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Abstract

Medical ultrasound has many benefits over other imaging modali-

ties, including lack of ionizing radiation, relative portability and low

cost. However, the majority of ultrasound scanners image only a

2D plane of tissue, which moves with the probe. This arrangement,

along with the remote display screen, requires a high level of skill

and experience to operate. Some recently introduced scanners

have more intuitive 3D operating modes, but are often bulky and

expensive. In this dissertation, several of the fundamental chal-

lenges of handheld, intuitive 3D ultrasound imaging systems are

addressed, including energy efficient 2D beamforming, enhanced

motion tracking using sector-scan probes, and optimal combination

of motion estimates from various sensor modalities. In the field of

vascular ultrasound imaging, the size and portability of ultrasound

devices is limited by the energy cost of beamforming, particularly

when transducers with many thousands of elements are involved.

A separable approach to 2D beamforming, optimized for complex

short-time-sequence signals is developed that reduces the energy

cost of beamforming by a factor of 20, enabling real-time imaging in

a 150 g device with multi-hour battery life. Imaging of spinal bone

anatomy has poor performance for most ultrasound systems due to



extremely bright bone reflections and systems optimized for tissue.

Recognizing that a mechanically-scanned single piston transducer

has intrinsic contrast advantages when imaging bone, techniques

are developed to improve motion estimation using sector-scan ul-

trasound data, so that handheld freehand 3D spinal bone imag-

ing is enabled. Finally, to address anisotropic motion estimation

resolution using ultrasound alone, other sensor modalities (cam-

era, accelerometer) are optimally combined to produce a handheld

3D imaging system capable of real-time guidance of epidural anes-

thesia procedures, with an RMS bone surface localization error of

only 2.2 mm. These capabilities are demonstrated in a handheld

battery-powered prototype with real-time 3D bone surface display.

Initial in-vivo 2D and 3D images demonstrate feasibility of the de-

vice and imaging methodology.
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Chapter 1

INTRODUCTION

Medical ultrasound is a widely used medical imaging modality with benefits

that, with respect to most competing modalities, include: high resolution, lack

of ionizing radiation, low cost and portability. However, the majority of exist-

ing ultrasound scanners are B-mode systems that produce 2D image slices

through a 3D volume of tissue. Considerable skill and experience is required

to comprehensively acquire and interpret these 2D slices, which can limit clini-

cal utility. For instance, when using conventional B-mode ultrasound to perform

spinal anesthesia, it has been demonstrated that success rates are highly de-

pendent on user skill and familiarity with ultrasound (1). Additionally, ultrasound

images contain a number of artifacts that manifest differently with changing in-

terrogation angles. Common ultrasound artifacts occur due to reverberation,

phase aberration, bright off-axis targets, and shadowing (2). Recently, ultra-

sound scanners with 3D volume imaging capabilities have been introduced,

with the potential for reduced interpretation errors (3), (4) and more intuitive

imaging of real tissue. 3D imaging typically requires a 2D array with several

thousand elements, resulting in high scanner and transducer complexity and
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cost (5). Thus, current 3D volume imaging is mostly limited to expensive and

bulky freestanding systems.

Recently, handheld ultrasound imaging systems have been developed (6),

(7). These systems typically still use the B-mode imaging mode and experi-

ence the same B-Mode image interpretation challenges. In addition, current

handheld ultrasound systems follow the longstanding paradigm of separating

the image display unit from the transducer - further hindering intuitive interpre-

tation of 3D tissue structure. Lower cost handheld ultrasound systems with

more intuitive display modes may lead to more pervasive use of ultrasound

in medicine and subsequently improved patient outcomes. Increased device

mobility will also potentially alleviate some workflow problems associated with

bulky, freestanding scanners, i.e. the scanner can be taken to the patient rather

than the patient to the scanner.

The combination of 3D ultrasound imaging capabilities with a handheld

form-factor and intuitive display has the potential to have profound impact in the

medical imaging field. Current handheld ultrasound scanners may be viewed

as being essentially a result of a number of cost-performance trade-offs applied

to existing cart-based conventional designs. In contrast, if 3D imaging is used

in conjunction with non-standard, intuitive display modes, which are tuned for

specialized applications, these advances may enable wider adoption by non-

specialist users with the result of better clinical outcomes at lower cost to the

healthcare system.

In this PhD dissertation, substantive contributions are made toward low-

cost, handheld 3D imaging with intuitive display of the target tissue for two

specialized applications: imaging of the vasculature for intravenous needle

2



guidance, and imaging of the spinal bone anatomy to aid in central neuroaxial

anesthesia procedures. Ultrasound guidance is increasingly used for intra-

venous (IV) access procedures in emergency and routine situations (8), and

has been demonstrated to increase ultimate success rates for peripheral IV

access from a baseline rate of 33% up to 97% in patients with difficult venous

access (9). Central neuroaxial anesthesia procedures (e.g. epidural and spinal

anesthesia) are typically performed at the bedside without guidance (i.e. the

blind method) (10), resulting in failure rates of 40%-70% (11), (12), (13) and

poor patient outcomes (11). Patients who are difficult to image with high qual-

ity using ultrasound (e.g. obese patients) can be imaged using fluoroscopy.

However this exposes the patient to ionizing X-ray radiation, recently shown to

be responsible for 2% of all cancers and up to 11,000 deaths per year in the

U.S. (14), (15). Unfortunately, the patients that are most likely to need fluoro-

scopic guidance in lumbar procedure (i.e. those with high body mass index)

also typically require higher radiation doses during fluoroscopy, compounding

the problem. In both of these applications, intuitive 3D imaging is expected

to improve outcomes, but there are difficulties to be overcome in producing a

functional handheld device with the required low cost, portability, efficacy and

battery charge-cycle life.

In chapter 2, a beamforming strategy that leads to 20 x improvements

in frame rate or energy efficiency for real-time handheld vascular imaging is

presented; this is a significant enabling technology without which the form

factor, battery life or imaging quality in this application would be significantly

degraded. Additionally, it is shown that the improvements in computational ef-

ficiency using this algorithm have a negligible associated performance reduc-
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tion in most practical conditions. Although targeted at C-mode imaging (16)

in extremely small (170 g)(17) devices, this method enables, and has demon-

strated handheld volumetric imaging, if reduced frame-rate and/or battery life

are permissible.

Chapter 3 introduces a motion-tracking technology that addresses defi-

ciencies in existing algorithms when applied to sector-scan ultrasound sys-

tems. Recently published work (18) contributed to by the author indicates

that a mechanically-scanned piston transducer has attractive properties when

imaging bright specular-reflecting targets such as bone surfaces. A new sta-

tistical model for ultrasound motion tracking is introduced in this chapter, and

used to both successfully improve motion estimation performance for sector-

scan systems, and also make experimentally-validated predictions about bias

in existing motion estimation algorithms applied to sector-scan systems.

In chapter 4, the ultrasound-based motion estimation of chapter 3 is op-

timally combined with information from other motion-sensing modalities (cam-

era, accelerometer) to produce a robust, multi-modality motion estimator. This

work is an enabling technology for the ‘Spine Finder’, the world’s first real-time

handheld ultrasound imaging system for imaging spinal bone anatomy and

guiding spinal access procedures. Additional work performed by the author

includes design and implementation of all device hardware and software in the

prototype system described in this chapter.

The work presented in this dissertation is organized into self-contained

chapters, with each chapter’s content largely taken from peer-reviewed journal

articles, or from drafts currently submitted for peer-reviewed publication, or

for content imminently awaiting submission to a peer-reviewed journal. In the

4



interests of clarity and consistency, minor editing is performed on the described

papers/chapters.
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Chapter 2

REAL-TIME VASCULAR IMAGING USING

SEPARABLE BEAMFORMING1

2.A Abstract

Two-dimensional arrays present significant beamforming computational chal-

lenges due to the high channel count and data rate. These challenges are

even more stringent when incorporating a 2D transducer array into a battery-

powered handheld device, placing significant demands on power efficiency.

Previous work in sonar and ultrasound indicates that 2D array beamforming

can be decomposed into two separable line-array beamforming operations.

This has been used in conjunction with frequency-domain phase-based focus-

ing to achieve fast volume imaging. In this chapter, I analyze the imaging

and computational performance of approximate near-field separable beam-

forming for high-quality delay-and-sum (DAS) beamforming and for a low-cost,
1Chapter 2 appears in the peer-reviewed publication :

K. Owen, M. I. Fuller and J. A. Hossack, ”Application of X-Y Separable 2D Array Beamforming
For Increased Frame Rate and Energy Efficiency in Handheld Devices”, IEEE Transactions on
Ultrasonics, Ferroelectrics and Frequency Control, 59 (7), 2012

6



2.B Introduction

phase-rotation only beamforming method known as Direct-Sampled In-Phase

Quadrature (DSIQ). I show that when high-quality time-delay interpolation is

used, separable DAS focusing introduces no noticeable imaging degradation

under practical conditions. Similar results for DSIQ focusing are observed. In

addition, a slight modification to the DSIQ focusing method greatly increases

imaging contrast, making it comparable to that of DAS, despite a wider main-

lobe and higher sidelobes due to the limitations of phase-only time-delay inter-

polation. Compared to non-separable 2D imaging, up to a twenty-fold increase

in frame rate is possible with the separable method. When implemented on a

Texas Instruments OMAP 3530 smart phone oriented processor to focus data

from a 60 x 60 channel array using a 40 x 40 aperture, the frame rate per C-

mode volume slice increases from 16 Hz to 255 Hz for DAS, and from 11 Hz

to 193 Hz for DSIQ. Energy usage per frame is similarly reduced from 75 mJ

to 4.8 mJ/frame for DAS, and from 107 mJ to 6.3 mJ/frame for DSIQ. I also

show that the separable method outperforms 2D FFT-based focusing by a fac-

tor of 1.64 at these data sizes. This data indicates that with the optimal design

choices, separable 2D beamforming can significantly improve frame rate and

battery life for handheld devices with 2D arrays.

2.B Introduction

The majority of current beamformers operate by summing weighted time-delayed

signals from all channels in an aperture to form a single beam on receive

(19). For 2D arrays producing volume (azimuth, elevation, time/depth) data,

beamforming can be considered a spatial filtering or convolution operation
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(20). However, the computational and energy cost of beamforming can be

prohibitive when applied to 2D transducer arrays with many thousands of chan-

nels. For handheld, battery-operated systems, the energy cost is particularly

important for multi-hour battery life. Several methods have been proposed to

increase the frame-rate of 2D array ultrasound systems, including sparse 2D

arrays (21, 22, 23, 24), synthetic aperture approaches (25, 26, 27), transmit-

receive coarrays (28, 29), subaperture methods (5, 30, 31, 32, 33, 34), parallel

beamforming (35, 36) and using plane wave transmit with limited-diffraction

receive beam focusing (37, 38, 39). Phased 2-D subarray focusing, or micro-

beamforming has been suggested for diagnostic ultrasound imaging with 2D

arrays as an approach to perform partial focusing close to or in, the transducer

assembly, to reduce both interconnect complexity and total computational cost

(5, 32). The decomposition of a 2D beamforming process into two separable

1D line array beamforming steps has been proposed for computationally effi-

cient volume focusing (40). Computational efficiencies are achieved with this

method by re-using the results of each 1D beamformed partial sum multiple

times. Various frequency domain beamforming efficiencies are subsequently

employed, as suggested by Maranda (41). These include using a 1D FFT in

the time dimension to implement delays for narrowband signals (42), and using

a 2D FFT in the X-Y plane for SONAR volume imaging (43). The separable

approach has also been extended to near-field wide-band SONAR applica-

tions using the chirp zeta transform (CZT) and the Fresnel approximation (44).

Separable implementations of 3D ultrasound imaging have been developed to

run in real-time on a 16-node PC cluster, (45, 46) using a variation on the

time-series 1D FFT acceleration method (42). Real-time 3D ultrasound beam-
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forming implementations using clusters of PCs or several FPGAs (47) primar-

ily target system performance. However, the above methods are not capable

of practical real-time imaging on a battery powered, handheld system with a

fully-sampled 2D array. In this chapter, I analyze the performance, in terms of

resolution, contrast, computational time and energy consumption per frame, of

practical 2D separable beamformers for volume and C-mode imaging in hand-

held devices using successive 1D convolutions in the azimuth and elevation

directions. I first investigate a separable version of conventional, high qual-

ity delay-and-sum beamforming using different time-delay interpolation meth-

ods. In addition, I explore the performance of a 2D focusing method developed

especially for power-efficient C-mode imaging in handheld devices (Directly-

Sampled In-phase Quadrature [DSIQ] beamforming (16, 17)). This method

greatly reduces power consumption by not requiring full time-series on each

channel, typically requiring only tens of milliwatts of power for an entire 3600-

channel analog front-end, rather than tens of milliwatts per channel for each

channel in conventional analog front-end systems (17). However, DSIQ has

limited time-delay resolution due to the use of phase-rotations as approxima-

tions for time delays. Finally, for comparison purposes, we assess the com-

putational performance of non-separable 2D focusing using fast FFT-based

convolution. For an M x N 2D focal aperture, separable focusing yields an

MN/(M+N) speed increase over non-separable focusing, producing a twenty-

fold increase for a typical 40 x 40 element aperture, independent of array size.

This level of performance gain is significant for handheld 2D-array ultrasound

systems, where any intrinsic frame rate capability above 30 frames per second

is recovered as additional battery life.
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2.C Theory

2.C.i Non-separable 2D Array Focusing

To form a single beamformed output value in a 2D array ultrasound system,

the signals from a M x N receive aperture from a larger array, arranged laterally

about the projection of the focal point onto the transducer plane are appropri-

ately delayed and weighted before summing. This is described in equations

2.1 - 2.3 for time-delay focusing at a point at location (X, Y, Zf ) in space in the

region under array element (p, q). Here, x(i) and y(j) are the coordinates of

aperture element (i, j), k is the wavenumber 2πfcenter/c, RXY (i, j) is the dis-

tance from aperture element (i, j) to the focal point, τXY (i, j) is the associated

propagation time delay, A(i, j) is the apodization function over the aperture,

and s(i, j, t − τXY (i, j)) is the time signal from aperture element (i, j) delayed

by τXY (i, j). The summation output FXY (p, q, t) is a time series that is eval-

uated at t=0, after envelope detection and other steps. For phase-rotation

based focusing, a single complex sample is available for each element in the

focal aperture, s(i, j). A complex weight C(i, j) from equation 2.4 is then ap-

plied incorporating propagation phase and apodization, before summation as

in equation 2.5.

RXY (i, j) = Zf +
√

(X − x(i))2 + (Y − y(j))2 + Zf
2 (2.1)

τXY (i, j) = RXY (i, j)/c (2.2)
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FXY (p, q, t) =

(M−1)/2∑
i=−(M−1)/2

(N−1)/2∑
j=−(N−1)/2

A(i, j)s(p− i, q − j, t− τXY (i, j)) (2.3)

C(i, j) = A(i, j)e−jkRXY (i,j) (2.4)

FXY (p, q) =

(M−1)/2∑
i=−(M−1)/2

(N−1)/2∑
j=−(N−1)/2

C(i, j)s(p− i, q − j) (2.5)

The non-separable 2D focusing operation is shown schematically in 2.1.

In this case, the M x N focal aperture is shown translating to focus at a series

of P points in the azimuthal direction. To focus at one point involves MN delay

and sum operations, where delay may be a real time delay or phase-rotation

based approximation to a time delay. In each case, aperture apodization is also

applied. Therefore to form an output C-mode image plane of P x Q focused

points requires MNPQ prototypical delay-and-sum operations. The focusing

operation can also be interpreted as a spatial filtering or convolution operation

(20). Using equation 2.5, phase-rotation based focusing is equivalent to a 2D

complex convolution operation.

2.C.ii Separable 2D Array Focusing

Separable 2D array focusing operates by decomposing the propagation dis-

tance RXY (i, j) into two components RX(i) and RY (j), such that RXY (i, j) ∼

RX(i) + RY (j). Similarly, the apodization weighting A(i, j) is approximated by

the product AX(i)AY (j). This reduces the number of unique delay and weight-
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M

N

2D Aperture (M x N)

2D Array (P x Q)

Figure 2.1: Non-separable 2D array focusing an M x N aperture (smaller
white box) is translated across the array (larger white box) to form P beam-
formed points in the azimuthal direction (gray area), forming a weighted sum
of M x N time-delayed (or phase rotated) signals for each of P points (the
black square). This is repeated Q times to form P x Q focused outputs.

ing operations for an M x N aperture from MN to M+N, so that each of the M

possible unique azimuthal delays and weights for an element can be re-used

when the element is at N different elevational positions in an aperture and vice

versa. The separable focusing process is shown in Figs. 2.2A and 2.2B as an

M x N aperture is used to focus at a line of P points in the azimuthal direction,

repeated for each of Q elevational lines (not shown) to form a full P x Q image.

In 2.2A, a line of P partially focused outputs are formed by summing over a

1 x N elevational aperture with delays corresponding to RY (j) and weights of

B(j), as the aperture translates to cover P azimuthal locations. In the second

step, shown in 2.2B, an M x 1 aperture with delays corresponding to RX(i)

and weights of A(i) is used to form azimuthal sums as the aperture translates

over P azimuthal locations. Each partial sum of N delayed and weighted val-

12
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M

N

1D Aperture (1 x N)

2D Array (P x Q)

M

N

1D Aperture (M x 1)

2D Array (P x Q)

(A)

(B)

Figure 2.2: Separable 2D array focusing a 1 x N aperture (vertical white box)
is translated to form P partially beamformed sums in the azimuthal direction,
shown as a gray line in (A). The partial sums are each reused M times as an
M x 1 aperture (white horizontal box) is translated to form P output points,
shown as a gray line in (B). In conjunction these two apertures form an M x
N aperture (dotted box). The process of (A) and (B) is repeated Q times to
form P x Q focused outputs.
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ues from the first step is re-used M times in the second step. If the process to

form a single line of P focused points is repeated for Q similar lines at different

elevational positions, the total number of delay, weight and accumulate oper-

ations for the two-step separable focusing process is PQ(M+N). This reduces

the computational cost by a factor (M+N)/MN compared to the non-separable

case.

rXY =
√
Z2
f + ∆X2 + ∆Y 2 = Zf

√
1 +

∆X2

Z2
f

+
∆Y 2

Z2
f

(2.6)
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To break the geometric delay RXY (i, j) from equation 2.1 into the sep-

arable components RX(i) and RY (j), the rightmost term of RXY (i, j) can be

rewritten as rXY in equation 2.6, where the x and y dimension differences are

abbreviated to ∆X and ∆Y respectively. A Taylor series expansion of equation

2.6 is developed in equations 2.7 and 2.8. The first two terms of this expan-

sion are equivalent to the Fresnel approximation (48, 49). In equations 2.9 and
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2.10, rX and rY are the Taylor expansions of equation 2.6 with ∆Y and ∆X set

to zero respectively. It is clear that a sum of the three-term Taylor expansions

of rX and rY is equivalent to the three-term expansion of rXY except for an

additional constant Zf and a non-separable X-Y component in the third term

of rXY . This suggests that the condition RXY (i, j) ∼ RX(i) + RY (j) can be

met using the forms of equations 2.11 and 2.12, where the Zf in RY (j) is used

to cancel an extra constant that would otherwise appear in the sum. Equation

2.13 describes the resulting azimuthal and elevational propagation time delays,

τX(i) and τY (j), which similarly satisfy τXY (i, j) ∼ τX(i) + τY (j).

RX(i) = Zf +
√

(X − x(i))2 + Z2
f (2.11)

RY (j) = −Zf +
√

(Y − y(j))2 + Z2
f (2.12)

τX(i) = RX(i)/c, τY (j) = RY (j)/c (2.13)

Both of the delay, weight and summation steps of separable focusing are

given for a true delay-and-sum implementation in equations 2.14 and 2.15. The

summation output FXY (p, q, t) is a time series that is evaluated at t = 0 after

envelope detection. When phase-rotation based focusing is employed, the two

separable focusing steps are as described in equations 2.16 and 2.17 using

complex multiplies rather than time delays.

FX(p, q, t) =

(M−1)/2∑
i=−(M−1)/2

AX(i)s(p− i, q, t− τX(i)) (2.14)
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FXY (p, q, t) =

(N−1)/2∑
j=−(N−1)/2

AY (j)FX(p, q − j, t− τY (j)) (2.15)

FX(p, q) =

(M−1)/2∑
i=−(M−1)/2

AX(i)e−jkRX(i)s(p− i, q) (2.16)

FXY (p, q) =

(N−1)/2∑
j=−(N−1)/2

AY (j)e−jkRY (j)FX(p, q − j) (2.17)

2.C.iii FFT-Based 2D Array Focusing

Repeated 2D summation over a focal aperture as it shifts in a 2D plane across

the sample data is equivalent to convolution. An N x N sized 2D convolution

can be calculated using the convolution theorem and 2D FFTs and IFFTs. 2D

FFTs can be calculated in O(N2log(N)) time as a result of performing N 1D

FFTs for each of the X and Y dimensions, taking O(Nlog(N)) individually (50).

However, zero-padding is required to avoid cyclic convolution issues, and dual

domain (time/frequency) data representation increases memory requirements.

In addition, if fixed-point arithmetic is used, FFT-based convolution introduces

significant rounding errors that increase with FFT length (51, 52).

2.D Materials and Methods

2.D.i Focusing Algorithm Implementations

Unless otherwise stated, experimental and simulated data were focused using

the array parameters given in Table 2.1., based on the prototype 2D array of

16



2.D Materials and Methods

Eames et al (53) and typical experimental imaging settings for DSIQ and DAS

focusing.

Table 2.1: Array Parameters for Experimental and Simulated System

Property Value Units
Array Size 60 x 60 Element

Pitch 300 µm
Center Frequency 5 MHz

Cycles (DSIQ) 4 N/A
Cycles (DAS) 2 N/A

Non-separable delay-and-sum (NDAS) and separable delay-and-sum (SDAS)

focusing were implemented in MATLAB (Mathworks, Natick, MA). Two different

kinds of time-delay interpolation were used: an 8-sample Hamming-windowed

sinc function, and a cubic B-spline based method. Cubic B-spline interpola-

tion works by operating a 2-tap IIR filter up, then down each receive channel

time series, before application of a 4-tap FIR filter for each individual interpola-

tion step (54, 55). As there are many more time-delay operations than receive

channels, in the limit the B-spline method is approximately twice as fast as

an 8-tap windowed sinc operation, with an interpolation error reduced by 3.5

dB - 5.5 dB (56). For NDAS focusing, the 2D time delay profile from equation

(3) was used to create an N x N x L convolution kernel, with each of the N x

N vertical time series implementing a time delay, using windowed sinc (L=8)

or B-spline interpolation (L=4),with an integer sample offset. This kernel was

then used in a spatially variant 3D convolution with volume data from the 60

x 60 array to produce focused RF output. For SDAS focusing, a 1 x N x L

azimuth-focused kernel and an N x 1 x L elevation-focused kernel were simi-

larly created according to equations (11-13) and convolved together to make
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an effective kernel for focusing as in the NDAS case. Non-separable DSIQ fo-

cusing (NDF) and separable DSIQ focusing (SDF) algorithms were also imple-

mented in MATLAB, operating on 4 real samples per channel. These samples

were taken at the time intervals s1 = t0, s2 = t0 +λ/4, s3 = t0 +λ, s4 = t0 +5λ/4,

with λ = fc/c and t0 the round-trip propagation time from the array to the focal

depth. The first two samples per element, separated by a quarter period, are

treated as the real and imaginary parts of a first complex sample. The next

two samples similarly become the second complex sample. Time delays can

then be implemented by weighted phase rotations of the two complex samples

per channel. A more detailed treatment of DSIQ sampling is given in (16).

The set of first complex samples from each channel were focused separately

from the set of second complex samples, and the results added. This permits

independent complex focusing kernels for the first and second complex sam-

ple data sets, taking into account how close to the geometric waveform center

in time the first and second complex samples are. A weighting function was

used for each aperture element (i, j) to bias the final output towards the com-

plex sample closest to the ideal time delay. A gaussian function, with full-width

half maximum (FWHM) equal to the separation of the two complex samples

was chosen to change weighting smoothly while biasing strongly towards the

nearest complex sample. This is shown in equation 2.18 where ws(i, j) is the

complex sample weight, ts is the complex sample time, τ(i, j) is the geometric

target time delay for aperture element (i, j) and k is a constant chosen to set

the stated FWHM for the weighting.

ws(i, j) = e−k(ts−τ(i,j))2 , k = −4ln(0.5)f 2
c /λ

2 (2.18)
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For all focusing algorithms an N x N focusing aperture was assumed,

based on f-number. In the case of NDF, for each of the two complex samples

an N x N array of complex focusing coefficients was calculated for a particular

focal depth using equations (2.1, 2.4, 2.5), with radially symmetric apodization

and per-element aperture weighting for each of the two arrays according to

equation 2.18. The MATLAB function ‘conv2’ was used to perform 2D com-

plex convolution in-place using double-precision floating point arithmetic. The

phase of the non-separable 2D DSIQ focusing aperture is used as a refer-

ence phase for calculation of root-mean-square phase error of the separable

focusing algorithms. Apodization-weighted RMS phase errors are calculated

to give an indication of phase error significance taking into account aperture

shading. For SDF focusing, azimuth-focused and elevation-focused focusing

vectors were produced, with dimensions 1 x N and N x 1 respectively, accord-

ing to equations (2.11-2.13) using the same apodization window used for both

AX(i) and AY (j). The two 1D focusing vectors were convolved together to form

an equivalent N x N outer product convolution kernel, applied independently to

the first and second set of complex samples before combination into a final

image. For the SDF case, the weighting of equation 2.18 is applied in each of

the x- and y- dimensions, producing an N x N product aperture weight as used

for NDF.

2.D.ii Simulation and Experimental Methods

All simulations were performed using the Field II program (57), and the pa-

rameters of Table 2.1 (unless otherwise stated), with 2 x 2 mathematical ele-

ments per physical element and gaussian-windowed transmit pulses with the
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required bandwidths. In all cases, a sample rate of 128 times the center fre-

quency was employed in Field II to avoid artifacts. The output of the simula-

tion was downsampled to 40 MHz before beamforming to simulate a realistic

hardware system. To compare separable beamformer imaging performance

to non-separable equivalents, simulated PSFs and beamplots, plus simulated

and experimental anechoic cyst images were produced. For the anechoic cyst

images, contrast-to-noise ratios (CNRs) were calculated using equation 2.19,

where µ and σ represent the log-scale mean and standard deviations of the

image in the lesion and background areas as subscripted.

CNR =
µlesion − µbgnd√
σlesion + σbgnd

(2.19)

All experimental data were obtained using a prototype of the Sonic Win-

dow handheld C-mode ultrasound scanner (17). This is a fully portable, battery

operated system with an integrated 2D transducer array (53) with parameters

from Table 2.1, and weighing less than 170 grams. Custom front-end ICs flip-

chip attached to the 2D transducer array acquire the received data from every

element in parallel after each transmit event. For all experiments a plane wave

4-cycle, 5MHz transmit pulse was used. This was followed by the capture of

4 samples per element at the required instants using a 40MHz sample clock,

repeated at different depths to acquire volume data. A tissue mimicking near-

field ultrasound phantom, including a 10mm diameter anechoic cylinder at a

depth of 15mm was used as a target for the experimental data (Model 050,

CIRS, Norfolk, VA).
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2.D.iii Focusing Computational Metrics

The computation time required to perform separable and non-separable ver-

sions of delay- and-sum (NDAS, SDAS) and DSIQ focusing (NDF, SDF) was

measured for a variety of aperture sizes on the Texas Instruments OMAP 3530

smart phone oriented processor, described in Table 2.2. The energy cost of the

computations was calculated using an integration of directly measured current

consumption of the OMAP processor and associated power management in-

tegrated circuit (PMIC), with a fixed supply voltage of 3.3V. All algorithms were

implemented in C, using 16-bit signed integer data and compiled with gcc us-

ing the -O3 code optimization level, with and without the inner loops optimized

to use single-instruction multiple-data (SIMD) assembly instructions. These

instructions are capable of performing, for example, 4 multiply-accumulate op-

erations in parallel. In all cases, computation time represents the time to focus

a single C-mode slice of a volume-focused image. For the delay-and-sum fo-

cusing algorithms using cubic B-spline interpolation, this is the time to perform

4 separate scalar 2D convolutions of a 60 x 60 array with an N x N kernel.

For DSIQ-based focusing, computation time is the time to perform 2 complex

2D convolutions of a 60 x 60 array with an N x N kernel. Each timed com-

putation was averaged over 100 runs, alternating between two input data sets

to obtain realistic cache usage. In addition, to compare the performance of

separable 2D focusing using convolution with FFT-based 2D convolution, both

were implemented in MATLAB (using ‘fft2’ and ‘conv2’ built-in functions), oper-

ating on double precision complex floating-point data on an Intel Core i5 laptop

processor (described in Table 2.2.)
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Table 2.2: Processor Parameters

Processor OMAP 3530 Core i5
Manufacturer Texas Instruments Intel

System Gumstix Overo (www.gumstix.org) 15” Macbook Pro (Apple Inc.)
Family/Variant Cortex A8 Arrandale (mobile)

Cores ARM + C64 DSP (unused) 2
Processor Clock 720 MHz 2.4 GHz

L1 memory 16KB(I)+16KB(D) 32KB(I)+32KB(D)/core

L2 memory 256KB 256KB/core

L3 memory N/A 3MB

Main Memory Access 166MHz/32bit 1066MHz/64bit
Typical Power 1W 35W (Thermal Design Power)

2.E Results

2.E.i Focusing Phase Errors and Delay-and-Sum Interpolation Errors for

Separable 2D Array Focusing

Fig. 2.3 shows apodization-weighted and unweighted RMS phase errors for

the described simulated array with focal depths of 5mm, 15mm and 25mm,

and varying f/# from 0.8 to 3.0. Weighted RMS phase errors are < 1/32

cycle for f/# > 1.0, focal depth <= 15 mm. Fig. 2.4 illustrates the effect of

interpolation errors in simulated beamplots for non-separable and separable

delay and sum algorithms focused at a depth of 15mm, with f/# = 1.4 and

using windowed-sinc or B-spline based interpolation methods.

2.E.ii Simulated Point-Spread Functions and Beamplots

Figs. 2.5 and 2.6 illustrate simulated 2D point spread functions (PSFs) and

beamplots for non-separable and separable, DSIQ and DAS focusing. Fig.
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Figure 2.3: Unweighted (A) and apodization-weighted (B) RMS phase errors
for separable focusing algorithm with varying f/# and focal depth = 5mm,
15mm or 25mm.

−10 −5 0 5 10

−100

−80

−60

−40

−20

0

Azimuth (mm)

R
e
s
p

o
n

s
e
(d

B
)

A

 

 

BSpline

Sinc8

−10 −5 0 5 10

−100

−80

−60

−40

−20

0

Azimuth (mm)

R
e
s
p

o
n

s
e
(d

B
)

B

 

 

BSpline

Sinc8

Figure 2.4: Simulated beamplots at focal depth of 15mm, f/#=1.4 for non-
separable (A) and separable (B) delay-and-sum algorithms using 8-sample
Hamming-windowed sinc interpolation (Sinc8) and cubic B-spline interpola-
tion (BSpline).
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2.7 shows simulated 2D PSFs for NDAS, SDAS and SDF focusing methods,

in more difficult conditions including low f-number, shallow focal depth and in-

creased excitation pulse frequency.

2.E.iii Simulated and Experimental Anechoic Cylinder Images

Experimental volume data was captured from the Sonic Window 60 x 60 array

system, while positioned over a 10mm diameter anechoic cylinder at a depth

of 15mm in a CIRS phantom. The phantom was also simulated in Field II and

imaged for validation purposes using the NDAS, SDAS, NDF and SDF focus-

ing methods. Fig. 2.8 shows C-mode image slices and lateral plots through

the simulated anechoic cyst phantom using all 4 methods. Fig. 2.9 shows a B-

mode image slice through the cyst (along the y=0 plane) for the same methods.

Fig. 2.10 shows C-mode image slices and lateral plots through the experimen-

tal phantom anechoic cyst phantom for all 4 methods, using a 4-cycle transmit

pulse.

Using the C-mode slice at the anechoic cylinder center, contrast-to-noise

ratio (CNR) was calculated for simulated NDAS, SDAS, SDF and NDF focus-

ing, giving values of 4.06 dB, 4.02 dB, 3.96 dB and 3.91 dB respectively. For

the experimental data, the corresponding CNR values were 2.06 dB, 2.03 dB,

2.40 dB and 2.31 dB respectively. Simulated NDAS and SDAS cysts, using

a 4-cycle transmit gave CNRs of 3.64dB and 3.53dB, reflecting that DAS has

worse contrast than DSIQ when using a non-ideal 4-cycle pulse.
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Figure 2.5: Simulated 2D elevational-azimuthal point-spread functions for
separable and non-separable versions of delay-and-sum (NDAS, SDAS) and
DSIQ (NDF, SDF) beamforming, using f/#=1.4 and focal depth of 15mm (65dB
logarithmic display range, 2-cycle transmit for DAS, 4-cycle transmit for
DSIQ).
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Figure 2.6: Simulated beamplots for non-separable and separable delay-
and-sum and DSIQ beamforming, using f/#=1.4 and a focal depth of 5mm
(A,B), 15mm (C,D) and 25mm (E,F).
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Figure 2.7: Point spread functions for the 2D array from Table 1, fo-
cused using the NDAS, SDAS and SDF methods, with logarithmic display
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ter frequency=5MHz. Row B shows f/#=1.0, focal depth=10mm, center fre-
quency=5MHz. Row C shows f/#=1.4 focal depth=15mm, center frequency=7
MHz.
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Figure 2.8: Simulated 10-mm diameter anechoic cylinder C-mode image
slices (first 2 columns) and RMS absolute value profile (taken over y dimen-
sion). For each, separable and non-separable versions of delay-and-sum
(NDAS, SDAS) and DSIQ (NDF, SDF) beamforming are shown, using f/#=1.4
and focal depth of 15mm (50 dB logarithmic display range). White rectangles
represent areas used to estimate CNR values.
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Figure 2.10: Experimental 10-mm diameter anechoic cylinder C-mode im-
age slices (first 2 columns) and RMS absolute value profile (taken over y
dimension). For each, separable and non-separable versions of delay-and-
sum (NDAS, SDAS) and DSIQ (NDF, SDF) beamforming are shown, using
f/#=1.4 and focal depth of 15mm (35 dB logarithmic display range). White
rectangles represent areas used to estimate CNR values.
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2.E.iv Computational Performance of Separable and Non-Separable 2D

Focusing

The execution times of NDAS, SDAS, NDF and SDF focusing were compared

on the two different hardware platforms of Table 2. Fig. 2.11-A shows the C-

mode imaging frame rates achieved by ‘C’ implementations of the algorithms

with inner-loop SIMD optimizations on the OMAP 3530 processor. SDAS and

NDAS rates were 254.8 Hz and 16.3 Hz for 40 x 40 apertures, corresponding

to an acceleration factor of 15.6X by using the separable method. For SDF

and NDF, frame rates were 192.8 Hz and 11.39 Hz - i.e. an acceleration of

16.9 X by using SDF. Fig. 2.11-B shows the performance of NDF, SDF and

2D FFT-based focusing implemented in MATLAB on the Core i5 processor.

Compared to the 2D FFT method for aperture sizes of 20 x 20 and 40 x 40,

the SDF algorithm was faster by a factor of 2.12 and 1.64 respectively. The

NDAS, SDAS, NDF and SDF algorithms had an energy cost of 75.0 mJ/frame,

4.8 mJ/frame, 107.2 mJ/frame and 6.3 mJ/frame respectively, using a 40 x 40

focusing aperture, and implemented in C with inner-loop SIMD optimizations

on the OMAP hardware platform.

2.F Discussion

2.F.i Imaging Performance of Separable 2D Beamforming Algorithms

Separable 2D beamforming is only useful if imaging performance is not sig-

nificantly degraded. The results from Fig. 2.3 indicate that the RMS phase

errors due to separable focusing are much lower when weighted by the aper-
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Figure 2.11: (A) C-Mode imaging frame rates for C-with-SIMD implementa-
tions of separable and non-separable delay-and-sum and DSIQ focusing on
the OMAP 3530 processor (SDAS, SDF, NDAS, NDF). (B) Frame rates for NDF,
SDF and FFT-based focusing implemented in MATLAB on the Intel Core i5
processor.
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ture apodization function, but increase dramatically for f-numbers lower than

about 1.4. In practice, the angular sensitivity of individual elements means that

f-numbers below 1.0 are rarely used. For an operating region of f/# >=1.4,

focal depth <= 25 mm, the weighted RMS phase error is less than 5 degrees,

which should not significantly affect focusing quality. It is also important that the

delays applied first in the x-direction, then the y-direction, do not introduce cu-

mulative errors. Windowed-sinc time delay interpolation with 8 taps has been

shown in Fig. 2.4 to introduce significant beamplot degradation for separable

delay-and-sum focusing. In contrast, cubic B-spline interpolation introduces

only minimal degradation, and is nominally twice as fast as 8-tap sinc inter-

polation. The simulated beamplots and PSFs represented in Figs. 2.5 and

2.6 indicate that under typical conditions, separable versions of delay-and-sum

and DSIQ focusing suffer minimal degradation over non-separable focusing.

In addition, using the separable method, simulated cyst CNR is only reduced

from 4.06 dB to 4.02 dB for 2-cycle transmit delay-and-sum, and from 3.96 dB

to 3.91 dB for 4-cycle transmit DSIQ. This is a very minor, probably impercep-

tible, contrast reduction. Additionally, the difference between delay-and-sum

and DSIQ contrast is similarly small. This indicates that the application of ap-

propriate weightings to the two DSIQ complex samples significantly reduces

the PSF energy outside the mainlobe and side lobes, approaching delay-and-

sum contrast, albeit with a wider mainlobe and reduced resolution. Experimen-

tal cyst CNR values confirm that there are only marginal differences between

NDAS, SDAS, NDF, SDF in this imaging case. The difference in experimental

CNR magnitude compared to simulations can be attributed to the presence of

distributed phase deficiencies (conservatively estimated at 14 ns RMS delay)
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across the surface of the prototype array (53). This is probably due to the vis-

cous silver epoxy used for one electrode. Due to prototype limitations, only

4-cycle transmit data was available. This degrades delay-and-sum focusing

and CNR relative to DSIQ, verified by delay-and-sum simulation results with

a 4-cycle transmit pulse. The separable focusing decomposition is expected

to perform worst in conditions of low f-numbers, in the extreme near field (due

to increased wavefront curvature), and at operating frequencies where grating

lobes are severe, as explored in Fig. 2.7. In all of these conditions, sepa-

rable delay-and-sum is minimally degraded relative to non-separable delay-

and-sum. When compared to delay-and-sum, separable DSIQ focusing only

exhibits significant degradation in the high-operating frequency, grating lobe

condition, but is remarkably robust in the other cases. Separable focusing per-

formance is governed by the errors in the (separable) Fresnel approximation

(48, 49) under typical imaging conditions. A square root expansion of this form

converges more quickly when the term b from equation 2.7 is small. The vari-

able b can be related to the f-number used in the system using equation 2.20,

which for f/# = 1.0 is approximately 0.354. For realistic apertures, the series

converges rapidly, and the significance of later terms in the expansion falls

quickly.

b =

(
√

2
X2

Z2
f

)
, f =

Zf
2X

∴ b =
√

2
1

4f 2
=

1

2
√

2f 2
(2.20)

Furthermore, the non-separable part of the third term in the expansion,

2(∆X2∆Y 2/Z2
f ) is only significant compared to the separable part, (∆X2/Z2

f +

∆Y 2/Z2
f ) in the corners of the aperture. As the corners of the aperture have
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reduced effective sensitivity due to apodization and element directivity, the ap-

proximation error is mitigated. Taking these factors into account, it is logical

that the separable focusing approximation causes only minimal imaging per-

formance degradation. In combination, the experimental and simulated re-

sults in conjunction with the theoretical justification for separable focusing per-

formance indicate that the separable near-field approximation is functionally

equivalent to non-separable in most cases. The subaperture methods sug-

gested by (5, 30, 31, 32, 33, 34) were tested as described in (58), but with

plane wave-transmit, receive-only focusing. However, detailed analysis is omit-

ted due to severe grating lobes that degraded imaging performance.

2.F.ii Computational Performance of of Separable 2D Beamforming Al-

gorithms

The decomposition of a 2D beamforming operation into two separable 1-D line

array beamforming operations is capable of order-of-magnitude performance

increases for near-field wideband 3D ultrasound imaging (44). This method in-

volves applying varying time delays across the azimuthal dimension, followed

by the application of further time delays to the azimuthally delayed data, oper-

ating across the elevational dimension. When the time delays are simple phase

rotations, as in DSIQ focusing, it is trivial to apply the two delays as succes-

sive complex multiplications. However, when interpolation operations are used

to sample time series at delays of up to tens of samples, this means a full,

delayed time series history must be produced by the azimuthal focusing step

before elevational focusing. Although the interpolations can be applied using

short FIR filters at integer offsets for delay-and-sum focusing, the separable
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method requires a full time-series to be produced by the first 1D focusing step.

For volume focusing, this represents unnecessary oversampling in the axial

dimension, detracting from the performance gains from separable decomposi-

tion. In effect, this means the separable method can only be used productively

with delay-and-sum for volume imaging modes, with reduced flexibility in ax-

ial image sampling. In contrast, separable DSIQ can focus volume data with

arbitrary axial plane spacing, and form single C-mode slices in isolation. For

handheld devices with limited power, DSIQ is a very effective way to use a 2D

array for real-time imaging with multi-hour battery life. In addition to energy-

efficient beamforming, front-end ASICs using the DSIQ sampling method use

very little power due to a low-duty-cycle operating mode. In comparison to

typical always-on ultrasound analog front-end integrated circuits, such as the

Texas Instruments AFE 5807 (88 mW/channel at 40 MHz, 12-bit ADC) or the

Analog Devices AD 9278 (also 88 mW/channel at 40MHz, 12-bit ADC), a typ-

ical DSIQ front end only requires 13.8 W per channel at 30 frames/second,

or 1.6 mJ per frame to operate all 3600 channels for C-mode imaging (17).

This represents less than 1/6000 of the power of the always-on front-ends, and

approximately 1/5 of the typical energy cost (7.5 mJ) of the separable DSIQ

beamformer processing. Separable 2D focusing has a theoretical computa-

tional cost reduction of (M+N)/2 compared to non-separable focusing, where

M and N are the focusing aperture dimensions in elements. For typical 40 x

40 apertures a significant speed-up of 20X is predicted. When the separable

algorithm was tested on realistic hardware (the OMAP 3530 processor), imple-

mented in C with SIMD optimizations on 16-bit data, actual speed increases

ranged between 57%-87%, and 61%-89% of predicted values for delay-and-
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sum, and DSIQ focusing respectively. In comparison, non-SIMD performance

differs from predicted values by just 8% for delay-and sum, and 4% for DSIQ

focusing. This indicates that when SIMD instructions are used, giving a 2-

3X speed increase, for smaller apertures loop overhead becomes a perfor-

mance bottleneck. An implementation of focusing using FFT-based 2D convo-

lution on double precision data in MATLAB was 2.12 times slower compared to

SDF for 20 x 20 apertures and 1.64 times slower for 40 x 40 apertures. The

comparative analysis of (41) shows that for short (32-64 element) 1D aper-

tures, FFT-based 1D convolution is comparable to non-FFT 1D convolution in

computational cost. For 2D convolution, the FFT method computational cost

increases to O(N2log(N), while separable 2D focusing cost increases from

O(N2) to O((N +N)N2) or O(2N3). The zero-padding and significantly higher

memory usage required for FFT-based focusing (compared to SDF focusing)

plausibly explains the performance advantage of the separable method for typ-

ical data sizes. This effect is expected to be more pronounced in processors

with smaller L1 cache memories, such as those likely to be used in handheld,

battery operated devices. Although alternate approaches optimized for FFT,

such as using FPGAs, specialized DSPs or ASICs are possible, the theoretical

performance increases suggested by FFT-based 2D convolution are not nec-

essarily achievable on low-power processors suitable for handheld devices.

For an aperture size of 40 x 40, the separable algorithm increased frame rates

from approximately 16 to 254 (delay-and-sum), and 11 to 193 (DSIQ) on the

OMAP 3530. These are significant increases on the OMAP platform, where

the 7.5 mJ/frame energy cost of C-mode 2D DSIQ array beamforming enables

real-time, portable operation with multi-hour battery life.
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2.G Conclusion

X-Y Separable 2D beamforming is capable of order-of-magnitude improve-

ments in computation time and energy consumption. Our analysis of imag-

ing performance using this method in practical conditions using delay and sum

(DAS) and DSIQ beamforming indicates the separable approximation has min-

imal effect on imaging quality. Simulated and experimental cyst CNR values

were reduced by negligible amounts in each example. A high quality interpola-

tor is required in separable DAS beamforming, to prevent cumulative interpo-

lation errors from degrading imaging performance. DSIQ focusing is capable

of achieving contrast levels approaching those of DAS, if two complex sample

planes are captured and weighted appropriately. Although mainlobe width and

sidelobe levels with DSIQ are worse than DAS, separable DSIQ can be used to

form C-mode images or volume images with arbitrary axial sampling. In con-

trast, separable delay-and-sum can only achieve large performance improve-

ments when forming volume images, with additional axial sampling constraints

due to the two-step focusing process. The measured performance gains of

15.6X and 16.9X for separable delay-and-sum and DSIQ focusing are very at-

tractive, translating to frame-rates of 255 and 193 C-mode slices per second

respectively. This enables real-time but low volume imaging frame rates in

each case. Although DSIQ focusing has slightly reduced imaging performance

relative to DAS, using the separable method it is capable of processing data

from thousands of 2D array channels in real-time, with a low energy cost of

7.5 mJ/frame, enabling multi-hour operation in a handheld, battery-powered

device.
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Chapter 3

SECTOR-SCAN MOTION TRACKING FOR

FREEHAND 3D IMAGING1

3.A Abstract

Ultrasound data motion tracking is widely used to both estimate tissue mo-

tion for diagnostic purposes, and to estimate bulk transducer motion relative

to tissue, for example in freehand imaging (59), where successive 2D ultra-

sound scan planes are registered in a 3D volume. Speckle-tracking (60) and

decorrelation-based methods (61) are used to estimate motion in the azimuthal

and elevational planes. However, the performance of speckle-tracking is signif-

icantly degraded in sector-scan systems due to PSF rotation with lateral mo-

tion (62). Sector-scan systems are used for many applications, including car-

diac, abdominal and obstetric imaging, typically using a electronically scanned

beam. Mechanical sector-scans have also been shown to be advantageous
1Chapter 3 is being edited for submission as the journal article :

K. Owen, F. W. Mauldin, Jr., S. Nguyen, M. Tiouririne and J. A. Hossack, ”Improved Eleva-
tional and Azimuthal Motion Tracking Using Sector Scans”, IEEE Transactions on Ultrasonics,
Ferroelectrics and Frequency Control
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in bone imaging (18). When there is both azimuthal and elevational motion,

the accuracy of estimates in both planes are reduced. In this chapter I de-

velop a new method for joint azimuthal-elevational motion estimation based

on the complex correlation of individual IQ-demodulated sector-scan A-lines

arising from tissue motion in 3D space. Using a new statistical model, I show

that the phase of per-line decorrelation is linearly related to the dot-product of

the tissue motion vector and each A-line’s direction unit vector, with a normal

distribution in realistic conditions. A simple least-squares fit is used to find

the maximum-likelihood azimuthal-plane tissue motion vector, given the cor-

relation phases for all A-lines and transducer geometry. Next, the magnitude

of each A-line correlation is used in conjunction with the calculated azimuthal

motion to estimate elevational motion, using optimal and suboptimal, but fast

methods. I show that our method has performance benefits over both speckle-

tracking and decorrelation-based tracking for azimuthal and elevational motion

estimation in sector-scan systems, with particular benefits when there is both

elevational and azimuthal motion. Motion-tracking efficacy is further demon-

strated by improved freehand imaging of a known target (anatomically accu-

rate 3D-printed lumbar spine model) in a tissue-mimicking phantom, with a

RMS surface distance error of 1.2 mm, compared to 2.43 mm for conventional

methods. This data indicates that the new algorithm is capable of improved

tracking performance for sector scan systems, enabling effective freehand 3D

scanning.
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3.B Introduction

Azimuthal and elevational motion of tissue relative to an ultrasound transducer

can be estimated during scanning using various motion-tracking algorithms.

In addition to diagnostic applications, (e.g. cardiac and vasculature imaging),

transducer/tissue relative motion can be used to construct extended field-of-

view images from individual scan-frames (63), (64), (65). When applied to

conventional B-mode scanners, this approach enables freehand 3D imaging

(59), or the production of volumetric composite images from many individual

2D image planes. Traditional B-mode ultrasound systems require substantial

training and experience for proper image interpretation, due to the influence

of transducer orientation on instantaneous images. In contrast, volumetric im-

ages can be more intuitively interpreted (3), (4) with consequent widespread

use of high-end 2D phased array systems for volumetric imaging in cardiac

and obstetric applications. However, for some applications, such as low-cost,

portable imaging, freehand 3D imaging is a viable alternative to 2D phased

array technology for intuitive volume imaging.

In-plane motion can be estimated using a variety of speckle-tracking meth-

ods, such as normalized cross-correlation (60), (66), sum-of-absolute differ-

ences, and variations on these techniques, which allow sub-sample estima-

tion through curve fitting (67). When motion is entirely within the imaging

plane, speckle-tracking motion estimation has low jitter, however out-of-plane

motion, tissue compression or any rotational motion introduce decorrelation

(62), leading to increased estimation error (68). The decorrelation related to

out-of-plane motion can also be used to estimate motion magnitude, using
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inter-frame speckle decorrelation measurements fitted to the two-way point-

spread-function (PSF) autocorrelation at a given shift, calibrated using a test

phantom(61). This method has been extended to account for partially devel-

oped speckle (69), varying elevational motion with depth due to rotational mo-

tion, and decorrelation estimation using regression (70) or probabilistic models

(71). Decorrelation cannot, however be used to estimate out-of-plane motion

direction due to correlation function symmetry in the elevational dimension.

For sector-scan ultrasound systems, azimuthal motion tracking is degraded

by rotation of the point-spread function with translation, with rotations of just

2-10 degrees causing rapid decorrelation (62). Sector scans can use either

electronic or mechanical scanning and are prevalent in applications where

large fields of view are required, and/or the physiological access window is

limited, such as abdominal, cardiac and obstetric imaging. Although elec-

tronically scanned (phased-array) systems are more prevalent, mechanically

scanned systems have some advantages which cannot easily be replicated

in electronic systems, including improved elevational focusing (due to piston

transducer), complete lack of grating lobes at any angle, and low complexity

electronics. In some applications, such as spinal bone imaging (18) and ex-

tremely portable systems (e.g. SeeMore USB probes - Interson, Pleasanton,

CA), these advantages make mechanical systems preferable.

In this chapter I develop a method to jointly estimate azimuthal and ele-

vational motion using complex decorrelation data from individual A-lines of a

sector scan. This technique outperforms speckle-tracking and decorrelation-

based tracking when motion has non-zero azimuthal and elevational compo-

nents, has lower bias for azimuthal motion estimation, and is more tolerant of
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specular features in the field of view. A statistical model for the complex cor-

relation of a focused, IQ-demodulated RF pixel indicates that the phase of the

complex decorrelation of an A-line is normally distributed, with mean linearly

related to the projection of tissue motion onto the A-line direction unit vector.

Using the property that each A-line makes a different angle with tissue motion,

I construct an accurate, maximum-likelihood azimuthal motion estimator using

only phase data. I further show that the magnitude of decorrelation for each A-

line is related to the magnitude of motion orthogonal to the A-line direction, and

using a separable 3D gaussian-magnitude PSF model, develop one maximum-

likelihood elevation motion estimator, and two suboptimal but fast elevational

motion estimators.

The statistical correlation model is validated using stochastic simulations

and comparison to experimental data using a mechanically-scanned piston

transducer. Performance of the conventional (speckle-tracking plus decorre-

lation elevational tracking) and proposed tracking algorithm is compared over

a range of azimuthal/elevation translations using a motion stage and tissue-

mimicking phantom (72). The statistical model is also used to successfully

predict azimuthal speckle-tracking motion estimation bias. Finally, I test mo-

tion estimation performance using freehand scanning of a known 3D target

(anatomically accurate 3D-printed lumbar spine model embedded in tissue-

mimicking phantom), evaluated using root-mean-square bone surface distance

error after bone surface detection and 3D registration.
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3.C.i Statistical Model for Complex PSF Correlation with Motion

A single pixel from a focused, IQ-demodulated A-line has a sensitivity to scat-

terers that is a complex function of 3D space, shown as F (x, y, z) in Fig. 3.1A.

The origin of this co-ordinate system is at the center of the function F, cor-

responding to the location of the pixel in space, the z-axis is in the direction

of propagation of the A-line, and the x-axis and y-axis are orthogonal to the

z-axis, and arranged to form a right-handed set. The azimuthal plane corre-

sponds to the y-z plane in this system, while elevational motion is in the x-axis

direction. If there is subsequently transducer motion relative to tissue, with

vector r, the new scatterer sensitivity for the same complex pixel in the A-line

is now given by G(x, y, z) = F (x − rx, y − ry, z − rz), a shifted version of the

original sensitivity, function, shown in Fig. 3.1B.

The product of the two pixel values is the raw correlation value for the pixel

as a function of motion, or C(r). The scatterer function a(x, y, z) describes the

scatterer amplitudes in space, a set of scalar, independent, identically dis-

tributed (i.i.d) variables with zero mean and a normal distribution. Using this,

an expression for the raw complex correlation C(r) can be developed using

integrals over 3D space as in equation 3.1. This corresponds to the inner

product of the two complex PSFs F and G. A simpler representation of C(r)

can be produced using linear algebra (equation 3.2), where the 3D functions F

and G are represented by column vectors, with each element corresponding to

a single (x, y, z) permutation. The linear algebra approach is simpler, as the 3D

integrals become complex inner products, and the six-dimensional integration
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Figure 3.1: Sensitivity to scatterers of a single pixel from a focused complex
demodulated A-line as a function F(x,y,z) of three dimensional space shown
in (A). After transducer motion of vector r, the new scatterer sensitivity is
shown in (B), as the function F(x− rx,y − ry, z− rz).
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required for stochastic analysis of equation 3.1 is avoided. In the limit, if 3D

space is discretized finely enough, equations 3.1 and 3.2 are equivalent, but

more importantly, matrix factorizations can be used to reduce the problem to

the minimum equivalent representation.

C(r) =

∫ ∫ ∫
F (x, y, z)a(x, y, z) dx dy dz∫ ∫ ∫

G∗(x, y, z, r)a∗(x, y, z) dx dy dz

(3.1)

C(r) = F TaaHG∗(r) (3.2)

The column vectors F and G (of size N x 1, for N discretized scatterers),

can be transposed, conjugated and concatenated to form P , an N x 2 matrix

as in equation 3.3, giving expressions f and g for the complex pixel value

before and after translation. Following this, PHaaHP is a 2 x 2 matrix with C(r)

as the top-right element and C(r)∗ in the bottom-left element, as in equation

3.4. The matrix P can be factorized using the singular value decomposition

(SVD), and expressed as P = USV H , or PH = V SUH , where U is an N

x 2 matrix with orthonormal columns, S is a 2 x 2 real matrix with non-zero

elements only on the diagonal, and V is a 2 x 2 unitary matrix. Now, the

term PHa can be replaced with V SUHa, where UH is a complex matrix with

orthonormal rows that picks up a, with the distribution a ∼ N(0, σ2
aI). Therefore,

if UHa can be replaced with a new, 2 x 1 random variable, B with the same

statistical properties as UHa, then in addition to a drastic reduction in problem

dimensions, the 2 x 2 matrix V S and the statistics of B will be sufficient to
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completely describe correlation statistics.

P =

(
F ∗ G∗(r)

)
,

f
g

 = PHa =

(
F G(r)

)T
a (3.3)

PHaaHP =

f
g

(f ∗ g∗
) ff ∗ C(r)

C(r)∗ gg∗

 (3.4)

The term UHa can be decomposed into real and imaginary components,

UHa = UH
R a − jUH

I a. As the scatterer distribution is given by a ∼ N(0, σ2
aI),

and the complex demodulation process ensures that UR and UI are orthogonal

with equal magnitude, it is clear that UHa is the sum of independent real and

imaginary 2 x 1 real, zero-mean, i.i.d. normally distributed variables. Therefore

UHa can be substituted by the random variable B as in equation 3.5. The

properties of the matrices V (unitary), and S (real, diagonal), properties of the

complex PSFs F and G, and relations between V S and the complex PSF inner

products FHF , GHG and FHG can be used to calculate V and S in terms

of a phase angle φ and the scalar values S1 and S2 (equation 3.6, detailed

derivation in Appendix A). This result enables the effect of PSF transformations

on the complex correlation to be examined analytically in the complex plane,

and the small size of the V S matrix (2 x 2) makes stochastic simulations with

large numbers of realizations computationally feasible.

UHa ≡ B =

b1

b2

 ∼ N(0,
1

2
σ2
aI) + jN(0,

1

2
σ2
aI) (3.5)
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V =
1√
2

 1 1

e−jφ −e−jφ

 , S =

S1 0

0 S2


φ = −arg

(
FHG

FHF

)
,

S2

S1

=

√√√√1− |FHG
FHF
|

1 + |FHG
FHF
|

(3.6)

The term fg∗ from equation 3.4 is the correlation between the complex

signals picked up by the two PSFs F and G, with G shifted or otherwise trans-

formed relative to F . Equation 3.7 shows fg∗ extracted from the expansion of

V SBBHSV H . The first term in this relation is the weighted sum of two real,

chi-squared distributed variables, S2
1(b1b

∗
1) ∼ S2

1χ
2
2 and S2

2(b2b
∗
2) ∼ S2

2χ
2
2, rotated

by the angle (φ) in the complex plane. The second term can be simplified, if

the term (b2b
∗
1 − b1b

∗
2) is rewritten |b1||b2|(ejθ − e−jθ), then using the Euler re-

lations as 2j|b1||b2|sin(θ), where θ is the uniformly distributed angle between

independent complex normally distributed variables b1 and b2. Equation 3.8

shows the simplified form, where the rightmost term is a modified Bessel dis-

tribution of the second kind, altered by the sin(θ) factor, and is orthogonal to

the first, chi-squared term in the complex plane.

fg∗ =
(
S2

1b1b
∗
1 + S2

2b2b
∗
2

)
e−jφ + S1S2 (b2b

∗
1 − b1b2∗) e−jφ (3.7)

fg∗ = e−jφ
[(
S2

1b1b
∗
1 + S2

2b2b
∗
2

)
+ 2jS1S2|b1||b2|sin(θ)

]
(3.8)
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3.C.ii Statistics of Normalized Complex Correlation with PSF Transforms

Correlation data for motion detection is typically taken from many pairs of fo-

cused RF pixel data, mean-reduced then normalized to reduce the effect of

localized intensity variations, using equation 3.9. Normalization effectively av-

erages many individual RF pixel correlations fig
∗
i , assumed to be identical,

aside from local intensity variations. The numerator of equation 3.9 is ideally

the sum of many independent realizations of equation 3.8. In practice, the in-

dividual RF pixel correlations from equation 3.9 will be partially correlated with

nearby pixels due to PSF overlap, and the PSF will change over a large enough

correlation kernel area. However, even with a relatively small number of inde-

pendent RF pixels, both the chi-squared and modified Bessel (of the 2nd kind)

terms from equation 3.8 will approach normal distributions due to the central

limit theorem (CLT) (73).

C(r) =

∑
i

(fi − f)(gi(r)− g)∗√∑
i

(fi − f)(fi − f)∗
∑
i

(gi(r)− g)(gi(r)− g)∗
(3.9)

In practice, normalized correlations are not normally distributed, due to

the non-linear, non-independent effects of the denominator of equation 3.9.

In the absence of a theoretical correlation distribution model, other work has

used maximum entropy methods (71), (74) and more general experimentally

determined distributions (70) in motion estimation applications. However, as

the normalizing denominator is scalar, it can only affect the complex corre-

lation magnitude, but not the phase of a complex correlation, which due to

equation 3.8, the CLT and small angle approximation is effectively normally
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distributed. Therefore, a motion estimator using just the phase of complex

correlations can implement maximum likelihood motion estimation using very

simple, least-squares techniques. In contrast, normalized correlation magni-

tude has a complicated distribution with no known analytical model.

3.C.iii Sector Scan Geometric Model and Azimuthal Motion Estimation

In sector scan systems, each A-line typically has a PSF at a given depth that

is identical to those of the other A-lines, apart from a rotation in the azimuthal

plane. It is convenient to express the PSF function for an individual A-line as a

function of a local co-ordinate system, described by the unit vectors î, ĵ and k̂,

where k̂ is in the A-line direction, ĵ is orthogonal in the azimuthal plane, and î

is in the elevation direction. The local co-ordinate systems for multiple A-lines

in a sector-scan system are shown in Fig. 3.2 The scatterer sensitivity of the

n-th A-line at a displacement given by vector ~p from the PSF center can be

written as F (~p · î, ~p · ĵ, ~p · k̂). If the tissue is then displaced by the vector ~r, the

new scatterer sensitivity is F ((~p +~r) · î, (~p +~r) · ĵ, (~p +~r) · k̂). Equation 3.6 can

be used to calculate the phase and other parameters resulting from a given

displacement vector ~r. A separable analytical representation for the function

F as a product of spatial gaussians in the lateral and elevational directions,

and a gaussian-windowed complex sinusoid in the axial direction is shown in

equation 3.10, parameterized by α, β, γ and λ.

F (x, y, z) = e−αx
2

e−βy
2

e−γz
2+j 4π

λ
z = e−(αx2+βy2+γz2−j 4π

λ
z) (3.10)

This allows an analytical evaluation of the FHG term from equation 3.6
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Figure 3.2: Multiple A-lines from a sector scan, showing the scatter sensi-
tivity function or PSF at the same depth for each. Also shown is the local
co-ordinate system for each A-line, with the unit vectors kn in the A-line
direction, jn orthogonal to kn in the azimuthal plane, and in in the eleva-
tional direction. Local co-ordinate axis vectors are defined in the global
co-ordinates x, y, z, and centered on the PSF (shown offset for clarity).
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using integrals, with a solution that is a product of a phase and magnitude

term, the magnitude term itself also a product of functions of motion in the î, ĵ

and k̂ directions (equation 3.11). This equation forms the basis for a maximum

likelihood estimator of azimuthal-plane motion using phase alone.

〈F,G(r)〉 =

∫ ∫ ∫
V

e−α[(p·i)2+((p−r)·i)2]e−β[(p·j)2+((p−r)·j)2]

e−γ[(p·k)2+((p−r)·k)2]ej
4π
λ

(p·k−(p−r)·k) dp

= ej
4π
λ

(r·k)

√
π3

8αβγ
e−

1
2

[α(r·i)+β(r·j)+γ(r·k)]

(3.11)

To estimate azimuthal translation using the N x 1 vector of complex cor-

relation phases Φ, a multidimensional normally distributed phase is assumed,

fully described by the covariance CΦ. The phase vector resulting from a given

azimuthal translation raz is given by Φ(raz) in equation 3.12, where A is a 2 x

N matrix containing the y and z components of the vector kn for each A-line.

This can be used to express the inverse-covariance weighted sum of squared

errors between the observed phase vector Φ and the phase vector resulting

from raz, as in equation 3.13, with scalar distance r and phase Φ related by

r = λ
4π

Φ, where λ is effective wavelength, and 4π is used instead of 2π due to

round-trip wave propagation. The maximum likelihood azimuthal motion esti-

mate, given the geometric model and correlation phase statistics is found by

setting the differential of the error with respect to raz to zero, giving the expres-

sion of equation 3.14, with the resulting azimuthal motion estimate covariance

of equation 3.15. Due to the multidimensional normal distribution of the phase

noise vector, this estimator is not only maximum likelihood, but is also an effi-

52



3.C Theory

cient estimator in that it attains the CRLB and hence is the minimun-variance

unbiased estimator (75). The complex correlation phase covariance CΦ has a

deterministic relationship with the magnitude of complex correlation for each

A-line. This can be used to estimate phase covariance for each A-line, or the

covariance can be set to identity for computational simplicity.

Φ(raz) = Araz =

ky1 ky2 · · · kyN

kz1 kz2 · · · kzN


ry
rz


az

(3.12)

E =

(
rTazA−

λΦT

4π

)(4π

λ

)2
C−1

Φ

(
AT raz −

λΦ

4π

)
(3.13)

raz(opt) =
(
AC−1

Φ AT
)−1

AC−1
Φ

λΦ

4π
(3.14)

cov(raz) =
( λ

4π

)2
(AC−1

Φ AT )−1 (3.15)

3.C.iv Sector Scan Elevational Motion Estimation

Once the phase of the complex correlations from all A-lines has been used to

estimate the azimuthal motion vector, this can be used in conjunction with the

per-A-line correlation magnitude |c| and Bayes’ theorem (75) to estimate the

non-azimuthal-plane motion component for each A-line as in equation 3.16.

Here, Rj and Rk are the projections of global azimuthal motion onto an A-line’s

ĵ and k̂ unit vectors (from Fig. 3.2), ri is the A-line’s non-azimuthal motion

component and P (ri) and P (Rj, Rk, |c|) are assumed to be constant (flat prior

distributions, although incorporation of other prior distribution is easily possi-
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ble). In equation 3.17 we introduce the actual underlying PSF correlation c0,

and integrate over all possible values weighted by P (|c|
∣∣|c0|) a 2D probability

distribution which can be characterized stochastically using equations 3.5 and

3.6. This is needed to deterministically relate ri, rj and rk as in equation 3.18.

In equation 3.19, the left hand side fixes ri, and in the inner integral rj and

rk are fixed, leading to an expression for P (Rj, Rj, |c0||ri) with fixed rj that is

the product of two gaussian distributions in rj and rk, with standard deviations

σj(|c0|), σk(|c0|) derived using equation 3.15. In equation 3.19, P (ri
∣∣Rj, Rk, |c|)

is proportional to, rather than equal to the right hand side due to the constant

prior terms, which do not affect the probability maximization. The variable rj

is needed in the in the inner integral to enable rk to be found using equation

3.18, but is integrated away, as ri is the only variable of interest. The value r̂i

from equation 3.20 is the value of ri which maximizes P (ri|Rj, Rk, |c|), and is

the maximum likelihood non-azimuthal motion for this A-line.

P (ri
∣∣Rj, Rk, |c|) =

P (Rj, Rk, |c|
∣∣ri)P (ri)

P (Rj, Rk, |c|)
(3.16)

P (Rj, Rk, |c|
∣∣ri) =

∫ 1

0

P (|c|
∣∣|c0|)P (Rj, Rk, |c0|

∣∣ri)d|c0| (3.17)

|c0| = e−
1
2

(αr2i+βr2j+γr2k), rk
∣∣|c0|, rj, ri =

√
−2ln(|c0|)− αr2

i − βr2
j

γ
(3.18)

P (ri
∣∣Rj, Rk, |c|) ∝

∫ 1

0

P (|c|
∣∣|c0|)

∫ ∞
−∞

e
−

(Rj−rj)
2

2σ2
j
(|c0|) e

− (Rk−rk)
2

2σ2
k
(|c0|) drj d|c0| (3.19)
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r̂i = argmax
ri

∫ 1

0

P (|c|
∣∣|c0|)

∫ ∞
−∞

e
−

(Rj−rj)
2

2σ2
j
(|c0|) e

− (Rk−rk)
2

2σ2
k
(|c0|) drj d|c0| (3.20)

The maximum-likelihood estimator described here is computationally com-

plex, involving a 2D integration repeated for a range of ri values. Iterative max-

imization methods to find r̂i from equation 3.20 exist, including the Newton-

Raphson method (76), and the Expectation-Maximization algorithm (77). How-

ever, knowledge of derivatives (76) or some manual data partitioning (77) is re-

quired, and convergence is not always guaranteed. In contrast, with some as-

sumptions, simpler and faster suboptimal estimators can easily be constructed.

If we assume that the measured correlation magnitude is equal to the under-

lying correlation magnitude, or P (|c|
∣∣|c0|) = δ(|c|), then the 2D integration of

3.19 becomes a 1D integration, as in equations 3.21, 3.22. This can be further

simplified, by additionally assuming highly accurate azimuthal estimation, or

that rj = Rj and rk = Rk, which, using equation 3.18 leads to an expression

for r̂i, shown in equation 3.23.

P (ri
∣∣Rj, Rk, |c|) =

∫ ∞
−∞

e
−

(Rj−rj)
2

2σ2
j
(|c|) e

− (Rk−rk)
2

2σ2
k
(|c|) drj (3.21)

r̂i = argmax
ri

∫ ∞
−∞

e
−

(Rj−rj)
2

2σ2
j
(|c|) e

− (Rk−rk)
2

2σ2
k
(|c|) drj (3.22)

r̂i =

√
−2ln(|c|)− βR2

j − γR2
k

α
(3.23)
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3.C.v Relationship between Normalized Correlations for Complex RF

and Detected Data

The correlation statistics for a single pixel of focused complex RF data under-

going a PSF transform (shift, rotation etc) are given in equation 3.8 to be the

sum of two parts that are distributed along two orthogonal directions in the

complex plane. For before and after complex PSFs with an inner product of

the form Ae−jΦ, the first part has a chi-squared distribution along the direction

of e−jΦ, while the second part is oriented along the je−jΦ direction with a dis-

tribution very similar to a modified Bessel distribution (2nd kind), with an extra

sine factor. When the complex correlation is normalized, the CLT ensures that

the expected value of the correlation is equal to the inner product of the two

complex PSFs. When the correlation is detected before normalization, this is

not necessarily true. However, some conclusions can be made about detected

correlations based upon the underlying complex correlation statistics :

1. Changing the angle Φ does not affect the detected correlation, or normal-

ized detected correlation in any way, as it does not affect the magnitude

of any detected parameter.

2. Even with a PSF transformation that gives a real-only complex PSF in-

ner product, the uncorrelated part of the before/after PSFs will introduce

imaginary components to the complex correlation corresponding to the

orthogonal modified Bessel-like part of the distribution (equation 3.8).

This illustrates the intrinsic complex stochastic nature of complex PSF

correlations in all cases.
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3. For a given underlying complex correlation (complex PSF inner product)

and equal normalized complex correlation expected value, there is a cor-

responding expected value for the normalized detected correlation that

can be expressed purely as a function of complex correlation magnitude.

This follows from (1), and can be characterized by stochastic simulations

using the SVD-based model of equation 3.6.

Using the deterministic relation between expected value of normalized-complex

and normalized-detected correlations, the effect of various PSF transforma-

tions on normalized detected correlation can be easily determined using stochas-

tic simulations.

3.C.vi Speckle-Tracking Motion Bias In Sector-Scan Systems

Speckle-tracking is typically used for motion detection in the azimuthal plane

by calculating the normalized correlation between focused, envelope detected

A-line pixels in a 2D kernel region as it undergoes various discrete 2D shifts

across a larger 2D window region (60), (62). If the PSF at each pixel in each

A-line is identical, then the correlation with shifts is a highly averaged, sampled

version of the underlying 2D continuous correlation function. Fig. 3.3 shows

the PSF of a single pixel from an A-line in, for example a linear array system

where after a tissue shift, the correlation peak with lateral shift will fall on or

between adjacent A-lines with identical PSFs, without fundamental bias. Ex-

panding to use a window of many pixels simply averages the correlation curve,

and interpolation can be used for sub-sample motion estimation (78).

However, in sector scan systems, tracking of azimuthal motion is degraded
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by rotation of the PSF with translation, with rotations of only 2-10◦ causing rapid

decorrelation (62). After a lateral tissue shift in a sector-scan system, the tis-

sue detected by a PSF from a single pixel from an A-line will now be detected

by several other A-lines, each with rotated PSFs, compared to the original, as

illustrated in Fig. 3.4. The rotation has two effects the PSF can rotate out of

the original tissue area, and as the rotation increases, the original and rotated

PSF become more spatially orthogonal with respect to the underlying complex

representation, with a deterministic relation to the detected data in correlation.

These effects lead to a correlation peak that underestimates lateral motion,

shown qualitatively in Fig. 3.4. Additionally the height of the correlation peak

will be lower due to rotation than with non-sector scanned systems, leading to

larger variance in motion estimates (68). The model and observations of pre-

vious sections enable qualitative and quantitative predictions of the magnitude

of these effects.

58



3.C Theory

z

y

x

PSF 0

Tissue Motion

A-line 0

PSF 0 tissue 

area detected
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Figure 3.3: Illustration of how tissue detected by a single pixel from a ver-
tical A-line will be detected identically after lateral translation, in the case
of identical, non-angled A-lines from a linear array system. This leads to an
unbiased, single-pixel correlation peak.
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Z r0 = tan α1
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((r+ r0)/Z)-α1

Rotated PSF Geometry

Figure 3.4: Illustration of how tissue detected by a single pixel from a ver-
tical A-line will be detected by rotated PSFs from other, angled A-lines after
lateral translation, in the case of identical, angled A-lines from a sector-scan
system. This leads to an offset single-pixel correlation peak, as the PSFs
from angled lines at increasing translations rotate out of the tissue area de-
tected by the original PSF. The geometry of rotated PSFs is also shown,
where tissue detected by an original A-line at angle α1 is detected by a PSF
with rotation α2 at a lateral shift of r0 + r.
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3.D Materials and Methods

3.D.i Complex Correlation Statistical Model Validation

To validate the theoretical stochastic correlation model, the statistics of PSF

inner products due to a shift were simulated and compared to full simulations

including 3D speckle, and experimental results. Experiments used a commer-

cial mechanical sector-scanned transducer (Interson, Pleasanton, CA), and a

custom transmit/receive board we constructed, capable of real-time image dis-

play, motion tracking and data capture, with the parameters of table 3.1. The

same sector-scan system was also simulated, using the settings from table 3.1

in the Field II (57) package, with an internal sampling rate of 500 MHz, down-

sampled to 25 MHz for data readout. All simulations use the transmit pulse

captured by a hydrophone at the transducer focus, after appropriate bandpass

filtering.

Table 3.1: Transducer/Scan Parameters for Experimental and Simulated System

Property Value Units
Sector Angle 60 Degrees
Piston Diameter 12 mm
Focal Depth 56 mm
Number of Lines 256 N/A
Center Frequency 4 MHz
Cycles 4 N/A
Sampling Frequency 25 MHz
Correlation Window Length 200 samples

Simulations of the described system with a stationary, single A-line ori-

ented in the positive direction of the z-axis (i.e. directly down into the target)

were used to characterize the spatial sensitivity of a single complex focused
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RF pixel to scatterers in 3D space, with 100 micron spacing in the x- and y-

directions, and 50 microns in the z-direction. To form complex signals, a 13-tap,

4MHz center frequency, 70% bandwidth finite impulse response (FIR) band-

pass filter was created using the ‘fir1’ command in Matlab (Mathworks, Natick,

MA), then Hilbert-transformed to yield separate I and Q bandpass filters.

For each scatterer location, the receive time series was sampled at the

time instant corresponding to the complex focused RF pixel using geometric

round-trip propagation. The 3D complex focused RF pixel sensitivity is equiva-

lent to the discrete-sampled functions or vector F from equations 3.1, 3.2, 3.3

and 3.6. A version of the sensitivity function shifted by the vector r is equiva-

lent to G(r), so that the inner-product of F and G(r) can be easily calculated.

Equation 3.6 can then be used to build the 2 x 2 matrix V S, which is then

multiplied by a 2 x N i.i.d normal random complex matrix B, representing N

similar focused RF pixels picking up independent speckle realizations. This

corresponds to f and g (equations 3.4, 3.7, 3.8) for N pixels in a single A-

line according to the theoretical model, and is used to produce representative

statistics for normalized complex correlation as per equation 3.9 for a variety

of PSF shifts over 10,000 realizations. To account for the axial correlation be-

tween RF samples, an axial covariance matrix based on the pulse parameters

is used.

To verify the theoretical model for PSF shifts, correlation statistical prop-

erties are compared to normalized correlation for a simulated line of complex

focused RF pixels, over many realizations of fully-developed 3D speckle while

undergoing the same shifts. In addition, analogous experimental data were

captured using the system of table 3.1, while undergoing translations in the az-
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imuthal plane over a tissue-mimicking gelatin phantom (72). For comparison

with the simulations, particular A-lines from the experimental data were cho-

sen with angles corresponding to those the simulations as closely as physically

possible. To assess statistics from the PSF inner product model, 3D speckle

simulations and experimental data, the standard deviation of normalized com-

plex correlation magnitude, and angular deviation calculated from normalized

complex correlation angle were used. Angular deviation is a phase-wrap tol-

erant measure of angular spread (79), (80), calculated using equation 3.24,

where ri is a unit vector in the direction of the ith complex sample, θi = arg(ri),

r̄ is the mean resultant vector, R is the l2-norm of r̄, and σANGLE is the angular

deviation.

ri =

cosθi
sinθi

 , r̄ = Σiri,

R = ||r̄||2, σANGLE =
√

2(1−R)

(3.24)

3.D.ii Joint Azimuthal-Elevational Motion Estimation Evaluation

Two kinds of simulated data were used, in addition to experimental data to as-

sess the performance of the described joint azimuthal-elevational motion esti-

mation algorithm. Simulations were used to calculate the complex PSF inner

product over many possible tissue translation vectors, along with the described

factorization methods (equations 3.5 and 3.6) to acquire many independent re-

alizations to assess motion estimation statistics. The first simulation method

uses the separable PSF model from equation 3.10, and the resulting inner-
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product from equation 3.11 to assess algorithm performance for an ideal PSF.

Parameters for the separable PSF were calculated from experimental data, as

detailed in the parameterization steps below.

The second simulation method uses the complex focused RF pixel 3D

scatterer sensitivity function calculated using Field II (57), as described in the

previous section to calculate the complex inner product for many combina-

tions of A-line angle and azimuthal translation on a regular grid (0 to 30 de-

grees in 5 degree steps, and 0 to 2.9 mm shifts in 0.1 mm steps). Next, two-

dimensional cubic-spline based interpolation is used to find the correspond-

ing normalized complex correlation for a given A-line orientation during an

azimuthal/elevational shift. To account for the axial and lateral correlation be-

tween adjacent RF pixels, a spatially-varying 2D-separable covariance function

based on 3.11 was used to introduce spatial correlation into the random com-

plex B variables from equation 3.5. For both methods, for every realization

of 256 sampled A-lines, 256 normalized complex correlations were calculated

and used as input to motion estimation algorithms.

For azimuthal motion, the algorithm described by equations 3.12-3.23 was

used to produce a maximum likelihood motion estimate using complex correla-

tion phase alone. In this calculation, a diagonal phase covariance matrix was

used, with each correlation’s variance derived using a deterministic (degree-

5 polynomial) relationship to correlation magnitude characterized from sim-

ulations. To avoid noise-related phase unwrapping errors, the raw complex

correlation data was filtered using a 9-tap boxcar filter across all the A-lines,

before determining phase from the complex values. To estimate elevational

motion given the azimuthal estimate, the method of maximizing ri using the 2D
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integration from equation 3.19 proved computationally intractable, if sampled

sufficiently finely in |c0|, ri and rj. Instead, the methods of equations 3.22 and

3.23 were both used to form elevational estimates. For the method of equa-

tion 3.22, the mean of the most-likely elevational motion for every 8th A-line

was used as a global estimate. Due to the form of equation 3.23, the (RMS)

of the most-likely ri value for each A-line was used as the overall elevational

motion estimate. For both elevation estimation algorithms, the variable ri was

permitted to be negative, so that a positive elevational motion bias could be

avoided.

Simulations were repeated 50 times for each shift, using a window of 200

axial pixels, corresponding to approximately 6.2 mm of depth range. Experi-

mental data was collected using the parameters of table 3.1, while the system

imaged a tissue-mimicking gelatin phantom (72) and was translated repeatedly

through a range of azimuthal/elevational combinations across different regions

of the phantom. All experimental data was partitioned into training and testing

segments, acquired on different physical regions of the phantom in order to

use one segment for a least-squares fit to the parameters of equation 3.10,

the second segment for performance evaluation. Experimental data was eval-

uated for motion estimation using RF data from depths corresponding to those

from simulations, using identical parameters. To find the parameters of equa-

tion 3.10 for experimental data at a particular depth, the following steps were

followed :

1. For 50 realizations of a range of lateral shifts from 0-1.0 mm, find the

parameter 4π
λ

from equation 3.11 that is the least-squares fit to the corre-

lation phase from each A-line in the ensemble.

65



3.D Materials and Methods

2. For 50 realizations of a range of elevational shifts from 0.1-1.0 mm, find

the parameter α from equation 3.11 that is the least-squares fit to the

correlation magnitude from each A-line in the ensemble.

3. With fixed α, and β = α, for 50 realizations of a range of lateral shifts

from 0-1.0 mm, find the parameter γ from equation 3.11 that is the least-

squares fit to the correlation magnitude from each A-line in the ensemble.

3.D.iii Conventional Azimuth and Elevational Motion Estimation

For comparison, conventional azimuthal-plane and elevation motion estima-

tion was performed on experimental data, using normalized 2D correlation

(60), (66) with cosine-fitting and fitted-Gaussian decorrelation-based estima-

tion respectively (61). Normalized correlation has been shown to outperform

most other time-delay estimators (67), alongside the sum-squared-differences

(SSD) method, and is a good choice for comparison as it forms the basis of

the azimuthal sector scan estimator. For subsample estimation, raised-cosine

fitting was used as it is amongst the better computationally-efficient interpo-

lation schemes (78). For both methods, RF data was envelope detected and

scan converted on a 75 micron (lateral) x 30.8 micron (axial, corresponds to

25 MHz sampling) grid using successive linear interpolation in each rectilinear

axis before estimation.

For azimuthal-plane motion estimation, a 2D kernel 200 pixels deep, and

as wide as the sector scan, less a margin of 30 pixels on each side was

used, with a window region 30 pixels larger in each direction. For elevation,

decorrelation-based motion detection, a training set of experimental data from
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a tissue-mimicking phantom (72) was used with 50 realizations of lateral shifts

from 0.1 mm - 1.0 mm to perform least-squares fitting to a parametric Gaussian

decorrelation model (61). Conventional azimuthal-plane and elevation motion

estimation was not performed on simulated data due to the impractical com-

putational load involved in simulating multiple realizations of 3D speckle over

many different shifts.

However, to further test the stochastic complex correlation model, the ro-

tation of PSFs with lateral translation was simulated using the previously de-

scribed geometric model and separable PSF model of equation 3.10. Stochas-

tic simulations using equation 3.6 were used to form a degree-5 polynomial

characterizing the deterministic relationship between the magnitude of the ex-

pected value of complex correlation, and the expected value of detected cor-

relations for any kind of PSF shift. Using this model, the bias in normalized

detected A-line correlation was simulated for 200-pixel windows and compared

to experimental data for A-line correlation and scan-converted speckle-tracking

results for lateral shifts.

3.D.iv Motion Tracking Validation Using 3D Spine Model

To evaluate the performance of the sector-scan motion tracking algorithm in

3D volume imaging, a tissue-mimicking gelatin phantom (72) was constructed

with an embedded human spine analog, formed by 3D-printing a commercial

CAD model of the L3-L5 lumbar spine region (3D Systems, Rock Hill, SC).

The spine model has a known shape and dimensions, and can be used as

a gold standard for comparison to experimental 3D ultrasound data using 3D

registration methods. Ultrasound data were captured during a semi-random
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translation sequence so that the effect of the motion estimation method can be

quantified. Sector-scan azimuthal image planes were captured orthogonal to

the spine axis, with translation using a MM3000 motion stage (Newport, Irvine,

CA). The semi-random translations consisted of uniformly randomly distributed

elevational steps, with a mean of 0.35 mm, and extent of ± 0.25 mm, along

with normally-distributed azimuthal steps (µ = 0, σ = 0.25 mm). The azimuthal

motion steps were low-pass-filtered using a 9-tap boxcar filter to prevent unre-

alistic rapid motion changes, and to ensure that the spine remained in the field

of view, the sequence was further constrained by discarding any sequence that

had a maximum absolute azimuthal displacement of > 5 mm.

To convert ultrasound data to surfaces in 3D space, every A-line from

each azimuthal image was envelope-detected before edge detection using a

21-tap filter designed to be matched to the bright bone reflection followed by

below-average intensity dark shadow. To achieve this, observing that most

bone surfaces have a depth of about 7 samples, the filter has 7 unity-value

taps followed by 14 taps with the value −1
2
, with a simple threshold giving a

binary edge determination. Following the edge detection filter, scan conver-

sion produces a series of edge points within a rectilinear plane. Each plane

of edge points was then translated in 3D space using either known or esti-

mated position, before conversion to polygonal surfaces for comparison to the

polygonal 3D spine model. Position estimates were calculated using the joint

azimuthal-elevational sector-scan method, with the ‘fast’ elevational estimator

variant (equation 3.23), and also using the conventional, speckle-tracking plus

elevation decorrelation-based estimator.

The VTK (Visualization Toolkit, Kitware, Clifton Park, NY) software pack-
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age was used to import and represent the 3D ultrasound image data and 3D

spine model as a set of points associated with polygonal (triangular) 3D sur-

faces. These polygonal surfaces were created from the ‘vtkContourFilter’ func-

tion, which generated an isocontour from the volume of ultrasound image edge

data. The isocontour with the smallest value that yielded essentially no speckle

signal i.e. only isocontours within the locality of the bone surfaces - was used to

produce a root-mean square (RMS) distance between the ultrasound surface

points and 3D spine model surface points. Surfaces from both 3D spine model

and ultrasound data that cannot be physically interrogated with ultrasound (due

to hidden surfaces, limited data extent, etc) were excluded by retaining only the

polygonal surfaces and associated points possessing normal vectors directed

toward the transducer face within a 180 ◦ span - i.e. only the top surfaces were

retained while the undersides of the VTK spine model or 3D ultrasound repre-

sentations were excluded. Using the ITK (Insight Toolkit, Kitware, Clifton Park,

NY) software package, points associated with the final set of spine model or

ultrasound surfaces were iteratively affine-transformed until a similarity metric,

the Euclidian distance between points on the ultrasound surface and points on

the 3D surface model, was minimized. The transformation was applied using

the VTK functions ‘RotateX’, ‘RotateY’, ‘RotateZ’, and ‘Translate’, which rotate

the ultrasound surface about the X, Y, and Z axes and translate the ultrasound

surface, respectively. The resulting aligned ultrasound surface and 3D spine

model were then superposed using VTK surface rendering tools for visual-

ization. After alignment, the RMS surface distance error was computed, with

each distance measurement consisting of the distance between a point in the

3D ultrasound image data and the closest point on the 3D spine model.
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3.E Results

3.E.i Single A-line Complex Correlation Statistics

A comparison of single A-line complex correlation magnitude and phase is pre-

sented in Figure 3.5, for the deterministic 3D PSF model, simulated PSF shifts

in multiple realizations of 3D speckle, and experimental shifts. Normalized cor-

relation phase and magnitude are shown for a range of shift magnitudes (0.1

mm - 2.5 mm , and angles relative to pure lateral motion (0◦), using a 200-

sample window about the transducer focal depth. For each magnitude curve,

a least-squares fit was made to find the parameter α from the Gaussian form

M = e−
1
2
αx2, with M the correlation magnitude and x the shift magnitude. Sim-

ilarly, a least-squares fit was made to find the phase slope C from P = Cx

where P is phase in radians. Results for all cases are presented in table 3.2.

The deterministic PSF model α and phase slope (C) parameters exhibit an

RMS error relative to the speckle-simulation values of only 9.98 % (α) and

2.46 % (C), and relative to the experimental data, 5.84 % (α) and 10.38 % (C).

Second-order statistics produced by the deterministic 3D PSF complex

correlation shift model are show in Figs. 3.6 and 3.7. Standard deviation of the

magnitude of complex correlation (Fig. 3.6) and angular standard deviation of

the complex correlation angle (Fig. 3.7) from PSF model data are compared to

the same parameters from 50 realizations of simulated 3D speckle data, and

50 sets of experimental data from different locations over a tissue-mimicking

phantom. To illustrate the distribution of the normalized complex correlation

value in the complex plane, Fig. 3.8 shows 50 normalized complex correlation

values from each data set, at a range of shift magnitudes, and for two shift
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angles (10◦ and 20◦).

Table 3.2: Complex Correlation Gaussian-Magnitude and Linear Phase Parame-
ter Fits for Model, Simulated and Experimental Data

Parameter/Angle 0◦ 10◦ 20◦ 30◦

Model α (×106) 0.8866 1.2333 1.7152 2.2291
Simulated α (×106) 0.8957 1.3566 1.6427 2.5403
Experimental α (×106) 0.9858 1.2613 1.6396 2.3735
Model C (×104 radians/m) 0.0000 0.5281 1.0390 1.4822
Simulated C (×104 radians/m) -0.0057 0.5302 1.0749 1.4536
Experimental C (×104 radians/m) 0.0130 0.5675 1.1231 1.6787
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Figure 3.5: Magnitude and phase of single A-line normalized complex cor-
relation for 200-pixel window with shifts of varying magnitudes at different
angles relative to pure lateral motion (0◦). For all results, RF pixel is at focus
of piston transducer, at 56 mm depth. Correlation values calculated using
a deterministic simulated 3D PSF inner product are shown in A and B. The
corresponding measurements for PSF-shift simulations in fully-developed
3D speckle are shown in C and D. Correlation magnitude and phase values
from experiments using a tissue-mimicking phantom are shown in C and F.
Results from C and D were averaged over 50 independent 3D speckle realiza-
tions, and those from E and F were averaged over 50 independent phantom
locations.
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Figure 3.6: Standard deviation of single A-line normalized complex corre-
lation magnitude for 200-pixel window with shifts of varying magnitudes at
different angles relative to pure lateral motion including 0◦ (A), 10◦ (B), 20◦

(C) and 30◦ (D). For all results, RF pixel is at focus of piston transducer, at
56 mm depth. Standard deviation values are shown for a simulated 3D PSF
inner product model (Mod.), for 50 realizations of a PSF-shift simulation in
fully-developed 3D speckle (Sim.), and for experimental data at 50 different
phantom locations (Expt.).
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Figure 3.7: Angular standard deviation of single A-line normalized complex
correlation angle for 200-pixel window with shifts of varying magnitudes at
different angles relative to pure lateral motion including 0◦ (A), 10◦ (B), 20◦

(C) and 30◦ (D). For all results, RF pixel is at focus of piston transducer, at 56
mm depth. Circular standard deviation values are shown for a simulated 3D
PSF inner product model (Mod.), for 50 realizations of a PSF-shift simulation
in fully-developed 3D speckle (Sim.), and for experimental data at 50 different
phantom locations (Expt.).
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Figure 3.8: Normalized complex correlation values for a 200-pixel window
from a single A-line, while undergoing shifts with magnitude 0.1 mm (◦), 0.3
mm (×), 0.5 mm (+) and 0.7 mm (4). Panels A, B and C show 50 realizations
each for the PSF model, 3D speckle simulation and experimental data with a
shift angle of 10◦, while D, E and F show the same data for a shift angle of
20◦.

75



3.E Results

3.E.ii Joint Azimuthal-Elevational Motion Estimation Evaluation

The performance of the joint azimuthal-elevational motion estimation algorithm

is shown for azimuthal motion estimation for the cases of : azimuthal-only mo-

tion, elevation-only motion, and both azimuthal and elevational motion, with

two kinds of simulated data (gaussian 3D PSF and Field-II based PSF) in Fig.

3.9, and experimental data in Fig. 3.10. In Figs. 3.11 and 3.12, elevation

estimation performance is shown for simulations with the 3 motion cases, us-

ing the gaussian 3D PSF model and Field-II based PSF models respectively.

Experimental elevation estimation performance is shown in Fig. 3.13 for the

same motion cases.
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Figure 3.9: Azimuthal motion estimation performance using simulated
data. Panel (A) shows elevation estimator performance for azimuthal-only
shifts, (B) shows elevation-only shifts, and (C) shows diagonal (eleva-
tion=azimuthal) shifts. In each panel, estimator mean and standard devia-
tion are shown for gaussian PSF model (mg, sg) and Field II PSF model (mf,
sf).
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Figure 3.10: Azimuthal motion estimation performance using experimental
data from a tissue mimicking phantom. Panel (A) shows azimuthal estimator
performance for azimuthal-only shifts, (B) shows elevation-only shifts, and
(C) shows diagonal (elevation=azimuthal) shifts. In each panel, estimator
mean and standard deviation are shown.
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Figure 3.11: Elevation motion estimation performance using simulated data
from separable gaussian PSF model. Panel (A) shows elevation estimator
performance for azimuthal-only shifts, (B) shows elevation-only shifts, and
(C) shows diagonal (elevation=azimuthal) shifts. In each panel, estimator
mean and standard deviation are shown for ‘fast’ (equation 3.23, m1, s1)
and ‘accurate’ (equation 3.22, m2, s2) estimators.
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Figure 3.12: Elevation motion estimation performance using simulated data
from Field II PSF model. Panel (A) shows elevation estimator performance
for azimuthal-only shifts, (B) shows elevation-only shifts, and (C) shows di-
agonal (elevation=azimuthal) shifts. In each panel, estimator mean and stan-
dard deviation are shown for ‘fast’ (equation 3.23, m1, s1) and ‘accurate’
(equation 3.22, m2, s2) estimators.
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Figure 3.13: Elevation motion estimation performance using experimental
data from a tissue-mimicking phantom. Panel (A) shows elevation estimator
performance for azimuthal-only shifts, (B) shows elevation-only shifts, and
(C) shows diagonal (elevation=azimuthal) shifts. In each panel, estimator
mean and standard deviation are shown for ‘fast’ (equation 3.23, m1, s1)
and ‘accurate’ (equation 3.22, m2, s2) estimators.
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3.E.iii Conventional Azimuth and Elevational Motion Estimation

A comparison of azimuthal motion estimation performance using the joint azimuthal-

elevation sector-scan estimator and conventional azimuthal (speckle-tracking)

estimation is shown in Fig. 3.14, for a variety of azimuthal/elevational motion

combinations. A similar comparison of elevational motion estimation, using

the joint azimuthal-elevation sector-scan method, and conventional elevation

(decorrelation-based) estimation is shown in Fig. 3.15, for the same motion

combinations.

Figure 3.16 illustrates the shift in the location of the correlation peak for a ver-

tical sector-scan A-line with lateral shifts of 0.5 mm, 1.0 mm and 1.5 mm, both

predicted by stochastic simulations using the 3D PSF correlation model, and

from experimental data over many realizations. The correlation peak shift from

experimental data for the 0.5 mm, 1.0 mm and 1.5 mm shifts, over a range of

A-line angles is presented in Fig. 3.17. The mean peak shift, or bias, for the

0.5 mm, 1.0 mm and 1.5 mm shifts, over all sector scan angles is shown in

table 3.3, along with the corresponding speckle-tracking lateral shift estimation

bias. These values match within ∼ 15% for all three shifts.
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Figure 3.14: Azimuthal motion estimation performance for sector-scan and
speckle-tracking methods using experimental data from a tissue mimicking
phantom. Panel (A) shows azimuthal estimator performance for azimuthal-
only shifts, (B) shows elevation-only shifts, and (C) shows diagonal (eleva-
tion=azimuthal) shifts. In each panel, estimator mean and standard devia-
tion are shown for the sector scan method (mss, sss) and speckle-tracking
method (mst, sst).
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Figure 3.15: Elevational motion estimation performance for sector-scan and
speckle-tracking methods using experimental data from a tissue mimicking
phantom. Panel (A) shows elevational estimator performance for azimuthal-
only shifts, (B) shows elevation-only shifts, and (C) shows diagonal (eleva-
tion=azimuthal) shifts. In each panel, estimator mean and standard devia-
tion are shown for the sector scan method (mss, sss) and the decorrelation-
based method (mdc, sdc).

80



3.E Results

−1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

shift (mm)

C
o

rr
e
la

ti
o

n

A

0.5 1 1.5

0.7

0.8

0.9

1

1.1

shift (mm)

C
o

rr
e
la

ti
o

n

B

−1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

shift (mm)

C
o

rr
e
la

ti
o

n

C

0.5 1 1.5

0.7

0.8

0.9

1

1.1

shift (mm)

C
o

rr
e
la

ti
o

n

D

Figure 3.16: Simulated and experimental normalized correlation curves for
single, vertically-oriented detected A-line, using 200-pixel window centered
at depth of 56 mm. Underlying shifts of 0.5 mm, 1.0 mm and 1.5mm are
shown. Top panel (A) shows simulated correlation curves with peaks (◦),
and actual shifts (+). Experimental results averaged over 50 realizations are
shown in panel (C). Bottom panels (B) and (D) are identical to (A) and (C),
zoomed to area of interest.
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Figure 3.17: Simulated and experimental bias measurements for lateral mo-
tion estimation using samples at various initial A-line sector angles with
lateral shifts of 0.5 mm, 1.0 mm and 1.5 mm. Simulated bias (A) is found
using a deterministic PSF model to find the peak of the correlation curve
with lateral shifts. Experimental bias (B) is calculated for a given initial A-
line angle by finding the 200-sample long vertical strip of scan-converted,
detected pixels corresponding to that angle, then shifting laterally to find
the correlation peak.
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Table 3.3: Experimental Lateral Motion Estimation Bias

Lateral Shift (mm) Mean A-line peak Bias (mm) Mean Speckle-Tracking Bias
5 -0.0415 -0.0491
10 -0.0915 -0.0913
15 -0.1381 0.1351

3.E.iv Motion Tracking Validation Using 3D Spine Model

Fig. 3.18 shows the true path and two estimated paths for a semi-random walk

(performed using a motion stage) over the surface of a tissue-mimicking phan-

tom containing a 3D human spine model (L3-L5 vertebrae). Table 3.4 shows

the root-mean-square (RMS) error between the 3D spine model surfaces and

bone surfaces detected by a sector-scan transducer during the semi-random

walk. Figs. 3.19, 3.20 and 3.21 show 3D surface renderings of the 3D spine

model with the ultrasound-detected bone surfaces superimposed, for the ’true’

motion, motion estimation using the joint azimuthal-elevational method, and

conventional motion tracking respectively. For illustrative purposes, to more

easily visualize the surface alignment, in figs. 3.19, 3.20 and 3.21, ultrasound

data was raised 7mm and the isocontour threshold was set to a value smaller

than the value used to calculate the RMS surface error.

Table 3.4: Root-Mean-Square Bone Surface Error for Ground-Truth, the
Proposed Sector-Scan Tracking Algorithm and for Conventional Speckle-
Tracking/Decorrelation-based Motion Estimation

Estimation Method RMS Bone Surface Error (mm)
Ground-Truth (motion stage displacement) 1.082
Sector-Scan Joint Azimuthal/Elevation Estimation 1.204
Speckle-Tracking/Decorrelation-based Estimation 2.425
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Figure 3.18: True and estimated paths taken during a semi-random walk,
with two kinds of motion estimation, sector-scan based joint azimuthal-
elevation estimation, and conventional, speckle-tracking azimuthal motion
estimation coupled with decorrelation-based elevation motion estimation.

Figure 3.19: Superimposed visualization of 3D CAD spine model (blue-gray)
and spinal bone surfaces (white-yellow-red) from 258 sector-scan azimuthal
plane images taken during a semi-random walk in the lateral-elevational
plane, using ground-truth location for each sector-scan image.
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Figure 3.20: Superimposed visualization of 3D CAD spine model (blue-gray)
and spinal bone surfaces (white-yellow-red) from 258 sector-scan azimuthal
plane images taken during a semi-random walk in the lateral-elevational
plane, using joint azimuthal-elevational sector-scan motion estimation to
place each sector-scan image.

Figure 3.21: Superimposed visualization of 3D CAD spine model (blue-gray)
and spinal bone surfaces (white-yellow-red) from 258 sector-scan azimuthal
plane images taken during a semi-random walk in the lateral-elevational
plane, using speckle-tracking and decorrelation-based motion estimation
to place each sector-scan image in the lateral and elevational axes respec-
tively.
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3.F Discussion

3.F.i Statistics of Normalized Complex Correlation with PSF Transforms

The theoretical background of second-order speckle statistics is well-known

(81), (82), (83) and is successfully used as the basis of methods to detect

out-of-plane motion magnitude using a parametric fit to the speckle decorrela-

tion curve (61). Motion detection in the azimuthal plane using speckle tracking

(60), (66) also effectively uses the speckle correlation curve, in finding the

peak correlation corresponding to a subsample shift. However, when there

is simultaneous motion in the azimuthal (scan-plane) and elevational (out-of-

plane) directions, the decorrelation due to out-of-plane motion appears as a

noise source to azimuthal motion detection using speckle-tracking (68). Simi-

larly, in-plane lateral motion also causes decorrelation, which will be spuriously

interpreted as out-of-plane motion by the decorrelation-based estimator.

Speckle-tracking motion estimation has significantly higher resolution in

the axial dimension, due to higher spatial frequency, smaller speckle size for

RF data in this dimension (81), (82), and the ability to use estimators that

approach the Cramer-Rao lower bound (CRLB) (84). However, as in-plane

motion is predominantly in the lateral dimension, normalized correlation with

detected data is typically used for speckle-tracking. No known analytical model

exists for the probability distribution of normalized speckle correlation with trans-

lations, although some efforts have been made to fit the probability distribution

of normalized correlation from experimental data to a general statistical model

(71), (70) for improved out-of-plane motion estimation.
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Sector-scan motion azimuthal motion estimation is degraded by rapid decor-

relation due to PSF rotations with lateral shifts (62). However, as sector-scan

A-lines span a range of angles, lateral azimuthal-plane motion will have an

axial component relative to some of the A-lines, which can be estimated with

higher accuracy using RF data. Complex correlation data (from IQ demodula-

tion) can be used to estimate the axial motion for each A-line (and by geometry,

the azimuthal-plane motion vector), independently of any elevation-plane mo-

tion. As the azimuthal motion estimation is highly accurate, it can be used to

account for the azimuthal-motion component of normalized correlation mag-

nitude for each A-line, so that elevational motion can be estimated using the

remaining decorrelation. The separation of motion estimation into two parts -

azimuthally using highly-accurate axial complex correlation phase, and eleva-

tionally using using the remaining correlation magnitude after accounting for

azimuthal motion, should reduce motion estimation errors when both motion

components are present.

I have presented a statistical model for complex PSF correlation for a sin-

gle RF pixel detecting speckle (equation 3.1), and by discretizing the problem,

formed a linear algebraic equivalent (equation 3.2). The linear algebra formu-

lation can be used to factorize the single-pixel complex PSF correlation expres-

sion into a much smaller and simpler form (equations 3.3, 3.4). This is used

to replace the very large scalar, normally distributed scatterer vector with a 2

x 1 complex normally distributed vector (equation 3.5), and fully characterize

the PSF correlation statistics using a simple 2 x 2 matrix derived from complex

PSF correlation magnitude and phase (equation 3.6). The form of equation 3.6

indicates that the single RF pixel complex correlation is the sum of two parts, a
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chi-squared distribution in the direction of the underlying PSF complex corre-

lation, and a Bessel-like distribution in the orthogonal direction in the complex

plane (equations 3.7, 3.8). If many identically distributed RF-pixels from an

A-line are used in normalized correlation (equation 3.9), the central limit theo-

rem (73) and small-angle approximation can be used to show that the phase

of the normalized correlation is approximately normally distributed. Using the

commonly-used separable gaussian 3D PSF model ((81), equation 3.10), we

relate the complex correlation phase and magnitude to the motion vector rel-

ative to individual A-lines (equation 3.11). Along with the correlation phase

statistics, this is used to form a maximum-likelihood azimuthal motion estimator

using normalized correlation phase alone (equations 3.12 - 3.15). In equations

3.16 - 3.20, Bayes’ Theorem is used to develop a maximum-likelihood ele-

vational motion estimator, given the azimuthal motion estimate and observed

normalized correlation magnitudes. However, for adequate sampling this es-

timator requires probability evaluation over at least 108 variable permutations

for each estimation, and so is impractical. Varying levels of simplification are

used to derive two suboptimal but fast and practical estimators, in equations

3.22 and 3.23.

The statistical model with factorization was tested against fully-developed

3D speckle simulations and experimental data in Figs. 3.5 - 3.8 and table 3.2.

The expected-value of complex correlation phase and magnitude are shown

to match closely between model, simulation and experimental data in Fig. 3.5,

with similar magnitude standard deviation (Fig. 3.6) and angular deviation (Fig.

3.7). In table 3.2, parametric fits to phase slope and gaussian magnitude are

shown, with differences of <=10.4%. Examples of the distribution of complex

88



3.F Discussion

correlation in the complex plane are shown in Fig. 3.8, again with a close qual-

itative match. These results indicate that the statistical model with factorization

is equivalent to a full 3D speckle simulation, and closely matches experimental

data, within the limits of how well the modeled and actual PSFs match.

3.F.ii Speckle-Tracking Lateral Motion Estimation Bias Prediction

The rotation of PSFs with lateral translation in sector scan systems (62) is

known to cause rapid decorrelation and degrade speckle-tracking motion es-

timation. The decorrelation acts to increase the ‘noise’ seen by the motion

estimator when searching for correlation peaks (68), however we show quali-

tatively in Figs. 3.3 and 3.4 that in sector scans the PSF rotation causes lateral

motion underestimation. The statistical complex correlation PSF model can be

used to model correlation of detected data by a deterministic transform applied

to complex correlation magnitude. Using this method, the model was used

to quantitatively predict lateral motion underestimation by modeling the PSF

rotation for individual A-lines and finding the location of detected correlation

magnitude peaks for different shifts (as in Fig. 3.4). The shifted correlation

peaks arising from PSF rotation during various shifts are shown in Fig. 3.16

for simulations and experimental data.

Qualitatively the correlation peaks are very similar, with a consistent left-

shift (underestimation). The experimental correlations have lower peak mag-

nitudes and larger shifts, this is likely due to inaccuracies in the separable

3D gaussian PSF model used in simulations relative to the real experimental

PSF. The estimator bias for various A-line angles and shifts is shown in Fig.

3.17 for simulated and experimental data. Again, the forms of the bias graphs
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for the simulated and experimental data are similar, with the main difference

greater bias for experimental A-lines with angles close to vertical. When av-

eraged over all A-line angles, the average underestimaton of lateral motion

(Table 3.3) ranges from ∼ 9 % (for 1.0 mm and 1.5 mm shifts) to ∼ 17% (for 0.5

mm shift). This is consistent with the magnitude of lateral motion estimation

bias from speckle-tracking performed on scan-converted, detected data (also

table 3.3), which has underestimation of 9 to 10 %. The statistical complex

PSF correlation model has been shown to be accurate and applicable to de-

tected correlation modeling, with the capability to improve motion estimation

by iterative analysis. For example, from Fig. 3.17, it can be seen that motion

estimator bias changes with A-line angle, and is largest for vertically angled

A-lines, therefore scan-converted speckle tracking can possibly be improved

by an angle-weighting scheme favoring outer sector-scan A-lines.

3.F.iii Joint Azimuthal-Elevational Motion Estimation Performance

Figure 3.9 shows azimuthal estimation performance for the joint estimation

method, using the complex correlation statistical model with 3D gaussian sep-

arable PSFs, and PSFs simulated in Field II (57). Three cases are shown, pure

azimuthal motion, pure elevational motion, and diagonal (equal azimuth/elevational)

motion. In comparison, azimuthal estimation performance for experimental

data using the joint estimation method is shown in Figs. 3.10 and 3.14, and

using speckle-tracking on scan-converted data is shown in Fig. 3.14. Both

simulation techniques indicate very accurate azimuthal motion estimation, with

low variance, for displacements of up to 1.2 mm. Using the joint estimation

method on experimental data performs similarly up to 1.0 mm displacements
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for azimuthal-only and elevation-only displacements, and works well up to 0.8

mm displacements for diagonal motion. Speckle-tracking motion estimation

(Fig. 3.14) is effective for larger displacements, but exhibits a negative bias (un-

derestimation) of 9 to 10 %. Joint estimation method variance is approximately

equal to the speckle-tracking variance, for motion up to 1 mm for azimuthal-

only motion, or up to 0.8 mm for diagonal motion. These results indicate that

the joint estimation method is more accurate than speckle tracking, with similar

jitter for displacements with a small azimuthal component.

Elevational performance of the joint estimation method is shown for two

kinds of simulated data (3D gaussian PSF, Field II PSF) in Figs. 3.11 and

3.12 respectively, and for experimental data in Fig. 3.13. Equivalent perfor-

mance for conventional (i.e. decorrelation-only estimation on detected, scan-

converted data) is shown in Fig. 3.15. The simulated cases include elevation

motion estimation using the ‘accurate’ and ‘fast’ methods of equations 3.22

and 3.23 respectively. The ‘accurate’ method has much lower variance than

the ‘fast’ method. However, this comes at the cost of increased computational

complexity. For gaussian-PSF simulated azimuth-only motion of <= 1.0 mm,

both estimation methods give an elevation estimate error of < 0.1 mm. For

elevation-only motion, estimation is accurate, with low variance. In the case of

diagonal motion, both estimation methods work well for shifts of up to 0.8 mm

before failing. For equivalent simulations using the ‘Field’-generated PSF, per-

formance is degraded, with rapidly increasing errors for displacements above

0.6 mm for azimuthal-only or diagonal motion. Elevation motion estimation per-

formance for the joint (‘accurate’ algorithm) and conventional methods is com-

pared in Fig. 3.15. For azimuthal-only motion, the conventional method has a
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large error that increases with azimuthal motion, due to lateral PSF decorrela-

tion, while the joint method has an absolute elevational motion estimate of <

0.1 mm for azimuthal shifts up to 1.0 mm. For diagonal motion, the conven-

tional method overestimates elevational motion by on average 52 %, while the

joint method underestimates by 25 % on average.

A comparison of motion tracking performance during a semi-random walk

over a spine analog target in a tissue-mimicking phantom is presented in Figs.

3.18, 3.19, 3.20, 3.21. The first figure shows the lateral-elevational path taken

by the semi-random walk, and the path estimated by the joint estimation method

and conventional method. This indicates that both the joint method and con-

ventional method track lateral motion reaonably well, with a maximum lateral

position error of 0.35 mm for conventional, and 0.11 mm for joint estimation.

However, for elevational estimation, the joint method significantly outper-

formed the conventional method, with a maximum elevational position error of

only 5.88 mm, compared to 20.21 mm for the conventional method. When the

motion estimates were used to form volumetric ultrasound data sets, and reg-

istration was performed against the known 3D spine model (Figs. 3.19-3.21),

the improved performance of the joint motion estimation method was reflected

in an RMS surface distance error of only 1.2 mm, compared to 2.43 mm for

the conventional estimator, and 1.08 mm for the actual motion (with motion

stage). The elevational underestimation of the conventional estimation method

is surprising, as previous results indicated an overestimation was to be ex-

pected, due to azimuthal shifts causing decorrelation which is interpreted as

elevational shifts. However, when conventional motion estimation was tested in

semi-random walks over pure speckle phantoms (i.e. containing no spine ana-
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log), elevation estimates were consistently too high as expected (by >=20 %).

This indicates that the presence of the bright specular reflecting spine may be

causing artificially high correlation between adjacent frames in the elevational

dimension, leading to elevational underestimation. The joint estimation method

is less affected by this, as the bright spots only affect a small number of A-lines.

Therefore, in addition to significantly outperforming the conventional motion es-

timation for realistic freehand scan motion, the joint estimation method is also

more immune to localized areas with non-fully-developed speckle. For large

displacements (e.g. > 1.2mm per frame), the sector-scan method fails in the

azimuthal (y-z) directions, while conventional tracking methods continues to

work successfully. However, with a typical sector-scan frame-rate of 20, only

azimuthal translations at speeds above 24 m/s will suffer difficulties, so this

should not be a problem in practice. Additionally, the sector-scan method can

be extended to correlations between adjacent lines to support faster displace-

ments. In total, the joint method has proven to have large advantages over

the conventional method for diagonal motion, with resulting greatly-improved

freehand scan performance.

3.G Conclusion

The statistical model for complex correlation with a PSF transformation intro-

duced in this work is capable of accurately modeling the statistics of correlation-

based motion estimators, including those using detected data. This has been

verified using simulated and experimental data involving PSF shifts, and also

by making theoretical predictions about estimator bias, subsequently verified
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in experiments. Using the model, we have established that the phase of nor-

malized complex correlation for RF pixels from a window on a sector-scan

A-line is effectively normally distributed with a mean given by a geometric

vector relation. This forms the basis of a computationally simple, highly ac-

curate maximium-likelihood azimuthal motion estimator using indidividual A-

lines’ complex correlation phase. Furthermore, given the azimuthal motion

estimate, we have developed a maximum-likelihood elevational estimator and

two faster but suboptimal elevational estimators. Used together, the joint az-

imuthal/elevational sector-scan motion estimator is shown to outperform con-

ventional (speckle-tracking azimuthal/decorrelation elevational) motion estima-

tion for small displacements, with smaller bias for azimuthal motion, and much

smaller error for diagonal (azimuthal/elevational) motion. Experimental data in-

dicates that the benefits of the joint sector-scan estimation method lead to sig-

nificantly better freehand motion estimation, where diagonal motion is likely to

be present. For applications where sector-scan systems are preferable (such

as handheld bone imaging (18)), this work represents a significant enabling

step for 3D freehand scanning.

3.H Appendices

3.H.i Derivation of SVD Components as a Function of Complex PSF In-

ner Product

If the matrix P = (F ∗G∗) is broken down by the SVD into P = V SUH , then the

matrix V SSV H can be related to the inner products between complex PSFs F

and G, as in equation 3.25. As the matrix V is unitary, inner products between
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any rows or columns of V are by definition zero, leading to the constraints in

equation 3.26. If F and G are identical PSFs except for an affine transform,

then we can assert that FHF = GHG, and FHG = (GHF )∗, leading to equation

3.27. The constraints of equations 3.26 and 3.27 can only be satisfied if the

elements of V have the form of equation 3.28, with the (diagonal, real) form of

S also shown for convenience. If V SSV H is expanded using the form of 3.28,

and held to be equal to the right hand side of 3.25, four relations, shown in

3.29-3.32 must be satisfied.

PHP = V SSV H =

FHF GHF

FHG GHG

 (3.25)

V11V
∗

12 + V21V
∗

22 = 0, V11V
∗

21 + V12V
∗

22 = 0 (3.26)

V11V
∗

11 + V21V
∗

21 = 0, V12V
∗

12 + V22V
∗

22 = 0 (3.27)

V =
1√
2

eja ejb

ejc ejd

 , S =

S1 0

0 S2

 (3.28)

S2
1 + S2

2 = FHF (3.29)

S2
1 + S2

2 = GHG (3.30)

S2
1e
j(a−c) + S2

2e
j(b−d) = GHF = |GHF |ejΦ,Φ = arg(GHF ) (3.31)
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S2
1e
−j(a−c) + S2

2e
−j(b−d) = FHG = |GHF |e−jΦ,Φ = arg(GHF ) (3.32)

Equations 3.31 and 3.32, along with the requirement that |GHF | <= |FHF |

can only be satisfied if (a − c) = Φ, and (b − d) = π + (a − c) = π + Φ. Noting

that in 3.31 and 3.32, only the relative values (a− c) and (b− d) affect the right

hand sides, we can set a = b = 0, leaving c = −Φ, and d = −π − Φ, with

the resultant form of V shown in equation 3.33. This leads to equation 3.34

relating the variables S1 and S2 to the inner product of the complex PSFs F

and G. Equations 3.29 and 3.34 together form a simultaneous equation in two

unknowns, that can be solved to give expressions for S1,S2 and S2/S1, shown

in equations 3.35 and 3.36.

V =
1√
2

 1 1

e−jφ −e−jφ

 (3.33)

S2
1 − S2

2 = |FHG| (3.34)

S1 =

√
1

2
(FHF + |FHG|), S2 =

√
1

2
(FHF − |FHG|) (3.35)

S2

S1

=

√√√√1− |FHG
FHF
|

1 + |FHG
FHF
|

(3.36)
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Chapter 4

REAL-TIME 3D SPINE IMAGING USING ROBUST

MULTIMODAL MOTION TRACKING1

4.A Abstract

Spinal bone imaging is an important ultrasound application, as in patients with

a high body-mass-index (BMI), epidural procedures often fail (11) due to an

inability to locate the relevant lumbar spine anatomy. Fluoroscopy is another

alternative for epidural procedure guidance, however this is undesirable due

to the ionizing radiation involved. Conventional 2D (B-Mode) ultrasound has

been used successfully in spinal bone imaging (1), however most systems

have difficulties imaging bone (18), and require a high level of skill and expe-

rience to operate. Freehand 3D ultrasound systems are more intuitive to use,

as they build up a 3D image from the motion of a 2D (B-mode) transducer

(59), however no handheld freehand 3D ultrasound systems currently exist.
1Chapter 4 will be submitted as the following journal article :

K. Owen, F. W. Mauldin, Jr., S. Nguyen, M. Tiouririne and J. A. Hossack, ”Lumbar Spinal Bone
Anatomy Imaging using Ultrasound and Robust Multimodal Motion Tracking”, Computerized
Medical Imaging and Graphics.
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In this chapter, the ability of a handheld freehand 3D ultrasound system (the

‘SpineFinder’) to accurately localize bone surfaces using both ultrasound and

camera-based motion tracking is tested. A theoretical model for optimal com-

bination of multi-modal sensor estimates is developed and calibrated using a

realistic lumbar spine phantom, for translations with and without rotational mo-

tion. Bone localization efficacy is tested using a novel 3D registration and vi-

sualization methodology, complemented by a receiver operating characteristic

(ROC) analysis of bone/speckle classification performance. Without rotational

motion, RMS bone surface accuracy of 1.12 mm is achieved, rising to 2.2 mm

with realistic amounts of rotation. This indicates that performance is adequate

without accounting for all rotational motion, but that doing so will improve per-

formance.

4.B Introduction

Epidural and spinal anesthesia procedures require precise location of the epidu-

ral gap in the L3-L5 lumbar region of the spine. The current standard of care

is the ‘blind’ method (10), where manual palpation alone is used to locate the

spinous processes in the lumbar region, and by visual interpolation the cor-

rect entry point and angle for the needle is identified. However in the growing

obese patient population (85), this method is increasingly difficult, contributing

to failure rates of 40% to 70% (11), (12), (13) and poor patient outcomes (11).

Fluoroscopic procedure guidance uses high quality real-time images (as in Fig.

4.1), but exposes the patient to ionizing X-ray radiation, recently shown to be

responsible for 2% of all cancers and up to 11,000 deaths per year in the U.S.
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(14), (15). Recently, ultrasound has begun to be used for epidural procedure

guidance, with improved success rates (1) and no radiation risk.

However, conventional B-mode ultrasound requires considerable skill and

experience to mentally register the instantaneous scan plane position relative

to the target area, in contrast to 3D ultrasound imaging which requires much

less training and skill (4). Current 3D ultrasound systems are typically bulky

and expensive, due to the degree of transducer and beamforming complexity

associated with large 2D transducer arrays. Simpler and cheaper ‘freehand’

3D ultrasound systems have been suggested and implemented, using motion

tracking technology to register many 2D (B-mode) image planes into a volume

(59), (69), (64), (65). Motion tracking within the azimuthal ultrasound plane

is straightforward and high quality using speckle-tracking (60), however out-

of-plane motion detection using ultrasound has diminished accuracy (82), and

can only be used to find motion magnitude not direction (61). Various meth-

ods have been proposed to overcome the elevational accuracy and directional

ambiguity (86), (87), including modified transducers for improved elevational

tracking (63), (88), magnetic sensors (65), combined inertial/optical sensors

(64) and constrained mechanical motion (4).

The existing and described freehand 3D imaging systems appear to uni-

formly add extra motion tracking capabilities (or algorithms) to existing B-mode

ultrasound systems. Although the resulting 3D images are more intuitive to un-

derstand, mental registration of the image to the probe position is still required,

and the addition of extra motion tracking sensors likely hinders portability. In

this chapter, I introduce the ‘SpineFinder’, an intuitive handheld freehand 3D

imaging system with collocated display and transducer for intuitive imaging,
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specialized sector-scan transducer optimized for bone imaging (18) and an in-

expensive camera module used to enhance motion tracking performance.

Previous work indicates that cameras can be used to improve tracking ac-

curacy in combination with ultrasound-based tracking (89). The ‘SpineFinder’

similarly exhibits improved overall motion estimation when optimally combining

motion from both sensor modalities, after calibration. To assess freehand 3D

spine imaging performance, motion estimation using ultrasound, camera and

optimally combined data is performed using a custom phantom with embedded

human spine analog and aberrating tissue layer. A known 3D CAD model of

the embedded spine is used, along with sophisticated registration algorithms

to quantify root-mean-square (RMS) bone surface error between the 3D ultra-

sound data and the spine model. Additionally, the problem of discriminating

between bone targets and locally bright speckle is analyzed using the receiver

operating characteristic (ROC) formalism. Finally, using a high-quality mea-

surement of in-plane rotation using sector-scan geometery, in combination with

the 3D registration metrics, the relative importance of rotational motion estima-

tion is analyzed, along with the possibility that using a 3-axis accelerometer for

rotational measurements could improve overall estimation.

4.C Background

4.C.i Multi-Modal Motion Estimation

Motion estimates formed using different sensor modalities have different capa-

bilities and properties. Sensor data from an ultrasound transducer, camera or

accelerometer can be analyzed to yield a subset of the entire motion parameter
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Figure 4.1: Representative image from fluoroscopically guided epidural pro-
cedure, with needle to left of image.

set, but not the entire parameter set. A three-dimensional object has six de-

grees of freedom, three translational (front-back, left-right and up-down), and

three rotational (roll, pitch, yaw). These parameters are indicated pictorially in

Fig. 4.2, relative to a B-mode scan plane.

Camera-based motion estimation involves acquiring a series of images at

sequential points in time, and performing image registration between succes-

sive frames to estimate the particular transform occuring between the frames.

There are many methods to perform image registration (90), (91), broadly bro-

ken down into the categories of feature-based, and area-based detection. Im-

ages containing artifical components (e.g. maps, street-views, radar images)

are often amenable to feature extraction before registration. However, medical

images typically do not have easily identifiable features without expert inter-

vention (91), and so for these images area-based registration is preferable in

automatic systems. In general, image transforms occuring between frames
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UP

DOWN

RIGHT

LEFT

BACK
FORWARD

YAW

ROLL

PITCH

z

x

y

Figure 4.2: Six degrees of freedom required to uniquely identify the position
and orientation of an object. On the left, the BACK-FRONT(x), LEFT-RIGHT
(y) and UP-DOWN (z) translational degrees of freedom are indicated. On
the right, the rotational degrees of freedom are shown, including rotation
about the x axis (ROLL), y axis (PITCH) and z axis (YAW). The gray trapezoid
represents a B-mode scan plane.
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may include global transforms, for example including affine, projective, per-

spective and polynomial transforms, and local transforms which are spatially

variant image changes. For the purposes of this work, only global transforms

will be considered, with the further assumption that the image sensor will be

approximately parallel to the skin, so that only image translations and rotations

are possible.

A B-mode ultrasound transducer images a two-dimensional plane that is

typically perpendicular to the skin surface. Unlike the camera, the resolution

cell of this modality is a three-dimensional volume, corresponding to the point-

spread-function of the system. This allows a larger subset of the six degrees-

of-freedom to be estimated. However, ultrasound-based motion estimation is

anisotropic in resolution and accuracy due to the narrow interrogated volume

in the out-of-plane direction (82), and can only estimate magnitude (not di-

rection) of out-of-plane motion components (61). Various methods are used

to detect motion in the azimuthal (y-z) plane and elevational (x) direction, in-

cluding speckle-tracking (60), decorrelation-based methods (61), and the joint

azimuthal-elevational estimation technique for sector-scan systems from chap-

ter 3. As mechanically scanned sector systems using a single piston trans-

ducer are efficacious in bone imaging (18), and the joint estimation method

has been show to outperform the other methods, it will be exclusively used

here.

Inexpensive micromachined sensors for measuring acceleration and other

inertial properties have become widely available in recent years (92). Although

it is theoretically possible to integrate displacement from acceleration, using

methods such as Verlet integration (93), errors and drift quickly accumulate in
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practice. This means accelerometers can only be used for displacement esti-

mation over very short distances and time periods, even when special, optimal

calibration methods are employed (94). However, low-cost accelerometers are

effective at measuring the projection of vector acceleration due to gravity ĝ onto

three accelerometer axes, providing some orientation information.

The estimation capabilities of the three modalities are summarized in ta-

ble 4.1. It is clear that for a full determination (i.e. including magnitude and

direction for each parameter) of the position and orientation of the system,

information from all three modalities is required.

Table 4.1: Motion Estimation Capabilites of Different Sensor Modalities

Modality/Parameter X Y Z Roll Pitch Yaw
Camera Yes Yes No No No Yes
Ultrasound Magnitude Yes Yes Yes Magnitude Magnitude
3-Axis Accelerometer No No No Yes Yes No

4.C.ii Probabilistic Combination of Multi-Modal Motion Estimates

Motion estimates from different sensing modalities can be combined in a num-

ber of ways. However, one simple and effective way to do so is to find the

most likely motion given the various estimates from different modalities. This

requires a probabilistic model for the distribution of each modality’s estimate,

given the true motion, shown for ultrasound and camera-based estimators in

equations 4.1 and 4.2, where r is the true motion, rU and rC are the ultra-

sound and camera motion estimates, bU and bC are the estimator biases, σ2
U

and σ2
C are the estimator variances, and independent normal distributions are

assumed. Using normal distributions for the estimators is an approximation.
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However this is typically justified as the central limit theorem (CLT) (73) dictates

estimators with a lot of averaging converge to a normal distribution, and this is a

common practice for unknown probability distrutions whose first two moments

are known (75). Qualitatively, the estimators used in this work have unimodal

distributions, further justifying the approximation. If the different modality esti-

mators have independent normal distributions, this further simplifies probability

maximization, as scalar factored probability expressions can be used. In this

case, although the ultrasound estimator is affected by the aberrating layer, it is

reasonable to assume that the surface texture imaged by the camera is uncor-

related with the ultrasound aberration properties.

Equation 4.3 shows the probability of a motion r given the ultrasound and

camera estimates, and assumed bias and variance from a normally distributed

PDF (probability distribution function) for both modalities, using Bayes’ Theo-

rem (75). In equation 4.4 this is further developed to show the factorization

of the individual estimator PDFs, and in equation 4.5 is the final equation for

most-likely combined estimate r̂, given the individual modality estimates rU

and rC , and the stated assumptions. Differentiation of equation 4.5, and set-

ting the derivative to zero yields a closed-form solution for most-likely motion

r̂, shown in equation 4.6. Although equations are shown here for combination

of estimations from ultrasound and camera-based sensor data, this method is

generally applicable to combining several, independent motion estimates.

P (rU |r) =
1

σ
√

2π
e
− 1

2σ2
U

(rU−(r+bU ))2

(4.1)
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P (rC |r) =
1

σ
√

2π
e
− 1

2σ2
C

(rC−(r+bC))2

(4.2)

P (r|rU , rC) =
P (rU , rC |r)P (r)

P (rU , rC)
(4.3)

P (r|rU , rC) ∝ e
− 1

2σ2
U

(r−(rU−bU ))2

e
− 1

2σ2
C

(r−(rC−bC))2

(4.4)

r̂ = argmax
r

e
− 1

2σ2
U

(r−(rU−bU ))2

e
− 1

2σ2
C

(r−(rC−bC))2

(4.5)

r̂ =
( 1

σ2
U

+
1

σ2
C

)−1
(rU − bU

σ2
U

+
rC − bC
σ2
C

)
(4.6)

4.C.iii Spine Imaging Assessment Using Receiver Operating Character-

istic Analysis

In this application the lower lumbar spinal bone anatomy is imaged using ultra-

sound, which has an intrinsically bright background ‘noise’ signal in the form

of speckle, with a theoretical signal-to-noise ratio of approximately 1.91(81).

Although bone reflections are up to 35 dB brighter than background tissue (i.e.

speckle) (95), various effects including oblique beam incidence on a specular

reflector, the presence of a phase-aberrating subcutaneous fat layer (96), (97)

and intervening ligaments, nerves or vascular elements act to reduce bone-

speckle contrast. Qualitatively, spinal bone anatomy imaging performance can

be assessed based on the ability to both correctly identify spinal bone sur-

face locations, and also discriminate between which ultrasound reflections are
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bone rather than locally bright speckle regions. Receiver operating characteris-

tic (ROC) analysis is a formal framework for performing this type of quantitative

performance analysis (98). ROC analysis was first used to measure the dis-

criminatory performance of systems in binary identification (friend-or-foe) of

military radar targets. More recently, this form of analysis has been used ex-

tensively to evaluate the efficacy of medical diagnostic systems (99), including

diagnostic medical imaging (100).

For spinal bone imaging, ROC analysis is useful in numerically assessing

bone detection sensitivity (what fraction of the bone surfaces are detected by

ultrasound), and specificity (the fraction of non-bone that is correctly identified

as non-bone). More formally, in the classification of detected surfaces, four

categories are possible, shown in table 4.2. Using the true positive (TP), false

positive (FP), true negative (TN) and false negative (FN) rates, two very useful

metrics can be constructed. Sensitivity, defined in equation 4.7, measures how

successful the system is at detecting all the bone surfaces. Specificity, defined

in equation 4.8, is a measure of how well the system identifies non-bone sur-

faces. A perfect system will have a sensitivity of unity (detect all possible bone

surfaces), and specificity of unity (identify all non-bone surfaces correctly). In a

real system, if a threshold is used to detect bone surfaces, it is easily possible

to achieve high sensitivity by setting a low threshold, but significant amounts of

bright, non-bone speckle signal will be detected as bone (FP), leading to poor

specificity. Similarly, with a high threshold, specificity will be increased (less

misidentification of bright speckle as bone surface), but some less-bright bone

reflections will be classified as non-bone, therefore reducing sensitivity.
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Table 4.2: Bone Surface Classification Categories for ROC Analysis

Category Decription
Positive (P) Bone surface
Negative (N) Non-bone surface
True Positive (TP) Bone surface classified as bone surface
False Positive (FP) Non-bone surface classified as bone surface
True Negative (TN) Non-bone surface classified as non-bone surface
False Negative (FN) Bone surface classified as non-bone surface

sensitivity =
TP

P
=

TP

TP + FN
(4.7)

specificity =
TN

N
=

TN

FP + TN
(4.8)

As system parameters, such as the bone classification threshold are var-

ied, different sensitivity and specificity values arise. If the sensitivity and speci-

ficity values are plotted on a 2D graph as the active parameter is varied, a

locus is traversed, as in the example graph of Fig. 4.3. Here, the baseline

performance given by a random classifier is shown, which will operate at a

point along the diagonal line ranging from perfect sensitivity, zero specificity to

zero sensitivity, perfect specificity. A more realistic example ROC curve is also

shown in Fig. 4.3, which is always at or to the upper-left of the random ROC

curve. The optimal operating point for ROC curves depends on the relative im-

portance of sensitivity and specificity in a particular application, however one

general-purpose optimal operating point is the point on the curve that is clos-

est to the top-left of the graph in a Euclidean sense, representing both good

sensitivity and specificity.

In a realistic bone-detection system, the amount of bright speckle signal
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will vary with individual patients, so that the parametric variable (bone detec-

tion threshold) will be varied by the operator during use. Therefore, the area

under the ROC curve is a way to measure classifier performance over all pos-

sible parametric variable values. The ROC curve area provides a measure of

how well the system in general classifies, so that the effect of changing ultra-

sound parameters such as transmit pulse, bone detection filter characteristics,

imaging mode and beamforming variables can be assessed.
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Figure 4.3: Example ROC curves, including from a random classifier, and a
generic example classifier. Also shown is the optimal operating point on the
example curve, defined as the point on the curve with the smallest Euclidean
distance to the top-left of the graph.
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4.D Materials and Methods

4.D.i Handheld Spinal Bone Imaging System

A custom ultrasound device was designed and constructed to evaluate spinal

bone imaging using multi-modal motion estimation (The ‘SpineFinder’). The

system includes an ARM (Advanced RISC Machine)-based microprocessor,

along with hardware to interface to an ADCM 2650 CMOS camera module

(Agilent, Santa Clara, CA), an ADXL 345 three-axis accelerometer (Analog

Devices, Norwood, MA), and an ultrasound transmit-receive board. A block

diagram of the system is shown in Fig. 4.4. The ultrasound electronics are

capable of high-voltage transmit and receive on two channels simultaneously,

and are optimized to drive a mechanically scanned transducer, such as the

single-piston, 60◦ sector scan transducer (Interson, Pleasanton, CA) with pa-

rameters given in table 3.1. The camera module has up to VGA (640 x 480)

resolution, a variable focus, high quality F/2.6 lens and auto-exposure and gain

features for operation in a range of lighting conditions. The SpineFinder device

is capable of both independent real-time display of 2D/3D ultrasound echoes,

and real-time capture of multimodal sensor readings to a storage device (Se-

cure Digital card) for later download and offline analysis.
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ARM-based
CPU 

ADCM 2650
CMOS 

Camera

Custom 
Ultrasound  

Board

SD Card 
(storage)

ADXL 345
3-Axis 

Accelerometer 

User Interface, 
Li-Ion Battery

Network Connectivity

Figure 4.4: Block diagram of the ‘SpineFinder’ experimental handheld spinal
bone imaging system. The three different sensor modalities used for motion
detection are shown, along with the CPU, mass storage (Secure Digital or
SD Card), network conectivity and auxiliary features such as rechargeable
battery and user interface components.

Figure 4.5: Top view of the ‘SpineFinder’ experimental handheld spinal bone
imaging system. The user interface components (touchscreen, buttons, op-
tical finger sensor) are visible, along with the hemispherical sector-scan ul-
trasound transducer at the very bottom of the system.

111



4.D Materials and Methods

Figure 4.6: Bottom view of the ‘SpineFinder’ experimental handheld spinal
bone imaging system. The camera circular aperture is clearly visible in the
device handle, to the right of the ultrasound transducer.

Figure 4.7: Side view of the ‘SpineFinder’ experimental handheld spinal
bone imaging system. The preferred orientation of the device is shown,
with the ultrasound transducer oriented perpendicularly to the skin surface,
and the camera aperture parallel to the skin.
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The SpineFinder system is illustrated in Figs. 4.5, showing display and

user controls, 4.6 showing the relative locations of the ultrasound transsducer

and camera, and 4.7 with the side-view, indicating the preferred orientation of

the device over and parallel to the skin surface. The accelerometer is located

on the CPU board inside the device, close to the mounting holes as per the

device manufacturer’s recommendations (101).

Acoustic output of the device was measured under various conditions in

accordance with the Food and Drug Administration (FDA) guidelines for med-

ical ultrasound devices (102), and was found to have maximum values for

mechanical index (MI) and derated intensity, spatial-peak temporal-average

(ISPTA.3) of 0.27 and 3.7 mW/cm2 respectively, significantly under the corre-

sponding FDA maximum-permissible values of 1.9 and 720 mW/cm2.

4.D.ii Calibration and Testing of Camera and Ultrasound Motion Estima-

tion

To calibrate the performance of camera and ultrasound-based translational

motion estimation, controlled translations of the device were performed us-

ing an MM3000 motion stage (Newport, Irvine, CA), relative to a special tissue

mimicking phantom with embedded spine analog and an overlaid 10-12 mm

thick layer of porcine tissue (country ham). The spine analog is a 3D-printed

CAD model of the human L3-L5 vertebrae, as described in chapter 3, in a

gelatin/graphite speckle-producing background(72). The porcine tissue layer

has two functions - to provide an optical target with surface texture broadly sim-

ilar to human skin, and also to mimic the speed-of-sound variations and other

phenomena that cause ultrasound phase aberration in human tissue (96), (97).
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For ultrasound-based motion estimation, the joint azimuthal-elevational

estimation technique described in chapter 3 was used, with the algorithm asso-

ciated with equation 3.23 used to calculate elevational motion. A recalibration

of the decorrelation curve parameters α and γ from chapter 3 was performed,

using the methodology of chapter 3, sub-section D.ii, as it is known that the

inhomogeneities in real tissue (i.e. the porcine layer) affect the PSF and decor-

relation statistics (96),(69).

The ADCM 2650 camera on the system was operated in QVGA portrait

(240 x 320), 8-bit grayscale mode with automatic exposure and gain controls

enabled. The variable focus was manually adjusted to bring the porcine layer

into sharp focus when the device is in position for ultrasound scanning (as

in Fig. 4.7). In this orientation, the camera sensor is parallel to the porcine

layer, and each image pixel corresponds to the illumination of an area on the

porcine tissue with the same aspect ratio as the sensor pixel, dimensionally

scaled only by a factor due to the lens and lens-tissue distance. That is, there

is no distortion due to pitch or roll motion of the device while attached to the

motion stage. To estimate translational motion between camera frames, 2D

normalized cross-correlation (60), (66),(90), (91), with cosine-fitting was used

with a 240 x 320 window from one frame, and a 180 x 260 kernel from the next

frame, giving a maximum 30-pixel interframe displacement, corresponding to

approximately 3 mm, or 3 cm/s motion with a 10 frame/s imaging rate. To

qualitatively assess camera image motion estimation and image quality, all

camera images taken during a single walk were combined at the appropriate

positions into a larger composite image.

Calibration of the ultrasound and camera translational motion estimation
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parameters was performed using semi-random walks over the phantom, as de-

scribed in sub-section D.iv of chapter 3. For each semi-random walk, camera

and ultrasound data captures were performed after each motion step. Ac-

celerometer data was not captured for this experimental sequence, as there is

no rotational motion involved, and the motion stage moves very slowly. The

translations in each dimension corresponding to a single-pixel shift in the cam-

era image were found by a least-squares fit to the actual translations over two

training random walks.

Following this, three independently generated semi-random walks over

the phantom were performed, with ultrasound and camera data used to esti-

mate translational motion for each step. Data from the three walks was used to

calculate the bias, variance and error distribution for both modalities, following

equations 4.1-4.2, and using equations 4.3-4.6, combined motion estimates for

each step were formed. To assess the performance of camera, ultrasound and

combined motion estimates on spinal bone surface localization accuracy, the

ultrasound B-mode ‘slices’ acquired during a walk were processed to detect

bone surfaces as described in chapter 3, sub-section D.iv, before being placed

in a rectilinear volume using motion estimates and imported into the VTK soft-

ware package for further processing. Polygonal surfaces corresponding to the

ultrasound data and 3D CA model were created in VTK, and iteratively regis-

tered using translations and rotations as previously described. For each walk

and motion estimation method, this process produces an RMS distance error

between the ultrasound surfaces and the 3D CAD model surface, that can be

used to assess motion estimation efficacy.
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4.D.iii Freehand 3D Spine Imaging Using Multi-Modal Motion Estimation

For freehand 3D imaging assessment, the system was specially programmed

to image for 10 seconds (to allow a good start point to be found), followed by

25 seconds of imaging with synchronized capture of ultrasound, camera and

accelerometer data to on-device storage (SD card). This results in 250 multi-

modal data records, which are downloaded from the device for offline process-

ing. Due to limited storage space and bandwidth to the storage device during

real-time imaging, the ultrasound data was processed on the device, includ-

ing edge detection and scan-conversion as described in chapter 3, producing

a single 160 x 120 ultrasound image per frame. This reduces the ultrasound

data frame size from 1.57 MB to 38.4 KB. As the full ultrasound data set is no

longer available for off-line processing, the 256 individual A-line complex cor-

relations using in the sector-scan motion estimation algorithm of chapter 3 are

calculated on the device and stored with each frame for later analysis and use

in motion tracking.

Three freehand scans were recorded, in each case the same phantom tar-

get (spine in tissue-mimicking background with porcine tissue) as the previous

section was used. In the first 10 seconds, the start of the 3D embedded spine

was found using the live 2D image on the device display, following this a scan

was made for half of the recording time along the length of 3 spine vertebrae,

followed by a direction change and return to the start position. For a freehand

scan, despite every attempt to move the device evenly without any rotation or

deviation from a straight line, rotation and a meandering path is inevitable in

practice. It is unclear to what extent rotational information is needed, if at all,
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in forming 3D freehand spine images with sufficient quality to guide lumbar

puncture procedures. With a sector scan system, high-quality measurements

of the ‘roll’ rotation can be made, using a 1D cross-correlation with cosine fit-

ting for shifts across the differently-angled A-lines. For comparison, the device

orientation was also determined using the inverse tangent of the ratio of the

projection of the gravity vector onto the x and z axes of the devce. This data

was collected for each frame to quantify the degree of angular rotation occuring

during a freehand scan with no intentional rotation.

The ultrasound and camera tracking estimates were combined for each

freehand scan, using equations 4.3-4.6 as in the previous section. As ultra-

sound tracking alone does not provide elevational motion direction, the sign of

camera elevational motion was found by thresholding low pass filtered (10-tap

boxcar) camera elevational motion. This allows fair comparison of the magni-

tude of ultrasound estimates. However, for freehand scans, no ‘ground truth’

motion is available. Instead, the ultrasound, camera and combined motion es-

timates are used to form bone surfaces in a 3D volume as in the previous sec-

tion, which are similarly used to register with the 3D spine model and quantify

bone surface RMS error.

Finally, a freehand scan was performed on the spine of a human subject,

BMI = 27.1, with motion estimation identical to the ex-vivo freehand scans. This

data was analyzed and processed to produce 2D and 3D images, however as

the shape and size of this spine is unknown, only qualitative analysis of these

data will be performed. This experiment exposes the subject to no health risks,

as the measured acoustic output of the device falls well under FDA limits for

mechanical index (M.I.) and acoustic intensity.
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4.D.iv Receiver Operating Characteristic Analysis of Freehand 3D Scans

The receiver operating characteristis (ROC) curve was calculated for one of the

3 freehand scans, using ultrasound-only, camera-only and combined ultrasound-

camera motion tracking. To find the ROC curve, 3D surface data from the ultra-

sound scan with B-mode slices placed using motion estimation was used, with

the ‘iso-contour’ threshold as the parametric variable. The iso-contour value

is a threshold, below which edges from B-mode slices do not get translated

into polygons in the VTK toolkit. The iso-contour threshold was varied over

a range of values, and for each the true-positive, false-positive, true negative

and false-negative counts were taken, as defined in table 4.2. As the 3D spine

model and the ultrasound data points are not sampled on a regular grid, a se-

ries of regularly spaced 4 mm x 4 mm x 4 mm voxels were each classified as

TP, FP, TN or FN. To perform this classification, for each voxel a determination

was made whether any point from an ultrasound surface or from the 3D spine

model was within a 4 mm radius, then a simple truth table (table 4.3) was used

to choose the correct ROC category. Using the ROC curve for each estimation

method, the ROC curve area and optimal sensitivity/specificity values were de-

termined, the latter corresponding to the point on the curve with the smallest

Euclidean distance to the top-left of the graph.

Table 4.3: Truth Table for ROC Voxels

Ultrasound Surface <= 4 mm ? Model Surface <= 4 mm ? ROC Classification
No No True Negative
No Yes False Negative
Yes Yes True Positive
Yes No False Positive
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4.E Results

4.E.i Combined Ultrasound/Camera Motion Estimation

The performance of the ultrasound-only, camera-only and combined ultrasound-

camera motion estimates over a series of 3 semi-random walks over a tissue-

mimicking phantom with embedded spine analog and overlaid porcine tissue

layer are shown in table 4.4. Azimuthal and elevational RMS estimation error,

normalized correlation (to known motion steps) and bias are shown separately

for each estimation variety. Fig. 4.8 shows the distributions of ultrasound,

camera and combined elevational and azimuthal motion estimates over the

3 walks. Composite images of the porcine tissue (country ham) produced by

combining multiple camera images at the positions indicated by camera motion

estimates are shown in Fig. 4.9. RMS bone surface distance errors for reg-

istration of the ultrasound volume images to the 3D spine model, when using

the different motion estimation methods are shown in table 4.5, for all individ-

ual random walks, plus average values across all 3 walks. Three-dimensional

superimposed surface renderings of the ultrasound-detected surfaces and 3D

spine model are shown in Figs. 4.10, 4.11, 4.12 and 4.13 for ground-truth

motion, ultrasound-derived motion, camera-derived motion and combined ul-

trasound/camera derived motion respectively, for the second random walk.
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Figure 4.8: Histograms of motion estimation error for ultrasound azimuthal
(A) and elevational (B), camera azimuthal (C) and elevational (D), and for
optimally combined azimuthal (E) and elevational (F) estimation.
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Figure 4.9: Montage of individual photos taken by camera on semi-random
walk over phantom with overlaid porcine tissue (country ham slice, 10 mm).
Three runs with different random walk motion are shown in A, B and C.
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Figure 4.10: Superimposed visualization of 3D CAD spine model (blue-gray)
and spinal bone surfaces (white-yellow-red) from sector-scan azimuthal
plane images taken during a semi-random walk in the lateral-elevational
plane, using ground-truth location for each sector-scan image.

Figure 4.11: Superimposed visualization of 3D CAD spine model (blue-gray)
and spinal bone surfaces (white-yellow-red) from sector-scan azimuthal
plane images taken during a semi-random walk in the lateral-elevational
plane, using ultrasound-derived location for each sector-scan image.
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Figure 4.12: Superimposed visualization of 3D CAD spine model (blue-gray)
and spinal bone surfaces (white-yellow-red) from sector-scan azimuthal
plane images taken during a semi-random walk in the lateral-elevational
plane, using camera-derived location for each sector-scan image.

Figure 4.13: Superimposed visualization of 3D CAD spine model (blue-gray)
and spinal bone surfaces (white-yellow-red) from sector-scan azimuthal
plane images taken during a semi-random walk in the lateral-elevational
plane, using combined ultrasound/camera-derived location for each sector-
scan image.
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Table 4.4: Root-Mean-Square Estimation Error for Ultrasound-based, Camera-
based and Combined Estimation

Estimation Bias (mm) RMS Error (mm) Norm. Corr.
Ultrasound (azimuth) -0.0005 0.0115 0.9946
Ultrasound (elevation) 0.0350 0.0570 0.9511
Camera (azimuth) -0.00515 0.0144 0.9877
Camera (elevation) -0.0009 0.0209 0.9898
Combined (azimuth) 0.0023 0.0108 0.9943
Combined (elevation) -0.0002 0.0194 0.9913

Table 4.5: Root-Mean-Square Bone Surface Error for Various Motion Estimators
Over 3 Random Walks

Estimation/Index 1 2 3 Mean
True Motion 1.046 1.048 1.243 1.112
Ultrasound 1.137 1.187 1.394 1.239
Camera 1.058 1.054 1.252 1.121
Combined 1.051 1.048 1.254 1.118

4.E.ii Freehand 3D Spine Imaging Using Multi-Modal Motion Estimation

For three separate freehand scans over the tissue-mimicking spine phantom

with overlaid porcine tissue, the RMS bone surface errors are shown in table

4.6, for ultrasound, camera and combined motion estimation along with the

mean values over all three scans. The corresponding 3D renderings (for run

1) showing the ultrasound surface data superposed with the 3D spine CAD

model, are shown in Figs. 4.14, 4.15 and 4.16 for ultrasound-only, camera-

only and combined ultrasound/camera motion estimation algorithms. The ROC

curves corresponding to each case are shown in Fig. 4.17, with ROC curve

area, and sensitivity/specificity values at the optimal operating point shown in

table 4.7. The rotation estimate in the ‘roll’ orientation is shown in Fig. 4.18, for

run 1 of the freehand scans, calculated using ultrasound data, and also using
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the projection of the gravity vector on to the accelerometer y and z axes. The

two measurements are not very well correlated, with an average correlation

value of 0.635 over all 3 runs.

Table 4.6: Root-Mean-Square Bone Surface Error for Various Motion Estimators
Over 3 Bidirectional Freehand Spine Scans

Estimation/Index 1 2 3 Mean
Ultrasound 2.384 2.023 2.265 2.224
Camera 2.212 2.171 2.253 2.212
Combined 2.205 2.077 2.222 2.168

Figure 4.14: Superimposed visualization of 3D CAD spine model (blue-
gray) and spinal bone surfaces (white-yellow-red) from sector-scan az-
imuthal plane images taken during a bidirectional scan of the spine using
ultrasound-derived location for each sector-scan image.

125



4.E Results

Figure 4.15: Superimposed visualization of 3D CAD spine model (blue-gray)
and spinal bone surfaces (white-yellow-red) from sector-scan azimuthal
plane images taken during a bidirectional scan of the spine using camera-
derived location for each sector-scan image.

Figure 4.16: Superimposed visualization of 3D CAD spine model (blue-gray)
and spinal bone surfaces (white-yellow-red) from sector-scan azimuthal
plane images taken during a bidirectional scan of the spine using combined
ultrasound/camera-derived location for each sector-scan image.
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Figure 4.17: ROC Curves from freehand scan 1, using ultrasound-only,
camera-only and combined motion estimation.
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Figure 4.18: Rotational motion in the azimuthal plane (‘roll’) estimated using
sector-scan ultrasound data and accelerometer data.
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Table 4.7: ROC Curve Parameters for Freehand Scan 1

Estimation ROC Area Sensitivity (Opt.) Specificity (Opt).
Ultrasound 0.7812 0.6436 0.7322
Camera 0.7793 0.6484 0.7421
Combined 0.7736 0.6256 0.7481

Figure 4.19: B-mode image of slice of human spine from freehand ultra-
sound scan, showing the spinous process and transverse process for a sin-
gle vertebrae.
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Figure 4.20: B-mode image of slice of human spine from freehand ultra-
sound scan, showing the interlaminar space and vertebral body for a single
vertebra.

Figure 4.21: 3D surface rendering of human spine from freehand ultrasound
scan, showing the spinous (white, top) and transverse processes (left, right,
yellow), and vertebral body (dark, bottom) from a single vertebra.
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Figure 4.22: 3D surface rendering of human spine from freehand ultrasound
scan, showing one vertebra with spinous (white) and transverse processes
(yellow), and with clearly visible epidural gap between this and adjacent ver-
tebra to the top-left. Spinal axis is in top-left to bottom-right direction in this
rendering.

4.F Discussion

4.F.i Combined Ultrasound/Camera Motion Estimation

The results from experiments involving known translations but no rotational

motion indicate that both ultrasound and camera-based translational motion

estimation perform reasonably well in ideal conditions (table 4.4). As predicted

by theory (82), ultrasound motion estimation in the elevational direction has an

approximately 5 x larger RMS error, at 0.057 mm, compared to 0.0115 mm for

azimuthal motion, averaged over all steps in 3 separate random walks. Camera

azimuthal RMS estimation error is slightly worse than for ultrasound, at 0.0144

mm, but still highly accurate. In the elevational direction, surprisingly camera

motion estimation RMS error was slightly worse, at 0.0209 mm. Possible rea-
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sons for this include anisotropic surface texture or lighting characteristics, or

could simply be due to the different distribution of elevational and azimuthal

random walk steps. Even though the errors here are all very small, it should

be considered that for many small steps the errors add up rapidly, although it is

possible to intentionally skip some frames to reduce error accumulation (103).

All the measurements had very low bias, with the exception of ultrasound ele-

vational estimates, with a bias of 0.035 mm. This can be attribute to a system

PSF that does not match the ideal gaussian shape from (61), possibly exacer-

bated by the effects of an aberrating tissue layer on the PSF (96). In addition,

electronic noise in the ultrasound system produces further decorrelation, which

contributes to a positive bias in elevational estimates.

Using the optimal combination of multimodal motion estimation measure-

ments detailed in section C.ii, combined motion estimates were in all cases

better than either modality alone, with similarly improved normalized correla-

tion with the true motion steps. In Fig. 4.8, the distributions of azimuthal and

elevational estimate error are clearly unimodal for both camera and ultrasound

modalities, with reduced distributoon width due to combination of measure-

ments. This indicates that the distribution assumptions of equations 4.1-4.6

are justified. A qualitative visual confirmation of camera motion tracking accu-

racy, consistency and imaging quality is provided in the extended field-of-view

images of the porcine tissue shown in Fig. 4.9.

The 3D surface renderings of Figs. 4.10-4.13 indicate good performance

for all tracking methods, with RMS bone surface error in the 1.1 to 1.2 mm

range (details in table 4.5). As the epidural gap is approximately 10 mm wide,

these results indicate that without rotational motion, both ultrasound and cam-
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era motion tracking perform very well, with small improvements from combining

measurements. The very close match between ultrasound surfaces and bone

surface from the 3D spine model verifies that this registration method can be

used to assess motion tracking even in the absence of a known set of motion

steps.

4.F.ii Freehand 3D Spine Imaging Using Multi-Modal Motion Estimation

The freehand scans of Figs. 4.14 - 4.16 show a markedly worse match to the

3D spine model, with RMS bone surface error of approximately 2.2 mm on

average. The surface distance error is exaggerated by the intentional use of

an out-and-back scan motion, and in some 3D surface renderings a second

‘shadow’ image is seen for some parts of spinal bone anatomy. However, all

motion estimates are still accurate enough for location of spinal features such

as the epidural gap. The visibly inferior surface renderings are due to some

combination of rotation introducing motion estimation errors, and rotation re-

ducing bone/speckle contrast due to changing angle of incidence. From the

summary of table 4.1, it is clear that using camera and ultrasound data, the

direction of ‘pitch’ rotation cannot be determined. However, the accelerometer

is capable of calculating both pitch and roll using the projection of the gravity

vector onto the accelerometer axes and geometry. The accelerometer should

make measurements of pitch and roll with equal accuracy, enabling a compar-

ison of accelerometer ‘roll’ measurement to the high-quality roll measurement

from the sector-scan ultrasound data, shown in Fig. 4.18. The two rotation

measurements over time have similarities but only have a correlation of 0.635

when averaged over 3 runs. This indicates that the accelerometer used cannot

132



4.F Discussion

easily be used to find ‘roll’ and ‘pitch‘ angles.

As the RMS surface distance errors for all motion estimators using the

freehand out-and-back scans are quite similar, it is not surprising that the ROC

curves for each estimator (Fig. 4.17 are similar along with ROC area and

sensitivity/specificity values (4.7). However, the ROC values and images are

quite reasonable. This indicates that the presence of rotation has a larger

effect on bone surface localization and identification than differences between

different motion estimation methods.

The human 2D spine images of figures 4.19 and 4.20 clearly show the

spinous processes, transverse processes, vertebral body and interlaminar space,

and appear to be superiour than ultrasound spine images from the literature.

This is qualitative verification of the conclusions of (18) regarding the qualities

of piston transducers for bone imaging. However, the system is designed to

image spinal bone anatomy in high BMI patients (> 35), whereas the test sub-

ject has a BMI of only 27.1. Therefore, the focal depth of the transducer (5.6

cm) is ideal for imaging deeper spines, rather than the 1-1.5 cm deep spine

of the test subject. This depth mismatch means that the resolution and con-

trast of the imaging system is degraded, due to imaging outside the focal zone,

near-field effects and reverberation. As shallow spines are easily found using

manual palpation, non-high BMI patients would not normally require ultrasound

guidance for epidural procedures. However, different methods can be used to

improve shallow imaging, including synthetic aperture methods (104), tissue

harmonic imaging (105), and transducer optimizations to reduce reverb.
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4.G Conclusion

In the absence of rotational motion, translational motion estimates from both

ultrasound and camera data are highly accurate, and capable of producing 3D

spinal bone surface renderings with RMS surface errors of around 1 mm. As

the epidural gap, through which epidural procedures are performed, is approxi-

mately 10 mm in diameter, a handheld device with this level of bone surface lo-

calization capabilities will be easily capable of guiding such procedures. How-

ever, as the freehand scans demonstrated, uncompensated rotational motion

degrades bone localization capabilities, but in realistic conditions (the freehand

out-and-back scans), the system is still capable of adequate positional accu-

racy (∼2.2 mm) for epidural procedure guidance. Clearly, in addition to the

‘roll’ rotation (which is already accounted for), use of existing ultrasound and

camera data to estimate ‘pitch’ and ‘yaw’ rotations will greatly increase practi-

cal bone imaging performance. Theoretically, a 3-axis accelerometer is capa-

ble of providing rotational information that the camera and ultrasound system

lack (direction of ‘pitch’ for example). However, accelerometer estimates of a

well-known quantity (‘roll’) proved that the accelerometer used is not accurate

enough to usefully estimate rotational parameters usefully. It may be possible

to use this data crudely i.e. just to estimate sign of rotational variables, but

it is more reasonable to investigate accelerometers with higher sensitivity and

lower noise. Taken together, the motion tracking and 3D bone surface registra-

tion results indicate that it is feasible to perform epidural procedure guidance

using the described device, however, the quality of rotational estimates has a

significant effect on bone surface localization performance. The 3D images of
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figures 4.22 and 4.21, obtained without sigificant system optimization on a non-

target patient, indicate the feasibility of the system for 3D freehand imaging of

spinal bone anatomy.
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Chapter 5

FINAL CONCLUSIONS AND FUTURE DIRECTIONS

5.A Conclusions

In this dissertation I have introduced several key technologies, enabling intu-

itive handheld 3D imaging, optimized for two specialized applications. In chap-

ter 2, a separable factorization of the 2D beamforming process when applied

to short-time-sequence, complex or approximated complex signals is shown to

result in a 20 X increase in computational efficiency. Depending on the mode of

operation, with a low beamforming duty cycle, low energy real-time operation

can result, or with a high duty-cycle, very high frame rates can be achieved. I

have additionally demonstrated that the separable factorization approach intro-

duces negligible imaging degradation under all practical conditions. This work

enables the smallest and lightest (170 g) real-time ultrasound system in the

world today (to my knowledge), capable of 30 frames/second operation, with

multi-hour battery life, optimized for vascular needle guidance.

In chapter 3, a specialized motion estimation algorithm is developed, that

significantly improves estimation accuracy and robustness in sector-scan sys-
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tems. This is an important application because previous work has shown

that mechanically-scanned single-element transducers have particular bene-

fits when imaging bone, specifically the intrinsic lack of grating lobes, and ra-

dially symmetric resolution increases bone contrast and visibility (18). I have

developed a detailed, novel statistical model for complex point-spread-function

correlation with translation. The model has been successfully used to gain

insight into the statistics of normalized complex correlation, and to develop

a maximum-likelihood sector-scan azimuthal motion estimator, and three dif-

ferent elevational motion estimators with varying degrees of optimality versus

execution speed. The joint azimuthal-elevational motion estimator designed in

this chapter has been proven to outperform conventional motion tracking for

sector scans in typical conditions. In addition, the statistical model is further

validated by correctly modeling and predicting bias in speckle-tracking motion

estimation for sector-scan systems.

Finally, in chapter 4, the instrinsic directional ambiguity in some directions

for ultrasound motion estimation using B-mode scan planes is addressed with

the introduction of other sensor modalities for optimal combined motion esti-

mation. Extensive experimental validation of the combined motion estimation

is performed, indicating that the inclusion of a camera module can increase

the robustness of motion estimation, particularly in the elevational direction.

The peformance of the system in imaging 3D spinal bone anatomy is well-

classified, using a realistic spine phantom and novel 3D registration method-

ology, along with receiver operating characteristic analysis. The experimental

results indicate that in realistic conditions, even without accounting for all ro-

tational degrees of freedom, the system is accurate enough to guide epidural
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anesthesia procedures. Initial in-vivo 2D and 3D images further indicate the

feasibility of freehand 3D imaging of spinal bone anatomy.

Taken together, these contributions represent a significant contribution to

the field of specialized, handheld intuitive 3D imaging systems.

5.B Future Directions

There are a number of obvious future directions for these research areas. For

separable beamforming, varying the number of time samples and optimizing fo-

cusing weights taking into account the separable factorization is a simple way

to further improved performance. Sector-scan motion tracking is very impor-

tant in obstetric and cardiac applications, where a wide field of view is required

through a small window into the body. The methods developed here could eas-

ily be applied to cardiac motion analysis. For robust 3D spinal bone anatomy

imaging, the next steps involve exhaustively optimizing imaging and motion

tracking parameters in animal and human models. Institutional review board

approval is pending for a comparative spine imaging study relative to MRI and

CT scans. Another area for improvement is in imaging well at shallow depths,

whereas the current device is optimized for deep imaging in obese patients.

5.C Publications

All refereed publications related to this dissertation, or other medical ultrasound

research during my academic studies at the University of Virginia are listed

below.
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