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Abstract

AI-powered Cyber-Physical Systems (CPS) form the basis of emerging and future smart services,

improve quality of life, and bring advances in many critical areas, including intelligent transportation,

robotics, smart cities and smart healthcare. The development of faster and more reliable networks

accelerates the integration of Cyber-Physical Systems (i-CPS). A central problem is how to build

reliable i-CPS facing significant new challenges due to the increasing integration, complexity, and

environmental uncertainties. Targeting these challenges, in this dissertation, we develop rigorous and

robust models for reliable i-CPS by integrating formal methods and deep learning with the following

main contributions.

First, we conduct large-scale data-driven analytic for i-CPS, including the first study on over 1000 city

requirements and study on uncertainty in i-CPS. Secondly, we develop the first decision support system

for conflict detection and resolution for smart cities, which significantly improves cities’ safety and

performance in our experiments and simulation. Thirdly, we create novel formal specification languages

and efficient runtime verification techniques for large-scale i-CPS with theoretical guarantees. The

new specification languages achieve over 95% expressiveness coverage on real-world city requirements,

while state-of-the-art only have 43% coverage. Additionally, we build a runtime monitoring tool

to support specifying and monitoring requirements by different stakeholders in i-CPS. Fourthly,

we develop novel formal methods enhanced deep learning techniques to increase the robustness of

sequential prediction by incorporating formal specification and verification into the learning process.

The framework is general to be applied to various deep sequential prediction models for i-CPS and

significantly outperforms state-of-the-art. At last, we develop the first approach for calibrating

the uncertainty estimation in Bayesian Recurrent Neural Networks (RNNs) through predictive

monitoring with critical system requirements. It achieves a much higher quality of uncertainty

estimation comparing to the baseline approaches.
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Chapter 1

Introduction

As Artificial Intelligence (AI) technologies advance, deep learning has been broadly applied to

Cyber-Physical Systems (CPS) and the Internet of Things (IoT), which form the basis of emerging

and future services, improve quality of life, and bring advances in personalized health care, robotics,

and smart cities. It is estimated by Statista that there will be 75 billion IoT-connected devices

by 2025 [1]. The development of faster and more reliable networks, especially with the extensive

advancing of 5G [2], accelerates the number of Integrated Cyber-Physical Systems (i-CPS).

While significant research efforts have been spent towards building smarter services, sensors, and

infrastructures in CPS (e.g., smart cities), the research challenge of how to ensure that its real-time

operations satisfy safety and performance requirements has only received scant attention. Most of the

services are developed independently by different stakeholders under their own context. Integrating

multiple CPS into the same environment (i.e., i-CPS) could cause problems that are not for-seen at

their design time, such as, conflicts among their actions. For instance, a congestion control service

may change a traffic light system to improve traffic due to a football game; whereas an environmental

control service may change the same traffic light system due to noise and pollution emission. These

two actions may lead to (1) a direct conflict between these two services or with a third service,

e.g., an ambulance service is delayed due to conflicting traffic light schedules; (2) an environmental

conflict with another service, e.g., an pollution emission control service of a power plant that was not

aware of the increased pollution emission due to unexpected increase in traffic and did not update

their emission setting, which lead to the combined emission surpassing the safety requirement. Such

1



Introduction 2

conflicts could lead to severe consequences and affect millions of citizens lives every day, e.g., delayed

travel time, exceeded air pollution levels, and pedestrian safety.

Moreover, a majority of services are supported by deep learning models. However, current deep

learning techniques are not mature enough to deal with the challenges of i-CPS conflicts: safety-

critical, large-scale, highly uncertain, and with humans in the loop. One of the biggest reasons is that,

as data-driven approaches, they often do not consider system properties, environment requirements,

or the complex interaction with other CPS or humans under the same environment. Their reliability

then becomes questionable when being deployed in real-world environments.

On the other hand, as mathematically rigorous techniques, formal methods have been widely applied

to verifying and evaluating critical systems such as aircraft. This motivates a novel research direction

of verifying machine learning using formal methods in recent years, mainly targeting applications with

well-specified safety requirements, such as autonomous driving and robotics. However, verification

is only meaningful when paired with high-quality formal specification. The problem with current

approaches is that such specification does not exist or is highly under-explored in i-CPS, especially in

smart cities and health care domains. It creates great challenges to apply formal methods to machine

learning towards i-CPS.

Research Questions: How to build reliable AI-powered i-CPS becomes a key research question

for this dissertation. Specifically, we focus on addressing three sub research questions.

First, how to monitor whether system states satisfy a wide range of system requirements at runtime?

If a requirement violation is detected by the monitor, the system controller and smart service providers

can take actions to change the states, such as improving traffic performance, rejecting unsafe actions,

sending alarms to police, etc. The key challenges of developing such a monitor include how to use

an expressive formal language to specify system requirements so that they can be understood by

machines, and how to efficiently monitor requirements that may involve multiple sensor data streams

(e.g., some requirements are concerned with thousands of sensors in a smart city).

Second, how to predict a system’s future states and check if the prediction satisfies system require-

ments? With this capability, the system operator may take actions in advance to prevent such

predicted future requirement violation. A key challenge of predictive monitoring is how to account for

the inherent uncertainty (e.g., due to sensor and environmental noise, unexpected events, accidents,

and human behaviors) in i-CPS.
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Figure 1.1: Dissertation Theme and Structure

Third, as deep learning techniques are increasingly used in i-CPS applications, how to guarantee that

the deep learning results will satisfy system properties? For example, Recurrent Neural Networks

have made great achievements for sequential prediction tasks in i-CPS (e.g., forecasting air quality

index). Can we enforce that the learned sequence predictions must satisfy certain desired properties

in i-CPS?

Terminology: Below, we first clarify the notion and scope of terms we used in this dissertation.

An integrated Cyber-Physical System (i-CPS) is a system or platform that integrates more than one

CPS operating under the same environment. A service conflict is defined as a situation where two or

more services have actions that (1) have direct opposite effects on the same resources (called direct

conflicts), or (2) have indirect cumulative effects (e.g., total mission accumulated by two services)

leading to a system requirement violation (called environmental conflicts). A system requirement

is a condition that the system is required to follow. For i-CPS, operating without conflicts is a

system requirement. In this dissertation, we convert conflict detection into requirement verification

(See Chapter 3 for details). System have different types of requirements, such as, real-time, safety,

utilization, fairness, and robustness, which are broader than conflicts. In this dissertation, we focus

on the safety and performance requirements that related to service conflicts. Predictive monitoring

is an operation that verify the predicted future results against requirements.

Dissertation Statement: In this dissertation, we develop rigorous and robust AI for i-CPS by

integrating formal methods and deep learning, as shown in Figure 1.1. The key novelty of this

dissertation is using rigorous approaches based formal methods as an effective way, to bring real-world

i-CPS properties and requirements into learning to verify and enhance deep learning models.
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Figure 1.2: Integration of Formal Methods and Deep Learning

In particular, targeting the challenges of i-CPS, on the system and application level, we first develop

a decision support conflict detection and resolution system for smart cities. On the fundamental

theory level, we create three key technical innovations, i.e., prediction with logic-enhanced learning

(Chapter 5), runtime verification (Chapter 6), and predictive monitoring with logic-calibrated

uncertainty (Chapter 7). These techniques are general to be applied to the conflict detection and

resolution system, and various i-CPS applications.

In particular, in this dissertation, we explore three approaches of integrating formal methods and

deep learning. These three approaches are not mutually exclusive, i.e., multiple approaches can

be applied into one comprehensive system, such as the conflict detection and resolution system we

developed in Chapter 4. The first approach, as shown in Figure 1.2 (1), we apply formal methods

to verify the prediction results by deep learning models and return the runtime verification results

to the control center to support decisions. The conflict detection and resolution system developed

in this dissertation follows this approach. It first predicts sequences of future states and verifies

the predicted results against requirements at runtime. The system further controls the action of

services based on the monitoring results. In the second approach, as shown in Figure 1.2 (2), we

incorporate formal methods into the learning process (i.e., training phase). In this way, we verify

and guide the learning process with auxiliary knowledge (See Chapter 5). The third approach, as

shown in Figure 1.2 (3), we first apply formal methods to verify the learning results and then feed

the results back to calibrate the learning model at the validation phase (i.e., after training phase),

such as, uncertainty calibration, hyper-parameter tuning and model selection (See Chapter 7).

Next, we give a more detailed introduction of each of the five parts, followed by a summary of

contributions and impacts.
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1.1 Integrated Cyber-Physical Systems

An important step of bringing integrated formal methods and machine learning techniques to real-

world applications is to systematically learn from large scale real-world data and applications. In

this dissertation, we conducted a series of data-driven analytic as follows. (1) In order to identify

the desirable features to have in a specification language for cities, we systematically studied and

annotated over 1000 city requirements (e.g., standards, regulations) across different domains, including

energy, environment, transportation and public safety from more than 75 cities around the world,

which is the first study of city requirements in the field. (2) We identified key types of service

conflicts, model properties, and uncertainty by analyzing large-scale cross-domain city data. (3) We

also developed simulations with implemented services to evaluate the solutions in smart cities. (4)

Finally, we published new data sets online. The analytic results identify real-world research questions

and support the development of new methods and systems.

1.2 Conflict Detection and Resolution

Researchers have accumulated abundant knowledge on how to design AI-powered services inde-

pendently. However, underlying expected or unexpected couplings among services due to complex

interactions of social and physical activities are under-explored, which lead to potential conflicts,

including direct device conflicts and environmental conflicts. We develop the first system for conflict

detection and resolution in i-CPS, especially for in smart cities. We identify conflicts in large-scale

i-CPS and formalize i-CPS safety and performance requirements using Signal Temporal Logic (STL).

By verifying predicted sequences with formal specified requirements, our solution deals with dynamic

conflicts that cannot be apriori detected. Using formal methods to generate and verify resolution

options, the system provides sophisticated information (e.g., quantitative trade-offs, confidence levels)

to support human decision making.

This system significantly improves city’s safety and performance in experiments and simulations.

Meanwhile, we are also working on deploying this system in Newark City, NJ.

1.3 Logic-Enhanced Learning

Recurrent Neural Networks have outstanding achievements for prediction and decision-making support

for CPS. However, for large-scale and complex integrated CPS, RNN models are not always robust,
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often subject to anomalies and uncertainty, especially when the predictions are projected into the

future (errors grow over time). Real-world systems often follow certain model properties, which cannot

be guaranteed by the existing prediction models. In this dissertation, a formal logic enhanced learning

framework with logic-based criteria to enhance RNN models to follow system critical properties. The

novelty of this framework is incorporating the system critical properties into the learning process

in an end-to-end manner with back-propagation. This framework is general and can be applied to

various RNN models. The evaluation results on large-scale real-world city datasets showed that this

work not only improved the accuracy of predictions, but importantly also guarantees the satisfaction

of model properties and increases the robustness of RNNs.

The proposed STLnet is broadly applicable to various sequential prediction tasks beyond smart cities.

This work shows the promise of leveraging formal methods to enhance the robustness and reliability

of deep learning.

1.4 Runtime Verification

We create novel formal specification languages and efficient runtime verification techniques for

large-scale i-CPS with theoretical guarantees. To tackle the limitation of existing formal logic,

we develop SaSTL—a novel Spatial Aggregation Signal Temporal Logic—for the efficient runtime

monitoring of safety and performance requirements. The new specification languages achieve over

95% expressiveness coverage on real-world city requirements while the state-of-the-art only achieves

43%. Additionally, we build a SaSTL-based monitoring tool to support specifying and runtime

monitoring requirements by different stakeholders in smart cities.

1.5 Logic-Calibrated Uncertainty

We develop a novel approach for monitoring sequential predictions generated from Bayesian Recurrent

Neural Networks (RNNs) that can capture the inherent uncertainty in CPS, drawing on insights

from our study of real-world CPS datasets. We propose a new logic named Signal Temporal Logic

with Uncertainty (STL-U) to monitor a flowpipe containing an infinite set of uncertain sequences

predicted by Bayesian RNNs. Furthermore, we develop novel criteria that leverage STL-U monitoring

results to calibrate the uncertainty estimation in Bayesian RNNs. Evaluation results on large-scale

real-world city data show that our approaches significantly improve the accuracy and robustness of
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deep learning models and achieve well-calibrated uncertainty. Moreover, the system also effectively

improves smart cities’ safety and performance in smart city simulations.

The STL-U predictive monitoring approach demonstrates the feasibility of integrating formal methods

and Bayesian deep learning for the predictive monitoring of safety and performance requirements in

smart cities. In addition, the proposed STL-U criteria can be applied for the uncertainty estimation

in a wide range of deep learning applications. Compared with traditional uncertainty estimation

methods, the proposed logic-based solution can lead to better uncertainty calibration for sequential

prediction tasks.

1.6 Summary of Contributions

In this dissertation, we develop rigorous and robust models for reliable i-CPS by integrating formal

methods and deep learning with the following main contributions.

• Conducting data-driven analytic on large-scale data to identify key features of i-CPS.

• Developing a decision support system for conflict detection and resolution among integrated

IoT services in i-CPS.

• Presenting novel formal specification languages and efficient runtime verification techniques for

large-scale i-CPS with theoretical guarantees.

• Building novel formal methods enhanced deep learning techniques to increase the robustness of

sequential prediction by incorporating formal specification and verification into the learning

process.

• Creating a novel approach for monitoring sequential predictions generated from Bayesian Re-

current Neural Networks and leverage predictive monitoring results to calibrate the uncertainty

estimation in Bayesian RNNs.

1.7 Dissertation Structure

We show the main structure of this dissertation in Figure 1.1. In the rest of this dissertation, we

first discuss the related work and how this dissertation advances the state-of-the-arts research in

Chapter 2. In Chapter 3, we present the basic concepts of integrated Cyber-Physical Systems, where
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we formally define conflicts and analyze their effects. Next, we present a decision support system for

conflict detection and resolution in Chapter 4. We develop a logic enhanced learning framework for

prediction in Chapter 5, create a novel specification language for i-CPS monitoring in Chapter 6,

and build a predictive monitoring approach with logic-calibrated uncertainty in Chapter 7. Finally,

we summarize the dissertation and discuss its broader impact in Chapter 8.



Chapter 2

Related Work

2.1 Integrated Cyber-Physical Systems

2.1.1 IoT Platforms for Smart Cities

Given advances in the Internet of Things (IoT) and AI, existing city Operations Centers deploy

various sensing and control platforms to monitor city states and services for decision support. There

are several commercially available IoT platforms for smart cities, such as, IBM Watson IoT [3], Azure

IoT suite from Microsoft [4], Intel IoT platform [5], and AWS IoT from Amazon [6]. They provide

support for setting up IoT infrastructure customized to application requirements. They address

different aspects of potential city-level IoT infrastructure, including but not limited to, scalability of

sensing and actuator modules, real-time response, cloud support for IoT, real-time stream analytics,

raw data storage, data driven dynamic applications, and network and data security. Although such

IoT platforms can be utilized for developing scalable smart city services, they consider smart city

applications as independent entities. Hence, they don’t focus on the integration of services and its

subsequent complexity (e.g., concurrency and conflicts). While the existing IoT platforms provide

support for safeguarding connected devices, networks, data transmissions and data accessibility of

the IoT infrastructure, none of them addresses the safety challenges introduced by integration of

systems/services (e.g., conflicting operations, policy violations, and conflicting effects of services).

These decision support systems only focus on data visualization and analytics based on city status

statistics, IoT management, task assignment, and do not have the capability of detecting and resolving

9
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service conflicts, which require sophisticated reasoning, prediction, and intervention. To the best of

our knowledge, we are the first to formulate and develop a safety-aware system for detecting and

resolving potential conflicts in the context of smart cities.

2.1.2 Safety in Automation Systems

Safety issues have been well studied in automation systems. Standards and rules for functional safety

of automation systems have been made, such as IEC 61508 and ISO 26262 [7], which define functional

safety for automotive equipment applicable throughout the lifecycle of all automotive electronic and

electrical safety-related systems. They support the product development from hardware, software

and system levels, and provide safety analysis. These standards can be very helpful when extended to

the development of single smart services in smart cities. However, there are no rules for interactions

or conflicts among services/systems.

There is some research on the functional safety among multi-agents in automation systems, such as

building automation and control systems. The authors in [8] focus on the functions affecting peoples’

safety, security and health while maintaining the functional safety and system security of both the

network nodes and the communication protocols. Resendes et. al. present a survey on the conflict

detection and resolution in home and building automation systems [9]. Pallottino et al. propose a

cooperative policy for conflict resolution in multi-vehicle systems, which rests on the assumption

that all agents are cooperating by implementing the same traffic rules [10]. These integrated systems

are only within the domains of transportation, homes, and buildings. However, functional safety in

smart cities is much more complicated as it involve multiple domains, different types of services and

a significantly large number of actuators.

2.1.3 City Simulator

SUMO [11] is an open source microscopic traffic flow simulation, which can import net/map and

traffic demand modeling components. It has been utilized in several traffic flow related research, such

as vehicular communication, route choice and dynamic navigation traffic light algorithms, emission

and noise modeling, and person-based Intermodal traffic simulation In our work, SUMO is used

as a smart city simulator with the help of the Traffic Control Interface (TraCI) [12], a technique

for interlinking road traffic and network simulators. With TraCI, the behavior of vehicles during

simulation runtime can be controlled and thus the influence of actions on the simulated city are

better understood.
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2.2 Conflict Detection and Resolution

2.2.1 Detection

There are some existing systems to detect dependencies across multiple human centric CPS systems.

Munir et al. focus on detecting dependencies across interventions generated by different human-in-

the-loop apps (e.g., health apps) [13]. They use simulated apps and structured metadata from each

app. Metadata contain (i) interventions performed by each app and (ii) corresponding potential

physiological parameters that might be affected by each intervention. They rely on a physiological

simulator [14] to approximate potential effects of an intervention. Preum et al. developed Preclude,

a system to detect conflicts in textual health advice generated from smart phone health applications

and health websites [15]. While they provide a taxonomy of conflicts in health advice and solution to

detect different types of conflicts, their approach is focused on textual interventions only.

Another relevant system is DepSys that aims at detecting dependencies from multiple smart home

apps [16]. It is a utility sensing and actuation infrastructure specifically designed for smart homes that

detects, and resolves conflicts among multiple smart home apps by addressing multiple dependencies.

Although our work is similar to DepSys in terms of the end goal (i.e., conflict detection), one

fundamental difference lies in the underlying assumption about meta data. DepSys solely depends on

the meta data of apps provided by the app developers. HomeOS [17] is a PC abstraction to improve

manageability and extensibility for smart home apps. It exposes services to home app developers

with simple abstractions to access home devices and allows easy incorporation of home devices and

applications using common protocols (e.g., Z-Wave and DLNA) and many kinds of devices (e.g.,

lights, media renderers and door/window sensors). SIFT [18], a safety centric programming platform,

detects whether apps running in an IoT environment conform to safety policies and whether apps

result in logical conflict with each other. Although it detects logical conflicts (equivalent to opposite

conflict of CityGuard) using rule based approach, it does not consider different nuances of detecting

conflicts / policy violations, e.g., effects, secondary effects, emphasis, and conditions, and it is not

applied to inter-services problems.

2.2.2 Resolution

Researchers also propose different ways for conflict resolution based on its conflict types [9]. For

example, for interest conflict, [19] considers the application’s demands for quality of services and

resource consumption, and uses a client-server architecture model to select the conflict resolution,
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which, however, can only deal with very small scale clients. [20] builds a resource management

method to resolve the conflict in smart buildings. [21] builds an ontology-based policy framework

using an AI planner to detect and automatically resolve policy conflict. However, these methods

focus on detecting and resolving direct conflicts. They do not (1) consider the secondary effects on

the environment, which are where most of city conflicts arise, or (2) predict and avoid conflicts. The

environment of smart cities is so complicated that the conflicts among smart services not only include

all the above conflict types, but also contain different types of environmental conflicts. Rule-based or

resource management approaches are not sophisticated enough to predict and prevent conflicts in

smart cities. Our approach uses a feedback control loop which monitors city states in real time, and

predicts the effects of actions and the potential resolution options by predicting and verifying future

city traces.

2.3 Logic-Enhanced Learning

The attempts of enforcing machine learning to follow logic rules are dated to the early stage of the

development of the neural network. So-called Neural Symbolic Systems [22, 23] construct network

architectures to combine inference with logic rules. Combining logic rules with various machine

learning models has been successful [24, 25]. Breaking the black box of the neural network has

always been a popular research topic. Applying logic rules, as one typical approach to break the

black box, has attracted much attention. A direct solution is to formulate the logic rule as an

optimized loss item. By minimizing the logic loss, soft constraints of the logic rule are proposed to

the model [26, 27, 28]. Other methods include Logistic circuits [29] and Logic Tensor Network [30]

design specific structural to incorporate logic rules. [31] generates a graph model to embed logic

rule into the prediction. Following knowledge distillation [32], [33] proposes a way to integrate rules

defined by first-order logic with knowledge distillation. Following this method, several works [34, 35]

propose ways to better train deep NLP models with some specific type of logic rules, which uses

posterior regularization to constraint the student network. However, most previous works only apply

simple and straightforward logic rules, target single variable classification problems (e.g., sentiment

classification), and only apply a soft constraint to (rather than a guarantee) the satisfaction. Different

from previous work, our work targets multivariate sequential prediction models and guides them

to learn the model properties with complex temporal features in regression tasks. Therefore, we

chose Signal Temporal Logic, a logic variant that focuses on the temporal properties, to formalize

the model properties. As a powerful specification language, STL has been broadly applied to the
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model checking, specification and verification for CPS applications [36], such as robotics [37], smart

cities [38, 39], healthcare [40]. The introduction of temporal operators (e.g., always, eventually and

until) makes STL more natural, intuitive and flexible in describing dynamic systems.

2.4 Runtime Verification

Monitoring spatial-temporal properties over CPS executions has been initially investigated in [41, 42],

where the authors introduced a spatial-temporal event-based model for monitoring CPS. In this

model, events are labeled with time and space stamps. These events can be triggered by actions,

exchange of messages or physical changes. A centralized monitor is then responsible to process all

these events. Their approach provides an algorithmic framework enabling a user to manually develop

a monitor, but they do not provide any spatial-temporal specification language. The literature

instead offers several logic-based specification languages to reason about the spatial structure of

concurrent systems [43], medical images [44], and the topological [45] or directional [46] aspects of

the interacting components. However, these logics are not practical for monitoring CPS, because

they are generally computationally complex [46] or even undecidable [47].

Specification-based monitoring of spatial-temporal properties over CPS executions has become

practical only recently with SpaTeL [48] and SSTL [49]. SpaTeL extends the Signal Temporal

Logic [50] (STL) with the Tree Spatial Superposition Logic (TSSL) [51, 52]. TSSL classifies and

detects spatial patterns by reasoning over-quad trees, suitable spatial data structures that are

constructed by recursively partitioning the space into uniform quadrants. The notion of superposition

in TSSL [52] provides a way to describe statistically the distribution of discrete states in a particular

partition of the space and the spatial operators corresponding to zooming in and out in a particular

region of the space. By nesting these operators, it is possible to specify self-similar and fractal-like

structures [53] that generally characterize the patterns emerging in nature such as the electrical

spiral formation in cardiac tissues [54]. The procedure allows one to capture very complex spatial

structures, but at the price of a complex formulation of spatial properties, which are in practice only

learned from some template image.

SSTL [49] extends STL with several spatial operators (i.e., somewhere, everywhere, and surround).

The SSTL semantics operates on a weighted undirected graph, where the weight on each edge repre-

sents the distance between two nodes. The Spatial Temporal Reach and Escape Logic (STREL) [55, 56]

generalizes SSTL, by introducing two new spatial operators, (reach and escape), which are able to
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express the same spatial operators of SSTL. Furthermore, while SSTL can be applied only on static

weight undirected graphs, STREL can be applied also to dynamic networks. However, both SSTL

and STREL do not support spatial aggregation operators that we show to be an important feature

for monitoring smart cities.

2.5 Logic-Calibrated Uncertainty

2.5.1 Predictive monitoring for CPS

The research area of predictive monitoring has been drawing increasing attention in recent years.

For example, (Bayesian) Neural Predictive Monitoring [57, 58] checks predictions about neural state

classification and uses a principled criteria to reject predictions that are likely to be incorrect; a

predictive monitor for rare failures is developed in [59] using Discrete-Time Markov Chains trained

with samples of rare events; STLnet [60] incorporates predictive monitoring into the learning process

and enhance RNN-based sequential prediction models to follow STL specified model properties in

both training and testing processes. Prevent [61] and other runtime verification techniques with

state estimation [62, 63, 64] use Hidden Markov Models or Dynamic Bayesian Networks to learn and

predict the probability of a hidden state satisfying a safety property. A more recent approach [65]

uses instead linear hybrid models of the system under monitoring to bound the uncertainty in the

gaps between consecutive samples.

These existing works mostly focus on monitoring individual predictions rather than sequential

predictions. A more recent work [66] applies statistical time-series analysis techniques (e.g., ARIMA)

to forecast future signal values and computes the satisfaction probability of a STL formula over the

prediction horizon; however, the applicability of this approach is limited by the assumption that a

joint probability distribution of predictions over multiple time-points can be estimated. By contrast,

our approach considers uncertain sequential predictions generated by Bayesian RNN models, which

are generally applicable to many CPS domains.

2.5.2 Temporal logic based runtime monitoring with uncertainty

Over the past decades, tremendous progress has been made in developing techniques and tools of

runtime monitoring (also called runtime verification) based on rigorous specifications expressed in

various temporal logics (e.g., LTL, STL). For example, a survey on STL-based runtime monitoring

for CPS is provided in [67], which includes applications such as automotive systems and medical
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devices; a STL-based framework is developed in [38] for detecting requirement violations in smart

cities; SaSTL [39] extends STL for runtime monitoring of spatial-temporal properties in CPS; and

another spatial-temporal logic named SpaTeL is applied to monitor the power grid in [68]. However,

most of the literature focuses on monitoring deterministic multi-variable signals, which is a limiting

factor when we need to monitor predictive models and to reason about uncertainty.

There are some attempts to handle uncertainty by incorporating random variables in predicates. For

example, C2TL [69] checks the probability of a deterministic signal satisfying a linear constraint

whose coefficients are random variables; PrSTL [70] uses atomic predicates that are parameterized

with a time-varying random variable over a deterministic signal; StSTL [71] checks the probability of

a real-valued measurable function over stochastic signals; and StTL [72] extends StSTL to reason

about the robustness of requirement satisfaction. Our approach differs from these previous works

in several aspects. First, the proposed STL-U monitor checks a flowpipe signal that contains an

infinite set of uncertain sequences rather than a single sequence. Moreover, instead of computing a

single probability value of satisfying a predicate, STL-U reasons about the uncertainty captured by

confidence intervals of the flowpipe signal, which is a more suitable representation of uncertainty

estimated from Bayesian deep learning.

The problem of monitoring an infinite set of sequences has been studied before in [73] for the

reachability analysis of continuous and hybrid system models. This work proposes a Reachset

Temporal Logic (RTL), which extends STL and is defined on the reach sequence (i.e., a function

mapping time to the set of states reachable from a set of initial states and uncertain inputs). The

notion of reachability in RTL (i.e., checking if all the values within the reach sequence satisfies a

formula) can be encoded as STL-U strong satisfaction with our approach. In RTL, the formulas

are in positive normal form: the negation operator can appear only in basic propositions while it

remains undefined for generic formulas that may include also temporal operators. Furthermore, the

RTL-based model checking algorithm is limited to a specific fragment of RTL where the only possible

temporal operator that can be used is the next operator. Similar to RTL [73], the parameter synthesis

approach presented in [74] introduces a new semantics for the positive normal form fragment of STL

that is defined on sets of traces rather than on a single trace.

In our approach, we introduce the notion of strong/weak semantics to handle the negation operator

with more generic formulas: we define the evaluation of strong satisfaction for a formula ¬ϕ (for both

atomic predicates and temporal formulas) as equivalent to the violation of the weak satisfaction for
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the formula ϕ and vice-versa. Our work takes inspiration from the paper of Eisner et al. [75] where

the authors propose a weak/strong semantics to reason with linear temporal logic (LTL) on truncated

paths: the weak semantics provides an optimistic view of the satisfaction of an LTL formula on a

truncated path, while the strong semantics provides a pessimistic view. In our approach instead,

the weak/strong semantics is used to change the existential/universal quantifier when we interpret a

proposition over a confidence interval.

2.5.3 Uncertainty estimation in deep learning

While most deep learning models do not offer the uncertainty of their predictions [76], works that

capture the uncertainty (or confidence) of the prediction can be dated to the early development of

neural networks in the 90s’. Bayesian Neural Network [77] represents a probabilistic model that infers

a distribution as output. Bayesian Neural Network is known to be robust and resilient to overfitting.

However, the hardness of inference prevents the prevalence of the model in practice. Following these

directions, several works [78, 79] use variational inference to perform an approximated inference

on Bayesian Neural Networks. Aside from variational inference, Monte Carlo Dropout is another

approach to obtain uncertainty estimation of the model [80, 81]. By exploiting the dropout structure

in the deep neural network, these approaches turn the original Neural Network model into a simple

Bayesian Neural Network without changing the structure and apply approximated inference with the

Monte Carlo approach. Existing works [82, 81, 83] mostly focus uncertain estimation on single-time

classification or regression tasks. This dissertation focuses on the case of time series prediction.

Moreover, in contrast to previous measures of uncertainty that are rather empirical, our work proposes

a formal framework to model and define requirements to the output distribution. Our work can thus

be used to provide a confidence guarantee of the model prediction and to evaluate the quality of the

uncertainty estimation.



Chapter 3

Integrated Cyber-Physical Systems

With the arrival of technological tools such the Internet of Things (IoT), Big Data, Cloud computing

products [84], and Crowd Sourcing platforms, cities are becoming increasingly able to monitor the

state of their infrastructure, services, and populace, cost effectively and at scale. With a connected

populace and infrastructure, cities are also able to dynamically act on changes with increased accuracy

based on the observations it makes. A city that employs such technologies to improve the quality of

life for it inhabitants, and the competitiveness of it’s economy is commonly referred to as a smart

city. There are a number of cities that are already embracing the notion of a smart city, such as the

city of Santander in Spain [85].

One key open problem is that with many services operating simultaneously, conflicts will arise, as

shown in Figure 3.1. Conflicts have both an immediate effect on human life, as well as long term

secondary effects. In the complex system-of-systems that is a smart city, services will come into

conflict when contending over the same resources, incurring opposing actions, and when having

contradictory or conflicting objectives. These conflicts are both institutional and technical, and

have to be resolved holistically. Finding and classifying conflicts are non-trivial, but crucial to the

operation of a smart city due to (i) the scale of a smart city system, (ii) the diversity in services,

and (iii) the wide range of ways the services interact with the city. While some of these conflicts can

be detected during the design phase of services, many conflicts can occur unpredictably at runtime,

i.e., when the implementation phase is over and the services are operating simultaneously. Detecting

runtime conflicts is significantly more challenging than detecting design time conflicts, as runtime

17
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conflicts involve a higher degree of uncertainty. Some conflicts can be identified a priori, but most

will occur unpredictably at run-time. Once a runtime conflict is identified, resolving it often involves

a compromise, such trade offs have both a technical and administrative component.

This chapter primarily explores the nature of the runtime conflicts that arise in a smart city. The

primary contributions of this chapter are:

• The enumeration of smart city services characteristics.

• The classification of conflicts.

• An evaluation of conflict analysis that demonstrates the high probability of conflicts using

actual data from a smart city.

• An evaluation of conflicts using services that shows that the high probability of conflicts can

be expected to grow in the future and that many conflicts can only be resolved at runtime.

3.1 Smart City Services

A smart city is a system of systems, where each system represents a specific domain (e.g., transporta-

tion, public safety, utility, emergency, environment, city planning and operations) and each domain

consists of a set of services. For example, the public safety domain may include police patrolling

services, traffic violation control services, and road accident management services, etc. Similarly,

the transportation domain includes public transport services, road work services, etc. Each service

performs a set of functions to fulfill an objective, e.g., a traffic violation control service penalizes

drivers for speeding. The functions may be triggered by an event (e.g., a traffic violation) or scheduled

statically (e.g., turning off street lights at dawn to save energy). Functions may produce a set of

effects upon completion, e.g., blocking a lane for road work. Effects that are directly actuated by a

service are primary effects. Effects that are the outcomes of a primary effect are characterized as

secondary effects. Thus a single action can create a chain of subsequent effects.

Potential services from different domains are described in Table 3.1. Although not exhaustive, typical

services that covers several major functions of a smart city are included. Most of these services either

exist already in some cities or are going to be implemented in the near future. How such essential

services frequently conflict with each other when they run simultaneously will be demonstrated in

(Section 3.5).
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Figure 3.1: The Integrated System of Smart Cities

Table 3.1: A List of Services in Smart Cities

ID Services Domain Description

1 Street Lights Control
[86] Environment

It controls level of illumination in city streets by 1) turning on/
turning off street lights and 2) adjusting brightness of street lights
according to ambiance.

2 Street Robots
Management Environment

Robots on the street sense different environment states (e.g.,
weather, light, pollution level) and aid a passer by if necessary
(e.g., kid, disabled people).

3 Waste Management
[84] Environment

It performs waste collection, disposal, recycling, and recovery. It
sends out garbage collection trucks regularly and extra ones when
the containers are over 2/3 full.

4 Delivery Management Environment It maintains a dynamic schedule of package delivery trucks based
on real-time demand.

5 VIP Delivery
Management Environment It dispatches drones to carry packages to customers.

6 Air Pollution Control
[85] Environment

When air pollution is detected to cross the safety threshold, it
will 1) send out personalized sms to citizens based on location
and physiological state, 2) post messages on street screen, and 3)
suggest authorities to determining the cause of pollution and reduce
vehicles on the streets.

7 Noise Pollution
Control [85] Environment

If noise pollution is detected to cross the safety threshold, it will 1)
send out sms to citizens, 2) post messages on street screen, and 3)
turn off public speakers/alarms.
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8 Port Pollution
Control Environment

It detects potential pollution caused by incoming ships and stops
polluting ones from coming to the port. When serious pollution is
detected, it will send out sms to nearby ship and stop them from
coming.

9 Culture Event
Management [85] Environment

It facilitates the diffusion of information about cultural activities
and motivates people to be involved in them. It also helps to
manage the facilities (parking, lights ) and around neighborhoods
during cultural events.

10 Live News Gathering
[87] Environment It manages navigation of autonomous news coverage vans and

drones to breaking news sites for capturing video/photographs.

11 Adaptive Traffic
Light Transportation It adjusts signal lights dynamically based on traffic density to

maximize utilization and prevent traffic congestion.

12 Emergency Vehicle
Monitor Transportation It monitors streets and adjusts traffic lights to minimize delay of

emergency vehicles, e.g., police cars, ambulances, firetrucks.

13 Road Condition
Monitor Transportation

Upon detecting light snow/rain, it sends alarm to nearby drivers.
Upon detecting heavy snow/rain/flood, it adjusts signal lights to
block the road and reroute vehicles.

14 VIP Route
Scheduling Transportation It reroutes regular vehicles off VIP routes and programs the shortest

path for VIP cars.

15 Traffic on Special
Events Transportation To accommodate visitors during games/concerts/other events, it

blocks some streets and adjusts traffic signals on event days.

16 Road Work Service Transportation It manages road works and road side constructions. It reroutes
vehicles to alternate paths when road work is going on.

17 Smart Parking [88] Transportation The system informs drivers about the number of available parking
spaces in adjacent areas and gives direction to desired parking lot.

18 Bus Schedule Service
[89] Transportation

It manages the bus schedule both statically and dynamically. Based
on passenger demand, it reduces bus interval/waiting time and
directly sends extra buses to some bus stops.

19 Taxi Dispatch Service
[89] Transportation In case of increase in demand, it sends extra taxis to corresponding

event locations.

20 Traffic Violation
Control Public Safety It pulls over vehicles for traffic violations.

21 Road Accident
Management [87] Public Safety

In case of a road accident it 1) notifies law enforcement services
and GPS navigation services, 2) blocks roads temporarily, 3) sends
message to vehicles and street screens, and 4) adjusts traffic lights
to regulate traffic flows and prevent traffic jams.

22 Risky Area Monitor
[89] Public Safety

It co-ordinates sensors (i.e., cameras, street lights) and actuators for
real-time monitoring of risky areas. Upon detecting any crime or
police intervention, it alerts citizens to avoid such areas temporarily.

23 Raiding Crime Scenes Public Safety It conducts raiding operation in crime scenes/risky zones. During
the raid, it can block roads without any prior notice if necessary.

24 Destroying Obsolete
Structures Public Safety

It blocks some roads temporarily when blowing up any obsolete
structures: bridge/buildings. It informs residents in nearby areas
ahead of time and and blocks off nearby roads during the operation.
Informing adjacent vehicles about the event involves uncertainty.

25 Potential Terrorist
Attack Monitor Public Safety

When it detects a potential terror threat / attack it 1) postpones
operation of trains/public transports in concerned areas, 2) re-
routes vehicles, and 3) often uses bio-chemical weapons against
potential threat(s).

26 Surveillance Drone
Management Public Safety It uses drones to monitor safety conditions and detects potential

threats over streets and buildings.

27 Public Security Public Safety
It helps public organizations and houses to protect citizens’ goods
and feeds real-time information to fire and police departments when
detects an intrusion or theft.

28 Fire/Explosion
Management Emergency

It detects and automatically takes action based on the level of
severity, such as: 1) detecting false alarms, 2) informing firefighters
and ambulance, 3) blocking off nearby streets/buildings if necessary,
4) helping people to evacuate, and 5) co-ordinating rescue drones
and robots.

29 Inclement Weather
Alert Emergency

It alerts and gives personalized advice on how to stay safe during
emergency (storm, earthquake, tsunami,flood) through messages,
suggest the car to stop upon detecting earthquake, manages street
lights and other utilities safely.
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30 Evacuation Aid Emergency

It helps people evacuate during extreme emergencies. Specifically,
it detects the location of people and sends rescue, map, message
of instruction to the phones, and manages drones and robots for
rescue service.

31 Automatic
Health-Care Dispatch Emergency

It provides 24/7 health care for patients. When it detects an emer-
gent situation of patient, it will sends an ambulance or helicopter to
pick up the patients and send them to the most suitable hospital.

32 Ambulance
Management Emergency It sends ambulance to help patients and send them to the nearest

hospital when someone calls an ambulance.

33 Water Pipe Monitor Emergency
Upon detecting pipe leakage, it turns off the water flow and sends
service crew. It blocks street around if necessary (e.g. manhole
concerned).

34 Gas Pipe Monitor Emergency
It monitors gas pipe, and alerts and evacuates people around based
on different degree of severity, cuts off electrical utilities if necessary
and sends service crew upon detecting the gas leakage.

35 Electricity Monitor Emergency
It starts the back-up generator, and sends crew upon detecting
any technical fault. It also sends alert to adjacent people and take
proper intervention.

36 Gun-Shot Detection Emergency
It alerts nearby patrol police immediately and sends messages to
people in the same neighborhood. It also analyzes surveillance (if
any) to find potential suspects.

37 Network Error
Detection Emergency

When detects network error, it informs people immediately. After
network error, it exams all services if they are functioning properly
or not.

38 Sleep Mode for City Emergency
It turns the city into sleep mode gradually if serious emergency
arises (utility breakdown, network failure etc.) while guaranteeing
the basic functionality of city.

39 Water Usage Monitor
[85] Energy It monitors water usage and turns off water flow for a short period

if excessive water is consumed continuously for a long duration.

40 Energy Usage
Monitor [85] Energy It turns off electrical devices at idle hours to save power.

41
Solar Energy
Generation
Optimization

Energy When solar energy is available, it turns machines to solar energy
mode.

3.1.1 Characteristics of Smart City Services

The characteristics of a smart city service describe how it interacts with the city’s resources and

other services, how it affects the environment and people, and what requirements it imposes on the

infrastructure it employs, such as sensors and actuators. Below, some fundamental characteristics of

smart city services and their interaction with each other are introduced.

Uncertainty : It refers to unforeseen events or processes that can not be accounted for by the services

ahead of time or are unknown to the service but affect its performance. Uncertainty can occur in the

different layers of a service: sensing layer (a pollution sensor attached with a vehicle moved from

its expected location), communication layer (network failure), or actuation layer (control valve only

opens partially). Uncertainty usually arises in the flow of information and/or resource availability.

Uncertainties can cause change(s) in the course of action. This characteristic emphasizes the need to

design an integrated service platform.
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Dynamism: Although some services of a smart city can operate with a static schedule (e.g., sending

out a garbage truck every morning), a major portion of services function dynamically. For example,

public transport service schedules bus routes and frequency based on demand: more buses when

there is a festival/game/concert. Such dynamic operation of a service can create complexity if the

service shares resources (sensors/actuators/data) with other service(s).

Real-time: In a smart city, services frequently rely on real-time information for operational decision

making. One of the most common smart city service is monitoring crime-prone areas through

surveillance cameras and mitigating risky incidents. It relies heavily on real-time video feed.

Mobility/Spatio-temporal availability : Often services involve mobility in terms of sensing and actuation,

e.g., police patrol service and garbage collection service. This poses a new set of challenges, including,

coverage, redundancy, operational cost, scheduling, communication between the control and physical

layers. Also, mobility contributes to uncertainty, and the degree of dynamism.

Duration and scale of effect : Any function performed by a service results in effects or a chain of

effects into the future. These effects vary in duration. For example, blocking a road can affect traffic

for a long time. Some services require large and/or lengthy actuation to make small changes, while

others require small and/or short actuation to make significant changes. This complicates the control

mechanism. In addition, the notion of duration and scale of effect can lead to uncertainty, real-time

feedback, and resource constraint.

Efficiency : Service behavior is determined by the targeted efficiency. Efficiency can be measured

as a function of resources, cost, and time. Targeted efficiency can control the number of sensors

and actuators used in a function of a service, e.g., increasing the number of buses to meet public

demand on weekdays. Maximizing efficiency for one service can often lead to resource constraints for

another service if the two services share any resource. Thus it poses an optimization problem with

constraints on resources and operational costs.

Ownership: A service can be private, public, or commercial in terms of ownership. The degree of

interaction and information flow between services with different ownerships can vary according to

service design, and city policies.

Although not completely, the characteristics above outline the potential complexity of smart city

services. Moreover, the characteristics play a vital role in creating the context of potential conflicts

among the services as described in Section 3.2. It is acknowledged that these characteristics affect
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one another and cannot be quantified on their own. For example, mobility and efficiency affect

uncertainty.

3.1.2 Safety Requirements

Coverage: City safety generally involves safety for the environment and humans. Environmental

Safety includes maintaining the quality of air, water, noise, and weather and safety of property. For

example, actions taken by a service should not result in air, water, or noise pollution, or street lights

should be kept on at night in crime-prone areas. Human Safety refers to protecting citizens from any

dangerous or unhealthy situation (e.g., road accidents).

Consequently, the overall Smart System Safety means that all the smart services running in a city

must neither bring danger to the environment or citizens, nor conflict with each other. For example,

autonomous vehicles shall not hit pedestrians or cause environmental damage. Also, a smart traffic

service and a smart emergency service should not try to turn the same traffic light to green and red

simultaneously.

Context: In the complex and dynamic setting of real time smart cities, safety and performance

requirements need to be aware of context, i.e., they need to accommodate special circumstances,

because rigid/static safety requirements can result in unwarranted / catastrophic consequences. For

example, assume a transportation domain service sets the highest traffic capacity of a street, street A

to 100 to avoid congestion (i.e., a performance metric) although the street may accommodate more

vehicles for a short time. However, when there is a fire on a nearby street, street B vehicles may have

to evacuate through street A (i.e., for safety). In this circumstance, the performance requirement of

maintaining traffic capacity in street A should be aware of the safety requirement of street B. Thus

the safety and performance requirements should be context aware.

Emphasis: As another complication, range and frequency of temporal and spatial entities should

also be considered when specifying unsafe situations. For example, the traffic congestion lasting

for 5 minutes might not be considered as an unsafe situation, but the one lasting for 1 hour is

unsafe.

3.1.3 Effects of Actions from Services

Primary and Secondary Effects: After an action is taken, it has a series of effects on the city.

A primary effect relates to the main purpose of the action. For example, to control the noise level in
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a school area, the noise control service does not allow trucks to go through the school area during

the day and redirects them to a nearby residential area. The primary effect of this action is the

reduction of the noise level in the school area during day time. However, this action may result in

one or more secondary effects. For example, in this case, the traffic volume of the nearby residential

area may increase as some traffic is redirected from the school area. Such secondary effects may have

a serious influence on the city environment, which may violate the city safety requirements.

Spatial and Temporal Range: Most effects of actions are not limited to a single location at

a single time. Instead, the effects have spatial and temporal ranges of influence, which need to be

considered when detecting conflicts. Following the above example, since trucks have to drive on other

roads when passing through this area, the trucks will have an effect on the traffic on these roads and

the added traffic may cause congestion (i.e., a violation of a performance requirement) for several

hours. Also, an increased volume of trucks on a particular day may result in increased release of air

pollutants causing air pollution (i.e., a violation of a safety requirement).

3.1.4 Integration of Smart City Services

Service integration is integral in the context of a smart city for the following reasons.

First, a service might frequently interact with other services from the same domain as well as from

other domains. For example, when there is a road accident, both the road accident service and the

emergency dispatch service usually act together to address the situation. Service interaction can

occur at different degrees based on the corresponding situation. To make such interactions functional,

effective, and efficient, services must be integrated. The integration process must start from as early

as the design phase of the services.

Second, some scenarios in a smart city require services to share resources both in sensing and actuation

layers. For instance, the same set of trucks can be shared for collecting garbage and carrying air

pollution sensors. An integrated service platform that is aware of the demands, constraints, and

objectives of each service, can contribute to efficient scheduling of shared resources. Thus service

integration is vital for quality of services (QoS) and operational efficiency.

Third, services are often correlated with each other in terms of sequence of operations, i.e., output of

one service is the input to another service. For example, a road accident can cause traffic delay. If a

GPS enabled navigation service (e.g., Google maps) is not aware of the accident, it may yield an
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Table 3.2: Examples of conflicts of services in smart cities

Category Type Example

Device Opposite Pedestrian service turn a traffic signal to green, while Traffic Congestion Service turn
the same traffic signal to red.

Device Numeric Traffic Service set the speed of autonomous vehicles to be 70 mph; Safety Service set
the speed of them to be 60 mph.

Device Duration Emergency service keeps the traffic lights green for 10 minutes to allow ambulances
to move faster while traffic congestion service needs it to turn red every 2 minutes.

Environment Single Air quality control service redirect the traffic to reduce air pollution, but cause serious
traffic congestion on the other road, level of which exceeds safety requirement.

Environment Opposite While emergency service tries to evacuate an area, traffic congestion service directs
more vehicles there.

Environment Additive Event service caused a certain level of noise below threshold, emergency service
caused a level of noise below threshold, but the additive level is above threshold.

Environment Dependent Traffic service can only direct vehicles to street 1 after the water pipe leak is resolved
by emergency service.

erroneous estimate of the route time. Services must be integrated to ensure proper data flow among

them.

3.2 Conflicts in Services

This section describes how the different characteristics of smart city services contribute to conflict.

Specifically, it presents potential sources of conflicts and enumerates various types of conflicts.

Broadly speaking, conflicts in services arise when the actions from two services can not be performed

together without adverse effects. Conflicts can occur at devices, in the environment or upon people.

Below a list of potential sources of conflicts is presented with examples in Table 3.2. Although the

list is not complete, it covers the potential conflicts which are empirically observed from the services

listed in Table 3.1.

3.2.1 Device Conflict

When more than one action is taken on the same device simultaneously, if these actions are inconsistent

with each other, they have a device conflict. For example, Service 17 (S17) from Table 3.1 sends

vehicles to the parking garage, where S9 does not allow any outside vehicles into the garage on a

special event day. Device conflicts in smart cities can occur on stationary devices (e.g., street lights,

traffic signals, message boards, etc.) as well as on mobile devices (e.g., vehicles, drones and robots).

Comparing with the stationary devices, conflicts on mobile devices are more difficult to detect and

resolve. Without a watchdog layer, the conflict between these two services could not be detected

until it really happens. In particular,
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• if these actions have opposite directions, but the same numeric parameters, it is an opposite

device conflict ;

• if these actions have different numeric parameters and these parameters cannot be satisfied at

the same time, it is a numeric device conflict ;

• if these actions have the same direction and parameters, but have different durations of

application that cannot be satisfied at the same time, it is a duration device conflict.

3.2.2 Environmental Conflict

Besides the direct conflicts on shared devices, services are also prone to indirect conflicts caused by

unsafe or contrasting effects on the environment (resulting from one or more actions). For example,

S6 and S18 from Table 3.1 do not have conflicts on a device because they do not share any device.

However, when the air quality is bad, S6 might want to limit the number of vehicles on the road. In

contrast, S18 can schedule more buses for passengers at the same time to meet public demand given

it is a busy day. As a result, S6 and S18 will cause environmental conflict because of their contrary

effects on air pollution level. This is defined as an environmental conflict. Environmental conflicts

can be categorized into four classes as follows:

• When the set of effects on the environment of a single action causes the state of the city

to exceed a safety threshold or violate one/more safety requirements, it results in a single

environmental conflict.

• When the additive effects on the environment from two or more safe actions exceed the safety

thresholds or violate one/more safety requirements, it results in an additive environmental

conflict.

• When the effects of multiple actions are opposite on the environment and are not approved

to happen by the safety or performance requirements, it results in an opposite environmental

conflict.

• When the effect of one action is the prerequisite of another action, i.e., multiple actions need

to be performed sequentially or concurrently, but the previous one is not taken, it results in a

dependent environmental conflict.
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3.2.3 Human Conflict

Humans are at the center of smart city services and cause conflict in several ways. First, smart city

services include decision optimization aids, but often also rely on humans working for the city to

make final decisions. When 10s or even 100s of humans are making decisions across many service

domains, the possibility of conflicts is significant. Because humans are subjective and they tend to

make the decision based on personal bias/priority/incentive. For example, in case of co-occurrence of

a severe fire and several emergency police calls, decisions on how to dispatch the fire service, police,

and ambulances might vary widely among the people who are in charge of these services. Second,

human conflicts are caused by contrary effects of environment on human physiology. For example, a

decision to temporarily allow greater pollution in an area of the city to ease major traffic congestion

can adversely affect asthmatic people in that area. This is a conflict between human physiology and

environmental effect. Third, human conflicts can also occur from adverse effects of services on a

single person and group.

3.2.4 Typology of Conflicts

While the above list describes under what circumstances conflicts may occur, the below list categorizes

various types of conflicts.

Opposite Conflict: An opposite conflict is caused by opposite actions on the same device, on the

environment, or on the human taken by different services. For example, traffic congestion service

wants to turn the traffic lights to red while the emergency service wants to turn them to green so

that an ambulance can pass quickly.

Numeric Conflict: A numeric conflict is caused when actions from different services request

different values for one or more parameters of a shared resource. For example, when a storm is

coming, the water level monitor service wants to set the water level at X, while the ship management

service needs to set the water level to Y to ensure it is high enough for anchoring the incoming ship.

Here, conflict will occur if X is unequal to Y .

Duration Conflict: It occurs when two actions are similar and their start time is the same but

the duration is different. For example, an accident detection service needs to block the whole road

for 20 minutes to deal with an accident, while the traffic congestion service allows the road to be

blocked only for 10 minutes.
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Completeness Conflict: A completeness conflict refers to the situation when multiple actions

are taken by one service to complete a task, but at least one of the actions is affected by the other

services, and hence, that service can not complete the task. For example, a water pipe monitor

service blocks nearby roads and asks for a crew truck when it detects a serious leak. However, the

truck is stuck in a traffic congestion (i.e., effect of traffic congestion service). In this case, the pipe

monitor service can not finish the task.

3.2.5 Consequences for Conflicts

Safety Issues: Assume that the smart city sensors detect a traffic accident, or a disturbance such

as a fight or riot, or there is a gas or oil leak. These incidents may occur independently or even all at

once. Actions taken by smart city safety service upon detecting a unsafe condition might include

one or all of the following: dispatch police, ambulance, and/or firefighters, adjust traffic lights to

reroute traffic, and inform the public through displays and apps on smart phones. However, other

services such as transportation may detect congestion caused by these types of unsafe events and

reset the lights or display messages differently than needed by the safety service. For example, the

safety service might activate lights to permit an ambulance a non-stop route while the transportation

service sets red lights differently to minimize congestion.

In general, it is non-trivial to create a set of services that can predetermine all the possible ways

that the services may interact in real-time and under all conditions. This includes conditions such

as (i) failure of sensors/actuators, (ii) actions and their consequences are not instantaneous, (iii)

occurrence of random events such as a funeral procession or an earthquake, or (iv) entities that are

not controllable, e.g., cars not paying attention to the advice/information. This emphasizes the need

to create a real-time conflict detection and resolution module that will compare the safety critical

nature of conflicts and outcome of various conflict resolution schemes.

Environment and Health Issues: Given environmental monitoring services in smart cities, once

pollution is sensed, they will find the causes of the pollution and take actions accordingly. For

instance, S6, S7 and S8 can block off the street and limit vehicles, send warning messages to the

chemical factories, or prevent ships from coming to the ports of cities. On the other hand, in order

to make more profit, commercial services such as the ship management, taxi services and factories

may ignore the warnings and even produce more pollutions gradually. Consequently, environment

and human health will be impacted negatively. On the other hand, people also cannot close all
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the chemical factories and stop all the vehicles to reduce the pollution. Therefore, secondary or

even tertiary effects of an action must be addressed while detecting and resolving conflicts. Conflict

resolution system also needs to consider the severity of outcomes caused by conflicts, as the outcome

can vary widely.

3.3 Requirements in i-CPS

In this section, we present formal specification patterns for a set of typical safety and performance

requirements in smart cities. These requirements are originally taken from public documents by

U.S. Department of Transportation [90] and U.S. Environmental Protection Agency [91]. Our goal

is to provide specification patterns as templates to help people write formal specifications of smart

cities more easily. For example, smart city practitioners who are not familiar with temporal logic can

instantiate a specification pattern by filling in parameters of the requirement (e.g., locations, time

intervals, thresholds). It is expected that as new services are created and deployed there will be a

need for additional patterns.

3.3.1 Requirement Formalization

Signal Temporal Logic (STL) [92] is a formalism used to specify real-time properties of discrete and

continuous signals. The syntax of an STL formula ϕ is usually defined as follows,

ϕ ∶∶= µ ∣ ¬ϕ ∣ ϕ ∧ ϕ ∣ ◊(a,b)ϕ ∣ ◻(a,b) ϕ ∣ ϕU(a,b)ϕ.

We call µ a signal predicate, which is a formula in the form of f(x) > 0 with a signal variable x ∈ X

and a function f ∶ X → R. The temporal operators ◻, ◊, and U denote “always", “eventually" and

“until", respectively. The bounded interval (a, b) denotes the time interval of temporal operators

and can be omitted if the internal is [0,+∞). Formula ◻(a,b)ϕ is true iff ϕ is always true in the

time interval (a, b). Formula ◊(a,b)ϕ is true iff ϕ is true at sometime between a and b. Formula

ϕ1U(a,b)ϕ2 is true iff ϕ1 is true until ϕ2 becomes true at sometime between a and b.

Next, we present the formal definition of STL quantitative semantics.
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ρ(x ∼ c, ω, t) = πx(ω)[t] − c

ρ(¬ϕ,ω, t) = −ρ(ϕ,ω, t)

ρ(ϕ1 ∧ ϕ2, ω, t) = min{ρ(ϕ1, ω, t), ρ(ϕ2, ω, t)}

ρ(◻Iϕ,ω, t) = min
t′∈(t,t+I)

ρ(ϕ,ω, t′)

ρ(◊Iϕ,ω, t) = max
t′∈(t,t+I)

ρ(ϕ,ω, t′)

ρ(ϕ1UIϕ2, ω, t) = sup
t′∈(t+I)∩T

(min{ρ(ϕ2, ω, t
′),

inf
t′′∈[t,t′]

(ρ(ϕ1, ω, t
′′))})

3.3.2 Safety and Performance Specifications

Table 3.3 shows a set of typical smart city safety and performance requirements in transportation,

emergency, and environment services. For each requirement, we provide a specification pattern

written in STL. The instantiated specifications can be used to monitor the operation of smart cities

at runtime, as shown in Figure 5.1.

The general template is ⟨TL Operator⟩⟨time interval⟩⟨event/action⟩, where ⟨TL Operator⟩ denotes

the operator in temporal logic (e.g. Always, Eventually, Until), ⟨time interval is during which time this

requirement sustains, ⟨event/action⟩ can be an action or event. In the following, we present templates

for creating these specification patterns and describe each specification pattern in detail.

Transportation.

We can use the following templates to generate STL specifications for transportation by filling in

parameters of time interval and event:

• Always⟨time interval⟩⟨event⟩, where ⟨event⟩ can be a single objective (e.g., “no collision") or

furthered parameterized with the template

⟨traffic efficiency metric⟩⟨threshold⟩.
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Table 3.3: Smart City Requirements (left) and Specification Patterns (right)

Transportation
R1: No vehicle collision should occur. ◻(¬Collision)
R2: The number of vehicles in a lane should never exceed its maximum vehicle
capacity.

◻(VehicleNumber(lane) <
MaxCapacity(lane))

R3: Traffic congestion in a lane should not increase by more than 10%.
◻(a,b)(Congestion(lane) <
1.1 ∗ Congestion′(lane))

R4: Traffic yield in a lane should not increase by more than 20%. ◻(a,b)(Yield(lane) < 1.2 ∗ Yield′(lane))
R5: The average waiting time of vehicles in a lane should not increase by more
than 10%.

◻(a,b)(WaitTime(lane) <
1.1 ∗WaitTime′(lane))

R6: The number of pedestrians waiting in an intersection by more than 200%. ◻(a,b)(Pedestrian(i) < 2 ∗ Pedestrian′(i))
Emergency
R7: Emergency vehicles should not wait for more than 10s at an intersection. ◻ (EmergencyWaitTime(i) < 10)
R8: Emergency vehicles should not be directed to a blocked lane or area. ◻¬(EmergencyDirection(lane) ∧ Blocked(lane))
R9: The highway blocked by an emergency accident should be unblocked
within 30 min. Blocked(lane) U(1,30) (¬Blocked(lane))
Environment
R10: The noise level in a lane should always be less than 70 dB. ◻(a,b) (Noise(lane) < 70)
R11: The noise level in a lane should be reduced to less than 60 dB after some
point. ◊(a,b) (Noise(lane) < 60)
R12: The carbon monoxide (CO) emission in a lane should always be no more
than 50 mg. ◻(a,b) (CO(lane) < 50)
R13: The hydrocarbons (HC) emission in a lane should always be no more
than 1 mg. ◻(a,b) (HC(lane) < 1)
R14: The particulate matter (PMx) emission in a lane should always be no
more than 0.2 mg. ◻(a,b) (PMx(lane) < 0.2)
R15: The camera should be turned on and the illumination of street light
should be set at least level 3 within a time interval. ◊(a,b)(Camera(lane) ∧ Illumination(lane) > 3)

• Eventually⟨time interval⟩⟨event⟩, where event can be the number of congested vehicles less than

a threshold.

• ⟨action1⟩Until⟨time interval⟩⟨action2⟩, where examples of actions include turn a signal light for

vehicles/pedestrians to green/red.

R1 -R6 in Table 3.3 are examples of transportation specifications generated using these tem-

plates.

R1 is a safety requirement for vehicle collisions. Suppose there is a binary signal Collision, which

takes the value True if a vehicle collision occurs. We can, therefore, write a specification ◻(¬Collision)

to represent the safety requirement that “No vehicle collision should occur".

R2 is a performance requirement: “The number of vehicles in a lane should never exceed its maximum

capacity". The specification uses VehicleNumber(lane) and MaxCapacity(lane) to represent two signals

over a location variable lane, which need to be instantiated.

R3 is a performance requirement that compares the traffic congestion state over a time interval

(a, b), which is measured by the number of vehicles waiting in a lane. The specification uses signal

Congestion(lane) to denote the traffic congestion state in certain lane after the implementation of
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some smart services. Congestion′(lane) is a constant obtained from historical data, denoting the

average previous congestion state of that lane during that time.

R4 and R5 are very similar to R3, which are all performance requirements measuring the vehicle

traffic efficiency. R4 is about the Yield (i.e., number of vehicles that are unable to cross an intersection

where they do not have priority). R5 is about the average waiting time of vehicles in a lane, denoted

as WaitTime(lane).

R6 is a performance requirement about the pedestrian traffic efficiency over a time interval (a, b). The

specification uses signal Pedestrian(i) to denote the number of pedestrians waiting at an interaction i

after the implementation of some smart services. Pedestrian′(i) is a constant, denoting the average

number of pedestrians waiting in an interaction i.

Emergency.

We can use one of the following templates to generate STL specifications for emergency services.

• Always⟨time interval⟩⟨object⟩⟨metric⟩⟨threshold⟩, where the object, for example, can be an

ambulance, police car or fire fighter truck, and the metric can be response time and waiting

time.

• Eventually⟨time interval⟩⟨action⟩, where the action can be response for an accident, or resolve

an accident.

• ⟨action1⟩Until⟨time interval⟩⟨action2⟩, where examples of actions include block a lane, and

vehicle/pedestrian moves in a direction/lane.

R7 -R9 in Table 3.3 are examples of emergency specifications generated using such templates.

R7 uses signal EmergencyWaitTime(i) to denote the waiting time of emergency vehicles at an

interaction, which should always be less than 10 seconds.

R8 uses two binary signals EmergencyDirection(lane) and Blocked(lane) to represent whether the

emergency vehicle is directed to a certain lane and if a lane is blocked, respectively. If both

signals are True, then the emergency vehicle is directed to a blocked lane, which violates the safety

requirement.
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R9 uses Blocked(lane) and ¬Blocked(lane) to denote the block and unblock of a lane. It also uses

the Until operator to bound the required time interval.

Environment.

The following template can be used to generate STL specifications for environment requirements:

• Always⟨time interval⟩⟨metric⟩⟨threshold⟩, where metrics can be the level of air pollution and

noise.

• Eventually⟨time interval⟩⟨metric⟩⟨threshold⟩, where the time interval can be used to control the

time to reduce the pollution level.

• ⟨action1⟩Until⟨time interval⟩⟨action2⟩, where examples of actions include the level of air pollu-

tion reaching a threshold or time and allowing vehicles crossing a school area.

R10 -R15 are examples of environment specifications generated using these templates.

R10 and R11 are about the noise level, which use the signal Noise(lane) to denote the noise level

in a lane. Similarly, R12, R13 and R14 use signals CO(lane), HC(lane) and PMx(lane) to denote

the carbon monoxide, hydrocarbons and particulate matter emission in a lane, respectively. R15

uses a signal Camera(lane) to represent that the camera is turned on and a signal Illumination(lane)

to denote the illumination levels of street lights. Note that the numerical thresholds used in these

requirements are just example parameter values and can be changed.

3.3.3 Smart Services Actions Conflicts

The safety and performance specifications listed in Table 3.3 are all about the states of smart cities

(e.g., traffic congestion, air pollution). The actions of smart services can have positive or negative

effects on these city states, and thus have the potential of leading to requirement violations and

service conflicts. In addition, smart services may issue contradictory actions on the same actuator,

which are identified as device conflicts in [93]. There are three types of device conflicts. We provide

STL specification patterns for each type as follows.

Opposite device conflicts occur when multiple smart services issue opposite (binary) actions to the

same actuator. For example, smart traffic service turns a traffic light to green, while smart pedestrian

service requests the same light to red. Let A1,A2, . . . ,An be multiple boolean-valued actions issued
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on the same actuator. We can write a specification ◻¬(A1 ⊕A2⋯⊕An) to detect opposite device

conflicts, where ⊕ denotes the exclusive or operator.

Numeric device conflicts occur when smart services issue multiple actions with different numeric

parameters. For example, the smart energy service tries to set the illumination of street lights to level

1 to save energy, while the smart safety service maintains it at level 3 because the camera to monitor

the community requires higher illumination. Let A1,A2, . . . ,An be multiple real-valued actions issued

on the same actuator. We can use the formal specification ◻((A1 −A2 = 0) ∧ ...∧ (An−1 −An = 0)) to

monitor if these actions assign the same numeric value.

Duration device conflicts occur when smart services require actions with different time intervals. Let

Ai and Aj be two actions. We consider three scenarios. First, Aj cannot be taken within m steps

after Ai. Formally, we write Ai ∧ (◻(1,m)¬Aj). An example is “Traffic light should not be turned

to green within 2 seconds after it is turned to red". Second, Aj cannot be taken until Ai stops

(e.g., the street should be kept blocked until the accident is resolved). The formal specification is

AiU(¬Ai ∧ Aj). Third, we can write Ai ∧ (◊(1,m)Aj) to represent the time dependence between

actions. For example, if the accident service blocks an area, it should release blocking eventually

within m steps.

3.4 Conflict Analysis Using Real City Data

We first perform an emulation analysis that uses real data from the city of Aarhus, Denmark. Since

coordinated services and their related data are not currently available, eight typical services are

hypothesized and correlated with real city data. The main purpose of this emulation of services upon

real data is to demonstrate the high potential for conflicts. Since many companies and researchers

are investigating integration of services across many different domains, it can be expected that in the

near future more conflicts will occur.

IoT datasets generated from various sensors in the city of Aarhus, Denmark [94] are used for this

analysis. The datasets include vehicle traffic, parking, weather, pollution, cultural events and library

events for 61 days (in August and September, 2014). In order to analyze the frequency of conflicts

happening across services in a smart city, it is assumed that 8 common services ({S6, S9, S11, S13,

S15, S17, S18, S19}) chosen from Table 3.1 are running. These services are chosen because they are

either existing policies in cities, or smart applications proposed by researchers in previous papers. By
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emulating these 8 services on the Aarhus datasets, the number of times and condition when each

service is triggered are determined. Then an assessment of conflicts is done by detecting two or

more overlapping service actuations that are contradictory. As a result, the number of conflicts is

obtained. Since there is no real data for integrated services this emulation approach is reasonable

because (i) the environment analyzed is from real datasets, and (ii) only typical services are used for

emulation.

3.4.1 Conflicts between two services

At first potential conflicts between two services issuing requests at the same overlapped time are

analyzed. Here, services are assumed to be running separately and the total number of service

requests within 61 days is recorded. Then as shown in Table 3.4 9 sets of conflicts were found. For

each pair of services in the table, the number of conflicts is shown in column 4. For example, S13

conflicted with S19 32 times. Since these two services are executed a different number of times within

61 days, we also show the percentage of time a service had a conflict with the other service. For

example, in row 1 of all the activations of S13, it conflicted with S19 52.5% of its instantiations.

Conditions and the corresponding conflicts are also indicated in the table in the last two columns,

respectively.

From the results shown in Table 3.4, the following conclusions are drawn:

• Conflicts between 2 services have high frequency, for example, reaching 89% for service 11

conflicting with service 6 (row 9), and being 60.2% on the average for these 8 services.

• The conditions when conflicts occur are very common, but unpredictable.

3.4.2 Conflicts among three services

Conflicts among 3 services are also analyzed. From the conflicts analysis results shown in Table 3.5,

the 3-service conflicts also have a high frequency. For example, S11, S17 and S6 conflict almost 70%

of the time (calculation is similar to that of Table 3.4). In future smart cities, it is not far-fetched to

assume that hundreds of services will be executing concurrently. This data implies that many conflicts

are not easily determined ahead of time and must be detected and resolved at run-time.
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Table 3.4: Conflicts Analysis between two Services

S1 S2

Num.
of
Con-
flicts

Conflict
Prob.
with
S1

Conflict
Prob.
with
S2

Condition Conflict

1 13 19 32 52.50% 63.10%
The weather is bad and big
events are going on

S13 discourage vehicles driving in bad
weather while S19 sends a large number
of taxis to the concert after big events

2 15 17 6 34.60% 47.20%

The parking garage near
concert is not available and
big events are going on in
the concert

S15 adjusts traffic lights to reduce/stop
vehicles around concert while S17 directs
vehicles to the parking garage of the con-
cert

3 9 17 6 34.60% 47.20%

The parking garage near
concert is not available and
big events are going on in
the concert

S17 directs vehicles to the parking garage
of the concert while S9 does not allow any
vehicles parking without event tickets
during events

4 11 17 1795 70.40% -

The parking garage is not
available and heavy traf-
fic congestion around the
nearby parking garage

S17 directs vehicles to the parking garage
nearby while S11 tries to solve congestion
by adjusting traffic signal

5 6 17 2503 98.12% -

The parking garage is not
available and heavy air-
pollution around the nearby
parking garage

S17 directs vehicles to the parking garage
nearby while S6 limits the number of
vehicles around to reduce air pollution
by adjusting traffic signal

6 6 18 10 55.50% 85.30%
The air quality is bad and
big events are just over

S6 limits the number of vehicles around
to reduce air pollution by adjusting traf-
fic signal while S18 sends more buses to
the concert station after big events be-
cause larger flow

7 13 18 32 52.50% 63.10%
The weather is bad and big
events are just over

S13 discourage vehicles driving in bad
weather while S18 sends more buses to
the concert station after big events be-
cause larger flow volume

8 6 19 10 55.50% 85.30%

The air quality is bad and
big events are about to be
over

S6 limits the number of vehicles around
to reduce air pollution by adjusting traf-
fic signal while S19 sends a large number
of taxis to the concert after big events

9 11 6 650 75.10% 89.20%

Heavy traffic congestion on
street i and air quality is
bad on the nearby streets

S11 directs vehicles to alternative path
to reduce congestion while S6 limits the
number of vehicles on that street to re-
duce the pollution

Table 3.5: Conflicts Analysis among three Services

Services Conflict
Prob. Condition Conflict

13,19,18 52.5% Bad weather after big events
Both buses and taxis are sent to the concert
while traffic services limits the number of vehi-
cles on that streets

15,17,9 34.6%
When there is a big event in
concert and nearby parking
garage is not available

When smart parking sends large number of
vehicles to park in rush hour, the streets are
blocked off and building does not allow vehicles
coming in

11,17,6 69.8%

Parking garage is not available,
when streets of nearby garage
have heavy air pollution and
traffic congestion

When smart parking sends large number of
vehicles to park, both traffic services and pol-
lution services are directing vehicles off that
streets

19,18,6 55.5% Heavy air pollution after big
events

Both buses and taxis are sent to the concert
while pollution services are directing vehicles
off that streets

11,13,6 56.1% Bad weather with heavy air
pollution and traffic congestion

Three services have different instructions on
the same streets



3.5 Conflicts among Future Services 37

(a) Devices (b) Environment

(c) Human (d) Total

Figure 3.2: Probability of conflicts of future services related to device, environment, human, and the
total conflicts of all types. x and y axes represent the numbers of installed and conflicting services,
respectively.

3.5 Conflicts among Future Services

A fundamental analysis is conducted that itemizes the conflict frequency among various combinations

of these services. The purposes of this analysis are to demonstrate the high degree of potential

conflict in the future and to highlight the lessons learned.

There are 41 future services as presented in Table 3.1. The probability of conflicts among them is

analyzed. Because a service can send multiple requests to different devices to complete one task at

the same time, there can be overlap among the conflicts.

We randomly select n services and compute the average probability of conflicts between them. This

process is repeated 100 times. Figure 3.2 shows the probability of conflict between at least m services

when n services are running from the 41 services in Table 3.4. With the increasing number of services

active, the probability of conflicts grows significantly.

Note the starting point (2,2) in Figure 3.2, i.e., this point represents the probability of conflicts

between at least two services when the two services are running. This analysis is performed between
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two services of each type. The device conflicts have the lowest probability, which is only 31%. By

contrast, environment conflicts and human conflicts reach 51%, 78%, respectively. Device conflict is

lower as when only two services run simultaneously they are less likely to share a device.

Another important point is (x,2), the number of services running when at least 2 of them have

conflicts. This is 10, 7, 12 and 5 for device, environment, human, and total, respectively. This

analysis indicates that there is a very high chance that two services have conflicts when as few as 5

services are running in the city. However, there might be hundreds or even thousands of services

installed in smart cities in the near future.

The last point in the figure is (x,12), the number of services running when more than 10 of them

have conflicts with others with 100% probability. This result is that 15, 16, 16 and 15 services are

running for device, environment, human and total, respectively. Unlike the values of n, values of x

are very close. This demonstrates that regardless of the starting probability, probabilities of all types

of conflicts increase rapidly with the increasing number of services. The results also indicate that at

least 15 services will have conflicts when 20 random services are running.

3.6 Summary

Conflicting services pose serious safety threats and operational failure in a smart city environment.

This chapter focuses on formulating the problem of conflicts and showing that it is a serious problem.

Specifically, it (i) outlines several characteristics of services that contribute towards conflicts, (ii)

proposes a conflict taxonomy in terms of origin of conflict, (iii) lists 41 potential services across

five domains (transportation, safety, environment, emergency and energy) for a smart city, and (iv)

outlines issues and research challenges of detection and resolution of conflicts. Our evaluations using

real data and services demonstrate the high probability of conflicts in smart cities. It shows the

significance of conflicts in i-CPS.



Chapter 4

Conflict Detection and Resolution

System

Advances in technologies such as the Internet of Things have transformed the way cities operate. For

example, sensors and actuators on streetlights are installed and used to gather information about

traffic, street parking and pollution, to adjust LED streetlights to save energy, and to estimate the

size of crowds in responding to public disturbances. Various smart services are built to improve

the performance and efficiency of smart cities across different domains (e.g., transportation, energy,

healthcare). It is estimated that a smart city can generate revenue and cost savings of $2.3 trillion

globally through 2024 [95].

In the previous chapter, we identified different types of conflicts among smart services and their

severe safety consequences. However, most of existing solutions [16, 18] adopt a simple approach

to conflict resolution by only accepting actions with the highest priority and rejecting others,

which does not account for the adaptive policies of action priorities and optimal resolution for city

requirements.

Nevertheless, detection and resolution of conflicts across services in smart cities is very complex.

The requirements objectives in smart cities are often expressed vaguely in natural language and are

potentially conflicting. For example, a resolution that satisfies the requirement of reducing traffic

congestion may actually violate another requirement of maintaining noise levels. There is often no

39
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Figure 4.1: Conflict Detection and Resolution in the Smart City

best resolution and/or one cannot satisfy all objectives, which implies that trade-offs must occur. In

addition, priorities of smart services and actions may be adaptive to the current state of the city. For

example, resolving conflicts of traffic congestion may be more urgent at rush hours than at other

times. Moreover, there are uncertainties in the state of the city, in human behaviors, and the impact

of the resolutions (in time and space). The scale of smart cities and services also makes it challenging

to search for an optimal resolution from an enormous solution space.

In this chapter, we present a decision support system for conflict detection resolution in smart cities.

The system includes two important components, a conflict detection component (i.e., CityGuard)

and a conflict resolution component (i.e., CityResolver). First, CityGuard detects different types

of conflicts by intercepting actions ahead of time, analyzing the details of the actions, and then

running simulations to predict potential conflicts within a temporal and a spatial range. This chapter

focuses on conflict detection, especially for environmental conflicts. Next, CityResolver uses a novel

Integer Linear Programming (ILP) based method to generate a small set of candidate resolution

options. The ILP-based method makes it more efficient to search for optimal resolutions from an

exponentially growing number of possible resolution choices, and it considers adaptive policies of

service priorities that change as a function of context. It then checks these resolution options’ impact

on city performance using a Signal Temporal Logic (STL) based verification approach. Formalizing

city requirements expressed in natural language using STL specification helps to resolve the vagueness

of requirement objectives. The verification is performed on predicted traces of future city states,

which are generated from the simulation of executing resolution options in the smart city. The

simulation also accounts for uncertainties and disturbances in the city (e.g., weather and scheduled

events). Given a resolution option, the STL-based approach verifies if the predicted city states violate
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city requirements. It computes the degree of requirement violations based on three different metrics:

(1) the robustness value, (2) the percentage of time when violations occur, and (3) the integral of

signal deviations. Our system provides a trade-off analysis of different resolution options’ effects

on various city requirements. The results are plotted on a dashboard to support decision makers

to choose the best resolution. We apply a prototype implementation of our system to a case study

of a simulated smart city based on the map of lower Manhattan, New York. We demonstrate the

effectiveness of our system by comparing the performance with two baselines: a smart city without

conflict resolution, and CityGuard which uses a priority rule based conflict resolution. Experimental

results show that our system reduces the number of requirement violations and improves the city

performance significantly.

4.1 Motivating Example

In this section, we describe an example of smart services and their conflicts, based on a map of

the lower Manhattan district in the New York City (Figure 4.2). We assume that there are 10

different smart services in this district, which are overseen by a smart city operations center. We

only introduce four services here, and list all ten services in Table 4.6. S1 is a smart traffic service,

which can control traffic signals in street intersections to relieve congestion and optimize or improve

traffic performance. S2 is a smart emergency service, which can request green traffic signals in order

to transport patients in critical conditions to hospitals as soon as possible. S3 is a smart accident

service, which can block a street where some accident occurs and alert nearby vehicles to detour. S4

is a smart infrastructure service, which can schedule infrastructure check-up and repair appointments.

The operations of these smart services have to satisfy a set of safety and performance requirements

in the smart city. For example, R1 is an environment requirement that the noise level in the school

area should always be less than 50db. R2 requires that the Carbon Monoxide (CO) emission in an

intersection should always be less than 40mg. R3 is a requirement for transportation domain, which

requires that the waiting time of the traffic in an intersection should not be greater than certain

threshold λ. R4 specifies that an emergency vehicle should not wait in an intersection for more than

10 seconds. A complete list of requirements considered in this paper can be found in Table 4.2.

Conflicts may arise when different smart services request contradicting actions on the same actuators

at the same time, or when the effects of service actions violate the smart city’s safety and performance

requirements. For example, suppose that S1 requests longer green traffic signals on 1st Avenue to
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Figure 4.2: A map of the lower Manhattan district in New York City. Red dots: street intersections
with hypothetical smart sensors and services. Blue dashed lines/circles: areas of interest (1: 1st
Avenue, 2: East 4th Street, 3: The intersection of Greene Street and Grand Street, 4: Blocks around
the entry of Williamsburg Bridge, 5: Stuyvesant High School and Borough of Manhattan Community
College, 6: East Village).

relieve traffic congestion, while S2 requests green traffic signals on East 4th Street to transport a

patient in an emergency. The requested actions by S1 and S2 contradict each other on the traffic

signal at the interaction of 1st Avenue and East 4th Street (annotated as areas 1 and 2 in Figure 4.2).

In addition, the effects of actions requested by S1 and S2 may cause an increased traffic in nearby

East Village (area 6 in Figure 4.2), and thus violating requirements about noise levels (R1) and CO

emission (R2).

The smart city operations center detects such conflicts and provides resolutions by accepting or

rejecting smart services’ action requests. However, it is very challenging to find an optimal or even

acceptable conflict resolution. First, the feasible set of resolutions grows exponentially with the

increasing number of smart services and actions. An exhaustive search over the entire solution space

is not efficient or even possible. Second, what does it mean by optimal when considering multiple

smart city requirements that are expressed vaguely in English? For example, one resolution may

dramatically reduce traffic congestion, but increase pollution levels. An ideal resolution should

balance the trade-off between multiple objectives. Third, the severity of conflicts and the importance

of service actions are often dependent on the current state of the city. For example, during rush

hour, resolving traffic congestion is more urgent than maintaining noise levels and CO emissions.

Thus, the conflict resolution should consider an adaptive policy of prioritizing smart services and
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Figure 4.3: CityGuard Running in a Smart City

requirements. Finally, there are many uncertainties in the state of the city, including disturbances

that are predictable (e.g., weather, events) and unpredictable events (e.g., accidents). To address

these challenges, we propose a decision support system for conflict resolution in smart cities as

described in the next section.

4.2 Conflict Detection

CityGuard is a safety watchdog built between the smart services and the infrastructure layers (see

Figure 1). CityGuard executes as a feedback loop as shown in Figure 4.3. Variables V1 through Vm

monitor city states, and services S1 through Sn use the monitored data to choose actions. CityGuard

intercepts the actions, decides if there is a device, environment, or both conflicts based on the safety

and performance requirements. Unsafe actions and conflicts are detected and resolved through

CityGuard. Safe actions are taken in the city and cause the change of city states, which triggers

actions from smart services again. As a result, the goal is that only safe actions are executed in the

city. However, CityGuard does not guarantee safety, but rather significantly improve it as shown in

the evaluation.

The internal structure of CityGuard is shown in Figure 4.4. There are 4 important components

in CityGuard, City Safety and Performance Requirements (CSPR), City State and Service Action

(CSSA), Pre-processing, and Conflict Detection and Resolution (CDR). Algorithm 1 shows how the

components are executed.

4.2.1 Safety and Performance Requirements Component

The safety and performance requirements component provides the rules for CityGuard to monitor all

the actions. It has three modules: (i) principles, (ii) requirements, and (iii) updating requirements.
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Figure 4.4: CityGuard Structure (Pre-Processing intercepts and checks the safety of the single
action, Conflict Detection & Resolution detects conflicts among actions after Pre-processing, and
City Safety & Performance and Real City & Service Action store the safety requirements and city
states, respectively. Section III describes each component in detail.)

All principles and requirements are defined and specified by city personnel. CityGuard integrates

them into the safety checking components.

To start with, CityGuard follows a set of principles to maintain safety requirements. For example, it

might contain,

• Any action of a service should not violate predefined city / individual service safety requirements.

• A safety requirement is a function of location and time with conditions.

• When there is a conflict between different safety requirements, follow the city objectives.

CityGuard works with the safety and performance requirements specified by a particular smart city

that is running CityGuard. For example, important safety and performance requirements for a smart

city might include (i) Noise levels should be below the following thresholds, community/school (Day

50 db, night 45 db), Mall/working zones (Day 60 db, night 50 db), Highway (Day 70 db, night 55

db); (ii) Actions taken by transportation services should not cause collision of vehicles ; and (iii)

emergency vehicles should not wait for more than 10seconds at any intersection.
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Figure 4.5: Effects of Actions Taken in the Smart City Over Time

These requirements, defined in English by the city, are integrated and translated to formal met-

rics in CityGuard manually. For example, the above requirements can be translated to (i) R1:

Noise(Location, T ime) < xdb, (ii) R2: Num(collision) < 0 and (iii) R3: waitingT ime(E) <

10s.

Since the mapping between actions and safety requirements is not always straightforward, CityGuard

simulates and analyzes the effects of an action on the metrics and therefore decides if it is a safe

action by examining if the metrics are within their requirements.

Furthermore, with new services added and situations changed in the city, safety and performance

requirements are also added and updated.

4.2.2 Real City State and Service Action Component

City state and service action is considered as the interface of CityGuard to services and cities. It

obtains real city states and passes them to CityGuard SUMO in the CDR, obtaining a consistent

view of states in the real city and the simulated city. Meanwhile, it also stores and provides the

in-coming actions from services and on-going actions in cities.

4.2.3 Pre-Processing Component

When an action Ai is intercepted by CityGuard, it contains information to direct an actuator, which

is also the source for CityGuard to analyze potential conflicts. Usually, an action has the following

information, Device Number indicates a unique numerical identifier of the actuator on which the

action is supposed to be taken. Service Number indicates a unique numerical identifier of the service

that issues the action. Act is the expected action or effect, which depends on the functions of the

services and could be a change in states, locations, or send a warning or message, etc. Duration is

the requested duration of this action. Some actions are continuous actions and need to be acted
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Algorithm 4.1: CityGuard
input :ActionSet{Ak}
output : SafeActionSet{A′k}
initialize :CityState{Vk}, SimulationState{SVk}, Requirement{Rk}, SimuStep = 0
while {Ak}! = 0 do

Pre-Processing :
for action = 1 ∶ length({Ak}) do

{SVk} = {Vk};
for SimuStep = 1 ∶ n do

{SV ′

k} = CityGuardSUMO(Ak,{SVk});
fFC = SafeCheck({SV ′

k},{Rk});
end
if fFC == 1 then

A′k = CityResolver(Ak);
end

end
end
DeviceConflict :
fDC = DeviceCheck ({A′k});
if (fDCij == 0)∣(fDCij == 1&&Ai == Aj&&Dur(Ai) == Dur(Aj)) then

go to EnvironmentConflict
end
if fDCij == 1 then

if Ai == −Aj then
A′k = CityResolver(Ai,Aj)

end
if Ai +Aj > Rk then

A′k = CityResolver(Ai,Aj)
end
if Dur(Ai)! = Dur(Ai) then

A′k = (CityResolver(Ai,Aj))
end

end
EnvironmentConflict :
{SVk} = {Vk};
for SimuStep = 1 : n do

{SV ′

k} = CityGuardSUMO(A′k, {SVk});
fEC = check ({SV ′

k}, {Rk});
if fEC == 1 then

A′k = CityResolver(Ai);
end
if Ef(Ai) == −Ef(Aj) then

A′k = CityResolver(Ai, Aj)
end
if Ai ← Aj&& exist(Aj) == 0 then

A′k = (CityResolver(Ai))
end

end
{A′k} = CityResolver({A′k});

on for a certain time, while some actions are just one time actions. Pre-conditions indicate the

pre-conditions of the action, mainly pointing to the essential concurrent or sequential actions. The

format is <ActionID, Con/Pre>.

In a pre-processing phase, CityGuard checks the above action information and deals with any missing

information. Device number and service number are easy to tell from the source and destination of

the action. All acts are assumed to be contained in the action information, otherwise, it cannot be

executed by the actuator. Unless specified, the duration is treated as 0 if it is missing on the action
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information. It is a reasonable way to deal with missing duration because even if a continuous action

is being treated as a one-time action, it still has an effect on the city performance, which will be

detected by the environmental conflict detection procedure.

After intercepting the actions, CityGuard also needs to consider the timing of the actions. CityGuard

defines three types of actions based on their action and effect times, including In-coming actions,

On-going actions, and Past actions. An In-coming action is one just being intercepted and going to

be checked by CityGuard. An on-going action is the one that has been already checked by CityGuard

and is running. Because it is still using the device, the in-coming action which wants to take different

action on that device may be conflicting with it. A past action is the one that has been taken

and finished. Though it may still have an effect on the city, its effects are reflected by the city

environmental states. Therefore, CityGuard does not track these actions any more. For example, in

Figure 4.5, at T2, A1 is an on-going action, A2 and A3 are in-coming actions. Thereby, all of A1, A2

and A3 may be conflicting and need to be checked by CityGuard. However, at T4, when A4 comes in,

there is no on-going action, then CityGuard only needs to check if T4 is a safe action in terms of the

single action environmental conflict.

As a result, three key parameters are retained by CityGuard, i.e., In-coming actions {Ai, ...,An},

On-going actions, and the City States {V1, ..., Vi−1}.

Three steps are performed in the pre-processing,

Step 1 : Intercept actions and obtain their key information.

Step 2 : Check single actions’ safety by running them in CityGuard SUMO. Send back unsafe actions

with warnings to their services. ((1)(2) in Figure 4.4)

Step 3 : Check Device Number of in-coming and on-going actions, then send the actions with same

device number to DCDR because they have a potential device conflict. Pass the other actions to the

ECDR. ((3) in Figure 4.4)

After pre-processing, all the actions sent to the conflict detection components are safe single ac-

tions.
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4.2.4 Conflict Detection Component

Conflict Detection Component consists of 4 sub components, i.e., CityGuard SUMO, Device Conflict

Detection and Resolution (DCDR), Environmental Conflict Detection and Resolution (ECDR), and

an Overall Resolver (OR). In this section, we first focus on the key solutions for conflict detection.

In the next section, we will show more details of a sophisticated conflict resolution approach (i.e.,

CityResolver).

CityGuard SUMO is the central component of the CDR which is used by both DCDR and ECDR to

simulate the effects of actions on a real city. The solution uses the Simulation of Urban MObility

(SUMO) [11], a traffic simulation that models inter-modal traffic systems including road vehicles,

public transport, and pedestrians. By implementing smart services and simulating real city scenarios

in SUMO, CityGuard SUMO plays an important role to test the primary and secondary effects of

actions. To do this, there are different Physical Models (PM) in CityGuard SUMO to simulate the

primary and secondary effects of actions. For example, the traffic - air PM knows how the numbers

and speeds of different types of vehicles affect emissions (e.g., CO, HC, PM) quantitatively. As a result,

the secondary effects on environments of actions from transportation services are obtained.

Before executing, CityGuard inputs into the simulator the same states of the city where actions

are going to be taken. Then, it runs one or multiple actions in this scenario into a future time

interval. New states of the city after taking these actions are sent back to DCDR and ECDR, where

the decisions of detection and resolution conflicts are made. SUMO also has models to simulate

accidents.

Device Conflict Detection and Resolution Component

This component is shown in the left part of CDR in Figure 4.4. Three types of device conflicts are

processed using different detectors and resolvers with corresponding models. Once potential device

conflict actions are received by DCDR, their acts are sequentially checked by opposite, duration, and

numeric conflict detection modules with the steps described below.

Step 1 : Following the logic defined in Section II, DCDR compares the given actions to detect if they

are (i) opposite, (ii) with different numeric requests, or (iii) the same. Accordingly, proceed to Step 2

through Step 4.
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Step 2 : If they are (i) opposite, call the opposite conflict resolver, which makes a decision according

to ORR.

Step 3 : If they are (ii) with different numeric requests, whether they are conflicting depends on if

they can be taken at the same time, which is simulated in CityGuard SUMO. If one action with the

larger numerical request actually tolerates the others, there is no numeric conflict because all of the

actions can be satisfied. Otherwise, the numeric resolver is called for decision making according to

ORR.

Step 4 : If they are (iii) the same, compare their durations. If durations are the same, there is no

device conflict between/among them and the actions are sent to ECDR; If durations are different,

similar to Step 3, actions are simulated, and tolerance is checked. A longer duration is accepted by

its resolver if they are tolerant. Otherwise, a decision is made according to ORR.

Step 5 : All actions with a marked decision from DCDR are sent to ECDR.

Environmental Conflict Detection and Resolution Component

All the actions received by this component (shown on the right side of CDR in Figure 4.4) from the

Pre-processing and DCDR components are sent to run in CityGuard SUMO for N steps to see their

combined effects on the environment (see (6) in Figure 4.4). Through analyzing performance results

from CityGuard SUMO and checking with the safety and performance requirements, ECDR detects

three types of environmental conflicts with following steps.

Step 1 : Check if their additive effects conflict with the city requirements, which includes the situations

when simulated states exceed required thresholds and when forbidden unsafe cases happen. If so,

then there is an additive conflict. The additive resolver is called.

Step 2 : With the results from CityGuard SUMO, the environmental opposite conflicts are detected

by comparing the primary effects detected from pre-processing component with the combined effects

from ECDR. If there is an opposite conflict detected, actions are sent to the corresponding resolvers. If

these opposite effects on the environment violates safety requirements, a resolver resolves it according

to ORR. Otherwise, the resolver decides whether to resolve it or not based on the context of the

system.

Step 3 : In the dependent conflict detection model, pre-conditions of actions are checked.
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Figure 4.6: Overview of conflict detection and resolution among smart services in smart cities.

Step 4 : All marked actions are sent to the overall resolver.

Resolvers in the DCDR and ECDR and Overall Resolution Rules (ORR) for decision making are

presented in the following section.

4.3 Conflict Resolution

We envision a watchdog architecture (e.g., CityGuard [93]) in which a city operations center would

oversee all smart services, detect conflicts among service requests, and provide resolutions. Such a

city operations center could follow real-world prototypes including IBM’s Rio de Janeiro Operations

Center [96] and Cisco’s Smart+Connected Operations Center [97], where real-time information about

city states (e.g., traffic, pollution) are collected from citywide sensors and displayed on the command

room’s monitors. Figure 4.6 shows an overview of our envisioned architecture that extends the

functionality of a city operations center with conflict detection and resolution. Smart services send

action requests based on real-time city states. The city operations center intercepts these action

requests and detects if there is any conflict that would lead to contradicting actions or violations

of city requirements. If no conflict is detected, all action requests are approved for execution in

the smart city. Otherwise, an optimal resolution is computed to resolve the detected conflicts. We

refer readers to our previous papers [93, 98] for conflict detection methods, and focus on addressing

challenges of conflict resolution.

We present CityResolver – a decision support system for conflict resolution in smart cities. An

overview of CityResolver is shown in Figure 4.7. Suppose one or more conflicts between smart

services’ action requests are detected.
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The first step is to generate a set of resolution options, each of which may accept a subset of action

requests and reject the others. The resolution options may also suggest alternatives or delayed

executions of requested actions. Thus, the number of potential resolution options grows exponentially

with the number of action requests. We develop an Integer Linear Programming (ILP) based method

to select a small set of candidate options, accounting for policies that define the priorities of the

smart services and their actions. These policies are not fixed, but are adaptive based on current city

states (context). We will describe the ILP-based method in Section 4.3.1.

The second step is to simulate the execution of these resolution options in order to predict the effect

of choices on the city. Here, we use an off-the-shelf city simulator [99]. Multiple simulations may

be instantiated in parallel to simulate the execution of smart city under different resolution options.

For each resolution option, the simulator starts with the city states at the current time t (i.e., when

conflicts are detected) and simulates the city executing the resolution option for a period of ∆t

into the future. Traces (time series) of city states from t to t + ∆t are generated for verification

that an option does not violate safety and performance requirements. The simulation also accounts

for disturbances in the city (e.g., heavier traffic during 5 to 7 pm, a 80% chance of rainy day, or a

big event is scheduled). We distinguish two types of disturbances or uncertainties in smart cities:

predictable and unpredictable. The simulation only considers predictable disturbances. However,

unpredictable disturbances (e.g., accidents, device failures) are handled in CityResolver due to a

continuous feedback loop that is monitoring city states in real-time (see Figure 4.6). If these states

change greater than associated set points then the services themselves issue new actions which we

intercept and re-apply the detection and resolution actions.

The next step is to verify if the simulated traces of city states of each option satisfy various city

requirements. We develop an approach to formalize smart city requirements as Signal Temporal

Logic (STL) specifications and compute the trade-off between different resolution options on multiple

specification objectives via STL verification (see Section 4.3.2).

The trade-offs between options are displayed in a decision support dashboard. The decision maker

chooses a resolution, by comparing the performance of different options on various city requirements.

For example, Figure 4.8 shows the trade-off between three options on requirements R1-R4. We

will describe these options and their generation later in Example 4.1 in Section 4.3.1. The values

in the trade-off display represent the violation degree in terms of the percentage of time when the

requirement is violated. The zero value means that the requirement is not violated. Figure 4.8 shows
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Figure 4.7: Overview of CityResolver – a decision support system for conflict resolution in smart
cities.

Figure 4.8: An example dashboard displaying the trade-off between three resolution options in terms
of the percentage of time violating R1-R4. (Example 4.1 describes these options.)

that Option 3 satisfies the first three requirements but violates R4 most of the time, while Option 1

satisfies R2 and R4, but violates R1 and R3. The human decision maker may choose a resolution

option based on individual preferences. To reduce the human burden of selecting resolutions every

time a conflict occurs, CityResolver also allows the automatic selection of optimal resolutions based on

a set of rules predefined by the human decision makers. Suppose that a human decision maker thinks

that R4 is more important than other requirements and defines a rule that the optimal resolution

should not violate R4. Then Option 1 is automatically selected based on the rule.
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4.3.1 Generating Resolution Options

In this section, we present an Integer Linear Programming (ILP) based method to generate a small

set of resolution options, which corresponds to the “Option Generator” module in Figure 4.7.

Suppose that there are m on-going smart service actions executing in the smart city without any

conflict. The city operations center intercepts n new action requests from smart services and detects

that there are some conflict between these m + n actions. One strategy to obtain resolutions is

to only accept some of the new actions while rejecting others in a way that there are no conflicts.

To achieve this it may also be necessary to suspend some on-going actions. Thus, the number of

possible resolution choices is at least 2m+n. If we consider a more complex resolution strategy, such

as suggesting alternative actions to the requested actions or putting the rejected actions in a waiting

list for delayed execution, then the solution space of possible resolutions becomes even larger. It

would be very challenging, if not impossible, to check all these resolution choices’ impact on city

states and requirements within the short time frame of resolution decision making. Thus, we present

a method to select a small number of candidate resolution options based on the intuition that a good

resolution should (1) accept as many actions as possible, (2) not allow contradicting actions, and (3)

account for priorities of services and actions.

We formulate the problem as an integer linear program. Given a set A of smart service actions

causing conflicts, we define a binary variable µ ∈ {0,1} for each action a ∈ A to track if the action

is chosen by a candidate resolution option. Each action a is associated with a weight value w ∈ Z,

representing the action priority determined by current, state-dependent importance policies. For

simplicity, we assume that action weights are given as constants at time t. We denote a set C of

contradicting action pairs and a set D of dependent action pairs. We also group an action and its

alternatives into a set θ ⊆ A. The resulting ILP problem is

maximize
wi∈Z, µi∈{0,1}

∑
1≤i≤∣A∣

wi × µi (4.1)

subject to

∀(ai, aj) ∈ C ∶ µi + µj ≤ 1, (4.2)

∀(ai, aj) ∈D ∶ µi − µj = 0, (4.3)

∀ai ∈ θ ⊆ A ∶ ∑µi ≤ 1 (4.4)
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The objective function (4.1) is to maximize the number of accepting actions in the resolution based

on their priority weights. The constraint (4.2) guarantees a resolution does not accept a pair of

contracting actions. The constraint (4.3) ensures that dependent actions are both accepted or

rejected at the same time. Finally, the constraint (4.4) requires that at most one action from a set of

alternative actions is chosen by a resolution. Transforming the problem to ILP and solving it with

the Gurobi tool do not necessarily find the best solution when the number is very large, but it can

give the solution in polynomial time, which is very important for runtime decision making system in

cites.

We illustrate the usage of the ILP solution below.

Example 4.1. Suppose that smart traffic service S1 requests seven traffic signals on the 1st Avenue

to stay green for 5 minutes. The requested actions are denoted as {a1...a7}, corresponding to traffic

signals drawn as seven red dots (from south to north) on street 1 in Figure 4.2. If action a3 is not

accepted, the service also allows an alternative action (denoted by a8) to keep the corresponding

signal green only for 3 minutes. Suppose that, at the same time, the smart emergency service S2

requests three green traffic signals on the East 4th Street for 3 minutes. The actions are denoted as

{a9, a10, a11}, corresponding to traffic signals drawn as three red dots (from west to east) in street 2

in Figure 4.2. Actions a9 and a10 are interdependent. Action a10 is contradicting with actions a3

and a8. Actions requested by the emergency service S2 has a higher priority weight than the traffic

service S1. Let the weight value for S2 actions be 2 and the weight value for S1 actions be 1. We

write an ILP as follows:

maximize
µi∈{0,1}

∑
1≤i≤8

µi + ∑
9≤i≤11

2 × µi

subject to

µ3 + µ10 ≤ 1

µ8 + µ10 ≤ 1

µ9 − µ10 = 0

µ3 + µ8 ≤ 1
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We rank solution results based on their objective function values. The top 3 resolution options are as

follows.

• Option 1: Reject a3 and a8, accept other actions.

• Option 2: Reject a3, a8 and a11, accept other actions.

• Option 3: Reject a8, a9 and a10, accept other actions.

A trade-off between these options is shown in Figure 4.8.

4.3.2 Verifying Resolution Options

In this section, we describe how to compute the trade-off between different resolution options via

Signal Temporal Logic (STL) based runtime verification of city requirements.

Requirement Formalization

In Chapter 3, we provide a set of templates for expressing typically safety and performance require-

ments in smart cities as STL specifications. We find that most smart city requirements can be

specified using STL formula in the form of ◻(a,b) (x < λ) where x is a signal about city state and λ is

a threshold.

Example 4.2. We translate requirements R1-R4 (described in Section 4.1) to STL formulas as

follows.

• STL formula for R1: ◻(0,∆t) (Noise < 50).

• STL formula for R2: ◻(0,∆t) (CO < 40).

• STL formula for R3: ◻(0,∆t) (WaitTime < λ).

• STL formula for R4: ◻(0,∆t) (EmergencyTime < 10).

Computing Requirement Violation Degrees

We now describe how to compute the degree in which a continuous signal about smart city state

violates a city requirement ◻(a,b) (x < λ). A notion of robustness value for satisfying or violating STL

formulas is formally defined in [92]. The robustness value of a given signal x violating ◻(a,b) (x < λ)
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(a) (b)

(c) (d)

(e) (f)

Figure 4.9: An example of two options showing three metrics of violation degrees for STL formula
◻(0,25) (Noise < 50). Blue solid curves represent the signal (Noise−50) under resolution option (i) and
(ii). For option (i), (a) the robustness value: ∆h2, (c) the percentage of violation time: (t1 + t2)/25,
and (e) the integral of deviation: S1 + S2; For option (ii), (b) the robustness value: ∆h3, (d) the
percentage of violation time: t3/25, and (f) the integral of deviation: S3.

at time τ is defined as

ρ = supt∈(τ+a,τ+b)(x(t) − λ). (4.5)

Intuitively, the robustness value indicates extremum points of the signal. The robustness value is useful

for telling the worst-case performance, but it does not show the average or overall performance. For

smart cities requirements, we are interested to know both. We use the following example to illustrate

why measuring the robustness value only is not sufficient for finding optimal resolutions.

Example 4.3. Suppose that the noise level is between 50 db and 100 db for 12 min with option

(i), and over 100 db for 2 min with option (ii). We verify the city state against requirement
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◻(0,25) (Noise < 50). Figure 4.9(a) plots the signal of (Noise− 50) under option (i) and indicates that

the robustness value of violating the requirement is ∆h2 – the maximum deviation from the threshold

within the time interval. Figure 4.9(b) plots the signal of (Noise − 50) under option (ii) where the

robustness value of violating the requirement is ∆h3. Option (i) has a better performance than option

(ii) in terms of the robustness value of violating the requirement, because ∆h2 = 50 and ∆h3 = 150.

However, a decision maker may actually find option (ii) a better resolution, because the noise level

only exceeds the threshold 50 db for a shorter period of time (2 min instead of 12 min). Thus, smaller

value of robustness violation degree sometimes does not imply a better resolution.

To address this limitation, we present two new metrics for measuring the degree of violating smart

city requirements specified in STL: (1) the percentage of time when a requirement is violated, and

(2) the integral of signal deviations. To start with, we define Equations 4.6 and 4.7 to calculate

the positive part (denoted by θ+(x)) and the negative part (denoted by θ−(x)) of a function f(x),

respectively.

θ+(x) = max(f(x),0) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f(x) if f(x) > 0

0 otherwise.
(4.6)

θ−(x) = min(f(x),0) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

f(x) if f(x) < 0

0 otherwise.
(4.7)

We compute the percentage of time when a given signal x violating ◻(a,b) (x < λ) as follows:

η = 1

b − a ∫
τ+b

τ+a
sgn(∣θ−(x(t) − λ)∣)dt. (4.8)

We use Equation 4.9 to compute the integral of signal deviations accumulated in a period when the

requirement ◻(a,b) (x < λ) is violated.

γ = ∫
τ+b

τ+a
(∣θ−(x(t) − λ)∣)dt. (4.9)

Example 4.4. Figure 4.9(c) and Figure 4.9(d) shows the percentage of time when requirement

◻(0,25) (Noise < 50) is violated under option (i) and (ii), respectively. Option (ii) has a better
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performance with this metric of requirement violation degree, because (t1+t2)
25

< t3
25
.

Figure 4.9(e) and Figure 4.9(f) shows the integral of noise level deviations when requirement

◻(0,25) (Noise < 50) is violated under option (i) and (ii), respectively. The integral value for option

(i) is the sum of areas S1 + S2, while the integral value for option (ii) is S3. It turns out that

S1 + S2 = S3 = 26. Thus, option (i) and option (ii) have the same performance with this metric of

requirement violation degree.

These three metrics are useful to evaluate different smart city requirements. Robustness value is

more suitable for requirements with hard constraints, such as the emergency vehicle waiting time

and the number of accidents. Most city requirements are soft constraints, which do not require

the signal strictly within a threshold bound. In such cases, the percentage of violation time is an

important measurement, especially for environmental signal like the pollution level. The integral

metric combines robustness and violation time. Therefore, it helps to compare the overall performance

between different signals. For example, calculating the integral of violating requirements in the

transportation domain (e.g., the waiting number and waiting time of vehicles) helps to reveal the

congestion degree.

4.4 Evaluation

CityGurad and CityResolver are evaluated using a smart city simulator, which is extended from

SUMO, a transportation simulator. The evaluation uses a real map of one-half of Manhattan, New

York City. The transportation state is generated from the Traffic volume counts of New York city

data [100]. This data set contains the traffic volumes from 160 streets in Manhattan during 2013-2014.

Analyzing the data set, the average traffic volume on all streets is 105,397 vehicles and 658 vehicles

per street per hour, making the in-coming vehicle rate at 5.5 second per vehicle.

We implement a smart city simulator using the data set and the Simulation of Urban MObility (SUMO)

[99], a transportation simulator which allows modelling of traffic systems including road vehicles,

public transport and pedestrians. We build ten smart services (see Table 4.6) from the domains of

transportation, emergency, and environment running over 140 locations of lower Manhattan, New

York, as shown in Figure 4.2. Due to the limitations of SUMO, only services from the above domains

are implemented. However, these are examples of the most common smart services running in real

cities and are both representative and important. We verify resolution options with the same city
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Table 4.1: Services running in Simulated Manhattan

No. Service Domain Description

S1 Congestion
Service

Transporta-
tion

Its purpose is to minimize traffic congestion. When the waiting number
of vehicles on the lane exceeds 50% of its total tolerance, it will adjust the
traffic signal to release congestion.

S2 Pedestrian Service Transporta-
tion

Its purpose is to minimize waiting time of pedestrians. When more than
2 pedestrians press crossing button, it will shorten their waiting time by
adjusting traffic signals.

S3 Vehicle Navigator Transporta-
tion

Its purpose is to release vehicles from traffic congestion. When there is a
traffic congestion or closed lane causing a vehicle waiting for a long time,
it will call the re-route function to choose the next shortest path to its
destination.

S4 Air Pollution
Control

Environ-
ment

Its purpose is to control air quality level with emphasis on the CO and
HC gas released by vehicles on streets. It will limit the number and speed
of vehicles when air pollution level is high by adjusting traffic signal and
sending speed request to vehicles directly.

S5 PM2.5/PM10
Control

Environ-
ment Similar to S4 with emphasis on the PM2.5 and PM10 in the air.

S6 Waste
Management

Environ-
ment

Its purpose is to manage waste in cities by sending out waste pickup vehi-
cles regularly.

S7 Noise Control Environ-
ment

Its purpose is to control noise pollution causing by traffic. When noise
level exceeds its threshold, it will control the number of vehicles going
through related streets and redirect vehicles on the streets by adjusting
traffic signals.

S8 Event Service Environ-
ment

Its purpose is to ensure smooth operation of a city event by blocking the
lanes nearby the event.

S9 Accident Service Emergency Its purpose is to take the first action to block the adjacent areas of a traffic
accident.

S10 Emergency Service Emergency
Its purpose is to minimize the waiting time of emergency vehicles. When
there is an emergency vehicle waiting in the lane, it will adjust the traffic
signal to let it go through immediately.

safety and performance requirements in detection component, which are listed in Table 4.2. Different

types of requirements are suitable to different space ranges and distributed over even more than 140

locations in the map. We use CityGuard to detect conflicts and CityResolver to provide resolutions

for those conflicts. To generate resolution options, CityResolver uses the Gurobi optimization tool

[101] to solve integer linear programs.

The experiments are evaluated on a server machine with 16 core CPUs; each core is 3.1GHz. The

operating system is Ubuntu 14.04.5.

4.4.1 Initialization and Metrics of Simulation

In order to simulate the performance of CityGuard in a real city environment, to start with, real

city data from Manhattan is analyzed. From Traffic volume counts of New York city data collected

by DOT for the New York Metropolitan Transportation Council [100], the traffic volumes from 160

streets in Manhattan during 2013-2014 are obtained. It is calculated from the data set that the

average traffic volume for all streets is 105,397 vehicles and 658 vehicles per street per hour, making

the in-coming vehicle rate as 5.5 seconds per vehicle.

In order to generate a scenario closest to the real traffic pattern in Manhattan, three steps are

performed to configure the simulation. First, we selected the average traffic volume data of Manhattan
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Table 4.2: List of Requirements (The check mark indicates the suitable space range of the requirement
in practice.)

Requirement Intersec-
tion Street Block

R1: The noise level in the school area should always be less than 50db. ✓ ✓
R2: The CO emission in an intersection should always be less than 40mg. ✓ ✓
R3: The waiting time of the traffic in an intersection should not be greater
than certain threshold λ. ✓ ✓

R4: An emergency vehicle should wait in an intersection for more than 10
seconds. ✓

R5: No vehicle collision should occur. ✓ ✓
R6: The number of vehicles in a street should never exceed its maximum
vehicle capacity. ✓

R7: The traffic yield number in a street should not increase by certain
threshold λ. ✓

R8: The number of pedestrians waiting in an intersection should not be
greater than certain threshold λ. ✓

R9: Emergency vehicles should not be directed to a blocked lane or area. ✓
R10: The noise level in a street should always be less than 70 dB. ✓ ✓
R11: The hydrocarbons (HC) emission in a lane should always be no more
than 1 mg. ✓ ✓

R12: The particulate matter (PMx) emission in a lane should always be no
more than 0.2 mg. ✓ ✓

Figure 4.10: Simulated Manhattan with 10 services running at 20 representative different locations
(denoted as red points).

from 8:00 am to 2:00 am to generate the traffic data stream in the simulation. Second, the traffic

streams for main streets of New York city, such as the Bowery, Allen Street, and Broadway, are set

based on their own average traffic volume per street. Finally, stream data for other streets follow the

average volume for the entire Manhattan area, i.e. the in-coming rate of 5.5 seconds/vehicle is used.

In this way, the lower half of Manhattan including 102 streets and 454 traffic lights are used as the

platform for all simulations in the evaluation.

Furthermore, important safety and performance metrics are chosen for evaluation, as shown in
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Table 4.3: Metrics for Evaluation of City Performance: S=Safety and P=Performance Metrics

Name Description

Jam (P) Number of cases when a vehicle can not continue because there was no
space on the next lane

Yield (P) Number of cases when a vehicle is unable to cross an intersection where
it did not have priority

Collision (S) Number of cases when a vehicle violated its minimal distance
requirement in relation to its leader vehicle

Wrong Lane(S)
Number of cases when a vehicle was unable to move because it could not
continue its route on the current lane and was unable to change to the
correct lane

Mean Speed (P) The mean speed of the vehicles on the specific lane (km/h)

Waiting Number (P) The number of vehicles waiting on the lane, a speed of less than 0.1 m/s
is considered a wait.

Waiting Time (P) The time that a vehicle waits on the lane
Noise (S) The noise emitted by the vehicles on the specific lane (dB)

CO (S) The complete amount of CO emitted by the vehicles on this lane during
the actual simulation step (mg)

HC (S) The complete amount of HC emitted by the vehicles on this lane during
the actual simulation step (mg)

PMx (S) The complete amount of PMx emitted by the vehicles on this lane
during the actual simulation step (mg)

Table 4.3. The first four metrics are obtained from internal models of SUMO, indicating the

transportation safety and performance. For instance, the possibility of a collision happening increases

when the density of traffic increases and the distance between vehicles shrinks. Meanwhile, these

metrics when applied to emergency vehicles also indicate the performance of the emergency domain.

Moreover, mean speed, waiting number and waiting time per lane are measured for transportation

performance. Noise, CO, HC and PMx are measured for environmental performance and are

considered as safety metrics.

For the evaluation, the requirements shown in Figure 4.4 are assumed to be specified for the smart

city.

To better understand the complexity and scope of conflicts, the pre-processing component is first

evaluated in isolation. This demonstrates the spatial and temporal effects of individual service. Next,

the overall CityGuard is evaluated.

4.4.2 Pre-processing

In the Pre-processing component, single actions are intercepted and their primary and secondary

effects on the environment are simulated to see if there is any violation of safety or performance

requirements.

Spatial and temporal ranges of action effects are tested by CityGuard SUMO on 10 services in 20

locations. At first, the city is simulated without services and the metrics for all the streets near the

services are recorded as the baseline. Each service is simulated individually in different locations,
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and the same states are recorded and compared with the baseline. If the variance is above 5%, it is

viewed as an effect on the streets from this action. In this way, the number of blocks away from the

service block that are affected by the action is identified for each service in all locations. Similarly,

how long the effects last on the environment are also monitored.

The results are shown in Table 4.5, the first column are the metrics, the second column lists services

running with and without CityGuard, the third column is when there are no services at all, and S1

to S10 are the data from just one service running. Following insights are obtained from the results

that are presented Table 4.5.

When one service improves one aspect of city, its secondary effects may have a negative influ-

ence on other metrics. If not controlled, this influence may exceed the safety and performance

requirements.

When there is no CityGuard, actions from 5 services cause collisions, which affect city safety

significantly and even create more serious secondary effects. These collisions are prevented by

CityGuard. Meanwhile, the number of jam and yield violations also exceeds the threshold of safety

requirements, which are highlighted in Table 4.5. However, with control of CityGuard, jam and yield

from all actions are controlled under the safety requirement.

Another key metric for safety performance, waiting time of emergency vehicles (Row 8), is increased

significantly by 8 services , exceeding the threshold of safety requirements. With CityGuard it is

controlled to under 10s. For example, waiting time of emergency vehicle is reduced from 19.3s to

9.3s by CityGuard, improving the performance by 101%.

It is important to notice, that in these 8 cases, comparing the performance of other metrics when

CityGuard runs with no services in the city, it improves the city’s performance, i.e., services’ functions

are not affected by CityGuard. For example, air pollution service (S4) increases the waiting time

of emergency vehicles to 15s without CityGuard and to 10s with CityGuard, and where, CO are

7.8mg and 7.6mg, respectively. Comparing with 11.74mg of CO release without any service, S4 with

CityGuard improves the air quality. As a result, with CityGuard, air quality is improved without

affecting emergency vehicles. In some cases, service performance on one or two metrics is compromised

with CityGuard because some of its unsafe actions are rejected. However, CityGuard’s role here is to

obtain a safe environment while helping services improve the city. For example, in column S1, waiting

time for normal vehicles is 98.5 seconds without CityGuard, while 100.2 with CityGuard. Though this
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Table 4.4: City Safety Requirements

Transportation:
• Actions should not cause collisions of vehicles.

• Vehicles should not be directed to travel in the wrong direction or to blocked roads.

• Traffic signal lights should follow safety logic.

• Vehicles from orthogonal directions should not cross an intersection simultaneously.

• Actions should not increase traffic congestion by more than 10% .

• Actions should not increase Yield by more than 15% .

• Actions should not increase waiting time of emergency vehicles by more than 10%

• The number of waiting vehicles in a lane should be less than the maximum vehicle capacity
of the lane.

Emergency:
• Emergency vehicles should not wait for more than 10s at a intersection.

• Emergency vehicles should not be directed to a blocked lane or area.
Environment:

• Action should not create more than 50 dB noise per lane.

• Action should not emit more than 50 mg CO per lane.

• Action should not emit more than 1 mg HC per lane.

• Action should not emit more than 0.2 mg PMx per lane.

performance is compromised by 2 seconds, it still improve the transportation performance comparing

with the one without service (121.82 seconds). Most importantly, the waiting time for emergency

vehicles decreases from 11.5 to 10 comparing the results without and with CityGuard, consequently

S1 is controlled to work under safety requirements.

If a service does not violate requirements at all, it will not be affected by CityGuard, such as S3 and

S6.

Some additional observations from these simulations are:

• The ranges of spatial and temporal effects vary by functions of services and locations. For

example, Event Service (S8) usually has a longer effect time than the Congestion Service (S1).

Effect range at Location 15 is always larger than that at Location 20.

• The effects are more significant on the streets of the intersection where services run, rather

than the neighboring streets.

• The Accident Service (S9) has the largest average spatial effect range of up to 5.6 blocks while

the Noise Service (S7) has the lowest one of 0.8 blocks. The average effect range for all 10

services is 2.3 blocks.
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Table 4.5: Effects on City with single services running

Metrics No S S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

Jam No CG 102 100 422 60 102 68 102 84 402 222 290
City-
Guard - 100 110 60 102 68 102 84 86 120 120

Yield No CG 192 230 400 178 226 190 194 210 622 530 598
City-
Guard - 218 212 178 200 190 194 198 202 196 218

Collision No CG 0 0 4 0 2 0 0 0 4 4 6
City-
Guard - 0 0 0 0 0 0 0 0 0 0

Wrong Lane No CG 22 22 40 6 14 12 22 20 82 42 46
City-
Guard - 20 20 6 14 12 22 20 20 20 20

Mean Speed No CG 11.28 12.36 10.29 13.64 9.8 10.1 11.28 12.21 8.98 9.14 9.11
City-
Guard - 13.22 11.1 13.64 10.6 11 11.28 13.5 10.89 10.7 8.99

Waiting Number
No CG 1.66 0.71 5 0.72 2.1 2.21 1.67 1.7 4.71 3.98 1.89

City-
Guard - 0.73 1.7 0.72 1.8 1.91 1.67 1.65 1.69 1.8 1.86

Waiting Time No CG 121.82 98.60 311.7 101.5 150.1 149.4 121.9 136.1 141.3 157.6 181.4

City-
Guard - 100.2 130.97 101.5 129.41 134.87 121.9 123.1 131.8 137.2 134.7

E Waiting Time
No CG 9.5 11.50 13.3 10.93 15 13.5 9.5 15.3 17.1 19.3 3.2

City-
Guard - 10 9.4 10 10 9.6 9.5 10 9.8 9.6 3.41

Noise No CG 33.34 34.98 40.12 32.1 31.5 32.5 33.34 17.6 37.6 39.6 39.4
City-
Guard - 32.14 35.6 32.1 30.93 31.1 33.34 18.7 35.6 35.1 39.6

CO No CG 11.74 10.85 16.9 10.65 7.8 7.41 11.74 11.61 13.4 14.11 13.8
City-
Guard - 10.75 12.4 10.65 7.6 7.31 11.74 10.71 12.31 13.13 12.3

HC No CG 0.49 0.46 0.71 0.48 0.23 0.29 0.49 0.51 0.69 0.91 0.65
City-
Guard - 0.46 0.53 0.48 0.22 0.27 0.49 0.46 0.64 0.69 0.56

PMx No CG 0.08 0.07 0.12 0.69 0.05 0.03 0.08 0.08 0.11 0.17 0.11
City-
Guard - 0.07 0.09 0.69 0.05 0.03 0.08 0.08 0.1 0.13 0.09

• Temporal effects of different services vary significantly not only by service type and locations,

but also by the specific contexts of the events. For example, the effect range of services is larger

in area and longer in time when the traffic density is heavier.

4.4.3 Environmental Conflict Detection

In the environmental conflict component, integrated effects of concurrent actions are tested in

simulated Manhattan. The relationship between environmental conflicts detected and the number of

services running in the city is analyzed. N services are randomly chosen for 50 times and average

performance is recorded. Performance of representative metrics for safety and performance, i.e.

number of collisions, number of jams, CO air pollution, and traffic waiting time per lane are shown

in Figure 4.12, leading to the following observations.

• Generally, with the growing number of services running in the city, effects on the environment

become worse if there is no safety protection mechanism.
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(1)Without CityGuard (2)With CityGuard

Figure 4.11: Performances of traffic at the intersection between Bowery and Kenmare with and
without CityGuard. Yellow and red objects denote regular and emergency vehicles. With CityGuard,
there are higher traffic flow, less congestion, and emergency vehicles are prioritized for faster travel
time.

• The number of collisions increase significantly when more than 7 services are running together,

which seriously violates city safety. However, there is no collision with CityGuard.

• Similar to the number of the collisions, the number of Jams is also affected by the number

of services running, which can be controlled under a performance threshold with CityGuard

running.

• Although waiting time is not affected as drastically as other metrics, it is seen from Figure 4.12

(4) that CityGuard can help the city to obtain a relatively stable performance with increasing

number of services. When the number of services is 10, the waiting time is improved by 35%.

• CityGuard improves Air quality (as measured by emission of CO) over services without

CityGuard by 51.3% when 5 services are running, and by 73.7% when 10 services are running.

The total number of conflicts detected are summarized by 20 locations of services in Figure 4.13. In

all locations, environmental conflicts have the highest percentage, which usually is at most twice

the percentage of device conflicts and as much as 4 times as single unsafe actions. Moreover, the

number of conflicts vary from location to location. The busier and larger an intersection is, the more

conflicts occur there.

4.4.4 Option Generator

The total number of resolution options increases exponentially with the number of actions. That

is, given n actions, there are 2n possible choices of resolutions. CityResolver builds an ILP-based
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(1) Number of collisions (2) Number of jam

(3) Maximum CO of lane (4) Waiting time

Figure 4.12: Comparison of Service Effects on Environment with and without CityGuard

Figure 4.13: Number of conflicts detected from each location

option generating model, which is able to identify a set of optimal options regarding the sum of

action requests multiplied by their weights. We tested the option generator for over 500 conflicts and

where each conflict has up to 100 actions. The computation time of generating resolution options for

each conflict is within 1 second using CityResolver.
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(a) Metric: Robustness violation value

(b) Metric: Percentage of violating time

(c) Metric: Integral of signal deviations

Figure 4.14: Trade-offs of four options based on their performance on requirements R1-R4

4.4.5 Computing Violation Degree

CityResolver provides the three metrics for calculating the violation degree. For example, in this

study we measure the violation degree on 4 requirements (R1 - R4) using the three metrics. The

traces of each option are generated from the city simulator. When predicting the future city states,

we incorporate the known disturbance factors. For example, one of our results shown in Figure 4.14
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considers that rush hour is coming, which will cause heavy traffic. Therefore, in our simulation, we

increase the traffic volume at that future time to obtain a more accurate prediction. We observe the

following based on Figure 4.14.

• There are trade-offs between different options using all three metrics. For example, in (a),

Option 4 has the best performance on R3 (i.e., the congestion requirement), but has the worst

performance on R2 (i.e., the noise requirement). The other three options, though not best on

all requirements, have a more even distribution.

• Different metrics lead to different results: Option 4 is the best in (a) and (b) regarding

requirement R3, but is the second best in (c).

• For the robustness metric (a) and integral metric (c), it is difficult to compare the performance

of the same option on different requirements, because measurement scales are not necessarily

the same. However, it is uniform using the percentage of time (b), where all violation degrees

are on scale of 0 to 1.

• All three metrics can help a decision maker to compare the performance of different options on

the same requirement. They may choose the metric based on the requirement type and the

context.

• It is helpful to compare more than one metric, because they represent different properties of

the requirement. For example, Option 4 has a worst performance on R2 measured by the

robustness and integral metrics, but does not have significant violation on the percentage of

time metric. The results also indicate that Option 4 exceeds the noise level threshold for only

a few times within this period, but each time the difference is large.

4.4.6 Overall Performance

We evaluate the city performance with CityResolver across domains of transportation, environment

and emergency. Specifically, the performance evaluation uses metrics including the number of violated

requirements per conflict, emission of CO, noise, the waiting time for the emergency vehicle, the

waiting number of vehicles, and the waiting time for pedestrians. The number of violated requirements

indicates that when detecting one conflict or verifying a solution, how many requirements are violated

by this conflict or option. The remaining metrics are calculated by the average value at one intersection.
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Table 4.6: List of Services for Overall Evaluation

Service Description

S1: Traffic Service It controls traffic signals in street intersections to relieve congestion and optimize
or improve traffic performance.

S2: Emergency Service It requests green traffic signals in order to transport patients in critical conditions
to hospitals as soon as possible.

S3: Accident Service It blocks a street where some accident occurs and alert nearby vehicles to detour.
S4: Infrastructure Service It schedules infrastructure check-up and repair appointments.

S5: Pedestrian Service It shortens the pedestrians’ waiting time by adjusting traffic signals when pedestrians
wait in the intersection.

S6: Air Pollution Control It adjusts the traffic by adjusting traffic signal and sending speed request to vehicles
when CO emission is high.

S7: PM2.5/ PM10 Control It adjusts the traffic when PM2.5/ PM10 emission is high by adjusting traffic signal
and sending speed request to vehicles directly.

S8: Parking Service It directs the driver to the nearest parking lot.

S9: Noise Control
When noise level exceeds its threshold, it controls the number of vehicles going
through related streets and redirect vehicles on the streets by adjusting traffic
signals.

S10: Event Service It ensures operation of a city event by blocking the lanes nearby the event.

Table 4.7: Comparison on the city performance with CityGuard and with CityResolver

Case System

Number of
Violated
Require-
ments

CO (mg) Noise
(db)

Emer-
gency

Waiting
Time (s)

Vehicle
Waiting
Number

Pedes-
trian

Waiting
Time (s)

Case 1: None 20 53.12 67.73 21.00 23 65.00
[S1, S2] CityGuard+Pri 7 67.90 72.42 6.70 32 60.00

CityResolver 0 39.70 46.54 9.80 22 35.90
Case 2: None 28 55.20 49.00 31.20 19 83.00
[S1, S2, S3] CityGuard+Pri 18 54.20 62.00 11.00 21 88.00

CityResolver 2 44.30 48.90 8.70 15 63.50
Case 3: None 16 53.91 67.00 9.20 23 53.20
[S1, S8, S10] CityGuard+Pri 0 49.20 48.70 8.80 24 50.10

CityResolver 0 30.80 40.80 7.80 18 49.20
Case 4: None 15 48.30 59.00 14.50 42 79.20
[S6, S7, S9,
S10] CityGuard+Pri 8 38.60 62.10 13.80 34 76.30

CityResolver 1 39.50 56.30 8.30 29 65.20
Case 5: None 39 87.30 45.00 7.40 39 68.30
[S2, S3, S4, S5,
S9] CityGuard+Pri 32 90.30 46.00 7.80 39 65.70

CityResolver 4 62.70 43.00 6.70 28 59.60

For example, if the effective range of one conflict is 3 blocks (i.e. involving 9 intersections), then the

value is the average value of these 9 intersections.

We compare the result with two baselines: (1) a smart city without any controller for conflict

resolution, and (2) CityGuard. To the best of our knowledge, there is no other existing solution for

conflict resolution in smart cities. CityGuard focuses on the conflict detection and implemented a

simple priority-based conflict resolver, i.e. when there is a potential conflict between different action

requests, it only accepts the action with the highest priority. Also, it does not verify the performance

of selected actions. The experiments are conducted on the lower Manhattan with 10 smart services

running over 140 locations. The results from 5 cases are shown in Table 4.7, from which we have the
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following observations.

Case 1 : Conflict happens between the S1 smart traffic service and the S2 smart emergency service.

Without resolution, it violates 20 city requirements. With CityGuard, it detects the conflict and

accepts the actions of the emergency service, which reduce the number of violated requirements

and improve city performance regarding the emergency vehicle waiting time. However, it harms the

performance on CO and noise with a bias in favor of the emergency. Instead, CityResolver finds an

optimal solution, which reduces the number of violated requirements to 0. Compared with CityGuard,

CityResolver also improves other metrics, for example, it reduces the CO emission by 41.5%.

Case 2: Another conflict happens among S1 (traffic service), S2 (emergency service) and S3 (accident

service). Similar to Case 1, both CityGuard and CityResolver propose a resolution and improve the

city performance. Two things to be noted, 1) CityResolver has a better overall performance than

CityGuard, 2) CityResolver also does not find a resolution satisfying all requirements, but it reduces

the violation number by 13 times and 8 times compared to the none-control system and CityGuard,

respectively.

Case 3: It demonstrates a conflict among traffic, parking and event services, where both CityGuard

and CityResolver find a resolution that satisfies all requirements. However, CityResolver still has

better performance, for example, it beats CityGuard by 37.4% on CO and 25% on the vehicle waiting

number. The reason is that CityResolver accepts more actions if possible, which as a result, benefits

the city.

Case 4 and Case 5 evaluate cases under a larger number of services and actions. CityResolver

finds potential options and verifies them within a reasonable time. In particular, it maintains a

small number of violated requirements comparing to baselines. By showing trade-offs between the

requirements that have to be violated, CityResolver gives the city manager a chance to select a better

choice based on the context. Meanwhile, though not largely, CityResolver improves performance

regarding each domain by 6.5% to 30.6% comparing to CityGuard.

In summary, CityResolver reduces the number of violations significantly and improves the overall city

performance without sacrificing the performance on other metrics. However, to be noted, CityResolver

does not always have the best performance over CityGuard. For example, in Case 1 and Case 4, its

performance on the emergency vehicle waiting time and CO emission are worse than CityGuard.

The reason is that the emergency service and air quality service have a higher priority and so do
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their actions with CityGuard resolution. With this bias, it does not have good performances on

other metrics. On the contrary, CityResolver values high-weight actions as well as optimizes other

metrics.

4.5 Discussion

Safety-aware conflict detection and resolution are critical and complicated issues in smart cities,

which is difficult to be solved at once. CityGuard is a watchdog solution to dynamically improve the

safety of smart cities by focusing on actions that impact the environment and act across services. It

does not and we argue fundamentally, cannot apriori guarantee complete safety due to the dynamics

and uncertainty in the real world. It is a general architecture which can be integrated into any Smart

City IoT platform. Being the first work of its kind, CityGuard has limited scope in the following

issues.

Safety Requirements: In this dissertation, it is assumed that actions and requirements that

are integrated with CityGuard have a uniform format. For example, it is assumed that actions

provide necessary information, i.e., device, act, duration, and pre-condition(s). The mapping of

actions to the safety and performance requirements were performed manually, because the existing

safety rules of cities are defined in English by different government departments. There are no

tools to translate them into code automatically. However, this manual mapping process doesn’t

affect the generalizability of CityGuard. Also, if new requirements arise, the module called City

Safety & Performance Requirement can update the requirements maintained in CityGuard and

detect conflicts using the new requirements (See Figure 4.4). In the future, we will explore ways to

specify requirements and algorithmically map actions to requirements. In this case, semantic token

extraction techniques for textual interventions [15] can be useful.

Conflict Detection and Safety: Simulating the primary and secondary effects of an action,

CityGuard checks the effects with the city-wide safety requirements to check if there is a conflict

among actions. Many such conflicts are found and resolved. However, some smart services have their

own internal safety requirements not directly visible to CityGuard. CityGuard cannot always detect

the safety violation of internal safety requirements of a service unless they impact the environment in a

negative manner as specified in the city-wide requirements. Therefore, although currently CityGuard’s

goal is to significantly improve the safety of a city, safety violations can still occur. Ideally, in the
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future, as services are added to a city, all the internal safety requirements should be exported and

compared to the city wide requirements. Any conflicts here should also be resolved.

Conflict Resolution: Currently, CityGuard focuses on the methods for conflict detection rather

than providing a comprehensive solution for conflict resolution. Only predefined priority based

resolvers are used to resolve conflicts once they are detected. However, in real scenarios, conflict

resolutions can be much more challenging and might require considering several contextual factors.

The list of such factors includes, but is not limited to, the importance of the action (i.e., that causes

conflict) and its service, the effects on the environments and human beings, the cost of rejection,

the optimal combinations of conflicting actions, dynamically changing objectives, etc. Thus, a

comprehensive solution of conflict resolution demands further research.

Simulation: In the current implementation of CityGuard, the selection of applications and the

accuracy of conflict detection rely on the accuracy of the SUMO simulation and its embedded models.

This is reasonable as (i) SUMO has been widely used to provide simulations on city mobility with

sophisticated physical models developed in research and used in practice for over 15 years; (ii) SUMO

is only an example tool for CityGuard, which can be updated, combined, or replaced with more

sophisticated models/simulators once they are available; (iii) The evaluations in this paper are limited

yet realistic to illustrate how we detect conflicts and improve a city’s safety and performance. The

approach for conflict detection in CityGuard is sophisticated enough to be applied in other domains

once accurate models of those domains are available.

Human Factors: When CityGuard simulates the potential primary and secondary effects of

actions during its assessment phase, it assumes that the people (i.e., citizens) and the devices comply

with the recommended actions. Decisions to accept or reject actions are based on these assumptions.

However, the city state evolves based on what actually happens in the city, e.g., a person may not

follow the advice or an unexpected / unprecedented event may occur. CityGuard includes a feedback

loop to monitor and react to this situation.

Privacy and Security: Privacy and security are of great significance to a smart city. As they are

out of the scope of this paper, a brief discussion below highlights the key issues.

There are potentially many different privacy policies in the smart services and for the city as a whole.

Policies themselves might conflict with each other or be violated due to actions from services. When

actions are taken by services, CityGuard can be extended to match those potential actions with city
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wide privacy policies and, therefore, detect potential policy conflicts, dynamically. In other words,

the core concepts found in CityGuard can be applied to privacy. If services export their privacy

policies then conceptually a general policy conflict detection between the city and a service can be

detected at installation time.

There are two main levels of security issues in the context of this work, which are the security of smart

services and the security of CityGuard itself. The security of smart services should be maintained by

themselves. However, if a service has been attacked and it is taking erroneous actions, CityGuard

helps in avoiding some safety violations because those erroneous actions might conflict with the

safety requirements known to CityGuard and therefore be blocked. In addition, there are ways that

CityGuard itself can be attacked, such as approving unsafe actions, blocking actions from other

services, setting higher priority for the service, etc. Therefore, security mechanisms must be included

in CityGuard prior to real deployment.

4.6 Summary

CityGuard, a safety-aware novel watchdog architecture for detecting and resolving conflicts in a

smart city is developed and evaluated. CityGuard is safety-aware as it focuses on maintaining safety

requirements by detecting and resolving conflicts before they occur. In doing so, CityGuard also

considers the context of potential conflicts and resolves conflicts to maximize performance metrics.

CityGuard is able to simulate the primary and the secondary effects of the actions performed by

services, detect and resolve conflicts among those actions, and thus improve safety. Evaluations

are performed using a simulation of part of New York City with 10 smart services located in 20

places. Using 6 safety metrics and 5 performance metrics, the evaluation shows that CityGuard is

able to minimize safety violations, and improve overall city performance when compared to baseline

methods.

In this chapter, we build CityResolver – a decision support system for conflict resolution in smart

cities. Using an Integer Linear Programming based method, CityResolver first generates a small

set of potential resolution options considering the dependency of actions and adaptive policies of

their services. It verifies the set of options with an STL based approach and calculates the effects of

options on different requirements taking the disturbance factors into account. Then it shows the

trade-offs between resolution options in a dashboard supporting decision makers to choose the best

resolution. The evaluation results show that, CityResolver is able to reduce the number of violation
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requirements significantly comparing to the smart city without a controller and with a priority based

resolver. For example, CityResolver reduces the number from 39 down to 4, while CityGuard reduces

the violation number from 39 to 32. Moreover, CityResolver improves city performance comparing to

the baselines. For example, in our experiments, it beats CityGuard on the CO emission up to 37.4%

and the congestion by 25%.



Chapter 5

Logic-Enhanced Learning

Deep Neural Networks (DNNs), especially Recurrent Neural Networks (RNNs) have great achievements

for sequential prediction tasks and are broadly applied to support the decision making of Cyber-

Physical Systems (CPSs) [102, 103, 104]. Usually, in CPSs, RNNs are applied to predict the changing

of system states or their environment. Systems take actions based on the prediction to guarantee the

safety and performance of the system. For example, the power plant predicts the usages of energy in

the next few days and decides how much energy to generate. An event service predicts the population

and traffic for a big concert and allocates police and security resources. Training RNNs for complex

CPSs (i.e., creating a prediction model) such as for Smart Cities is difficult [105]. The models are

not always robust, often subject to anomalies, and subject to erroneous predictions, especially when

the predictions are projected into the future (errors grow over time).

On the other hand, the target sequence often follows specific model properties or patterns, which

should also be followed by the predicted sequence. For example, power plants have maximum and

minimum limits of energy that can be generated per day, and the changing of air quality is relevant to

the changing of traffic volume in the past hour. However, RNNs have no way to guarantee that their

estimated distributions satisfy these model properties, especially for the properties with multiple

variables and temporal features. Failure to follow these model properties can result in inaccurate and

even meaningless results, e.g., predicted traffic volume exceeding the road capacity and inaccurate

population estimation due to ignorance of big events happening a few hours ago.

It is very challenging to enforce multivariate RNNs to follow temporal model properties in a sequence

75
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prediction task. The optimization mechanism of RNNs (i.e., back propagate the loss between

estimated value and target value individually in a predicted sequence at each time unit without

comparing the temporal correlation of the two sequences, thus lack an integrated view about the

sequential predictions) causes the challenge of the networks to follow the temporal model properties.

In addition, unlike classification problems, it is more difficult to find an alternative approximate

sequence that satisfies the property for knowledge distillation.

Contributions: In this chapter, we create a new temporal logic-based learning framework, called

STLnet, to guide the RNN learning process with auxiliary knowledge of model properties and to

produce a more robust model that can then be used for improved future predictions. Unlike existing

approaches, STLnet enforces the predicted multivariate sequence to follow its model properties by

treating the sequence (i.e. a trace) as a whole. We first identify six key types of model properties

and formalize them using Signal Temporal Logic (STL) [106]. Following the idea of knowledge

distillation [32], the STLnet framework is built with a teacher network and a student network. In

the teacher network, we create a STL trace generator to generate a trace that is closest to the

trace predicted by the student network and satisfies the model properties simultaneously. We also

create algorithms to efficiently generate satisfaction traces tailored to deep learning processes. We

evaluate the performance of STLnet by applying it to an LSTM [107] network and a transformer

network [108] for multivariate sequential prediction. The experimental results show that STLnet

significantly increases the satisfaction of different types model properties (by about 4 times) and

further improves the prediction accuracy (by about 18.5%).

To the best of our knowledge, our framework is the first work that integrates signal temporal logic

with deep neural networks for sequential prediction. The strength of temporal logic offers a much

stronger power to control a sequential system and a more flexible way to specify various types of

properties. Different from previous literature, our method also creates a practical way to ensure the

satisfaction of the logic rules. STLnet can be applied to general deep models to perform multivariate

time series prediction and can be trained in an end-to-end manner. STLnet increases the robustness

of the deep learning models.

5.1 Model Property Formalization using Signal Temporal Logic

In this chapter, we refer to model properties as the inherent properties, rules, or patterns followed

by the output sequences of target models or systems. These model properties are usually already
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known by the system or defined by the users before prediction, e.g., constraints by the physical

world, or rules followed by the application domains (e.g., robotics). In practice, we can also mine the

properties from the models’ historical behaviors [109]. Actively learning these model properties helps

build more robust deep neural networks.

Specification Language – Signal Temporal Logic: In order to enforce RNNs to learn the

model properties, we first formalize properties using a machine-understandable specification language.

For multivariate sequence prediction, capturing the relations between variables on the temporal

domain is the most important task. Therefore, we apply STL [106] to formalize the model properties.

STL is a very powerful formalism used to specify temporal properties of discrete and continuous signals.

In this chapter, we target the properties of the outputs of RNN models, which are discrete-time

signals. We first recall the syntax of an STL formula ϕ defined as follows,

ϕ ∶∶= µ ∣ ¬ϕ ∣ ϕ1 ∧ ϕ2 ∣ ϕ1 ∨ ϕ2 ∣ ◊(a,b)ϕ ∣ ◻(a,b) ϕ ∣ ϕU(a,b)ϕ.

We call µ a signal predicate, which is a formula in the form of f(x) ≥ 0 with a signal variable x ∈ X

and a function f ∶ X → R. The temporal operators ◻, ◊, and U denote “always", “eventually" and

“until", respectively. The bounded interval (a, b) denotes the time interval of temporal operators. U

can be expressed by ◻ and ◊, thus we only consider ◻ and ◊ in this work.

Model Properties and Formalization: Systems from different application domains have varied

types of model properties. Focusing on the CPSs, we identify several critical types (not necessarily

a complete list) of model properties for the key applications below. We give specific examples of

properties under each type in Table 5.1.

• Reasonable Range: One of the most fundamental model properties is that the value of the

sequence should always be within a reasonable range constrained by the system or physical

world, such as the road capacity of vehicles, normal ambient temperature, etc. It is not trivial

for RNNs to learn reasonable ranges since they could vary by variable, conditionally relate to

another variable, and dynamically change over time.

• Consecutive Changes: For most applications in CPSs and other domains, the consecutive

changes of the target model over a fixed period follow specific properties, such as pollution

levels or traffic volume levels from one time period to the next are bounded.
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Table 5.1: Examples of Model Properties and Their STL Formulas

Property
Type Example STL formula

Reasonable
Range

The traffic volume on a road can never exceed
the road capacity.

◻[0,24](x1 <
α1) ∧ ⋅ ⋅ ⋅ ∧ ◻[0,24](xn < αn)

Consecutive
Changes

The number of people in a shopping mall
should not increase or decrease more than
1000 in 10 min if exits number is less than 5.

y < 5→ ◻[0,10](∆x < 1000)

Resource
Constraint

The total energy distributed to all buildings
should be less than e. ◻[0,24]sum(x1, . . . , xn) < e

Variable and
Temporal
Correlation

For two consecutive intersections on a one-way
direction road, if there are 10 cars passing
intersection A, then there should be at least
10 cars passing intersection B within the next
5 minutes.

(x1 > 10→ ◊[0,5](x2 >
10)) ∧ ⋅ ⋅ ⋅ ∧ (xn > 10→
◊[0,5](xn+1 > 10))

Existence There should be at least 1 patrol car around
school every day. ◊[0,24]x1 ≥ 1∧⋅ ⋅ ⋅∧◊[0,24]xn ≥ 1

Unusual
Cases

If there is a concert on Friday, the number of
people in the nearby shopping mall will
increase at least 200 within 2 hours.

xEvent = True ∧ xDay = Fri→
◊[0,2]∆x > 200.

• Resource Constraint: The target models are often constrained by the resources, such as the

available police resources to deal with an accident, or the maximum energy allocated by several

locations. The resource constraints could also change over time in a real deployment, and are

not necessarily the same as the training data. RNNs are highly likely to produce inaccurate or

wrong outcomes without adapting the prediction results based on resource constraints.

• Variable and Temporal Correlation: There are correlations between different variables or

locations over time, some of which are already known or easily discovered before training

the learning model. These include the differences in air quality levels of adjacent locations,

correlations between the air quality levels and traffic volume in the past hour, etc.

• Existence: Existence is a prevalent property in practice, but extremely difficult for RNNs to

predict. It specifies the case that at least one of the values in the sequence (eventually) satisfies

a specific property, e.g., traffic will be back to normal within 30 min after resolving an accident.

• Unusual Cases: The outputs of CPSs are highly affected by the environment and sensitive

to uncertainties. For some unusual cases, there is a limited amount of data available in the

training set. It is necessary to specify and teach the networks to learn the properties of these

unusual cases (e.g., the influence of accidents or events on the population).

In Table 5.1, we present examples of these model properties and how to formalize them using STL.

As we can see from the examples, most of the properties have temporal features over a given period,
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e.g., [0,2] indicates the next 2 hours from the checking point, [0,24] indicates the next 24 hours

(as checking every hour for the whole day). These properties describe the essential features of the

systems with complex temporal dependency among multiple variables. Traditional RNNs have no

mechanism to check or learn them explicitly.

5.2 Problem Formulation

With the model properties specified, we formally define the logic enforced learning problem. Let

ω = {ω1, ω2, . . . , ωm} denotes the target sequences of data with m variables over a finite discrete time

domain T such that for the kth variable, ωk[t] = xkt at any time t ∈ T. Let xk[0,i] be a prefix of sequence

ωk over the time domain {t0, ..., ti} ⊆ T, and let xk[i+1,n] be a suffix of sequence ωk over the time domain

{ti+1, ..., tn} ⊆ T, where n denotes the total time instances, thus we denote the target sequence as

ωk = xk[0,i]xk[i+1,n]. We have a deep learning prediction model f with parameter θ that predicts a suffix

sequence with its prefix as inputs, i.e., (x̂1
[i+1,n], x̂

2
[i+1,n], . . . , x̂

m
[i+1,n]) = f((x1

[0,i], x
2
[0,i], . . . , x

m
[0,i]); θ).

We denote the predicted sequence as ω̂ = {ω̂1, ω̂2, . . . , ω̂m}, where ω̂k = xk[0,i]x̂k[i+1,n]. Suppose the

target sequence ω is drawn from a data distribution, i.e., ω ←w, and satisfies a set of properties, i.e.,

ω ⊧ ϕ1 ∧ ϕ2 ∧ ... ∧ ϕν , The goal is to find the model parameter θ that minimizes the distance (for a

predefined distance metric D) between the predicted sequence and the target sequence, and enforces

the predicted sequence follows the same properties as well, i.e.,

θ̂ = arg min
θ

Eω←w [D(ω, ω̂)]

s.t. ω̂ ⊧ ϕ1 ∧ ϕ2 ∧ ... ∧ ϕν

5.3 STLnet Framework

Our solution is STLnet which enforces multivariate RNNs to return results that follow the model

properties of the system. In this section, we first introduce the construction of STLnet in the training

phase and show how to enforce the results to guarantee the satisfaction in the testing phase. Then,

we present the STL trace generator, which is the key component of the teacher network.

Following the idea of knowledge distillation [32], the STLNet framework is built with a teacher

network and a student network (as shown in Figure 5.1). The main idea is that whenever the student

network fails to predict a sequence that follows the model properties (detected by the STL trace
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Figure 5.1: STLnet Framework

generator component), the teacher network generates a trace that is close to the trace returned by the

student network and satisfies the model properties simultaneously. The student network then updates

its parameters by learning from both the target trace and outcome of the teacher network.

In the training phase, our goal is to teach STLnet to learn from the “correct” traces, which include

three major steps.

Step 1 - Student network construction: To start with, we build the basic student net-

work, i.e., a general multivariate RNN f (e.g., LSTM, GRU, Bi-LSTM, etc.). It takes the past

states as inputs and predict their future states in n time units, (x̂1
[i+1,n], x̂

2
[i+1,n], . . . , x̂

m
[i+1,n]) =

f((x1
[0,i], x

2
[0,i], . . . , x

m
[0,i]); θ). We denote the predicted sequence as ω̂ = {ω̂1, ω̂2, . . . , ω̂m}, where

ω̂k = xk[0,i]x̂k[i+1,n] (i.e., the yellow box in Figure 5.1).

Step 2 - Teacher network construction: Next, we construct the teacher network q(x) to generate

a trace that satisfies the model properties ϕ1 ∧ ϕ2 ∧ ⋅ ⋅ ⋅ ∧ ϕν and has the shortest distance to the

original prediction. We first formalize the model properties using STL. q is constructed by projecting

p into a subspace constrained by the properties. Different than the structure of the student network

p, q has an STL trace generator. The STL trace generator first checks if this trace follows the

properties, if yes, then output the trace ω′ = ω̂. If not, it generates a new trace ω′, which first follows

the properties, ω′ ⊧ ϕ1 ∧ϕ2 ⋅ ⋅ ⋅ ∧ϕm and secondly, it is the closest trace to the original predicted trace

ω̂. Here we use L1 distance to measure the distance between two traces, i.e., the total amount of

changes. We present the details of STL trace generator in Section 5.4.
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Step 3 - Back propagation with loss LSTL: The loss function is constructed by two parts to

guide the student network p(x) to balance between emulating the teacher’s output and predicting the

target trace. The target trace is ω, thus the first part of the loss is L(ω̂, ω), where L calculates the

L-2 distance between two traces. The second part of the loss function is defined by the L-2 distance

between the predicted trace ω̂ and teacher’s output ω′, i.e., L(ω̂, ω′). Thus, the student network is

back propagated using the loss function as,

LSTL = βL(ω̂, ω) + (1 − β)L(ω̂, ω′) (5.1)

The network is trained iteratively by repeating Steps 2 and 3 until convergence.

Similar to other distilled networks [33], in the testing phase, we can use either the distilled student

network p or the teacher network q after a final projection. Our results show that both models

substantially improve over the base network that is trained without STL specified properties. In

practice, q can guarantee the satisfaction of model properties while p is more lightweight and efficient.

We compare the performance of p and q with baseline network extensively in the evaluation.

5.4 STL Trace Generator

In this subsection, we introduce the algorithms of the key component of the teacher network, i.e., the

STL trace generator. It is easy to check if a trace satisfies a specific property, however, to train the

network, STLnet also needs to obtain the closest satisfying trace when the prediction results violate

a property. It is a very difficult and time-consuming task.

In this chapter, tailoring to the deep learning process, we create a STL trace generator. The key idea

is to obtain a small Disjunctive Normal Form (DNF, a canonical normal form of a logical formula

consisting of a disjunction of conjunctions) set representing the possible satisfaction ranges of each

time on the trace before the optimization of the Deep Learning model. Then, we obtain the closest

satisfaction trace of each instance in the training and testing phase. A simplified example of STL

trace generator with a single variable is demonstrated in Figure 5.2.

Converting STL to DNF We first convert the STL formula into DNF and calculate the satisfac-

tion range for each time unit on the sequence (left part of Figure 5.2). A nice property of a DNF

representation is that for a trace to satisfy the requirement, it is a sufficient and necessary condition
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Figure 5.2: An example of STL trace generator (ϕ = ◻[0,3]x ≥ 1 ∧ ◊[1,3]x ≤ 5)

for it to match some clause φ inside ϕ. Therefore, we can check the properties in a straightforward

manner by comparing the distance of the trace to each of the clauses in formula ϕ.

Proposition 5.1 (STL formula in DNF representation). Every STL ϕ can be represented in the

DNF formula ξ(ϕ), where ξ(ϕ) is a formula that includes several clauses φk that are connected with

the disjunction operator, and the length of φk is denoted by ∣φk ∣. Each clause φk can be further

represented by several Boolean variables li that are connected with the conjunction operator. Finally,

each Boolean variable li is the satisfaction range of a specific parameter.

ξ(ϕ) = φ1 ∨ φ2 ∨ ... ∨ φK

φk = l(k)1 ∧ l(k)2 ∧ .. ∧ l(k)∣φk ∣ ∀k ∈ {1,2..K}

l
(k)
i = {xjt ∣ f(xjt) ≥ 0} where (t ∈ T ),∀i ∈ {1,2..∣φk ∣}

(5.2)

Proof. We prove Proposition 4.1 by induction. We use induction on the top-layer operator:

• A single µ operator can be represented by a single l clause, where f(x0) ≥ 0.

• If the low layer operators can be represented by DNF formula, the result of ¬, ∧, and ∨ operators

can also be represented as DNF formula by the De Morgen rule.

• The always operator ◻(a,b)φ can be decomposed as multiple ∧ operator on the time period

(a, b). Given the DNF ϕ and a specific time t ∈ (a, b), the actual DNF should be ϕ with an

additive time shift t on every time operator in ϕ. Then the STL formula is equivalent to a

DNF built by applying the De Morgen rule on the DNFs with every t ∈ (a, b).
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• The eventually operator ◊(a,b)φ can be decomposed as multiple ∨ operator on the time period

(a, b). Given the DNF ϕ and a specific time t ∈ (a, b), the actual DNF should be ϕ with an

additive time shift t on every time operator in ϕ. Then the STL formula is equivalent to a

DNF built by connecting the DNFs for every t ∈ (a, b) with ∨.

• The until operator U(a,b) by the STL definition can be represented with ◻ and ◊ operators.

Therefore it can also be represented by a DNF.

By induction, we have Proposition 5.1 proved.

Algorithm 5.1 shows how to construct the DNF representation of the STL formula. The algorithm

follows a top-down recursive manner. For every operator and its corresponding sub-tree, we first

calculate the DNF formula of its children sub-trees, and then combine them with the operator.

Specifically, the negation operator causes the DNF formula to become a CNF. Therefore, here we use

De Morgan rule to sink the negation operator to the bottom level. Each clause of the DNF formula is

guaranteed to have no duplicate variables. To be noted, if the set returned is an empty set, we know

that the input requirement is unsatisfiable and we don’t progress to the next steps. The computation

time of Algorithm 5.1 is relevant to the number of predicates in the STL formula. We only execute it

once in the pre-processing step before the training phase, thus it tailors to deep learning processes

efficiently.

Simplifying Candidate DNF Set: In order to further obtain a smaller manageable DNF set,

we reduce the size of the DNF set by finding the overlaps between the clauses. We first define the

distance between a trace and a clause in DNF. (Note that we use L1 distance in the definition, which

can be extended to any Lp distance measure.)

Definition 5.1 (L1-Distance of a trace to a clause). Let clause φ = l1 ∧ l2 ∧ .. ∧ lm. The distance

between a trace ω and clause φ is defined as

DL1(ω,φ) = min
ω′

T

∑
t=1

∣ω′t − ωt∣,

where ω′ ⊧ li ∀i ∈ {1,2..m}
(5.3)
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Algorithm 5.1: Converting STL to DNF with Calculation of Satisfaction Range
Function CalDNF(ϕ, t, sgn):

Input: STL Formula ϕ, time t, sign sgn
Output: DNF Set ξ representing the satisfaction range
begin

if sgn = False then
switch ϕ do

Case µ
return {xjt ∣ f(xjt) < 0};

Case ¬ϕ
CalDNF(ϕ, t,True);

Case ϕ1 ∧ ϕ2

return CalDNF(¬ϕ1 ∨ ¬ϕ2, t,True);
Case ϕ1 ∨ ϕ2

return CalDNF(¬ϕ1 ∧ ¬ϕ2, t,True);
Case ◻Tϕ

return CalDNF (◊T¬ϕ, t,True);
Case ◊Tϕ

return CalDNF (◻T¬ϕ, t,True);
end

end
else

switch ϕ do
Case µ

return {xjt ∣ f(xjt) ≥ 0};
Case ¬ϕ

return CalDNF(ϕ, t,False);
Case ϕ1 ∧ ϕ2

ξ ← ∅;
for φ1 ∈ CalDNF(ϕ1, t, sgn) do

for φ2 ∈ CalDNF(ϕ2, t, sgn) do
ξ ← ξ ∨ (φ1 ∧ φ2);

end
end
return ξ;

Case ϕ1 ∨ ϕ2

ξ1 ← CalDNF(ϕ1, t, sgn) ;
ξ2 ← CalDNF(ϕ2, t, sgn) ;
return ξ1 ∨ ξ2;

Case ◻Tϕ
ξ ← {True};
for t ∈ T do

ξ1 ← CalDNF(ϕ1, t, sgn) ;
ξ2 ← ∅;
for φ1 ∈ ξ do

for φ2 ∈ ξ1 do
ξ2 ← ξ2 ∨ (φ1 ∧ φ2);

end
end
ξ ← ξ2;

end
return ξ;

Case ◊Tϕ
ξ ← ∅;
for t ∈ T do

ξ ← ξ ∨ CalDNF(ϕ, t, sgn);
end
return ξ;

end
end

end
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The return value is a non-negative real number. If a variable satisfies a constrain in a clause, the

term will be evaluated to 0; Otherwise, it will return the minimal distance over all the items in the

satisfaction of li (not necessary to be 1).

Proposition 5.2 (The order of set). For two clauses φi and φj in a DNF ξ, if ∀ω ⊧ (φi), ω ⊧ φj,

and φi ⊆ φj, then we have DL1(ω,φi) ≤DL1(ω,φj).

Proof. Prove by contradiction. Assume DL1(ω,φi) > DL1(ω,φj). Let ω′ denotes the trace with

minimal distance to ω in φj , that is, ω′ = arg minω′′⊧φj DL1(ω,ω′′). As φi ⊆ φj , we have ω′ ⊧ φi.

Therefore, DL1(ω,φi) = minω′′⊧φiDL1(ω,ω′′) ≤DL1(ω,ω′), which clearly contradicts the assumption.

Therefore, DL1(ω,φi) ≤DL1(ω,φj).

If the satisfaction set of one clause is the subset of the satisfaction set of another clause, the first

clause is unnecessary, as stated in Proposition 5.2. Therefore, we provide a pairwise comparison

between all clauses, and we can remove some of the clauses and obtain a smaller set of DNF before

training.

Generating the optimal trace To satisfy a DNF representation, at least one of the clauses φk

needs to be satisfied. Therefore, the best ω′ is found by a specific k, as formally stated in Proposition

5.3.

Proposition 5.3 (Shortest distance of a trace to the DNF formula). Let ω̂ be the trace that satisfy

the DNF formula ϕ = φ1 ∨ φ2 ∨ ... ∨ φK that has minimal distance to the input trace ω, then we have

k̂ = arg min
k
DL1(ω,φk) (5.4)

and ω̂ is the trace that minimizes DL1(ω,φk̂) by DL1(ω, ω̂) =DL1(ω,φk̂).

Proof. We prove the proposition by contradiction. Assume ω̂ ⊧ ϕ, by the definition of DNF formula,

we have ∃k ∶ ω̂ ⊧ φk. Suppose k̂ is one of choices that ω̂ ⊧ φk̂.

If k̂ ≠ arg minkDL1(ω,φk), then there exists another k′ that DL1(ω,φk′) < DL1(ω,φk̂). By the

definition of DL1(ω,φk′), there exists a ω′ that DL1(ω,ω′) =DL1(ω,φk′) <DL1(ω,φk̂) =DL1(ω, ω̂).

We also have ω′ ⊧ φk′ , which indicates ω′ ⊧ ϕ. Then ω′ is closer to ω and also satisfies ϕ, which

contradicts the assumption.
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If ω̂ doesn’t minimize DL1(ω,φk̂), then there exists another ω′ ⊧ φk̂ that DL1(ω,ω′) =DL1(ω,φk̂) <

DL1(ω, ω̂). Then ω′ is closer to ω and also satisfies ϕ, which contradicts the assumption.

For each clause in the DNF set, we calculate the distance between the trace to be optimized with the

clause. The distance can be then calculated by a summation over the distance of the satisfaction

of all the Boolean variables. After the distance calculation, we return the optimal trace with the

minimal distance as our generated target trace. The returned trace is therefore guaranteed to satisfy

the requirement. In the example given in Figure 5.2 (right side), if the trace predicted by the student

network is ω̂ = (0,6.1,7.2,0.5), then, the optimal new trace generated by the teacher network is

ω′ = (1,6.1,7.2,1), which has the shortest distance to ω̂ and satisfies its model property.

5.5 Evaluation

We evaluate the performance of STLnet from two aspects: the capability of learning different types of

model properties and the performance in learning from a city dataset with multiple variables.

In all experiments, we evaluate the performance using three metrics, i.e., Root Mean Square Error

(RMSE), property satisfaction rate, and average STL robustness value ρ. RMSE measures the

accuracy of the prediction, property satisfaction rate shows the percentage of the predicted sequence

that satisfies the property, and STL robustness value ρ shows the degree of satisfaction (we refer

paper [106] or our supplementary materials for the definition of quantitative semantics). Briefly, if

ρ ≤ 0, the property is violated. The smaller ρ is, the more the property is violated.

To evaluate the performance of STLnet, we applied it to two networks, i.e., an LSTM network [107]

and a transformer network [108] for multivariate sequential prediction. For each model, we compare

the experimental results among three networks, i.e., general model, model with STLnet testing with

the student network (p), and model with STLnet testing with the teacher network (q). Applying

STLnet-q can guarantee the satisfaction of all model properties, so we also present the results of

STLnet-p here to show the improvement we achieved through training. To be noted, STLnet is

general and can apply to all RNNs. We use LSTM and Transformer networks as examples. The

experiments are evaluated on a server machine with 20 CPUs, each core is 2.2GHz, and 4 Nvidia

GeForce RTX 2080Ti GPUs. The operating system is Centos 7.
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5.5.1 Learning Model Properties

The goal of the first set of experiments is to show that STLnet is general and robust to different types

of model properties and improves the satisfaction rate significantly. To start with, we synthesize six

sets of data that satisfy six types of model properties, respectively.

• Resource constraint:

To synthesize the data with the model property of resource constraint, we use a piecewise

constant function to generate nd instances, each following:

x1(t) = x2(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1.0 − σ(t) t < d

1.005 + σ(t) t ≥ d.
(5.5)

where σ(t) is a small Gaussian noise, and d is pick randomly between 10 to 14. The function

follows model property ϕ1, which is used in STLnet to enhance learning,

ϕ1 = ◻[0,8]¬(x1 > 1) ∧ ◻[14,19](x1 > 1) ∧ ◻[0,8]¬(x2 > 1) ∧ ◻[14,19](x2 > 1). (5.6)

• Consecutive change:

To synthesize the data with the model property of consecutive change, we use a monotonically

decreasing function to generate nd sequences, each following:

x1(t) = x1(t − 1) −min(100,0.2x1(t − 1))

x2(t) = x2(t − 1) −min(100,0.2x2(t − 1)).
(5.7)

We pick the original value x1(0) and x2(0) uniformly between the range [0, 1000). The function

follows model property ϕ2, which is used in STLnet to enhance learning,

ϕ2 = ◻[0,19](¬(∆x1 > 100) ∧ ¬(∆x2 > 100)). (5.8)

• Variable and Temporal Correlation:



5.5 Evaluation 88

To synthesize the data with the model property of variable and temporal correlation, we

generate to generate nd sequences. Each sequence consists only 0 and 1, but keep not any

group of 4 consecutive numbers to be the same. That is,

x1(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 If x1(t − 1) = 1 ∧ x1(t − 2) = 1 ∧ x1(t − 3) = 1

1 If x1(t − 1) = 0 ∧ x1(t − 2) = 0 ∧ x1(t − 3) = 0

Bernoulli(0.5) Otherwise.

(5.9)

The function follows model property ϕ3, which is used in STLnet to enhance learning,

ϕ3 = ◻[0,5] (◊[0,4](x1 > 0) ∧ ◊[0,4](¬(x1 > 0))) . (5.10)

• Reasonable range:

To synthesize the data with the model property of reasonable range, we use a periodic function

to generate nd sequences, each following:

x1(t) = sin(at + b)

x2(t) = cos(at + b).
(5.11)

Where a is uniformly picked from [0.77,1.03), and b is uniformly picked from [0,0.5). The

function follows model property ϕ4, which is used in STLnet to enhance learning,

ϕ4 = ◻[0,19](x1 > −1.0 ∧ ¬(x1 > 1.0) ∧ x2 > −1.0 ∧ ¬(x2 > 1.0)). (5.12)

• Existence:

To synthesize the data, we generate nd instances of 0 and 1. In each sequence make sure that

for both x1 and x2 it equals 1 at a single t and equals 0 at other time. The function follows

model property ϕ5, which is used in STLnet to enhance learning,

ϕ5 = ◊[0,19](x1 > 0.99) ∧ ◊[0,19](x2 > 0.99). (5.13)

• Unusual cases:
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To synthesize the data with the model property of unusual cases, we generate nd instances

following:

x1(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1000 t = td

0 otherwise.
(5.14)

and

x2(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

10 ∃ti ∈ [1,9], x1(t − ti) > 0

σ(t) otherwise.
(5.15)

where d is pick randomly between 0 to 4, and σ(t) is a small Gaussian noise.

The function follows model property ϕ6, which is used in STLnet to enhance learning,

ϕ6 = ◻[0,4](x1 > 500 ∨ ◻[1,9]x2 > 9). (5.16)

The results shown in Table 5.2 and Table 5.3 are obtained from 25 runs. From the results, we can

see that: (1) STLnet significantly improves the model property satisfaction rate for both LSTM and

Transformer. For all the property, both satisfaction rate and violation degree are improved by STLnet.

For example, property ϕ5 and ϕ4, the satisfaction rates of basic LSTM are only 0.84% and 56.68%

with very high violation degrees (-463.534 and -36.884), while STLnet-p achieves 75.64% and 83.09%

satisfaction rate with violation degree dropping to -19.842 and -3.906, respectively. STLnet-q can

guarantee the satisfaction of all the model properties. (2) For ϕ1 to ϕ6, STNnet not only improves

the satisfaction rate, but also decreases the RMSE value. In general, STL-q can further improve

the accuracy. For example, property ϕ6 (property type of unusual cases), RNNs are not able to

learn the unusual cases which have a small portion of instances in the training data and lead to a

low satisfaction rate. While STLnet guides the predicted trace follow the property (in both training

and testing), it also decreases RMSE. It indicates that learning model properties can support RNNs

to build a more accurate model. Overall, the results prove the effectiveness and generalizability of

STLnet dealing with different types of model properties.

5.5.2 Multivariate Air Quality Prediction with Model Properties

The goal of the second set of experiments is to show how STLnet improves the accuracy and

robustness of RNNs in a real-world CPS application, especially in cases of noisy/missing sensing

data, and long term prediction. We apply STLnet to train RNN models with air quality datasets.
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Table 5.2: Comparison of Accuracy and Property Satisfaction among LSTM, STLnet-p and STLnet-q

LSTM LSTM STLnet-p LSTM STLnet-q
RMSE Sat Rate Violateρ RMSE Sat Rate Violateρ RMSE Sat Rate Violateρ

ϕ1 0.026 92.00% -0.298 0.025 98.34% -0.014 0.025 100.00% 0
ϕ2 94.304 75.61% -117.982 90.016 97.78% -1.603 90.160 100.00% 0
ϕ3 4.214 75.47% -1.589 4.209 87.69% -0.606 4.209 100.00% 0
ϕ4 0.309 56.68% -36.884 0.230 83.09% -3.906 0.229 100.00% 0
ϕ5 2.188 0.84% -463.534 1.151 75.64% -19.842 1.162 100.00% 0
ϕ6 8.603 59.54% -282.403 8.532 61.85% -282.403 7.122 100.00% 0

Table 5.3: Comparison of Accuracy and Property Satisfaction among Transformer Model, STLnet-p
and STLnet-q

Transformer Transformer STLnet-p Transformer STLnet-q
RMSE Sat Rate Violateρ RMSE Sat Rate Violateρ RMSE Sat Rate Violateρ

ϕ1 0.045 27.76% -18.808 0.031 89.48% -1.835 0.031 100.00% 0
ϕ2 105.211 49.44% -109.282 111.688 76.08% -18.874 111.655 100.00% 0
ϕ3 4.340 52.96% -3.855 4.339 60.70% -2.596 4.339 100.00% 0
ϕ4 0.124 0.36% -38.893 0.135 51.00% -5.101 0.135 100.00% 0
ϕ5 2.196 8.88% -31.172 1.805 50.20% -4.612 1.804 100.00% 0
ϕ6 8.156 20.08% -301.175 8.326 20.32% -307.165 2.657 100.00% 0

(a) RMSE-prediction lengths (b) Satisfaction Rate - prediction lengths (c) RMSE -missing data % (d) Satisfaction Rate -
missing data %

Figure 5.3: Comparison of RMSE and Satisfaction Rate among LSTM, STLnet-p and STLnet-q

The dataset includes 1.3 million instances of 6 pollutants (i.e., PM2.5, PM10, CO, SO2, NO2, O3)

collected from 130 locations in Beijing every hour between 5/1/2014 and 4/30/2015 [103]. To build

the LSTM network, we regard one pollutant from one location as one variable, and concatenate all

variables from the same time unit. Next, we specify important model properties, including reasonable

ranges, consecutive changes, correlations between different pollutants, and between different locations,

etc.

The results of the comparison are presented in Figure 5.3. From the results, we can see that, (1)

STLnet improves both property satisfaction rate (i.e., from 20% to over 70% on average) and RMSE

(i.e., from about 150 to 130 on average). STLnet-q outperforms STLnet-p regarding the satisfaction

rate and achieves a similar RMSE as STLnet-p. (2) Figure 5.3 (a) and (b) compare the performance

with different time lengths of prediction. When predicting future 5-time units, three networks have a

very similar RMSE value. With the prediction length increasing, the RMSE value of LSTM increases
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greatly. However, with STLnet, the prediction accuracy is improved, e.g., when l = 18, RMSE drops

from 162 to 132 (18.5%). (3) Datasets with missing data affect the learning performance. We test

the model performance with different percentages of missing data. The results show that STLnet is

able to improve model accuracy by as much as 14% and property satisfaction rate by 3 to 4 times (p

and q, respectively). Overall, the results indicate the effectiveness and robustness of STLnet in a

real-world application. It also can support RNN models to perform long-term prediction with missing

data.

5.6 Summary

In order to guide Multivariate RNNs to follow the model properties of the system and produce a

more robust model for improved future predictions, we build STLnet, a new temporal logic-based

learning framework. The experimental results show that STLnet not only improves the accuracy of

predictions, but importantly also guarantees the satisfaction of model properties. The promising

results also indicate that considering model properties is very important for building deep learning

models for complex systems, and formal logic can be an effective way to enhance the robustness of

the deep learning models.

The approach created in this chapter can be broadly applied to the tasks of sequence prediction

using RNN models in application domains such as smart cities, smart health, and other CPS-IoT

systems. In these systems prediction results are usually used to support monitoring and decision

making processes. The goal is to improve the prediction accuracy and, more importantly, guarantee

the satisfaction of critical properties. We envision that relevant systems and decision-makers will

benefit from this work. In this way smart cities and smart health systems can improve safety and

performance, thereby improving daily life and health for people. Failure of the system (i.e., the model

produces wrong prediction results) could affect the decisions made based on the results. In practice,

even if the prediction results are somewhat inaccurate (e.g., high RMSE), STLnet can still guarantee

the satisfaction of key properties.



Chapter 6

Runtime Verification

Integrated Cyber-Physical Systems, such as smart cities, are emerging around the world. Examples

include Chicago’s Array of Things project [110], IBM’s Rio de Janeiro Operations Center [96] and

Cisco’s Smart+Connected Operations Center [97], just to name a few. They utilize a vast amount of

data and smart services to enhance the safety, efficiency, and performance of city operations [105].

In order to provide real-time services or safety protection, all services and city controllers have to

monitor city’s safety and performance and thus take actions accordingly in real time. For example,

governments can use real-time traffic flow data to reduce traffic congestion and manage public

transportation; city managers can optimize the energy usage via smart buildings and infrastructures

based on the real-time energy demand; law enforcement units can benefit from big data generated

from various sensors in the city to keep the citizens safe. [111]. City controllers, such as discussed in

Chapter 4, CityGuard predicts and monitors the changing of city states caused by the services to

detect and prevent potential safety violations caused by independently-developed services. The safety

violations bring serious consequences to the city environment and citizen’s safety. Therefore, there is

a need for monitoring city states in real-time to ensure safety and performance requirements [93]. If

a requirement violation is detected by the monitor, the city operators and smart service providers

can take actions to change the states, such as improving traffic performance, rejecting unsafe actions,

sending alarms to police, etc. The key challenges of developing such a monitor include how to use an

expressive, machine-understandable language to specify smart city requirements, and how to efficiently

monitor requirements that may involve multiple sensor data streams (e.g., some requirements are

concerned with thousands of sensors in a smart city).

92
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Figure 6.1: A framework for runtime monitoring of real-time city requirements

Previous works [112, 113, 98, 114] have proposed solutions to monitor smart cities using formal

specification languages and their monitoring machinery. In Chapter 4, we introduced CityResolver,

[38] which uses Signal Temporal Logic (STL) [50] to support the specification-based monitoring of

safety and performance requirements of smart cities. However, STL is not expressive enough to

specify smart city requirements concerning spatial information such as “the average noise level within

1 km of all elementary schools should always be less than 50 dB”. There are some existing spatial

extensions of STL (e.g., SSTL [49], SpaTeL [114] and STREL [55, 56], see [115] for a recent tutorial),

which can express requirements such as “there should be no traffic congestion on all the roads in the

northeast direction”. But they are not expressive enough to specify requirements like “there should

be no traffic congestion on all the roads on average”, or “on 90% of the roads”, which require the

aggregation and counting of signals in the spatial domain. To tackle these challenges and limitations,

we develop a novel Spatial Aggregation Signal Temporal Logic (SaSTL), which extends STL with two

new logical operators for expressing spatial aggregation and spatial counting characteristics which we

demonstrate are commonly found in real city requirements. More specifically, this chapter has the

following major contributions:

• To the best of our knowledge, this is the first work studying and annotating over 1,000 real

smart city requirements across different service domains to identify the gap of expressing smart

city requirements with existing formal specification languages. As a result, we found that

aggregation and counting signals in the spatial domain (e.g., for representing sensor signals

distributed spatially in a smart city) are extremely important for specifying and monitoring

city requirements.

• Drawing on the insights from our requirements study, we develop a new specification language

SaSTL, which extends STL with a spatial aggregation operator and a spatial counting operator.
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SaSTL can be used to specify Point of Interests (PoIs), the physical distance, spatial relations

of the PoIs and sensors, aggregation of signals over locations, degree/percentage of satisfaction

and the temporal elements in a very flexible spatial-temporal scale. We define Boolean and

quantitative semantics with theoretical proofs.

• We compare SaSTL with some existing specification languages and show that SaSTL has

a much higher coverage expressiveness (95%) than STL (18.4%), SSTL (43.1%) or STREL

(43.1%) over 1,000 real city requirements.

• We develop novel and efficient monitoring algorithms for SaSTL. In particular, we present

two new methods to speed up the monitoring performance: (i) dynamically prioritizing the

monitoring based on cost functions assigned to nodes of the syntax tree, and (ii) parallelizing

the monitoring of spatial operators among multiple locations and/or sensors. We show that

both methods improve the time complexity of SaSTL monitoring algorithms.

• We evaluate the SaSTL monitor by applying it to monitoring real city data collected from

Chicago and Aarhus. The results show that SaSTL monitor has the potential to help identify

safety violations and support the city managers and citizens to make decisions. We also evaluate

the SaSTL monitor on a third case study of conflict detection and resolution among smart

services in simulated New York City with large-scale real sensing data (e.g., up to 10,000 sensors

used in one requirement). Results of our simulated experiments show that SaSTL monitor

can help improve the city’s performance (e.g., 21.1% on the environment and 16.6% on public

safety), with a significant reduction of computation time compared with previous approaches.

• We develop a SaSTL monitoring tool that can support decision making of different stakeholders

in smart cities. The tool allows users (e.g., city decision maker, citizens) without any formal

method background to specify city requirements and monitor city performance easily.

6.1 Overview

We envision that a monitoring framework would operate in a smart city’s central control center (e.g.,

IBM’s Rio de Janeiro Operations Center [96] or Cisco’s Smart+Connected Operations Center [97])

where sensor data about city states across various locations are available in real time. Figure 6.1

shows an overview of our SaSTL runtime monitoring framework for smart cities. The framework

would monitor city states and check them against a set of smart city requirements at runtime. The
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monitoring results would be presented to city managers to support decision making. The framework

makes abstractions of city states in the following way. The framework formalizes a set of smart

city requirements (See Section 6.2) to some machine checkable SaSTL formulas (See Section 6.3).

Different data streams (e.g. CO emission, noise level) over temporal and spatial domains can be

viewed as a 3-dimensional matrix. For any signal sj in signal domain S, each row is a time-series

data at one location and each column is a set of data streams from all locations at one time. Next,

the efficient real-time monitoring for SaSTL verifies the states with the requirements and outputs

the Boolean satisfaction to the decision makers, who would take actions to resolve the violation.

To support decision making in real time, we improve the efficiency of the monitoring algorithm in

Section 6.4. We implement SaSTL runtime monitoring tool following this framework for city experts

without any formal methods background (see Section 6.5). We describe more details of the framework

in the following sections.

6.2 Analysis of Real City Requirements

To better understand real city requirements, we conduct a requirement study. We collect and

statistically analyze 1000 quantitatively specified city requirements (e.g., standards, regulations, city

codes, and laws) across different application domains, including energy, environment, transportation,

emergency, and public safety from over 70 cities (e.g. New York City, San Francisco, Chicago,

Washington D.C., Beijing, etc.) around the world. Some examples of these city requirements are

highlighted in Table 6.1. We identify key required features to have in a specification language and its

associated use in a city runtime monitor. The summarized statistical results of the study and key

elements we identified (i.e., temporal, spatial, aggregation, entity, comparison, and condition) are

shown in Table 6.2.

Temporal: Most of the requirements include a variety of temporal constraints, e.g. a static deadline,

a dynamic deadline, or time intervals. In many cases (65.7%), the temporal information is not

explicitly written in the requirement, which usually means it should be “always” satisfied. In addition,

city requirements are highly real-time driven. In over 80% requirements, cities are required to detect

requirement violations at runtime. Usually, it is a deadline like “within one minute”, or time interval

like “between the hours of 7:00 a.m. and 10 a.m.”, “after 9:00 p.m.” or “weekdays”. It indicates a

high demand for runtime monitoring.

Spatial: A requirement usually specifies its spatial range explicitly using the Points of Interest (PoIs)
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Table 6.1: Examples of city requirements from different domains

(Key elements: temporal , spatial , aggregation , entity , condition , comparison .)
Domain Example

Transportation

Limits vehicle idling to one minute adjacent to any school, pre-K to 12th grade ,

public or private, in the City of New York [116].
The engine, power and exhaust mechanism of each motor vehicle shall be equipped, adjusted
and operated to prevent the escape of a trail of visible fumes or smoke for more than

ten (10) consecutive seconds [117].

Prohibit sight-seeing buses from using all bus lanes between the hours of

7:00 a.m. and 10:00 a.m. on weekdays [118].

Energy Operate the system to maintain zone temperatures down to 55°F or up to 85°F [119].

The total leakage shall be less than or equal to 4 cubic feet per minute per

100 square feet of conditioned floor area [120].

Environment

It shall be unlawful for any person , between the hours of 8:00 p.m. of any day and

7:00 a.m. of the following day to erect, construct, demolish, excavate for, alter or repair
any building or structure if the noise level created thereby is in excess of the ambient

noise level by 5 dB at the nearest property plane , unless a special permit therefor has
been applied for and granted by the Director of Public Works or the Director of Building
Inspection [121].
LA Sec 111.03 minimum ambient noise level table: ZONE M2 and M3 – DAY : 65
dB(A) NIGHT : 65 dB(A) [122].
The total amount of HCHO emission should be less than 0.1mg per m3

within an hour , and the total amount of PM10 emission should be less than 0.15 mg
per m3 within 24 hours [123].

Emergency NYC Authorized emergency vehicles may disregard 4 primary rules regarding traffic [124].

At least one ambulance should be equipped per 30,000 population (counted by area )
to obtain the shortest radius and fastest response time [125].

Public Safety Security staff shall visit at least once per week in public schools [126].

(80.1%), such as “park”, “xx school”, along with a distance range (65%). One requirement usually

points to a set of places (e.g. all the schools). Therefore, it is very important for a formal language

to be able to specify the spatial elements across many locations within the formula, rather than one

formula for each location.

We also found that the city requirements specify a very large spatial scale. Different from the

requirements of many other CPS, requirements from smart cities are highly spatial-specific and

usually involve a very large number of locations/sensors. For example, the first requirement in

Table 6.1 specifies a vehicle idling time “adjacent to any school, pre-K to 12th grade in the City of

New York”. There are about 2000 pre-K to 12th schools, even counting 20 street segments nearby

each school, there are 40,000 data streams to be monitored synchronously. An efficient monitoring is

highly demanded.

Aggregation: In 51.9% cases, requirements are specified on the aggregated signal over an area, such
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Table 6.2: Key elements of city requirements and statistical results from 1000 real city requirements

Element Form Number Example

Temporal

Dynamic Deadline 77 limit ... to one minute
Static Deadline 98 at least once a week
Interval 168 from 8am to 10am; within 24 hours;
Default 657 The noise (always) should not exceed 50dB.

Spatial
PoIs/Tags 801 school area; all parks;
Distance 650 Nearby
Default 154 (everywhere) ; (all) locations

Aggregation
Count, Sum 256 in total; x out of N locations; %;
Average 196 per m2;
Max, Min 67 highest/lowest value

Entity Subject 1000 air quality; Buses;

Comparison
Value comparison 836 More than, less than
Boolean 388 Street is blocked; should
Not 456 It is unlawful/prohibited...

Condition Until 24 keep... until the street is not blocked.
If/Except 44 If rainy, the speed limit...

as, “the total amount”, “average...per 100 square feet”, “up to four vending vehicles in any given city

block”, “at least 20% of travelers from all entrances should ...”, etc. The same set of data streams can

be checked on different requirements with different ways of aggregation depending on the context. It

is not practical to aggregate the data beforehand. Therefore, aggregation is a key feature for the

specification language.

Entity: An entity requirement specifies the variable of interest, such as, “noise level”, “energy

consumption”, etc.

Comparison: Comparison requirements usually specify the threshold of the variable, e.g., “up to

85°F”. In other cases, it also defines true or false, e.g., “the street is blocked”.

Condition: In a broad definition, conditions specify the condition or special cases of the requirement,

such as, “if/unless”, “until”, and “except”.

6.3 Formalizing Temporal-Spatial Requirements

SaSTL extends STL with two spatial operators: a spatial aggregation operator and a neighborhood

counting operator. Spatial aggregation enables combining (according to a chosen operation) measure-

ments of the same type (e.g., environmental temperature), but taken from different locations. The

use of this operator can be suitable in requirements where it is necessary to evaluate the average, best

or worst value of a signal measurement in an area close to the desired location. The neighborhood

counting operator allows measuring the number/percentage of neighbors of a location that satisfy a

certain requirement.
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6.3.1 SaSTL Syntax

We define a multi-dimensional spatial-temporal signal as ω ∶ T × L → {R ∪ {�}}n, where T = R≥0,

represents the continuous time and L is the set of locations. We define X = {x1,⋯, xn} as the set

of variables for each location. Each variable can assume a real value v ∈ R or is undefined for a

particular location (xi = �). We denote by πxi(ω) as the projection of ω on its component variable

xi ∈ X. We define P = {p1,⋯, pm} a set of propositions (e.g. {School,Street,Hospital,⋯} ) and L a

labeling function L ∶ L→ 2P that assigns for each location the set of the propositions that are true in

that location.

A weighted undirected graph is a tuple G = (L,E, η) where L is a finite non-empty set of nodes

representing locations, E ⊆ L × L is the set of edges connecting nodes, and η ∶ E → R≥0 is a cost

function over edges. We define the weighted distance between two locations l, l′ ∈ L as

d(l, l′) ∶= min{∑
e∈σ

η(e) ∣ σ is a path between l and l′}.

Then we define the spatial domain D as,

D ∶= ([d1, d2], ψ)

ψ ∶= ⊺ ∣ p ∣ ¬ ψ ∣ ψ ∨ ψ

where [d1, d2] defines a spatial interval with d1 < d2 and d1, d2 ∈ R, and ψ specifies the property over

the set of propositions that must hold in each location. Intuitively, it draws two circles with radius

r1 = d1 and r2 = d2, and the locations l ⊧ ψ between these two circles are selected. In particular,

D = ([0,+∞),⊺) indicates the whole spatial domain. We denote Ll([d1,d2],ψ) ∶= {l′ ∈ L ∣ 0 ≤ d1 ≤

d(l, l′) ≤ d2 and L(l′) ⊧ ψ} as the set of locations at a distance between d1 and d2 from l for which

L(l′) satisfies ψ. We denote the set of non-null values for signal variable x at time point t location l

over locations in LlD by

αxD(ω, t, l) ∶= {πx(ω)[t, l′] ∣ l′ ∈ LlD and πx(ω)[t, l′] ≠ �}.

We define a set of operations op(αxD(ω, t, l)) for op ∈ {max,min, sum,avg} when αxD(ω, t, l) ≠ ∅

that computes the maximum, minimum, summation and average of values in the set αxD(ω, t, l),

respectively. To be noted, Graph G and its weights between nodes are constructed flexibly based on
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the property of the system. For example, we can build a graph with fully connected sensor nodes

and their Euclidean distance as the weights when monitoring the air quality in a city; or we can also

build a graph that only connects the street nodes when the two streets are contiguous and apply

Manhattan distance. It does not affect the syntax and semantics of SaSTL.

The syntax of SaSTL is given by

ϕ ∶= x ∼ c ∣ ¬ϕ ∣ ϕ1 ∧ ϕ2 ∣ ϕ1UIϕ2 ∣ Aop
D x ∼ c ∣ C

op
D ϕ ∼ c

where x ∈ X, ∼∈ {<,≤}, c ∈ R is a constant, I ⊆ R>0 is a real positive dense time interval, UI is

the bounded until temporal operators from STL. The always (denoted ◻) and eventually (denoted

◊) temporal operators can be derived the same way as in STL, where ◊ϕ ≡ true UIϕ, and ◻ϕ ≡

¬◊¬ϕ.

In SaSTL, we define a set of spatial aggregation operators Aop
D x ∼ c for op ∈ {max,min, sum,avg}

that evaluate the aggregated product of traces op(αxD(ω, t, l)) over a set of locations l ∈ LlD. We also

define a set of new spatial counting operators Cop
D ϕ ∼ c for op ∈ {max,min, sum,avg} that counts

the satisfaction of traces over a set of locations. More precisely, we define Cop
D ϕ = op({g((ω, t, l′) ⊧

ϕ) ∣ l′ ∈ LlD}), where g((ω, t, l) ⊧ ϕ)) = 1 if (ω, t, l) ⊧ ϕ, otherwise g((ω, t, l) ⊧ ϕ)) = 0. From the

new counting operators, we also derive the everywhere operator as ⧈Dϕ ≡ Cmin
D ϕ > 0, and somewhere

operator as �Dϕ ≡ Cmax
D ϕ > 0. In addition, Csum

D ϕ specifies the total number of locations that satisfy

ϕ and Cavg
D ϕ specifies the percentage of locations satisfying ϕ.

We now illustrate how to use SaSTL to specify various city requirements, especially for the spa-

tial aggregation and spatial counting, and how important these operators are for the smart city

requirements using examples below.

Example 6.1 (Spatial Aggregation). Assume we have a requirement, “The average noise level in

the school area (within 1 km) in New York City should always be less than 50 dB and the worst

should be less than 80 dB in the next 3 hours” is formalized as, ⧈([0,+∞),School)◻[0,3] ((Aavg
([0,1],⊺)xNoise <

50) ∧ (Amax
([0,1],⊺)xNoise < 80)). ([0,+∞),School) selects all the locations labeled as “school” within the

whole New York city ([0,+∞)) (predefined by users). ◻[0,3] indicates this requirement is valid for the

next three hours. (Aavg
([0,1],⊺)xNoise < 50) ∧ (Amax

([0,1],⊺)xNoise < 80) calculates the average and maximal

values in 1 km for each “school”, and compares them with the requirements, i.e. 50 dB and 80 dB.
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Without the spatial aggregation operators, STL and its extended languages cannot specify this

requirement. First, they are not able to first dynamically find all the locations labeled as “school”. To

monitor the same spatial range, users have manually get all traces from schools, and then repeatedly

apply this requirement to each located sensor within 1 km of a school and do the same for all schools.

More importantly, STL and its extended languages could not specify “average” or “worst” noise level.

Instead, it only monitors each single value, which is prone to noises and outliers and thereby causes

inaccurate results.

Example 6.2 (Spatial Counting). A requirement that “At least 90% of the streets, the particulate mat-

ter (PMx) emission should not exceed Moderate in 2 hours” is formalized as Cavg
([0,+∞),Street)(◻[0,2](xPMx <

Moderate)) > 0.9. Cavg
([0,+∞),Street)ϕ > 0.9 represents the percentage of satisfaction is larger than 90%.

Specifying the percentage of satisfaction is very common and important among city requirements.

6.3.2 SaSTL Semantics

We define the SaSTL semantics as the satisfiability relation (ω, t, l) ⊧ ϕ, indicating that the spatio-

temporal signal ω satisfies a formula ϕ at the time point t in location l when πv(ω)[t, l] ≠ � and

αxD(ω, t, l) ≠ ∅. We define that (ω, t, l) ⊧ ϕ if πv(ω)[t, l] = �.

(ω, t, l) ⊧ x ∼ c ⇔ πx(ω)[t, l] ∼ c

(ω, t, l) ⊧ ¬ϕ ⇔ (ω, t, l) /⊧ ϕ

(ω, t, l) ⊧ ϕ1 ∧ ϕ2 ⇔ (ω, t, l) ⊧ ϕ1 and (ω, t, l) ⊧ ϕ2

(ω, t, l) ⊧ ϕ1UIϕ2 ⇔∃t′ ∈ (t + I) ∩T ∶ (ω, t′, l) ⊧ ϕ2 and ∀t′′ ∈ (t, t′), (ω, t′′, l) ⊧ ϕ1

(ω, t, l) ⊧ Aop
D x ∼ c⇔ op(αxD(ω, t, l)) ∼ c

(ω, t, l) ⊧ Cop
D ϕ ∼ c ⇔ op({g((ω, t, l′) ⊧ ϕ) ∣ l′ ∈ LlD}) ∼ c

where, for counting operator (ω, t, l) ⊧ Cop
D ϕ ∼ c, the valid ranges for c are c ∈ [0, 1) when op = sum/min,

and c ∈ [0,N] when op = sum/min. Otherwise (e.g., c < 0), the requirement is trivially satisfied or

violated.

Example 6.3. Following Example 6.1, checking the city states with a requirement,
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⧈([0,+∞),Hospital) ◻[0,5] ((Aavg
([0,500],⊺)xAQI < 50) ∧ (Amax

([0,500],⊺)xAQI < 80)),

to start with, assuming we have the AQI level data from a number of sensors within 500 meters of

one of the hospital, the sensor readings in 5 hours as, {[51, ..., 11], [80, ..., 30],..., [40, ..., 30]},

ϕt = (Aavg
([0,500],⊺)]xAQI < 50) ∧ (Amax

([0,500],⊺)xAQI < 80), then, we check ϕt for this hospital at each time,

- at t = 1, avg(51, ...,40) > 50 ∧max(51, ...,40) < 80, thus, ϕt1 = False,

- at t = 2, avg(49, ...,20) < 50 ∧max(49, ...,20) > 80, thus, ϕt1 = False,

- ...

- at t = 5,avg(11, ...,30) < 50 ∧max(11, ...,30) < 80, thus, ϕt1 = True.

Thus, we have ◻[0,5]ϕt = False.

Next, the monitor checks all qualified hospitals the same way and reaches the final results,

⧈([0,+∞),Hospital) ◻[0,5] ((Aavg
([0,500],⊺)xAQI < 50) ∧ (Amax

([0,500],⊺)xAQI < 80)) = False.

In a real scenario, the monitor algorithm can also decide to terminate the monitor and return the

False result when at t = 1, because the always operator returns False as long as a one-time violation

occurs. Similarly, the everywhere operator will also return False when the first hospital violates the

requirement.

Definition 6.1 (Quantitative Semantics). Let x > c be a numerical predicate, we then define the

robustness degree (i.e. the quantitative satisfaction) function ρ(ϕ,ω, t, l) for an SaSTL formula over

a spatial-temporal signal ω as,
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ρ(x ∼ c, ω, t, l) = πx(ω)[t, l] − c

ρ(¬ϕ,ω, t, l) = −ρ(ϕ,ω, t, l)

ρ(ϕ1 ∨ ϕ2, ω, t, l) = max{ρ(ϕ1, ω, t, l), ρ(ϕ2, ω, t, l)}

ρ(ϕ1UIϕ2, ω, t, l) = supt′∈(t+I)∩T(min{ρ(ϕ2, ω, t
′, l), inft′′∈[t,t′](ρ(ϕ1, ω, t

′′, l))})

ρ(Aop
D x ∼ c, ω, t, l) = { sum(αx

D
(ω,t,l))−c

∣αx
D
(ω,t,l)∣ op = sumop(αxD(ω, t, l)) − c op ∈ {max,min, avg}

ρ(Cop
D ϕ ∼ c, ω, t, l) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maxl′∈Ll
D

{ρ(ϕ,ω, t, l′)} op = max

minl′∈Ll
D

{ρ(ϕ,ω, t, l′)} op = min

δ(⌈c⌉,{ρ(ϕ,ω, t, l′) ∣ l′ ∈ LlD}) op = sum

δ(⌈c × ∣LlD ∣⌉,{ρ(ϕ,ω, t, l′) ∣ l′ ∈ LlD}) op = avg

where we define δ(k,S) as a function that returns the kth smallest number of set S, ∣S∣ > 0, and

0 ≤ k ≤ ∣S∣. For Cop
D ϕ ∼ c, when op = sum, it requires that there are at least ⌈c⌉ locations that satisfy

ϕ, thus, we denote the ⌈c⌉th smallest robustness value from {ρ(ϕ,ω, t, l′) ∣ l′ ∈ LlD} as the robustness

value of this formula. [c] indicates the smallest integer that is larger than or equal to c. Similarly,

when op = avg, the formula is converted as there are at least ⌈c × ∣LlD ∣⌉ locations that satisfy ϕ, thus,

we denote the ⌈c × ∣LlD ∣⌉th smallest robustness value from {ρ(ϕ,ω, t, l′) ∣ l′ ∈ LlD} as the robustness

value of this formula. Same as the Boolean semantics, the valid ranges for c are c ∈ [0,1) when

op = sum/min, and c ∈ [0,N] when op = sum/min. Otherwise (e.g., c < 0), the requirement is trivially

satisfied or violated.

Example 6.4. Assuming we have data of traffic counts (1,2,3), (2,3,4), (4,5,7) from three locations

satisfying D, thus,

- ρ(Cmax
D (◻[0,2](x > 5)) > 0) = ρ(Cmax

D ({−4,−3,2}) > 0) = 2

- ρ(Cmin
D (◻[0,2](x > 5)) > 0) = ρ(Cmin

D ({−4,−3,2}) > 0) = −4

- ρ(Csum
D (◻[0,2](x > 5)) > 1) = ρ(Csum

D ({−4,−3,2}) > 1) = −3

- ρ(Cavg
D (◻[0,2](x > 5)) > 0.2) = ρ(Cavg

D ({−4,−3,2}) > 0.2) = 2
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The quantitative semantics of SaSTL inherit the two fundamental properties of STL, i.e., soundness

and correctness. We give the formal definitions below.

Theorem 6.1 (Soundness). Let ϕ be an STL formula, ω a trace and t a time,

ρ(ϕ,ω, t, l) > 0 ⇒ (ω, t, l) ⊧ ϕ

ρ(ϕ,ω, t, l) < 0 ⇒ (ω, t, l) /⊧ ϕ

Proof. We prove the first property ρ(ϕ,ω, t, l) > 0⇒ (ω, t, l) ⊧ ϕ by induction:

First we show the soundness property hold for the predicate ϕ ∶= µ. In this case, we have ρ(ϕ,ω, t, l) =

f(x). Therefore, if ρ(ϕ,ω, t, l) > 0 we have f(x) > 0, that is, (ω, t, l) ⊧ ϕ.

Case ϕ = ¬ϕ′: We have ρ(ϕ,ω, t) = −ρ(ϕ′, ω, t, l) > 0. Therefore we have ρ(ϕ′, ω, t, l) < 0, that is,

(ω, t, l) /⊧ ϕ′, which is equivalent to (ω, t, l) ⊧ ϕ by definition.

Case ϕ = ϕ1∧ϕ2: We have ρ(ϕ1∧ϕ2, ω, t, l) = min{ρ(ϕ1, ω, t, l), ρ(ϕ2, ω, t, l)} > 0. Therefore, we have

ρ(ϕ1, ω, t, l) > 0 and ρ(ϕ1, ω, t, l) > 0. Thus, (ω, t, l) ⊧ ϕ1 and (ω, t, l) ⊧ ϕ2. By definition, we have

(ω, t, l) ⊧ ϕ.

Case ϕ = ϕ1UIϕ2: ρ = max
t′∈(t,t+I)

{min{ρ(ϕ2, ω, t
′, l), min

t′′∈(t,t′)
ρ(ϕ1, ω, t

′′, l)}} > 0. We have ∃t′ ∈ (t +

I),min{ρ(ϕ2, ω, t
′, l), min

t′′∈(t,t′)
ρ(ϕ1, ω, t

′′, l)} > 0. Therefore, ∃t′ ∈ (t+I), ρ(ϕ2, ω, t
′, l) > 0∧ min

t′′∈(t,t′)
ρ(ϕ1, ω, t

′′, l) >

0. Thus, it’s equivalent to ∃t′ ∈ (t+ I)∩T, (ω, t′, l) ⊧ ϕ2 and ∀t′′ ∈ (t, t′), (ω, t′′, l) ⊧ ϕ1. By definition,

we have (ω, t, l) ⊧ ϕ.

Case ϕ = Aop
D x ∼ c: we have ρ(Aop

D x ∼ c, ω, t, l) > 0, which indicates op(αxD(ω, t, l)) − c > 0, following

the definition, we have (Aop
D x ∼ c, ω, t, l) ⊧ ϕ.

Case ϕ = Cop
D ϕ ∼ c when op = max, we have maxl′∈Ll

D

{ρ(ϕ,ω, t, l′)} > 0, thus, there is at least one

location l ∈ D,ρ(ϕ,ω, t, l) > 0, i.e., (ω, t, l) ⊧ ϕ, therefore, max({g((ω, t, l′) ⊧ ϕ) ∣ l′ ∈ LlD}) > c

(c ∈ [0,1)) is true, therefore, (ω, t, l) ⊧ Cmax
D ϕ > c. when op = min, we have minl′∈Ll

D

{ρ(ϕ,ω, t, l′)} >

0, thus, for any location, ρ(ϕ,ω, t, l) > 0, i.e., l ∈ D, (ω, t, l) ⊧ ϕ, therefore, min({g((ω, t, l′) ⊧

ϕ) ∣ l′ ∈ LlD}) > c (c ∈ [0,1)) is true, therefore, (ω, t, l) ⊧ Cmin
D ϕ ∼ c. When op = sum, we have

δ(⌈c⌉,{ρ(ϕ,ω, t, l′) ∣ l′ ∈ LlD}) > 0, thus, for at least ⌈c⌉ locations l, we have ρ(ϕ,ω, t, l) ∣ l ∈ LlD > 0,

i.e., sum({g((ω, t, l) ⊧ ϕ) ∣ l ∈ LlD}) > c is true, therefore, (ω, t, l) ⊧ Csum
D ϕ > c. Similarly, we can prove

when op = avg, if δ(⌈c × ∣LlD ∣⌉,{ρ(ϕ,ω, t, l′) ∣ l′ ∈ LlD}) > 0, then (ω, t, l) ⊧ Cavg
D ϕ > c.
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Secondly, if ω satisfies ϕ at time t, any other trace ω′ whose point-wise distance from ω is smaller

than ρ(ϕ,ω, t, l) also satisfies ϕ at time t.

Theorem 6.2 (Correctness). Let ϕ be an STL formula, ω and ω′ traces over the same time and

spatial domains, and t, l ∈ dom(ϕ,ω), then

(ω, t, l) ⊧ ϕ and ∣∣ω − ω′∣∣∞ < ρ(ϕ,ω, t, l) ⇒ (ω′, t, l) ⊧ ϕ

Proof. By induction, we have the following cases:

Case ϕ ∶= x ∼ c: We have ρ(ϕ,ω′, t, l) = πx(ω′)[t, l]− c ≥ πx(ω)[t, l]− c− ∣∣ω −ω′∣∣∞ = ρ(ϕ,ω, t, l)− ∣∣ω −

ω′∣∣∞ > 0. Therefore, we have (ω′, t, l) ⊧ ϕ.

Case ϕ ∶= ¬ϕ′: We have ρ(ϕ,ω′, t, l) = −ρ(ϕ′, ω′, t, l). By the inductive assumption we have

ρ(ϕ′, ω′, t, l) < 0. Therefore, we have (ω′, t, l) ⊧ ϕ.

Case ϕ ∶= ϕ1 ∨ ϕ2: Following the condition, we have either (ω, t, l) ⊧ ϕ1 holds or (ω, t, l) ⊧ ϕ2

holds. We also have ρ(ϕ,ω′, t, l) = max{ρ(ϕ1, ω
′, t, l), ρ(ϕ2, ω

′, t, l)}. If (ω, t, l) ⊧ ϕ1, by the inductive

assumption we have ρ(ϕ1, ω
′, t, l) > 0. Therefore, ρ(ϕ,ω, t, l) > 0. Similarly, if (ω, t, l) ⊧ ϕ2, by the

inductive assumption we have ρ(ϕ2, ω
′, t, l) > 0. Therefore, we have (ω′, t, l) ⊧ ϕ.

Case ϕ = ϕ1UIϕ2: As (ω, t, l) ⊧ ϕ, there exists t′ that ∀t′′ ∈ (t, t′), ρ(ϕ1, ω, t
′′, l) ≥ ρ(ϕ,ω, t, l)

and ρ(ϕ2, ω, t
′, l) ≥ ρ(ϕ,ω, t, l). By the inductive assumption, we have (ω′, t′, l) ⊧ ϕ2 and ∀t′′ ∈

(t, t′), (ω′, t′′, l) ⊧ ϕ1. Therefore, we have (ω′, t, l) ⊧ φ.

Case ϕ = Aop
D x ∼ c:

- When op = sum, ρ(φ,ω′, t, l) = sum(αx
D
(ω′,t,l))−c

∣αx
D
(ω′,t,l)∣ ≥

sum(αx
D
(ω,t,l))−c−∑d∈αx

D
(ω,t,l) ∣∣ω−ω′∣∣∞

∣αx
D
(ω,t,l)∣ = ρ(φ,ω, t, l)−

∣∣ω − ω′∣∣∞ > 0. Therefore, we have (ω′, t, l) ⊧ φ.

- When op ≠ sum, we first show that op(αxD(ω, t, l)) − op(αxD(ω′, t, l)) ≤ ∣∣ω − ω′∣∣∞. Recall the

definition that αxD(ω, t, l) ∶= {πx(ω)[t, l′] ∣ l′ ∈ LlD and πx(ω)[t, l′] ≠ �}. For any combination of

t and l, πx(ω)[t, l] ≤ πx(ω′)[t, l] + ∣∣ω − ω′∣∣∞. As all the items of αxD(ω, t, l) holds the property,

for the operators max, min and avg, op(αxD(ω, t, l)) − op(αxD(ω′, t, l)) ≤ ∣∣ω − ω′∣∣∞.
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Therefore we have ρ(φ,ω′, t, l) = op(αxD(ω′, t, l))−c ≥ op(αxD(ω, t, l))−∣∣ω−ω′∣∣∞−c = ρ(φ,ω, t, l)−

∣∣ω − ω′∣∣∞ > 0, which indicates (ω′, t, l) ⊧ φ.

Case ϕ = Cop
D ϕ

′ ∼ c:

- When op = sum, as ρ(Cop
D ϕ

′ ∼ c, ω, t, l) = δ(⌈c⌉,{ρ(ϕ′, ω′, t, l′) ∣ l′ ∈ LlD}), we know that there

exists at least ⌈c⌉ different l′ ∈ LlD that ρ(ϕ′, ω, t, l′) ≥ ρ(Cop
D ϕ

′ ∼ c, ω, t, l) > ∣∣ω − ω′∣∣∞. By the

inductive rule, we have at least ⌈c⌉ different l′ ∈ LlD that ρ(ϕ′, ω′, t, l′) > 0. Therefore, by the

defintion of ρ(C∑Dϕ′ ∼ c) of we have (ω′, t, l) ⊧ φ.

- Similarly when op = avg, as ρ(Cop
D ϕ

′ ∼ c, ω, t, l) = δ(⌈c× ∣LlD ∣⌉{ρ(ϕ′, ω′, t, l′) ∣ l′ ∈ LlD}), we know

that there exists at least ⌈c × ∣LlD ∣⌉ different l′ ∈ LlD that ρ(ϕ′, ω, t, l′) ≥ ρ(Cop
D ϕ

′ ∼ c, ω, t, l) >

∣∣ω−ω′∣∣∞. By the inductive rule, we have at least ⌈c×∣LlD ∣⌉ different l′ ∈ LlD that ρ(ϕ′, ω′, t, l′) > 0.

Therefore, we have (ω′, t, l) ⊧ φ.

- When op = max, ρ(Cop
D ϕ

′ ∼ c, ω, t, l) = maxl′∈Ll
D

{ρ(ϕ,ω, t, l′)}. Let l′ be the location that

ρ(ϕ,ω, t, l′) achieves maximum, we have ρ(ϕ′, ω, t, l′) ≥ ρ(Cop
D ϕ

′ ∼ c, ω, t, l) > ∣∣ω − ω′∣∣∞. By the

inductive rule, ρ(ϕ′, ω′, t, l′) > 0. Therefore, we have (ω′, t, l) ⊧ φ.

- When op = min, ρ(Cop
D ϕ

′ ∼ c, ω, t, l) = minl′∈Ll
D

{ρ(ϕ,ω, t, l′)}. We have for every l′ ∈ LlD,

ρ(ϕ′, ω, t, l′) ≥ ρ(Cop
D ϕ

′ ∼ c, ω, t, l) > ∣∣ω − ω′∣∣∞. By the inductive rule, We have for every l′ ∈ LlD
that ρ(ϕ′, ω′, t, l′) > 0. Therefore, we have (ω′, t, l) ⊧ φ.

In summary, the qualitative value indicates if the signal (i.e. city data) satisfies the requirement.

The quantitative value indicates the satisfaction or dissatisfaction degree. If it is larger or equal than

zero, it means that the requirement is satisfied. The larger the value is, the more the requirement is

satisfied. On the contrary, if the value is smaller than zero, it means the requirement is not satisfied.

The smaller the value is, the more the requirement is dissatisfied.

6.4 Efficient Monitoring for SaSTL

In this section, we first present both Boolean and quantitative monitoring algorithms for SaSTL,

then describe two optimization methods to speed up the monitoring performance.
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(1) (2)

Figure 6.2: 2-dimension city data over spatial and temporal domains. ( (1) shows the noise level over
a period of time and across multiple locations, x: location, y: time (s), z: noise (dB), (2) shows the
matrix of the data, each row is a time-series data from one location and each column is a set of data
from all locations at one time-stamp. )

6.4.1 Monitoring Algorithms for SaSTL

The inputs of the monitor are the SaSTL requirements ϕ (including the time t and location l), a

weighted undirected graph G and the temporal-spatial data ω. In smart cities, the data on city

states is collected continuously or periodically. It is a 2-dimension data, as illustrated in Figure 6.2.

Figure 6.2 (1) shows the noise level over a period of time and across multiple locations, x, y, and z

axes indicate the location, time, and noise, respectively. Figure 6.2 (2) shows the matrix of the data,

each row is a time-series data from one location and each column is a set of data from all locations

at one time-stamp. In Figure 6.2 (1), the points above the plane violate the requirements and the

amount over the plane represents the level of violation.

For the Boolean monitoring algorithm, the output for each requirement is a Boolean value indicating

whether the requirement is satisfied or not. For the quantitative monitoring algorithm (Algorithm 6.4),

the output for each requirement is a number indicating the satisfaction degree of the requirement. To

start with, the monitoring algorithm parses ϕ to sub-formulas and calculates the satisfaction for each

operation recursively. We derived operators ◻ and ◊ from UI , and operators ⧈ and � from Cop
D ∼ c,

so we only show the algorithms for UI and Cop
D ∼ c.

We present the quantitative monitoring algorithms of the operators Aop
D and Cop

D in Algorithm 6.5

and Algorithm 6.6, respectively. We apply distributed parallel algorithm deScan() [127] to accelerate

the process of searching locations that satisfy D. As we can tell from the algorithms, essentially,

Aop
D calculates the aggregated values on the signal over a spatial domain, while Cop

D calculates the
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Algorithm 6.1: SaSTL Boolean monitoring algorithm MonitorB(ϕ,ω, t, l,G)
Input : SaSTL Requirement ϕ, Signal ω, Time t, Location l, weighted undirected graph G
Output :Boolean Satisfaction Value
begin

switch ϕ do
Case x ∼ c

return πx(ω)[t, l] ∼ c;
Case ¬ϕ

return ¬ MonitorB (ϕ,ω, t, l,G);
Case ϕ1 ∧ ϕ2 ▷ *[r]See Alg. 6.7 for an update

return MonitorB (ϕ1, ω, t, l,G) ∧ MonitorB (ϕ2, ω, t, l,G)
Case ϕ1UIϕ2

Boolean f := True;
for t′ ∈ (t + I) ∩ T do

if Monitor(ϕ2, ω, t
′, l,G) then

f := True;
for t′′ ∈ [t, t′] do

f := f ∧ Monitor(ϕ1, ω, t
′′, l,G);

if (¬f) then break;
end
if (f) then return True;

end
end
return False;

Case Aop
D
x ∼ c ▷ *[r]See Alg. 6.2

return AggregateB(x, c, op,D, t, l,G);
Case Cop

D
ϕ ∼ c ▷ *[r]See Alg. 6.3 and Alg. 6.8

return CountingNeighboursB(ϕ, c, op,D, t, l,G);
end

end

aggregated results over spatial domain. For the quantitative monitoring algorithm (as presented

in Algorithm 6.4), the output for each requirement is a robustness value indicating its satisfaction

degree. Similar to the Boolean monitoring algorithm, the quantitative monitoring algorithm also

parses ϕ to sub-formulas and calculates the satisfaction for each operation recursively. We present

the outline of quantitative monitoring algorithm in Algorithm 6.4.

The time complexity of monitoring the logical and temporal operators of SaSTL is the same as

STL [128]. The time complexity to monitor classical logical operators or basic propositions such as

¬x, ∧ and x ∼ c is O(1). The time complexity to monitor temporal operators such as ◻I , ◊I , UI is

O(T ), where T is the total number of samples within time interval I. In this chapter, we present

the time complexity analysis for the spatial operators (Lemma 6.1) and the new SaSTL monitoring

algorithm (Theorem 6.3). The total number of locations is denoted by n. We assume that the

positions of the locations cannot change in time (a fixed grid). We can pre-compute all the distances

between locations and store them in an array of range trees [129] (one range tree for each location).

We further denote the monitored formula as φ, which can be represented by a syntax tree, and let ∣φ∣

denote the total number of nodes in the syntax tree (number of operators).

Lemma 6.1 (Complexity of spatial operators). The time complexity to monitor at each location l at
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Algorithm 6.2: AggregateB(x, op,D, ω, t, l,G)
Function AggregateB(x, c, op,D, ω, t, l,G):

begin
Real v := 0; n := 0;
if op == "min" then v ∶= ∞ ;
if op == "max" then v ∶= −∞ ;
Ll
D
∶= deScan(l,G,D)

for l′ ∈ Ll
D
do

if op ∈ {min, max, sum} then
v := op(v, πx(ω)[t, l′]);

end
if op =="avg" then

v := sum(v, πx(ω)[t, l′]);
end
n ∶= n + 1

end
if op == "avg" ∧n ≠ 0 then v ∶= v/n ;
if n == 0 then

return True
else

return v ∼ c;
end

end

time t the satisfaction of a spatial operator such as ⧈D, �D, Aop
D , and Cop

D is O(log(n) + ∣L∣) where L

is the set of locations at distance within the range D from l.

Proof. According to [129], the time complexity to retrieve a set of nodes L with a distance to a

desired location in a range D from a location l is O(log(n) + ∣L∣). The aggregation and counting

operations of Algorithm 6.2 and Algorithm 6.3 can be performed while the locations are retrieved.

Theorem 6.3. The time complexity of the SaSTL monitoring algorithm is upper-bounded by O(∣φ∣ ×

Tmax × (log(n) + ∣L∣max)) where Tmax is the largest number of samples of the intervals considered in

the temporal operators of φ and ∣L∣max is the maximum number of locations defined by the spatial

temporal operators of φ.

Proof. Following Lemma 6.1, by considering Tmax the worst possible number of samples that we

need to consider for all possible intervals of temporal operators present in the formula, and ∣L∣max for

the worst possible number of locations that we need to consider for all possible intervals of spatial

operators present in the formula. When there are two or more operators nested, the time complexity

for one operation is bounded by O(Tmax (log(n) + ∣L∣max)). As there are ∣φ∣ nodes in the syntax

tree of φ, the time complexity of the SaSTL monitoring algorithm is bounded by the summation over

all ∣φ∣ nodes, which is O(∣φ∣ Tmax (log(n) + ∣L∣max)).
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Algorithm 6.3: CountingNeighboursB(x, op,D, ω, t, l,G)
begin

Real v ∶= 0; n ∶= 0
if op == "min" then v ∶= ∞ ;
if op == "max" then v ∶= −∞ ;
Ll
D
∶= deScan(l,G,D)

for l′ ∈ Ll
D
do

if Monitor(ϕ,ω, t, l,G) ∧ op ∈ {min, max, sum} then
v := op(v,1);

end
if Monitor(ϕ,ω, t, l,G) ∧ op =="avg" then

v := sum(v,1);
end
n ∶= n + 1

end
if op == "avg" ∧n ≠ 0 then v ∶= v/n ;
if n == 0 then

return True
else

return v ∼ c;
end

end

6.4.2 Optimizing SaSTL Parsing

To monitor a requirement, the first step is parsing the requirement to a set of sub formulas with their

corresponding spatial-temporal ranges. Then, we calculate the results for the sub-formulas. The

traditional parsing process of STL builds and calculates the syntax tree on the sequential order of the

formula. It does not consider the complexity of each sub-formula. However, in many cases, especially

with the PoIs specified in smart cities, checking the simpler propositional variable to quantify the

spatial domain first can significantly reduce the number of temporal signals to check in a complicated

formula. For example, the city abstracted graph in Figure 6.3, the large nodes represent the locations

of PoIs, among which the red ones represent the schools, and blue ones represent other PoIs. The

small black nodes represent the locations of data sources (e.g. sensors). Assuming a requirement

⧈([0,+∞),School) ◻[a,b] (Aop
([0,d],⊺])ϕ ∼ c) requires to aggregate and check ϕ only nearby schools (i.e.,

the red circles), but it will actually check data sources of all nearby 12 nodes if one is following

the traditional parsing algorithm. In New York City, there are about 2000 primary schools, but

hundreds of thousands of PoIs in total. A very large amount of computing time would be wasted in

this way.

To deal with this problem, we now introduce a monitoring cost function cost ∶ Φ × L ×GL → R+,

where Φ is the set of all the possible SaSTL formulas, L is the set of locations, GL is the set of all

the possible undirected graphs with L locations. The cost function for ϕ is defined as:
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Algorithm 6.4: SaSTL quantitative monitoring algorithm MonitorQ(ϕ,ω, t, l,G)
Input : SaSTL Requirement ϕ, Signal ω, Time t, Location l, weighted undirected graph G
Output : Satisfaction Value ρ
begin

switch ϕ do
Case x ∼ c

return πx(ω)[t, l] − c;
Case ¬ϕ

return- MonitorQ(ϕ,ω, t, l,G);
Case ϕ1 ∧ ϕ2

return min(MonitorQ(ϕ1, ω, t, l,G),
MonitorQ(ϕ2, ω, t, l,G));

Case ϕ1UIϕ2
Real v ∶= −∞
for t′ ∈ (t + I) ∩ T do

v′ ∶= MonitorQ(ϕ2, ω, t
′, l,G)

for t′′ ∈ [t, t′] do
v′ ∶= min{v′,MonitorQ(ϕ2, ω, t

′′, l,G)}
end
v = max{v, v′}

end
return v;

Case Aop
D
x ∼ c ▷ See Alg. 6.5.

return AggregateQ(x, c, op,D, t, l,G);
Case Cop

D
ϕ ∼ c ▷ See Alg. 6.6.

return CountingNeighboursQ(ϕ, c, op,D, t, l,G);
end

end

Figure 6.3: An example of city abstracted graph. A requirement is ⧈([0,+∞),School)◻[a,b](Aop
([0,d],⊺)ϕ ∼ c)

(The large nodes represent the locations of PoIs, among which the red ones represent the schools,
and blue ones represent other PoIs. The small black nodes represent the locations of data sources.)

cost(ϕ, l,G) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if ϕ ∶= p ∨ ϕ ∶= x ∼ c ∨ ϕ ∶= True

1 + cost(ϕ1, l,G) if ϕ ∶= ¬ϕ1

cost(ϕ1, l,G) + cost(ϕ2, l,G) if ϕ ∶= ϕ1 ∗ ϕ2,∗ ∈ {∧,UI}

∣LlD ∣ if ϕ ∶= Aop
D x ∼ c

∣LlD ∣cost(ϕ1, l,G) if ϕ ∶= Cop
D ϕ1 ∼ c
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Algorithm 6.5: AggregateQ(x, op,D, ω, t, l,G)
begin

Real v := 0; n := 0;
if op == "min" then v ∶= ∞ ;
if op == "max" then v ∶= −∞ ;
Ll
D
∶= deScan(l,G,D)

for l′ ∈ Ll
D
do

if op ∈ {min, max, sum} then
v := op(v, πx(ω)[t, l′]);

end
if op =="avg" then

v := sum(v, πx(ω)[t, l′]);
end
n ∶= n + 1

end
if n == 0 then return ∞;
if op == "avg" ∧n ≠ 0 then return v/n − c ;
if op == "sum" ∧n ≠ 0 then return (v − c)/n ;
else return v − c;

end

Algorithm 6.6: CountingNeighboursQ(x, op,D, ω, t, l,G)
begin

Real n ∶= 0, List s ∶= Null;
Ll
D
∶= deScan(l,G,D)

for l′ ∈ Ll
D
do

s.add(Monitor(ϕ,ω, t, l′,G))
n ∶= n + 1

end
if n == 0 then return ∞;
else

switch op do
Case max

return s.max()
Case min

return s.min()
Case sum

return s.max(round(c))
Case avg

return s.max(round(c × n))
end

end
end

Using the above function, the cost of each operation is calculated before “switch ϕ” (refer to

alg:sastlQuanti). The cost function measures how complex it is to monitor a particular SaSTL

formula. This can be used when the algorithm evaluates the ∧ operator and it establishes the order

in which the sub-formulas should be evaluated. The simpler sub-formula is the first to be monitored,

while the more complex one is monitored only when the other sub-formula is satisfied. We update

monitor(ϕ1 ∧ϕ2, ω) in Algorithm 6.7. With this cost function, the time complexity of the monitoring

algorithm is reduced to O(∣φ∣ × Tmax × (log(n) + ∣L′∣max)), where ∣L′∣ is the maximal number of

locations that an operation is executed with the improved parsing method. The improvement is

significant for city requirements, where ∣L′∣max < 100 × ∣L∣max.
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Algorithm 6.7: Satisfaction of (ϕ1 ∧ ϕ2, ω)
case ϕ1 ∧ ϕ2 do

return Monitor(ϕ1, ω, t, l,G) ∧ Monitor(ϕ2, ω, t, l,G);
if cost(ϕ1, l,G) ≤ cost(ϕ2, l,G) then

if ¬ Monitor(ϕ1, ω, t, l,G) then
return Monitor(ϕ2, ω, t, l,G);

end
return True;

end
if ¬ Monitor(ϕ2, ω, t, l,G) then

return Monitor(ϕ1, ω, t, l,G);
end
return True;

end

6.4.3 Parallelization

In traditional STL monitor algorithm, the signals are checked sequentially. For example, to see if

the data streams from all locations satisfy ⧈D ◻[a,b] ϕ in Figure 6.3, usually, it would first check the

signal from location 1 with ◻[a,b]ϕ, then location 2, and so on. At last, it calculates the result from

all locations with ⧈D. In this example, checking all locations sequentially is the most time-consuming

part, and it could reach over 100 locations in the field.

To reduce the computing time, we parallelize the monitoring algorithm in the spatial domain. To

briefly explain the idea: instead of calculating a sub-formula (◻[a,b]ϕ) at all locations sequentially,

we distribute the tasks of monitoring independent locations to different threads and check them in

parallel. (Algorithm 6.8 presents the parallel version of the spatial counting operator CD.) To start

with, all satisfied locations l′ ∈ LlD are added to a task pool (a queue). In the mapping process, each

thread retrieves monitoring tasks (i.e., for li,◻[a,b]ϕ) from the queue and executes them in parallel.

All threads only execute one task at one time and is assigned a new one from the pool when it finishes

the last one, until all tasks are executed. Each task obtains the satisfaction of Monitor(ϕ,ω, t, l,G)

function, and calculates the local result vi of operation op(). The reduce step sums all the parallel

results and calculates a final result of op().

Lemma 6.2. The time complexity of the parallelized algorithm Monitor(φ, ω) is upper bounded by

O(∣φ∣Tmax(log(n) + ∣L∣max
P

)) when distributed to P threads.

In general, the parallel monitor on the spatial domain reduces the computational time significantly.

It is very helpful to support runtime monitoring and decision making, especially for a large number

of requirements to be monitored in a short time. In practice, the computing time also depends on

the complexity of temporal and spatial domains as well as the amount of data to be monitored. A
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Algorithm 6.8: Parallelization of Counting of (x, op,D, ω, t, l,G)
Function CountingNeighbours(ϕ, op,D, ω, t, l,G):

begin
paratasks = Queue();
for l′ ∈ Ll

D
do

paratasks.add(l);
end
results = Queue();
for i in 1..NumThreads do

Threadi ← worker(ϕ,ω, t,G);
end
Wait();
return op(results);

end

Function worker (ϕ,ω, t,G):
begin

Real v ∶= 0;
if op == "min" then v ∶= ∞; ;
if op == "max" then v ∶= −∞; ;
while Num(tasks)>0 do

l = paratasks.pop();
moni = Monitor(ϕ,ω, t, l,G);
v = op(v, moni);

end
results.add(v)

end

Figure 6.4: Interface of the SaSTL monitoring tool

comprehensive experimental analysis of the time complexity is presented in Section 6.7.

6.5 Tool for the SaSTL Monitor

We develop a user-friendly prototype tool for the SaSTL monitor that can support decision making of

different stakeholders in smart cities. The interface and flowchart of the tool are shown in Figure 6.4.

The tool allows users (e.g., city decision maker, citizens) without any formal method background to

check the city performance (data) with their own requirements easily in four steps.

Step 1: selecting the monitoring city and PoI. To start with, users select the areas (such as a city,

or a particular area of the city) to monitor, then choose the important labels that a requirement is

involved with, such as, schools, parks, theaters, etc. Once selected, the important points of interest
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(PoIs) are shown on the map. This helps users define and verify the monitoring locations. If a

location or label is not included, users are also able to add them with their GPS coordinates. The

map displays the locations of the specified labels and sensors. Users can enlarge the map to check

the distribution of sensors and PoIs and revise the requirements accordingly.

Step 2: setting up the city data interface. The data of the city states collected from sensors across

temporal and spatial domains are introduced to the monitor in the Data section. For the offline

monitoring, users can specify the data location of each variable on the computer. For runtime

monitoring, the sensing data continuously come into the computer, the data interface of which can

be set up in this section.

Step 3: specifying the city safety requirements. As the next important step, users specify all

requirements in the requirement section. Users first select the template and then choose/fill in the

essential part using the structured template language. To be noted, the entities and spatial ranges

correspond to the available data variables and PoIs inputs from the areas and data sections.

We define a series of templates using structured language learning from the existing city requirements,

as shown in Figure 6.5. The goal of these templates is to help and inspire users to specify requirements

precisely. These templates are adequate to represent all the example requirements given in Table 6.1

as well as the total set of 1,000 quantitatively-defined requirements. We define the templates in a

recursive way. T is a template, and T1 and T2 are instances of T. The elements in T are optional, i.e.

< > can be defined as blank, indicating this element is not applicable or default in this requirement.

For example, an environmental requirement is written as, “The <average> <air quality> within

<1> mile of all <parks> should <always> be <above> <good>." The duration is interpreted as

always (default) and there is no condition element. To convert a structured requirement to SaSTL,

we extract the pre-defined key elements and translate them to the SaSTL formula following the rules.

Meanwhile, users are also able to use the advanced features to input the city requirements in the

format of the SaSTL formal formulas directly.

T:= The <aggregation operator> <entity> within <d> miles (from <a>th mile to <b>th mile) of <spatial
operator> <PoIs> should <temporal operator> be <compare> <parameter> within <t> hours (from <m>th hour
to <n>th hour / on <date> day).

T:= If T1, then T2.

T:= It is prohibited that T1.

T:= T1 and/until/except T2.

Figure 6.5: Templates to specify city requirements
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(1) Air Quality in Chicago (2) Traffic in New York City

Figure 6.6: Display of the Monitoring Results on the Maps (The green circle represents the location
satisfied the requirement and the red circle represents the location violates the requirement; the size
of the circle represents the degree of satisfaction or violation.)

Step 4: runtime monitoring. With all the data and requirements well defined, users can start the

monitor in order to check if the incoming data from the smart city satisfies the requirements. The

results are displayed with a Boolean value indicating if the requirement is satisfied and a robustness

value indicating how much the requirement is satisfied or violated. In addition, the map also displays

the monitor results visually. Two examples are shown in Figure 6.6. The first one is monitoring

an air quality requirements of high schools in Chicago, and the second one is monitoring a traffic

requirement in New York City. The green circle represents the location satisfied the requirement and

the red circle represents the location violates the requirement; the size of the circle represents the

degree of satisfaction or violation. Users can zoom in and out the map to focus on a specific area or

check the overall performance as needed (See Figure 6.6 (2)).

In summary, we defined templates helping users to specify requirements to the SaSTL formal formulae.

We believe these templates can not only help users to convert the requirement from English to formal

formulae, they are also helpful for users to write the requirements much more specifically and precisely.

The templates defined in this chapter are not sufficient to cover all the city requirements, especially

the new requirements coming with more and more smart services being developed. However, the

approach that using structured language to specify requirements proposed in this chapter is general

and effective. Also, the templates are easily extended to adapt to new requirements.

We envision this tool can be used by different stakeholders, including but not limited to,
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• City managers and decision makers: In the city operating center, with city data collected in

real time, the Tool is able to help city managers and decision makers to monitor the data

at runtime. It also helps the city center to detect conflicts, and provide support for decision

makers by showing the trade-offs of satisfaction degrees among potential solutions.

• City planners : City planners, either from the government to make long-term policies or from a

company to make a short-term event plan, they are able to use the Tool to verify the past city

data with their requirements and make plans to prevent the violations.

• Service designers: Smart services are designed by different stakeholders including the govern-

ment, companies and private parties, they are not aware of all the other services. However,

with the monitor, they can test the influence of their services on the city and adjust the services

to better serve the city.

• Everyday citizens : The tool can also provide a service to the everyday citizens. Citizens without

any technical background are able to specify their own requirements and check them with

the city data to find out in which areas of the city and period of the day their requirements

are satisfied, and make plans about their daily life. For example, a citizen can specify an

environmental requirement with his/her preferred air quality index and traffic conditions, and

check the city data with the requirements and make up travelling agenda accordingly.

The use of the tool and surveys of stakeholders on its use is beyond the scope of this dissertation,

but it could be accomplished in the future if it is used in a real city.

6.6 Coverage Analysis

We compare the specification coverage on 1000 quantitatively-specified real city requirements between

STL, SSTL, STREL and SaSTL. The study is conducted by graduate students following the rules

that if the language is able to specify the whole requirement directly with one single formula, then it

is identified as True. To be noted, another spatial STL, SpaTeL is not considered as a baseline here,

because it is not applicable to most of city spatial requirements. SpaTeL is built on a quad tree, and

able to specify directions rather than the distance.

As shown in Figure 6.7, STL is only able to specify 184 out of 1000 requirements, while SSTL and

STREL are able to formalize 431 requirements. SaSTL is able to specify 950 out of 1000 requirements.
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Figure 6.7: Comparison of the Specification Coverage on 1000 Real City Requirements

In particular, we made the following observations from the results. First, 50 requirements cannot be

specified using any of the four languages because they are defined by complex math formulas that

are ambiguous with missing key elements, relevant to the operations of many variables, or referring

to a set of other requirements, e.g. “follow all the requirements from Section 201.12”, etc. Secondly,

SSTL, STREL and SaSTL outperformed STL in terms of requirements with spatial ranges, such

as “one-mile radius around the entire facility”; Third, SSTL and STREL have the same coverage on

the requirements that only contain a temporal and spatial range. Comparing to SSTL and SaSTL,

STREL can also be applied to dynamic graph and check requirements reachability, which is very

useful in applications like wireless sensor networks, but not common in smart city requirements;

Fourth, the rest of the requirements (467 out of 1000) measure the aggregation of a set of locations,

which can only be specified using SaSTL.

6.7 Evaluation

We evaluate the SaSTL monitor by applying it to three big city application scenarios, New York,

Chicago, and Aarhus. We provide the information of three application scenarios in Table 6.3, including

the area, data information (type, source, number of sensor nodes, time period and sampling rates),

domains, monitoring variables, smart services, and evaluation metrics and baselines. Figure 6.8

presents the partial maps of three cities, where the locations of PoIs and sensors are marked. The

experiments are evaluated on a server machine with 20 CPUs, each core is 2.2GHz, and 4 Nvidia

GeForce RTX 2080Ti GPUs. The operating system is Centos 7.
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(1) Chicago (2) Aarhus (3) New York

Figure 6.8: Partial Maps of Chicago, Aarhus and New York with PoIs and sensors annotated. (The
black nodes represent the locations of sensors, red nodes represent the locations of hospitals, dark
blue nodes represent schools, light blue nodes represent parks and green nodes represent theaters.)

Table 6.3: Information of Three Application Scenarios

Chicago New York Aarhus
Area (km2) 606 60 91.1
Data Type Real-time States Real-time Predicted States Real-time States

Data Sources Real Sensors Simulated Sensors and
Actuators

Number of
Locations 118 10,000 499

Time Period 2017.01-2019.05 - 2014.8-2014.10
Sampling Rate 1 min 10 seconds 1min

Application
Domain

Environment, Public
Safety

Environment,
Transportation, Events,
Emergencies, Public Safety

Environment,
Transportation, Events

Variables CO, NO, O3, Visible
light, Crime Rate

CO, NO, O3, PMx, Noise,
Traffic, Pedestrian, Signal
Lights, Emergency
Vehicles, Accidents

Traffic, pollution, weather,
parking, cultural event,
library events

6.7.1 Runtime Monitoring of Real-Time Requirements in Chicago

We apply SaSTL to monitor the real-time requirements in Chicago. The framework is the same as

shown in Figure 6.1, where we first formalize the city requirements to SaSTL formulas and then

monitor the city states with the formalized requirements. Chicago is collecting and publishing city

environment data (e.g., CO, NO, O3, visible light) every day since January, 2017 [110]. In our

evaluation, we emulate the Chicago data as it arrives in real time, i.e. assuming the city was operating

with our SaSTL monitor. Specifically, we monitor data from 118 locations between January, 2017

and May, 2019. In addition, we incorporate the Chicago crime rate data published by the city of

Chicago [130]. The sampling rates of sensors vary by locations and variables (e.g., CO is updated
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Figure 6.9: Number of Requirements Checked on Different Computing Time (x: the number of
requirements, y: the number of threads, bars: different periods of computing time)

every few seconds, and the crime rate map is updated by events), so we normalize the data frequency

as one minute. Then we specify 80 safety and performance requirements that are generated from the

real requirements, and apply the SaSTL to monitor the data every 3 hours continuously to identify

the requirement violations.

Table 6.4: Safety and Performance Requirements for Chicago

Requirement SaSTL

R1

The average air quality within 5km of all schools
should always be above Moderate in the next 3
hours.

⧈
([0,+∞),School) ◻[0,3] (Aavg

([0,5],⊺)
xair > Moderate)

R2
The worst air quality all over the city should be
better than Very Unhealthy all time. Amax

D
xair > VeryUnhealthy

R3
The average air quality within 3 km of the park
should be better than Good. ⧈D ◻

[0,3] (Aavg
[0,3]

xair > Good) ∧ Park

R4

If the weather is rainy (average humidity within
3 km of a park >50), then the average air quality
within 3 km of the park should be better than
Unhealthy for Sensitive Groups.

⧈D ◻
[0,3] (Aavg

[0,3]
xhumidity > 0.5→ Aavg

[0,3]
xair > 3) ∧ Park

R5
The minimal light level should be larger than Mod-
erate within 3km of a theatre. ⧈D ◻

[0,3] (Amin
[0,3]

xlight > Moderate) ∧Theatre

R6
For the blocks with a high crime rate, the average
light level within 3 km should always be High.

⧈
([0,+∞),⊺) ◻[0,3] (xCrime >= High→ Aavg

([0,3],⊺)
xLight >=

High)

Valuable information is identified from the monitor results of different periods during a day. We

randomly select 30 days of weekdays and 30 days of weekends. We divide the daytime of a day

into 4 time periods and 3 hours per time period. We calculate the percentage of satisfaction (i.e.,

number of satisfied requirement days divides 30 days) for each time period, respectively. The results

of six example requirements R1 to R6 are shown in Figure 6.10. The SaSTL monitor results can be

potentially used by different stakeholders.

First, with proper requirements defined, the city decision makers are able to identify the real problems

and take actions to resolve or even avoid the violations in time. For example, we could see over 20%

of the time the requirements are missed everyday. Based on the monitoring results of requirement
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Figure 6.10: Evaluation for Chicago

R1, decision makers can take actions to redirect the traffic near schools and parks to improve the air

quality. Another example of requirement R6, the satisfaction is much higher (up to 33% higher in

R6, 8pm - 11pm) over weekends than workdays. There are more people and vehicles on the street on

weekends, which as a result also increases the lighted areas. However, as shown in the figure, the city

lighting in the areas with high crime rate is only 60%. An outcome of this result for city managers is

that they should pay attention to the illumination of workdays or the areas without enough light to

enhance public safety.

Second, it gives the citizens the ability to learn the city conditions and map that to their own

requirements. They can make decisions on their daily living, such as the good time to visit a park. For

example, requirement R1, 11am - 2pm has the lowest satisfaction rate of the day. The instantaneous

air quality seems to be fine during rush hour, but it has an accumulative result that affects citizens’

(especially students and elderly people) health. A potential suggestion for citizens who visit or

exercise in the park is to avoid 11am - 2pm. Additionally, the satisfaction rates are more time

sensitive for a local area, like a school and park, but tend to be similar within the day for the overall

city (R2). Furthermore, the best air quality over the city is in the evening of the weekends, which is

a good time for citizens to take a walk outdoors.

We count the average monitoring time taken by each requirement when monitoring for 3-hour data.

Then, we divide the computing time into 5 categories, i.e., less than 1 second, 1 to 10 seconds, 10 to
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Table 6.5: Safety and Performance Requirements for New York City

Requirement SaSTL

NYR1

The average noise level in the school area (within
1km) should always be less than 50dB in the next
30min.

⧈
([0,+∞),School) ◻[0,30] (Aavg

([0,1],⊺)
xNoise < 50)

NYR2

If an accident happens, at least one of the nearby
hospitals (within 5km), its traffic condition within
2km should not reach the level of congestion in the
next 60 min.

⧈
([0,+∞),⊺)(Accident→
C
([0,5],Hospital)(◻[0,60](Aavg

([0,2],⊺)
x < Congestion)) >

0)

NYR3

If there is an event, the max number of pedestrians
waiting at an intersection should not be greater
than 50 for more than 10 minutes.

⧈
([0,+∞),⊺)(Event→ ◻

[0,10](Amax
([0,1],⊺)

xped < 50))

NYR4
At least 90% of the streets, the PMx emission
should not exceed Moderate in 60 min.

Cavg
([0,+∞),⊺)

(◻
[0,60](Amax

([0,1],⊺)
xPMx < Moderate)) >

0.9

NYR5

If an accident happens, it should be solved within
60 min, and before that nearby (500 m) traffic
should be above moderate on average and safe in
worst case.

⧈
([0,+∞),⊺)(Accident→ (Aavg

([0,500],⊺)
xtraffic <

Moderate ∧Amax
([0,500],⊺)

xtraffic <
Safe)U

[0,60]¬Accident)

60 seconds, 60 to 120 seconds, and longer than 120 seconds, and count the number of requirements

under each category under the conditions of standard parsing, improved parsing with single thread,

4 threads, and 8 threads. The results are shown in Figure 6.9. Comparing the 1st (standard

parsing) and 4th (8 threads) bar, without the improved monitoring algorithms, for about 50% of the

requirements, each one takes more than 2 minutes to execute. The total time of monitoring all 80

requirements is about 2 hours, which means that the city decision maker can only take actions to

resolve the violation at earliest 5 hours later. However, with the improved monitoring algorithms,

for 49 out of 80 requirements, each one of them is executed within 60 seconds, and each one of

the rest requirements is executed within 120 seconds. The total execution time is reduced to 30

minutes, which is a reasonable time to handle as many as 80 requirements. More importantly, it

illustrates the effectiveness of the parsing function and parallelization methods. Even if there are

more requirements to be monitored in a real city, it is doable with our approach by increasing the

number of processors.

6.7.2 Runtime Conflict Detection and Resolution in Simulated New York

The framework of runtime conflict detection and resolution [131, 38] considers a scenario where smart

services send action requests to the city center, and where a simulator predicts how the requested

actions change the current city states over a finite future horizon of time. Then it checks the predicted

states against city requirements. If the requirements are satisfied, the requested actions will be

approved to execute in the city. If there exists a requirement violation within the future horizon, a

conflict is detected. CityResolver will be applied to resolve the conflicts. Details of the resolution are

not the main part of this chapter, please refer to the previous chapter. Note that with the conflicts
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detected and resolved, the city’s future states will be affected. In this paper, we apply the SaSTL

monitor to specify requirements with spatial aggregation and check the predicted spatial-temporal

data with the SaSTL formulas.

Figure 6.11: Applying the SaSTL Monitor to the Conflict Detection and Resolution Architecture in
New York City

We set up a smart city simulation of New York City using the Simulation of Urban MObility (SUMO)

[99] with the traffic pattern (vehicle in-coming rate of key streets) from real city data [100], on

top of which, we implement 10 services (S1: Traffic Service, S2: Emergency Service, S3: Accident

Service, S4: Infrastructure Service, S5: Pedestrian Service, S6: Air Pollution Control Service, S7:

PM2.5/PM10 Service, S8: Parking Service, S9: Noise Control Service, and S10: Event Service). The

real-time states (including CO, NO, O3, PMx, Noise, Traffic, Pedestrian Number, Signal Lights,

Emergency Vehicles, and Accident number) from the domains of environment, transportation, events

and emergencies are obtained from about 10,000 simulated nodes. Then, we apply the STL Monitor

as the baseline to compare the capability of requirement specification and the ability to improve

city performance. We simulate the city running for 30 days with sampling rate as 10 seconds in

two control sets, one without any monitor and one with the SaSTL monitor. For the first set (no

monitor), there is no requirement monitor implemented. For the second one (SaSTL monitor), five

examples of different types of real-time requirements and their formalized SaSTL formulas are given

in Table 6.5.

The results are shown in Table 6.6. We measure the city performance from the domains of trans-

portation, environment, emergency and public safety using the following metrics, the total number of

violations detected (i.e., the total number of safety requirements violated during the whole simulation

time), the average CO (mg) emission per street, the average noise (dB) level per street, the emergency

vehicles waiting time per vehicle per intersection, the average number and waiting time of vehicles

waiting in an intersection per street, and the average pedestrian waiting time per intersection.

We make some observations by comparing and analyzing the monitoring results.
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Table 6.6: Comparison of the City Performance with the STL Monitor and the SaSTL Monitor

No Monitor SaSTL Monitor
Number of Violation Unknown 173
Air Quality Index 67.91 40.18
Noise (db) 73.32 41.42
Emergency Waiting Time (s) 20.32 11.88
Vehicle Waiting Number 22.7 12.6
Pedestrian Waiting Time (s) 190.2 61.1
Vehicle Waiting Time (s) 112.12 59.22

Table 6.7: Computing time of requirements with standard parsing function, with improved parsing
functions and different number of threads

Standard Parsing (s) 1 thread (s) 4 threads (s) 8 threads (s)
NYR1 2102.13 140.29 50.31 26.12
NYR2 55.2 0.837 1.023 0.912
NYR3 69.22 22.25 7.54 4.822
NYR4 390.19 390.19 100.23 53.32
NYR5 61.76 61.76 20.25 15.68
Total 2678.5 615.32 179.35 100.85

First, the SaSTL monitor obtains a better city performance with fewer number of violations detected

under the same scenario. As shown in Table 6.6, on average, the framework of conflict detection and

resolution with the SaSTL monitor improves the air quality by 40.8%, and improves the pedestrian

waiting time by 47.2% comparing to the one without a monitor.

Second, the SaSTL monitor reveals the real city issues, helps refine the safety requirements in real time

and supports improving the design of smart services. We also compare the number of violations on

each requirement. The results (Figure 6.12 (1)) help the city managers to measure city’s performance

with smart services for different aspects, and also help policymakers to see if the requirements are

too strict to be satisfied by the city and make a more realistic requirement if necessary. For example,

in our 30 days simulation, apparently, NYR4 on air pollution is the one requirement that is violated

by most of the smart services. Similarly, Figure 6.12 (2) shows the number of violations caused by

different smart services. Most of the violations are caused by S1, S5, S6, S7, and S10. The five

major services in total cause 71.3% of the violations. City service developers can also learn from

these statistics to adjust the requested actions, the inner logic and parameters of the functions of

the services, so that they can design a more compatible service with more acceptable actions in the

city.

We compare the average computing time for each requirement under four conditions, (1) using the

standard parsing algorithm without the cost function, (2) improved parsing algorithm with a single

thread, (3) improved parsing algorithm with spatial parallelization using 4 threads and (4) using 8

threads. The results are shown in Table 6.7.
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(1) Requirements (2) Smart Services

Figure 6.12: Distributions of the violations over requirements and smart services

Figure 6.13: Comparisons of Satisfaction Rate on AR1 to AR5

From the results we observe that, first, the improved parsing algorithm reduces the computing time

significantly for the requirement specified on PoIs, especially for NYR1 that computing time reduces

from 2102.13 seconds to 140.29 seconds (about 15 times). Second, the parallelization over spatial

operator further reduces the computing time in most of the cases. For example, for NYR1, the

computing time is reduced to 26.12 seconds with 8 threads while 140.29 seconds with single thread

(about 5 times). When the amount of data is very small (NYR2), the parallelization time is similar

to the single thread time, but still much more efficient than the standard parsing.

The results demonstrate the effectiveness and importance of the efficient monitoring algorithms. The

total time of monitoring 5 requirements is reduced from 2678.5 seconds to 100.85 seconds. In the

real world, when multiple requirements are monitored simultaneously, the improvement is extremely

important for real-time monitoring.

6.7.3 Evaluation for Aarhus

In this case study, we monitor the past data of events and states from Aarhus to show how the SaSTL

monitor helps to understand the effects caused by events and therefore aids in decision making for city

events. We utilize 60 days (August to September 2014) of Aarhus city data collected simultaneously

across the domains of transportation (e.g., traffic volume, parking), events (e.g., cultural events and
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library events) and the environment (generated pollution and weather). All the data were collected

from 449 observation points and published by CityPulse [132]. Data was collected with different

sampling rates (e.g., the traffic data were aggregated by 5 minutes and events data were recorded

by the event time), thus for the monitoring purpose, we normalize the data frequency as 5 minutes.

Five safety and performance requirements and their corresponding SaSTL statements are presented

with a high demand for aggregations specified for Aarhus in Table 6.8. Basically, AR1 to AR5 specify

that when there is an event, there is a different level of safety requirements on the traffic under

different circumstances. For example, AR2 focuses on the areas nearby an event, AR3 focuses on the

safety of school with an event, and R4 considers the effects from extreme weather conditions. AR5

has a big picture on all schools across the city when a large cultural event is happening.

Table 6.8: Safety and Performance Requirements for Aarhus

Requirement SaSTL

AR1
If there is an event, the traffic level nearby should
always be better than Moderate. Event→ ⧈D ◻

[0,3] xtraffic > Moderate

AR2

If there is an event, the average traffic level nearby
should always be better than Moderate and the
maximum traffic level nearby should be better than
Safe.

Event→ ⧈D ◻
[0,3] (Aavg

([0,1],⊺)
xtraffic >

Moderate ∧Amax
([0,1],⊺)

xtraffic > Safe)

AR3

If there is an event, the average traffic near the
school (3km) should always be better than Moderate
and the maximum traffic level should be better than
Heavy.

Event→ ⧈D ◻
[0,3] (Aavg

([0,1],⊺)
xtraffic >

Moderate ∧Amax
([0,1],⊺)

xtraffic > Heavy) ∧ School

AR4

If there is an event and the weather is rainy or
snowy heavily, the average traffic level around school
should be better than Heavy

Event ∧Humidity > 50%→
⧈D ◻

[0,3] (Aavg
([0,1],⊺)

xtraffic > Heavy) ∧ School

AR5

With big cultural events going on the city, over
the city, 80% schools’ average traffic volume nearby
(3km) should always be better than Moderate.

Event→ CD ◻
[0,3] (Aavg

([0,1],⊺)
xtraffic >

Moderate) ∧ School > 80%

The monitoring results from Aarhus are shown in Figure 6.13. The percentage of satisfaction equals

to the number of requirement satisfied days divided by 60 days. The following are observations on

the requirements and monitoring results.

• Comparing the monitoring results on AR1 and AR2, AR1 has a much lower satisfaction rate.

It also leads to a higher and reliable satisfaction rate.

• Comparing to AR2, for the same events, AR3 moves its focus on the area nearby schools. The

results, however, are lower than AR2. It means that events have more influence on the school

areas, which should draw attention from the city managers. Students should reduce or avoid

activities during this time when there is an event going on nearby.

• During 11am to 2pm, the overall performance on all five requirements are worst, even less than

50%. It is actually the time period right after a morning event or before an afternoon event.
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The monitoring results help the city managers have a better view of the distribution of effects

from events.

• We also find that the satisfaction rate is very high (almost 100%) after 8pm. The reasons for

that are the schools are usually closed at that time, and most of cultural and library events

happen during the day. In other cities or events, the distribution will be different. However,

the SaSTL monitor is general enough to help citizens and managers detect it.

The evaluation on Aarhus shows how the SaSTL monitor helps the city to understand the effects

on the city from events and make better plans for events. Usually, areas with an event get caught

up in complicated situations, such as paralyzed traffic, long queues with a large amount of people,

emergencies and accidents. Therefore, playing back and analyzing the city data during events is

extremely important for cities to avoid emergency situations for future events.

6.8 Summary

In this chapter, we present a novel Spatial Aggregation Signal Temporal Logic to specify and to

monitor requirements of smart cities at runtime. We develop an efficient monitoring framework

that optimizes the requirement parsing process and can check in parallel a SaSTL requirement over

multiple data streams generated from thousands of sensors that are typically spatially distributed

over a smart city. SaSTL is a powerful specification language for smart cities because of its capability

to monitor the city desirable features of temporal (e.g., interval), spatial (e.g., PoIs, range) and their

complicated relations (e.g. always, everywhere, aggregation) between them. More importantly, it

can coalesce many requirements into a single SaSTL formula and provide the aggregated results

efficiently, which is a major advance on what smart cities do now. The development of 5G and 6G

could better support the monitoring and communication among sensors, services and the city center.

We believe it is a valuable step towards developing a practical smart city monitoring system even

though there are still open issues for future work. Furthermore, SaSTL monitor can also be easily

generalized and applied to monitor other large-scale IoT deployments at runtime efficiently. In the

future, we will explore its capability to specify and monitor other properties and requirements (e.g.,

security and privacy).



Chapter 7

Logic Calibrated Uncertainty

Predictive monitoring concerns the problem of (continuously) making predictions about future states

and monitoring if the predicted states satisfy or violate requirements. Predictive monitoring offers a

promising paradigm in supporting the decision making of Cyber-Physical Systems (CPS), for example,

reducing an automated insulin delivery system’s dosage if a potentially dangerous hypoglycemic

condition is predicted, and adapting a traffic control system’s signaling if traffic congestion due to car

accidents or inclement weather is forecast. On the one hand, various machine learning and statistical

analysis techniques (e.g., neural networks, ARIMA) have been popularly applied to predict future

states of CPS across different application domains, such as predicting glucose levels for artificial

pancreas systems [133], predicting takeover reaction time for automated vehicles [134], forecasting air

quality [103], fire risk [135], and frost damage [136] in smart cities. On the other hand, there have been

great efforts over the past decades devoted to develop runtime monitoring techniques and tools. For

example, a survey of specification (e.g., Signal Temporal Logic (STL) [137]) based runtime monitoring

of CPS is provided in [67]. Nevertheless, research on predictive monitoring that addresses challenges

arisen from combining these two aspects has received scant attention until very recently. Existing

works of predictive monitoring (e.g., [57, 59]) mostly focus on monitoring individual predictions

rather than sequential predictions. A more recent work [66] considers STL-based monitoring for

predictions made from statistical time-series analysis, assuming that a joint probability distribution

of predictions over multiple time-points can be estimated.

In this chapter, we develop a novel approach for monitoring sequential predictions generated from

127
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Bayesian Recurrent Neural Networks (RNN) models. RNN-based sequential prediction has been

widely used in CPS applications (e.g., [138, 139]). Many commonly used RNN models (e.g., LSTM)

are deterministic, which generate the same sequence of predictions given the same set of historical

states. A key challenge is how to generate and monitor predictions that can capture the inherent

uncertainty in CPS (e.g., due to sensing noise, human interactions). We study two real-world

CPS datasets to analyze the uncertainty characteristics and implications on predictive monitoring.

Insights from our study show that (i) deterministic RNN models are not suitable for representing the

significant uncertainty exhibited in CPS, and (ii) there is a need for developing new monitors for

checking sequential predictions with high uncertainty.

To address the first insight, we apply stochastic regularization techniques (SRTs) [80] to cast

deterministic RNNs as Bayesian RNNs, which adapt deterministic sequential predictions as a

sequence of posterior probability distributions to estimate the uncertainty. We formally define a

flowpipe signal to represent uncertain sequential predictions generated by Bayesian RNNs. The

projection of a flowpipe for a single time-point is a confidence interval induced from a Gaussian

distribution, which includes values of all possible sequences predicted by the Bayesian RNN. A larger

confidence interval indicates a higher level of uncertainty about the prediction.

To address the second insight, we propose a new logic named Signal Temporal Logic with Uncertainty

(STL-U). Existing temporal logic based monitors (e.g., STL and its variants) mostly focus on

deterministic signals and cannot be directly applied for monitoring an infinite set of sequences

contained in a flowpipe. Several recent works (e.g., [69, 70, 71, 72]) extend STL with stochastic

predicates to reason about uncertainty. Our approach differs from these previous works fundamentally.

Instead of reasoning about the probability of satisfying a predicate, STL-U checks a flowpipe signal

containing an infinite set of sequences. For example, consider a STL-U formula ◻[0,2]AQIε=95% < 50,

which represents the requirement “the predicted Air Quality Index under 95% confidence level should

never exceed 50 in the next two hours”. We develop a STL-U monitor that checks if all (resp. some)

sequences contained in the predicated flowpipe satisfy the requirement, which we call STL-U strong

(resp. weak) satisfaction. In addition, we equip the STL-U monitor with the capability to answer

queries such as “Under what confidence level, the predicated flowpipe is guaranteed to strongly

(weakly) satisfy the STL-U formula?” It is particularly useful to compute such confidence guarantees

when users do not know a priori about the level of prediction uncertainty.

Furthermore, the quality of predictive monitoring results depends on the uncertainty estimated from



Logic Calibrated Uncertainty 129

Bayesian RNNs, which varies based on the choice of uncertainty estimation schemas (e.g., SRTs and

dropout rates). In the current practice, an uncertainty estimation schema is often selected empirically

or guided by traditional deep learning metrics (e.g., mean square error, negative log-likelihood, KL

divergence), which tend to over-estimate the uncertainty level [140, 82]. In addition, these metrics

treat the uncertainty estimation of each individual value in a predicted sequence separately, and

thus lack an integrated view about the uncertainty of the sequence. To address this limitation,

we develop novel criteria that leverage STL-U monitoring results to select and tune uncertainty

estimation schemas. Such STL-U criteria can help to calibrate the uncertainty estimates for predictive

monitoring.

We compare STL-U criteria with state-of-the-art baselines via experimental evaluation on real-world

CPS datasets. The results are very promising: STL-U criteria outperform all six baselines in terms

of F1-scores comparing STL-U monitoring results for the predicted and target sequences. In addition,

experiments also show that STL-U uncertainty calibration is compatible with different types of RNN

models.

Finally, we evaluate the STL-U based predictive monitoring approach via a simulated smart city case

study with 10 smart services and 390 requirements. Experiment results demonstrate the efficiency of

the approach. In one case, it only takes around 281 seconds to monitor 130,000 predicted flowpipes.

Moreover, our approach can better support decision making in the simulated smart city. The

simulation results show that our approach improves various city performance metrics (e.g., emergency

waiting time, vehicle waiting number) significantly when compared with two baselines.

Contributions. We summarize the major contributions of this chapter as follows.

• We develop a novel STL-U based predictive monitoring approach for CPS, which continuously

monitors uncertain sequential predictions about future states generated by Bayesian RNN

models.

• We create novel STL-U criteria for calibrating uncertainty estimation in Bayesian deep learning.

• We evaluate the proposed approach via real-world smart city datasets and a simulated smart

city case study, which show encouraging results.



7.1 Motivating Study 130

7.1 Motivating Study

In this section, we study the following real-world smart city datasets as motivating examples to analyze

uncertainty characteristics and to discuss implications on predictive monitoring for CPS.

1. Air quality dataset [103] collected by Microsoft Research from 437 air quality monitoring

stations in China during the period of 5/1/2014 to 4/30/2015, which includes 2,891,393 records

of air quality index (AQI).

2. Traffic volume dataset [100] collected by the NYC Department of Transportation from 1,490

street segments in the New York City during the period of 9/13/2014 to 4/5/2018, which

includes 514,776 records of traffic volume count.

Uncertainty characteristics. Wemade the following observations by analyzing these datasets.

• Significant uncertainty exists in smart cities and the uncertainty level varies across different

locations. As an illustrative example, Figure 7.1 shows 10-hour data segments taken from three

different stations in the air quality dataset. We preprocessed the raw data by averaging the data

within an hour and performing a uniform quantization [141]. Figure 7.1 plots data segments

with the same prefixes (i.e., the same average AQI levels) for the first five hours. However,

these data segments show significant uncertainty in the suffixes. The light shadows in the figure

cover the entire data range, and the dark shadows represent the range of 95% percentile 1 of the

corresponding normal distribution at a time. A larger range of 95% percentile indicates a higher

level of data uncertainty. Thus, Figure 7.1 shows that station 1 has the highest uncertainty

level, followed by station 2 and station 3.

• The data uncertainty level is affected by the pre-knowledge (i.e., the prefix length of data

segments). As an illustrative example, Figure 7.2 plots 10-hour data segments taken from the

same location in the traffic volume dataset. We preprocessed the data by averaging the traffic

volume counts within an hour and performing a logarithmic quantization [141]. Figure 7.2

shows that, as the length of common data segment prefixes increases (i.e., more pre-knowledge

about the data), the uncertainty level reduces.

The uncertainty in CPS data could arise from many sources, such as noise from the sensing data

(e.g., reading errors, faults, anomalies), the environment (e.g., unexpected weather or events like
1We utilize 95% percentile because it is commonly used to represent the majority of the population distributed [142].
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Figure 7.1: The uncertainty level varies across different stations in the air quality dataset.

Figure 7.2: The uncertainty level varies for different pre-knowledge (prefix lengths) in the traffic
volume dataset.

accidents), and human behaviors (e.g., interventions from human operators), to name a few. Thus,

predictive monitoring for CPS should account for the impact of uncertainty.

Implications on predictive monitoring. We discuss how the uncertainty in CPS would affect

predictive monitoring from two aspects: (i) prediction, and (ii) monitoring.

First, existing deterministic prediction models (e.g., RNNs) mostly forecast future states based on

historical states. Given the same historical data, a deterministic model always yields the same

prediction about future states. However, as discussed above, real-world CPS data exhibits significant

uncertainty. For example, Figure 7.1 illustrates that data segments with the same average AQI

levels for the first five hours can lead to a diverse range of trends for the following five hours. Thus,

deterministic prediction models are not suitable to capture the uncertainty in CPS data. There

is a need for developing new techniques that can predict future states with appropriate levels of

uncertainty.

Second, existing works (e.g., [38]) have applied Signal Temporal Logic (STL) to specify and monitor

city requirements. For example, a requirement that “the AQI level within 10 hours should always

be below certain threshold λ” can be specified with a STL formula ◻[0,10](AQI < λ), where ◻ is the
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Table 7.1: Number of satisfying data segments for each STL formula.

STL formulas λ = 50 λ = 51 λ = 70 λ = 75 λ = 80

◻[0,10]AQI < λ 2,807 2,895 3,614 4,011 4,443
◊[0,10]AQI < λ 6,670 6,731 7,304 7,408 7,493
AQI < 150 U[0,10] AQI < λ 5,558 5,613 6,030 6,169 6,230
◻[0,10]Traffic < λ 1,241 1,359 3,090 3,332 3,532
◊[0,10]Traffic < λ 4,220 4,283 4,546 4,563 4,598

Figure 7.3: Overview of STL-U based predictive monitoring approach.

temporal logical operator representing “always” and λ is a parameter (e.g., λ = 50 for good air quality).

Table 7.1 shows five example STL formulas, with the first three representing city requirements about

AQI and the last two representing city requirements about traffic volume. We applied a STL monitor

to check how many 10-hour data segments of a selected location in the air quality and traffic volume

datasets satisfy these STL formulas with varying parameter values of λ. We observe from Table 7.1

that the STL monitoring results can be very sensitive to the change of λ values. For example, the

number of satisfying data segments for ◊[0,10](AQI < λ) increases by 61 (from 6,670 to 6,731) when

the λ value only increases by 1 (from 50 to 51), and goes up 85 (from 7,408 to 7,493) when the λ

value increases from 75 to 80. Even though the differences also vary by the type of requirements, the

amount is still too large to ignore. From the perspective of the data, it shows that a small difference

of the data could completely change the monitoring results. However, it is impossible to predict the

data with 100% accuracy due to the existence of uncertainty in CPS, which makes the monitoring

results less effective to support decision making. It also indicates that the existing monitors are not

suitable for data with high uncertainty. Therefore, there is a need for developing new monitors that

can check the prediction results accounting for the uncertainty.

7.2 Approach Overview

We develop a novel predictive monitoring approach for CPS, as illustrated in Figure 7.3, to address

limitations discussed in the previous section. Our approach adopts Bayesian RNN models to predict



7.3 STL-U Monitor 133

future states (e.g., AQI in next 2 hours) based on historical data (e.g., AQI in the past 5 hours).

By contrast to deterministic prediction models that output a single sequence of predicted values,

Bayesian RNN models generate a sequence of distributions to capture the uncertainty of predicted

future states, which are represented by a range of potential values under a given confidence level at

each time-point. We propose a new logic named Signal Temporal Logic with Uncertainty (STL-U)

and develop a STL-U monitor to check such uncertain sequential predictions generated by Bayesian

RNN models. STL-U is expressive enough to specify CPS requirements with uncertainty confidence

levels. For example, a STL-U formula ◻[0,2]AQIε=95% < 50 represents the requirement “the predicted

AQI under 95% confidence level should never exceed 50 in the next two hours”. The STL-U monitor

checks if all or some possible sequences of future states predicted by the Bayesian RNN model satisfy

the requirement, which we call strong and weak satisfaction relations. When the confidence level is

unspecified in a formula (e.g., ◻[0,2]AQIε=? < 50), we can also use STL-U monitor to compute the range

of confidence levels under which the predicted flowpipe is guaranteed to strongly or weakly satisfy

a requirement. In addition, we develop novel criteria (loss functions) based on STL-U monitoring

results to calibrate the uncertainty estimation in Bayesian deep learning.

At training time (the flow marked by orange dash-lines in Figure 7.3), the proposed approach

automatically selects and tunes an optimal uncertainty estimation schema based on STL-U criteria.

As we will discuss in Section 7.4, such uncertainty calibration is an essential step to guarantee the

quality of predictive monitoring, in order to better support decision making of CPS. At runtime

(the flow marked by the blue lines in Figure 7.3), the proposed approach runs as a continuous

iterative process to monitor the predicted future states. Considering the predictive monitoring of

AQI in a smart city, for example, at time t, the proposed approach first predicts the AQI for the

future 3 hours from time t and monitors if the predictions satisfy the requirements; after a period

∆t (e.g., 30 minutes), it predicts the AQI for the future 3 hours from t + ∆t and checks if the

new predictions satisfy the requirements. In this way, the proposed approach provides continuous

predictive monitoring of future states to support decision making of CPS.

7.3 STL-U Monitor

As described in the previous section, our approach adopts Bayesian RNN models to make sequential

predictions about uncertain future states. We propose a Signal Temporal Logic with Uncertainty

(STL-U) to monitor such uncertain sequential predictions. We introduce STL-U syntax and semantics
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in Section 7.3.1, STL-U quantitative semantics in Section 7.3.2 and present methods to compute

STL-U confidence guarantees in Section 7.3.3.

7.3.1 STL-U Syntax and Semantics

We formally define a new type of signals called flowpipes2 to represent uncertain sequential predictions

generated by Bayesian RNN models. We describe more details about Bayesian RNN models and

uncertainty estimation later in Section 7.4.

Definition 7.1 (Flowpipe). A single-variable flowpipe Ω is defined over a finite discrete time domain

T such that Ω[t] = Φt at any time t ∈ T and Φt is a Gaussian distribution N(θt, σ2
t ). Let ω ∶ {Ω}n

be a (multi-variable) flowpipe signal, where n = ∣X ∣ is the size of a finite set of (independent) real

variables X. Each variable x ∈ X has a corresponding flowpipe ωx whose value at time t follows a

Gaussian distribution Φt, denoted by ωx[t] = Φt.

Given a confidence level ε ∈ (0,1) ⊆ R, a single-variable flowpipe Ω at time t is bounded by a

confidence interval [Φ−
t (ε),Φ+

t (ε)] with the lower bound Φ−
t (ε) = θt − δ ⋅ σt√

N
and the upper bound

Φ+
t (ε) = θt + δ ⋅ σt√

N
, where N is the number of samples that the Gaussian distribution is estimated

from, and δ is a function δ = F −1( ε
2
) with F denoting the CDF of the standard normal distribution

N(0,1) [142]. In the special case where the Gaussian distribution’s variance is σt = 0, a flowpipe

signal becomes a single trace because the lower and upper bounds of the confidence interval coincide

(i.e., Φ−
t (ε) = Φ+

t (ε) = θt). Given a (multi-variable) trace ω̄ and a flowpipe ω over the same set of real

variables X, we say that ω̄ belongs to ω, denoted by ω̄ ∈ ω, if ω̄x[t] ∈ [Φ−
t (ε),Φ+

t (ε)] for all x ∈X and

t ∈ T, where [Φ−
t (ε),Φ+

t (ε)] is the confidence interval of flowpipe ωx under confidence level ε.

Definition 7.2 (STL-U Syntax). A STL-U formula ϕ over a flowpipe signal ω is given by

ϕ ∶= µx(ε) ∣ ¬ϕ ∣ ϕ1 ∧ ϕ2 ∣ ◻I ϕ ∣ ◊Iϕ ∣ ϕ1 UI ϕ2

where µx(ε) is an atomic predicate over variable x with confidence level ε, whose value is determined by

µx(ε) ≡ f(x) > 0 with a continuous function f(x) about flowpipe ωx under confidence level ε. Temporal

operators ◻I , ◊I and UI with a time interval I ⊆ T represent (bounded) “always”, “eventually”, and

“until”, respectively.
2To be noted, here we use the concept of flowpipes but define it in a new way.
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Figure 7.4: An example flowpipe under the confidence level ε.

Figure 7.5: An example function f(x).

We define the semantics of a flowpipe signal ω satisfying a STL-U formula ϕ at time t by two indices:

strong satisfaction, denoted by (ω, t) ⊧s ϕ; and weak satisfaction, denoted by (ω, t) ⊧w ϕ.

Definition 7.3. STL-U strong satisfaction semantics.

(ω, t) ⊧s µx(ε) ⇔ ∀x ∈ [Φ−
t (ε),Φ+

t (ε)], f(x) > 0

(ω, t) ⊧s ¬ϕ ⇔ (ω, t) /⊧w ϕ

(ω, t) ⊧s ϕ1 ∧ ϕ2 ⇔ (ω, t) ⊧s ϕ1 and (ω, t) ⊧s ϕ2

(ω, t) ⊧s ◻Iϕ ⇔∀t′ ∈ (t + I), (ω, t′) ⊧s ϕ

(ω, t) ⊧s ◊Iϕ ⇔∃t′ ∈ (t + I), (ω, t′) ⊧s ϕ

(ω, t) ⊧s ϕ1UIϕ2 ⇔∃t′ ∈ (t + I) ∩T, (ω, t′) ⊧s ϕ2 and ∀t′′ ∈ (t, t′), (ω, t′′) ⊧s ϕ1
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Definition 7.4. STL-U weak satisfaction semantics.

(ω, t) ⊧w µx(ε) ⇔ ∃x ∈ [Φ−
t (ε),Φ+

t (ε)], f(x) > 0

(ω, t) ⊧w ¬ϕ ⇔ (ω, t) /⊧s ϕ

(ω, t) ⊧w ϕ1 ∧ ϕ2 ⇔ (ω, t) ⊧w ϕ1 and (ω, t) ⊧w ϕ2

(ω, t) ⊧w ◻Iϕ ⇔∀t′ ∈ (t + I), (ω, t′) ⊧w ϕ

(ω, t) ⊧w ◊Iϕ ⇔∃t′ ∈ (t + I), (ω, t′) ⊧w ϕ

(ω, t) ⊧w ϕ1UIϕ2 ⇔∃t′ ∈ (t + I) ∩T, (ω, t′) ⊧w ϕ2 and ∀t′′ ∈ (t, t′), (ω, t′′) ⊧w ϕ1

To be noted, the negation of strong satisfaction is equivalent to weak violation, and the negation of

weak satisfaction is equivalent to strong violation. Intuitively, strong satisfaction means that all values

bounded within the confidence interval of a flowpipe should satisfy the STL-U formula, while weak

satisfaction means that there exist some value within the confidence interval of a flowpipe satisfying

the STL-U formula. In CPS applications, strong satisfaction relations can be used for monitoring

strict requirements (e.g., safety), while weak satisfaction relations can be used for monitoring soft

constraints (e.g., energy consumption).

Figure 7.4 shows an example flowpipe signal under the confidence level ε, representing predictions

from time t to t + c. At a time-point t1, the flowpipe follows a Gaussian distribution Φt1 with the

mean of θt1 and is bounded by a confidence interval [Φ−
t1(ε),Φ

+
t1(ε)]. This flowpipe signal strongly

satisfies STL-U formula ◻(0,a)(xε < λ) at time t, because the flowpipe signal values bounded within

the confidence interval from time t to t + a are all below the threshold λ (see the left green zone in

Figure 7.4). Consider another STL-U formula ◻(b,c)(xε < λ). As shown in Figure 7.4 (yellow zone in

the right), the flowpipe’s confidence interval is entirely above the threshold λ at time t2, partially

below λ at time t3, and entirely below λ at time t4. Therefore, the flowpipe neither strongly nor

weakly satisfies the STL-U formula ◻(b,c)(xε < λ) at time t.

Theorem 7.1 (Strength relation theorem). If a flowpipe ω strongly satisfies a STL-U formula ϕ at

time t, then the weak satisfaction relation also holds. On the other hand, if the flowpipe ω does not
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weakly satisfy a STL-U formula ϕ at time t, then it would also not strongly satisfy ϕ. Formally,

(ω, t) ⊧s ϕ ⇒ (ω, t) ⊧w ϕ

(ω, t) /⊧w ϕ ⇒ (ω, t) /⊧s ϕ

Proof. We just need to prove (ω, t) ⊧s ϕ⇒ (ω, t) ⊧w ϕ by structural induction below. By contraposi-

tion, we have ((ω, t) /⊧w ϕ⇒ (ω, t) /⊧s ϕ) ⇔ ((ω, t) ⊧s ϕ⇒ (ω, t) ⊧w ϕ).

• Base case µx: by Definition 7.3, (ω, t) ⊧s ϕ⇔∀x ∈ [Φ−
t (ε),Φ+

t (ε)], f(x) > 0, it indicates that

∃x ∈ [Φ−
t (ε),Φ+

t (ε)], f(x) > 0⇔ (ω, t) ⊧w ϕ.

• Inductive case ¬ϕ: from inductive hypothesis (ω, t) ⊧s ϕ ⇒ (ω, t) ⊧w ϕ (and consequently

((ω, t) /⊧w ϕ⇒ (ω, t) /⊧s ϕ), we need to prove that (ω, t) ⊧s ¬ϕ⇒ (ω, t) ⊧w ¬ϕ.

We have (ω, t) ⊧s ¬ϕ⇔ (ω, t) /⊧w ϕ⇒ (ω, t) /⊧s ϕ⇔ (ω, t) ⊧w ¬ϕ.

• Inductive case ϕ1 ∧ ϕ2: from inductive hypothesis (ω, t) ⊧s ϕ1 ⇒ (ω, t) ⊧w ϕ1 and (ω, t) ⊧s

ϕ2 ⇒ (ω, t) ⊧w ϕ2, we need to prove that (ω, t) ⊧s ϕ1 ∧ ϕ2 ⇒ (ω, t) ⊧w ϕ1 ∧ ϕ2.

By Definition 7.3 and Definition 7.4, we have (ω, t) ⊧s ϕ1 ∧ ϕ2 ⇔ (ω, t) ⊧s ϕ1 ∧ (ω, t) ⊧s ϕ2 ⇒

(ω, t) ⊧w ϕ1 ∧ (ω, t) ⊧w ϕ2 ⇔ (ω, t) ⊧w ϕ1 ∧ ϕ2.

• Inductive case ◻Iϕ: from inductive hypothesis (ω, t) ⊧s ϕ⇒ (ω, t) ⊧w ϕ, we need to prove that

(ω, t) ⊧s ◻Iϕ⇒ (ω, t) ⊧w ◻Iϕ.

By Definition 7.3 and Definition 7.4, we have (ω, t) ⊧s ◻Iϕ⇔∀t′ ∈ (t + I), (ω, t′) ⊧s ϕ, which

indicates that ∀t′ ∈ (t + I), (ω, t′) ⊧w ϕ⇔ (ω, t) ⊧w ◻Iϕ.

• Inductive case ◊Iϕ: from inductive hypothesis (ω, t) ⊧s ϕ⇒ (ω, t) ⊧w ϕ, we need to prove that

(ω, t) ⊧s ◊Iϕ⇒ (ω, t) ⊧w ◊Iϕ.

By Definition 7.3 and Definition 7.4, we have (ω, t) ⊧s ◊Iϕ⇔∃t′ ∈ (t + I), (ω, t′) ⊧s ϕ, which

indicates that ∃t′ ∈ (t + I), (ω, t′) ⊧w ϕ⇔ (ω, t) ⊧w ◊Iϕ.

• Inductive case ϕ1UIϕ2: from inductive hypothesis (ω, t) ⊧s ϕ1 ⇒ (ω, t) ⊧w ϕ1 and (ω, t) ⊧s

ϕ2 ⇒ (ω, t) ⊧w ϕ2, we prove that (ω, t) ⊧s ϕ1UIϕ2 ⇒ (ω, t) ⊧w ϕ1UIϕ2.
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By Definition 7.3 and Definition 7.4, we have (ω, t) ⊧s ϕ1UIϕ2 ⇔ ∃t′ ∈ (t + I) ∩ T, (ω, t′) ⊧s

ϕ2 and ∀t′′ ∈ (t, t′), (ω, t′′) ⊧s ϕ1, which indicates that ∃t′ ∈ (t + I) ∩T, (ω, t′) ⊧w ϕ2 and ∀t′′ ∈

(t, t′), (ω, t′′) ⊧w ϕ1, it is equivalent to (ω, t) ⊧w ϕ1UIϕ2.

Additional properties and examples By applying the rules of the weak/strong semantics for

negation we have that the following properties hold:

(ω, t) ⊧s ¬¬ϕ ⇔ (ω, t) ⊧s ϕ (ω, t) ⊧w ¬¬ϕ ⇔ (ω, t) ⊧w ϕ

By applying the De Morgan’s laws we have the following:

(ω, t) /⊧w ¬ϕ1 ∧ (ω, t) /⊧w ¬ϕ2 ⇔ ¬((ω, t) ⊧w (¬ϕ1 ∨ ¬ϕ2)) ⇔ (ω, t) /⊧w ¬(ϕ1 ∧ ϕ2)

(ω, t) /⊧s ¬ϕ1 ∧ (ω, t) /⊧s ¬ϕ2 ⇔ ¬((ω, t) ⊧s (¬ϕ1 ∨ ¬ϕ2)) ⇔ (ω, t) /⊧s ¬(ϕ1 ∧ ϕ2)

Furthermore, to clarify the duality of the two semantics, we can interpret the weak semantics using

the interval intersection and the strong semantics using the interval inclusion. For example, let us

define as basic propositions: µfx s.t. f(x) = x and µgx s.t. g(x) = −x. Then we have:

(ω, t) ⊧w µfx(ε) ⇔ ∃x ∈ [Φ−
t (ε),Φ+

t (ε)], x > 0 ⇔ [Φ−
t (ε),Φ+

t (ε)] ∩ (0,+∞) ≠ ∅

(ω, t) ⊧w µgx(ε) ⇔ ∃x ∈ [Φ−
t (ε),Φ+

t (ε)], x < 0 ⇔ [Φ−
t (ε),Φ+

t (ε)] ∩ (−∞,0) ≠ ∅

(ω, t) ⊧s µfx(ε) ⇔ ∀x ∈ [Φ−
t (ε),Φ+

t (ε)], x > 0 ⇔ [Φ−
t (ε),Φ+

t (ε)] ⊂ (0,+∞)

(ω, t) ⊧s µgx(ε) ⇔ ∀x ∈ [Φ−
t (ε),Φ+

t (ε)], x < 0 ⇔ [Φ−
t (ε),Φ+

t (ε)] ⊂ (+∞,0)

(ω, t) ⊧w ¬µfx(ε) ⇔ ∃x ∈ [Φ−
t (ε),Φ+

t (ε)], x ≤ 0
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

[Φ−

t (ε),Φ+

t (ε)]∩(−∞,0]≠∅

⇔¬(∀x ∈ [Φ−
t (ε),Φ+

t (ε)], x > 0)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

[Φ−

t (ε),Φ+

t (ε)]⊄(0,+∞)

⇔ (ω, t) /⊧s µfx(ε)

Following the definition of negation for the weak semantics we have that:

(ω, t) ⊧w (µfx(ε) ∧ µgx(ε)) ⇔ (ω, t) /⊧s ¬(µfx(ε) ∧ µgx(ε))

We can show the equivalence consistency using the interval intersection/inclusion interpretation:

(ω, t) ⊧w (µfx(ε) ∧ µgx(ε)) ⇔ (ω, t) ⊧w µfx(ε) ∧ (ω, t) ⊧w µgx(ε)
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(ω, t) ⊧w µfx(ε)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

[Φ−

t (ε),Φ+

t (ε)]∩(0,+∞)≠∅

∧ (ω, t) ⊧w µgx(ε)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

[Φ−

t (ε),Φ+

t (ε)]∩(−∞,0)≠∅

⇔ (ω, t) /⊧s ¬µfx(ε)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

[Φ−

t (ε),Φ+

t (ε)]⊄(−∞,0]

∧ (ω, t) /⊧s ¬µgx(ε)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

[Φ−

t (ε),Φ+

t (ε)]⊄[0,+∞)

By applying the De Morgan’s laws shown before:

(ω, t) /⊧s ¬µfx(ε) ∧ (ω, t) /⊧s ¬µgx(ε) ⇔ (ω, t) /⊧s ¬(µfx(ε) ∧ µgx(ε))

It is challenging to monitor STL-U strong and weak satisfactions for a flowpipe that contains an

infinite set of sequences. Take the atomic predicate µx(ε) as an example. Based on Definition 7.3, a

flowpipe strongly satisfies µx(ε) iff f(x) > 0 for all x ∈ [Φ−
t (ε),Φ+

t (ε)]. It is computationally expensive

if not infeasible to exhaustively search through the entire confidence interval. In addition, it does

not suffice to only check the lower and upper bounds of the confidence interval when f(x) is a

non-monotonic function. Figure 7.5 shows an example where f(Φ−
t (ε)) > 0 and f(Φ+

t (ε)) > 0, but

there is a x0 ∈ [Φ−
t (ε),Φ+

t (ε)] with f(x0) < 0. We tackle this challenge by computing the minimal

value fmin of f(x) for x ∈ [Φ−
t (ε),Φ+

t (ε)] (e.g., via minimization algorithms in [143]). If fmin > 0,

which implies that f(x) > 0 for all x ∈ [Φ−
t (ε),Φ+

t (ε)], then the flowpipe strongly satisfies µx(ε).

Based on Definition 7.4, a flowpipe weakly satisfies µx(ε) iff there exist some x ∈ [Φ−
t (ε),Φ+

t (ε)] such

that f(x) > 0. For monitoring weak satisfaction, we compute the maximal value fmax of f(x) for

any x ∈ [Φ−
t (ε),Φ+

t (ε)] and check if fmax > 0. We include pseudo code of monitoring algorithms for

STL-U strong and weak satisfactions as Algorithm 7.1 and Algorithm 7.2.

Following Definition 7.1, we use an array of triplets ⟨t, θt, σt⟩, t ∈ T to represent a flowpipe in STL-U

monitoring algorithms. Given θ, σ, and ε, calculating Φ+
t (ε) and Φ−

t (ε) takes a constant time O(1),

which could be further accelerated by caching the intermediate results. The time complexity of

calculating the predicate f(x) > 0 depends on the complexity of f(x) and the selected minimization

algorithms. The time complexity of STL-U monitoring algorithms is similar to STL monitoring

algorithms. Thus, STL-U can be used to monitor complex specifications (e.g., with multiple levels of

nesting temporal operators) via using Algorithm 1 or Algorithm 2 recursively.

7.3.2 Quantitative Semantics.

Let I = [I−, I+] be a real-valued interval with I− ≤ I+ ∈ R. We define a set of arithmetic operators over

intervals: −∗I ≡ [−I+,−I−] for the negation of an interval, min∗{I1, ..., In} ≡ [min{I−1 , ..., I−n},min{I+1 , ..., I+n}]
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Algorithm 7.1: STL-U strong satisfaction monitoring algorithm StrongSat(ϕ,ω, t)
Function StrongSat(ϕ,ω, t):

begin
switch ϕ do

Case µx(ε)
if minimize(f(x),Φ−

t (ε),Φ+

t (ε)) > 0 then
return True ;

else
return False ;

end
Case ¬ϕ

return ¬WeakSat(ϕ,ω, t);
Case ϕ1 ∧ ϕ2

return StrongSat(ϕ,ω, t) ∧ StrongSat(ϕ,ω, t)
Case ◻Iϕ

for t′ ∈ (t + I) do
if ¬StrongSat(ϕ,ω, t′) then

return False;
end

end
return True ;

Case ◊Iϕ
for t′ ∈ (t + I) do

if StrongSat(ϕ,ω, t′) then
return True;

end
end
return False ;

Case ϕ1UIϕ2

for t′ ∈ (t + I) do
if StrongSat(ϕ2, ω, t

′) then
for t′′ ∈ [t, t′] do

if ¬StrongSat(ϕ1, ω, t
′′) then

return False ;
end

end
return True ;

end
end
return False ;

end
end

and max∗{I1, ..., In} ≡ [max{I−1 , ..., I−n},max{I+1 , ..., I+n}] for the minimization and maximization over

a set of intervals {I1, ..., In}, respectively.

We define the quantitative semantics of a multidimensional flowpipe signal ω satisfying a STL-U

formula ϕ as a robustness interval ρ(ϕ,ω, t) as follows.
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Algorithm 7.2: STL-U weak satisfaction monitoring algorithm WeakSat(ϕ,ω, t)
Function WeakSat(ϕ,ω, t):

begin
switch ϕ do

Case µx(ε)
if maximize(f(x),Φ−

t (ε),Φ+

t (ε)) > 0 then
return True ;

else
return False ;

end
Case ¬ϕ

return ¬StrongSat(ϕ,ω, t);
Case ϕ1 ∧ ϕ2

return WeakSat(ϕ,ω, t) ∧WeakSat(ϕ,ω, t)
Case ◻Iϕ

for t′ ∈ (t + I) do
if ¬WeakSat(ϕ,ω, t′) then

return False;
end

end
return True ;

Case ◊Iϕ
for t′ ∈ (t + I) do

if WeakSat(ϕ,ω, t′) then
return True;

end
end
return False ;

Case ϕ1UIϕ2

for t′ ∈ (t + I) do
if WeakSat(ϕ2, ω, t

′) then
for t′′ ∈ [t, t′] do

if ¬WeakSat(ϕ1, ω, t
′′) then

return False ;
end

end
return True ;

end
end
return False ;

end
end

Definition 7.5 (Robustness Interval).

ρ(µx(ε), ω, t) = [minf(x),maxf(x)]

ρ(¬ϕ,ω, t) = −∗ρ(ϕ,ω, t)

ρ(ϕ1 ∧ ϕ2, ω, t) = min∗{ρ(ϕ1, ω, t), ρ(ϕ2, ω, t)}

ρ(◻Iϕ,ω, t) = min∗
t′∈(t,t+I)

ρ(ϕ,ω, t′)

ρ(◊Iϕ,ω, t) = max∗
t′∈(t,t+I)

ρ(ϕ,ω, t′)

ρ(ϕ1UIϕ2, ω, t) = max∗
t′∈(t,t+I)

{min∗{ρ(ϕ2, ω, t
′), min∗

t′′∈(t,t′)
ρ(ϕ1, ω, t

′′)}}
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Figure 7.6: Monitoring ◊[1,3](◻[1,2](xε1 > 6) ∧ ¬(yε2 > 6))

Intuitively, the quantitative semantics checks the upper and lower bound of the flowpipe. For example,

for the always operator ◻I , we calculate the minimum of all discrete values over time interval for

both upper and lower bound of the flowpipe. Similarly, for the until operator UI , to check the

robustness interval of ϕ1 is always satisfied until ϕ2 is satisfied, for each time t′ ∈ (t, t+I) we calculate

the robustness interval of ϕ2 at time t′, and compare it with the minimum robustness interval (i.e.

always) of ϕ1 when t′′ ∈ (t, t′) to get the minimum interval of these two, and finally, we get the

maximum interval of all intervals at time t′ ∈ (t, t + I).

Example 7.1. Figure 7.6 illustrates the processes of calculating the robustness interval for a require-

ment on multiple flowpipes. First, we parse the requirements and assign the time interval for each

condition. Then, from the bottom to the top of the parsing tree as shown in Figure 7.6, We first

obtain the flowpipes of x and y under the confidence level ε1 and ε2, respectively. For example, the

confidence level of x at time t2 is [3,5]. Next, the robustness interval is calculated for each operation.

To check the condition xε1 > 6, we calculate the robustness interval for each time, for example, it is

[-3,-1] at t2. In the end, we obtain the robustness interval as ρ = [−1, 3], which is a weak satisfaction.

Theorem 7.2 (Soundness). Let ϕ be an STL-U formula and ω be a multidimensional flowpipe signal.

Let ρ(ϕ,ω, t) = [ρ−, ρ+] be the robustness interval of ω satisfying ϕ at time t.

ρ−(ϕ,ω, t) > 0⇒ (ω, t) ⊧s ϕ ρ−(ϕ,ω, t) ≤ 0⇒ (ω, t) /⊧s ϕ

ρ+(ϕ,ω, t) > 0⇒ (ω, t) ⊧w ϕ ρ+(ϕ,ω, t) ≤ 0⇒ (ω, t) /⊧w ϕ
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Proof. We prove the first property ρ−(ϕ,ω, t) > 0⇒ (ω, t) ⊧s ϕ by induction:

First we show the soundness property hold for the predicate ϕ ∶= µx(ε). In this case, we have

ρ−(ϕ,ω, t) = f(Φ+
t (ε)). Therefore, if ρ−(ϕ,ω, t) > 0 we have f(Φ+

t (ε)) > 0, that is, (ω, t) ⊧s ϕ.

Case ϕ = ¬ϕ′: We have ρ−(ϕ,ω, t) = −ρ+(ϕ′, ω, t) > 0. Therefore we have ρ+(ϕ′, ω, t) < 0, that is,

(ω, t) /⊧w ϕ′, which is equivalent to (ω, t) ⊧s ϕ by definition.

Case ϕ = ϕ1 ∧ϕ2: We have ρ−(ϕ1 ∧ϕ2, ω, t) = min∗{ρ−(ϕ1, ω, t), ρ−(ϕ2, ω, t)} > 0. Therefore, we have

ρ−(ϕ1, ω, t) > 0 and ρ−(ϕ1, ω, t) > 0. Thus, (ω, t) ⊧s ϕ1 and (ω, t) ⊧s ϕ2. By definition, we have

(ω, t) ⊧s ϕ.

Case ϕ = ϕ1UIϕ2: ρ− = max∗
t′∈(t,t+I)

{min∗{ρ−(ϕ2, ω, t
′), min∗

t′′∈(t,t′)
ρ−(ϕ1, ω, t

′′)}} > 0. We have ∃t′ ∈

(t + I),min∗{ρ−(ϕ2, ω, t
′), min∗

t′′∈(t,t′)
ρ−(ϕ1, ω, t

′′)} > 0. Therefore, ∃t′ ∈ (t + I), ρ−(ϕ2, ω, t
′) > 0 ∧

min∗
t′′∈(t,t′)

ρ−(ϕ1, ω, t
′′) > 0. Thus, it’s equivalent to ∃t′ ∈ (t+I)∩T, (ω, t′) ⊧s ϕ2 and ∀t′′ ∈ (t, t′), (ω, t′′) ⊧s

ϕ1. By definition, we have (ω, t) ⊧s ϕ.

The rest of the three properties can be proved similarly.

If ωε strongly(weakly) satisfies ϕ, any other flowpipe ω′ε of the same length whose point wise distance

(both h̵− and h̵+) from ωε is smaller than ρ also strongly(weakly) satisfies ϕ. We first define the

interval distance of two flowpipes below.

Definition 7.6 (Interval Distance). For any two flowpipes ωε and ω′ε′ , the distance between them is

also defined as, [h̵−, h̵+], where

h̵−(ωε, ω′ε′) = min{∣∣Φε(t)− −Φε(t)−
′

∣∣∞, ∣∣Φε(t)+ −Φε(t)+
′

∣∣∞}

h̵+(ωε, ω′ε′) = max{∣∣Φε(t)− −Φε(t)−
′

∣∣∞, ∣∣Φε(t)+ −Φε(t)+
′

∣∣∞}

Theorem 7.3 (Correctness). Let ϕ be an STL-U formula, ωε a predicted trace with confidence level

ε at time t, and ω′ε′ another predicted trace with confidence level ε′ over the same time domain.
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(ωε, t) ⊧s ϕ and h̵−(ωε, ω′ε′) < ∣ρ−(ϕ,ωε, t)∣ and h̵+(ωε, ω′ε′) < ∣ρ−(ϕ,ωε, t)∣ ⇒ (ω′ε′ , t) ⊧s ϕ

(ωε, t) ⊧w ϕ and h̵−(ωε, ω′ε′) < ∣ρ+(ϕ,ωε, t)∣ and h̵+(ωε, ω′ε′) < ∣ρ+(ϕ,ωε, t)∣ ⇒ (ω′ε′ , t) ⊧w ϕ

Proof. We prove the first property, and the rest of them can be proved by a similar process. By

induction, we have the following cases:

case ϕ ∶= µ: We have ρ−(ϕ,ω′ε, t) = inf(Φε(t)′) ≥ inf(Φε(t)) − h̵−(ωε, ω′ε′) > 0. Therefore, we have

(ω′ε′ , t) ⊧s ϕ.

case ϕ ∶= ¬ϕ′: We have ρ+(ϕ′, ωε, t) = −ρ−(ϕ,ωε, t) < −h̵−(ωε, ω′ε′). Similarly, ρ+(ϕ′, ωε, t) <

−h̵+(ωε, ω′ε′). Therefore, we have (ω′ε, t) /⊧w ϕ′, which means (ω′ε, t) ⊧s ϕ.

case ϕ ∶= ϕ1 ∧ ϕ2: Following the definition, we have (ωε, t) ⊧s ϕ1 and (ωε, t) ⊧s ϕ2. We also have

ρ−(ϕ,ωε, t) = min∗{ρ−(ϕ1, ωε, t), ρ−(ϕ2, ωε, t)} > h̵−(ωε, ω′ε′). Therefore, we have ρ−(ϕ1, ωε, t) >

h̵−(ωε, ω′ε′) and ρ−(ϕ2, ωε, t) > h̵−(ωε, ω′ε′). Similarly, we have ρ−(ϕ1, ωε, t) > h̵+(ωε, ω′ε′) and

ρ−(ϕ2, ωε, t) > h̵+(ωε, ω′ε′). Therefore, by induction we have (ωε′ , t) ⊧s ϕ1 and (ωε′ , t) ⊧s ϕ2. Finally,

we have (ωε′ , t) ⊧s ϕ

7.3.3 STL-U Confidence Guarantees

It may not always be possible for users to specify a confidence level for a flowpipe a priori. It is

therefore useful to query about, under what confidence level, a flowpipe is guaranteed to strongly

(weakly) satisfy a STL-U formula. We present methods to compute such confidence guarantees as

follows.

Let εs(ϕ,ω, t) and εw(ϕ,ω, t) denote the range of confidence levels that guarantee a flowpipe signal ω

strongly and weakly satisfying a STL-U formula ϕ at time t, respectively. Let εcs (resp. εcw) denotes

the complement set of εs (resp. εw) within the interval (0,1).
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Definition 7.7. Confidence guarantees for STL-U strong satisfaction.

εs(µx, ω, t) = (0,∫
θt+η

θt−η
Φt(x)dx) ,where η = inf {∣x − θt∣ ∣ f(x) ≤ 0}

εs(¬ϕ,ω, t) = εcw(ϕ,ω, t)

εs(ϕ1 ∧ ϕ2, ω, t) = εs(ϕ1, ω, t) ∩ εs(ϕ2, ω, t)

εs(◻Iϕ,ω, t) = ⋂
t′∈(t+I)

εs(ϕ,ω, t′)

εs(◊Iϕ,ω, t) = ⋃
t′∈(t+I)

εs(ϕ,ω, t′)

εs(ϕ1UIϕ2, ω, t) = ⋃
t′∈(t+I)

⎧⎪⎪⎨⎪⎪⎩
εs(ϕ2, ω, t

′) ∩ ( ⋂
t′′∈(t,t′)

εs(ϕ1, ω, t
′′))

⎫⎪⎪⎬⎪⎪⎭

Definition 7.8. Confidence guarantees for STL-U weak satisfaction.

εw(µx, ω, t) = (∫
θt+η

θt−η
Φt(x)dx,1) , where η = inf {∣x − θt∣ ∣ f(x) > 0}

εw(¬ϕ,ω, t) = εcs(ϕ,ω, t)

εw(ϕ1 ∧ ϕ2, ω, t) = εw(ϕ1, ω, t) ∩ εw(ϕ2, ω, t)

εw(◻Iϕ,ω, t) = ⋂
t′∈(t+I)

εw(ϕ,ω, t′)

εw(◊Iϕ,ω, t) = ⋃
t′∈(t+I)

εw(ϕ,ω, t′)

εw(ϕ1UIϕ2, ω, t) = ⋃
t′∈(t+I)

⎧⎪⎪⎨⎪⎪⎩
εw(ϕ2, ω, t

′) ∩ ( ⋂
t′′∈(t,t′)

εw(ϕ1, ω, t
′′))

⎫⎪⎪⎬⎪⎪⎭

Theorem 7.4. Given a flowpipe signal ω and a STL-U formula ϕ, ω is guaranteed to strongly satisfy

ϕ at time t under a confidence level ε ∈ εs(ϕ,ω, t) computed based on Definition 7.7.

Theorem 7.5. Given a flowpipe signal ω and a STL-U formula ϕ, ω is guaranteed to weakly satisfy

ϕ at time t under a confidence level ε ∈ εw(ϕ,ω, t) computed based on Definition 7.8.
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Proof of Theorem 7.4 and Theorem 7.5. Mathematically, we want to show that for any ω and t,

we have ∀ε ∈ εs(ϕ,ω, t), (ω, t) ⊧s ϕ under confidence level ε, and for any ω and t, we have ∀ε ∈

εw(ϕ,ω, t), (ω, t) ⊧w ϕ under confidence level ε . We prove the Theorem 7.4 and Theorem 7.5

inductively. Since in the definition of the strong definition and weak definitions refer to each other, we

prove them together. We first study whether Theorem 7.4 is satisfied in each case from the definition.

Then, we finish our proof by the axiom of induction. We omit the cases of ◻ and ◊ since they can be

derived from the case of UI .

• When ϕ = µx, we show ∀ω,∀t,∀ε ∈ εs(ϕ,ω, t), (ω, t) ⊧s ϕ.

By Definition 7.7, εs(ϕ,ω, t) = (0, ∫
θt+η
θt−η ϕt(x)dx),where η = inf {∣x − θt∣ ∣ f(x) ≤ 0}. By the

definition of a confidence interval, we have for ε ∈ εs(ϕ,ω, t), Φ+
t (ε) ≤ θt + η and Φ−

t (ε) ≥ θt − η,

which indicates [Φ−
t (ε),Φ+

t (ε)] ⊆ [θt − η, θt + η]. As η = inf {∣x − θt∣ ∣ f(x) ≤ 0}, we have ∀x ∈

[Φ−
t (ε),Φ+

t (ε)], f(x) > 0. Therefore, (ω, t) ⊧s ϕ.

• When ϕ = µx, we show ∀ω,∀t,∀ε ∈ εw(ϕ,ω, t), (ω, t) ⊧w ϕ.

By Definition 7.8, εw(µx, ω, t) = (∫
θt+η
θt−η ϕt(x)dx,1), where η = inf {∣x − θt∣ ∣ f(x) > 0}. By the

definition of confidence interval, we have for ε ∈ εs(ϕ,ω, t), Φ+
t (ε) ≥ θt + η and Φ−

t (ε) ≤ θt − η,

which indicates (θt − η, θt + η) ⊆ [Φ−
t (ε),Φ+

t (ε)]. Since η = inf {∣x − θt∣ ∣ f(x) > 0}, we have

∃x ∈ [Φ−
t (ε),Φ+

t (ε)], f(x) > 0. Therefore, (ω, t) ⊧w ϕ.

• When ϕ = ¬ϕ1, we show ∀ω,∀t,∀ε ∈ εw(ϕ1, ω, t), (ω, t) ⊧w ϕ1 ⇒ ∀ω,∀t,∀ε ∈ εs(ϕ,ω, t),

(ω, t) ⊧s ϕ.

By Definition 7.7, we have εs(¬ϕ,ω, t) = εcw(ϕ1, ω, t). Therefore, ∀ε ∈ εs(¬ϕ,ω, t), we have

ε ∈ εcw(ϕ1, ω, t). Then, by the definition of confidence interval we have (ω, t) /⊧w ϕ1 under ε. By

the Definition 7.3, (ω, t) ⊧s ϕ.

• When ϕ = ¬ϕ1, we show ∀ω,∀t,∀ε ∈ εs(ϕ1, ω, t), (ω, t) ⊧s ϕ1 ⇒ ∀ω,∀t,∀ε ∈ εw(ϕ,ω, t),

(ω, t) ⊧s ϕ.

By Definition 7.8, we have εw(¬ϕ,ω, t) = εcs(ϕ1, ω, t). Therefore, ∀ε ∈ εw(¬ϕ,ω, t), we have

ε ∈ εcs(ϕ1, ω, t). Then, by the definition of confidence interval we have (ω, t) /⊧s ϕ1 under ε. By

the definition 7.4, (ω, t) ⊧w ϕ.
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• (ϕ = ϕ1∧ϕ2)∧(∀ω,∀t,∀ε ∈ εs(ϕ1, ω, t), (ω, t) ⊧s ϕ1)∧(∀ω,∀t,∀ε ∈ εs(ϕ2, ω, t), (ω, t) ⊧s ϕ2) ⇒

∀ω,∀t,∀ε ∈ εw(ϕ,ω, t), (ω, t) ⊧s ϕ.

By Definition 7.7, εs(¬ϕ,ω, t) = εs(ϕ1, ω, t) ∩ εs(ϕ2, ω, t). Therefore, ∀ε ∈ εs(ϕ1 ∧ ϕ2, ω, t), we

have ε ∈ εs(ϕ1, ω, t) and ε ∈ εs(ϕ2, ω, t). Then we have (ω, t) ⊧s ϕ1 under ε and (ω, t) ⊧s ϕ2

under ε, which indicates (ω, t) ⊧w ϕ by Definition 7.3.

• When ϕ = ϕ1∧ϕ2, we show (∀ω,∀t,∀ε ∈ εw(ϕ1, ω, t), (ω, t) ⊧w ϕ1)∧(∀ω,∀t,∀ε ∈ εs(ϕ2, ω, t), (ω, t) ⊧w

ϕ2) ⇒ ∀ω,∀t,∀ε ∈ εw(ϕ,ω, t), (ω, t) ⊧w ϕ.

By Definition 7.8, εw(¬ϕ,ω, t) = εw(ϕ1, ω, t) ∩ εw(ϕ2, ω, t). Therefore, ∀ε ∈ εw(ϕ1 ∧ϕ2, ω, t), we

have ε ∈ εw(ϕ1, ω, t) and ε ∈ εw(ϕ2, ω, t). Then we have (ω, t) ⊧w ϕ1 under ε and (ω, t) ⊧w ϕ2

under ε, which indicates (ω, t) ⊧w ϕ by Definition 7.4.

• When ϕ = ϕ1UIϕ2, we show (∀ω,∀t,∀ε ∈ εs(ϕ1, ω, t), (ω, t) ⊧s ϕ1) ∧ (∀ω,∀t,∀ε ∈ εs(ϕ2, ω, t),

(ω, t) ⊧s ϕ2) ⇒ ∀ω,∀t,∀ε ∈ εs(ϕ,ω, t), (ω, t) ⊧s ϕ.

By Definition 7.7, we have εs(ϕ1UIϕ2, ω, t) = ⋃
t′∈(t+I)

{εs(ϕ2, ω, t
′) ∩ ( ⋂

t′′∈(t,t′)
εs(ϕ1, ω, t

′′))}. There-

fore, for ε ∈ εs(ϕ1UIϕ2, ω, t), we have ∃t′ ∈ (t + I), ε ∈ εs(ϕ2, ω, t
′) ∩ ( ⋂

t′′∈(t,t′)
εs(ϕ1, ω, t

′′)).

Therefore, for this t′ we have ε ∈ εs(ϕ2, ω, t
′) and ∀t′′ ∈ (t, t′), ε ∈ εs(ϕ1, ω, t

′′)). By the induc-

tive assumption, we have (ω, t′) ⊧s ϕ2 and ∀t′′ ∈ (t, t′), (ω, t′′) ⊧s ϕ1. Finally, by definition

Definition 7.3, we have (ω, t) ⊧s ϕ1UIϕ2.

• When ϕ = ϕ1UIϕ2, we show (∀ω,∀t,∀ε ∈ εw(ϕ1, ω, t), (ω, t) ⊧w ϕ1)∧(∀ω,∀t,∀ε ∈ εw(ϕ2, ω, t), (ω, t) ⊧w

ϕ2) ⇒ ∀ω,∀t,∀ε ∈ εw(ϕ,ω, t), (ω, t) ⊧w ϕ.

By Definition 7.8, we have εw(ϕ1UIϕ2, ω, t) = ⋃
t′∈(t+I)

{εw(ϕ2, ω, t
′) ∩ ( ⋂

t′′∈(t,t′)
εw(ϕ1, ω, t

′′))}.

Therefore, for ε ∈ εw(ϕ1UIϕ2, ω, t), we have ∃t′ ∈ (t+ I), ε ∈ εw(ϕ2, ω, t
′)∩ ( ⋂

t′′∈(t,t′)
εw(ϕ1, ω, t

′′)).

Therefore, for this t′ we have ε ∈ εw(ϕ2, ω, t
′) and ∀t′′ ∈ (t, t′), ε ∈ εw(ϕ1, ω, t

′′)). By the

inductive assumption, we have (ω, t′) ⊧w ϕ2 and ∀t′′ ∈ (t, t′), (ω, t′′) ⊧w ϕ1. Finally, by

Definition 7.4, we have (ω, t) ⊧w ϕ1UIϕ2.

In the following, we explain the intuition behind our methods. Figure 7.7(a) plots the normal density

curve of a Gaussian distribution Φt with the mean θt. A confidence level ε represents the probability

that the corresponding confidence interval [Φ−
t (ε),Φ+

t (ε)] contains a target value, calculated as the
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percentage of the area of the normal density curve. When ε approaches 0, the confidence interval

shrinks to a single point θt; and when ε approaches 1, the confidence interval expands to (−∞,∞). In

general, the larger the value of ε, the wider the confidence interval range. For example, Figure 7.7(a)

shows confidence intervals for two confidence levels ε1, ε2 and ε1 < ε2.

To compute the range of confidence levels that guarantee the strong satisfaction of a STL-U formula

ϕ, we first determine the smallest distance η between the mean θt and the set of x values that violate

ϕ. Any x value within the interval (θt − η, θt + η) should satisfy ϕ. Thus, we compute the integral

∫
θt+η
θt−η Φt(x)dx as the upper bound of confidence level guarantee for strong satisfaction, denoted by

ε+s . Under any confidence level ε ∈ (0, ε+s), the flowpipe is guaranteed to strongly satisfy the STL-U

formula ϕ. In the special case when the mean value θt violates ϕ, we have η = 0 and ε+s = 0; thus,

there does not exist a feasible value of ε, under which the flowpipe strongly satisfies ϕ. Consider a

STL-U formula ϕ1 ∶ x < λ1. As shown in Figure 7.7(a), the flowpipe under ε1 strongly satisfies ϕ1

because ε1 ∈ (0, ε+s), while the flowpipe under ε2 does not strongly satisfy ϕ1 because ε2 > ε+s .

To compute the range of confidence levels that guarantee the weak satisfaction of a STL-U formula

ϕ, we find the smallest distance η between the mean θt and the set of x values that satisfy ϕ.

We compute the integral ∫
θt+η
θt−η Φt(x)dx as the lower bound of confidence level guarantee for weak

satisfaction, denoted by ε−w. Under any confidence level ε ∈ (ε−w,1), the flowpipe is guaranteed to

weakly satisfy the STL-U formula ϕ. When there does not exist any x value satisfying ϕ, we have

η = ∞ and ε−w = 1; thus, there does not exist a feasible value of ε, under which the flowpipe weakly

satisfies ϕ. Figure 7.7(b) shows the same Gaussian distribution Φt as in Figure 7.7(a). For the

STL-U formula ϕ2 ∶ x < λ2, the flowpipe under ε2 weakly satisfy ϕ2 because ε2 ∈ (ε−w,1); however,

the flowpipe under ε1 does not weakly satisfy ϕ2, because ε1 < ε−w.

We include pseudo code of algorithms for computing confidence guarantees for STL-U strong and

weak satisfaction as Algorithm 7.3 and Algorithm 7.4. Here we use an example to describe the

Figure 7.7: Computing confidence guarantees for STL-U formulas x < λ1 and x < λ2.
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Figure 7.8: Computing confidence guarantees for STL-U formula ◻[1,3](xε > 8) ∧ ◊[1,3](xε < 10).

procedure of recursively computing confidence guarantees via parsing the syntax tree of a STL-U

formula. Figure 7.8(a) shows an example flowpipe with values of mean θ and variance σ in each time

step t. Consider a STL-U formula ◻[1,3](xε > 8) ∧ ◊[1,3](xε < 10). Figure 7.8(b) illustrates how to

iterate through the formula’s syntax tree and compute confidence guarantees for strong satisfaction.

First, at the left bottom of the tree, we compute the range of confidence levels that can guarantee

the strong satisfaction of xε > 8, and obtain the results of (0,0.20), (0,0.49), (0,0.68) for t ∈ [1,3].

Then, we move up the tree to compute the confidence guarantee for ◻[1,3](xε > 8) by taking the

intersection of these three ranges, which yields (0,0.20). Meanwhile, from the right branch of the

tree, we obtain the range of confidence levels that guarantee the strong satisfaction of xε < 10, and

taking a union of these ranges for ◊[1,3](xε < 10), which yields (0,0.55). At the top of the syntax

tree, we take the intersection of (0,0.20) and (0,0.55) for ∧ operation, which yields (0,0.20) as the

final result of confidence guarantees for strongly satisfy the STL-U formula. Figure 7.8(c) shows

a similar process of recursively computing confidence guarantees for weak satisfaction of the same

STL-U formula.

7.4 Prediction with Logic-Calibrated Uncertainty

Recall from Section 7.1 that deterministic prediction models are not suitable to capture the uncertainty

exhibited in CPS. To address this limitation, we adopt Bayesian RNN models in the proposed

predictive monitoring approach. We describe how to build Bayesian RNN models for prediction and

motivate the need for uncertainty calibration in Section 7.4.1. Then, we define STL-U based criteria

for uncertainty calibration in Section 7.4.2.
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Algorithm 7.3: Confidence Level of Strong Satisfaction StrongConfidenceLevel(ϕ,ω, t)
Function StrongConfidenceLevel(ϕ,ω, t):

begin
switch ϕ do

Case µx

η ← inf {∣x − θt∣ ∣ f(x) ≤ 0}
return (0, ∫ θt+ηθt−η

Φt(x)dx);
Case ¬ϕ

εs ←WeakConfidenceLevel(ϕ,ω, t)C
return εs;

Case ϕ1 ∧ ϕ2

return StrongConfidenceLevel(ϕ1, ω, t) ∩ StrongConfidenceLevel(ϕ2, ω, t)
Case ◻Iϕ

εs = StrongConfidenceLevel(ϕ,Ω,0)
for t′ ∈ (t + I) do

εs ← εs ∩ StrongConfidenceLevel(ϕ,Ω, t′)
end
return εs;

Case ◊Iϕ
εs ← StrongConfidenceLevel(ϕ,Ω,0)
for t′ ∈ (t + I) do

εs ← εs ∪ StrongConfidenceLevel(ϕ,Ω, t′)
end
return εs;

Case ϕ1UIϕ2
εs ← ∅
for t′ ∈ (t + I) do

ε′s ← StrongConfidenceLevel(ϕ2, ω, t
′)

for t′′ ∈ [t, t′] do
ε′s ← ε′s ∩ StrongConfidenceLevel(ϕ1, ω, t

′′)
end
εs ← εs ∪ ε′s

end
return εs;

end
end

7.4.1 Uncertainty Estimation with Bayesian RNN Models

Stochastic regularization techniques (SRTs) have been popularly used to cast deterministic deep

learning models as Bayesian models for uncertainty estimation [76]. Given a well-trained deterministic

RNN model with learnable parameters W , we can obtain a Bayesian RNN model with parameters

W ′ via SRTs that transform W to W ′ by applying a n×n mask, where n is the number of neurons in

each layer. Elements of the mask w are sampled from some probability distribution. The connection

from neuron j to neuron i would be dropped if wij = 0, the connection remains the same if wij = 1,

and a weight β ∈ (0,1) would be applied to the connection if wij = β. In this work, we consider four

commonly used SRTs as illustrated in Figure 7.9. Let p denote the dropout rate.

• Bernoulli dropout : Each row of the mask is sampled from a Bernoulli distribution, denoted by

wi,∗ ∼ B(p).

• Bernoulli dropConnect : Each element of the mask is sampled independently as wi,j ∼ B(p).
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Algorithm 7.4: Confidence Level of Weak Satisfaction WeakConfidenceLevel(ϕ,ω, t)
Function WeakConfidenceLevel(ϕ,ω, t):

begin
switch ϕ do

Case µx

η ← inf {∣x − θt∣ ∣ f(x) > 0}
return (∫ θt+ηθt−η

Φt(x)dx,1) ;
Case ¬ϕ

εw ← StrongConfidenceLevel(ϕ,ω, t)C
return εw;

Case ϕ1 ∧ ϕ2

return WeakConfidenceLevel(ϕ1, ω, t) ∩WeakConfidenceLevel(ϕ2, ω, t)
Case ◻Iϕ

εw ←WeakConfidenceLevel(ϕ,Ω,0)
for t′ ∈ (t + I) do

εw ← εw ∩WeakConfidenceLevel(ϕ,Ω, t′)
end
return εw;

Case ◊Iϕ
εw ←WeakConfidenceLevel(ϕ,Ω,0)
for t′ ∈ (t + I) do

εw ← εw ∪WeakConfidenceLevel(ϕ,Ω, t′)
end
return εw;

Case ϕ1UIϕ2
εw ← ∅
for t′ ∈ (t + I) do

ε′w ←WeakConfidenceLevel(ϕ2, ω, t
′)

for t′′ ∈ [t, t′] do
ε′w ← ε′w ∩WeakConfidenceLevel(ϕ1, ω, t

′′)
end
εw ← εw ∪ ε′w

end
return εw;

end
end

• Gaussian dropout : Each row of the mask is sampled from a Gaussian distribution, denoted by

wi,∗ ∼ N(1, (1 − p)/p).

• Gaussian dropConnect : Each element of the mask is sampled independently, denoted by wi,j ∼

N(1, (1 − p)/p).

Figure 7.10 shows how to use the obtained Bayesian RNN model to predict future states based on

historical states. We apply the Monte Carlo method to repeat the Bayesian RNN prediction for N

times, which yield a set of sequential predictions. Thus, we can estimate a Gaussian distribution

Φt ∼ N(θt, σ2
t ) for each time step t, where the mean θt and variance σt are computed based on the

Monte Carlo samples {x(1)t ,⋯, x(N)
t }.

Different uncertainty estimation schemas (i.e., SRTs and dropout rates) can yield different uncertainty

estimates for the same model trained with the same data. How to select the best uncertainty

estimation schema for an application still remains an open question. Currently, a common practice is
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Figure 7.9: Four commonly used SRTs.

Figure 7.10: Bayesian RNN-based sequential prediction with uncertainty estimation.

to pick a schema empirically, without systematically evaluating how different choices would impact

the quality of uncertainty estimates. Furthermore, deep learning methods that seek to optimize

the prediction accuracy may overestimate the uncertainty. For example, consider two distributions

predicted with uncertainty estimation schemas M1(p1) and M2(p2), as shown in Figure 7.11(a)

and (b). M2(p2) is a better schema based on the metric of prediction accuracy, because the target

value (red dot) falls within the confidence interval [Φ−
t (ε),Φ+

t (ε)] in Figure 7.11(b), but not in

Figure 7.11(a). However, M2(p2) yields a higher level of uncertainty, as indicated by the larger

confidence interval range.

In this work, we develop novel criteria that leverage STL-U monitoring results to select uncertainty

estimation schemas. Here is an example to explain the intuition behind our approach. Consider

two distributions predicted with uncertainty estimation schemas M2(p2) and M3(p3), as shown

in Figure 7.11(b) and (c). Both distributions fulfill the accuracy metric, because their confidence
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Figure 7.11: Comparison of different uncertainty estimation schemas.

Figure 7.12: STL-U criteria for uncertainty calibration computed as loss functions.

intervals contain the target value (red dot). Suppose that the requirement is to check if a flowpipe

strongly satisfies a STL-U formula xε < 5. As shown in Figure 7.11(c), the distribution predicted with

schemaM3(p3) strongly satisfies xε < 5, because all values in the confidence interval [Φ−
t (ε),Φ+

t (ε)]

are smaller than 5. By contrast, the resulting distribution of schema M2(p2) does not strongly

satisfy xε < 5, because some values in the confidence interval are greater than 5. Thus, based on

STL-U monitoring results, we would selectM3(p3) rather thanM2(p2) as the uncertainty estimation

schema, which also yields a tighter bound of estimated uncertainty. In the following, we formally

define STL-U based criteria for selecting uncertainty estimation schemas.

7.4.2 STL-U Criteria for Uncertainty Calibration

As shown in Figure 7.12, given a predicted flowpipe ω and a target trace ω̄, we can calculate the

loss based on monitoring results of ω and ω̄ with respect to a STL-U formula ϕ. We propose two

uncertainty calibration criteria as loss functions based on STL-U satisfaction relations and confidence

guarantees, denoted by Lsat and Lcf , respectively.

Criterion based on STL-U satisfaction. We define Lsat based on the linear combination of three

functions: hs(ω, ω̄, ϕ) and hw(ω, ω̄, ϕ) for evaluating if the predicted flowpipe ω and the target trace

ω̄ are consistent in terms of strong and weak satisfaction (or violation) of the STL-U formula ϕ,

and hb(ω, ω̄) for evaluating the prediction accuracy by checking if the target trace ω̄ belongs to the

predicted flowpipe ω. Formally, we define
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hs(ω, ω̄, ϕ) = 1((ω ⊧s ϕ ∧ ω̄ ⊧ ϕ) ∨ (ω /⊧s ϕ ∧ ω̄ /⊧ ϕ))

hw(ω, ω̄, ϕ) = 1((ω ⊧w ϕ ∧ ω̄ ⊧ ϕ) ∨ (ω /⊧w ϕ ∧ ω̄ /⊧ ϕ))

hb(ω, ω̄) = 1(ω̄ ∈ ω)

where 1(φ) is an indicator function such that 1(φ) = 1 if φ = True, and 1(φ) = 0 otherwise. The loss

function is then given by

Lsat(ω, ω̄, ϕ) = 1 − (β1 ⋅ hs(ω, ω̄, ϕ) + β2 ⋅ hw(ω, ω̄, ϕ) + (1 − β1 − β2) ⋅ hb(ω, ω̄))

where β1, β2 ∈ (0,1) are real-valued coefficients representing the relative importance of strong/weak

satisfaction and prediction accuracy in different domains. The goal is to minimize the loss Lsat,

for which we need to maximize the linear combination of hs(ω, ω̄, ϕ), hw(ω, ω̄, ϕ), and hb(ω, ω̄).

Intuitively, the higher quality of the prediction in terms of the consistency of STL-U monitoring

results and the accuracy compared with the target trace, the lower the loss.

Criterion based on STL-U confidence guarantees. Recall from Section 7.3 that, in addition

to checking strong/weak satisfaction relations, the STL-U monitor can also compute a range of

confidence levels under which the predicted flowpipe is guaranteed to strongly/weakly satisfy a STL-U

formula. Based on STL-U confidence guarantees, we define the following loss function:

Lcf(ω, ω̄, ϕ) = 1 − (β1 ⋅ gs(ω, ω̄, ϕ) + β2 ⋅ gw(ω, ω̄, ϕ) + (1 − β1 − β2) ⋅ gb(ω, ω̄))

where β1, β2 ∈ (0,1) are real-valued coefficients similar to those used for Lsat, and gs(ω, ω̄, ϕ),

gw(ω, ω̄, ϕ) and gb(ω, ω̄) are functions defined as follows.
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gs(ω, ω̄, ϕ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

ε+s ω̄ ⊧ ϕ

1 − ε+s ω̄ /⊧ ϕ

gw(ω, ω̄, ϕ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 − ε−w ω̄ ⊧ ϕ

ε−w ω̄ /⊧ ϕ

gb(ω, ω̄) = inf {ε ∣ ω̄x[t] ∈ [Φ−
t (ε),Φ+

t (ε)] for all x ∈X, t ∈T}

where ε+s is the upper bound of confidence guarantee for strong satisfaction computed based on

Definition 7.7, ε−w is the lower bound of confidence guarantee for weak satisfaction computed based

on Definition 7.8, and gb(ω, ω̄) computes the smallest confidence level under which the predicted

flowpipe is guaranteed to contain the target trace. The goal is to minimize the loss Lcf , for which we

need to maximize the linear combination of gs(ω, ω̄, ϕ), gw(ω, ω̄, ϕ), and gb(ω, ω̄). Intuitively, the

lower the loss, the higher quality of predictions in terms of confidence guarantees for strong/weak

satisfaction and prediction accuracy.

Uncertainty calibration using STL-U criteria. In order to select the best uncertainty estimation

schema, we start with a set of candidate schemasM1(p),M2(p), ...,Mn(p). For each schema with

SRTMi, we tune the dropout rate parameter p using loss functions Lsat or Lcf . Given a dataset

with multiple target traces, we average the losses over all traces to obtain the optimal dropout

rate p∗. We compare the losses of candidate schemas equipped with their corresponding optimal

dropout rates, and select the best schema M∗(p∗) that yields the lowest loss. Such a process of

selecting and turning uncertainty estimation schemas based on STL-U criteria is illustrated as part

of Figure 7.3.

We evaluate and compare the performance of different STL-U criteria in Section 7.5. Generally

speaking, users can choose to use Lsat or Lcf depending on their needs and problem domains. For

example, we would recommend applications with strict safety requirements (e.g., a fire risk prediction

and control service) to adopt Lsat for checking strong satisfaction relations. By contrast, Lcf is more

flexible and does not require a pre-defined confidence level, which is suitable for applications that

do not have a specific confidence level yet try to optimize the uncertainty estimation (e.g., a newly

deployed energy control service).
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Figure 7.13: Selecting uncertainty estimation schemas using different STL-U criteria.

7.5 Evaluation

We conducted experiments to evaluate the proposed approach. In Section 7.5.1, we compare STL-U

criteria for uncertainty calibration with state-of-the-art baselines using real-world CPS datasets. In

Section 7.5.2, we demonstrate the performance of our approach on real-time predictive monitoring in

a simulated smart city case study. The experiments were run on a machine with 2.2GHz CPU, 32GB

memory, and Nvidia GeForce RTX 2080Ti GPU.

7.5.1 Evaluating STL-U Criteria for Uncertainty Calibration

We use two real-world city datasets (i.e., air quality and traffic volume datasets) described in

Section 7.1. We split each dataset into 80% data for RNN training, 10% data for STL-U based

uncertainty estimation (i.e., tuning Bayesian RNN), and 10% data for testing. We trained the model

for 30 epochs.

Comparing different STL-U criteria. Figure 7.13 plots the loss obtained using different STL-U

criteria when varying uncertainty estimation schemas (i.e., SRT and dropout rate p) for the air

quality dataset. We trained an LSTM as the underlying RNN model. Figure 7.13(a) shows the

results of using STL-U criterion Lsat for ϕ1 = ◻I(xε < λ), where the schema of Bernoulli DropConnect

with p = 0.8 yields the lowest loss. Figure 7.13(b) shows the results of using STL-U criterion Lcf for

ϕ1, where the schema of Gaussian Dropout with p = 0.9 yields the lowest loss. Figure 7.13(c) shows

the results of using STL-U criterion Lcf for ϕ2 = ◊I(xε < λ), where the schema of Bernoulli Dropout

with p = 0.9 yields the lowest loss. Thus, the optimal uncertainty estimation schema varies based

on different STL-U criteria. The experiments demonstrate that the proposed approach is feasible

for the automated selection of optimal schemas based on system requirements and user demands

(i.e., whether the user is interested in checking requirement satisfaction or computing confidence

guarantees).
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Table 7.2: Results of comparing STL-U criteria with six baselines.

Air Quality
Criteria SRT p HeterLoss Accuracy F1-Sat

- B-Dropout 0.81 183.9 0.67 0.34
- B-DropConnect 0.53 121.0 0.69 0.22
- G-Dropout 0.45 152.8 0.76 0.10
- G-DropConnect 0.58 129.4 0.78 0.12

Lacc B-DropConnect 0.53 121.0 0.69 0.22
Lht G-Dropout 0.50 119.2 0.81 0.65
Lsat G-DropConnect 0.81 154.1 0.80 0.81
Lcf B-DropConnect 0.73 165.4 0.79 0.76

Traffic Volume
Criteria SRT p HeterLoss Accuracy F1-Sat

- B-Dropout 0.50 0.63 0.79 0.17
- B-DropConnect 0.74 0.23 0.38 0.51
- G-Dropout 0.50 0.66 0.79 0.17
- G-DropConnect 0.54 0.25 0.56 0.44

Lacc B-DropConnect 0.74 0.23 0.38 0.51
Lht G-Dropout 0.50 0.66 0.79 0.17
Lsat B-DropConnect 0.58 0.24 0.51 0.67
Lcf B-Dropout 0.90 0.3 0.78 0.68

Comparing STL-U criteria with baselines. Table 7.2 shows the results of applying uncertainty

estimation with STL-U criteria (bottom two rows) and state-of-the-art baselines (top six rows) to the

testing data of air quality and traffic volume datasets. We trained an LSTM as the underlying RNN

model for each dataset. We consider six baselines for comparison. The top four rows of the table are

results of using four SRTs with optimal dropout rates p tuned based on the prediction accuracy (i.e.,

the percentage of target traces covered in the predicted flowpipes). The next two rows are results

based on optimizing the uncertainty estimation schema using two commonly used criteria: Lacc is

the loss function concerning the F1-score of prediction accuracy (i.e., if the target trace is covered

by the predicted flowpipe), and Lht is the loss function approximating the Heteroscedastic aleatoric

uncertainty [83]. For the hyperparameters in loss functions, we use β1 = 0.2, β2 = 0.2 for Lsat, and

β1 = 0.3, β2 = 0.3 for Lcf .

We compare their performance in terms of three metrics shown in columns of the table:

• Heteroscedastic loss: HeterLoss = 1
MT ∑

M
i=1∑Tt=1(

∣∣y(i)t −θ(i)t ∣∣2

2(σ(i)t )2
+ 1

2
log 2σ

(i)
t ), where M represents

the total number of instances in the testing data and T represents the length of the predicted

sequence;

• Prediction accuracy (RMSE): Accuracy = 1
MT ∑

M
i=1∑Tt=1

∣∣y(i)t −θ(i)t ∣∣2

2(σ(i)t )2
.

• F1-score comparing the STL-U requirement satisfaction for the predicted and target sequences:
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Figure 7.14: Results of comparing different RNN models.

F1-Sat = TP
TP+ 1

2 (FP+FN) , where TP,FP,FN represents number of true positives, number of

false positives, and number of false negatives, respectively.

The results show that both STL-U criteria yield significant higher F1-scores of requirement satisfaction

than all six baselines, which having comparable performance with baselines in terms of Heteroscedastic

loss and accuracy. Low F1-scores of requirement satisfaction indicate that flowpipes predicted using

baselines can be barely used for monitoring city requirements due to the low quality of estimated

uncertainty (i.e., the predicted flowpipes may contain too much noise to obtain meaningful results

about requirement violations). Thus, using STL-U criteria to calibrate the uncertainty estimation is

an essential step for the predictive monitoring.

Comparing different RNN models. Figure 7.14 compares the F1-score of requirement satisfaction

of applying different uncertainty calibration criteria on three types of RNN models: (1) Vanilla

RNN, (2) LSTM, and (3) Spatial LSTM [144]. The results show that STL-U criteria Lsat and Lcf

significantly outperform baseline criteria Lacc and Lht across all three RNN models for both datasets.

In addition, both STL-U criteria yield comparable performance across different RNN models. Using

Lsat with an LSTM model and a Spatial LSTM model result in the highest F1-score for the air

quality dataset and the traffic volume dataset, respectively. The experiments demonstrate that our

proposed approach of uncertainty estimation and calibration is compatible with different underlying

RNN models.

7.5.2 Real-time Predictive Monitoring for a Simulated Smart City

We set up a closed-loop simulated smart city based on the Simulation of Urban MObility (SUMO)

platform [99] using real-world data of New York City [100]. We implemented ten smart services

in the simulated smart city, including S1: Traffic Service, S2: Emergency Service, S3: Accident

Service, S4: Infrastructure Service, S5: Pedestrian Service, S6: Air Pollution Control Service, S7:
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Table 7.3: Results of comparing the impact of STL-U based predictive monitoring with two baselines.

City Performance Metrics No Monitor LSTM + STL Monitor STL-U Predictive Monitor
Number of Violation - 267 189
Air Quality Index 68 57 43
Noise (db) 73 49 48
Emergency Waiting Time (s) 20 14 10
Vehicle Waiting Number 22 18 15
Pedestrian Waiting Time (s) 190 148 121
Vehicle Waiting Time (s) 112 90 80

PM2.5/PM10 Service, S8: Parking Service, S9: Noise Control Service, and S10: Event Service. We

built a prototype implementation of the STL-U based predictive monitoring and applied it for the

predictive monitoring of 390 requirements concerning different city performance metrics (e.g., AQI,

traffic volume, noise) in various locations of the simulated smart city. When a smart service requests

an action, we predict future city states under the influence of the requested action and monitor if

city requirements would be violated. Based on the real-time predictive monitoring results generated

by our approach, the control center can decide if the requested action should be accepted or rejected

to prevent any potential requirement violation. For the details of the decision making process, we

follow the methods in CityResolver [38], which is a decision making system for conflict detection

and resolution in smart cities. As an intuitive example, when a smart navigation service requests

an action to direct vehicles to a school area to release traffic congestion, the predictive monitoring

approach first predicts the future sequences of noise levels and air pollution levels, and verifies them

with STL-U specified city requirements on noise and air pollution in the school areas. If the predicted

sequences satisfy the requirements, the requested action will be approved; however, if they violate the

requirements, the control center will generate a resolution similar to CityResolver. In our experiment,

we run the simulated New York city with STL-U predictive monitoring for 30 simulation days and

obtain the results regarding the metrics in Table 7.3. Experimental results show that our approach is

efficient in handling a large number of flowpipes and requirements. We did not include the execution

time of experiments, because the implementation of our prototype tool is not optimized yet. However,

it only takes about 281 seconds to check the satisfaction of 130,000 flowpipes that predict AQI in

eight future time units.

Table 7.3 compares STL-U based predictive monitoring’s impact on city performance with two

baselines : (1) running the simulated city without predictive monitoring, and (2) running the simulated

city with a basic predictive monitoring component implemented with a deterministic LSTM predictor

and a STL monitor. The results are based on 30-day data in the simulated city. First, we observe

that our predictive monitor detects fewer requirement violations for the predicted future city states
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than the baseline method (2). This is because our approach uses a Bayesian LSTM predictor with

calibrated uncertainty, which can generate more accurate predictions about future city states than

the deterministic predictor, and thus reducing the number of spurious violations. Furthermore, the

results show that our approach has the potential to improve various city performance metrics. For

example, compared with the two baselines, our approach reduces the air quality index by 36.8% and

24.6%, and reduces the emergency vehicle waiting time by 50% and 28.6% in the simulated city,

respectively.

7.6 Summary

We developed a novel predictive monitoring approach for CPS, which consists of a logic-calibrated

Bayesian RNN prediction model that continuously generates sequential predictions of future states,

and a novel STL-U monitor that checks if the generated predictions satisfy CPS requirements.

Additionally, we proposed novel criteria based on STL-U monitoring results to calibrate uncertainty

estimation in Bayesian deep learning for the predictive monitor. The experimental results show that

STL-U criteria leads to improved uncertainty estimation in various Bayesian deep learning models,

and STL-U based predictive monitor significantly improves performance metrics in a simulated smart

city study.

The proposed STL-U monitor is generally applicable for monitoring an infinite set of sequences beyond

those generated by Bayesian deep learning. For example, STL-U monitor can also check trajectories

of continuous and hybrid systems (e.g., those considered in [73]). In addition, the proposed STL-U

criteria for uncertainty calibration can be used in a broad spectrum of deep learning applications.

As demonstrated in Section 7.5, STL-U criteria can be used for the automated selection of optimal

uncertainty estimation schemas and are compatible with different types of RNN models. Applying

STL-U criteria for uncertainty calibration does not require knowledge about the inner working of

deep learning models and stochastic regularization techniques. Thus, they are amendable for different

deep learning applications.
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Conclusion

Targeting the fundamental challenges in building reliable AI-powered integrated CPS, in this disser-

tation, we develop rigorous and robust models for reliable i-CPS by integrating formal methods and

deep learning. First, we build a decision support system for conflict detection and resolution among

integrated IoT services in i-CPS. Additionally, we develop novel formal specification languages and

efficient runtime verification techniques to connect verification with the large-scale real-world uncer-

tain environment. Moreover, we develop novel formal methods enhanced deep learning techniques,

including increasing the robustness of deep learning prediction by incorporating formal specification

and verification into the learning process, and reasoning with uncertainty in deep Bayesian models

through logic guided predictive monitoring. Our approaches significantly advances state-of-the-art in

many aspects.

Integration of Formal Methods and Deep Learning: This dissertation is a very significant

step on integrating formal methods and deep learning towards reliable AI-powered i-CPS. It provides

a new perspective towards deep learning challenges. The results show that this approach is effective

in both classic and new deep learning models, which means it has the potential to adapt to and guide

new deep learning models effectively in the future.

Moreover, it also shows the important role of system properties and requirements in developing deep

learning models. There is still a long way to explore and formalize real-world requirements and

properties into machine-understandable languages. It also requires the input of human decision-

makers who may have no background in formal methods or AI. The specification and monitoring

161



Conclusion 162

tool developed in this dissertation is a first step towards cognitive assistant systems for supporting

non-expert users.

Meanwhile, the generalizability of this approach is very promising. It is not only applied to different

deep learning models and application areas as we have discussed in the previous chapters, it also

has the potential to enhance a broad range of cutting-edge research problems through verification

of critical system properties and requirements, such as, enhancing algorithmic fairness and equity,

robustness certificate, providing a verifiable online learning, etc.

Social and Technological Impact: The theory and models we proposed have potential impacts

beyond smart service conflict management to address the fundamental systems-of-systems challenge

in multi-stakeholder open environments where each uncertain interaction (e.g., conflicts) between

systems can be modeled as a task, and the detection/resolution process of one interaction improves

the process of other correlated interactions. Thus, its potential impacts go beyond smart cities

including smart rural communities, smart agriculture, and smart health with a generic setting of

systems-of-systems with uncertain conflicts. Our social research effort has the potential to understand

the roles other technology played with multiple stakeholders involved with issues of diversity, inclusion,

and equity.
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