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Abstract

Secure two-party computation allows two parties to cooperatively evaluate a function that takes both parties’

private data as input without revealing any private information other than the outcome. Although secure

computation has many important applications in various fields and a general theoretical solution has been

known for decades, practical systems are rare due to the prohibitive performance overhead and the tremendous

effort required to build such systems.

The garbled circuit (i.e., Yao’s circuit) technique enables secure computing of polynomial-time computable

functions but has previously been thought to be too expensive for practical applications. We improved

the efficiency of garbled circuits focusing on both execution and design aspects. Our implementation uses

pipelining aggressively so the circuit execution runs with a nearly constant amount of memory and can scale

to arbitrarily large circuits. To aid the efficient construction of circuits, we developed a library of component

circuits that enables programmers to quickly create new ones by modular composition of existing ones. We

integrated these ideas into a new framework that enables programmers to develope secure computation

protocols from an existing insecure implementation while providing enough control over the circuit design to

enable efficient implementation. To evaluate the effectiveness of our techniques and our new tools, we build

several privacy-preserving applications which are secure against passive adversaries, including secure biometric

identification, secure edit distance and Smith-Waterman, private encryption, and private set intersection.

The secure guarantees of passively-secure protocols do not hold if an attacker goes “active” — by deviating

from the protocol specification. To thwart active adversaries, we present a concrete design and implementation

of protocols achieving security guarantees that are much stronger than are possible with passively-secure

protocols, at minimal extra cost. We consider protocols in which a malicious adversary may learn a single

(arbitrary) bit of additional information about the honest party’s input. Correctness of the honest party’s

output is still guaranteed. Adapting prior work of Mohassel and Franklin, the basic idea in our protocols is

to conduct two separate runs of a (specific) semi-honest, garbled-circuit protocol, with the parties swapping

roles, followed by an inexpensive secure equality test. We provide a rigorous definition and prove that this

protocol leaks no more than one additional bit against a malicious adversary. In addition, we propose some
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Abstract ii

heuristic enhancements to reduce the overall information a cheating adversary learns. Our experiments

show that protocols meeting this security level can be implemented at a cost very close to protocols that

only achieve semi-honest security. Our results indicate that this model enables the large-scale, practical

applications possible within the semi-honest security model, while providing stronger security guarantees.

We also explore the commodity-based paradigm for generic secure two-party computation. By trusting

a third-party, not with private inputs, but only to provide correlated random numbers we can achieve

a very low computation and communication overhead in both semi-honest and malicious threat models.

The efficiency gains require a series of optimization techniques including layered circuit execution, round

packing, traffic packing, and specialized circuit optimization for minimizing the cost of network latencies.

Our experiments show that commodity-based protocols can be an order of magnitude more efficient (in both

time and bandwidth) than the best known garbled circuit based ones assuming semi-honest adversaries. In

presence of malicious adversaries, our approach offers even larger performance gains (more than 600x faster

and 2500x more bandwidth-efficient compared to the state-of-art maliciously secure protocol).

Our results demonstrate that secure computation can be much more efficient than previously thought,

and can scale to support large and interesting applications.
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遊 子 吟

孟 郊

慈 母 手 中 線，

遊 子 身 上 衣。

臨 行 密 密 縫，

意 恐 遲 遲 歸。

誰 言 寸 草 心，

報 得 三 春 暉。1

當你快樂時，你要想，這快樂不是永恆的；

當你痛苦時，你要想，這痛苦也不是永恆的。2

1Traveler’s Song: the threads in the hands of a loving mother; the clothes on her travelling son; close and careful stitches
right before departure; (She) fears her son could return late; (even) the so-called little inch-long grasses have ambitions; they
meant to repay three days of spring sunshine.

2When you feel happy, keep in mind the happiness won’t be eternal; when you suffer, keep in mind the suffering won’t be
eternal, either.
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Chapter 1

Introduction

The goal of secure two-party computation is to enable two parties to cooperatively evaluate a function that

takes private data from both parties as input without exposing any of the private data. At the end of the

computation, the participants learn nothing more than the output of the function. Secure computation has

many important applications such as privacy-preserving biometric identification, set intersection, and personal

genetics. Theoretical secure computation solutions have been known since the 1980s, but real systems are

scarce due to the high runtime costs associated with traditional techniques and the effort required to build

them. The goal of my research is to make privacy-preserving computation practical enough that it can be

used routinely in important, large-scale applications.

1.1 Motivating Applications

Motivating applications for two-party secure computation have three properties: (1) the application involves

inputs from two independent parties; (2) each party wants to keep its own data secret; and (3) the participants

agree to reveal the output of the computation. That is, the result itself does not imply too much information

about either party’s private input.

Many compelling applications have these properties. This section introduces four examples we will use in

our evaluation: private biometric identification (Section 1.1.1), privacy-preserving genomics (Section 1.1.2),

privacy-preserving encryption (Section 1.1.3), and private set intersection (Section 1.1.4).

1.1.1 Private Biometric Identification

Matching biometric data is critical to many identification systems including fingerprint- and face-recognition

systems widely used in law enforcement. Such systems typically consist of a server-side database that holds a

1



1.1 Motivating Applications 2

set of biometric readings (stored electronically as feature records), and clients who submit candidate biometric

readings to the server for identification. Typically, an identity match is signified by comparing the biometric

data corresponding to some identity profile in the database and that from a client, with respect to some

metric (e.g., Euclidean distance, or Hamming distance), assuming it is “close enough” (specifically, within

some distance parameter ε).

The goal of privacy-preserving biometric identification is to enable biometric identification of the sort

described above without revealing any information about the client’s biometric data to the server, and without

disclosing anything about the database to the client (other than the closest match, if within distance ε, or

the non-existence of any close match).

Private biometric identification has applications in enabling collaborative criminal suspects searching

between law-enforcement agents from different jurisdictions. For example, agents (or investigators) from

different organizations might want to carry out some biometric identifcation process where one party holds

the database while the other has the search key. Although jurisdictional complications may make it difficult

for them to simply share the secret inputs upfront, it would be desirable to share the identification results

(e.g., when the results are criminal suspects).

Fingerprint recognition. Fingerprint recognition (or fingerprint identification) is the task of searching

for the best match in a database of fingerprints with a given candidate fingerprint. In contrast, fingerprint

authentication seeks to determine if a candidate fingerprint matches a particular registered fingerprint.

Techniques for matching fingerprints have been extensively studied. Maltoni et al. [75] provides more

comprehensive information.

Depending on the sensing technology, fingerprint images exhibit traits at different levels of image quality.

At the global level, ridge-lines shapes fall into one of several patterns such as loop, whorl, and arch. At the local

level, there are about 150 different types of local ridge characteristics. At an even finer level, intra-ridge details

are identified and used in high-end fingerprint applications. In the last decade, many fingerprint-recognition

techniques have been developed that combine various features of the fingerprint [7, 87, 90, 106]. Most of them

involve sophisticated training and classification algorithms, which are not suitable for developing an efficient

privacy-preserving fingerprint recognition system. In contrast, the filterbank-based fingerprint matching

algorithm proposed by Jain et al. [56] (also used by Barni et al. [5]) allows each party to independently

compute feature vectors (i.e., FingerCodes) from its own fingerprint images without cooperation. Then a

match is simply defined by the closest vector measured with Euclidean distance. This approach provides good

accuracy and leads to an efficient privacy-preserving protocol because only the calculation of the distances
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and a global minimum needs to be done securely.

Face recognition. Face recognition serves a another important application in biometric identification with

many established algorithms. Common representation of faces include eigen vectors (e.g., Eigenfaces [100])

and bit strings [24, 84]. An Eigenface-based privacy-preserving face recognition prototype looks similar to the

FingerCode-based secure fingerprint recognition system described above, but is much more expensive because

the computation of robust feature patterns require substantial interaction which use both parties’ secret

eigen vectors [35]. In comparison, Osadchy et al. [84] show a face recognition prototype based on Hamming

distance of feature bit strings that is both illumination- and orientation-robust and fits into privacy-preserving

computation very well.

1.1.2 Private Genomics

Human genome sequences, which potentially explain one’s vulnerabilities to genetic diseases, reveal character

traits, and allow individual and family identification, are usually regarded as highly sensitive information.

On the other hand, emerging and anticipated scientific advances on health and medicine depends heavily on

computational analysis of such sensitive genomic data. In many scenarios, the computation needs to take

sensitive inputs from multiple principals among which it could be cumbersome to establish full mutual trust.

Secure computation technique can help to resolve this dilemma.

It is important and useful that patients of a certain disease share their experiences in fighting against

the disease. They might want to share experiences on medicines or therapies by somehow releasing the

improvements (or side-effects) brought by them, along with part of their genome sequences. Future patients

could estimate the effects of different treatments by comparing their own genome sequences with those

of others who have already taken them. Generic secure computation techniques allows this to be done

without patients revealing their genomic information. Such medical applications may be a few years off,

but we study the design and implementation of two sequence comparison algorithms (edit distance and

Smith-Waterman [98]) that form the basis for many current and envisioned genomic applications. In addition,

due to their importance, secure implementations of them were previously attempted, which makes it easier

for performance comparison to evaluate the effectiveness of our general techniques. For example, Jha et al.

explored implementing these protocols using generic secure computation protocols [61]. In Section 4.3 and 4.4

we show that the optimization techniques presented in this thesis bring an order of magnitude speedup than

their best implementation.
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1.1.3 Private AES

AES is a standard block cipher commonly used to construct symmetric encryption schemes. A privacy-

preserving AES cipher allows Alice, who has a private key, to encrypt a private message from Bob without

Alice knowing the message, nor Bob learning the private key. This primitive has a number of interesting

applications. For example, it allows Bob, who provides a message, to ask Alice, who has a secret key, to sign

the message blindly (without seeing the message). Such blind signatures could be used to authorize access to

some encrypted data stored in the cloud (e.g., privacy-preserving search over encrypted data with a keyword

encryption obtained securely).

Private AES is becoming a common benchmark for secure computation. Pinkas et al. [86] implements

AES cipher as an SFDL program, which is in turn compiled to a huge SHDL circuit consisting of more than

30,000 gates. Henecka et al. used the same circuit, but obtained better online performance results by moving

more of the computation to the precomputation phase. The best performance results they reported are 3.3

seconds in total and 0.4 seconds online per encryption cipher block [47]. Section 4.6 presents our approach of

secure AES encryption that is more than an order of magnitude faster.

1.1.4 Private Set Intersection

Cryptographic protocols for Private Set Intersection (PSI) are the basis for many important privacy-preserving

applications. It allows two parties holding sets S and S′ to compute the intersection I = S ∩ S′ without

revealing to the other party any additional information about their respective sets (except their sizes). Either

party, or both, may learn the intersection depending on the application. PSI can be used directly to enable

two companies to find their common customers, or to allow a government agency to determine whether

anyone on its terrorist watch list is present on a flight manifest. (Note that set intersection generalizes

membership queries.) PSI can also be used as a sub-routine of larger privacy-preserving computations. For

example, companies can perform data mining only on the customers they have in common (using PSI for

pre-processing), or parties might apply some filter, privately specified by the other party, to their input

set before computing the intersection (using PSI for post-processing). Many other examples are provided

by De Cristofaro et al. [31]. Section 4.5 describes several of our constructions of the PSI protocol, each of

which shows competitive performance in certain scenarios. We advocate generic approches in the semi-honest

adversary model, especially when higher security settings are desirable.
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1.2 Thesis

We argue that the practicality of secure two-party computation can be substantially improved by employing

better implementation techniques, adopting new (but realistic) threat models and by using alternative trust

models. We investigate a series of techniques to improve the efficiency and scalability of secure two-party

computations. For example, the circuit execution is fully pipelined (where Boolean gates are processed

in topological order) to enable the garbled circuit technique to work on large problems. Additionally, the

framework we build enables the construction of efficient garbled circuits from optimized smaller circuits by

better exploiting the free-XOR technique.

Furthermore, we explore alternative threat models whose performance is more realistic for practical

scenarios, but without overly sacrificing security. We develop the k-leaked model proposed by Mohassel and

Franklin [76], demonstrating that reasonable performance overhead (1.5 times that of semi-honest settings

garbled circuit protocols) can be achieved against malicious adversaries by sacrificing a single extra bit of

information. We also show that secure two-party computation can be one to many orders of magnitude faster

than the state-of-art garbled circuit implementations as long as third parties exist to distribute properly

constrained (private data independent) randomness.

1.3 Contributions

My research presents the following contributions:

1. Techniques that enable garbled circuit execution to scale to large applications. These techniques include

pipelined execution, reducing circuit width, library-based circuit construction, and garbled/plain hybrid

execution [Chapter 3]. They are built into an integrated software framework that facilitates creating

secure two-party computing applications. In the semi-honest threat model, our framework produces

protocols that are orders of magnitude faster than has been achieved in previous works [Section 3.4].

2. A concrete design and implementation of protocols in the 1-bit leakage threat model. This model offers

much stronger security guarantees than are possible with semi-honest protocols, at minimal extra cost.

Specifically, a malicious adversary may learn only a single bit of additional information about the honest

party’s input. The implementation features a highly efficient mechanism for carrying out the equality

test in the presence of malicious adversaries, and incorporates pipelined execution and other efficiency

optimizations [Chapter 5].

3. Developed a method for building efficient Boolean-circuit secure two-party computation protocols

using commodity randomness [Chapter 6]. Protocols in this model can run one to many orders of
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magnitude faster than garbled circuit based schemes, but without overly trusting a third party. Our

main contributions in this work are effective solutions (including means to optimize circuits for depth

and layered circuit execution) to mitigate the performance bottleneck caused by network latencies.

4. Evaluated the effectiveness of our tools by building several privacy-preserving applications, including

genomic analysis, Hamming distance, Euclidean distance, AES, and set intersection [Chapter 4]. In

the semi-honest threat model, we demonstrate secure computation of circuits with over 109 gates at a

rate of roughly 10µs per garbled gate, which is order-of-magnitude improvement over the best previous

implementations. In the 1-bit leak model, we show protocols with performance close to semi-honest

settings but providing stronger security guarantees against malicious adversaries. Last, with server

assistance for distributing correlated randomness, we show that private set intersection and AES can be

computed orders of magnitude faster than the state-of-art maliciously secure protocol implementations.



Chapter 2

Background

This chapter provides necessary background on threat models, followed by general cryptographic primitives

relevant to secure computation. Related works that are of interest with respect to certain techniques or

specific applications are given later in the respective sections.

2.1 Threat Models

Threat models are used to capture the characteristics of an adversary’s behavior. Depending on the

restrictions over the adversary, existing models range from semi-honest (most restricted) to fully malicious

(least restricted).

2.1.1 Semi-honest Model

The semi-honest (also known as honest-but-curious) threat model, assume that all parties follow the protocol

as specified, but may attempt to learn additional information about the other party’s input from the protocol

transcript. Although it provides no guarantees if a party deviates the protocol, nor fairness (that both parties

learn the output simultaneously), it is a standard security model for secure computation [40].

Studying protocols in the semi-honest setting is relevant for two reasons:

• There may be instances where a semi-honest threat model is appropriate: (1) when parties are

legitimately trusted but are prevented from divulging information for legal reasons, or want to protect

against future compromises; or (2) where it would be difficult for parties to change the software without

being detected, either because software attestation is used or due to internal controls in place (for

example, when parties represent corporations or government agencies).

7
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• Protocols for the semi-honest setting are an important first step toward constructing protocols with

stronger security guarantees. There exist generic ways of modifying the garbled-circuit approach to

give covert security [3] or full security against malicious adversaries [68, 81, 70, 94].

Many interesting privacy-preserving applications do have the properties so that semi-honest garbled

circuit protocols suffice. Namely, (1) both parties have a motivation to produce the correct result, and (2)

only one party needs to receive the output. Examples include financial fraud detection (banks cooperate to

detect fraudulent accounts), personalized medicine (a patient and drug company cooperate to determine the

best treatment), and privacy-preserving face recognition. Chapter 5 explores a new technique for developing

stronger protocols using semi-honest protocols as a building block.

2.1.2 Malicious Threat Model

It is usually unrealistic to assume passive adversaries who always obey the protocol specifications. To

compromise the protocol security, an active adversary can deviate from the protocol in arbitrary ways, even

at the risk of being caught cheating. Informally speaking, a two-party computation protocol is said to be

secure in the malicious threat model if the privacy and correctness properties are guaranteed even in presence

of such active adversaries.

With respect to a semi-honest garbled circuit based protocol, malicious adversaries could launch attacks

in several (but not limited to such) ways. A malicious generator might construct a faulty circuit that discloses

the evaluator’s private input. For example, a circuit for f ′ of the adversaries choice (rather than the supposed

f) is actually transmitted so that the victim’s secret input could be revealed directly. In addition, more subtle

attacks like selective failure exist [76]. In this attack, a malicious generator uses wire labels as inputs to the

oblivious transfer that are inconsistent to those in garbled circuit construction. As a result, the evaluator’s

input can be inferred from whether the protocol execution completes successfully or not. For example, a

cheating generator choosing (w0, w1) to be the pair of labels of an input wire of the garbled circuit could use

(w0, ŵ1), where w1 6= ŵ1, in the corresponding oblivious transfer. Consequently, if the evaluator’s input is

0, she will get w0 from OT and complete the evaluation. In contrast, if her input is 1, she gets ŵ1 and the

execution will fail. We stress that, so long as the generator learns whether the protocol execution fails, the

privacy leak persists even if it completes successfully.

Because there are an unlimited number of ways an active adversary can deviate from the protocol, showing

particular attacks are impossible is insufficient to prove the whole protocol is secure against any active attacks.

Thus, the convention to formally define security in the fully malicious model is by comparing two protocols

executing in two different worlds (i.e., the ideal world and the real world, respectively) [40]. The ideal world
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features the presence of a trusted third party who is delegated to receive secret inputs, run the computation

locally, and distribute the results. In contrast, the two parties simply run the secure computation protocol

in the real world in absence of any trusted party. A secure computation protocol Π is said to be secure if

an adversary A corrupting a party in the real world obtains a distribution consisting of her view and the

honest party’s output, which is indistinguishable from the distribution of the ideal world outputs of both a

probabilistic polynomial time simulator who corrupts the same party and the honest party. That is, no extra

information is leaked by executing Π since whatever the adversary can learn (and affect) from a real world

execution are all achievable by a polynomial time simulator running the ideal world protocol. We refer to

Goldreich’s classic book [40] on the detailed description of security in the fully malicious model.

The standard techniques to construct malicious adversary resistant protocols generally come in three

different flavors.

Cut-and-choose The basic idea is to prepare many (e.g., 250) executions of the protocol, among which

some (e.g., 2/5 of) traces are selected to verify the participants have followed the protocol while the

rest are used for actual execution. The majority function is applied to the results from all actual runs

to produce the final output. The scheme can be proved cryptographically secure against all probablistic

polynomial time adversaries [68, 94].

Commit-and-prove The core idea, first suggested by Goldreich, Micali, and Widgerson [41], is to express

every behavioral constraint in the protocol by an NP-language and prove that the constraints are

satisfied using zero-knowledge proof of knowledge (ZKPoK) [42, 12]. Jarecki and Shmatikov [59]

presented an approach where the generator is asked to prove the correctness of the garbled circuit in

zero knowledge before the evaluation starts. Note that only a single copy of the circuit needs to be

constructed. Nevertheless, such scheme is believed to be much less efficient than cut-and-choose because

hundreds of expensive asymmetric cryptographic operations are needed per garbled gate.

MAC-then-compute Nielsen et al. [82] proposed a solution based on a technique called authenticated bits.

Their key idea is to apply XOR-based message authentication code (MAC) to every bit throughout

the collaborative computation, so that results remain authenticated only if both participants follow

the protocol correctly. In other words, if a malicious participant deviates from the agreed protocol,

the other party will notice and abort, but without risking any information leakage from the abortion.

Hence, if the final result remains authenticated, it essentially proves that both parties behaved honestly.

Although the protocol uses many expensive oblivious transfers (OT), an efficient OT extension protocol

is devised to offset the cost via substituting expensive asymmetric operations with cheap symmetric
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ones. Their solution shows good amortized efficiency. Chapter 6 presents an efficient commodity-based

protocol adapted from this idea.

No matter what techniques are used to prevent protocol deviations in the original semi-honest protocol,

we stress that all newly introduced behavioral constraints in the added mechanisms must also be enforced

somehow. For example, if many copies of the circuit need to be evaluated (as in cut-and-choose), we have to

guarantee that all evaluations are respecting the same inputs.

2.1.3 Covert Model

Protocols in the malicious threat model are too inefficient (orders of magnitude more expensive) compared to

those in the semi-honest model, whereas the security guarantees offered by semi-honest protocols are too

weak to fit in many scenarios. This dilemma leads to the search of some threat models in between. The

most prominent of these is the covert model, introduced by Hazay, Aumann and Lindell [45, 3]. Aumann

and Lindell et al. introduced the covert threat model [3]. In this model, a cheating adversary is “caught”

with some constant probability, but with the remaining probability can (potentially) learn the honest party’s

entire input and arbitrarily bias the honest party’s output. If an adversary is unwilling to take the risk of

being caught, then such protocols will deter cheating altogether. Aumann and Lindell also show a two-party

protocol with covert security that is only a small constant factor less efficient than the basic (semi-honest)

garbled-circuit protocol.

Note that the 1-bit leakage model we consider in Chapter 5 is incomparable to the covert model. On

the one hand, the single-bit leakage model allows the adversary to always learn one additional bit about

the honest user’s input, without any risk of being caught. On the other hand, the covert model allows the

adversary to learn the entire input of the honest party with constant probability. The covert model also allows

the adversary to affect the correctness of the honest party’s output (with constant probability), something

prevented in the single-bit leakage model.

2.2 Oblivious Transfer

One-out-of-two oblivious transfer (OT2
1) [88, 36] is a crucial component of the garbled-circuit approach. An

OT2
1 protocol allows a sender, holding strings w0, w1, to transfer to a receiver, holding a selection bit b, exactly

one of the inputs wb; the receiver learns nothing about w1−b, and the sender does not learn b. Oblivious

transfer has been studied extensively, and several protocols are known. Naor and Pinkas [80] proposed an

efficient OT2
1 protocol based on Decisional Diffie-Hellman (DDH) hardness assumption that is secure in the
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Input to Snder: m pairs 〈xi,0, xi,1〉 of l-bit strings, where 1 ≤ i ≤ m.
Input to Rcver: m selection bits r = [r1, · · · , rm].

Protocol Output: Rcver outputs {x1,r1 , x2,r2 , · · ·xm,rm} while knowing nothing of
{x1,r1 , x2,r2 , · · ·xm,rm}. Snder learns nothing.

Preparation:

1. Rcver generates a m× k1 matrix T of random bits.
2. Rcver generates k1 pairs 〈keyi,, keyi,〉 of k2-bit strings, where 1 ≤ i ≤ k1.
3. Snder generates a vector s = [s1, · · · , sk1 ] of random bits.
4. Rcver and Snder execute Naor-Pinkas’s OT protocol for k1 times, where Rcver acts as the sender,

Snder as the receiver. At the ith execution of OT2
1, the message pair to send is 〈keyi,, keyi,〉, and

the selection bit is si.

Execution:

Snder Rcver

® Snder derives a bit matrix Q,
where qi = Deckeyi,si (msgi,si).
Then the Snder prepares m pairs
msg′i = 〈msg′i,0, msg

′
i,1〉 =

〈Encqi(xi,0),Encs⊕qi(xi,1)〉, where
1 ≤ i ≤ m.

­
[
msg1, · · · , msgk1

]
.

←−−−−−−−−−−−−−−−−−−−

¬ Rcver prepares k1 pairs
msgi = 〈msgi,0, msgi,1〉 =

〈Enckeyi,(ti),Enckeyi,(r ⊕ ti)〉,
where 1 ≤ i ≤ k1.

¯ [msg′1, · · · , msg
′
m].

−−−−−−−−−−−−−−−−−−−→ ° ∀1 ≤ i ≤ m, Rcver outputs
xi,ri = Decti(msg

′
i,ri

).

Figure 2.1: The Oblivious Transfer Protocol

semi-honest setting. Based on the Random Oracle assumption, Ishai et al. [55] devised a technique to achieve

a virtually unlimited number of oblivious transfers at the cost of (essentially) k executions of OT2
1 (where k

is a statistical security parameter) plus a marginal cost of a few symmetric-key operations per additional OT.

The two primitives can be combined to realize oblivious transfer of binary strings efficiently (Figure 2.1).

Denote the ith column vector of a matrix T by ti, and the ith row vector of T by ti. The preparation phase

can be done before any of the selection bits are known. At the end of the preparation phase, Snder has k1

keys keyi,si , and Rcver has k1 key pairs 〈keyi,0, keyi,1〉, where (1 ≤ i ≤ k1). These keys are later used to

transmit the matrix Q efficiently. By using pre-computation, the on-line phase of our OT implementation

requires only 2(k1 +m) symmetric encryptions and k1 +m symmetric decryptions.

The correctness and security of this protocol follow directly from the proofs for Naor-Pinkas’s OT (NPOT)

protocol [80] and the extended OT protocol by Ishai et al. [55].

Correctness. The Rcver can learn xi,ri for all 1 ≤ i ≤ m following this case analysis:

1. If ri = 0, then qi = ti no matter what value si takes. Thus, Rcver knows the key ti, which is used to

encrypt xi,0.
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2. When ri = 1, the value of si selects whether qi = ti, or r ⊕ ti. However, this “selection” effect is

canceled by xor-ing s and qi, so that it is always true that s⊕ qi = ti, which is the key used to encrypt

xi,1.

Security. The security of our protocol follows from these two points:

1. The Rcver can never learn anything about xi,ri because it is encrypted using a different secret key

which differs from that used for xi,ri by s, the Snder’s random bit vector that is never revealed to the

Rcver. The security property of NPOT used in the preparation phase guarantees that the selection

bits of s are not revealed to Rcver.

2. In the first round of communication, either ti or r ⊕ ti is sent to the Snder, but not both. Thus, the

fact that the Snder can never learn anything about the Rcver’s selection bits r is derived directly

from the security property of NPOT used in the preparation phase [80].

As a rough idea on the cost of oblivious transfer, the time for computing the “base” 80 oblivious transfers

in semi-honest setting is about 0.6 seconds, while the on-line time for each additional OT2
1 is about 15 µs.

We also note that there are known oblivious-transfer protocols with stronger security properties [46], as

well as techniques for oblivious-transfer extension that are secure against malicious adversaries [44].

2.3 Garbled Circuits

Garbled circuits allow two parties holding inputs x and y, respectively, to evaluate an arbitrary function

f(x, y) without leaking any information about their inputs beyond what is implied by the function output.

One party (the garbled-circuit generator) prepares an “encrypted” version of a circuit computing f ; the

second party (the garbled-circuit evaluator) then obliviously computes the output of the circuit without

learning any intermediate values.

Starting with a Boolean circuit for f (which both parties fix in advance), the circuit generator associates

two random cryptographic keys w0
i , w

1
i with each wire i of the circuit (w0

i encodes a 0-bit and w1
i encodes

a 1-bit). Then, for each binary gate g of the circuit with input wires i, j and output wire k, the generator

computes ciphertexts

Enck
w

bi
i ,w

bj
j

(
w
g(bi,bj)
k

)
for all inputs bi, bj ∈ {0, 1}. The resulting four ciphertexts, in random order, constitute a garbled gate. The

collection of all garbled gates forms the garbled circuit that is sent to the evaluator. In addition, the generator

reveals the mappings from output-wire keys to bits.
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The evaluator must also obtain the appropriate keys (that is, the keys corresponding to each party’s

actual input) for the input wires. The generator (assuming the input wires corresponding to its n-bit input

are numbered 1, . . . , n) can simply send wx1
1 , . . . , wxn

n , the keys that correspond to its own input where each

wxi
i corresponds to the generator’s ith input bit. The parties use oblivious transfer protocols to enable the

evaluator to obliviously obtain the input-wire keys corresponding to its own inputs.

Given keys wi, wj associated with both input wires i, j of some garbled gate, the evaluator can compute a

key for the output wire of that gate by decrypting the appropriate ciphertext. As described, this requires up to

four decryptions per garbled gate, only one of which will succeed. Using the point-and-permute technique [74]

(see Section 2.4.1), the construction can be modified so a single decryption suffices. Thus, given one key for

each input wire of the circuit, the evaluator can compute a key for each output wire of the circuit. Given the

mappings from output-wire keys to bits (provided by the generator), this allows the evaluator to compute the

actual output of f . If desired, the evaluator can then send this output back to the circuit generator (note,

however, that sending the output back to the generator can be a privacy risk unless the semi-honest model

can be imposed through some other mechanism).

2.4 Implementation Techniques

Several notable works have improved aspects of secure function evaluation. We describe the most important

ones, all of which are used in our framework, here.

2.4.1 Point-and-permute

A näıve implementation of the evaluator will decrypt every entry in the garbled truth table to find the

correctly decryptable encryption. Malkhi et al. proposed the point-and-permute technique, which allows the

circuit evaluator to identify the “right” entry in a garbled truth table to decrypt [74], saving the evaluator

from decrypting more than one truth table entry. Take a unary gate as an example, we let sin be the 1-bit

semantic value on the input wire and denote with (w0
in, w

1
in) the pair of labels associated with the input wire.

The circuit generator selects a random permute bit p to associate with w0
in (which implies p is bound to w1

in).

The two encryptions in the garbled truth table will be fliped if and only if p = 1. Later, the value p⊕ sin is

revealed to the evaluator to index (or point to) the “right” encryption to decrypt.

2.4.2 Free-XOR

The free-XOR technique [64, 63] allows all XOR gates be executed by just XOR-ing the input wire labels,

without needing any encryption operations. The basic idea is for the circuit generator to keep a global
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random bit string R such that for every wire only the label w0 (representing 0) needs to be randomly sampled

while the label w1 (representing 1) is simply set to w0 ⊕R. For every binary XOR gate (with input wires

subscripted with i, j and the output wire with k), the label representing 0 on the output wire is derived from

xor-ing corresponding input labels, i.e.,

w0
k = w0

i ⊕ w0
j .

With aforementioned setup,

w1
k = w0

i ⊕ w1
j = w1

i ⊕ w0
j = w0

i ⊕ w0
j ⊕R.

Thus, XOR gates can be realized by locally xor-ing the input wire labels without any expensive cryptographic

encryptions. Security was initially proved using the Random Oracle model [13], but modified by Kolesnikov

et al. to use the weaker correlation robustness assumption [64].

2.4.3 Garbled Row Reduction

Pinkas et al. [86] proposed the Garbled Row Reduction (GRR) technique, which reduces the size of a garbled

table to three entries (saving 25% of network bandwidth) for all non-free gates and is composable the with

free-XOR technique, assuming a cryptographic hash function H (e.g., SHA-256) is used for encryption. For

example,

Enck
w

bi
i ,w

bj
j

(
w
g(bi,bj)
k

)
= H(wbii , w

bj
j , bi, bj)⊕ w

g(bi,bj)
k ,

where wi, wj are input wires, wk is the output wire, and g is the binary function to garble. The generator

can always choose w
g(0,0)
k = H(w0

i , w
0
j , 0, 0), such that the encryption corresponding to input signals (0, 0),

Enckw0
i ,w

0
j

(
w
g(0,0)
k

)
is always a string of 0 bits. Hence, makes it unnecessary to transmit this entry of all 0s.

2.5 Programming Tools

During the past decade, many different types of tools for secure computation proliferated in both research areas

of cryptography and programming languages. Generally they accept as input a program written in a Turing-

complete programming language, which can be either imperative [74, 15, 47, 73, 83, 110, 108, 25, 26, 72]

or descriptive [97]. The systems outputs can be boolean circuits [74, 15, 47], source code in a generic

programming language [73, 110, 108, 25, 26, 72], or a running protocol [97]. Some systems [74, 15, 47, 97, 73]

employed cryptographic primitives to enable secure computation, whereas others [110, 108, 25, 26, 72, 83]

did not. Instead, they were designed as tools that use types or annotations to specify security properties
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and apply various static analysis techniques to ensure the security requirements are met. More detailed

description of these works are given below.

Silaghi developed a constraint programming style declarative language called SMC [97] and demonstrated

it by solving several interesting problems such as anonymous scheduling [89] and stable matching [2]. The

underlying cryptographic primitive is secret sharing based arithmetic circuit evaluation [16].

MacKenzie et al. [73] developed a compiler to automate the production of secure two-party computation

protocols for a restricted but interesting category of computation, which are operations on the prime-order

groups Zq and Zp where p, q are primes and q|(p− 1). Their implementation was built on secure arithmetic

primitive protocols realized by threshold cryptography [33, 39]. Applications of their framework are restricted to

converting certain types of cryptographic primitives for some special purposes (e. g., deriving signature schemes

that enforce co-sign, or deriving distributed oblivious transfer protocols from ordinary ones). Compared to

their work, ours targets arbitrary computation by garbled circuits, though employing threshold crypto-systems

to speedup part of our circuit could be an interesting future exploration.

Malkhi and collaborators developed Fairplay [74], a compile-and-interpret framework that automates the

production of secure two-party computation protocols from conventional ones. The main interface Fairplay

exposes to programmers is a simple Algol-like programming language called SFDL that supports very limited

primitive data types (boolean, sized int and enumerate), expressions (addition, subtraction, comparison,

and boolean logic operations), and statements (non-recursive functions, branches, and constant number

iterative loops). SFDL programs are compiled to monolithic digital circuits (stored as SHDL files), which

are interpreted by the server/client runtime environments for protocol execution. FairplayMP [15] and

TASTY [47] are two derivative works from Fairplay. FairplayMP extended the SFDL language to describe

secure multi-party computations, and built its runtime engine on a circuit-based technique for multi-party

computation [11].

TASTY [47] enhances the functionality and performance of Fairplay. It extended Fairplay’s SFDL to allow

the programmer to specify where in the digital circuit to integrate some arithmetic circuits (limited to addition

and constant multiplication) that are realized by homomorphic encryption schemes. They also incorporated

the free-XOR technique [64]. However, their approach still started from compiling SFDL programs, so the

programmer does not have enough control over the circuit construction to minimize bit widths or make

maximal use of free-XORs as is possible with our proposed approach. Scalability and performance is also

limited because they do not employ pipelined circuit execution.

Nielsen and Schwartzbach [83] developed a high-level language SMCL for secure multi-party computation.

They modeled the secure multi-party computation with a variable number of clients and a conceptual server.

In SMCL, data and computations can be categorized into public (to everyone), private (to one particular
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client) and secret (only appear in server scripts). Their focus is on using a compiler to enforce two security

properties about branches (both paths are executed sequentially, and terminate with no public side effects),

and verifying that all potential information leaks by the outcome are properly annotated. In contrast, we

focus on improving the efficiency of the cryptographic part. Our users derive implementations of secure

protocols from existing non-secure ones and are encouraged to work directly on certain circuits. Like Fairplay,

SMCL only supported very limited data types (int and bool) and disallow general loops and recursion

involving secret data.

Many language and analysis tools provide means to specify and check privacy requirements and trust

relationship for program data [110, 108, 25, 26, 72]. For example, Jif/split [108] can automatically partition

programs into a number of slices according to the annotated security types and trust labels. To ensure

security, computations on a piece of data are moved to the principal host who owns the data. Secure

program partitioning relies heavily on static information flow analysis [78, 91]. The security properties, as

the sources of the information flow, are either specified with type systems [102] or marked by labels [79]. At

the sink of the flow, potential information leaks or relaxed non-interference must be explicitly granted with

declassification [92, 66]. However, these systems cannot do secure computation without trust being explicitly

granted. They are not designed to use special cryptographic tools to resolve privacy conflicts.



Chapter 3

Improving Efficiency and Scalability

Two main approaches exist to construct protocols for secure computation. The first approach exploits specific

properties of the function being computed to design special-purpose protocols that are, presumably, more

efficient than those that would result from generic techniques. A disadvantage of this approach is that each

function-specific protocol must be designed, implemented, and proved secure.

The second approach relies on completeness theorems [107, 41, 40] for secure computation to derive

protocols for computing any function f starting from a representation of f . One such approach is the garbled

circuits technique introduced by Yao [107], which produces a semi-honest protocol for any function f based

on the Boolean-circuit representation of f . This generic approach to secure computation has traditionally

been viewed as being of theoretical interest only since the protocols that result require several symmetric-key

operations per gate of the circuit being executed and the circuit corresponding to even a very simple function

can be quite large.

Beginning with Fairplay [74], several implementations of generic secure two-party computation have

been developed in the past few years [71, 86, 47] and used to build privacy-preserving protocols for various

functions (e.g., [61, 35, 93, 84, 52]). Fairplay and its successors demonstrated that Yao’s technique could be

implemented to run in a reasonable amount of time for small circuits (i.e., up to 4 million gates), but left the

impression that generic protocols for secure computation could not scale to handle large circuits or input

sizes or compete with special-purpose protocols for functions of practical interest. Indeed, some previous

works have explicitly rejected garbled-circuit solutions due to memory exhaustion [61, 84].

We observe that design decisions made by Fairplay, and followed in subsequent work, led researchers to

severely underestimate the applicability of generic secure computation. In this chapter, we describe techniques

for improving the performance and scalability of garbled circuit execution.

0The contents in this chapter are based on paper “Faster Secure Two-Party Computation Using Garbled Circuits” [50].
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First, we find it not necessary to store the actual garbled circuits. Instead, the generator can generate

the encryptions on the fly and send them to the evaluator over the network (respectively, the evaluator

receiving the encryptions simply decrypts then discards them), leading to the idea of pipelining (Section 3.1).

Then we study several ways to generate efficient secure computing protocols including library-based circuit

construction (Section 3.2) and garbled circuit minimization (Section 3.3).

Our secure computation framework (Section 3.4), which combines the above ideas, allows programmers to

construct protocols in a high-level language while providing enough control over the circuit design to enable

efficient implementations. The framework has a small source code base, consisting of a main framework

of about 1500 lines of Java code and a circuit library of an additional 700 lines. We describe the typical

workflow of developing new secure computation protocols in Section 3.4.2.

3.1 Pipelined Execution

The first limitation of previous garbled-circuit implementations (including Fairplay) is the memory required

to store the entire circuit in memory, as illustrated in Figure 3.1(a). However, there is no need for either the

circuit generator or evaluator to ever hold the entire circuit in memory. The circuit generation and evaluation

processes can be overlapped in time (pipelined), eliminating the need to ever store the entire garbled circuit

in memory as well as the need for the circuit generator to delay transmission until the entire garbled circuit

is ready (Figure 3.1(b)). In our framework (Section 3.4), the processing of the garbled gates is pipelined

to avoid the need to store the entire circuit and to improve the running time. As a result, garbled circuit

execution becomes a nearly constant (as opposed to linear in prior implementations) space process. Pipelined

execution is automated by our framework, so a user only needs to construct the desired circuit.

At the beginning of the execution, both the circuit generator and the circuit evaluator instantiate the

circuit structure in exactly the same way. The Boolean circuit can be executed as normal in any topological

order, as long as both the generator and the evaluator execute the circuit in exactly the same order (Figure 3.2).

These design decisions do not cause any security problem because the circuit and its execution order do not

depend on the private data. The order is public information shared between the two parties. When the

protocol is executed, the generator transmits the garbled table (that is, three encrypted values) for every

garbled gate (rather than the circuit structure) over the network, in a topological order defined by the circuit

structure. As the client receives the encryptions, it is able to associate them with the corresponding gate

of the circuit to do the evaluation. The overhead to keep the two parties synchronized is small, which is

captured by the classic Producer-Consumer synchronization model.
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Figure 3.1: Non-pipelined versus pipelined execution

Once a gate has been evaluated it is immediately discarded, so the number of garbled truth tables stored in

memory is constant and small (exactly 3 encryptions). In addition, we stress that the publicly known circuit

structures (not the actual garbled truth tables) can be reused iteratively for secure computation. Therefore,

as long as the same set of basic circuit structures are used, evaluating more garbled gates does not increase the

memory load on the generator or evaluator, but only affects the network bandwidth needed to transmit the

garbled tables. Using larger or additional circuit structures does increase the memory requirement negatively,

because more memory is needed to store the wires and connections. We will see in Section 3.2 how this issue

can be alleviated by exploiting the modular and recursive nature of computation.

Apparently the pipelined execution only saves approximately half of the time compared to non-pipelined

implementation. However, the side effects of pipelining on performance can also be substantial: (1) it

eliminates the delay of accessing long-term storage (e.g., disk files); (2) it features stronger recursive pattern

at run-time which leads to better program locality and cache misses.

3.2 Library-based Construction

Using pipelined execution, the memory cost of garbled circuits now grows only with the size of the (reusable)

circuit structures. But, the execution time is still linear in the number of gates in the circuit. In particular,
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Figure 3.2: Pipelining synchronized on circuit structure and execution order

the cost of evaluating a garbled circuit protocol scales linearly in the number of non-XOR gates since we

use the free-XOR technique (Section 2.4.2) to perform XOR without needing any cryptographic operations.

Hence, to improve the execution efficiency, it is important to construct functionally equivalent circuits that

use as few number of non-XOR gates as possible.

We advocate building large secure computation applications by composing smaller circuit components.

The benefits of using existing library circuits are many-fold:

1. Always constructing everything from scratch (i.e., Boolean gates) is an awkward way to write medium

to large scale applications. It easily becomes a nightmare for the developers to manage the complexity of

software development. Making big circuits out of smaller ones enables us to exploit software modularity.

In addition, modular circuit construction also encourages program re-use. For example, a comparison

circuit such as GT will be useful both in finding global minimum, edit distance, and Sort-Compare-Shuffle

based private set intersection. The GT circuit can thus be written and included in the library once for

all.

2. For efficiency purposes, it is important to minimize the total number of non-XOR gates used in the

garbled circuit realization of a certain functionality. However, such circuit optimization problem is

known to be NP-hard in general (in terms of the size of circuit input and output) [19]. We would

be likely to find optimal solutions for extremely small circuits such as a 1-bit adder. Based on the

assumption that building large circuits from optimal smaller components should yield reasonable results,

library-based circuit construction serves as a practical solution with reasonable performance.
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3. Compared to high-level programming languages that support loops and recursive calls, Boolean circuits

are extremely memory inefficient representations of computations. Although we never store any

encryptions for any Boolean gate, the circuit size still matters because we have to maintain structures of

all circuits. Library-based circuit construction allows us to represent computations efficiently by storing

only a few circuit patterns instead of a big monolithic circuit. High-level language constructs like loops

and recursive procedures can still be used to express complex computations, as long as control flows

are never affected by private data or their derivatives. For example, during computing the Hamming

distance of two bit-strings of a million bits, it suffices to keep just a single XOR gate in memory and

invoke it a million times with a for-loop (rather than construct one circuit that has a million XOR gates

in it), while only incrementing an oblivious counter of approximately 20 internal bits. This technique is

fairly important to maintain reasonable performance when dealing with large scale secure computations.

We supply a library of basic circuits, including comparators, adders, muxers, minimizers. The basic

circuits are parameterised with input sizes. For example, the adder class is defined by class ADD 2L Lplus1,

which adds up 2 `-bit unsigned integers to place in an (`+ 1)-bit integer; while the muxer is given by class

MUX 2Lplus1 L, which chooses 1 out of 2 unsigned integers based on a 1-bit selection signal. An example

showing usage of the basic building blocks is presented in Section 3.4.

3.3 Minimizing Secure Computation

Although the performance of garbled circuit execution can be substantially improved with the techniques

above, it is still many orders of magnitude slower than native computation. So we only want to use expensive

garbled circuit for computation that has to involve private data. In our approach, the applications are

designed at the circuit level rather than using a high-level language like SFDL [74]. This enables us to take

advantage of several opportunities for reducing the amount of secure computation that must be done.

3.3.1 Reducing Wires

Garbled circuits operate on bits, and every (non-XOR) Boolean bit operation requires expensive encryption

operations. To improve performance, the circuits are constructed with the minimal width required for the

correctness of the programs. This is achieved by designing most circuits with parameters that specify the

sizes of the inputs. For example, SFDL’s simplicity encourages programmers to count the number of 1s in a

900-bit number by writing code that leads to a circuit using 10-bit accumulators throughout the computation.

In constrast, based on the insight that narrower accumulators will be sufficient at early stages, we can
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use ten different accumulators, with input bit widths ranging from 1 to 10 bits to save unnecessary secure

computation. Opportunity of savings by using dynamic bit width are also found in the secure edit distance

protocol, where states in the upper-left part of the matrix need fewer input and output bits than those in the

bottom-right. This technique has a significant impact on the overall efficiency — reducing the number of

garbled gates needed for our edit distance protocol by 20%.

3.3.2 Static Propagation

In traditional garbled circuits, computations are done solely by encrypting and decrypting the wire labels

which represent garbled signals. However, for many reasons, plain (un-garbled) Boolean signals are still

available in garbled circuits and can even play a significant role in privacy-preserving computation. For

example, as circuits are built upon their sub-component modules, some internal ports of the components

need to be fixed to constant signals (e.g., the carry-in bit of an adder is fixed to 0). Moreover, when dealing

with inputs that contain partial but dynamic secrets, a significant number of gates need not be executed in

a garbled fashion. Therefore, we combine the plain execution with garbled execution dynamically, so that

the former is used whenever possible. The garbed circuits implemented by our framework accept both plain

and garbled signals and automate the hybrid execution. Hence, hybrid execution makes it easy to take a

Hamming distance circuit (whose construction favors integer powers of 2) for two 1024-bit strings to produce

one that works for inputs length of any integer (e.g., 777) between 512 and 1024, by simply assigning the

extra input bits to 0. Since all of the computation involving the fixed 0 inputs is statically done using plain

execution, it will not incur any runtime overhead, leaving a cost nearly identical to what it would be for a

custom-designed 777-bit width circuit.

3.3.3 Low-level Symbolic Execution

The wire labels obtained during a garbled circuit evaluation are normally treated as a worthless by-product

of the evaluation, but can be used in subsequent computations. In the garbled circuit evaluator’s perspective,

the set of wire labels computed are meaningless numbers, conveying no semantic information until the last

step. This property is bound to the rigorous definition of security for garbled circuit technique. We exploit

this fact to avoid garbled execution for many binary gates.

Since wire labels are unique. We treat them as ordinary distinct symbols. It follows immediately from

this observation that we can do binary gate level symbolic execution (means generation for the generator and

evaluation for evaluator), which is essentially free compared to garbled execution. For example, let λ denote

the value of a particular wire label. Symbolic execution rules are shown in the last two rows of Table 3.1. In



3.3 Minimizing Secure Computation 23

large circuits, these rules can help propagate the symbolic wire labels that collapse many binary gates to

simple wire connections. In addition, combining the idea of hybrid and symbolic circuit execution, we can

use the execution rules in the first two rows of Table 3.1.

Gate Type AND (·) OR (+) XOR (⊕)

Symbolic Rules

1 · λ = λ 1 + λ = 1 1⊕ λ = λ

0 · λ = 0 0 + λ = λ 0⊕ λ = λ

λ · λ = λ λ+ λ = λ λ⊕ λ = 0

λ · λ = 0 λ+ λ = 1 λ⊕ λ = 1

Table 3.1: Symbolic execution rules for binary gates

Note that the symbolic rules require inverting wire labels to tell λ from λ̄. To make this possible, every

wire includes an associated 1-bit isInverted flag that indicates whether or not its signal has been inverted.

By this method, a NOT gate can be implemented by flipping the isInverted flag without any expensive

cryptographic operations. Since it is a public knowledge that it is a NOT gate, both parties will always be

consistent in inverting their respective flags, but without any interaction with the labels. These facts assure

both correctness and security of the technique.

3.3.4 Dividing Sensitive Computation

We note that it is usually overkill to implement an entire program with garbled circuits. Instead, part of

the computation does not actually involve any private data at all. For example, in both the edit distance

and Smith-Waterman protocols, the initialization part can be safely computed without garbled circuits.

Occasionally, each party could have some computations that involves merely its own private input. Those

computations could avoid expensive garbled circuit execution as well.

In addition, sometimes it is even possible to push some computation that originally requires collaboration

towards one that can be done locally. Take the secure AES as an example, the client has the message while

the server has the key. A näıve transformation of AES will require the key schedule to run obliviously on the

client side since it uses the server’s private input. However, this can also be done through running the key

schedule locally on the server side but use oblivious transfers to send the schedule output. Even though more

bits need to be obliviously transfered compared to the näıve scheme, the savings from avoiding garbled circuit

still outweigh the cost of oblivious transfer. As another example, when implementing the sort-compare-shuffle

type of PSI protocols (Section 4.5.4), we take advantage of the observation that each party is able to sort

their inputs locally, such that only the merging needs to be done with garbled circuits.

Therefore, our framework is designed to make it easy for programmers to combine secure and plain

computation in ways that allow applications to minimize the amount of expensive secure computation needed.
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We encourage programmers to think carefully about which modules really need to be realized with secure

computation and only realize those in garbled circuits.

3.4 Framework

We first present an overview of our framework design. Then we describe the general steps to use the framework

to build efficient secure computation protocols.

3.4.1 Design

Our framework includes a library of circuits defined for efficient garbled execution. Applications can be built

by composing these circuits, but more efficient implementations are usually possible when programmers define

custom-designed circuits.

The hierarchy of circuits is organized following the Composite design pattern [38] with respect to the

build() method. Circuits are constructed in a modular fashion, using Wire objects to connect them together.

Figure 3.4.1 provides a UML class diagram of the core classes of our framework. The Wire and Circuit classes

follow a variation of the Observer pattern, which offers a kind of publish/subscribe functionality [38]. The

main difference is that when a wire w is connected to a circuit on port p (represented as a position index to

the inputWires array of the circuit), all the observers of the port p automatically become observers of w.

CompositeCircuit

subCircuits : Circuit[]

build() : void
createSubCircuits() : void
connectWires() : void
defineOutputWires() : void
fixInternalWires() : void

AND_2_1

Circuit
inputWires : Wire[]
outputWires : Wire[]

build() : void
startExecuting(s : State) : State
update(o : TransitiveObservable,arg : Object) : void

SimpleCircuit_2_1

gtt : BigInteger[][]

build() : void
execute() : void

OR_2_1MUX_3_1GT_3_1 XOR_2_1

Wire
value : int
lbl : BigInteger
invd : boolean

connectTo(ws : Wire[],idx : int) : void
fixWire(v : int) : void

TransitiveObserver
<<interface>>

Circuit -> TransitiveObserver
<<realize>>

TransitiveObservable

1

1..*

11..*

ADD1_Lplus1_L

Figure 3.3: The core classes
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The SimpleCircuit abstract class provides a library of commonly used functions starting with 2-to-1 AND,

OR, and XOR gates, where the AND and OR gates are implemented using Yao’s garbled-circuit technique and

the XOR gate is implemented using the free-XOR optimization. Implementing a NOT gate is also free since it

can be implemented as an XOR with constant 1.

The circuit library also provides more complex circuits for common operations including adders, muxers,

comparators, min, max. These circuits are designed to minimize the number of non-XOR gates. Optimized

circuits for additional functions can be added, as needed. A circuit for some desired function f can be

constructed from the components provided in our circuit library, without needing to build the circuit entirely

from AND/OR/NOT gates.

Composite circuits are constructed using the build() method, with the general structure shown below:

public void build() throws Exception {

createInputWires ();

createSubCircuits ();

connectWires ();

defineOutputWires ();

fixInternalWires ();

}

To define a new circuit, a user creates a new subclass of CompositeCircuit. Typically it is only necessary

to override the createSubCircuits(), connectWires(), and defineOutputWires() methods. If internal

wires are fixed to known values, these can be set by overriding fixInternalWires(). As mentioned in

Section 3.3.2, our framework automatically propagates known signals which improves the run-time whenever

any internal wires are fixed in this way. For example, given a circuit designed to compute the Hamming

distance of two 1024-bit vectors, we can immediately obtain a circuit computing the Hamming distance of two

900-bit vectors by fixing 124 of each party’s input wires to 0. Because of the way we do value propagation,

this does not incur any runtime cost.

As a full example, the code for an AddOneBit circuit is given in Figure 3.4. The AddOneBit circuit, which

takes as input an `-bit number and a 1-bit signal and outputs an `-bit integer, is simply built from an regular

adder ADD 2L Lplus1. Usually only four methods need to be rewritten, plus an optional fixInternalWires()

function. The constructor simply calls its base class (CompositeCircuit)’s constructor, specifying that there

are m+ 1 input wires, m output wires, and one internal component circuit. Code in the base class will take

care of initializing relevant resources. The component circuit, in this case, ADD 2L Lplus1, gets instantiated

in the createSubCircuits() method, which also invokes the corresponding method in its superclass to have
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all of the component circuits initialized automatically. Next, with connectWires(), the interconnecting wires

between the component circuits visible at the current circuit level (i.e., excluding the wire connections inside

any component circuits) are programmed, using the connectTo method of the Wire class. In this case, the

first wire is connected to the least significant input bit of the adder while the for-loop assigns the rest L bits as

the first integer argument of the adder. In method defineOutputWires, the L output-wires of the AddOneBit

is simply assigned by the L output wires of the internal adder. Last, since the most significant L-1 bits of the

second argument of the adder are all 0, we fix those wires with plain signal 0 in fixInternalWires.

class AddOneBit_Lplus1_L extends CompositeCircuit {

private final int L;

public AddOneBit_Lplus1_L(int m) {

super(m + 1, m, 1);

L = m;

}

protected void createSubCircuits () {

subCircuits [0] = new ADD_2L_Lplus1(L);

super.createSubCircuits ();

}

protected void connectWires () {

inputWires [0]. connectTo(subCircuits [0]. inputWires , 0);

for (int i = 0; i < L; i++)

inputWires[i+1]. connectTo(subCircuits [0]. inputWires , 2*i + 1);

}

protected void defineOutputWires () {

System.arraycopy(subCircuits [0]. outputWires , 0, outputWires , 0, L);

}

protected void fixInternalWires () {

for (int i = 1; i < L; i++)

subCircuits [0]. inputWires [2*i]. fixWire (0);

}

}

Figure 3.4: Source code of AddOneBit circuit

3.4.2 Approach Workflow

The general workflow of our approach is illustrated in Figure 3.5. The development process can be started from

an existing Java implementation of the targeted function. To build an efficient two-party secure computation

protocol, a programmer first analyzes the target application to identify the critical components that need to

be computed securely. Then, those components are translated to digital circuit designs. Some of the circuits
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will be directly realized with existing circuits in the library, while others could require custom designs based

on the basic modules in the library. Outputs of this transformation are Java classes. A few changes are also

needed on the high level Java application to make sure it calls the garbled circuit implementation of the

critical components. Finally, with support from our framework’s core libraries, the circuits and the main

program can be compiled and packaged into server-side and client-side programs that jointly instantiate the

garbled-circuit protocol. They generator and evaluator are now ready to be deployed over a network, run as

agents on behalf of two untrusted parties.
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Figure 3.5: Workflow using the framework



Chapter 4

Case Studies

In this chapter, we study several example privacy-preserving applications to evalute the effectiveness of the

general techniques presented in Chapter 3.

4.1 Experimental setup

Unless explicitly specified otherwise, the following settings are used throughout the experiments in our studies.

We use 80-bit wire labels for garbled circuits and statistical security parameter k = 80 for oblivious-transfer

extension. For the Naor-Pinkas oblivious-transfer protocol, we use an order-q subgroup of Z∗p with |q| = 128

and |p| = 1024. These settings correspond roughly to the ultra-short security level as used in TASTY [47].

We used SHA-1 to generate the garbled truth-table entries. Each entry is computed as:

Enck
w

bi
i ,w

bj
j

(
w
g(bi,bj)
k

)
= SHA-1

(
wbii ‖w

bj
j ‖k

)
⊕ wg(bi,bj)

k .

All cryptographic primitives were used as provided by the Java Cryptography Extension (JCE). Our

experiments were performed on two Dell boxes (Intel Core Duo E8400 3GHz) connected on a local-area

network.

4.2 Hamming Distance

Hamming distance is an essential metric with applications in myriad fields. It is a core operation in biometric

identification systems [84] and m-point-SPIR (Symmetric Private Information Retrieval) [60]. Given two

0Section 4.2, 4.3, 4.4, and 4.6 are based on the paper “Faster Secure Two-Party Computation Using Garbled Circuits” [50].
Section 4.7 is based on parts of the paper “Efficient Privacy-Preserving Biometric Identification” [52]. Section 4.5 and 4.8 is
based on the paper “Private Set Intersection: Are Garbled Circuits Better than Custom Protocols?” [49].

28
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`-bit binary strings a and b, where a = a`−1 · · · a1a0 and b = b`−1 · · · b1b0, the Hamming distance between a

and b, Hamming(a, b), is simply the total number of correspondingly different bits between a and b. In a

privacy-preserving scenario, a is the private input of Alice and b is the private input of Bob. Alice and Bob

wish to collaboratively compute Hamming(a, b), or use its value as an intermediate result in a subsequent

computation, without revealing their respective private inputs to the other.

4.2.1 Prior Work

Jarrous and Pinkas [60] proposed additive homomorphic encryption schemes for securely computing Hamming

distance [60, 84]. Let c = c`−1 · · · c1c0, where ci = ai ⊕ bi. Let JciK denote the encryption of bit ci with Bob’s

public key pkP2
. First, Alice computes JciK by computing JaiK · JbiK1−2ai , where JaiK is computed by Alice on

her own and JbiK is received from Bob. This works because,

JciK = Jai ⊕ biK =
q
aibi + aibi

y
= Jai(1− bi) + (1− ai)biK

= JaiK · JbiK−ai · JbiK1−ai = JaiK · JbiK1−2ai .

By homomorphically summing all ci’s, Bob obtains the encryption of h = Hamming(a, b):

JhK =

u

v
∑

0≤i<`

ci

}

~ =
∏

0≤i<`

JciK .

In practice, the value of the Hamming distance is rarely revealed directly. Instead, it is used obliviously

in some subsequent computation. For example, in the SCiFI face-recognition protocol [84], h is compared to

a threshold value to see if it signifies a close enough match. They accomplish this using a two step protocol.

First, Alice computes Jh+ rK and sends it to Bob, where r is a random noise added to h to prevent Bob

from learning h. Bob, who is able to decrypt Jh+ rK using his private key, only learns (h+ r). Second, Bob

calculates whether h is below a threshold value t using a 1-out-of-(hmax + 1) oblivious transfer protocol

OThmax+1
1 , where hmax is the maximal possible value of h. For the OThmax+1

1 oblivious transfer, Alice, who

defines the threshold t, is the sender, with her (hmax + 1)-bit private input x = xhmax · · ·x1x0, where

xi =

 1, if 0 ≤ (i− r) mod (hmax + 1) ≤ t;

0, otherwise,

while Bob is the receiver, using (h+ r) mod(hmax + 1) as his private input choice. At the end of the oblivious

transfer, Alice learns nothing and Bob learns 1 if 0 ≤ h ≤ t, or 0 otherwise. If the party (Bob in current
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Figure 4.1: Hamming Distance Circuit.

settings) who doesn’t define t is designated as the only receiver of the final outcome, a more expensive

OT2dmax+1
1 protocol is required.

4.2.2 Circuit-based Approach

Hamming distance can be efficiently computed using garbled circuit protocols. The high level design of a

Hamming distance circuit is given in Figure 4.1. It is basically an `-way pair-wise XOR followed by a Counter

circuit that counts the number of 1 signals among its input wires. The output of the Hamming circuit is a

k-bit value, where k = dlog `e.

A näıve design of the Counter submodule is to use ` copies of a k-bit AddOneBit circuit, so that in each of

the ` iterations the Counter circuit accumulates one bit of v ⊕ v′ in the k-bit counter.

Since XOR gates are free and an k-bit Adder needs only k non-XOR gates [63], the Hamming circuit with

the näıve Counter needs ` · dlog `e non-free gates. We improve upon this by changing the Counter design to

reduce the number of gates while enabling the gates to be evaluated in parallel.

First, we observe that the widths of the early one-bit adders can be far smaller than k bits. As mentioned

in Section 3.2, our approach allows library circuits to be parameterized by bit width and circuits to be

designed in a way that minimizes the number of bit operations needed. At the first level, the inputs are

single bits, so a 1-bit adder with carry is sufficient; at the next level, the inputs are 2-bits, so a 2-bit adder is

sufficient. This follows throughout the circuit, halving the total number of gates to (`dlog `e)/2.

Second, the serialized execution order is unnecessary. The näıve design can be improved to yield a parallel

version of Counter given in Figure 4.2. Given that additional cores are available, the oblivious counting can be

done in logarithmic time (in terms of the length of input bit string).

4.2.3 Experimental Results

Computing the Hamming distance between two 900-bit vectors took 0.019 seconds and used 56 KB bandwidth

in the on-line phase (including garbled circuit generation and evaluation), with 0.051 seconds (of which the

OT takes 0.018 seconds) spent on off-line preprocessing (including garbled circuit setup and the OT extension
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Figure 4.2: Parallelized Counter circuit.
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Figure 4.3: On-line running time of our Hamming-distance protocol for different input lengths.

protocol setup and execution). For the same problem, the protocol used in SCiFI took 0.31 seconds for on-line

computation, even at the cost of 213 seconds spent on pre-processing.1 The SCiFI paper did not report

bandwidth consumption, but we conservatively estimate that their protocol would require at least 110 KB

(comparing to 56 KB in ours). In addition to the dramatic improvement in performance, our approach is

quite scalable. Figure 4.3 shows how the running time of our protocol scales with increasing input lengths.

The garbled-circuit implementation has another advantage compared to the homomorphic-encryption

approach taken by SCiFI: if the obliviously calculated Hamming distances are not the final result, but are

only intermediate results that are used as inputs to another computation, then a garbled-circuit protocol is

much better in that by its nature it can be readily composed with any subsequent secure computation. The

biometric matching application is an example scenario.

1Osadchy et al. [84] used a 2.8 GHz dual core Pentium D with 2 GB RAM for their experiments, so the comparison here is
reasonably close. Also note that for their experiments, Osadchy et al. configured their host to turn off the Nagle ACK delay
algorithm, which substantially improved network performance. This is not realistic for most network settings and was not done
in our experiments.
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4.3 Edit Distance

Edit distance (also known as Levenshtein distance) is a classic example for dynamic programming tech-

niques [14]. It has applications in aligning DNA or protein sequences and comparing text files. Given two

strings α and β, the edit distance between them (denoted Levenshtein(α, β)) is defined as the minimum

number of basic operations (add, delete, or replace a single character) needed to transform string α into

β. The Levenshtein algorithm is given in Algorithm 1. This algorithm has the invariant that D[i][j] always

represents the Levenshtein distance between α[1 . . . i] and β[1 . . . j]. Lines 2–4 initialize each entry in the

first row of the matrix D, while lines 5–8 initialize the first column. Within the two for-loops (lines 8–13),

D[i][j] is assigned at line 11 to be the smallest of three possible values, D[i− 1][j] + 1, D[i][j− 1] + 1, or

D[i− 1][j− 1] + t (where t is 0 if α[i] = β[j] and 1 if they are different). This corresponds to the three basic

operations: insert α[i], delete β[j], and replace α[i] with β[j], respectively.

Algorithm 1 Levenshtein(α, β)

1: Initialize D[α.length][β.length];
2: for i← 0 to α.length do
3: D[i][0]← i;
4: end for
5: for j← 0 to β.length do
6: D[0][j]← j;
7: end for
8: for i← 1 to α.length do
9: for j← 1 to β.length do

10: t← (α[i] = β[j]) ? 0 : 1;
11: D[i][j]← min(D[i− 1][j]+1, D[i][j− 1]+1, D[i− 1][j− 1]+t);
12: end for
13: end for

4.3.1 Prior Work

Jha et al. gave the best previous implementation of a secure two-party protocol for computing the Levenshtein

distance [61]. Instead of using Fairplay, they developed their own compiler based on Fairplay, while borrowing

the function-description language (SFDL) and the circuit-description language (SHDL) directly from Fairplay.

Jha et al. investigated three different strategies for securely computing the Levenshtein distance. Their first

protocol (Protocol 1) directly instantiated Algorithm 1 as an SFDL program, which was then compiled into a

garbled-circuit implementation. Because their garbled-circuit execution approach required keeping the entire

circuit in memory, they concluded that garbled circuits could not scale to large inputs. The largest problem

size their compiler and execution environment could handle before crashing was where the parties’ inputs

were 200-character strings over an 8-bit (256-character) alphabet.
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Their second protocol combined garbled circuits with an approach based on secure computation with

shares. The resulting protocol was scalable, but extremely slow. Finally, they proposed a hybrid protocol

(Protocol 3) by combining the first two approaches to achieve better performance with scalability.

According to their results, it took 92 seconds for Protocol 1 to complete a problem of size 100× 100 (i.e.,

two strings of length 100) over an 8-bit alphabet. This protocol required nearly 2 GB of memory to handle

the 200× 200 case [61]. Their flagship protocol (Protocol 3), which is faster for larger problem sizes, took 658

seconds and used 364.3 MB bandwidth on a problem of size 200× 200 over an 8-bit alphabet.

4.3.2 Our Approach

First, we note the portion of the computation responsible for initializing the matrix (lines 2–7) does not

require any collaboration, and thus can be completed by each party independently. Moreover, since the length

of each party’s private string is not meant to be kept secret, the two for-loops (lines 8–9) can be managed by

each party independently as long as they keep the inner executions synchronized, leaving only two lines of

code (lines 10–11) in the innermost loop that need to be computed securely.

Let ` denote the length of the parties’ input strings, assumed to be over a σ-bit alphabet. Figure 4.4(a)

presents a circuit, LevenshteinCore, that is computationally equivalent to lines 10–11 of Algorithm 1. The T

(stands for “test”) circuit in that figure outputs 1 if the input strings provided are different. Figure 4.5 shows

the structure of the T circuit. (For the purposes of the figures in this section, we assume σ = 2 since this is

the alphabet size that would be used for genomic comparisons. Nevertheless, everything generalizes easily to

larger σ.) For a σ-bit alphabet, the T circuit uses σ − 1 non-free gates.

The rest of the circuit computes the minimum of the three possible edits (line 11 in Algorithm 1). We begin

with the straightforward implementation shown in Figure 4.4(a). The values of D[i− 1][j], D[i][j− 1], and

D[i− 1][j− 1] are each represented as `-bit inputs to the circuit. For now, this is fixed as the maximum value

(a) Näıve (b) Better (c) Final

Figure 4.4: Implementations of the Levenshtein core circuit.
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of any D[i][j] value. Later, we reduce this to the maximum value possible for a particular core component.

Because of the way we define ` there is no need to worry about the carry output from the adders since ` is

defined as the number of bits needed to represent the maximum output value. The circuit shown calculates

exactly the same function as line 11 of Algorithm 1, producing the output value of D[i][j]. The full Levenshtein

circuit has one LevenshteinCore component for each i and j value, connected to the appropriate inputs and

producing the output value D[i][j]. The output value of the last LevenshteinCore component is the Levenshtein

distance.

Recall that each `-bit AddOneBit circuit uses ` non-free gates, and each `-bit 2-MIN uses 2` non-free gates.

So, for problems on a σ-bit alphabet, each `-bit NaiveLevenshteinCore circuit uses 7`+ σ − 1 non-free gates.

Two optimizations are possible that reduce the number of non-free gates involved in computing the Leven-

shtein core to 5`+σ. First, since min(D[i− 1][j]+1, D[i][j− 1]+1) is equivalent to min(D[i− 1][j], D[i][j− 1])+

1, we can combine the two AddOneBit circuits (at the top left of Figure 4.4(a)) into a single one, and interchange

it with the subsequent 2-MIN as shown in Figure 4.4(b). The circuits in the dashed box in Figure 4.4(b)

compute min(x + 1, y + t), where t ∈ {0, 1}. This is functionally equivalent to:

if (y > x) then x + 1 else y + t.

Hence, we can reuse one of the AddOneBit circuits by putting it after the GT logic embedded in the MIN

circuit. This leads to the optimized circuit design shown in Figure 4.4(c). Note that the 1-bit output wire

connecting the 2-MIN and 1-bit MUX circuits is essentially the 1-bit output of the GT sub-circuit inside 2-MIN.

This change reduces the number of gates in the core circuit to 2× 2`+ `+ σ − 1 + 1 = 5`+ σ.

The second optimization takes advantage of the observation that the minimal number of bits needed

to represent D[i][j] varies throughout the computation. For example, one bit suffices to represent D[1][1]

while more bits are required to represent D[i][j] for larger i’s and j’s. The value of D[i][j] can always be

represented using dlog min(i, j)e bits. The number of gates decreases by:

1−

∑`
i=1

∑`
j=1

⌈
log
[

min(i, j)
]⌉

`2dlog `e
.

Figure 4.5: T circuit.
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Figure 4.6: Overall running time of our Levenshtein-distance protocol. (Plotted on a log-log scale; the
problem size is 200×DNA Length and σ = 2.)

For ` = 200 this results in a 25% savings, but the effect decreases as ` grows.

4.3.3 Experimental Results

Our edit distance protocol handles arbitrary input lengths ` (it also handles the case where the input strings

have different lengths) and arbitrary alphabet sizes 2σ. It completes a problem of size 200 × 200 over a

4-character alphabet (enough for representing nucleotides in DNA) in 16.4 seconds (of which less than 1%

is due to OT) using 49 MB bandwidth. The dependence of the running time on σ is small: for σ = 8 our

protocol takes 18.4 seconds in the 200× 200 case, which is 29 times faster than the results of Jha et al. [61].

Our protocol is highly scalable, as shown in Figure 4.6. The largest problem instance we ran is 2000×10000

(not shown in the figure), which used a total of 1.29 billion non-free binary gates and completed in under 223

minutes (at a rate of over 96,000 gates per second). In addition, our approach enables further optimizations

for many practical scenarios. For example, if the parties are only interested in determining whether the

Levenshtein distance is below some threshold d, then only the dlog de low-order bits of the result need to be

computed and the number of bits for an entry can be reduced.

4.4 Smith-Waterman Score

The Smith-Waterman algorithm (Algorithm 2) is a popular method for genome and protein alignment [98, 77].

In contrast to edit distance which measures dissimilarity, the Smith-Waterman score measures similarity

between two sequences (higher scores mean the sequences are more similar). The algorithm has a basic

structure similar to the algorithm for computing edit distance. The differences are: (1) the preset entries



4.4 Smith-Waterman Score 36

(the first row and the first column) are initialized to 0; (2) the algorithm has a more sophisticated core

(lines 10–12) that involves an affine gap function gap and the maximum score of all previous entries in the

row and column; and (3) the algorithm uses a fixed 2-dimensional score matrix score to determine the score

given any 2 characters in the alphabet.

Algorithm 2 Smith-Waterman(α, β, gap, score)

1: Initialize D[α.length][β.length];
2: for i← 0 to α.length do
3: D[i][0]← 0;
4: end for
5: for j← 0 to β.length do
6: D[0][j]← 0;
7: end for
8: for i← 1 to α.length do
9: for j← 1 to β.length do

10: rMax← max1≤o≤i(D[i− o][j] + gap(o));
11: cMax← max1≤o≤j(D[i][j− o] + gap(o));
12: D[i][j]← max(0, rMax, cMax, D[i− 1][j− 1] + score[α[i]][β[j]]);
13: end for
14: end for

In practice, the gap function is typically of the form gap(x) = a+ b · x where a, b are publicly known,

negative integer constants. By choosing a and b appropriately, one can account for the fact that the

evolutionary likelihood of inserting a single large DNA segment is much greater than the likelihood of multiple

insertions of smaller segments (of the same total length). A typical gap function is gap(x) = −12− 7x, which

is what we use in our evaluation experiments.

The 2-dimensional score matrix score quantifies how well two symbols from an alphabet match each

other. In comparing proteins, the symbols represent amino acids (one of twenty possible characters including

stop symbols). The entries on the diagonal of the score matrix are larger and positive (since each symbol

aligns well with itself), while all others are smaller and mostly negative numbers. The actual numbers vary,

and are computed based on statistical analysis of a genome database. We use the BLOSUM62 [48] score

matrix for computation over randomly generated protein sequences.

To obtain the optimal alignment, one first computes matrix D using Algorithm 2, then finds the entry

in D with the maximum value and traces the path backwards to find how this value was derived. In a

privacy-preserving setting, the full trace may reveal too much information. Instead, it may be used as an

intermediate value for a continued secure computation, or just aspects of the result (e.g., the score or starting

position) could be revealed.

The core of the Smith-Waterman algorithm (lines 10–12 of Algorithm 2) involves ADD and MAX circuits.

To reduce the number of non-free gates, we replace lines 10–11 with the code in Algorithm 3. This allows us
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Algorithm 3 Restructured Smith-Waterman core
rMax← 0;
for o← 1 to i do
rMax← max(rMax, D[i− o][j] + gap(o));

end for
cMax← 0;
for o← 1 to j do
cMax← max(cMax, D[i][j− o] + gap(o));

end for

to use much narrower ADD and MAX circuits for some entries since we know the value of D[i][j] is bounded

by dlog (min(i, j) ·maxscore)e, where maxscore is the greatest number in the score matrix. We only need

to make sure that values are appropriately sign-extended (a free operation) when they are carried between

circuits of different width.

Note that gap(o), which serves as the second operand to every ADD circuit, can always be safely computed

without collaboration since it does not depend on any private input. Thus, instead of computing gap(o)

using a complex garbled circuit, it can be computed directly with the output value fed directly into the ADD

circuit. Being able to tightly bound the part of the computation that really needs to be done privately is

another advantage of our approach (see Section 3.3).

The matrix-indexing operation on score does need to be done in a privacy-preserving way since its inputs

reveal symbols in the private inputs of the parties. Since the row index and column index each can be

denoted as a 5-bit number, we could view the score table as a 10-to-1 garbled circuit (whereas each entry

in truth table is an encryption of 5 wire keys representing the output value). Using an extension of the

permute-and-encrypt technique (Section 2.4.1), it leads to a garbled table containing 210 = 1024 ciphertexts

(of which 624 are null entries since the actual table is 20× 20, but which must be transmitted as random

entires to avoid leaking information). However, observe that one of the two indexes is known to the circuit

generator since it corresponds to the generator’s input value at a known location. Hence, we use the index

known to the circuit generator to specialize the two-dimensional score table lookup to a one-dimensional

table lookup. This reduces the cost of oblivious table lookup to computing and transmitting 20 ciphertexts

and 12 random entries (to fill the 25-entry table) for the circuit generator, while the work for the circuit

evaluator is still performing one decryption.

4.4.1 Experimental Results

The secure Smith-Waterman protocol takes 415 seconds and generates 1.17 GB of network traffic running

on two protein sequences of length 60. The garbled-circuit implementation by Jha et al. did not scale to

a 60×60 input size, but their Protocol 3 was able to complete on this input length in nearly 1000 seconds
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Figure 4.7: Overall running time of the Smith-Waterman protocol. (Plotted on a log-log scale; problem size
20×Codon Sequence Length.)

(but due to the simplifications they used, their implementation would not usually produce the correct result).

Figure 4.7 shows the running time of our implementation as a function of the problem size.

4.5 Private Set Intersection

Private set intersection, introduced in Section 4.5, is an important building block for many interesting privacy-

preserving applications. We assume two parties hold sets S = {s1, s2, . . . , sn} and S′ = {s′1, s′2, . . . , s′n},

respectively, where si, s
′
i ∈ {0, 1}σ and we assume neither S nor S′ contains any duplicate elements. Each

party’s set is of (known) size n and all elements are exactly σ bits long (using padding it is easy to handle the

case where set sizes are different or even kept hidden, up to a known upper bound, or where elements have

different sizes). We also assume both sets change at each invocation (note that computing PSI repetitively

with a static input set can cause substantial leakage merely by revealing the outputs). The goal is for the

parties to compute the intersection I = S ∩ S′ without revealing any information other than I.

4.5.1 Protocols Overview

Using garbled circuits, set intersections can be securely computed in several different approaches. We describe

them as below, from the most simplistic to more sophisticated designs. Our first protocol (Bitwise-AND

(BWA)), described in Section 4.5.2, uses a circuit based on a bit-vector representation of the parties’ sets.

The protocol is only practical for small universes; in that case, however, it achieves the best performance.

Section 4.5.3 describes the Pairwise-Compare (PWC) protocol that uses a circuit performing pairwise

comparisons of the elements in the two parties’ sets. This protocol has worst-case complexity Θ(n2) for

computing the intersection of two sets of size n, and is a reasonably good choice — even for large universes —

as long as n is small. We present an optimization that improves performance when the size of the intersection
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Protocol Number of Non-Free Gates

Bitwise-AND (BWA) 2σ

Pairwise-Comparisons (PWC)
(
(2n− n̂)2 + n̂

)
(σ − 1)/4

Sort-Compare-Shuffle-SORT 2σn log(2n) +
(
(3n− 1)σ − n

)
+ 2σn log2(2n̂)

Sort-Compare-Shuffle-HE 2σn log(2n) +
(
(3n− 1)σ − n

)
+ (σ + 32)n

Sort-Compare-Shuffle-WN 2σn log(2n) +
(
(3n− 1)σ − n

)
+ σ(n logn−n+1)

3

Table 4.1: Gate counts for our protocols.
The size of each set is n, elements are represented using σ bits, and n̂ is the size of the intersection.

is large without sacrificing any privacy. Though relatively simple, this and the previous protocol demonstrate

that even straightforward approaches can produce effective PSI solutions using garbled circuits.

Section 4.5.4 presents our most involved protocols, which are all based on a Sort-Compare-Shuffle design.

These protocols have complexity Θ(n log n) with small constant factors. The main idea is for each party

to sort their set locally, and then (privately) merge their sorted sets into a single sorted list. Then each

adjacent pair of elements is compared (obliviously), with the value retained if the elements in the pair are

equal, and a dummy value substituted otherwise. Finally, the resulting list of matching/dummy elements

is obliviously shuffled before the entire list is revealed. This shuffling step is necessary because otherwise

positional information about the matching elements leaks information about the non-matching elements in the

parties’ sets. We consider three different ways to perform the final oblivious shuffling: (1) obliviously sorting

the entire list of matching/dummy elements using a garbled-circuit approach (SCS-SORT), (2) randomly

shuffling the list of matching/dummy elements using a protocol based on homomorphic encryption (SCS-HE),

and (3) randomly shuffling the list as before, but using garbled circuits applied to Waksman’s oblivious

switching network (SCS-WN).

Table 4.1 gives the costs of our protocols in terms of the number of gates that are garbled and evaluated,

as a function of the size n of the input sets, the number of bits σ needed to represent each set element, and

the size n̂ of the intersection. XOR gates are not counted since these can be implemented “for free” (without

performing any cryptographic operations) using the free-XOR optimization [64]. For the BWA and SCS-HE

protocols, there are substantial other costs so gate counts alone do not capture the full cost of those protocols.

4.5.2 Bitwise-AND Protocol

The BWA protocol is designed for sets whose elements are drawn from a small universe. In this case, a

set can be represented by a bit-vector of length 2σ, and the set intersection can be computed simply by

bit-wise AND-ing the bit-vectors of the two parties. The output is exactly a bit-vector representation of the

intersection.
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A circuit for this computation is straightforward, and is obtained by instantiating a binary AND gate

2σ times. Although the cost of the resulting protocol grows exponentially with σ, the small constant factor

involved leads to good performance when σ is small. Indeed, for values of σ up to 16, we found this to be the

most efficient protocol in our experiments.

The BWA protocol does not restrict the size of the parties’ sets, so a dishonest participant can use a

vector of all 1s as its input and thereby learn the other participant’s entire set! Hence, it should not be used

in a standalone fashion by two mutually distrusting parties. Instead, such a protocol could be used as either

a sub-protocol in a larger private computation where the participants do not control the inputs directly or

do not see the outputs explicitly. Alternately, it could be combined with a self-auditing step (Section 4.8)

to ensure that the result does not leak too much information or that neither input set is too large. One of

the advantages of building our protocols using generic garbled-circuit techniques is that such extensions can

easily be added.

4.5.3 Pairwise Comparisons

The running time of the BWA scheme scales linearly in the size of the universe (2σ) over which the sets are

defined. Thus, as the universe of elements grows, the BWA scheme becomes too inefficient to be useful. For

large universes, we can use a Pairwise-Comparisons (PWC) protocol, shown in Algorithm 4. It performs

comparisons between each pair of elements from the two parties’ sets. The running time of PWC is quadratic

in the set size (and linear in σ).

In Algorithm 4, the only part that needs to be implemented by a garbled circuit is the Equal function on

line 6 which performs an equality test. An Equal circuit can be implemented by first XOR-ing the two σ-bit

inputs to produce a σ-bit intermediate result. The negated-OR of these bits then indicates whether the two

inputs match. Thus, an Equal circuit can be implemented using only σ − 1 non-free gates.

Algorithm 4 PairwiseComparisons(S, S′)

1: for i← 1 to S′.size do
2: matched[i] ← False
3: end for
4:

5: for i← 1 to S.size do
6: for j← 1 to S′.size do
7: if ¬matched[j] and

(
Equal (S[i], S′[j])

)
then

8: reveal(S[i])
9: matched[j] ← True

10: break
11: end if
12: end for
13: end for
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To improve performance, our algorithm reveals each match as soon as it is found. This allows us to avoid

performing further comparisons for any elements that have already been matched. (Recall that we assume

each party’s set contains no duplicates.) This optimization can potentially leak positional information about

the elements in the parties’ sets since the participants learn the order in which matching elements are found.

To avoid this, each party randomly permutes its set before starting the protocol. Then, no information is

revealed other than what could already be inferred from the result, namely, the elements in the intersection.

A drawback of the above “short-circuiting” optimization is that it substantially increases the round

complexity since each reveal operation adds an extra round of communication. To benefit from this short-

circuiting without the penalty of increased round complexity, we implement the protocol using two threads

where the reveals are done asynchronously while the main thread compares every possible pair of elements.

Once a match is found by the reveal thread, the main thread is notified asynchronously to skip all unnecessary

comparisons involving the matched element. Since the notification is asynchronous, it is possible that some

Equal circuits are unnecessarily generated. However, our experiments show that the amount of wasted work

is an insignificant fraction of the total work except for very small n.

Analysis. To understand the savings of the early reveal optimization, we provide a heuristic estimate for

NEqual, the expected number of calls to the Equal function. Let n̂ be the size of the intersection. Since the two

parties’ sets S and S′ are randomly shuffled before running Algorithm 4, the n̂ elements in the intersection

will, on average, be evenly distributed in S. Thus, we expect that on average the elements of S are ordered in

such a way that there are n̂+ 1 intervals of (n− n̂)/(n̂+ 1) non-matching elements each, with each interval

separated by one of the matching elements. Assuming this to be the case, for each element in the ith interval

(0 ≤ i ≤ n̂) the Equal function will be evaluated exactly n− i times since it will be compared with all the

n− i currently-unmatched elements of S′. Each matching element in S is compared, on average, with half

the remaining elements in S′ before the match is found. Hence,

NEqual ≈
n̂∑
i=0

(n− n̂)(n− i)
n̂+ 1

+

n̂−1∑
i=0

n− i
2

=
n− n̂
n̂+ 1

· (2n− n̂)(n̂+ 1)

2
+

1

2
· (2n− n̂+ 1)n̂

2

=
(2n− n̂)2 + n̂

4
.

Compared to a näıve implementation where all n2 comparisons are performed, we see that short-circuiting

saves roughly 75% of the comparisons if the two sets are identical, 45% if half the elements are identical,

and 30% if 1
3 of the elements are identical. Our experimental results (Figure 4.16) are consistent with this

analysis.
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Figure 4.8: Sort-Compare-Shuffle Approach (parts requiring cryptographic computation are shaded).

4.5.4 Sort-Compare-Shuffle

Although the pairwise-comparison protocol is intuitive and easy to implement, it requires Θ(n2) comparisons

and hence circuits with Θ(n2) gates. Here we present PSI protocols that require only Θ(n log n) element

comparisons. These protocols take advantage of the observation that each participant can locally sort their

own input set. We use this extra information to improve efficiency by breaking the task into three sequential

sub-tasks as shown in Figure 4.8.

In each of the sort-compare-shuffle protocols of this section, each party begins by locally sorting their set.

The parties then implement an oblivious merging network to sort the union of their sets, taking advantage of

the fact that both input sets are sorted. Next, we use garbled circuits to compare neighboring elements in

the sorted sequence to find all the matches. Directly outputting the matches at this stage would, however,

reveal information about elements that are not in the intersection. (For example, if the parties learn that the

first two elements in the sorted list match, this would reveal to the first party that the second party’s set

does not contain any elements smaller than the first matched element.) Thus, we obliviously shuffle the list

of matched elements so that the positions of the matched elements are not revealed.
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4.5.4.1 Sorting

The challenge of doing oblivious sorting using a garbled-circuit approach is that the sorting must be done

by a sorting algorithm that uses a fixed (i.e., oblivious) sequence of comparisons. Most commonly used

sorting algorithms do not lead to a size-optimal circuit. However, sorting networks [6] provide a fast

circuit implementation of sorting. We further take advantage of the property that each party’s inputs are

independently sorted in designing a circuit that merges the two sorted lists to produce the full sorted list.

The basic module of a sorting network is a 2-Sorter, which sorts two σ-bit inputs. Figure 4.9(a) depicts a

straightforward implementation of a 2-Sorter circuit. This design uses 4σ non-free binary gates to sort two

σ-bit numbers, since the MIN and MAX circuits each use 2σ non-free gates [63].

(a) Näıve (b) Better (c) Best

Figure 4.9: The design of a 2Sorter.

Because the MIN and MAX circuits each contain a GT (greater than) circuit, and share the same input, so

we can eliminate one GT component to reduce the cost to 3σ non-free binary gates as shown in Figure 4.9(b).

Furthermore, the two MUXs are unnecessary since their outputs are correlated. Based on this insight, we arrive

at the final 2-Sorter design shown in Figure 4.9(c). It uses a conditional-swap circuit CondSwap (Figure 4.10),

where a CondSwap circuit with σ-bit output (Figure 4.10(a)) is composed of σ parallel CondSwaps with

1-bit output (Figure 4.10(b)). The latter requires only one non-free gate. Thus, the overall cost of the

2-Sorter circuit is reduced to 2σ non-free binary gates. Kolesnikov and Schneider [64, 65] also designed a

conditional-swap circuit (see [64, Fig. 2(b)]). Our CondSwap circuit has an explicit selection input bit, whereas

in their case the selection bit is hardwired by the circuit generator.

Since the two input sequences provided by the parties are pre-sorted, we can sort their union using a

bitonic merger [6] rather than having to use a full-fledged sorting network. A sequence is said to be bitonic if

there is at most one extremum element and the two subsequences divided by this extremum element increase

monotonically. As a specific example, the sequence that results from concatenating a sequence sorted in

increasing order with a sequence sorted in decreasing order is bitonic.

Figure 4.11 depicts how a bitonic sequence of eight numbers is sorted by a bitonic merger. A bitonic

merger for 2n inputs uses exactly n log(2n) 2-Sorter circuits (assuming n is a power of 2). Thus, we can
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(a) σ-bit CondSwap (b) 1-bit CondSwap

Figure 4.10: CondSwap Circuits.

Figure 4.11: Example of merging a bitonic sequence.

construct a circuit that merges two lists of n sorted σ-bit elements into a sorted list of 2n elements using

2σn log(2n) non-free binary gates.

4.5.4.2 Filtering Matching Elements

After all 2n elements are in sorted order, we know that any elements in the intersection must be adjacent.

Thus, to find the intersection we can use a duplicate-selection circuit (DupSelect-2) that takes as input two

elements, x1, x2 ∈ {0, 1}σ, and outputs x1 (= x2) if they are equal and 0σ otherwise. (This assumes that 0σ

is not a valid element in the input set. If necessary, we can increase σ by one and remap elements to ensure

this.)

Figure 4.12(a) shows the design of a DupSelect-2 circuit. Since we have 2n elements as input to this stage,

2n− 1 DupSelect-2 circuits are needed to identify all items in the intersection. As each DupSelect-2 circuit

requires 2σ − 1 non-free binary gates, the total cost of this phase as described is (2σ − 1)(2n− 1).

(a) DupSelect-2 (b) DupSelect-3 (c) Comparison-based Filtering

Figure 4.12: Design and use of DupSelect-2 and DupSelect-3 circuits.
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We next show how to reduce this cost by taking advantage of the property that the initial input sets have

no repeated elements. This implies that for every three consecutive elements in the sorted sequence, there

can be at most one match. To take advantage of this, we define a 3-input version of the duplicate-selection

circuit, called DupSelect-3, as follows:

DupSelect-3 (a, b, c) =
{ b if a = b or b = c

0σ otherwise
.

Figure 4.12(b) shows the design of a DupSelect-3 circuit using 3σ − 1 non-free binary gates. Since we start

with 2n elements as input to this stage, we need n− 1 DupSelect-3 circuits and one DupSelect-2 circuit to

identify all the elements in the intersection (see Figure 4.12(c)). This reduces the total number of non-free

gates needed for this phase to (3n− 1)σ − n. Another benefit of this design is that it produces only n output

elements, rather than the 2n− 1 output elements that would be produced using the DupSelect-2 design. This

reduces the size of the circuit needed in the subsequent oblivious shuffling phase (see below) by about 50%.

It is natural to ask whether it is possible to save even more gates by defining “higher-order” DupSelect

circuits. We investigated it but found that this is not the case. The reason is that we save gates by cutting a

MUX when we go from 2 to 3 inputs by exploiting the fact that within every three consecutive numbers there

can be at most one match; this is no longer true once we look at four consecutive numbers. In fact, since

there may be up to n items in the intersection, the number of outputs of this stage must clearly be at least n.

Therefore, it does not help to combine more duplicate-selection circuits.

4.5.4.3 Shuffling

Following the filtering phase, we (implicitly) have a list of n elements that contains all n̂ elements in the

intersection, in sorted order, interleaved with an additional n− n̂ occurrences of 0σ. This list of elements

cannot yet be revealed to the parties, however, since the positions of the 0-elements and the elements in the

intersection may leak information about the parties’ initial sets: for example, if the first element in the list

is some match x1 6= 0σ, this reveals that x1 was the minimum element in both parties’ sets. It is therefore

necessary to destroy positional information before the elements are revealed.

We explore two general strategies for doing this: sorting the n intermediate values (Section 4.5.4.4),

or randomly permuting them. For implementing the random permutation, we analyze strategies based on

homomorphic encryption (Section 4.5.4.5) and using an oblivious shuffling network (Section 4.5.4.6).
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4.5.4.4 Sorting

One way to hide positional information is to use an oblivious sorting network to sort the output sequence of

the filtering phase (with 0σ taken, say, to be minimal). This guarantees that no positional information leaks,

since the sorted output could be generated from the intersection itself. Jónsson et al. [62] also use this general

strategy in their work. As we show in Section 4.5.4.6, our circuit-based shuffling scheme is substantially more

efficient than sorting-based approaches.

Batcher’s sorting network provides a way to sort using Θ(n log2 n) gates [6]. Another possibility is to

use the randomized Shellsort algorithm of Goodrich [43], which uses Θ(n log n) gates but has non-zero error

probability (corresponding to a small leak of information). We explored both these possibilities, but found

that they are less efficient than the shuffling network presented in Section 4.5.4.6. In principle, sorting can

also be done with Θ(n log n) gates using the AKS sorting network [1], but the huge constant factor makes

this approach impractical.

One scenario where sorting could be preferable, however, is when the size n̂ of the intersection is small

relative to the size n of the input sets. In that case sorting can be done using n/n̂ calls to a 2n̂-sorter (that

sorts 2n̂ elements), with total gate count (assuming Batcher’s network is used for the 2n̂-sorter) of n log2(2n̂).

Though generally we cannot assume that n̂ is small, it would be inexpensive to compute n̂ securely (using a

garbled circuit) after the filtering phase, at which point the parties could decide whether to use a sorting-based

approach or a shuffling approach for the final phase. We do not explore this further.

4.5.4.5 Homomorphic Shuffling

Sorting actually does more work than necessary, since it is only necessary to hide positional information

about the matches. We can do better by randomly permuting the elements rather than sorting them. In this

and the next section, we consider two approaches to obliviously shuffle the results.

Our first shuffling approach uses homomorphic encryption to achieve linear asymptotic complexity. We

begin by dividing each output from the end of the filtering phase into two secret shares, with one share given

to each party. This can be done within a garbled-circuit computation as follows: Denote the intermediate

results at the end of the filtering phase as m1, . . . ,mn, and recall that at this point neither party knows

these values since they are encoded as part of the garbled-circuit computation. One party will provide an

additional n random values r1, . . . , rn as input (at the beginning of the garbling stage). The garbled circuit

is then extended so as to compute r′i = mi + ri, with the other party learning r′i. Note that ri, r
′
i form two

shares of mi. To ensure security, ri must be sampled from a sufficiently large domain. Choosing ri as a

random (σ + k)-bit integer suffices to give statistical security O(n · 2−k).
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Input to Alice: r1, r2, · · · , rn.
Input to Bob: r′1, r

′
2, · · · , r′n.

(for all i, we have ri +mi = r′i, where mi is the i-th number output by the filtering
phase)

Output of Alice: The mi’s in random permuted order.
Output of Bob: ⊥ (or, if desired, the mi’s in sorted order).

Preparation:
Alice chooses a key pair 〈pkP1

, skP1〉 and sends pkP1
to Bob.

Execution:

1. Alice encrypts the ri’s (1 ≤ i ≤ n) with her public key and sends the JriK’s to
Bob.

2. Bob computes JmiK = Jr′i − riK = Jr′iK · JriK−1.

3. Bob randomly permutes the JmiK’s (1 ≤ i ≤ n), and sends the resulting shuffled
ciphertexts back to Alice.

4. Alice receives and decrypts the ciphertexts to output the mi’s (1 ≤ i ≤ n).

5. (If desired) Alice sorts the mi’s and sends the result back to Bob.

Figure 4.13: Homomorphic-encryption-based shuffling protocol.

Now one party holds r1, . . . , rn and the other holds r′1, . . . , r
′
n, with mi = r′i − r + i for all i. The parties

then execute the homomorphic-encryption-based shuffling protocol described in Figure 4.13. Throughout this

protocol only one party’s (e.g., Alice’s) public key is required, so for simplicity we use JxK to denote JxKpkP1

,

the encryption of x using Alice’s public key pkP1
. The key idea of this shuffling protocol is that the shuffler

(Bob) cannot decrypt the ciphertexts he shuffles, whereas Alice (who knows the private key) does not know

how the other party shuffled the ciphertexts.

Say the ri’s are λ-bit integers. Since each λ-bit full-adder used to perform the additive sharing requires λ

binary AND gates, the secret-sharing phase altogether requires λn non-free binary gates. The homomorphic-

encryption protocol in Figure 4.13 uses two rounds of communication, each round of which communicates

n ciphertexts, and uses O(n) public-key operations. Although this approach has asymptotic complexity

linear in n, the actual cost of the best known homomorphic encryption schemes remains very high (see

Section 4.5.5), and for the parameters we consider this protocol performs worse than the pure garbled-circuit

protocol described in the next section which uses Θ(n log n) symmetric-key operations. The other drawback

with this approach is that it requires homomorphic encryption which abandons our goal of using only generic

secure computation to enable easy integration with other secure computations.

4.5.4.6 Shuffling Network

Here we explore an alternate approach to random shuffling that uses Θ(n log n) symmetric-key operations and

remains a pure garbled-circuit protocol. The basic idea is to implement an oblivious random shuffling of the

elements using a switching network. A switching network can be viewed as a fixed circuit that takes n inputs
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along with an additional set of “control bits,” each of which determines whether some fixed pair of elements

is swapped or not. By setting the control bits appropriately, any desired permutation on the n inputs can be

realized. In our setting the n inputs will be the n sorted elements from the end of the filtering stage, and one

of the parties will choose a random permutation and then set the control bits so as to realize this permutation.

The second party will receive as output the n elements, permuted according to the chosen permutation. If

the first party should learn the output also, the second party applies another random permutation to the

output elements (or simply sorts them) before sending them back. Switching networks can be constructed

using O(n log n) gates [103].

The core component of a switching network is an oblivious swapper (2-Swapper) that takes as input two

σ-bit values x and y, and an additional control bit s. If the value of s is 0, the output is x and y in their

original order; if s = 1, the output is y and x in swapped order.

A switching network is simply a series of 2-Swappers (with independent control bits) applied to predeter-

mined pairs of elements. A 2-Swapper circuit can be realized as a σ-bit CondSwap circuit (see Figure 4.10(b)).

For our application, however, if we let the circuit generator set the control bits, then each AND gate in a

CondSwap circuit can be replaced by the circuit generator with a 1-to-1 gate (which is either the identity or

the 0-map, depending on the generator’s secret s). Importantly, the type of the gate is known only to the

circuit generator but is hidden from the circuit evaluator, so no information is leaked by this optimization.

Combined with the garbled-row reduction (GRR) technique [86], the garbling of such a gate requires just a

single ciphertext, which is one sixth of the cost of a 2-Sorter with GRR optimization. (Following the standard

garbled-circuit approach, a unary gate would require two ciphertexts, but using the garbled-row reduction

technique we can reduce this to a single ciphertext.)

The Waksman network [103], improving on the Benes̆ network [17], is a realization of a switching network

using exactly n log n− n+ 1 2-Swappers when n is a power of 2. (Constant-factor improvements when n is

not a power of two were developed by Inria et al. [54], but we did not use those in our implementation.)

Figure 4.14 illustrates a Waksman network for n inputs, assuming n is a power of 2. Its design is recursive:

an n-input Waksman network is built out of two n
2 -input Waksman networks (denoted by P0 and P1 in the

figure) and n− 1 2-Swappers (denoted by I1, · · · ,In
2

and O2, · · · ,On
2

). Using the construction of a 2-Swapper

circuit discussed earlier, the cost of the entire oblivious shuffling stage is only a small fraction (about 15%) of

that spent in the oblivious sorting phase of the overall PSI protocol.

Note that choosing the control bits uniformly at random does not induce a random permutation. Instead,

an algorithm is used to configure the control bits of a Waksman network to produce any of the n! permutations

of the n inputs. To induce a random permutation the circuit generator first chooses a random permutation π

on n elements. It then uses the ConfigureWaksman function shown in Algorithm 5 to set the control bits,
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Figure 4.14: Waksman Network for n inputs.

Algorithm 5 ConfigureWaksman(n, π)

1: init Boolean arrays I,O;
2: π0 ← φ, π1 ← φ;
3: while ∃j such that Oj = ⊥ do
4: Oj ← 0; {Oj defaults to non-flip}
5: via ← 0;
6: while Ii/2 6= ⊥ do
7: [i, via]← SetSwapper(I, j, via, π−1);
8: π0 ← π0 ∪ {π−1(j)/2 7→ j/2};
9: [j, via]← SetSwapper(O, i, via, π);

10: π1 ← π1 ∪ {i/2 7→ π(i)/2};
11: end while
12: end while
13:

14: ConfigureWaksman(n/2, π0);
15: ConfigureWaksman(n/2, π1);

represented by the Boolean arrays I and O (corresponding to the 2-Swapper circuits in Figure 4.14). This

algorithm sets the control bits in a recursive way. It starts from one of the unset swappers near an output

port, say Oj , and sets Oj to non-flip position (line 4). Then, executing the inner while loop (lines 6–10), sets

the configuration of Iπ−1(j)/2 by inspecting the parity of π−1(j). By looking at the permutation image of the

other input to Iπ−1(j)/2, the algorithm can configure another swapper near the output ports. Therefore, the

inner loop iterates over all swappers involved in a single sub-permutation, while the outer loop guarantees

that all n− 1 basic swappers pertaining to this level of the switch are traversed even if π consists of multiple

sub-permutations.

The desired permutations of the component switches P0 and P1 are also recorded (lines 8, 10) as we

set up the I,O swappers (line 7, 9). Thus, at the last two steps (lines 12–13), we only need to invoke

ConfigureWaksman to deal with the internal swappers inside P0 and P1.

Algorithm 6 SetSwapper(array , ι, ϕ,$)

1: i← $(ι);
2: array i/2 ← (i%2) xnor ϕ;
3: return [i+ ((i % 2 = 1) ? 1 : −1 ), 1− ϕ];
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The entire ConfigureWaksman algorithm is run locally by the circuit generator in our protocol, not within

a garbled circuit. It involves no cryptographic operations, so the time it takes to execute is insignificant

compared to the rest of the protocol. The configuration algorithms have negligible cost since they are executed

as normal (unencrypted) computations and finish in linear time.

4.5.5 Experimental Results

We implemented each protocol and measured its performance on a range of inputs. In all experiments (except

those where we fix the size of the intersection), both parties’ sets consist of elements chosen at random

(without replacement) from some fixed universe. All time measurements are the total time for the OT and

garbled circuit execution, but do not include the one-time setup work for circuit object construction (about

1.2 seconds total for the most complex SCS-WN circuit) and OT extension protocol initialization (less than

one second for the ultra-short security level). This time is not included in the results since (1) its cost does

not depend on the size of the problem instance; and (2) it needs to be done only once for every client-server

pair and circuit design.

Small Sets. We verified through experiments that the BWA protocol is indeed the best choice when the

element space is small (up to about σ = 20). Figure 4.15 shows the running time of the BWA protocol

for various sizes of σ, and compares its performance to that of the Sort-Compare-Shuffle scheme with

Waksman-network shuffling, which we later show is the best protocol for larger element spaces. The BWA

protocol is faster when the element space is limited but the set size is relatively large (e.g., n > 40 for σ = 12

and n > 500 for σ = 16).
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Figure 4.15: Set intersection for small element spaces.
The green lines depict the efficiency of secure auditing (Section 4.8).

Figure 4.16 compares the running time for the PWC and SCS-* protocols for σ = 32 and a range of

small set sizes. The running time of the BWA protocol grows exponentially in σ and so other PSI protocols,

including PWC, become more attractive as σ increases. Since the PWC scheme’s performance also depends
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Figure 4.16: PSI — Small sets, σ = 32
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Figure 4.17: PSI — Large sets, σ = 32

on the size of the intersection, we include results for different ratios n̂/n. In this figure, we only include the

SCS-WN variant because it is the fastest of the SCS-* protocols.

Large Sets. Figure 4.17 shows the running time and bandwidth usage of different PSI protocols running

on larger sets ranging from 128 to 8192 elements, with every set element represented by a 32-bit binary

string. The only protocol whose expected running time depends on the elements in the parties’ sets is the

pairwise-comparison-based protocol where the performance improves with the size of the intersection. For

this experiment, we fixed the n̂/n-ratio to 0.5. Note that both axes are logarithmic scale.

The SCS-WN protocol for this range of parameters is superior to all other protocols by a significant

advantage: over 7× faster than SCS with homomorphic-encryption-based shuffling (SCS-HE), and 10–70×

faster than PWC. Contrary to expectations, the SCS-HE protocol does not save any bandwidth compared to

SCS-WN which uses Waksman-network-based shuffling. In addition, we observe that because of our use of

oblivious-transfer extension and our efficient OT implementation the OT step constitutes only about 5%
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Figure 4.18: Comparision of SCS-WN and De Cristofaro-Tsudik protocol [32], n = 1024.
SHA-1 is used for ultra-short to medium term security. SHA-256 is used for long and ultra-long term security.

of the total cost. Using SCS-WN, we computed the intersection of two sets each containing more than one

million 32-bit numbers (n = 220, σ = 32). This required executing a garbled circuit of 1.7 billion non-free

gates, which completed in about 6 hours with each participant utilizing a single core of a typical desktop. This

shows that our protocol makes large-scale privacy-preserving joint database search feasible for non-real-time

applications with minimal hardware cost. When σ = 160 (effectively, σ = ∞ by first hashing elements

to 160-bit strings using SHA-1), our results (see Figure 4.18) show that the time and bandwidth costs for

SCS-WN and PWC will be about 5 times larger. Performance of the SCS-HE protocol, however, would be

much less affected because the cost of HE-based shuffling, which dominates the cost of the protocol, is not

affected by increasing σ from 32 to 160.

Since the timing results are sensitive to the implementations of particular cryptographic operations, we

also calculate the numbers of expensive cryptographic operations required by each protocol. (Table 4.1

summarizes algebraically the number of gates needed for each of our protocols.) Table 4.2 summarizes the

number of cryptographic operations required for each protocol. The small number of asymmetric operations

used in garbled-circuit protocols is due to the operations for setting up the OT extension protocol, which only

depend on the security parameters and can be precomputed offline once for each pair of protocol participants.

The relatively high cost of asymmetric operations compared to symmetric encryptions means that even

though SCS-WN requires approximately 2000 times the number of operations, the actual running time is

lower or comparable for typical implementations.

1De Cristofaro and Tsudik [27] recently argued that our JVM based implementation could unfairly penalize the implementation
of their large integer exponentiation based custom PSI protocol in these comparisons. They estimated that, for lower levels of
security settings (key lengths ranging from 1024 to 3072 bits), the Java implementation of large integer modulo arithmetics could
have inflicted about 5.5× performance penalty compared to the GMP C implementation. Note that the results reported in Table
4.2 are for our implementation of their protocol since they did not have an implementation available. But no data is reported
on the penalty ratio of Java implementation of symmetric cryptographic operations over the C versions. We acknowledge
that implementations of low-level cryptographic operations can have a large impact on performance results, but note that the
important result here is that generic protocols can be competitive with the best known custom protocols.
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Exponentiations

Modular Inverses Modular Mults SHAshort
exponents

medium
exponents

long
exponents

DT (one-more-DL-based) – 5000 – 2049 4096 2048∗

DT (one-more-RSA-based) 1024 – 2048 1024 1024 2048∗

SCS-WN – 3k† – 2k† 2k† 18.34 M‡

Table 4.2: Number of expensive cryptographic operations, for n = 1024 and σ = 160.
[†] k is the security parameter used in OT extension, which ranges from 80 (for ultra-short) to 256 (for ultra-long).
[∗] The input messages are about p bits where p is the bit length of the asymmetric operations field size.
[‡] The input messages are about 2σ bits.

public static byte[] Cipher(byte[] key , byte[] msg) {

byte[] state = AddRoundKey(key , msg , 0);

for (int round = 1; round < Nr; round ++) {

state = SubBytes(state );

state = ShiftRows(state );

state = MixColumns(state );

state = AddRoundKey(key , state , round );

}

state = SubBytes(state );

state = ShiftRows(state );

state = AddRoundKey(key , state , Nr);

return state;

}

Figure 4.19: AES Cipher

4.6 Private AES

The background and potential applications of secure AES is introduced in Section 1.1.3. The high level

operation of the cipher is shown in Listing 4.19 (based on [29]). It takes a 16-byte array msg and a large byte

array key, which is the output of the AES key schedule. The variable Nr denotes the number of rounds (for

AES-128, Nr=10).

4.6.1 Prior Work

Pinkas et al. [86] implement AES as an SFDL program, which is in turn compiled to a huge SHDL circuit

consisting of more than 30,000 gates. Henecka et al. [47] used the same circuit, but obtained better online

performance by moving more of the computation to the pre-computation phase. The best performance results

they reported are 3.3 seconds in total and 0.4 seconds online per block-cipher evaluation.
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4.6.2 Our Approach

Instead of constructing a huge circuit, we derive our privacy-preserving protocol implementation around the

structure of a traditional program, following the code Listing 4.19. Our guiding principle is to identify the

minimal subset of the computation that needs to be privacy-preserving, and only use expensive cooperative

computation for those computations.

Overview. To make the implementation simpler, we explicitly group the wire labels of every 8-bit byte into

State, representing the intermediate results of garbled circuits, so that they can be easily manipulated and

passed around in the high level program. Compared to the original code (Listing 4.19), we only need to

replace the built-in data type byte with our custom type State in building the code for implementing the

garbled circuit. Since the state is represented by garbled wire labels, we can compose circuits implementing

each execution phase to perform the secure computation.

The state of the key, the output of the key schedule, can be obliviously transferred from Alice to

Bob so that the key scheduler can be executed by Alice alone. This enables us to replace the expensive

privacy-preserving key schedule computation with less expensive oblivious transfers.

The ShiftRows subroutine can be safely executed independently by Alice and Bob on their own data. So

nothing special is needed to make it privacy-preserving.

The MixColumns subroutine requires secure computation, but we design a circuit for this that uses only

free XORs. The AddRoundKey subroutine is simply realized by a BitWiseXOR circuit which juxtaposes 128

binary free XOR gates.

SubBytes. The SubBytes component dominates the time for AES. To minimize the total execution time, I

implemented SubBytes with an efficient circuit derived from the hardware circuit design of Wolkerstorfer et

al. [105] (see that paper for details of the mathematical derivations behind this SBox implementation strategy).

The two logical components of SubBytes are inverse over GF(28) and affine transformation over GF(2). The

circuit we use to compute the inverse over GF(28) is given in Figure 4.20. In essence, GF(28) is viewed as an

extension of GF(24), so that an element of GF(28) is mapped to its two GF(24) term representation, on which

a series of operators including inverse over GF(24) are applied, and then mapped back to element in GF(28).

In this circuit diagram, Map and Inverse Map circuits realize the bijections between GF(28) and (GF(24))2;

⊕ and ⊗ mean addition and multiplication over GF(24), respectively. The affine transform over finite field

GF(2) and all of the component circuits except for the ⊗ and GF(24)Inverse circuits can be implemented using

free XOR gates alone. Since each ⊗ circuit has 16 non-free gates and each GF(24)Inverse 10, the total number

of binary non-free gates per GF(28)Inverse circuit is 16× 3 + 10 = 58. By adopting the optimized design given

by Canright [23], the cost of this GF(28) inversion circuit can be further reduced to 36.
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Figure 4.20: Inverse Circuit over GF(28).

MixColumns. The core functionality of MixColumns is s′c(x) = a(x)⊗ sc(x), where 0 ≤ c < 4 specifies the

column,

a(x) = {03}x3 + {01}x2 + {01}x+ {02},

and ⊗ denotes multiplication over finite field GF(28). Let sc(x) = s3,cx
3 + s2,cx

2 + s1,cx + s0,c and

s′c(x) = s′3,cx
3 + s′2,cx

2 + s′1,cx+ s′0,c. This is equivalent to

s′0,c = ({02} · s0,c)⊕ ({03} · s1,c)⊕ s2,c ⊕ s3,c

s′1,c = s0,c ⊕ ({02} · s1,c)⊕ ({03} · s2,c)⊕ s3,c

s′2,c = s0,c ⊕ s1,c ⊕ ({02} · s2,c)⊕ ({03} · s3,c)

s′3,c = ({03} · s0,c)⊕ s1,c ⊕ s2,c ⊕ ({02} · s3,c).

It follows that

s′0,c = ({02} · s0,c)⊕ ({02} · s1,c)⊕ s1,c ⊕ s2,c ⊕ s3,c

s′1,c = s0,c ⊕ ({02} · s1,c)⊕ ({02} · s2,c)⊕ s2,c ⊕ s3,c

s′2,c = s0,c ⊕ s1,c ⊕ ({02} · s2,c)⊕ ({02} · s3,c)⊕ s3,c

s′3,c = ({02} · s0,c)⊕ s0,c ⊕ s1,c ⊕ s2,c ⊕ ({02} · s3,c).

The operation {02} · b where b is an arbitrary 8-bit number, known as xtimes, is defined as multiplying

{02} modulo {1b} in GF(28). If b = b7 · · · b1b0, and z = z7 · · · z1z0 = {02} · b, the output bits can be computed
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Figure 4.21: MixOneColumn Circuit.

using only free XOR gates:

z7 = b6, z6 = b5, z5 = b4, z4 = b3 ⊕ b7,

z3 = b2 ⊕ b7, z2 = b1, z1 = b0 ⊕ z7, z0 = b7

This can be computed using one three free XOR gates.

For every column of 4-byte numbers, the equations above are implemented by the MixOneColumn circuit

(Figure 4.21). Each invocation of MixColumns involves processing four columns, so we can build the MixColumns

circuit by juxtaposing four MixOneColumn circuits. Thus, the MixColumns circuit can be implemented using

only free XOR gates.

4.6.3 Evaluation

With our design, the total number of binary non-free gates is 58× 16× 10 = 9280 for both Alice and Bob.

The overall time is 0.2 seconds (of which 0.08 seconds is spent on OT) without preprocessing, about 16 times

faster than the best prior work.

4.7 Secure Minimum and Information Retrieval

Many biometric identification algorithms find the best match by computing a global minimum (or maximum)

over a set of candidate difference (or similarity) scores. If the minimum (maximum) is upper-bounded

(lower-bounded) by some given threshold, a legitimate match will be flagged. In addition, the match is usually

followed by an information retrieval process to get the matching record. In the realm of secure biometric

recognition, both steps need to be carried out without leaking any intermediate information. This motivates

our secure minimum (Section 4.7.1) and backtracking (Section 4.7.2) protocols.
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4.7.1 Secure Minimum

Secure minimum takes as input a vector of M integers, and outputs the largest one. A M -to-1 Min circuit is

simply a tree of 2-to-1 Min circuits (with the latter being constructed as in [63]). However, in contrast to the

work of Kolesnikov et al. [63], we only need to compute the minimum value rather than the index of the

minimum value. This is a consequence of the backtracking protocol that we present in the next section. This

allows us to reduce the number of gates by roughly M − logM overall.

Table 4.3 summarizes the number of non-XOR gates in each of our circuits.

2-to-1 Min M -to-1 Min

2k 2k(M − 1)

Table 4.3: The number of non-free binary gates in each circuit.

4.7.2 Backtracking

With a wire label denoting the match, the backtracking protocol allows to retrieve the information associated

with the match obliviously without the overhead of propagating the indexes throughout the minimum circuit

above.

In a conventional garbled circuit, wire signals (0 or 1) are denoted by randomly-chosen nonces known as

wire labels. The bindings between wire labels and the wire signals are known by the circuit generator, but

hidden from the circuit evaluator (except for the bindings for the final output wires which are disclosed to

reveal the result). Wire labels are merely used for intermediate computation. However, these apparently

meaningless nonces can be exploited in later stages of the protocol. We take advantage of the key property of

garbled circuit evaluation: the evaluator only learns one of the two possible output wire labels for each gate,

as determined by the obliviously-selected input wire labels and evaluation of the rest of the circuit. These

wire labels can serve as keys for encrypting useful information.

Figure 4.22: Example Find Closest Match Circuit



4.7 Secure Minimum and Information Retrieval 58

The wire labels of the output wires of GT comparison circuits in the n-to-1 Minimum tree can be used to

reveal a path from the inputs to the minimum value. Figure 4.22 shows an example comparison tree for a

four record database. In each of the 2-to-1 Min circuits the GT circuit takes two inputs and outputs a bit

indicating which value is greater. We denote that bit as gh,i and the corresponding wire labels λ0
h,i (when the

greater than comparison is false) and λ1
h,i (when the comparison is true). When the more closely matching

entry match is on the left side of this gate, Bob learns λ0
h,i; when it is on the right side he learns λ1

h,i. The

final gate in the diagram compares the best match with ε. We use the gε output to prevent Bob from learning

any information from the backtracking tree when there is no match within the ε threshold.

Our backtracking tree protocol involves a tree generator (Alice), who produces and sends a tree encoding

encrypted paths to the profile records, and a tree evaluator (Bob), who follows a single path through the

tree to open the best matching profile record. To generate a backtracking tree, Alice starts by filling the

leaf nodes (level 0) with the desired information corresponding to each database entry. Then, she fills in the

internal nodes of a binary tree with those leaves, as illustrated by the left tree in Figure 4.23. Note that the

structure of this tree is identical to that of the comparison tree in Figure 4.22.

Next, she generates new nonces for each non-leaf node in the tree, and encrypts those nonces with keys

that combine the appropriate wire labels and the nonce of its parent node. The wire label used for node h, i

(the ith node at level h) is either λ0
h,i or λ1

h,i, depending on whether it is the left or right child of its parent).

Thus, the label pair Alice uses for each node comes from the labels of gh,i in the corresponding 2-to-1 Min

circuit she generated for the match-finding protocol. The root node is encrypted using λ0
ε , the label Bob

will learn when the closest match is closer than ε. The right tree in Figure 4.23 shows the backtracking tree

corresponding to the example circuit in Figure 4.22.

Starting from the root of the tree, which Bob can only open when gε = 0, Bob can follow a single path

through the tree, learning the keys along that path, and eventually the key needed to decrypt the encrypted

record information at the leaf. When he evaluates the garbled SubReduceMin circuit, Bob obtains either λ0
h,i

or λ1
h,i from each label pair. Since each key in the backtracking tree depends on a complete path from the

root to that tree, this means Bob can only open a single path through the tree; specifically, the single path

from the root to the leaf corresponding to the closest match.

Figure 4.23: Backtracking Tree Example
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Input to Tree-Generator: (1) an array [data1, · · · , dataM ] denoting M pieces of data stored in the
database;

(2) a number of pairs
[
label pair1, · · · , label pairM−1

]
,

where label pair
def
= 〈label0, label1〉, organized as a tree.

Input to Tree-Evaluator: (1) a backtracking tree tree;
(2) a number of labels [label1, · · · , labelM−1] organized as a tree.

Protocol Output: Tree-Evaluator learns datai∗ , where di∗ = minM
i=1(di). Tree-Generator learns nothing new.

Execution:

Tree-Generator Tree-Evaluator

¬ tree=treeGen(data, label pair)
­ tree−−−−−−−−−−−−→ ®

datai∗ = treeEval(tree, label)

Figure 4.24: The Backtracking Tree Protocol.

Figure 4.24 summarizes the backtracking protocol. The algorithms to generate and evaluate the tree are

shown in Algorithm 7 and Algorithm 8. For the tree generation algorithm (Algorithm 7), the inputs a vector

of the profile data to send and an array of the wire label pairs for each comparison gate in the generated

circuit. The output is the backtracking tree, but only the node labels are transmitted to the evaluator. For

the tree evaluation algorithm (Algorithm 8), the inputs are the tree (where the label for each node is the

encrypted label in the generated tree) and the wire labels learned by the evaluator in evaluating the garbled

circuit. The output is the decrypted profile information for the closest matching entry, if there is one within ε.

Security. The backtracking tree protocol is secure if both of the following properties hold:

1. The generator (Alice) gains nothing.

2. The evaluator (Bob) gains nothing other than the data associated with the closest match.

Algorithm 7 treeGen(data, label pairs)

Require: data.length = M ; label pairs.length = M − 1; M = 2h, where h is an integer.
1: Generate a perfect tree tree of size 2M − 1.
2: Fill the M leaf nodes with the M values in data.
3: for all node in tree do
4: node.nonce

U← {0, 1}k;
5: end for
6: for `← h− 1 to 1 do
7: for all node at level ` do
8: lp← label pairs[pos(node)], the labels for the gate corresponding to node in the tree;
9: node.leftChild.label← Encnode.nonce||lp.label0(node.leftChild.nonce);

10: node.rightChild.label← Encnode.nonce||lp.label1(node.rightChild.nonce);
11: end for
12: end for
13: return tree;
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Algorithm 8 treeEval(tree, wire labels)

1: msg← 0;
2: current node← tree.root;
3: while current node has children do
4: m← Decmsg||wire labels[pos(current node)](current node.leftChild.label);
5: if m is valid then
6: msg← m;
7: current node← current node.leftChild;
8: else
9: msg← Decmsg||wire labels[pos(current node)](current node.rightChild.label);

10: current node← current node.rightChild;
11: end if
12: end while
13: return msg;

The first property trivially holds since Bob sends nothing back to Alice. The second property follows from

two facts:

1. With a semantically secure encryption scheme, no information is leaked by the encryption (i. e., without

also revealing the keys).

2. Wire labels in a garbled circuit convey no information unless their mappings to wire signals are known

somehow. This follows from the garbled circuit security proof [69].

In every iteration of the loop in Algorithm 8, Bob only gets to know the nonce of one of current node’s

two children, and proceeds using that value. The whole subtree of the failed branch remains unknown to Bob

since the nonce is needed to open any configurations on that subtree. Thus, Bob can only follow a single

path in the tree corresponding to the path leading to the closest match.

Note that if Alice’s database is released in encrypted format beforehand as in the Improved Euclidean

Distance protocol, Alice may not want Bob to learn extra information from the position of the matched

records. Hence, Alice should randomly permute the order of database records before beginning the Euclidean

distance protocol. This random permutation needs only to be done once, since once the database is permuted

relative positions of opened records reveal no information.

4.7.3 Experimental Results

We set up the server and the client on separate machines connected by a LAN. Both machines are homoge-

neously configured, each with an Intel Xeon CPU (E5504) running at 2.0GHz. The JVMs are configured

with a memory cap of 4GB, both on the server and the client. Our experiments are done on 16-bit integers

with ε also set to a 16-bit integer.
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Database Size (M) 128 256 512 1024
Time/Bandwidth s KB s KB s KB s KB

Prep.
Min Circuit 0.35 None 1.09 None 2.95 None 6.28 None

OT 0.52 21.91 0.48 21.91 0.48 21.91 0.45 21.91

Exec.

OT 0.13 237.13 0.25 467.69 0.61 928.82 1.38 1851.06
Min Circuit 0.39 656.14 0.67 1313.64 1.58 2628.64 3.12 5258.63

Backtracking 0.01 12.70 0.02 25.45 0.03 50.95 0.04 101.94

Table 4.4: Running Time (seconds) and Bandwidth (KB) for Minimum and Backtracking Protocols

Table 4.4 shows the running time and bandwidth usage for our secure minimum and backtracking protocol

as a function of M , the number of input integers. As expected, the results in Table 4.4 confirm that the

runtime cost scales approximately linearly with the size of the database.

4.8 Auditing

An advantage of using generic garbled circuits instead of a custom protocol is the relative ease with which the

generic secure computation can be combined with subsequent computations in a privacy-preserving protocol.

As an example, we describe in this section how simple auditing mechanisms can be incorporated into our PSI

protocols.

The result of a private set intersection intrinsically leaks a great deal of information about the private

input sets, especially when σ is small enough to allow easy probing. For small enough input universes, a

dishonest participant can simply set its own input to be the set containing all values in the data universe

and learn the other participant’s entire set. To mitigate excessive information leaks, auditing logic could be

incorporated into any of the pure garbled-circuit protocols we have described.

A simple auditing policy would place a threshold on the maximum size n̂ of the intersection that would be

revealed. If the size of the result exceeds this threshold, then no output is revealed (and so the participants

would only learn that the size of the intersection exceeds the allowed threshold). Such self-auditing logic

would be very cheap to implement with garbled circuits, but appears to be difficult to incorporate into

custom-designed PSI protocols.

As an initial study, we developed prototypes realizing the threshold-based auditing scheme just discussed.

The extra work here is to obliviously calculate n̂ (main cost) and then compare this value to a threshold

using a comparison circuit (insignificant cost). For the BWA scheme, n̂ is calculated by a Counter circuit that

sums up the output bits of all the AND gates. For the SCS-* family of schemes described in Section 4.5.4, the

input signals to the MUX circuits inside the duplicate-selection circuits (cf. Figures 4.12(a) and 4.12(b)) are

summed using a Counter circuit. As an optimization, our Counter circuit lazily increases the number of bits

used to represent its internal state. Constructing it in this way, the Counter circuit uses n log n− n non-free
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gates. Note that when the thresholds are known for specific applications, the cost of the Counter circuit can

be cut further since there is no reason to represent results that exceed the threshold.

Our experiments show that our size-based auditing circuits incur no measurable performance overhead for

the SCS-* protocols. For the BWA scheme, the cost of the auditing is significant because the underlying

BWA protocol is so fast. For 12 ≤ σ ≤ 16, adding size-based auditing increases the overall time by roughly

a factor of 5 (e.g., for σ = 16, it takes 2.48 seconds to run the BWA protocol without auditing but 12.22

seconds with auditing). This is consistent with our analysis: BWA with auditing uses a total of σ2σ non-free

gates compared to 2σ non-free gates without auditing, but the garbled-circuit portion of the basic BWA

protocol constitutes only 35–45% of the total running time.

4.9 Summary

We have applied the general optimization techniques presented in Chapter 3 to solve a number of field problems.

Experiments show that the techniques brings about significant performance improvements (Figure 4.25). The

rough measurement of the speed of garbled circuits across different applications is about 10µs per garbled

gate. In addition, we have tested it scales to more than 109 gates. Secure computation is still expensive

compared to standard computation; but, with the techniques developed here, many applications are now

within reach even on commodity computers.

Problem Best Previous Result Our Result Speedup 

Hamming Distance (Face Recognition, 
Genetic Dating) – two 900-bit vectors 

213s  
[SCiFI, 2010] 

0.051s 4176x 

Levenshtein Distance (genome, text 
comparison) – two 200-character inputs 

534s  
[Jha+, 2008] 

18.4s 29x 

Smith-Waterman (genome alignment) – 
two 60-nucleotide sequences 

[Not correctly 
implemented] 

447s - 

AES Encryption 
3.3s  

[Henecka+, 2010] 
0.2s 16.5x 

Private Set Intersection (medium level of 
security) 

126s  
[De Cristofaro+, 2010] 

12.4 10x 

Figure 4.25: Summary of results in the semi-honest threat model.



Chapter 5

Strengthening the Threat Model

The results from the previous chapter all assume the semi-honest adversary model. This enables efficient

solutions, but is too weak an adversary model to be appropriate for most realistic scenarios. Existing protocols

secure in presence of active adversaries exhibit a slowdown of several orders of magnitude compared to protocols

with semi-honest security. The slowdown is not only due to increased computation and communication; a

(potentially) more significant issue is the memory usage required by some of the protocols. As an example,

the Lindell-Pinkas protocol [68] requires hundreds of copies of the garbled circuits to be transmitted before

verification and evaluation, and so does not appear to be compatible with pipelined circuit execution (a

technique that makes secure computation memory efficient [50]), at least not without introducing additional

overhead.

In this chapter, we discuss a threat model that offers security guarantees lying between the existing

semi-honest and fully malicious models. It provides meaningful (but weaker than full) security guarantees in

the presence of malicious active adversaries, but performance close to what can be achieved with semi-honest

protocols. It has orders of magnitude better performance than the best malicious model protocols.

5.1 Related Work

Most implementations of generic secure two-party computation have targeted the semi-honest threat model [74,

47, 50], and have used protocols based on Yao’s garbled-circuit approach. As is described in the previous two

chapters, the scalability and efficiency of garbled-circuit protocols can be improved to the point where large

applications can be run on commodity desktops.

0This chapter is based on our paper “Quid-Pro-Quo-tocols: Strengthening Semi-honest Protocols with Dual Execution” [51].

63
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Several approaches have been proposed for achieving security against malicious adversaries [41, 59, 68, 81,

94, 70, 67, 82], some of which have been implemented [71, 86, 94, 82].

Several directions have been explored to achieve better trade-offs between security and efficiency. The

covert model (Section 2.1.3) is among the first few attempts in the direction. More closely to our work,

Mohassel and Franklin [76] proposed a relaxed definition of security in which, informally, a malicious adversary

may be able to learn a small number of additional bits of information about the honest party’s input, beyond

what is implied by the output. This definition may suffice for many realistic scenarios in which secure

computation would be used. Note that even fully secure protocols leak information about the honest party’s

input in the function output. Depending on the specific function and the control the adversary has over its

own input this information leakage may be substantial and hard to characterize.

5.2 Dual-Execution Protocols

Informally, a secure-computation protocol needs to satisfy two properties: privacy, which ensures private

inputs are not revealed improperly, and correctness, which guarantees the integrity of the final output. Yao’s

(semi-honest) garbled-circuit protocol is easily seen to provide one-sided privacy against a malicious circuit

generator as long as an OT protocol secure against malicious adversaries is used, and the evaluator does not

reveal the final output to the circuit generator. Note that this usage of garbled circuit provides privacy, but

does not provide any correctness guarantees. A malicious generator could construct a circuit that produces

an incorrect result without detection. Hence, this approach is insufficient for scenarios where the circuit

generator may be motivated to trick the evaluator by producing an incorrect result. It thus remains to

provide correctness guarantees for an honest circuit evaluator against a possibly malicious generator, and to

provide a way for both parties to receive the output while continuing to provide privacy guarantees against a

malicious generator.

Mohassel and Franklin’s dual-execution (DualEx) protocol [76] provides a mechanism to achieve these

guarantees. The protocol involves two independent executions of the semi-honest garbled-circuit protocol,

where each participant plays the role of circuit generator in one of the executions. The outputs obtained from

the two executions are then compared to verify they are identical; if so, each party simply outputs the value

it received. Intuitively, this may leak an extra bit of information to an adversary who runs the comparison

protocol using an incorrect input.

Mohassel and Franklin left some details of the protocol unspecified, and did not give a proof of security.

They also did not provide any implementation of their approach. Next, we describe the protocol and method

for comparing outputs in more detail.
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Figure 5.1: DualEx protocol overview (informal).

5.2.1 Notation

We write a set of wire-label pairs as a matrix:

W =

 w0
1 w0

2 · · · w0
`

w1
1 w1

2 · · · w1
`

 .

A vector of wire labels is denoted as

w = (w1, w2, . . . , w`) .

If v ∈ {0, 1}` is a string and W is a matrix as above, then we let

Wv = (wv11 , . . . , w
v`
` )

be the corresponding vector of wire labels.

5.2.2 Protocol

Assume the parties wish to compute some function f , and (for simplicity) that each party holds an n-bit

input and that f produces an `-bit output. Figure 5.1 depicts an overview of the basic DualEx protocol,

which was proposed by Mohassel and Franklin [76, Section 4.1]. The protocol consists of two separate runs of

a particular semi-honest protocol plus a final stage for verifying that certain values computed during the

course of the two semi-honest executions are identical.

A more detailed description of the DualEx protocol is shown in Figure 5.2. The protocol is conceptually

divided into three stages: the first run, the second run, and the secure validation. For the sake of performance,

however, our implementation executes the first two stages concurrently, using pipelining to overlap the
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Input to Alice: the private input x.
Input to Bob: the private input y.

Output to both Alice and Bob: f(x, y), or ⊥ if cheating is detected.

Execution:

1. Alice and Bob run the semi-honest garbled-circuit protocol (Figure 5.3) where
Alice plays the role of circuit generator (P1), and Bob plays the role of circuit
evaluator (P2). Alice knows the 2` output-wire labels she generated, WA, while
Bob learns ` output-wire labels wB and an output vB ∈ {0, 1}`. (If both parties
are honest, wB = WvB

A .)

2. Alice and Bob invoke the semi-honest garbled circuit protocol again, swapping
roles. Alice learns the output vA along with labels wA, while Bob knows the
label pairs WB . (If both parties are honest, then wA = WvA

B , and also vA = vB .)

3. Alice and Bob run a “validation protocol” (i.e., an equality test), secure against
malicious adversaries. (See Figures 5.4 and 5.5 for one possible instantiation.)
Alice uses input WvA

A ‖wA and Bob uses input wB‖WvB
B . If the protocol outputs

true, then Alice outputs vA and Bob outputs vB . Otherwise, the honest party
has detected malicious behavior and outputs ⊥.

Figure 5.2: DualEx protocol

circuit-generation and circuit-evaluation work for each party. (As long as the oblivious transfers are done

sequentially, our security proof is unaffected by performing the two garbled-circuit executions in parallel.

The reason is that our security proof holds even against a rushing adversary who waits to receive the entire

garbled circuit from the honest party before sending any of its own garbled gates.) We stress that the parties

run each of the first two stages to completion — even if an error is encountered — so that no information is

leaked about the presence or absence of errors in an execution. If an error is detected that prevents normal

progress, the execution continues using random values.

The DualEx protocol uses a specific garbled-circuit protocol with an oblivious-transfer sub-protocol secure

against malicious adversaries (see Figure 5.3). After an execution of this protocol, only P2 learns the output

(but is uncertain about its correctness), while P1 learns nothing. In this version, the result f(x, y) is revealed

to P2 (Bob in the first execution as defined in Figure 5.2) even if cheating by P2 is detected during the

equality-checking protocol. This does not violate our definition of security, however for many scenarios this

property would be undesirable. Section 5.4 presents some heuristic enhancements to the basic protocol that

address this issue by limiting the amount of information either party can obtain during the protocol execution.

5.2.3 Secure Output Validation

The goal of the secure validation protocol is to verify the correctness of the outputs Alice and Bob obtained

in the previous stages. The validation protocol consists of an equality test between certain output-wire labels

held by each of the parties. Since half the output-wire labels chosen by the garbled-circuit generator are

never learned by the circuit evaluator (and since output-wire labels are chosen at random) this has the effect
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Input from P1: private input x.
Input from P2: private input y.

Output to P1: the output wire key pairs WA =

(
w0

A1 w0
A2 · · · w0

A`

w1
A1 w1

A2 · · · w1
A`

)
.

Output to P2: vB ∈ {0, 1}` representing the value of f(x, y), and output-wire labels
wB = (wvB1

A1 , w
vB2
A2 , · · · , w

vB`
A` ).

Execution:

1. P1 and P2 run a garbled-circuit protocol where P1 plays the circuit generator’s
role and P2 the circuit evaluator’s role.

2. P1 and P2 execute a malicious OT protocol (with P1 the sender and P2 the
receiver) to enable P2 to learn the wire labels corresponding to P2’s input y.
Then P2 evaluates the garbled circuit to learn output-wire labels wB .

3. P1 computes (
H(w0

A1) · · ·H(w0
A`)

H(w1
A1) · · ·H(w1

A`)

)
for H a random oracle, and sends it to P2 so that it can use wA to learn vB .

4. If P2 detects cheating at any point during the protocol, he does not complain
but instead just outputs completely random vB and wB .

Figure 5.3: Semi-honest garbled-circuit sub-protocol

Input to Alice: WvA
A ,wA.

Input to Bob: wB ,WvB
B .

Output to both Alice and Bob:{
true, if WvA

A = wB and wA = WvB
B ;

false, otherwise.

Execution:

1. Alice computes h1 = H(WvA
A ‖wA);

2. Bob computes h2 = H(wB‖WvB
B );

3. Alice and Bob uses an equality test (secure against malicious adversaries) to
compare h1 and h2. If they are equal, Alice and Bob both output true; otherwise
they output false.

Figure 5.4: An instantiation of the secure-validation protocol.

of preventing an adversary from (usefully) changing their input to the equality test. In an honest execution,

on the other hand, since both executions of the garbled-circuit sub-protocol are computing the same function

on the same inputs, the inputs to the equality test will be equal.

The equality test will be done by first (a) computing a hash of the inputs at both sides, and then

(b) comparing the hashes using an equality test that is secure against malicious adversaries. (See Figure 5.4.)

If the hash used in the first step is modeled as a random oracle (with sufficiently large output length), then it

is possible to show that this results in an equality test for the original inputs with security against malicious

adversaries.

Simply exchanging the hashes and doing local comparison is problematic, because this may reveal
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Input to P1: h1; decryption key skP1 .
Input to P2: h2.
Public inputs: Public key pkP1

.

Output to P1: true if h1 = h2; false otherwise.
Output to P2: ⊥.

Execution:

1. P1 sends to P2 α0 = J−h1K.

2. P2 picks random r, s, computes (e, h) = (Jr × (h2 − h1) + sK , H2(s, h2)), and
sends (e, h) to P1.

3. P1 computes ŝ = Dec(e). If H(ŝ, h1) = h, P1 outputs true; otherwise, it outputs
false.

Figure 5.5: A one-sided equality-testing protocol.

information on the outputs of the circuit evaluation which is supposed to be hidden from the generator unless

the validation check passes. For example, already knowing all the output-wire label pairs, the generator who

learns the evaluator’s hash can test for candidate output values. Therefore, it is of vital importance to keep

the hashes secret throughout the comparison protocol if the equality test fails.

Regarding the equality test, the most straightforward realization is to use a generic garbled-circuit protocol

(with malicious security). The inputs to the circuit are the hashes h1 = H(WvA
A ‖wA) and h2 = H(wB‖WvB

B ),

while the circuit is simply a bunch of bitwise XORs (to compute h1 ⊕ h2) followed by a many-to-1 OR

circuit that tests if all bits of h1 ⊕ h2 are zero. This still requires running a full garbled-circuit protocol with

malicious security, however, which can be expensive.

Hence, we devised an alternative approach, by viewing an equality test as computing the intersection of

two singleton sets. Private set intersection has been widely studied in many contexts, including in the presence

of malicious adversaries [37, 45, 28, 57, 58, 31]. We derive our secure equality-test protocol (Figure 5.5)

by specializing the ideas of Freedman et al. [37] based on additively homomorphic encryption. The basic

protocol enables P2 to prove to P1 that he holds an h2 that is equal to h1 in a privacy-preserving fashion.

This basic protocol will be invoked twice with the parties swapping roles. Under the assumption that h1, h2

are independent, random values (of sufficient length), it satisfies the following properties even against a

malicious adversary: (1) no information about the honest party’s input is leaked to the malicious party, and

(2) the malicious party can cause the honest party to output 1 with only negligible probability.

First of all, P1 sends to P2 α0 = J−h1K. Then, P2 computes e = Jr × (h2 − h1) + sK, using the homomor-

phic properties of the encryption scheme, as follows

r ∗
(
(h2 ∗ α1) + α0

)
+ s ∗ α1

where α1 = J1K while ∗ and + denote homomorphic addition and constant multiplication, respectively. In
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addition, P2 sends h = H(s, h2). P1 decrypts the result to recover ŝ = r × (h2 − h1) + s, which is equal to s

in case h2 = h1 but a random value otherwise. Finally, P1 checks whether H(ŝ, h1) = h.

In contrast to the “malicious-client” protocol by Freedman et al. [37], it is unnecessary for P1 to verify

that P2 followed the protocol (even though P1 could). The reason is a consequence of several facts:

(a) P2 doesn’t gain anything from seeing (α0, α1, s1);

(b) it is of P2’s own interest to convince P1 that h1 = h2;

(c) the test only passes with negligible probability if P2 cheats.

We remark that the equality test protocol does not appear to achieve the standard notion of (simulation-

based) security against malicious adversaries. Nevertheless, under the assumption that h1, h2 are independent,

random values (of sufficient length), it does, informally, satisfy the following properties even against a

malicious adversary: (1) no information about the honest party’s input is leaked to the malicious party, and

(2) the malicious party can cause the honest party to output 1 with only negligible probability. We conjecture

that our proof of security in Section V can be adapted for equality-testing protocols having these properties.

The protocol satisfies the properties claimed above even when both Alice and Bob are malicious. The

informal argument is as follows. To see that Alice’s privacy is guaranteed, note that J−h1K hides −h1 thanks

to the semantic security offered by the homomorphic encryption scheme. Bob’s privacy is also guaranteed by

the semantic security of both the homomorphic encryption scheme and the cryptographic hash function (in

the random-oracle model).

5.3 Proof of Security

We give a rigorous proof of security for the DualEx protocol following the classic paradigm of comparing the

real-world execution of the protocol to an ideal-world execution where a trusted third party evaluates the

function on behalf of the parties [40]. The key difference is that here we consider a non-standard ideal world

where the adversary is allowed to learn an additional bit of information about the honest party’s input.

5.3.1 Definitions

Preliminaries. We use n to denote the security parameter. A function µ(·) is negligible if for every positive

polynomial p(·) and all sufficiently large n it holds that µ(n) < 1/p(n).

A distribution ensemble X = {X(a, n)}a∈Dn, n∈N is an infinite sequence of random variables indexed by

a ∈ Dn and n ∈ N, where Dn may depend on n.
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Distribution ensembles X = {X(a, n)}a∈Dn, n∈N and Y = {Y (a, n)}a∈Dn, n∈N are computationally indis-

tinguishable, denoted X
c≡ Y , if for every non-uniform polynomial-time algorithm D there exists a negligible

function µ(·) such that for every n and every a ∈ Dn

∣∣∣Pr[D(X(a, n)) = 1]− Pr[D(Y (a, n)) = 1]
∣∣∣ ≤ µ(n).

We consider secure computation of single-output, deterministic functions where the two parties wish to

compute some (deterministic) function f with Alice providing input x, Bob providing input y, and both

parties learning the result f(x, y). We assume f maps two n-bit inputs to an `-bit output.

A two-party protocol for computing a function f is a protocol running in polynomial time and satisfying

the following correctness requirement: if Alice begins by holding 1n and input x, Bob holds 1n and input y,

and the parties run the protocol honestly, then with all but negligible probability each party outputs f(x, y).

Security of protocols. We consider static corruptions by malicious adversaries, who may deviate from the

protocol in an arbitrary manner. We define security via the standard real/ideal paradigm, with the difference

being that we use a weaker version of the usual ideal world. Specifically, in the standard formulation of

the ideal world there is a trusted entity who receives inputs x and y from the two parties, respectively, and

returns f(x, y) to both parties. (We ignore for now the issue of fairness, but discuss a limited form of fairness

in Section 5.4.) In contrast, here we consider an ideal world where a malicious party sends its input along

with an arbitrary boolean function g, and learns g(x, y) in addition to f(x, y). (The honest party still learns

only f(x, y).) Note that in this weaker ideal model, correctness and input independence still hold: that is,

the honest party’s output still corresponds to f(x, y) for some legitimate inputs x and y, and the adversary’s

input is independent of the honest party’s input. Privacy of the honest party’s input also holds, modulo a

single additional bit that the adversary is allowed to learn.

Execution in the real model. We first consider the real model in which a two-party protocol Π is executed

by Alice and Bob (and there is no trusted party). In this case, the adversary A gets the inputs of the

corrupted party and arbitrary auxiliary input aux and then starts running the protocol, sending all messages

on behalf of the corrupted party using an arbitrary polynomial-time strategy. The honest party follows the

instructions of Π.

Let Π be a two-party protocol computing f . Let A be a non-uniform probabilistic polynomial-time

machine with auxiliary input aux. We let viewΠ,A(aux)(x, y, n) be the random variable denoting the entire

view of the adversary following an execution of Π, where Alice holds input x and 1n, and Bob holds input y

and 1n. Let outΠ,A(aux)(x, y, n) be the random variable denoting the output of the honest party after this



5.3 Proof of Security 71

execution of the protocol. Set

realΠ,A(aux)(x, y, n)
def
=
(
viewΠ,A(aux)(x, y, n), outΠ,A(aux)(x, y, n)

)
.

Execution in our ideal model. Here we describe the ideal model where the adversary may obtain one

additional bit of information about the honest party’s input. The parties are Alice and Bob, and there is an

adversary A who has corrupted one of them. An ideal execution for the computation of f proceeds as follows:

Inputs: Alice and Bob hold 1n and inputs x and y, respectively; the adversary A receives an auxiliary

input aux.

Send inputs to trusted party: The honest party sends its input to the trusted party. The corrupted

party controlled by A may send any value of its choice. Denote the pair of inputs sent to the trusted

party as (x′, y′). (We assume that if x′ or y′ are invalid then the trusted party substitutes some default

input.) In addition, the adversary sends an arbitrary boolean function g to the trusted party.

Trusted party sends output: The trusted party computes f(x′, y′) and g(x′, y′), and gives both these

values to the adversary. The adversary may at this point tell the trusted party to stop, in which case the

honest party is given ⊥. Otherwise, the adversary may tell the trusted party to continue, in which case

the honest party is given f(x′, y′). (As usual for two-party computation with malicious adversaries, it

is impossible to guarantee complete fairness and we follow the usual convention of giving up on fairness

altogether in the ideal world.)

Outputs: The honest party outputs whatever it was sent by the trusted party; A outputs an arbitrary

function of its view.

We let outAf,A(aux)(x, y, n) (resp., outhon
f,A(aux)(x, y, n)) be the random variable denoting the output of A (resp.,

the honest party) following an execution in the ideal model as described above. Set

idealf,A(aux)(x, y, n)
def
=
(
outAf,A(aux)(x, y, n), outhon

f,A(aux)(x, y, n)
)
.

Definition 1 Let f , Π be as above. Protocol Π is said to securely compute f with 1-bit leakage if for

every non-uniform probabilistic polynomial-time adversary A in the real model, there exists a non-uniform

probabilistic polynomial-time adversary S in the ideal model such that

{
idealf,S(aux)(x, y, n)

}
x,y,aux∈{0,1}∗

c≡
{
realΠ,A(aux)(x, y, n)

}
x,y,aux∈{0,1}∗
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Remark. In the proof of security for our protocol, we consider a slight modification of the ideal model

described above: namely, the adversary is allowed to adaptively choose g after learning f(x′, y′). Although

this may appear to be weaker than the ideal model described above (in that the adversary is stronger), in

fact the models are identical. To see this, fix some adversary A = (A1,A2) in the “adaptive” ideal world,

where A1 denotes the initial phase of the adversary (where the adversary decides what input to send to

the trusted party) and A2 denotes the second phase of the adversary (where, after observing f(x′, y′), the

adversary specifies g). We can construct an adversary A′ in the “non-adaptive” ideal world who learns the

same information: A′ runs A1 to determine what input to send, and also submits a boolean function g′

defined as follows: g′(x′, y′) runs A2(f(x′, y′)) to obtain a boolean function g; the output is g(x′, y′).

5.3.2 Proof of Security

We assume the DualEx protocol runs in a hybrid world where the parties are given access to trusted entities

computing two functions: oblivious transfer and equality testing. (These trusted entities operate according

to the usual ideal-world model where there is no additional one-bit leakage.) We show that the DualEx

protocol securely computes f with one-bit leakage in this hybrid model. It follows from standard composition

theorems [22] that the DualEx protocol securely computes f with one-bit leakage if the trusted entities are

replaced by secure protocols (achieving the standard security definition against malicious adversaries).

Theorem 1. If the garbled-circuit construction is secure against semi-honest adversaries and H is modeled

as a random oracle, then the DualEx protocol securely computes f with one-bit leakage in the hybrid world

described above.

Proof. Let A denote an adversary attacking the protocol in a hybrid world where the parties have access to

trusted entities computing oblivious transfer and equality testing. We assume that A corrupts Bob, though

the proof is symmetric in the other case. We show that we can construct an adversary S, running in our

ideal world where the parties have access to a trusted entity computing f , that has the same effect as A in

the hybrid world.

Construct S as follows:

1. S, given inputs y and aux, runs A on the same inputs. It then simulates the first-stage oblivious

transfers as follows: for the ith oblivious transfer, S receives A’s input bit y′i and returns a random

“input-wire label” wi to A.

2. S sets y′ = y′1 · · · y′n and sends y′ to the trusted entity computing f . It receives in return an output vB .
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3. S chooses random output-wire labels

WvB
A

def
= (wvB1

A1 , · · · , w
vB`

A` ) .

Then, in the usual way (e.g., [69]), S gives to A a simulated garbled circuit constructed in such a way

that the output-wire labels learned by A (given the input-wire labels chosen by S in the first step) will

be precisely WvB
A . Additionally, S chooses random wv̄B1

A1 , . . . , w
v̄B`

A` , defines

WA =

 w0
A1 · · · w0

A`

w1
A1 · · · w1

A`

 ,

and gives  H(w0
A1) · · · H(w0

A`)

H(w1
A1) · · · H(w1

A`)


to A. (The notation H(·) just means that S simulates a random function on the given inputs.) This

completes the simulation of the first stage of the protocol.

4. Next, S simulates the second-stage oblivious transfers by simply recording, for all i, the “input-wire

labels” (w0
i , w

1
i ) used by A in the ith oblivious transfer. A then sends its second-phase message (which

contains a garbled circuit, input-wire labels corresponding to its own input, and hashes of the output-wire

labels).

5. Finally, A submits some input wB‖w′B for the equality test. S then defines the following boolean

function g (that depends on several values defined above):

(a) On input x, y ∈ {0, 1}n, use the bits of x as selector bits to define “input-wire labels” wx1
1 , . . . , wxn

n .

Then, run stage 2 of the protocol exactly as an honest Alice would to obtain vA ∈ {0, 1}` and

wA. (In particular, if some error is detected then random values are used for vA and wA. These

random values can be chosen by S in advance and “hard coded” into g.)

(b) Return 1 if WvA
A ‖wA is equal to wB‖w′B ; otherwise, return 0.

S sends g to the trusted party, receives a bit z in return, and gives z to A.

6. If z = 0 or A aborts, then S sends stop to the trusted entity. Otherwise, S sends continue. In either

case, S then outputs the entire view of A and halts.
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To complete the proof, we need to show that

{
idealf,S(aux)(x, y, n)

}
x,y,aux∈{0,1}∗

c≡
{
realΠ,A(aux)(x, y, n)

}
x,y,aux∈{0,1}∗

(where, above, the second distribution refers to the execution of DualEx in the hybrid world where the parties

have access to trusted entities computing oblivious transfer and equality). This is fairly straightforward since

there are only two differences between the distribution ensembles:

1. In the real world the garbled circuit sent by Alice to A is constructed correctly based on Alice’s input x,

while in the ideal world the garbled circuit is simulated based on the input-wire values given to A and

the output vB obtained from the trusted entity computing f .

2. In the real world the output of the honest Alice when the equality test succeeds is vA, whereas in the

ideal world it is vB (since vB is the value sent to Alice by the trusted entity computing f).

Computational indistinguishability of the first change follows from standard security proofs for Yao’s garbled-

circuit construction [69]. For the second difference, the probability (in the ideal world) that the equality

test succeeds and vB 6= vA is negligible. The only way this could occur is if A is able to guess at least one

value wv̄Bi

Ai ; but, the only information A has about any such value is H(wv̄Bi

Ai ). Thus, A cannot guess any

such value except with negligible probability.

5.4 Enhancements

One problem with the basic DualEx protocol is that it allows the attacker to learn the output of f(x, y)

even when cheating since the output is revealed before the equality test. Consequently, this advantage for

adversaries could actually encourage participants to cheat and would be unacceptable in many scenarios.

In this section, we present two heuristic enhancements that aim at mitigating the problem. The first

enhancement, called progressive revelation, is the most straightforward and guarantees that the adversary

has can only learn one more bit of the output than the honest party. The second enhancement, we call

DualEx-based equality test, ensures the outputs are revealed only after the equality check passes. Note that

since the two enhancements are orthogonal, they can be combined to construct a improved DualEx protocol

that benefits from both.

In both enhancements, to prevent early revelation of outputs we change the output revelation process in

the basic DualEx protocol by replacing the final step in the garbled circuit sub-protocol (execution step 3

from Figure 5.3) with a step that just outputs the wire labels without decoding their semantic values:
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3. P1 outputs W1 that it produced when generating the circuit, while P2 outputs wv2
1 that it obtains from

circuit evaluation.

This changes the output P2 receives to only include the output-wire labels (and not the underlying bits to

which they map).

The delayed revelation modification prevents the semantic values from being learned at the end of each

semi-honest protocol execution, and supports the two protocol variations discussed next for revealing the

semantic values in a way that ensures a limited notion of fairness.

5.4.1 DualEx-based Equality Test

Our goal is to prevent an adversary from learning the output if it is caught cheating by the equality test.

To achieve this, we introduce a pre-emptive secure equality-test protocol that is done before output-wire

label interpretation. In addition, compared to the secure equality test used in the basic DualEx protocol

(Section 5.2), the test here has to start from output-wire labels (as opposed to be able to use the previously-

revealed outputs).

The goal of the pre-emptive equality test is to compute in a privacy-preserving way the predicate

Equal = AND(Equal1,Equal2, . . . ,Equal `) in which Equali is defined as follows,

Equal i =

 1, if ∃σ, s.t. wAi = wσAi and wBi = wσBi;

0, otherwise.

where wAi (respectively wBi) is the ith output-wire label Bob (respectively Alice) obtained from circuit

evaluation.

The basic idea is to implement Equal with a garbled circuit, which ANDs all ` wires from ` Equali circuits.

The circuit Equali can be implemented as shown in Figure 5.6. The cost of Equali is 2σ non-free gates (where

σ is the length of a wire label), while the Equal circuit requires 2`σ non-free gates. Thus, its cost does not

grow with the length of f ’s inputs nor the f ’s circuit size (which can be very large).

We could execute the Equal circuit with any generic protocol secure against malicious adversaries.

Alternatively, the basic DualEx protocol can be employed to keep the overhead low. Note that on average

one-bit could be leaked using the DualEx protocol here, but it is a bit about the random nonces used as wire

labels, hence does not expose the original private inputs.
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Figure 5.6: Circuit realization of Equali.

5.4.2 Progressive Revelation

The goal of this variation is to reveal the output wires to both parties in a bitwise fashion, until cheating

(if there is any) is detected on one output wire. Hence, if the outputs match exactly, both parties will

receive the full output at the end of the protocol. If the outputs do not match, both parties will receive the

same matching output bits until the first mismatch and the adversary receives at most a single additional

mismatched output bit.

The idea resembles that of the gradual release protocols used for exchanging secret keys [18, 30], signing

contracts [36], and secure computation [53]. In our scenario, to reveal the ith bit of the output, the parties

can securely evaluate a circuit EqualRevi (Figure 5.7), which tests equality (indicated by vi) and reveals the

output bit (denoted by oi) at the same time. This circuit looks exactly the same as Equali except it has an

extra oi bit which set to 0 if and only if wAi = w0
Ai and wBi = w0

Bi. The vi = 1 bit implies the oi bit is

indeed valid.

Figure 5.7: Circuit realization of EqualRevi.

To further limit an adversary’s advantage, we can require the output-wire labels interpretation process

to be done in an order that is collectively determined by both parties. For example, let pa and pb denote

two random permutations solely determined by Alice and Bob, respectively. The two parties will reveal the

output bits in the order determined by the permutation p = pa ⊕ pb. Note that to make sure each party
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samples its random permutation independent of the other’s permutation, pa and pb need to be committed

before they are revealed.

5.5 Experimental Results

Since there is no need for any party to keep the circuit locally as is required for cut-and-choose, the execution

of the garbled circuit sub-protocol (Figure 5.3) can be pipelined as for ordinary semi-honest secure computing

protocols. We implement this protocol using our semi-honest model framework (Section 3.4).

In adapting this framework to support dual execution protocols, we observe that Stage 1 and Stage 2 of

the dual execution protocol are actually two independent executions of the same semi-honest protocol. Their

executions can be overlapped, with both parties simultaneously running the execution where they are the

generator and the one where they are the evaluator as two separate threads executing in parallel. Since the

workload for the different roles is different, this has additional benefits. Because the generator must perform

four encryptions to generate each garbled table, while the evaluator only has to perform a single decryption,

the workload for the party acting as the generator is approximately four times that of the evaluator. During

normal pipelined execution, this means the circuit evaluator is idle most of the time (Figure 3.1). With

simultaneous dual execution, however, both parties have the same total amount of work to do, and nearly all

the previously idle time can be fully used.

5.5.1 Experimental Setup

Hardware & Software. The experiments are done on two standard Dell boxes, each equipped with an

Intel R© CoreTM 2 Duo E8400 3GHz processor, 8 GB memory. They are connected with a 100 Mbps LAN.

Both boxes are running Linux 3.0.0-12 (64 bit). The JVM version we used is Sun R©JavaTM1.6 SE.

Security Parameters. We use 80-bit nonces to represent wire labels. In our implementation of the

Naor-Pinkas OT protocol, we use an order-q cyclic subgroup of Z∗p where |p| = 1024 and |q| = 160. For

the implementation of OT extension, we used k = 80 and 80-bit symmetric keys. Our security parameters

conform to the ultra-short security level recommended by NIST [4].

Applications. We demonstrate the effectiveness of the DualEx protocol with several secure two-party

computation applications including private set intersection (Section 4.5), secure edit distance (Section 4.3),

and private AES encryption (Section 4.6).
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5.5.2 Results

Figure 5.8 summarizes the running time for the three applications running under different settings. The PSI

instance is computed over two sets each containing 4096 32-bit numbers using the Sort-Compare-Shuffle with

Waksman Network (SCS-WN) protocol (Section 4.5.4). The edit distance is calculated from two strings each

having 200 8-bit characters. The AES instance is executed in 128-bit key size mode, with 100 iterations. The

measurements are the average time over 20 runs of each protocol with randomly generated private inputs (of

course, in a secure computation protocol, the running time cannot depend on the actual input values since

all operations must be data-independent). We compare our results for DualEx protocols with the results

described in Chapter 4.

The measurements include time spent on direct transfer of wire labels, the online phase of oblivious

transfer, circuit generation and evaluation, and secure validity test. The time used to initialize the circuit

structure and oblivious transfer is not included since these are one-time costs that can be performed off-line.

For symmetric input applications (PSI and ED), we observe the bandwidth cost of dual execution protocols

is exactly twice of that for semi-honest protocols. The running time of DualEx protocols running on a

dual-core hardware is only slightly higher than that for the corresponding semi-honest protocol. All of the

work required for the second execution is essentially done simultaneously with the first execution using the

otherwise idle core. The only additional overhead is the very inexpensive equality test at the end of the

protocol.

On the other hand, for asymmetric input applications like AES, the dual execution protocol appears to

be slower. The reason is that in the semi-honest settings the party holding the message is always designated

the circuit generator such that the more expensive oblivious transfers need only to be used for the encryption

key (which is shorter than the message). In the DualEx protocol every input bit needs to be obliviously

transferred once. Thus, it runs slower than its semi-honest version deployed in favor of using less OTs.

We do not include the time required to compute the “base” OTs (about 12 seconds) in the timing

measurements, since this is a one-time, fixed cost that can be pre-computed independent of the actual function

to be computed.

Although our implementation is programmed explicitly in two Java threads, we have also run it using

a single core for fair comparisons. We used the same software and hardware setup but the processes are

confined to be run on a single core using the taskset utility command. The corresponding results are shown

as the third column in Figure 5.8. Note that the running time is only 42%–47% more than a semi-honest

run even if two semi-honest runs are included in the dual execution protocol. Recall that in the semi-honest

garbled circuit protocol, the point-and-permute [74] technique sets the workload ratio between the generator
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Figure 5.8: Time costs comparing to semi-honest protocols.

and the evaluator to four to one, because the evaluator needs to decrypt only one of the four entries in a

garbled truth table. Moreover, garbled-row-reduction [86] optimization brings this ratio down to about 3,

since only 3 out of 4 entries in a garbled truth table needs to be transmitted. Therefore, should the overhead

of thread-level context switch and interferences are ignored, the slowdown factor of dual execution will be

about of 33%. (We assume the network bandwidth is not the bottleneck, which is true on a wired LAN.) Our

experimental results actually show that about another 15% of time is lost due to the interference between the

two threads.

The scale of the circuits used in our experiments above is already well beyond what has been achieved

by state-of-art maliciously-secure secure two-party computation prototypes. However, to fully demonstrate

the memory efficiency of the dual execution approach, we also report results from running the PSI and edit

distance applications on larger problem sizes. The timing results are shown in Figure 5.9 for performing

private set intersection on two sets of one million 32-bit values each, and for an edit-distance computation

with input DNA sequences (2-bit character) of 2000 and 10000. The performance of DualEx protocols remains

very competitive with semi-honest secure computation protocols even for large inputs.
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Chapter 6

Using Commodity Randomness

The secure computation protocols previously discussed rely heavily on symmetric encryptions to simulate

Boolean circuit execution. This leads to running times that are many multiples of what would be required

for normal execution. For example, a semi-honest garbled circuit protocol runs approximately a hundred

thousand times slower than native executions using a trusted third party, and requires transmitting at least

30 bytes for every non-free binary gate. Costs are orders of magnitude worse under the fully malicious threat

model, the additional large constant factor would make the performance figures even more pessimistic.

In this chapter, we present an alternative approach in which we rely on partially-trusted third parties.

These parties are not trusted with anyone’s private input, but only on supplying correlated randomness

that satisfies certain properties and not colluding with participants in the computation. In return, we

achieve orders-of-magnitude efficiency gains and ensure security in the presence of malicious participants

without significant overhead. Our approach follows the commodity-based cryptography paradigm, where the

third-party is only trusted for generating and distributing random numbers satisfying certain constraints.

The third-party does not receive any sensitive data. Since all randomness is generated independently of the

parties’ private data, all the random numbers needed can be pre-computed off-line.

6.1 Related Work

Beaver introduced the commodity-based cryptographic paradigm to more efficiently solve secure computation

problems and in order to avoid relying on unproven hardness assumptions [9, 10]. Under the commodity-based

cryptography model, participating parties retrieve commodity randomness from partially trusted third parties.

These third-parties are not trusted with any private data, but only to provide correlated randomness. Building

cryptographic primitives around the correlated randomness, such as oblivious transfer [9] allows protocol

81
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designers to build more secure and efficient schemes. However, even though the existence of OT implies

arbitrary secure computation, the practical performance benefit remains unclear and we are not aware of any

prototype systems built on this theory. Our work is the first prototype system for commodity-based secure

two-party computation.

Commodity-based cryptography has been leveraged to build specialized protocols to create more complex

secure functions including numerical comparison [21], scalar product [34, 96], k-nearest neighbor classifi-

cation [109], integer division [95], and oblivious polynomial evaluation [99]. Vaidya and Clifton proposed

a general purpose protocol under this paradigm without implementation [101] that is not obviously more

efficient than state-of-the-art two-party secure computation protocols (e.g. garbled circuits). In an empirical

study, Wang et al. [104] found the commodity-based secure product protocol [34] sufficient to use as a building

block in efficient general secure computation protocols. In our work, we provide an implemented general

protocol for secure computation using commodity cryptographic primitives that outperforms traditional

methods such as garbled circuits.

6.1.1 The NNOB Protocol

The protocol is built around XOR-based secret sharing (i.e., every bit x is divided into x1 and x2 such that

x = x1 ⊕ x2). It prevents parties from cheating by requiring the secret share holder to always be able to

authenticate its share with a share-specific message authentication code (MAC). More specifically, a bit

b held by the left-party is represented with a left authenticated bit 〈b|= (b,K,M), where M = ∆L ⊕ bK,

M,K,∈ {0, 1}n are randomly sampled for every bit b while ∆L ∈ {0, 1}n is a global nonce that is only known

by the right-party). A left authenticated bit 〈b| is always distributed between the two parties so that the

left-party has (b,M) whereas the right-party has K. Symmetrically, the right authenticated bit |b〉 can be

defined based on ∆R, the global secret bit string only known by the left-party. Every binary signal x = x1⊕x2

in the circuit is secret-shared by the two parties, who actually hold 〈x1| and |x2〉 accordingly. Nielsen et al.

devised a protocol to compute both AND (i.e., to derive 〈z1| and |z2〉 directly from 〈x1|, |x2〉, 〈y1|, |y2〉 such

that z = x ∧ y where x = x1 ⊕ x2, y = y1 ⊕ y2, z = z1 ⊕ z2) and XOR (i.e., to derive 〈z1| and |z2〉 directly

from 〈x1|, |x2〉, 〈y1|, |y2〉 such that z = x⊕ y where x = x1 ⊕ x2, y = y1 ⊕ y2, z = z1 ⊕ z2).

Authenticated Bit. An aBit 〈x〉 is defined as the pair (〈x1|, |x2〉) where x1 ⊕ x2 = x. Note 〈x1| and |x2〉

are always joinly held by the two parties.

Randomness Server. The NNOB scheme instantiates this conceptual randomness server with expensive

cryptographic protocols based on oblivious transfers. However, in our case, a third party assumes this task of

the randomness server. The trusted randomness server S needs to first randomly generate secret bit strings
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∆L,∆R and distributes them to the right-party and left-party, respectively, via a secure channel. Then, S is

responsible to supply primitive randomness constrained in one of the following ways (all messages are sent

over secure channels):

Left aBit 〈b|: S randomly samples (b,M,K) ∈ {0, 1}×{0, 1}n×{0, 1}n such that M = K+b∆L. It delivers

(b,M) to the left party and K to the right party.

Right aBit |b〉: S randomly samples (b,M,K) ∈ {0, 1} × {0, 1}n × {0, 1}n such that M = K + b∆R. It

delivers (b,M) to the right party and K to the left party.

Left aAND S randomly generates 〈x|, 〈y|, 〈z| such that x = yz. 〈x|, 〈y|, 〈z| are distributed properly

according to the definition of aBit.

Right aAND Symmetrically defined based on Left aAND.

Left aOT S randomly generates 〈b0|, 〈b1|, |c〉, |z〉 such that z = bc. 〈b0|, 〈b1|, |c〉, |z〉 are distributed properly

according to the definition of aBit.

Right aOT Symmetrically defined based on Left aOT.

Computation over aBits. The following computation involving authenticated bits can be performed by

the two computing parties.

XOR aBits By 〈z| = 〈x| ⊕ 〈y| we mean, that the left party, who has (x,Mx) and (y,My), computes (z,Mz)

by z = x ⊕ y and Mz = Mx ⊕My; whereas the right party, who has Kx and Ky, computes Kz by

Kz = Kx ⊕Ky. XOR-ing two right aBits can be defined symmetrically.

AND public bits By z = b〈x| we mean, that the left party, who has (x,Mx) and b, computes (z,Mz)

by z = bx and Mz = bMx; whereas the right party, who has Kx and b, computes Kz by Kz = bKx.

AND-ing a publicly known constant with a right aBits can be defined symmetrically.

Revelation For any authenticated bit (b,M,K), revealing b means the party who holds (b,M) can sends

b,M to its peer, who verifies M = ∆∗ + bK where ∆∗ is set to either ∆L or ∆R, depending on the

specific scenario. Note the main cost of the secure computation protocol is due to the revelation

operation. For a standalone AND gate, it requires 3 rounds of messages. However, we implemented the

protocol so that the third round of AND gates in the current layer is combined with the first round of

the AND gates in the next layer. Therefore, only 2 (non-amortizable) rounds are needed for each layer

of AND gates.
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〈𝑓 = 〈𝑢 ⊕ 〈𝑥1| 

〈𝑔 = 〈𝑣 ⊕ 〈𝑦1| 

Reveal 𝑓, 𝑔 

〈𝑥1𝑦1 = 𝑓〈𝑦1 ⊕𝑔〈𝑥1| ⊕ 〈𝑤| ⊕ 𝑓𝑔 

Compute 
〈𝑥1𝑦1| 

using 
〈𝑤| = 〈𝑢|〈𝑣| 

〈𝑑 = 〈𝑐 ⊕ 〈𝑦1| 

Reveal 𝑑 

𝑓 = 𝑢0 ⊕ 𝑢1 ⊕ |𝑥2〉 

𝑔 = 𝑟2 ⊕ 𝑢0 ⊕𝑑|𝑥2〉 

Reveal 𝑓, 𝑔 

〈𝑠1 = 〈𝑤 ⊕ 𝑓〈𝑐| ⊕ 𝑔 = 〈𝑟2 ⊕𝑥2𝑦1| 

Compute 
〈𝑠1| 

using 
〈𝑤| = |𝑢〈𝑐|〉 

𝑓 = |𝑢〉 ⊕ 〈𝑥2〉 

𝑔 = |𝑣〉 ⊕ 〈𝑦2〉 

Reveal 𝑓, 𝑔 

〈𝑥2𝑦2 = 𝑓〈𝑦2 ⊕𝑔〈𝑥2| ⊕ 〈𝑤|⊕ 𝑓𝑔 

Compute 
〈𝑥2𝑦2| 

using 
𝑤 = 𝑢 |𝑣〉 

𝑑 = |𝑐〉 ⊕ |𝑦2〉 

Reveal 𝑑 

〈𝑓| = 〈𝑢0| ⊕ 〈𝑢1| ⊕ 〈𝑥1| 
〈𝑔| = 〈𝑟1| ⊕ 〈𝑢0| ⊕ 𝑑〈𝑥1| 

Reveal 𝑓, 𝑔 

𝑠2 = |𝑤〉⊕ 𝑓|𝑐〉 ⊕ 𝑔 = 〈𝑟1 ⊕ 𝑥1𝑦2| 

Compute 
|𝑠2〉 

using 
𝑤 = 〈𝑢|𝑐〉| 

Compute       〈𝑧1 = 〈𝑟1 ⊕ 〈𝑠1| ⊕ 〈𝑥1𝑦1| 

Compute       |𝑧2〉 = |𝑟2〉 ⊕ |𝑠2〉 ⊕ |𝑥2𝑦2〉 

Figure 6.1: The AND protocol

Based on the primitives given so far, it is possible to compute 〈z〉 = 〈x〉 ⊕ 〈y〉 and 〈z〉 = 〈x〉 ∧ 〈y〉.

Computing the XOR is straightforward — each party only needs to XOR their own entries of the shard aBits

because

〈x〉 ⊕ 〈y〉 = (〈x1|, |x2〉)⊕ (〈y1|, |y2〉)

= (〈x1| ⊕ 〈y1|, |x2〉 ⊕ 〈y2|).

However, AND-ing two authenticated bits are rather complicated. The AND protocol is given in Figure 6.1,

which is a revised presentation based on the paper by Nielsen et al. [82, Fig. 3].
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Figure 6.2: Protocol overview

6.2 Overview of Protocols

Conceptually, our protocols can be divided into four phases, as depicted in Figure 6.2. The randomness

preparation phase can be carried out offline independent of the private inputs. The two parties begin the

computation by secret-sharing their private inputs. With the secret shares, they proceed to compute the

designated function using a Boolean circuit. Finally, the two parties exchange their shares of the final outputs

to accomplish the overall task.

Notably, the collaborative Boolean circuit challenging and time-consuming aspect of the process. The

protocol described in Section 6.3 provides a very efficient way to do this in the semi-honest model. This

protocol does not provide security against malicious adversaries, however. Section 6.1.1 describes a protocol

for the malicious model, built on the scheme by Nielsen et al. [82] but taking advantage of the commodity

randomness to provide much better performance.

The two commodity-based protocols differ in the properties the commodity server must provide. For

the semi-honest protocol, it is possible to distribute the randomness generation across multiple servers to

provide security even if all but one of the servers are colluding with the other participant (Section 6.3.5).

However, for the malicious protocol, it is an open problem how randomness provided by multiple servers can

be leveraged to thwart collusion.
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Input to P1: private input x′, y′.
Input to P2: private input x′′, y′′.

Such that x′ + x′′ = x, y′ + y′′ = y.

Commodity random input to P1: a
′, b′, c′.

Commodity random input to P2: a
′′, b′′, c′′.

Such that c′ + c′′ = (a′ + a′′)(b′ + b′′).
(assuming a = a′ + a′′, b = b′ + b′′)

Output to P1: z
′.

Output to P2: z
′′.

Such that z′ + z′′ = x · y.

Execution:

1. P1 sends x′ + a′ and y′ + b′.

2. P2 sends x′′ + a′′ and y′′ + b′′.

3. P1 outputs
z′ = (x+ a)(y + b)− (x+ a)b′ − (y + b)a′ + c′.

4. P2 outputs z′′ = −(x+ a)b′′ − (y + b)a′′ + c′′.

Figure 6.3: The secure product protocol

6.3 Semi-Honest Protocol

We begin the description of the semi-honest protocol with a secure product protocol (Section 6.3.1), in which

the randomness preparation step is also given. Next, the subsequent three major phases (shown in Figure 6.2)

are discussed sequentially. We conclude this section with techniques for using multiple commodity servers.

6.3.1 The Building Block

The building block of our general secure computation protocol is Beaver’s secure product protocol [8] (see

Figure 6.3). Given two triples (a′, b′, c′) and (a′′, b′′, c′′) of random elements in Zp, satisfying the constraint

c′+ c′′ = (a′+ a′′)(b′+ b′′), appropriately distributed to P1 and P2, the protocol securely computes the shares

of x · y, where x, y are secretly shared inputs.

This protocol is directly applied to securely compute binary AND gates, assuming the Z2 context. We

describe how to leverage this primitive to achieve arbitrary computation in Section 6.3.3.

Field Choice. This protocol works under any finite field, but we explicitly choose the field Z2 for

simplicity and efficiency. We call it Z2-based protocol in the rest of the chapter. Its performance is discussed

in Section 6.6.

Efficiency. Though each secure dot-product protocol execution requires two communication rounds, only

4 bits of data are transferred in total (assuming Z2 is used). Additionally, the computational cost of the

protocol is extremely low compared to other secure computation approaches (e.g., garbled-circuits) that make

heavy use of cryptographic operations.
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Randomness Generation. The generation and distribution of the correlated randomness can be

completed in a preparation phase independent of the parties’ respective private inputs. The amount of

required randomness is linear in terms of the number of binary gates needed in the computation (precisely

one set of random numbers per binary gate). This preparation phase can be batched offline because the

amount of randomness required is both small and pre-computable.

Remove the Commodity Server. The commodity random tuples (a′, a′′, b′, b′′, c′, c′′) can also be

obtained without the commodity server. This can be done by invoking a 1-out-of-4 oblivious transfer protocol.

In the OT, P2, who is the receiver, uses 2 randomly generated bits a′′, b′′ to retrieve the bit c′′; while P1, the

sender, prepares four bits of message to send according to the constraint using his own random bits a′, b′, c′

along with all four possible choices. Unfortunately, the performance won’t beat that of garbled circuits since

it needs 8 encryptions per AND gate even if OT extension is used, whereas an AND in GC uses only 4.

6.3.2 Secret Sharing

The purpose of this stage is to enable the two parties to divide their private inputs into random secret shares,

and distribute the secret shares between the two parties. Like the oblivious transfer stage of the garbled

circuit protocol, this stage prepares the inputs to the Boolean circuit execution without revealing either

participant’s private data. However, here it can be achieved much cheaper than running an oblivious transfer

protocol.

Let P1’s secret input be x and P2’s be y, where x,y ∈ {0, 1}n. The two participants wish to compute

f(x,y) for a function f previously agreed upon. To protect its private inputs, party P1 divides x into secret

shares as follows.

1. For every bit xi in x, P1 samples x′i ← Z2;

2. P1 sends x′′i = xi − x′i to P2.

Thus, P1 knows x′i and P2 knows x′′i , where x′i + x′′i = xi. Symmetrically, P2 will go through similar steps

with its private input y, such that at the end of this stage, P1 knows y′i and P2 knows y′′i where y′i + y′′i = yi.

At the next stage, P1 uses x′i, y
′
i (and P2 uses x′′i , y

′′
i ,) as its inputs to the Boolean circuits.

Essentially, this stage prepares the two parties for the subsequent circuit execution by generating and

distributing the secret shares. Note that we do not use any oblivious transfer mechanisms as required in

traditional garbled circuit protocols. No encryption operations are needed, only addition in Z2.
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Input to P1: private input x′, y′.
Input to P2: private input x′′, y′′.

Such that x′ + x′′ = x, y′ + y′′ = y.

Output to P1: z
′.

Output to P2: z
′′.

Such that z′ + z′′ = x⊕ y.

Execution:

1. P1 and P2 invoke the secure product protocol to compute (x′ + x′′)(y′ + y′′). As
a result, P1 obtains v′ and P2 gets v′′ where v′ + v′′ = (x′ + x′′)(y′ + y′′).

2. P1 outputs z′ = x′ + y′ + v′.

3. P2 outputs z′′ = x′′ + y′′ + v′′.

Figure 6.4: The secure XOR protocol

6.3.3 Computing Boolean Circuits Securely

The central idea is to compute the function f with a boolean circuit. To this end, we show secure computation

protocols for common Boolean gates including AND, OR, XOR, and NOT. We stress that these protocols are

designed to enable gate chaining to form an arbitrary circuit.

To associate Z2 numbers to Boolean values, the natural projection is used. Throughout the following

discussion, we assume x′ and y′ are only known to P1 while x′′ and y′′ are only known to P2, such that

x′ + x′′ = x and y′ + y′′ = y, for x′, x′′, y′, y′′ ∈ Z2. Unless otherwise explicitly specified, we also assume

x, y ∈ Z2.

AND. We use the secure product scheme (Figure 6.3) to realize secure AND gates, because x ∧ y = x · y,

where “·” denotes Z2 multiplication.

NOT. We observe that x = 1− x, where “−” denotes Z2 subtraction. Let x′ (known to P1) and x′′ (known

to P2) be the secret shares of x. To compute 1− x = 1− (x′ + x′′) = (1− x′)− x′′, P1 outputs z′ = 1− x′

while P2 outputs z′′ = −x′′. Hence z′ + z′′ = x and NOT gate can be done without using any communication

or commodity randomness.

OR. OR gates can be constructed using AND and NOT since for all A,B ∈ {false, true} A ∨ B = A ∧B.

Since NOT is free, OR gates have essentially the same cost as AND gates. (Alternatively, it can be realized

based on the observation that x ∨ y = x+ y − xy.

XOR. XOR can be realized by requiring each party XOR their own shares, because in Z2, + = ⊕, thus

x⊕ y = (x′+x′′) + (y′+ y′′) = (x′+ y′) + (x′′+ y′′). This is essentially free since no communication is needed.
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6.3.4 Result Revelation

To reveal the semantic results, for (and only for) every final output-wire, P1 and P2 exchange their secret

shares to recover the Z2 value representing the Boolean signal. This simple step works without issue in the

semi-honest threat model, since the private bits inside the protocol are perfectly hidden in the output shares

due to the random masks. However, in the fully malicious threat model, the attacker could claim an arbitrary

value as its secret share, taking advantage of the honest party.

6.3.5 Multiple Commodity Servers

It can be a strong assumption that a single commodity server never colludes with any computation party.

Instead, it is more reasonable to assume not all of n servers collude with the same computation party, where

n is a configurable parameter. Using multiple commodity servers allows our protocol to withstand attacks

where one party colludes with corrupted commodity servers.

To compute xy (x, y ∈ Z2) where x, y are secret inputs from P1, P2, respectively, each party first randomly

divides their secret input into n shares and then collaboratively computes

(
n∑
i=1

xi

)(
n∑
i=1

yi

)
=

i=n,j=n∑
i=1,j=1

(xiyj).

This allows the participants to use up to n2 different commodity servers. Since the shares are generated

uniformly random, unless all of the commodity servers collude with the same computation party, the private

inputs x and y remain perfectly hidden. Because the secure computation of xiyj (i, j ∈ [1, n]) can be

parallelized, using extra commodity servers doesn’t increase network latency, increases the bandwidth by k

times, where k is the number of servers involved.

6.4 Malicious Model

Originall, the NNOB protocol was designed for the standard two-party computation paradigm, they used a

heavy-weight secure two-party protocol to simulate the randomness server that provides the two parties with

sufficient amount of constrained randomness-primitives including authenticated bits (aBit), authenticated

ANDs (aAND), and authenticated OT (aOT) that are used in the protocol execution. In contrast, we let the

parties obtain those primitives from a trusted third party. We stress that all the optimization techniques

presented in Section 6.5 are also critical to run the NNOB protocol efficiently.

Although a commodity-based scheme resistant to malicious adversaries is highly desirable, the adapted

NNOB scheme using commodity randomness does not provide performance approaching that of the semi-
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honest model commodity-based scheme. From a performance perspective, more communication rounds are

needed per AND gate, dramatically increasing the overall run-time. The computation integrity in this protocol

is cryptographically (instead of unconditionally) guaranteed, parameterized by the bit length of the MACs

and keys. In addition, it is an open question if the protocol can be modified to use multiple randomness

servers to thwart collusion attacks.

6.5 Optimizations

To evaluate our protocols, we built a proof-of-concept system based on our secure two-party computation

framework (Section 3.4). Instead of using the traditional garbled circuit technique, we replaced the core gate

execution with our commodity-based secure computation protocol for evaluating the primitive logic gates

including AND, OR, XOR and NOT. In this sense, our scheme is integrated into the framework so that it

readily supports existing two-party secure computing applications implemented with circuits.

We started from straightforward implementation of the idea on our framework. Somehow surprisingly,

the performance turns out significant worse (thousands times slower) than garbled circuit protocols even

though there is not any expensive cryptographic ciphering operations. More careful analysis reveals that it

is because of the large number of communication rounds resulted. We note the actual number of rounds is

several times the number of binary non-XOR gates contained in the circuit. Taking into account the per

round network latencies (e.g., about 10 µs for local processes, about 400 µs on a LAN, and 1 ∼ 100 ms over

the Internet), no practical implementation could afford this much penalty for communication.

Next, we present several optimizations that effectively reduce the overhead of communication. They are:

(1) layer-by-layer circuit execution (LayerExec), (2) switching roles to reduce the number of rounds (PckRnd),

(3) packing and sending bits instead of integers (PckBits), (4) parallelizing the greater-than circuit (ParaGT),

and (5) redundant gate elimination, e.g., for greater-than circuits and muxers, (ElmGts).

6.5.1 Layered circuit execution

The original framework executes all the gates sequentially in the depth-first topological order. However, we

note that many interesting problems (e.g., those in NC [85]) can be computed using very wide but shallow

circuits. An intuitive way to leverage the problem structure (inspired by the definition of NC-class) is to

use sufficiently many threads to execute all readily executable gates in parallel. But this approach can

incur prohibitive overhead in thread management and I/O processing. As an alternative, we modified the

original execution flow (depth-first circuit traversal implemented as automatic callbacks) of the framework so

that it proceeds in breadth-first order. The gate execution are divided into steps based on the direction of
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Figure 6.5: Flipping Roles

communications. The finer steps are invoked explicitly in breadth-first order with a queue. This approach

only uses a single thread, avoiding all the overhead of extensive multi-threading.

6.5.2 Packing communication rounds

According to the protocol description (Section 6.3), if one party always executes in Alice’s role while the

other in Bob’s role, the protocol requires two communication rounds per dot-product (or per circuit layer

when layered execution is employed), as shown in Figure 6.5(a). However, once we alternate the roles of the

two parties across layers, n layers can be executed in n+ 2 rounds. Asymptotically (n→∞), this reduces

the network-latency overhead by half as n approaches ∞ (Figure 6.5(b)).

As another example, a näıve implementation of NNOB protocol according to the steps described in [82,

Fig. 3] will result in 6 communication rounds (each reveal incurs 1 round) per AND gate. It can be redued to

3 (as is shown in Figure 6.1) by carefully rearranging the order of some independent messages, such that 2

reveals are done in the first round and another three accomplished in the second.

Packing the bits. To reduce bandwidth, we wrote our own I/O module that automatically packs every

eight Z2 elements into a single byte. This reduces the bandwidth to 1/8 of what it would be using Java’s

writeByte to transfer Z2 numbers.

6.5.3 Circuit Re-design

The circuit designs described in Chapter 4 are optimized solely for exploiting the free-XOR technique.

However, using commodity-based schemes, the depth of the circuit is also very important for producing good
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performance. Hence, we want to make the circuit as shallow as possible to reduce network latency. Next,

we use the greater-than circuit as an example to study the design space of more efficient circuits along this

direction.

Parallelized greater-than. A frequently used basic circuit in secure computing applications is GT 2L 1,

which compares 2 L-bit numbers. The state-of-art GT 2L 1 circuit uses the design by Kolesnikov et al. [63,

Fig. 6], which incurs L rounds of communication (since it executes L GT 3 2 circuits serially).

To reduce the depth, the greater-than circuit needs a completely different design. Let Ci be the carry-in

of the i-th 1-bit comparator, and Xi, Yi be the two input bits to be compared. Starting from Kolesnikov et

al.’s greater-than circuit design [63], we have Ci+1 = Xi ⊕
[
(Xi ⊕ Ci) ∧ (Yi ⊕ Ci)

]
, so

Ci+1 = Xi ⊕
[
(Xi ⊕ Ci) ∧ (Yi ⊕ Ci)

]
= Xi ⊕XiYi ⊕XiCi ⊕ YiCi ⊕ Ci

= (Xi ⊕XiYi)⊕ (Xi ⊕ Yi ⊕ 1)Ci

= (XiYi)⊕ (Xi ⊕ Yi)Ci.

Let Gi = XiYi and Pi = Xi ⊕ Yi. The output of GT 2L 1 is

CL = GL−1 ⊕ PL−1CL−1

= GL−1 ⊕ PL−1(GL−2 ⊕ PL−2CL−2)

= GL−1 ⊕ PL−1GL−2 ⊕ PL−1PL−2CL−2

= . . . (keep substituting and expanding the last C) . . .

= GL−1 ⊕ PL−1GL−2 ⊕ · · · ⊕ PL−1 · · ·P1G0

⊕PL−1 · · ·P0C0

= GL−1 ⊕ PL−1GL−2 ⊕ · · · ⊕ PL−1 · · ·P1G0

because C0 = 0. Note that each Gi and Pi can be computed in one step solely based on Xi and Yi. In

addition, the longest XOR term (computed by AND-ing L signals) can be finished within dlogLe steps using

L− 1 binary ANDs structured as a tree. Therefore, the latency cost of GT 2L 1 is reduced from L to logL+ 1

rounds.

Eliminating redundant gates. Note that a näıve translation of the previous CL equation into a greater-

than circuit can be much more costly than necessary, due to repeated computation. For example, the AND
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Figure 6.6: The AND L L circuit (M,N < L)

of PL−1 and PL−2 is computed L− 2 times. Asymptotically, such a circuit uses O(L2) binary AND gates.

Our solution is to use an AND L L gate instead of L AND L 1 gates. The AND L L gate has L-bit inputs and

L-bit outputs, where the i-th output is the AND of all first i input bits. We constructed this circuit in a

recursive manner as shown in Figure 6.6, where M is the largest perfect power of 2 smaller than L while

N = L−M . With the master theorem on recurrence, it is easy to see that the simplification requires only

O(L logL) binary AND gates. Thus, this optimization reduces the number of AND gates from quadratic to

linear in L.

6.6 Evaluation

To evaluate the performance of the schemes and understand the impact of different optimizations, we

implemented them and measured the timings for several secure computing applications. The experiments are

run in two different settings:

LAN Two Dell desktop computers (Intel R© CoreTM 2 Duo E8400 3GHz, Ubuntu Linux (kernel version 3.0.0),

Java 1.6), placed in the same building, are connected via 100 Mbps LAN. The ping latency is about

0.5 ms.1 All the experiments in previous chapters are done in a LAN environment.

Internet Two desktops, sitting 2 miles away, are connected through Internet. One machine is configured as

described above, while the other is has Intel R© CoreTM i7-2600S 2.80GHz, running Windows 7, Java

1.7). In particular, one endpoint (the Windows desktop) uses a wireless connection of 802.11g with

WPA2 encryption. The ping latency is around 4 ms, 5∼15 times of the LAN setting.

Performance. We compared the performances of commodity-based protocols to traditional semi-honest

model garbled circuit based protocol (GC-based) in the ultra-short security setting [49] (80-bit wire-labels,

(80, 80) as the OT security parameter, SHA-1), using PSI as a case study. Figures 6.7 and 6.8 summarize our

1Note the network latency seen in our protocol (running over TCP) is usually much larger than that for the ping protocol
because ping is a much simpler application layer protocol using ICMP.
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Figure 6.7: Performance Comparison (PSI, n = 1024)
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Figure 6.8: Performance Comparison (PSI, σ = 32)

results. The Z2-based protocols are about 12 times faster in the Internet setting and about 5 times faster

over the LAN. Generally, assuming the circuit from the NC classes is sufficiently wide, the advantage of

Z2-based protocols becomes more significant as it makes better use of the long network latency by packing

more gates into every round-trip.

Regarding the bandwidth, Z2-based protocols are about 30 times more efficient than the GC-based ones

(Figure 6.9). The NNOB-based protocol generates more than 3.5 times of network traffic (Figure 6.9) needed

by the Z2-based scheme, when the amortized MAC checking optimization [82, Section 3] is implemented.

However, it is about 8 times slower than the Z2-based scheme in computing the PSI (Table 6.1). This is

due to the computational sophistication of the NNOB-based scheme. For example, the NNOB-based scheme
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requires more communication rounds (2 rounds per layer as opposed to 1 for the Z2-based scheme).
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In higher security settings, the performance of GC-based protocols reduces as the security parameters

increase whereas the performance of Z2-based protocols remains the same since they are already perfectly

secure. Hence, the performance gap becomes even bigger.
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Figure 6.10: Performance impact of circuit width

The performance of commodity-based protocols can be very sensitive to the width of the circuit, especially

when network latency is significant. Take Z2-based protocol as an example, Figure 6.10 shows the impact of

circuit width on the bitonic sorting stage (∼ 85% of the cost of the PSI protocol) in the Internet experiment

setting, where K is the number of 2-SORTERs juxtaposed in the circuit execution. Hence, the bigger K is,

the more gates can be processed in each round of communication. From the graph, we can deduce that the



6.6 Evaluation 96

Z2-based NNOB-based
GC-based

(semi-honest)

Time B/w Depth Time B/w Depth Time B/w

PSI
σ=32
n=1024

LAN 2.6 s
1.1 MB 103

17.0 s
3.9 MB 103

13.6 s
29.6 MB

Internet 2.9 s 18.3 s 36.3 s

AES
LAN 0.19 s

6.5 KB 640
0.38 s

17.9 KB 640
0.24 s

315.4 KB
Internet 1.19 s 2.38 s 0.52 s

Table 6.1: NNOB-based versus secure product-based protocols

network latency in the Internet setting is filled as K becomes 128 or larger, since it does not become more

time-efficient after K = 128.

Effectiveness of optimization. Figure 6.11 shows the effectiveness of our optimization techniques, assuming

each optimization is applied sequentially over the previous ones in the order given above. We report the

optimization impact both in timings (Figure 6.11(a)) and speedups (Figure 6.11(b)). The experiments were

done in the Internet setting while computing the private set intersection between two 128 elements (32-bit

numbers) sets. Notably, the benefit of reducing communication rounds (PckRnd) is not around 2 as we

anticipated, since the network latency is already filled up to a large extent. (PckRnd will bring a speedup of

2 only when latency is the main cost, while at the other extreme when the latency is completely filled up, it

could no longer bring any benefits.)

To demonstrate that the circuit depth is not an issue after the optimizations, we show the number of

layers in terms of the set size in Figure 6.12. The numbers are taken after all the optimizations, for three

different σ (the number of bits to represent a set element) values. We observe that the number of circuit

layers grows very slowly with the PSI problem scale in terms of both set size and σ.

AES vs. PSI. Regarding AES, we used the exact same circuit structure (which was optimized for minimizing

the number of non-XOR gates) across all three protocols. The results show an example where our approach

does not produce good results, due to the näıve reuse of the circuit structure. The circuit is based on a narrow

(128-bit width) and deep AES circuit implementation, which greatly limits the advantages of our approach

(since they easily become network-latency-bound) but does not affect the semi-honest GC-based scheme

(because it is already CPU-bound). Employing an AES design with wide but shallow circuit (e.g., the one

proposed by Boyar and Peralta [20]) would improve the performance significantly for Z2-, and NNOB-based

protocols. Thus, the Z2-based AES protocol is severely disadvantaged due to the large portion of XORs in

our AES circuit.

Through this näıve implementation of private AES encryption, we learned that careful application-specific

circuit design plays an important role in achieving adequate performance. Compared to the implementation of
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Figure 6.11: Effects of optimization (PSI, n = 128, σ = 32)

AES by Nielsen et al. [82], our layered execution and packing techniques improved the efficiency of executing

a single AES circuit without needing to pack hundreds of AES executions in parallel to achieve the amortized

low execution time.2 Comparing our optimized NNOB-based implementation against the recent garbled

circuits resistant against malicious adversaries, we see a performance improvement in AES execution of about

500 times [94].

2For a single AES execution, the 4 seconds reported in their paper [82] does not include any network latency, as verified via
email correspondence with the authors. Notably, the cost from network latency in one AES execution is about 10−3 (seconds) ×
2 (rounds) × 104 (gates) = 20 seconds, so the compute cost measures only a small fraction of the total cost.
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6.7 Summary

Commodity-based secure computation protocols rely on third parties to supply correlated random numbers.

It serves as a good example of modifying the trust model for useful trade-off between security and efficiency

(comparing to the 1-bit leak model that relaxes the threat model to trade security for efficiency). Protocols in

this model exhibit very attractive performance figures, especially when active attackers are considered. This

trust model will be useful in many scenarios, where computational resource is very limited but weak trust

over some third parties can be easily established (e.g., secure computation on mobile devices with correlated

randomness from the mobile service providers).



Chapter 7

Conclusion

This chapter begins with a summary of the thesis work (Section 7.1), followed by a recap of the contributions

(Section 7.2), and closes with final remarks in Section 7.3.

7.1 Summary

Our work helps to dissipate the misconceptions about the performance and scalability of generic secure two-

party computation protocols (which once led to the development of several complex, special-purpose protocols

for problems that are better addressed with generic approaches). We demonstrate design optimizations

and implementation techniques that enable garbled circuits scale to many large problems, and are practical

enough to be competitive with special-purpose protocols.

Our framework enables users to take advantage of low-level circuit design to produce efficient and scalable

privacy-preserving protocols. We identified several techniques for producing efficient circuits, and developed

a framework for evaluating them efficiently, and demonstrated its impact by implementing several privacy-

preserving applications and executing secure computations orders of magnitude larger than has been done

before.

We also demonstrate the potential of an alternate approach for security against a malicious adversary,

which relaxes the security properties by allowing a single bit of extra information to leak. This relaxation

allows us to implement privacy-preserving applications with much stronger security guarantees than semi-

honest protocols, but with minimal extra cost. The applications scale to large inputs on commodity machines,

including million-input private set intersection.

We explore the commodity-based cryptography approach of secure two-party computation. Our ex-

periments show its potential in making secure computation practical, even in the malicious setting. By

99
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placing fairly limited trust (that the private-input independent constrained-randomness is correctly generated

and the commodity servers do not collude) in commodity servers, we obtain substantial gains in efficiency.

Commodity-based cryptography could serve as a promising direction in the goal towards widely deployed,

privacy-preserving applications.

7.2 Contributions

We developed techniques that enable garbled circuit execution to scale to large applications. These techniques

include pipelined execution, reducing circuit width, library-based circuit construction, and garbled/plain

hybrid execution. They are built into an integrated software framework that facilitates creating secure

two-party computing applications. In the semi-honest threat model, our framework produces protocols that

are orders of magnitude faster than has been achieved in previous works.

We presented a concrete design and implementation of protocols in the 1-bit leakage threat model. This

model offers much stronger security guarantees than are possible with semi-honest protocols, at minimal extra

cost. Specifically, a malicious adversary may learn only a single bit of additional information about the honest

party’s input. The implementation features a highly efficient mechanism for carrying out the equality test in

the presence of malicious adversaries, and incorporates pipelined execution and other efficiency optimizations.

We developed a method for building efficient Boolean-circuit secure two-party computation protocols

using commodity randomness. Protocols in this model can run one to many orders of magnitude faster than

garbled circuit based schemes, but without overly trusting a third party. Our main contributions here include

efficient realization of layered circuit executions and depth-oriented circuit optimizations, which mitigate the

performance bottleneck caused by network latencies.

The effectiveness of our framework is evaluated by building several privacy-preserving applications,

including genomic analysis, Hamming distance, Euclidean distance, AES, and set intersection. In the semi-

honest threat model, we demonstrate secure computation of circuits with over 109 gates at a rate of roughly

10µs per garbled gate, which is order-of-magnitude improvements over the best previous implementations. In

the 1-bit leak model, we show protocols with performance close to semi-honest settings but providing stronger

security guarantees against malicious adversaries. Last, with server assistance for distributing correlated

randomness, we show that private set intersection and AES can be computed orders of magnitude faster than

the state-of-art maliciously secure protocol implementations.
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7.3 Conclusion

We present a step towards the goal of using private data for productive collaboration, in particular, showing

that efficient, large-scale secure computations can be built with a reasonable amount of effort for interesting

applications. Additional challenges remain before secure computation can be used routinely in practice. We

anticipate that wide adoption of secure computation techniques can bring many revolutionary applications

that makes (private) information work for the society.
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[47] W. Henecka, S. Kögl, A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. TASTY: Tool for Automating
Secure Two-partY computations. In ACM Conference on Computer and Communications Security,
2010.

[48] S. Henikoff and J. G. Henikoff. Amino Acid Substitution Matrices from Protein Blocks. In Proceedings
of the National Academy of Sciences of the United States of America, 1992.

[49] Y. Huang, D. Evans, and J. Katz. Private Set Intersection: Are Garbled Circuits Better than Custom
Protocols? In NDSS, 2012.

[50] Y. Huang, D. Evans, J. Katz, and L. Malka. Faster Secure Two-Party Computation Using Garbled
Circuits. In USENIX Security Symposium, 2011.

[51] Y. Huang, J. Katz, and D. Evans. Quid-Pro-Quo-tocols: Strengthening Semi-honest Protocols with
Dual Execution. In IEEE Symposium on Security and Privacy, pages 272–284, Los Alamitos, CA,
USA, 2012. IEEE Computer Society.

[52] Y. Huang, L. Malka, D. Evans, and J. Katz. Efficient Privacy-Preserving Biometric Identification. In
NDSS, 2011.

[53] R. Impagliazzo and M. Yung. Direct Minimum-Knowledge Computations. In Advances in Cryptology
— Crypto, pages 40–51, 1988.

[54] U. Inria, S. Antipolis, B. Beauquier, B. Beauquier, E. Darrot, E. Darrot, and P. Sloop. On arbitrary
Waksman networks and their vulnerability. Research Report 3788, INRIA, 1999.

[55] Y. Ishai, J. Kilian, K. Nissim, and E. Petrank. Extending Oblivious Transfers Efficiently. In CRYPTO,
2003.

[56] A. K. Jain, S. Prabhakar, L. Hong, and S. Pankanti. Filterbank-Based Fingerprint Matching. IEEE
Transactions on Image Processing, 9:846–859, 2000.



Bibliography 105

[57] S. Jarecki and X. Liu. Efficient Oblivious Pseudorandom Function with Applications to Adaptive OT
and Secure Computation of Set Intersection. In Theory of Cryptography Conference, pages 577–594,
2009.

[58] S. Jarecki and X. Liu. Fast Secure Computation of Set Intersection. In International Conference on
Security and Cryptography for Networks, pages 418–435, 2010.

[59] S. Jarecki and V. Shmatikov. Efficient Two-Party Secure Computation on Committed Inputs. In
Eurocrypt, 2007.

[60] A. Jarrous and B. Pinkas. Secure Hamming Distance Based Computation and Its Applications. In
International Conference on Applied Cryptography and Network Security, 2009.

[61] S. Jha, L. Kruger, and V. Shmatikov. Towards Practical Privacy for Genomic Computation. In IEEE
Symposium on Security and Privacy, 2008.

[62] K. V. Jónsson, G. Kreitz, and M. Uddin. Secure multi-party sorting and applications. In Applied
Cryptography and Network Security (ACNS), 2011.

[63] V. Kolesnikov, A.-R. Sadeghi, and T. Schneider. Improved Garbled Circuit Building Blocks and
Applications to Auctions and Computing Minima. In International Conference on Cryptology and
Network Security, 2009.

[64] V. Kolesnikov and T. Schneider. Improved Garbled Circuit: Free XOR Gates and Applications. In
International Colloquium on Automata, Languages and Programming, 2008.

[65] V. Kolesnikov and T. Schneider. A practical universal circuit construction and secure evaluation of
private functions. In Financial Cryptography, 2008.

[66] P. Li and S. Zdancewic. Downgrading Policies and Relaxed Noninterference. In ACM Symposium on
Principles of Programming Languages, 2005.

[67] Y. Lindell, E. Oxman, and B. Pinkas. The IPS Compiler: Optimizations, Variants and Concrete
Efficiency. In Advances in Cryptology — Crypto, pages 259–276, 2011.

[68] Y. Lindell and B. Pinkas. An Efficient Protocol for Secure Two-Party Computation in the Presence
of Malicious Adversaries. In EUROCRYPT, 2007.

[69] Y. Lindell and B. Pinkas. A Proof of Security of Yao’s Protocol for Two-Party Computation. Journal
of Cryptology, 22(2):161–188, 2009.

[70] Y. Lindell and B. Pinkas. Secure Two-Party Computation via Cut-and-Choose Oblivious Transfer. In
Theory of Cryptography Conference, 2011.

[71] Y. Lindell, B. Pinkas, and N. Smart. Implementing Two-Party Computation Efficiently with Secu-
rity Against Malicious Adversaries. In International Conference on Security and Cryptography for
Networks, pages 2–20, 2008.

[72] J. Liu, M. D. George, K. Vikram, X. Qi, L. Waye, and A. C. Myers. Fabric: A Platform for Secure
Distributed Computation and Storage. In 22nd ACM Symposium on Operating Systems Principles
(SOSP), 2009.

[73] P. MacKenzie, A. Oprea, and M. Reiter. Automatic Generation of Two-party Computations. In ACM
Conference on Computer and Communications Security, 2003.

[74] D. Malkhi, N. Nisan, B. Pinkas, and Y. Sella. Fairplay — A Secure Two-Party Computation System.
In USENIX Security Symposium, 2004.

[75] D. Maltoni, D. Maio, A. Jain, and S. Prabhakar. Handbook of Fingerprint Recognition. Springer, 2009.



Bibliography 106

[76] P. Mohassel and M. Franklin. Efficiency Tradeoffs for Malicious Two-Party Computation. In Interna-
tional Conference on Theory and Practice of Public Key Cryptography, pages 458–473, 2006.

[77] R. Mott. Smith-Waterman Algorithm. In Encyclopedia of Life Sciences. John Wiley & Sons, 2005.

[78] A. Myers. JFlow: Practical Mostly-Static Information Flow Control. In 26th ACM Symposium on
Principles of Programming Languages, 1999.

[79] A. C. Myers and B. Liskov. Protecting Privacy using the Decentralized Label Model. ACM Transac-
tions on Software Engineering and Methodology, 9:410–442, October 2000.

[80] M. Naor and B. Pinkas. Efficient Oblivious Transfer Protocols. In ACM-SIAM Symposium on Discrete
Algorithms, 2001.

[81] J. Nielsen and C. Orlandi. LEGO for Two-Party Secure Computation. In Theory of Cryptography
Conference, 2009.

[82] J. B. Nielsen, P. S. Nordholt, C. Orlandi, and S. S. Burra. A New Approach to Practical Active-Secure
Two-Party Computation. Crypto ePrint Archive, 2011. http://eprint.iacr.org/2011/091.

[83] J. D. Nielsen and M. I. Schwartzbach. A Domain-specific Programming Language for Secure Multi-
party Computation. In Workshop on Programming Languages and Analysis for Security, 2007.

[84] M. Osadchy, B. Pinkas, A. Jarrous, and B. Moskovich. SCiFI: A System for Secure Face Identification.
In IEEE Symposium on Security and Privacy, 2010.

[85] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

[86] B. Pinkas, T. Schneider, N. P. Smart, and S. C. Williams. Secure Two-Party Computation Is Practical.
In ASIACRYPT, 2009.

[87] S. Prabhakar and A. Jain. Decision-Level Fusion in Fingerprint Verification. Pattern Recognition,
2002.

[88] M. O. Rabin. How to exchange secrets with oblivious transfer. Technical Report 81, Harvard Univer-
sity, 1981.

[89] V. Rajeshirke, J. Nzouonta, and M. Silaghi. Meeting Scheduling with Privacy. http://www.cs.fit.

edu/~msilaghi/pages/secure/meeting-scheduling/, 2004. (accessed on January 11, 2011).

[90] A. Ross, A. Jain, and J. Reisman. A Hybrid Fingerprint Matcher. Pattern Recognition, 2003.

[91] A. Sabelfeld and A. C. Myers. Language-Based Information-Flow Security. IEEE Journal on Selected
Areas in Communications, 21(1):5–19, Jan. 2003.

[92] A. Sabelfeld and D. Sands. Dimensions and Principles of Declassification. In IEEE Computer Security
Foundations Workshop, 2005.

[93] A.-R. Sadeghi, T. Schneider, and I. Wehrenberg. Efficient Privacy-Preserving Face Recognition. In
International Conference on Information Security and Cryptology, 2009.

[94] C.-H. Shen and A. Shelat. Two-output Secure Computation With Malicious Adversaries. In EURO-
CRYPT, 2011.

[95] C.-H. Shen, J. Zhan, T.-S. Hsu, C.-J. Liau, and D.-W. Wang. Scalar-product based Secure Two-Party
Computation. In International Conference onGranular Computing, 2008.

[96] C.-H. Shen, J. Zhan, D.-W. Wang, T.-S. Hsu, and C.-J. Liau. Information-Theoretically Secure
Number-Product Protocol. In International Conference on Machine Learning and Cybernetics, 2007.

[97] M. Silaghi. SMC: Secure Multiparty Computation Language. http://www.cs.fit.edu/~msilaghi/
pages/SMC/tutorial.html, Nov. 2004. (accessed on January 11, 2011).



Bibliography 107

[98] T. F. Smith and M. S. Waterman. Identification of Common Molecular Subsequences. Journal of
Molecular Biology, 147, 1981.

[99] R. Tonicelli, R. Dowsley, G. Hanaoka, H. Imai, J. Müller-Quade, A. Otsuka, and A. C. A. Nasci-
mento. Information-Theoretically Secure Oblivious Polynomial Evaluation in the Commodity-Based
Model. Cryptology ePrint Archive, 2009. http://eprint.iacr.org/2009/270.

[100] M. Turk and A. Pentland. Eigenfaces for Recognition. Journal of Cognitive Neuroscience, 3(1):71–86,
Jan. 1991.

[101] J. Vaidya and C. Clifton. Leveraging the ”Multi” in Secure Multi-Party Computation. In ACM
Workshop on Privacy in the Electronic Society, 2003.

[102] D. M. Volpano and G. Smith. A Type-Based Approach to Program Security. In Theory and Practice
of Software Development, 1997.

[103] A. Waksman. A permutation network. J. ACM, 15:159–163, 1968.

[104] I.-C. Wang, C.-H. Shen, T.-S. Hsu, C.-C. Liao, D.-W. Wang, and J. Zhan. Towards Empirical Aspects
of Secure Scalar Product. In International Conference on Information Security and Assurance, 2008.

[105] J. Wolkerstorfer, E. Oswald, and M. Lamberger. An ASIC Implementation of the AES SBoxes. In
Proceedings of the The Cryptographer’s Track at the RSA Conference on Topics in Cryptology, 2002.

[106] H. Xu, R. Veldhuis, A. Bazen, T. Kevenaar, T. Akkermans, and B. Gokberk. Fingerprint Verification
using Spectral Minutiae Representations. IEEE Transactions on Information Forensics and Security,
2009.

[107] A. C. Yao. How to Generate and Exchange Secrets. In Symposium on Foundations of Computer
Science, 1986.

[108] S. Zdancewic, L. Zheng, N. Nystrom, and A. C. Myers. Secure Program Partitioning. ACM Transac-
tions on Computing Systems (TOCS), 20(3):283–328, 2002.

[109] J. Zhan, L. Chang, and S. Matwin. Privacy preserving k-nearest neighbor classification. International
Journal of Network Security, 2005.

[110] L. Zheng, S. Chong, A. C. Myers, and S. Zdancewic. Using Replication and Partitioning to Build
Secure Distributed Systems. In IEEE Symposium on Security and Privacy, 2003.


