
Search Optimization: Data Refactoring to Enhance User Search Experience

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Rehan Javaid

Spring, 2023

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Brianna Morrison, Department of Computer Science

Search Optimization: Data Refactoring to Enhance User Search Experience

CS4991 Capstone Report, 2022

Rehan Javaid

Computer Science
The University of Virginia

School of Engineering and Applied Science
Charlottesville, Virginia USA

rj3dxu@virginia.edu

Abstract
Event-organization technology provider,
Cvent, noticed missing booking-restriction
data from their Venue Search product, a
venue search engine that displays booking
rates for rooms in various venues. The
missing data caused Venue Search to return
unbookable rates to users. The solution to this
problem involved performing a back-end
data refactor in order to add missing fields to
the current data, and designing logic to
handle search functionality after the data
modification. To implement our solution, I
used Java and the Elasticsearch search-
engine framework. As a result of our work,
venues have enhanced flexibility in
specifying their criteria-to-book; and users
are shown more accurate booking rates while
using Venue Search. Next steps involve
front-end work to handle the display of the
new data fields within the user interface (UI).

1. Introduction
Consider the following scenario: After the
best-performing quarter since launch, I
decide to treat my employees to a getaway to
plan for next quarter. I take advantage of a
third-party service to help plan my event in
order to relieve some of the stress. The
process for making my selections works
perfectly: I am able to search for different
hotels in the destination of choice, view
meeting-room spaces available in these
hotels, and instantly make bookings through

the service. However, just as I am checking
out, I receive a notice that I am unable to
book. All the time I invested browsing
through my options is wasted, and I am
forced to rethink my options. This kind of
customer experience within an application
can be frustrating and is likely to result in
their decision not to become a returning-user.

In the summer of 2022, Cvent experienced a
very similar issue with one of its products
currently in development. Similar to the
service described, Cvent’s Instant Book
product allows customers to search for hotels
and instantly book meeting and guest rooms
through their interface. As part of Instant
Book, Venue-Search is the search engine that
powers the ability to search for hotels in the
process. When a search is performed, hotels
and booking rates that match the selected
search criteria are shown. After testing this
feature, however, Cvent noticed an unusual
occurrence. Sometimes searches would
disguise unbookable rates as bookable for
users—an issue which could confuse and
frustrate users trying to complete their
booking.

A deep dive into the issue revealed that
invalid search results were an effect of
missing data fields. In the third-party venue
database used by Cvent, a set of venue-
specific restrictions on the ability to book
were available but not being utilized. Thus,

searches did not take these restrictions into
account and would display rates that did not
pass the restrictions. As an intern, I was
tasked with spearheading the effort to fix this
issue.

2. Related Works
Missing data in an online platform is an issue
that affects many fields of science and
technology, including medical research,
marketing, and search algorithms.
Golebiewski and Boyd (2018) discuss data
voids, which they define as data that is
“limited, non-existent, or deeply
problematic.” Data-voids are dangerous due
to the fact that they can lead to severe
misinterpretation and bias within the results
returned from a search. Querying, the action
that filters the search results, is a major part
of the problem since the way a query is
structured can completely change the results
shown to users. It is the responsibility of the
search engine manager/creator to ensure that
data voids are minimized at all costs within
the data sets being utilized.

Cvent’s Venue Search product was built upon
the technology offered by Elasticsearch.
Elasticsearch is an open-source search engine
that provides an efficient solution to
searching by allowing you to “store, search,
analyze big volume of data quickly and in
near real time.” (Dritto, 2019). It is often
integrated into applications that have
“complex search features and requirements”
in order to use Elasticsearch’s solution to
efficient, rapid searching while still offering
customizability to meet the needs of your
specific application. Some of the most well-
known companies using Elasticsearch in their
applications include Netflix, Uber, and
LinkedIn (Scott, 2022).

3. Process Design
Implementing the solution required the use of
a specific technology stack and a number of

steps that built off one another. In this
section, I describe those specific technologies
that were used and provide an outline of the
steps that I took to build my solution.

3.1 Technology Stack
Designing the correct solution to the issue
required working with a number of different
technologies and targeting a number of
touchpoints within the code base for Venue
Search. Notable technologies used in the
design of my solution include Java, Junit,
Painless, Postman, Kibana, Elasticsearch,
Karate, and Docker. Notably, nearly all of
these technologies are used for back-end
development.

3.2 Process Timeline
Cvent follows the Agile software
development cycle. This style of group
development involves the division of larger
projects into chunks of smaller work called
tickets which are assigned to individual
developers. Assigned tickets are to be
completed at the end of two weeks, after
which new tickets are assigned. My project
was similarly divided up into bi-weekly
tickets for me to complete over the duration
of my ten-week internship. There were five
tickets for me to complete in total.

3.3 Explanation of New Fields
Cvent obtains all of its venue data from a
third-party service called DerbySoft. The
availability restrictions for each venue were
accessible in DerbySoft, but were not being
integrated in Venue Search. The availability
restrictions placed a variety of constraints on
a customer’s ability to book a particular rate.
Some specific restrictions included
firstValidReserveTime and
lastValidReserveTime restrictions which
provided a time window of days before a
booking for which you are able to make a
booking and also minBookingLimit and
maxBookingLimit which placed restrictions

on the number of nights for which a rate
could be booked. In order to be effectively
handled within searches, these restrictions
would need to be added to the data model for
rates. Next, logic would need to be added in
order to use these new fields to filter results
returned from performing a search within
Venue Search.

3.4 Key Steps
The first step of my solution was to change
the data model for rates to add the availability
restrictions. To accomplish this, I modified a
JSON file containing the structure for venue
rates; placed the new fields within the JSON
rate object; and tested that the new
restrictions had been added using a service
called Kibana. Kibana allows you to simulate
performing searches with Elasticsearch. I
used the service to ensure that when I
searched for various rates I was able to see
the new ingested restrictions within the
returned data.

Next, I needed to create a function to bulk
update all of the current rate data shapes to
the new shape with the added restrictions.
Doing this involved the use of a scripting
language: Painless. A scripting language
allows you to write programs to be executed
by another program. In this case, the function
that I wrote would be executed by
Elasticsearch. I assigned every previous field
being stored within the rate data structure to
the field of a newly created rate containing
the availability restrictions. Testing this
function could similarly be performed with
Kibana.

The longest step in the process involved
working in Java to add the filtration logic
necessary for the availability restrictions to
be effectively handled by Venue Search.
With the rate data structure updated to
contain the new fields, I needed to design the
logic that would specify the rate return

criteria using these restrictions. As an
example, using the window set by the
lastValidReserveTime/firstValidReserveTim
e availability restrictions, if someone is
performing a search from Venue Search at a
time that does not fall within this window, the
rate should not show up in the search results
since it could not be booked at the time.

Logic like this was designed for each of the
availability restrictions. I used Junit
extensively as a means of testing the
correctness of the logic implemented. Junit is
a testing framework for Java used for
automated unit testing: a means of testing
individual units of a program. It was
important that these tests handled edge cases
of each of the restrictions appropriately. I also
used Docker extensively in order to be able
to run simulated versions of Venue Search
within the testing environment for testing.
After all of the Java logic had been written
and tested I was confident that I had produced
a working solution to the issue.

3.5 Challenges
One of the biggest challenges to overcome
while coding my solution was learning about
the new technologies that I was working
with. I sometimes found my success being
hindered by a lack of knowledge about a
certain technology and a lack of online
resources specifically related to the issue I
was having. However, as I grew more
comfortable with the technologies that I was
using, over time this became less of a
challenge.

Another challenge I faced while
implementing my solution was vagueness
causing misinterpretations. The availability
restriction fields being defined by DerbySoft
rather than by Cvent sometimes led to
misinterpretations of exactly what a specific
availability restriction meant. One
availability restriction in particular—the

min/maxAdvanceDay fields—was a prime
example. I designed the logic to handle this
availability restriction within a search;
however due to the vagueness of what the
fields actually meant I ended up with logic
that incorrectly handled the restriction.
Meeting with DerbySoft representatives for
clarification steered me in the right direction,
though the process of doing so delayed my
development schedule.

4. Results
Through my work, the issue in which Venue
Search would return unbookable rates for
customers is no longer present. This has
significant ramifications for the overall
customer experience using Venue Search.
Only displaying rates that are bookable
eliminates the frustration of searching for
extensive periods of time for a desired rate
only to find that it is not available.

The impact of adding availability restrictions
to rates in Venue Search has beneficial effects
for venues, as well. Since availability
restrictions are venue-specific, adding these
criteria into the conditions to book gives
venues more specificity over the conditions
to book their spaces.

5. Conclusion
In conclusion, the solution to Venue Search’s
issue of unbookable rates resulted in an
improved customer booking experience and
offers venues new specificity in determining
the requirements that must be met in order for
a customer to make a booking. By creating a
more robust, error free, product, Cvent
increases the likelihood of getting customers
to continuously use their service.
Furthermore, offering venues more specific
requirements that must be met in order to

make a booking means that venues are able
to better target the exact customers that they
are able to oblige. This results in more clarity
for customers looking to make a booking.

6. Future Work
While the solution has been successfully built
in the backend, the frontend piece of the
solution is still needed. The frontend work of
this solution involves additions to the user
interface such as a message that displays
which rates are bookable and which rates are
not bookable when Venue Search returns.
Additionally, user testing of the new
additions needs to take place in order to
ensure that the additions work well from their
perspective. I estimate roughly 2-weeks’
worth of work is needed to complete these
additions.

References
Dritto, G. P. (2019, March 27). An overview
on Elasticsearch and its usage. Retrieved
October 30, 2022, from
https://towardsdatascience.com/an-
overview-on-elasticsearch-and-its-usage-
e26df1d1d24a

Golebiewski, M., & Boyd, D. (2018, May).
Data Voids: Where Missing Data Can be
Easily Exploited [Scholarly project]. In Data
Society. Retrieved September 20, 2022, from
https://datasociety.net/wp-
content/uploads/2018/05/Data_Society_Data
_Void_Final_3.pdf.

Scott, S. (2022, October 25). These 15 tech
companies chose the elk stack over
proprietary logging software. Retrieved
October 30, 2022, from
https://logz.io/blog/15-tech-companies-
chose-elk-stack/

