8E-04 .461 2.167 

3 (Constant) 2.194 .018   121.889 .000 2.159 2.229     

GPDEN .207 .002 5.5E-04 103.500 .000 .203 .211 .370 2.702 

GPDEN2 -.001 .000 -1.3E-07 -10.000 .000 -.001 -8E-04 .453 2.208 

TR2 .002 .000 2.6E-07 -20.000 .000 -.002 -.001 .642 1.558 

4 (Constant) 2.152 .018   119.556 .000 2.117 2.187     

GPDEN .120 .002 3.2E-04 60.000 .000 .116 .124 .284 3.525 

GPDEN2 -.001 .000 -1.3E-07 -10.000 .000 -.001 -8E-04 .409 2.446 

TR2 -.001 .000 -5.3E-07 -2.500 .000 -1.7E-03 -2.2E-04 .280 3.571 

TR .009 .000 6E-06 18.000 .000 .008 .010 .390 2.564 

a. Dependent Variable: LNHOTF 

Table 5.8: Model coefficients and summary statistics (I-15 Fast Trak lanes) 

The predictive model can be expressed mathematically as shown in equation 5-6 below: 

 

                                LN(HOTF) = 2.152 + 0.12*GPDEN – 0.001*GPDEN2 + 0.009*TR - 0.001*TR2                                    (5-6)
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The above model implies that if GPDEN increases/decreases by 1 veh/mi/l, HOT lane 

demand/flow will increase or decrease by 12% (100*0.12). Similarly, if the toll rate 

increases/decreases by a $1, HOT lane demand/flow increases/decreases by 0.9%. Both GP 

density (including squared term) and toll rate have a positive sign in the model, implying any 

increments in the two variables may increase HOT lane demand/flow. The positive sign 

associated with toll rate contradicts the fundamental assumption that tolls discourage drivers 

from using HOT lanes (i.e. toll rate is supposed to have a negative sign). The selected model 

(model four) did not experience any significant multicollinearity as demonstrated by the low VIF 

values (generally <5). 

 

Model Performance Evaluation 

Using the “hold back” data (17 days), the performances of the predictive and naïve models were 

evaluated. Table 5.9 and Figure 5.9 show the performance of both models in terms of predicting 

HOT lane LOS.  

 

 

DAY % 

CLASSIFIED 

CORRECTLY 

(NAÏVE) 

% 

CLASSIFIED 

CORRECTLY 

(PREDICTED) 

10/19/2012 82.6 87.0 

10/25/2012 80.0 77.7 

11/07/2012 79.0 80.0 

11/15/2012 85.6 84.7 

11/16/2012 74.7 80.0 

12/21/2012 84.4 82.0 

12/27/2012 70.4 90.0 

01/4/2013 79.2 84.6 

01/12/2013 76.4 78.8 

01/20/2013 86.1 84.6 

01/26/2013 78.4 78.2 

02/15/2013 80.0 82.6 

02/19/2013 80.0 80.0 

02/20/2013 87.2 81.7 

02/22/2012 80 77.6 

02/26/2013 76.1 75.0 

02/27/2013 85.9 80.0 

AVERAGE 80.4 81.4 

                  Table 5.9: Model performance evaluation (I-15 Fast Trak lanes) 
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The performances of both the predictive and naïve models were similar. On average, both 

models correctly predicted the expected HOT lane LOS about 80% of the time. Figure 5.9 shows 

the performance of both models on a typical weekday. The performance of the predictive model 

was however superior during atypical traffic conditions (extremely low or high HOT lane 

demand) with classification accuracy of 90% compared with 73% for the naïve model. In terms 

of absolute numbers, the developed model expectedly over/under-predicted by as much as 20% 

of the true HOT lane demand/flow. 

 

 

 

 
Figure 5.9: Model performance evaluation (I-15 Fast Trak lanes) 
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The assumption of normally distributed residuals was fairly satisfied as shown in Figures 5.10 

and 5.11.   

 

         
              Figure 5.10: Histogram of regression residuals (I-15 Fast Trak lanes) 

 

 
                  Figure 5.11: P-P plot of regression residuals (I-15 Fast Trak lanes) 
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Also, a plot of standardized residuals against standardized predicted values was used to test the 

assumption of linearity between dependent and explanatory variables. As shown in Figure 5.12, 

the residuals are fairly randomly distributed around the zero line. 

 

 
Figure 5.12: A scatter plot of regression residuals and predicted values (I-15 Fast Trak) 

 

 

5.5.3 I-85 HOT Lanes, Atlanta 

Data from I-85 HOT lanes covering 54 out of the total 77 days was used as training dataset in the 

model development. ADF stationarity test was conducted on all variables of interest. At 5% 

significance level, all variables were found to be stationary. The DW statistic calculated showed 

that serial correlation was present in the data. The Prais-Winsten estimation procedure was used 

to correct for it. The DW statistic after correction increased from 0.61 to 2.38 (signifying the 

removal of serial correlation at 5% significance level). 

 

Scatter plot of the HOT lane demand/flow against the explanatory variables (toll rate and GP 

density) showed a positive relationship, implying that increases in toll rate and GP density results 

in HOT lane demand/flow increase. As shown below in Figure 5.13, both explanatory variables 

exhibited a quadratic relationship with HOT lane demand/flow.  
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 Figure 5.13: Scatter plots of response and explanatory variables (I-85 express lanes)                      

 

Model Building 

A forward stepwise regression model approach which considered the two explanatory variables, 

their squared terms as well as their interaction effect was constructed. The explanatory variables 

were required to be statistically significant at 5% significance level in order to enter the model. 

The dependent variable (HOT lane demand/flow) was log-transformed in order to satisfy linear 

regression assumptions. The result of the stepwise addition of explanatory variables is as shown 

below in Table 5.10. All explanatory variables except the interaction term were accepted into the 

model. Since explanatory variables enter a stepwise regression model in order of relative 

statistical significance, it can be said that GP density and its squared term relatively influence 

HOT lane demand/flow more than the influence of toll rate and its squared term. 
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Variables Entered/Removed
a
 

Model Variables Entered Variables Removed Method 

1 

GPDEN   

Forward 
(Criterion: 
Probability-of-
F-to-enter <= 
.050) 

2 

GPDEN2   

Forward 
(Criterion: 
Probability-of-
F-to-enter <= 
.050) 

3 

TR   

Forward 
(Criterion: 
Probability-of-
F-to-enter <= 
.050) 

4 

TR2   

Forward 
(Criterion: 
Probability-of-
F-to-enter <= 
.050) 

a. Dependent Variable: LNHOTF 

Table 5.10: Stepwise variable selection (I-85 express lanes) 

  

Summary statistics of the ability of each model to explain the variance in HOT lane demand/flow 

is shown in Table 5.11 below. 
 

Model Summary
e
 

Model R R Square 
Adjusted R 

Square Std. Error of the Estimate 

1 .751
a
 .564 . 564 .587 

2 .784
b
 .615 . 615 .496 

3 .796
c
 .634 . 634 .472 

4 .798
d
 .637 . 637 .469 

a. Predictors: (Constant), GPDEN 

b. Predictors: (Constant), GPDEN, GPDEN2 

c. Predictors: (Constant), GPDEN, GPDEN2, TR 

d. Predictors: (Constant), GPDEN, GPDEN2, TR, TR2 

e. Dependent Variable: LNHOTF 
    Adjusted R

2 
reducing at the fourth decimal 

Table 5.11: Model summary statistics (I-85 express lanes) 
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From Table 5.11, only 63.7% of the variance in HOT lane demand/flow could be explained by 

the ‘best’ model which is made up of a constant and four explanatory variables (toll rate, GP 

density and their squared terms). Out of the 63.7%, GP density variable (and its squared term) 

contributed about 61.5% while the remaining 2.2 % came from toll rate (and its squared term). 

Consequently, HOT lane demand/flow is likely to be relatively sensitive to GP lane congestion 

than toll rates. In model building, the desire is to build a good model with as few variables as 

possible. Models three and four are almost the same in terms of their ability to explain the 

variance in HOT lane/demand flow. However, model four was selected in order to preserve the 

observed quadratic relationship between HOT lane demand and toll rates. 

 

Table 5.12 provides details of model coefficients and multicollinearity statistics. Parameter 

estimates of all the variables in model four were found to be statistically significant at 5% 

significance level. Also, multicollinearity did not appear to hamper the accuracy of the selected 

model due to the low VIF values, generally below 5. 
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Coefficients
a
 

Model 

Unstandardized Coefficients 
Standardized 
Coefficients 

t Sig. 

95.0% Confidence Interval for B Collinearity Statistics 

B Std. Error Beta Lower Bound Upper Bound Tolerance VIF 

1 (Constant) 3.524 .019   185.474 .000 3.487 3.561     

GPDEN .091 .001 1.5E-04 91.021 .000 .090 .093 1.000 1.000 

2 (Constant) 1.575 .042   37.500 .000 1.493 1.658     

GPDEN .258 .003 1.6E-03 86.212 .000 .251 .264 .450 2.222 

GPDEN2 -.003 .001 -6E-06 -30.941 .000 -.003 -.003 .450 2.222 

3 (Constant) 1.754 .041   42.789 .000 1.675 1.834     

GPDEN .192 .003 1.2E-03 64.549 .000 .188 .221 .440 2.273 

GPDEN2 -.0005 .000 -9.5E-09 -56.749 .000 -.0005 -.0004 .440 2.273 

TR .006 .001         1.27E-05 6.108 .000 .004 .008 .105 3.992 

4 (Constant) 1.704 .042   40.571 .000 1.621 1.786     

GPDEN .190 .004 1.6E-03 47.521 .000 .182 .199 .350 2.857 

GPDEN2 -.0004 .000 -7.7E-09 -43.967 .000 -.0004 -.003 .320 3.125 

TR .004 .001 .8.5E-06 4.307 .000 .002 .006 .270 3.703 

TR2 -.0002 .007 -3E-06 -2.114 .000 -.0004 -.0003 .367 2.724 

a. Dependent Variable: LNHOTF 

Table 5.12: Model coefficients and summary statistics (I-85 express lanes) 
 

The selected model (model four) can be expressed mathematically as shown below in equation 5-7: 

 

                 LN(HOTF) = 1.704 + 0.190*GPDEN – 0.0004*GPDEN2 + 0.004* TR – 0.0002*TR2                 (5-7)
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The above model can be interpreted as: if GP density increases/decreases by 1 veh/mi/l, HOT 

lane demand/flow will increase/decrease by 19.0%. Similarly, an increase/decrease in toll rate by 

$1 will increase/decrease HOT lane demand/flow by 0.4%. Although, the squared GP density 

term has a negative sign, the net effect of GP density on HOT lane demand will still be positive 

even when density is 200 veh/mi/l. The same can be said of toll rates  
 

 

Regression assumptions of normally distributed residuals as well as a linear relationship between 

dependent and explanatory variables were also tested.  Figures 5.14 and 5.15 show that the 

residuals were fairly normally distributed. Similarly, a plot of standardized residuals and 

standardized predicted values (Figure 5.16) shows the approximate linear relationship between 

HOT lane demand/flow and the explanatory variables (toll rate and GP density).  
 

 

 

                   
   

                   Figure 5.14:  Histogram of regression residuals (I-85 express lanes) 
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                 Figure 5.15: P-P plot of regression residual (I-85 express lanes) 

 

 
 

                
 

     Figure 5.16: Scatter plot of regression residuals and predicted values (I-85 express lanes)
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Model Predictive Performance  

The “hold back” data (23 days) was used to evaluate the performance of the developed predictive 

model as well the naïve model in terms of predicting expected HOT lane LOS. Table 5.13 shows 

the performance evaluations of the naïve and predictive models. 

 

DAY % 

CLASSIFIED 

CORRECTLY 

(NAÏVE) 

% 

CLASSIFIED 

CORRECTLY 

(PREDICTED) 

10/8/2012 84.6 86.5 

10/15/2012 83.9 83 

10/16/2012 79.3 72.2 

10/18/2012 81.1 71.3 

10/19/2012 85.2 74.3 

10/23/2012 79.7 81.8 

10/29/2012 81.1 82.3 

11/5/2012 80.4 81.8 

11/9/2012 83.8 79.5 

11/14/2012 77 80.0 

11/15/2012 81.1 81.8 

11/21/2012 60.8 90.0 

11/28/2012 78.5 80.1 

11/30/2012 73.8 83.8 

12/5/2012 75.8 88.0 

12/13/2012 77.1 85.1 

12/18/2012 81.5 86.6 

12/21/2012 73.1 88.8 

1/7/2013 91.2 84.1 

1/8/2013 83 82.3 

1/18/2013 811.2 84.5 

02/4/2013 76.4 76.0 

02/20/2013 81.2 85.8 

AVERAGE 79.6 82.2 

                Table 5.13: Model performance evaluation (I-85 express lanes) 

 

On average, the naïve model was able to predict correctly the HOT lane LOS about 80% of the 

time compared with about 82% for the predictive model. Both models had almost the same 

predictive performance except on days with atypical traffic conditions (extremely low or high 

HOT lane demand) such as November 21
st
, 2012 when the predictive model (90% classification 

accuracy) outperformed the naïve model (60.8% classification accuracy). The performance of the 

predictive model was consistent for all of the time periods, days and months evaluated. Figure 
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5.17 below shows a plot of the performance of both naïve and predictive model on November 

21
st
, 2012.                     

 

                   
                Figure 5.17: Performance of naïve and predictive models (I-85 express lanes)  

 

5.5.4 I-95 HOT Lanes, Miami 

About 70% of the total dataset was used to train the predictive model to be developed. All 

variables were tested for stationarity using the ADF test. At 5% significance level, none of the 

variables was found to have a unit root, hence all were considered to have stationary properties. 

Additionally, serial correlation was corrected for using Prais-Winsten estimation procedure. At 

5% significance level, the corrected data had a DW statistic of 2.06. 

 

Scatter plots demonstrating the supposed relationship between the response and explanatory 

variables were developed as shown in Figure 5.18 below. Both explanatory variables exhibited a 

positive relationship with HOT lane demand/flow. This implies that, as toll rate/GP density 

increases/decreases, HOT lane demand/flow increases/decreases. In terms of functional form, 

both explanatory variables exhibited a second order polynomial (quadratic) relationship with the 

dependent variable.  
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         Figure 5.18: Scatter plots of response and explanatory variables (I-95 express lanes) 

 

Model Building 

Five explanatory variables were considered for development of the predictive model using 

forward stepwise regression method. The dependent variable (HOT lane demand) was log-

transformed in order to ensure that the assumptions of linear regression were satisfied. The 

variables included toll rate and GP density as well as their squared terms and the interaction 

between the two variables. The squared terms were included because of the quadratic 

relationship revealed by the scatter plot of the dependent and explanatory variables. The 

explanatory variables were required to be statistically significant at 5% significance level in 

order to enter the model. Results of the forward stepwise regression procedure are as shown 

below in Table 5.14. 
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Variables Entered/Removed
a
 

Model Variables Entered 
Variables 
Removed Method 

1 

GPDEN   

Forward 
(Criterion: 
Probability-of-F-
to-enter <= .050) 

2 

GPDEN2   

Forward 
(Criterion: 
Probability-of-F-
to-enter <= .050) 

3 

TR   

Forward 
(Criterion: 
Probability-of-F-
to-enter <= .050) 

4 

TR2   

Forward 
(Criterion: 
Probability-of-F-
to-enter <= .050) 

a. Dependent Variable: LNHOTF 

Table 5.14: Stepwise selection of variables (I-95 express lanes) 

 

The order of selection of variables indicates that GP density and GP density squared have greater 

impact on HOT lane demand/flow than toll rate and its squared term.  A summary of model 

statistics is as shown below in Table 5.15. 
 
 

 
Model Summary

e
 

Model R R Square Adjusted R Square 
Std. Error of the 

Estimate 

1 .772
a
 .596 .596 .153 

2 .794
b
 .630 .630 .132 

3 .803
c
 .644 .644 .117 

4 .805
d
 .648 .648 .111 

a. Predictors: (Constant), GPDEN 

b. Predictors: (Constant), GPDEN,GPDEN2 

c. Predictors: (Constant), GPDEN, GPDEN2, TR 

d. Predictors: (Constant), GPDEN, GPDEN2, TR, TR2 

e. Dependent Variable: LNHOTF 
    Adjusted R

2 
reducing at the fourth decimal place 

Table 5.15: Model summary statistics (I-95 express lanes) 
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As observed in all of the three previous HOT facilities analyzed, GP density and its squared term 

tend to have relatively greater influence on HOT lane demand/flow than toll rate (and its squared 

term). For this facility, GP density and its squared term were able to explain about 63% of the 

variance in HOT lane demand/flow. The subsequent addition of toll rate and its squared term 

only added an extra explanatory power of 1.8%. Although model three has fewer variables 

(three) than model four, and explains almost the same amount of variance (64.4%) in HOT lane 

demand as model four (64.8%), the latter was chosen as the predictive model for this HOT 

facility. This choice is consistent with the observed quadratic relationship between toll rates and 

HOT lane demand.  

 

The model coefficients and associated statistics are shown in Table 5.16 below. All the 

coefficients for the selected predictive model (model four) were statistically significant at 5% 

significance level. Also, the low VIF value (less than 5) also suggests that the severity of 

multicollinearity in the model was low. 
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Coefficients
a
 

Model 

Unstandardized Coefficients 
Standardized 
Coefficients 

t Sig. 

95.0% Confidence Interval for B Collinearity Statistics 

B Std. Error Beta Lower Bound Upper Bound Tolerance VIF 

1 (Constant) 5.272 .012   439.333 .000 5.248 5.296     

GPDEN 0.094 .005 .003 18.800 .000 .084 .104 1.000 1.000 

2 (Constant) 4.786 .043   111.302 .000 4.702 4.870     

GPDEN .089 .013 .009 6.846 .000 .064 .114 .346 2.889 

GPDEN2 -.009 .002 -1.4E-04 -4.500 .000 -.012 -.005 .346 2.889 

3 (Constant) 4.765 .038   125.395 .000 4.691 4.839     

GPDEN .086 .159 .007 9.556 .000 .068 .104 .570 1.758 

GPDEN2 -.0004 .000 -6.8E-07 -2.002 .000 -7.9E-04 -8E-06 .330 3.030 

TR .003 .239        2.56E-05 3.100 .000 .001 .005 .250 4.000 

4 (Constant) 3.870 .144   26.875 .000 3.588 4.152     

GPDEN .085 .012 .009 7.083 .000 .062 .109 .490 2.040 

GPDEN2 -.0003 .000 -2.7E-07 -3.000 .000 -5E-04 -1E-04 .290 3.450 

TR .002 .000 1.8E-05 2.010 .000 4E-05 .004 .630 1.587 

TR2 -.0001 .000 -9E-09 -10.000 .000 -1.2E-04 -8E-05 .310 3.226 

a. Dependent Variable: LNHOTF 

Table 5.16: Model coefficients and summary statistics (I-95 express lanes) 

Using the coefficients of model four, the HOT lane demand/flow predictive model can be expressed mathematically as: 

 

                                    LN (HOTF) = 3.870 + 0.085*GPDEN – 0.0003*GPDEN2 + 0.002*TR – 0.0001*TR2                       (5-8) 

This model implies that, if GP density is increased/decreased by 1 veh/mi/l, HOT lane demand/flow will increase by 8.5% .Similarly, 

if toll rate increases/decreases by $1, HOT lane demand/flow will increase/decrease by 0.2%. Both GP density (net effect) and 
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toll rate have positive signs in the model, implying that increases in both will increase HOT lane 

demand/flow. While the positive sign for GP density is expected (because drivers will use HOT 

lanes to avoid congestion), the positive sign associated with the coefficient of toll rate is 

counterintuitive since toll rate is expected to deter drivers from using HOT lanes; hence, a 

negative sign was expected. 

 

The model was tested for the normality assumption in linear regression to determine if the 

residuals were normally distributed. Based on a histogram (Figure 5.19) and P-P (Figure 5.20) 

plots of the residuals, it can be stated the residuals were fairly normally distributed.  

 

                 
            Figure 5.19: Histogram of regression residuals (I-95 express lanes) 
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                   Figure 5.20: P-P plot of regression residuals (I-95 express lanes) 

 

Also, a plot of standardized regression residuals against standardized predicted values (Figure 

5.21) show that, the linearity assumption (linear relationship between dependent and explanatory 

variables) was fairly satisfied. 

 

              
Figure 5.21: Regression residuals against predicted values (I-95 express lanes) 
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Model Predictive Performance 

Evaluation of the predictive performance of the developed model in predicting HOT lane LOS 

was conducted using the “hold back” data (16 days). The performance of the predictive model 

was compared with the performance of a naïve model which was also tested using the same 

“hold back” data. Table 5.17 and Figure 5.22 show the performance of the two models. 

 

                   

DAY % CLASSIFIED 

CORRECTLY 

(NAÏVE) 

% CLASSIFIED 

CORRECTLY 

(PREDICTED) 

10/17/2012 56.4 82.1 

10/26/2012 67.9 78.6 

11/09/2012 66.7 79.2 

11/10/2012 60.5 79.0 

11/15/2012 66.5 82.0 

11/21/2012 81.8 80.0 

11/28/2012 88.5 80.2 

11/30/2012 83.8 93.8 

12/5/2012 85.8 81.3 

12/13/2012 87.1 83.2 

12/18/2012 86.5 80.5 

12/21/2012 83.1 98.8 

1/7/2013 91.2 80.3 

1/8/2013 83 73.3 

1/18/2013 91.2 93.3 

02/26/2013 96.1 96.3 

AVERAGE 79.8 83.8 

                             Table 5.17: Model performance evaluation (I-95 express lanes) 

The naïve and predicted models were able to predict correctly HOT lane LOS for 79% and 83% 

of the time respectively. Accuracy level of the predictive model (80.2%) superseded that of the 

naïve model (63.6%) during periods when HOT lane demand was extremely low or high. Apart 

from that, the performance of the predictive model was consistent and did not exhibit any 

systematic trend due to time of day, day of week, or month of year. Figure 5.22 below shows the 

performance of both models on October 17
th

, 2012. 
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               Figure 5.22: Model performance evaluation (I-95 express lanes) 

 

5.6 Summary 

This chapter focused on the development of short-term predictive models for HOT lane demand. 

These models will help to predict the expected LOS of HOT facilities based on tolls and GP lane 

congestion (density). As a result of the weak relationship between HOT lane demand and 

tolls/GP lane density, the developed models were not well suited for predicting absolute HOT 

lane demand (high prediction errors). However, the models were able to fairly predict the 

expected levels of demand on the HOT lanes. The next chapter presents the general conclusions 

arrived at for the different research areas in this dissertation. 
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Chapter 6 

Conclusions 

This research led to a number of conclusions pertaining to selection of beneficial Integrated 

Corridor Management (ICM) strategies as well as the general pattern of High Occupancy Toll 

(HOT) lane driver behavior. Major conclusions regarding the prediction of HOT lane demand 

using tolls and General Purpose (GP) lane congestion are also discussed. The conclusions are 

presented below. 

 

6.1 Evaluation Methodology for Selecting Beneficial ICM Strategies 

A five-step evaluation methodology based on which beneficial ICM strategies can be selected 

was developed in this research. The methodology included modeling of base case traffic 

conditions in a corridor, implementing candidate ICM strategies in the model, conducting 

sensitivity analysis, testing for statistical significance of the impacts of candidate strategies, and 

selection of beneficial strategies. The methodology was applied to a real-world transportation 

corridor in northern Virginia (11 mile section of I-95/I-395 corridor) and the following 

conclusions were reached: 

 

1. The ability to “shift” demand from automobiles to transit will be very critical to the 

success of ICM implementation. However, this shift is dependent on the parking capacity 

at transit access locations and operating schedule of transit systems.   In the test corridor, 

it was discovered that transit capacity exceeded parking capacity significantly (a deficit 

of approximately 2,000 parking spaces).  Additionally, 21 of the 68 possible transit trips 

(19 bus trips and two train trips) available during the A.M period start and end before 

6:00 A.M.  Such early transit trips indicate that demand shifting is most practical during 

early portions of the peak period. 

 

2. By examining different diversion percentages during non-incident conditions, it was 

discovered that it will require 15% of vehicles diverting from I-95 N (freeway) to U.S. 

1N (a parallel arterial) in order to reduce average travel time (27.1 minutes) on the 

freeway by 5 minutes, and increase corresponding average speed (31 mph) by 9 mph.  

However, this adversely affected traffic conditions on U.S. 1N, resulting in a 

corresponding increase in average travel time (30.7 minutes) of 4.3 minutes.  This 

illustrates that the extra capacity on U.S. 1N (principal arterial) is not adequate to 

accommodate significant traffic shifts from I-95 N. 

 

3. During incident conditions on I-95 N, 15% of the traffic has to be diverted onto U.S. 1N 

in order to reduce average travel time (38.2 minutes) by 5 minutes coupled with no 

significant increase in speed.  These diversions can increase average travel times (30.7 

minutes) on U.S. 1N up to 7 minutes and reduce average speeds (30 mph) by 6 mph.  

Regardless of the diversion percentage, there was no significant increase in the vehicular 

flow on the I-95 N.  In contrast, vehicular flow on U.S. 1N was reduced by as much as 

471 vehicles per hour.  Again, this illustrates that freeway/arterial ICM strategies devoid 
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of modal shifts are of limited effectiveness on heavily traveled corridors where demand 

nears or surpasses capacity.   

 

4. This research demonstrated the need to implement comprehensive ICM as a congestion 

mitigation measure in Virginia, as opposed to the traditional approach of diverting 

vehicles to parallel routes.  Overall, there was significant improvement in the 

performance of the individual transportation facilities (excluding the VRE commuter line, 

whose performance was not assessed) as well as the entire corridor. 

 

5. The benefits of ICM were more significant under incident conditions than non-incident 

conditions.  In terms of corridor person flow (the non-mode specific performance 

measure used in selecting critical ICM strategies), an average increase of 6,860 persons 

per hour (+38%) was experienced when ICM strategies were implemented during 

incident conditions.  During non-incident conditions, the improvement in average 

corridor person flow was 3,286 persons per hour (+14%).  Under incident conditions, 

modal shifts between 16%-21% are required to achieve the 38% increase in corridor 

person throughput.  Similarly under non-incident conditions, modal shifts between 15% - 

23% are needed in order to experience the 14% increase in corridor person throughput.   

 

6. HOT lanes, High occupancy Vehicle (HOV) lanes, and increasing transit and parking 

capacity are the ICM strategies that will bring about the mode shifts under both incident 

and non-incident conditions.  Additionally, driver compliance rate to Variable Speed 

Limit (VSL) must be above 70%.  Unused transit and parking capacity of over 2000 seats 

and 450 spots respectively were identified in the analysis segment.  Therefore, it appears 

there is adequate transit capacity to accommodate the mode shifts but vice versa when it 

comes to parking.  Also the HOV lanes in the corridor currently has excess capacity of 

about 1,000 veh/hr between SR 234 and SR 123, as well as about 500 veh/hr between SR 

123 and SR 642.  Hence mode shifts due to HOT/HOV can also be accommodated. 

 

7. The ICM strategies identified as critical under non-incident conditions included VSL, 

increasing the use of HOV lanes/HOV bypass, the impact of HOT lanes in motivating the 

formation of carpools and ridesharing programs, and the provision of adequate parking 

and transit capacities. Similar strategies were observed under incident conditions as well. 

 

8. Transportation agencies must make it a point to identify redundant strategies in order to 

cut down cost. Ramp metering was the least critical among the six strategies 

implemented.  Also the usual formation of queues on on-ramps as a result of metering 

operations was not experienced at any of the metered on-ramps. This implies that, some 

strategies lose their operational benefits when combined with other strategies. Ramp 

metering as a stand-alone strategy might be beneficial but within the context the ICM 

application in this corridor, it appeared to be redundant.  

 

9. In terms of the impacts of TSP within an ICM framework, the reductions in average 

travel time were modest for buses traveling between Dale City and the Washington, D.C. 

area (2.5 minutes), and between South Route 1 (Dumfries) and Washington, D.C. (2.1 

minutes).  Conversely, the routes between Lakeridge and the Washington, D.C. area 
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experienced average travel time increment of 3.4 minutes.  Buses using this route have 

stops at three park-and-ride facilities.  Roads leading to these park-and-ride facilities 

experienced heavy traffic when the percentage of vehicles wanting to park (and use 

transit) is high.  This can potentially delay buses and increase their travel times. 

 

10. The ICM strategies modeled had a positive impact on the environment.  Under both 

incident and non-incident conditions, the amount of fuel usage was significantly 

decreased by 33.1% and 34.3%, respectively, leading to subsequent reductions in the 

emissions of CO, NOx, and VOC. 

 

 

6.2 HOT Lane Driver Behavior 

The behavior of HOT lane users across four HOT lane facilities in different regional locations 

was analyzed in this research. The purpose was to determine if there was a general pattern in 

how users from different HOT lane facilities respond to tolls and congestion on GP lanes. Using 

5 months of toll and traffic data (revealed preference), the following conclusions were reached: 

 

1. There was no significant difference in travel time savings or toll rates between morning 

and evening directions of travel. On average, the difference in tolls paid between morning 

and evening periods was about $0.13 per mile with corresponding travel time savings 

difference of about 0.11 minutes per mile.  

 

2. Across all studied HOT facilities, VTTS estimates increased during peak periods. This 

was due to congestion build up on the GP lanes during the peak period, causing the 

demand for HOT lane use by eligible users to increase. The increased demand caused toll 

rates to increase resulting in high VTTS. On average, VTTS estimates during peak period 

were about $5/hour more than that of entire morning/evening periods. However, the 

magnitude of the difference varied among the studied HOT facilities. For example, mean 

VTTS increased from $55/hour during the entire morning period to $79/hour during the 

morning peak period on I-15 Fast Trak lanes (morning commute). On the other hand, 

VTTS for 1-95 express lanes (morning commute) increased from $49.7/hour during the 

entire morning period to $50.9 during the morning peak period. 

 

3. Mean VTTS estimates calculated for all the studied HOT facilities were significantly 

higher than the respective BLS average hourly wages. The estimates were at least more 

than twice the BLS average hourly wages. This suggests that HOT lane users are likely to 

earn more income than average residents in their locations since VTTS is known to 

increase with increasing income/wage rate (100–102). Therefore HOT lane users may 

value their travel time savings more than average residents of the same location/region. 

Conclusions from other research efforts confirm this finding. For example, research by 

Khoeini and Guensler (2014) on the household incomes of HOT lane users and non-users 

in Atlanta concluded that the average household incomes of HOT lane users exceeded 

those of non-users by over $10,000 per year (103). A survey of Quickride HOT lane 

users in Houston conducted by Burris et al (2006) revealed that about 79% of HOT lane 

users have household incomes greater $75,000 in 2003. The authors concluded that, 
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Quickride HOT lane users generally have higher household incomes than the average 

incomes of residents(104). 

 

4. A hypothesis test was conducted to investigate the difference between means of VTTS 

distributions for the HOT facilities studied. The null hypothesis was that means of VTTS 

distributions for a facility pair were equal. It was found that mean VTTS estimates for I-

15 Fast Trak  and I-394 MnPASS lanes were not statistically different from each other. 

Also, mean VTTS estimates between I-85 and I-95 express lanes were found to be 

statistically similar. I-15 Fast Trak and I-394 MnPASS lanes had a relatively higher mean 

peak VTTS of $72.5/hour and $71/hour respectively compared with $50/hour for I-95 

express lanes and $51/hour for I-85 express lanes. For the remaining facility pairs, there 

was not enough evidence to suggest that the null hypothesis was true; hence they were 

rejected. A common denominator among the two groups of HOT facilities that emerged 

was annual average income of their regions/locations. The San Diego (I-15 Fast Trak) 

and Minneapolis (I-394 MnPASS) areas had a relatively higher annual Regional Price 

Parity (RPP)-adjusted respective average incomes of $83,820 and $87,092 compared with 

$65,990 and $79,963 for Miami-Dade (I-95 express lanes) and Gwinnet/Atlanta (I-85 

express lanes) areas respectively. This suggests that regions with high annual incomes are 

likely to have relatively high VTTS estimates and vice versa. However, the impact was 

not proportional.  

 

5. It was also found that the facilities with high mean VTTS estimates appear to have 

relatively lower levels of congestion in the HOT corridor. I-15 Fast Trak and I-394 

MnPASS lanes had relatively high VTTS estimates but congestion levels on their parallel 

GP lanes was relatively low (average GP density of around 30 veh/mi/l) compared with I-

95 and I-85 express lanes (average GP density of about 50 veh/mi/l) which recorded low 

mean VTTS estimates.  

 

6. The elasticity of HOT lane demand w.r.t toll prices was positive for all HOT lane 

facilities analyzed. However, the magnitude of the estimates demonstrated an inelastic 

relationship, generally below +0.2. Furthermore, the toll elasticity of HOT lane demand 

reduced in magnitude during peak periods, generally below +0.08. The concept of HOT 

lanes is based on a negative relationship between tolls and HOT lane demand in order to 

keep the HOT lanes from becoming gridlocked. The fact that elasticity w.r.t tolls across 

all the studied HOT facilities was positive and sometimes statistically insignificant points 

to the probability that the toll rates are not allowed to rise to a level for supply/demand to 

take effect. Therefore tolls charged appeared not to have an impact on HOT lane demand. 

The tolls charged were generally between $0.22 per mile and $0.6 per mile. Depending 

on the distance traveled, this translates to a range between $1.5 and $8. A recent study on 

the diamond segment of I-394 MnPASS confirms the positive relationship between HOT 

lane demand and toll rates (14). 

 

7. The elasticity of HOT lane demand w.r.t GP congestion level (density) was consistently 

positive and greater in magnitude than the elasticity w.r.t toll rates for all the HOT 

facilities studied except I-394 MnPASS. The estimated values did not exceed +0.5 during 

the morning and evening periods, and increased to about +0.72 during peak periods.  
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8. A hypothesis test conducted to investigate if the impact of GP congestion was the largest 

motivator of HOT lane demand yielded mixed results. On I-394 MnPASS and I-15 Fast 

Trak lanes, the impacts of both tolls and GP lane congestion were found not to be 

statistically different. However, the impact of GP congestion on HOT lane demand was 

statistically greater than corresponding impacts of tolls on I-85 and I-95 express lanes. 

The possible underlying factor for this observation is the level of congestion in segments 

of the HOT corridors analyzed. GP lane congestion on I-394 MnPASS and I-15 Fast Trak 

were significantly lower (average of 30 veh/mi/l) than those of I-85 and I-95 express 

lanes (average of 50 veh/mi/l). This suggests that GP congestion is a larger motivator of 

HOT lane usage in corridors with high level of congestion. 

 

9. A hypothesis test was also conducted to investigate the differences between the studied 

HOT facilities in terms of elasticity w.r.t both tolls and GP congestion. Mean elasticities 

were compared for each facility pair. The result indicated that I-394 MnPASS and I-15 

Fast Trak were alike as well as I-85 and I-95 express lanes. The remaining facility pairs 

were found to be statistically different. Further probe into these facilities revealed that, 

about 90% of eligible I-15 Fast Trak users were not sensitive to changing toll rates and 

GP lane travel conditions. These users consistently traveled on the HOT lanes even when 

there were no significant travel time savings and had relatively high VTTS. However, 

travel on I-85 express lanes by eligible users appeared to fluctuate with changes in the 

level of congestion on parallel GP lanes and toll rates. Therefore, their VTTS were 

relatively lower. A possible reason for the difference in elasticity between the two groups 

is the high average income levels for I-394 MnPASS/I-15 Fast Trak users and a relatively 

low income levels for I-95/I-85 express lanes users as explained above in the fourth 

conclusion. 

 

10. In addition to income and level of congestion on GP lanes, travel time reliability on 

parallel GP lanes also influenced the differences in average VTTS estimates observed 

between I-394 MnPASS/I-15 Fast Trak express lanes and I-95/I-85 express lanes. 

Measures of travel time reliability such as Planning Time Index (PTI), Travel Time Index 

(TTI) and Coefficient of Variation were calculated for GP lanes parallel to the studied 

HOT facilities. The results indicated that there was relatively high variability in travel 

times on GP lanes parallel to I-394 MnPASS (CV of 0.5) and I-15 Fast Trak express 

lanes (CV of 0.64) than corresponding GP lanes parallel to I-95 (CV of 0.26) and I-85 

(CV of 0.21) express lanes. Lack of reliable travel conditions on the GP lanes will cause 

drivers to shift to the HOT lanes even where there are no significant travel time savings 

in order to be guaranteed on-time arrival. Paying for HOT lane use when there are no 

significant travel time savings will result in high VTTS estimates (as observed on I-394 

MnPASS and I-15 Fast Trak express lanes). 

 

 

6.3 Predicting HOT Lane Demand 

In this research, models were developed to predict HOT lane demand using toll rates and GP 

congestion levels in real-time. The purpose was to help transportation professionals determine 
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the expected level of service conditions on the HOT lanes based on tolls and changing traffic 

conditions. This was achieved by using the predicted HOT lane demand to obtain the expected 

LOS as described in the Highway Capacity Manual (HCM) 2010. Some of the specific 

conclusions include: 

 

1. For all HOT lane facilities studied, GP density and toll rate (explanatory variables) 

exhibited a positive correlation with HOT lane demand/flow (dependent variable) with R
2 

values ranging from 0.3 to 0.7. However, the positive correlation was generally stronger 

for GP density/HOT lane demand relationship than that of toll rate/HOT lane demand. 

Additionally, both explanatory variables had a second-order polynomial (quadratic) 

relationship with the dependent variable. The graphs of the quadratic functions resulted in 

an “n” shaped parabola because the coefficients of the squared terms were negative. 

 

2.  The order of selection of variables into the predictive model using forward stepwise 

regression was ubiquitous across all studied HOT lane facilities. GP density and its 

squared term always entered the model before toll rate (and its squared term).  This 

implies that, GP density and its squared term appear to have greater influence on HOT 

lane demand than toll rate and its squared term. However, the impact of the influence 

varied among HOT facilities. For example, GP density and its squared term explained 

about 63% of the variance in HOT lane demand/flow on I-95 express lanes. The addition 

of toll rate and its squared term to the model only improved the explanatory power of the 

model by 1.8% (resulting in a total adjusted R
2
 value of 64.8%). On the contrary, GP 

density (29.4%) and toll rate (24.8%) almost explained the same amount of the variance 

in HOT lane demand for I-394 MnPASS lanes. 

 

3. The general form of the predictive models for all the studied HOT lane facilities was 

 

                    LN (HOTF) = k + a*GPDEN – b*GPDEN2 + c* TR – d*TR2 

Where: 

          LN (HOTF)—natural log of HOT lane demand/flow 

          GPDEN—GP density 

          GPDEN2—GP density squared 

          TR—toll rate 

          TR2 — toll rate squared 

           k—model constant  

           a—coefficient of GP density 

           b—coefficient of GP density squared 

           c—coefficient of toll rate 

           d —coefficient of toll rate squared 

 

4. Both GP density and toll rate had positive coefficients in the predictive model. This 

implies HOT lane demand/flow increased/decreased when GP density and toll rate 

increased/decreased. The preceding explanation is reasonable for GP density because 

eligible drivers are likely to shift to HOT lanes when the GP lanes get congested. 

However, the positive coefficient of toll rate is contrary to the expected negative effect of 

tolls on HOT lane demand (i.e. to discourage drivers from using HOT lanes). The 



147 
 

 

positive coefficient of toll rate confirms findings in chapter four in which tolls had a 

positive elasticity relationship with HOT lane demand/flow.  

 

5. The predictive models developed for each HOT facility was able to fairly predict the 

expected LOS on the HOT lanes. On average, they were able to correctly predict the 

expected LOS on the HOT lanes at least 75% of the time. However, the models 

performed poorly in terms of predicting absolute HOT lane demand, often over-

predicting/under-predicting by as much as 25% of the true demand. This demonstrates 

that absolute or actual demand on the HOT lanes is very difficult to predict using tolls 

and GP lane congestion.  

 

6. The predictive models developed in this research did not outperform the naïve models in 

terms of predicting expected LOS on HOT lanes. This is an indication of the weak causal 

relationship between HOT lane demand and the explanatory variables (tolls and GP 

density) as well as less variability in traffic conditions on the HOT lanes. The predictive 

model only performed better than the naïve model during atypical traffic conditions 

(extremely low or high HOT lane demand) .This calls for more research into other factors 

that may affect real-time HOT lane use. Once these factors are identified, relatively 

highly accurate predictive models can be developed. 

 

 

6.4 Summary 

This chapter reviewed the major conclusions made in this research. The next chapter discusses 

the research’s major contributions to the current state-of-knowledge in ICM evaluation and HOT 

lane driver behavior, and identifies several areas for expansion and possible future research. 
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Chapter 7 
 

Contributions and Future Research 

As demand for highway travel continues to rise, the need for efficient use of existing 

transportation infrastructure has become very essential. Integrated Corridor Management (ICM) 

offers the potential to leverage relevant technologies and underutilized capacity on all surface 

transportation modes in a corridor to meet this rising demand. This research developed an 

evaluation methodology to determine the feasibility of ICM implementation in a corridor as well 

as identify the most beneficial strategies. Notable among the most beneficial ICM strategies that 

this evaluation methodology identified was the use of pricing to influence traveler behavior in 

order to prevent High Occupancy Toll (HOT) lanes from becoming congested. In the evaluation 

methodology developed in this research (and those developed for pioneer ICM sites), the impacts 

of pricing on traveler behavior were mainly based on long-term average mode and route shifts 

associated with pricing due to limited published knowledge on how tolls affect drivers’ decision 

to use/not to use HOT lanes in real-time. This research is the first to conduct analysis of HOT 

lane driver behavior using four HOT lane facilities in the U.S. with real-time dynamic tolling 

capabilities. Knowledge of the HOT lane driver behavior was then used to develop predictive 

HOT lane demand models that could be used to make ICM proactive rather than reactive. 

Several areas of future research that can further deepen the understanding of HOT lane driver 

behavior and make ICM more effective are also presented. 

 

 

7.1 Research Contributions 

This dissertation provided several contributions to the state-of-knowledge in HOT lane driver 

behavior and ICM implementation. The main and other contributions are presented below. 

 

7.1.1 Main Contributions 

The main contributions are as follows: 

 

1. This research developed an analysis and evaluation methodology that can be used at the 

planning stages to determine the feasibility of ICM implementation in a transportation 

corridor. The five-step methodology will enable transportation agencies to identify which 

ICM strategies best fit the transportation needs of their corridors. Prior to this, there was 

only one high level evaluation methodology developed for the ICM pioneer sites with 

less details on its implementation. Therefore, the detailed methodology developed in this 

research adds to the body of knowledge of ICM and provides an alternative evaluation 

approach to transportation agencies. 

 

2. This research revealed that, elasticity of HOT lane demand with respect to tolls is 

positive and statistically significant but inelastic (average elasticity below +0.2). 

Furthermore, the impact of tolls on HOT lane demand further diminished during peak 
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periods where average elasticity of HOT lane demand with respect to tolls fell below 

+0.08. This implies the lack of impact of tolls (pricing) on HOT lane demand and that the 

decision to use HOT lanes are driven by factors other than tolls (such as level of 

congestion on GP lanes, travel time reliability, etc.). The concept of HOT lanes is based 

on a negative relationship between HOT lane demand and tolls; that is, tolls are expected 

to discourage drivers from using the HOT lanes. Therefore, the positive and inelastic 

relationship observed in this dissertation goes against the conventional wisdom that 

drives use of HOT lanes. This suggests the probability that the tolls are not allowed to 

rise to a level for supply/demand to take effect. This situation can be likened to the 

effects of government control/limits on prices which prevent market forces from working 

correctly. A notable example of government control of prices is the price cap on rental 

accommodation in New York during World War II (105). As a result of high demand for 

accommodation due to the inflow of ship builders to New York, the City set price caps on 

the maximum amounts Landlords could charge. This was intended to make housing 

affordable to ship builders who moved to the City in order to increase the production of 

ships for the war. The action disincentivized real estate developers from building new 

homes, leading to acute shortage of housing. That is, because the prices were artificially 

set low, people moving to New York at the time were not discouraged by accommodation 

cost. Similarly, when the federal government restricted gasoline price increases in the 

1970s, long lines formed at gas stations and only those motorists who waited long hours 

in line received the scarce gasoline (106). The bottom line is whenever prices are set 

below equilibrium level, it causes consumers to want more of the product than producers 

have available. In the case of HOT lanes, setting toll prices below the equilibrium level 

increases the demand for its use by eligible HOT lane users. This implies that, drivers’ 

decision to use/not to use the HOT lanes will not be greatly influenced by the toll price 

because it is below the equilibrium level. If toll prices are not allowed to rise as dictated 

by market forces, then the HOT lanes will sooner or later become congested as the 

general demand for highway travel continues to increase.  This finding will help 

transportation professionals to reconsider current pricing levels in order to ensure an 

effective ICM through pricing.  Currently, some HOT lane systems have started acting in 

this regard. For example, the Florida Department of Transportation (FDOT) increased the 

minimum and maximum toll prices on I-95 express lanes in Miami from $0.25/mile to 

$0.50/mile and from $1.0/mile to $1.50 respectively on March 1
st
, 2014. According to 

FDOT, increasing the rate is necessary to keep traffic moving at 45 mph or higher in the 

express lanes for at least 90 percent of the time (107).   

 

3. This research conducted a hypothesis test to investigate the relative impacts of tolls and 

GP lane congestion on HOT lane demand (i.e. demand elasticity w.r.t tolls vs. w.r.t GP 

congestion) for each HOT facility. The results were mixed; equal impacts were observed 

on two of the facilities while dominant impact of GP lane congestion was recorded for 

the remaining two. An underlying factor for the observed groupings was the level of 

congestion on parallel GP lanes in a HOT corridor. The impact of GP lane congestion on 

HOT lane demand is not dominant when the level of congestion on GP lanes is relatively 

low and vice versa. For example, on I-394 MnPASS and I-15 Fast Trak lanes, the impacts 

of tolls and GP lane congestion on HOT lane demand were found not to be statistically 

different for both facilities. GP lane congestion on these two HOT facilities was found to 
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be significantly low, with average densities of about 30 veh/mi/l during the morning 

period. On the contrary, the impact of GP congestion on HOT lane demand was found to 

be greater than corresponding impacts of tolls for I-85 and I-95 express lanes; and as 

expected, both facilities had relatively high GP lane congestion with average densities of 

50 veh/mi/l. This suggests that GP congestion is a larger motivator of HOT lane use in 

HOT corridors with high level of congestion. 

 

4. This research represents one of the first attempt to predict HOT lane demand from the 

perspective of real-time traffic management in ICM. Prior efforts focused on predicting 

long term HOT lane demand during the planning stages of HOT lane implementation. 

Based on the estimated demand, operational benefits, expected revenue and benefit/cost 

analysis are made. None of the past research efforts have looked at predicting short-term 

HOT lane demand for traffic management purposes. In this dissertation, HOT lane 

demand predictive models were developed using tolls and GP lane congestion as 

explanatory variables for each facility. The intended purpose of the model was to predict 

the expected Level of Service (LOS) of HOT lanes based on estimated number of 

potential users. This model will help transportation professionals to estimate the level of 

demand expected in order to manage the overall HOT lane system. As expected, the 

performance of the predictive model wasn’t outstanding because of the weak relationship 

between the explanatory variables (tolls and GP lane congestion) and HOT lane demand 

as observed in chapter four. This research demonstrated that, real-time HOT lane demand 

is not a predictable value using toll prices and GP lane congestion.  

 

 

7.1.2 Other Contributions 

The other contributions are: 

 

1. Implementation of the developed evaluation methodology on an 11mile section of I-95/1-

395 corridor in northern Virginia provided significant insights into the effectiveness of 

ICM as a congestion mitigation tool. These insights include:  

 

a. The main purpose of ICM is to increase person throughput in a transportation 

corridor. In order to increase person throughput, transportation agencies must find 

a way to utilize existing capacity on all transportation modes as well as spread 

travel demand across mode and time. Although there are a plethora of ICM 

strategies (such as queue warning and lane departure systems, signal optimization, 

en-route traveler information through dynamic message signs, pre-trip traveler 

information through text messages and websites, etc.) at the disposal of 

transportation agencies, care must be taken in selecting the right combination of 

strategies to spread demand as well as utilize capacity. On the I-95/I-395 corridor 

where the ICM evaluation methodology was implemented, it was discovered that 

the effectiveness of ICM became significant only when strategies such as HOT 

lanes (which provide route choice options, thereby spreading demand), variable 

speed limit (which helps to utilize capacity by delaying traffic flow breakdowns) 
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and increasing transit and parking capacities (which promote mode shifts, 

eventually helping to spread travel demand) were combined. Therefore, ICM can 

only be effective when the implemented strategies help to spread demand as well 

utilize existing capacity. 

 

b. The underlying concept of ICM is to combine different strategies in order to 

increase person throughput and reduce congestion in a transportation corridor. 

Hence, the effectiveness of ICM lies in how the different strategies combine to 

collectively achieve the above-mentioned purpose. There are some strategies 

whose effects diminish once they are combined with other strategies; such 

strategies are not worth investing in and must be identified. On the I-95/I-395 

corridor, implementation of the evaluation methodology led to the discovery that 

the ramp metering strategy was redundant and less beneficial to the transportation 

needs of the corridor. This was due to the fact that ramp metering was evaluated 

alongside two other ICM strategies (increasing transit capacity and financial 

incentives) that ensured that fewer vehicles got onto the freeway due to the 

availability of parking and transit capacities at reduced prices. Although the ramp 

metering strategy can be very beneficial when operated in isolation, it was of less 

operational significance in this instance of ICM application. Therefore, 

transportation agencies who intend to adopt ICM must make it a mission to 

identify such redundant strategies in order to minimize cost. 

 

2. This research represents the first attempt to compare HOT lane user VTTS (value of 

travel time savings) across four HOT lane facilities in different parts of the U.S. with 

dynamic tolling capabilities. A hypothesis test comparing VTTS distributions of each 

HOT facility revealed that some HOT facilities are similar in terms of their VTTS 

(though at different locations) while others are dissimilar. A commonality between HOT 

facilities found to be similar in terms of VTTS is the average annual income of the 

respective regions where these HOT facilities are located. Users of HOT facilities located 

in regions with high average RPP (Regional Price Parity)-adjusted annual incomes tend 

to have high mean VTTS and vice versa. I-394 MnPASS located in Minneapolis and I-15 

Fast Trak express lanes located in San Diego were found to have similar mean VTTS 

estimates. Users of these two HOT facilities had mean VTTS estimates of $71/hour (I-

394 MnPASS, Minneapolis) and $72.5/hour (I-15 Fast Trak, San Diego) lanes during 

peak periods. Additionally, both facilities are located in regions with relatively high 

average RPP (regional price parity)-adjusted incomes of $87,092 (Minneapolis) and 

$83,820 (San Diego) in 2012. Similarly, I-95 and I-85 express lanes in Miami and 

Atlanta respectively were found to have almost the same peak mean VTTS estimates of 

$49.2/hour (I-95 express lanes) and $50.9/hour (I-85 express lanes). Their RPP-adjusted 

incomes for 2012 were $65,990 (Miami) and $79,963 (Atlanta). Although the RPP-

adjusted annual income of Atlanta ($79,963) appeared to be close to that of San Diego 

($83,820), results of the hypothesis test indicated that their mean VTTS were statistically 

different. 

 

3. VTTS analysis in this research was also used to make a general inference about the 

income levels of HOT lane users by comparing average VTTS estimates with Bureau of 
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Labor Statistics (BLS) average hourly wages for each location/region. It is known from 

past research that traveler VTTS increases as income or wage rate increase, but less than 

proportional (100–102). For all HOT facilities analyzed, it was found that HOT lane 

users’ mean VTTS was substantially higher than average hourly wages (at least more 

than twice) of local residents. This suggests that, HOT lane users are likely to earn more 

income than the average residents of HOT facility locations.  

 

4. This research represents one of the first attempts to determine if there is a general pattern 

in driver behavior in terms of their demand for HOT lane use. A hypothesis test was used 

to compare demand elasticity distributions (w.r.t tolls and GP lane congestion) of all 

HOT facilities studied. It was found that, users of facilities with high mean VTTS 

estimates were indifferent to tolls and GP lane congestion and consistently used the HOT 

lanes. Conversely, users of facilities with relatively low VTTS, tend to respond fairly to 

changing traffic conditions (GP lane congestion) and do not use the HOT lanes at all 

times.  I-394 MnPASS and I-15 Fast Trak lanes, which were found to have statistically 

similar mean elasticities recorded high mean VTTS estimates of $71/hour and $72.5/hour 

respectively during peak periods. Furthermore, it was found that about 90% of eligible 

HOT lane drivers used the I-15 Fast Trak lanes regardless of the level of congestion or 

toll prices during both morning and evening periods (remaining 10% used the GP lanes), 

while earlier research by Goodall and Smith (2010) showed that about 87.5% of I-394 

MnPASS lane drivers used the facility even when its usage did not offer any travel time 

benefits (23). For I-95 and I-85 express lanes which recorded relatively low VTTS 

estimates of $49.2/hour and $50.9/hour respectively, their elasticity distributions were 

found to be alike. HOT lane usage data from I-85 express lanes revealed that, only about 

20% of eligible HOT lane drivers used the HOT lanes at the start of the morning period 

when there is little or no congestion on the GP lanes (remaining 80% used the GP lanes). 

The level of usage increased as GP lane congestion increased, peaking at 50% during the 

peak period (remaining 50% used the GP lanes). 

 

7.2 Future Research 

A lot of topics were identified in the course of this research as areas of possible future research. 

These areas are listed below. 

7.2.1 HOT Lane VTTS and Elasticity 

 

1. Timely information on traffic conditions enables drivers to make informed decisions 

about route choice. It was found in this research that, the studied HOT facilities either do 

not provide any information on travel times (for HOT lanes and parallel GP lanes) or 

provide travel time information for only HOT lanes. This leaves drivers to come up with 

their own estimation of travel time savings if they decide to use the HOT lanes. Although 

some travel information may be provided by radio stations and other third party services, 

such information are intermittent, and may not be available when the driver needs it most. 

As a result of lack of adequate travel time information, drivers tend to overestimate the 

perceived travel time savings they are likely to enjoy when they use the HOT lanes. The 

information vacuum may lead drivers to make route choice decisions which do not reflect 

prevailing traffic conditions in a transportation corridor. VTTS estimated from such 
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uninformed decisions by drivers may not reflect their true VTTS. Therefore, there is the 

need for a research in which explicit information on travel times for HOT and parallel GP 

lanes are provided to drivers. VTTS estimates calculated from such a research may better 

reflect drivers’ true VTTS; helping transportation professionals to come up with better 

tolling schemes which can be used to really influence traveler behavior. 

 

2. In the absence of comparative travel time information (for HOT and GP lanes), it has 

been reported in the transportation literature that drivers tend to interpret high toll prices 

as a sign of downstream congestion on the GP lanes (14,21). Consequently, they shift 

from GP lanes to HOT lanes in order to avoid the supposed congestion. However, tolls on 

HOT lanes only account for traffic conditions on the HOT lanes and do not consider 

prevailing traffic conditions on the GP lanes. In order to test this assumption, there is the 

need for experiments on HOT lanes to see how drivers react to high tolls under different 

traffic conditions on GP lanes. This will help in designing the appropriate travel 

information for dissemination to drivers. 

 

3. The elasticities and VTTS calculated in this research were for a 5-month period between 

October 2012, and February 2013. They provide a snapshot of HOT lane driver behavior 

for the specified time period. For each of the facilities analyzed, what is not known is 

whether the estimated behavior changes from time to time or is stable. When HOT lanes 

are first introduced, drivers understanding of how it works may be low. As drivers 

continue to use the facility for a while, they may develop a better understanding of its 

operation and may change their behavior as well. It is not known whether the general 

driver behavior becomes consistent after a certain amount of time. It is therefore 

necessary that a longitudinal study of HOT lane driver behavior be conducted. Such a 

study will help with the understanding of how driver behavior changes with time and 

provide us with reliable estimates of elasticity (short vs long-term elasticity). 

 

4. ICM involves multiple modes in which timely information and pricing can be employed 

to utilize unused capacities in a transportation corridor. As a result, travelers may change 

modes in the course of their travel based on available information and necessary 

incentives. In this research, the impact of pricing (in the form of tolls) was investigated 

for only HOT lane driver behavior. In the future, it will be necessary to extend this 

analysis to include pricing effect on mode choice. That is, to investigate the impacts of 

integrated pricing (HOT lane tolls, transit fares, parking fees) on traveler behavior in a 

transportation corridor. 

 

5. The airline industry has been using seat reservation systems and dynamic pricing to 

effectively manage air travel demand for some time now and transportation engineers 

have begun looking into how to apply reservation systems to highways (108).Since the 

current pricing levels on HOT lanes do not significantly impact traveler behavior, it is 

necessary to investigate the possibility of incorporating reservation systems into HOT 

lane operations in order to prevent them from becoming gridlocked in the near future. 
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7.2.3 Summary  

This research developed an evaluation methodology based on which beneficial ICM strategies 

can be selected at the planning stages of ICM implementation. Using data from four different 

HOT lane facilities in the U.S., this research investigated HOT lane driver behavior in terms of 

how they respond to tolls and GP congestion. It was found that, pricing (tolls) had little or no 

impacts on the decision by drivers to use/ not to use the HOT lanes. Additionally, mean VTTS 

estimates were higher on facilities located in regions with high RPP-adjusted annual incomes 

than those located in relatively low RPP-adjusted annual income regions. The elasticity of HOT 

lane demand w.r.t GP congestion was also studied. It was observed that the influence of GP 

congestion on HOT lane demand was positive and relatively higher than that of tolls but 

inelastic. The observed HOT lane driver behavior was used to develop a model that predicts 

expected level of demand for HOT lane use in real-time. The developed model has the potential 

to make ICM proactive and more efficient. 
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Appendix A 

 

Simulation Test Scenarios 

The following represents the different simulation scenarios that were run in VISSIM. For each 

scenario, different combinations of ICM strategies were tested. In all, 50 different scenarios were 

considered, and each scenario ran five times to reduce the effects of stochastic variability. The 

definitions of the different strategies as used in this research are provided below: 
 

RM—Number of vehicles allowed by the ramp meter to enter the freeway in an hour 

TPC—% of vehicles that will shift to transit as a result of increase in transit and parking capacity 

HOT—% of vehicles which will shift to HOT lanes as carpools as a result of tolls charged 

HOV-E—% of vehicles which will form carpools to use the HOV lanes due to extra capacity 

FI—% of vehicles which will use transit as a result of reduction in transit and parking fees 

VSL—% of vehicles complying and not complying with variable speed limits 

HGV—% of Heavy vehicles 

HOV-3—Regular HOV usage % 

 

Please note that HGV and HOV-3 are not strategies. They represent the % of heavy vehicles in 

traffic mix and regular HOV lane usage %. As can be seen in the appendix, their values do not 

change from scenario to scenario. For VSL strategy, the compliant and non-compliant % shown 

in the appendix represents only single-occupant vehicles traveling on the general purpose lanes. 

All other vehicles (those which eventually shift to transit or HOV) comply with the variable 

speed limit as long as they remain on the freeway.  
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Scenario RM TPC HOT HOV-E FI VSL HGV HOV-3 

      
COMPLIANT NON-COMPLIANT 

  1 608 0.218 0.045 0.131 0.053 0.263 0.034 0.0075 0.25 

2 773 0.158 0.105 0 0.03 0.398 0.052 0.0075 0.25 

3 758 0.15 0.098 0.068 0.053 0.075 0.306 0.0075 0.25 

4 560 0.105 0.083 0.06 0.053 0.06 0.389 0.0075 0.25 

5 541 0.143 0.113 0.075 0.03 0.225 0.164 0.0075 0.25 

6 706 0.173 0.098 0.113 0 0.218 0.147 0.0075 0.25 

7 890 0.18 0.023 0.045 0.023 0.293 0.182 0.0075 0.25 

8 643 0.128 0.015 0.12 0.03 0.083 0.368 0.0075 0.25 

9 733 0.12 0.15 0.068 0.023 0.278 0.113 0.0075 0.25 

10 596 0.225 0.03 0.008 0.015 0.368 0.106 0.0075 0.25 

11 812 0.083 0.008 0.03 0.068 0.12 0.435 0.0075 0.25 

12 604 0.203 0.083 0.113 0.038 0.27 0.038 0.0075 0.25 

13 714 0.188 0.12 0.075 0.068 0.3 0 0.0075 0.25 

14 794 0.188 0.105 0.023 0.03 0.248 0.15 0.0075 0.25 

15 864 0.09 0.03 0.053 0.06 0.383 0.137 0.0075 0.25 

16 881 0.113 0.053 0.098 0.023 0.353 0.105 0.0075 0.25 

17 697 0.12 0.068 0.03 0.06 0.053 0.412 0.0075 0.25 

18 537 0.173 0.143 0.105 0.06 0.068 0.201 0.0075 0.25 

19 550 0.098 0.023 0.038 0.023 0.188 0.382 0.0075 0.25 

20 618 0.173 0.128 0.135 0.015 0.308 0 0.0075 0.25 

21 842 0.09 0.09 0.045 0.06 0.308 0.153 0.0075 0.25 

22 621 0.165 0.053 0.12 0.075 0.248 0.085 0.0075 0.25 

23 824 0.143 0.038 0.023 0.023 0.12 0.398 0.0075 0.25 

24 581 0.18 0.06 0.045 0.045 0.413 0.002 0.0075 0.25 

25 872 0.18 0.075 0.015 0.038 0.368 0.067 0.0075 0.25 

26 660 0.21 0.015 0.098 0.068 0.323 0.03 0.0075 0.25 

27 572 0.203 0.105 0.105 0.053 0.158 0.128 0.0075 0.25 

28 631 0.113 0.038 0.09 0.008 0.135 0.362 0.0075 0.25 

29 748 0.165 0.06 0.083 0.068 0.165 0.203 0.0075 0.25 
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30 691 0.098 0.113 0.105 0.075 0.21 0.142 0.0075 0.25 

31 668 0.075 0.045 0.105 0.038 0.188 0.299 0.0075 0.25 

32 831 0.188 0.053 0.113 0.06 0.285 0.053 0.0075 0.25 

33 746 0.143 0.12 0.09 0.038 0.105 0.253 0.0075 0.25 

34 729 0.135 0.038 0.15 0.008 0.338 0.075 0.0075 0.25 

35 853 0.218 0.135 0.023 0.008 0.15 0.219 0.0075 0.25 

36 580 0.15 0.128 0.113 0.023 0.338 0 0.0075 0.25 

37 799 0.15 0.12 0.038 0.045 0.218 0.179 0.0075 0.25 

38 787 0.203 0.06 0.008 0.053 0.128 0.292 0.0075 0.25 

39 650 0.173 0.09 0.083 0.045 0.098 0.255 0.0075 0.25 

40 719 0.128 0.008 0.06 0.015 0.383 0.159 0.0075 0.25 

41 507 0.083 0.143 0.068 0.03 0.045 0.375 0.0075 0.25 

42 515 0.105 0.128 0.135 0 0.173 0.203 0.0075 0.25 

43 764 0.218 0.113 0.143 0.008 0.233 0.038 0.0075 0.25 

44 850 0.083 0.008 0.045 0.008 0.203 0.407 0.0075 0.25 

45 898 0.12 0.075 0.083 0.068 0.278 0.125 0.0075 0.25 

46 517 0.098 0 0.053 0.045 0.308 0.249 0.0075 0.25 

47 683 0.195 0.075 0.143 0.015 0.098 0.222 0.0075 0.25 

48 665 0.158 0.023 0.135 0.045 0.173 0.21 0.0075 0.25 

49 531 0.135 0.083 0 0.015 0.083 0.43 0.0075 0.25 

50 812 0.113 0.128 0.015 0.068 0.345 0.075 0.0075 0.25 
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