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Abstract

A breakthrough in representation theory is the discovery of canonical bases of quan-

tum groups by Lusztig. In type A, the canonical bases can be used to reformulate the

Kazhdan-Lusztig theory for the BGG category O of general linear Lie algebras, which

enables further generalization to Brundan’s Kazhdan-Lusztig conjecture for general

linear Lie superalgebras.

In this dissertation, we first show a coideal subalgebra of the quantum group

of type A and the Hecke algebra of type B satisfy a double centralizer property,

generalizing the Schur-Jimbo duality. The quantum group of type A and its coideal

subalgebra form a quantum symmetric pair. Then we initiate a theory of canonical

bases arising from quantum symmetric pairs. We show simple integrable modules of

the quantum group of type A and their tensor products admit new canonical bases

different from Lusztig’s canonical bases. Finally we use such new canonical bases to

formulate and establish the Kazhdan-Lusztig theory for the BGG category O of the

ortho-symplectic Lie superalgebra osp(2m + 1|2n) for the first time. The non-super

specialization of our theory amounts to a new formulation of the classical Kazhdan-

Lusztig theory for the BGG category O of the Lie algebras of type B/C.
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Introduction

Background

A milestone in representation theory was the Kazhdan-Lusztig (KL) theory initiated

in [KL] (and completed in [BB, BK]), which offered a powerful solution to the diffi-

cult problem of determining the irreducible characters in the BGG category O of a

semisimple Lie algebra g. The Hecke algebra HW associated to the Weyl group W of

g plays a central role in the KL formulation, which can be paraphrased as follows: the

simple modules of the principal block in O correspond to the Kazhdan-Lusztig basis

of HW while the Verma modules correspond to the standard basis of HW . The char-

acters of the simple modules in singular blocks are then determined from those in the

principal block via translation functors [So1], and the characters of tilting modules

were subsequently determined in [So2, So3].

Though the classification of finite-dimensional simple Lie superalgebras over C

was achieved in 1970’s by [Kac], the study of representation theory such as the BGG

category O for a Lie superalgebra turns out to be very challenging and the progress
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has been made only in recent years. One fundamental reason is that the Weyl group

(of the even part) of a Lie superalgebra alone is not sufficient to control the linkage

principle in O, and hence the corresponding Hecke algebra can not play a crucial role

as in the classical Kazhdan-Lusztig theory. Among all basic Lie superalgebras, the

infinite series gl(m|n) and osp(m|2n) are arguably the most fundamental ones. Since

these Lie superalgebras specialize to Lie algebras when one of the parameters m or n

is zero, any possible (conjectural) approach on the irreducible character problem in

the BGG category of such a Lie superalgebra has to first provide a new formulation

for a classical Lie algebra in which the Hecke algebra does not feature directly.

Brundan [Br1] in 2003 formulated a conjecture on the irreducible and tilting char-

acters for the BGG category O for the general linear Lie superalgebra gl(m|n), using

Lusztig’s canonical basis. In this case, fortunately Schur-Jimbo duality [Jim] between

a Drinfeld-Jimbo quantum group U and a Hecke algebra of type A enables one to

reformulate the KL theory of type A in terms of Lusztig’s canonical basis on some

Fock space V⊗m, where V is the natural representation of U. Brundan’s formulation

for gl(m|n) makes a crucial use of the Fock space V⊗m ⊗W⊗n, where W denotes the

restricted dual to V. The longstanding conjecture of Brundan was settled in [CLW2],

where a super duality approach developed earlier [CW1, CL] (cf. [CW2, Chapter 6])

plays a key role. A second and different proof of Brundan’s conjecture has appeared

in Brundan, Losev, and Webster [BLW].

To date, there has been no (conjectural) formulation for a solution of the irre-
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ducible character problem in the BGG category O of the ortho-symplectic Lie super-

algebras in general. The reason should have become clear as we explain above: no

alternative approach to KL theory of type BCD existed without using Hecke algebras

directly.

A super duality approach was developed in [CLW1] which solves the irreducible

character problem for some distinguished parabolic BGG categories of the osp Lie

superalgebras, but it was not sufficient to attack the problem in the full BGG category.

In these cases, a Brundan-type Fock space formulation was not available. One of the

implications of the super duality which is important to us though is that the linkage

for the distinguished parabolic categories of osp(2m+ 1|2n)-modules is controlled by

Hecke algebra of type B∞, and so one hopes that it remains to be so for the full BGG

category of osp(2m+ 1|2n)-modules.

The goal

The goal of this dissertation is to give a complete solution to the irreducible character

problem in the BGG category O of modules of integer and half-integer weights for the

ortho-symplectic Lie superalgebras osp(2m+1|2n) of type B(m,n). In particular, the

non-super specialization of our work amounts to a new approach to Kazhdan-Lusztig

theory of Lie algebras of classical type.

To achieve the goal, we are led to develop in Part 1 a new theory of canonical

bases (called ı-canonical basis) arising from quantum symmetric pairs (U,Uı). A
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new formulation of the KL theory for Lie algebras of type B is then made possible by

our new duality that the coideal subalgebra Uı of U and the Hecke algebra of type

Bm form double centralizers on V⊗m, generalizing the Schur-Jimbo duality. Part 1

(which consists of Chapters 1-6) has nothing to do with Lie superalgebras and should

be of independent interest, even though there was no particular motivation to do

so without being desperately demanded from the super representation theory – the

powerful Kazhdan-Lusztig theory in its original form has worked well after all.

We develop in Part 2 an infinite-rank version of the constructions in Part 1, and

then relate the ı-canonical basis to the BGG category Ob of osp(2m+ 1|2n)-modules

of (half-)integer weights relative to a Borel subalgebra whose type is specified by a

0m1n-sequence b. In this approach, the role of Kazhdan-Lusztig basis is played by

the (dual) ı-canonical basis for a suitable completion of the Uı-module Tb associated

to b; Here Tb is a tensor space which is a variant of V⊗m ⊗W⊗n. This dissertation

is largely based on the preprint [BW13].

An overview of Part 1

Our starting point is actually natural and simple. The generalization of Schur duality

beyond type A in the literature is not suitable to our goal, since it replaces the Lie

algebra/group of type A by its classical counterpart and modifies the symmetric group

to become a Brauer algebra (or a quantum version of such). For our purpose, as we

look for a substitute for KL theory where the Hecke algebras have played a key role,
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we ask for some quantum group like object with a coproduct (not Schur type algebra)

which centralizes the Hecke algebra of type Bn when acting on V⊗n. We found the

answer and recognized it as a coideal subalgebra of the quantum group U, a quantum

version of the enveloping algebra of the subalgebra of sl(V) fixed by some involution,

which forms a quantum symmetric pair with U.

Note that the formulation of Part 1 is in the setting that V is finite-dimensional,

while it is most natural to set V to be infinite-dimensional when making connection

with category O in Part 2.

The structure theory of quantum symmetric pairs was systematically developed by

Letzter and then Kolb (see [Le], [Ko] and the references therein). Though our coideal

subalgebra can be identified with some particular examples in literature by an explicit

(anti-)isomorphism, the particular form of our presentation and its embedding into U

are different and new. The coideal subalgebra in our presentation manifestly admits

a bar involution, and the specialization at q = 1 of our presentation has a natural

interpretation in terms of translation functors in category O. Depending on whether

the dimension of V is even or odd, we denote the (right) coideal subalgebra by Uı

or U, respectively. The two cases are similar but also have quite some differences,

and the case of Uı is more challenging as it contains an unconventional generator

which we denote by t (besides the Chevalley-like generators eαi and fαi). We mainly

restrict our discussion to Uı (and so dimV is even) below. The bar involutions on the

coideal subalgebra U and a variant of the coideal subalgebra Uı have been observed
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independently in [ES], where the generators of these algebras have been interpreted

as translation functors of certain parabolic category O of type D.

Recall that the coproduct ∆ : U → U ⊗ U is not compatible with the bar

involution ψ on U and ψ⊗ψ on U⊗U, and Lusztig’s quasi-R-matrix Θ is designed to

intertwine ∆ and ∆, where ∆(u) := (ψ⊗ψ)∆(ψ(u)), for u ∈ U. Lusztig’s construction

of Θ is a variant of Drinfeld’s construction of universal R-matrix [Dr], and it takes

great advantage of the triangular decomposition and a natural bilinear form of U.

The bar involution on V⊗m was then constructed by means of the quasi-R-matrix Θ.

Inspired by the type A reformulation of KL theory (cf., e.g., [VV1, Br1, CLW2]), as

an alternative of the Kazhdan-Lusztig theory without using Hecke algebras we ask

for a canonical basis theory arising from the quantum symmetric pair.

The embedding ı : Uı → U which makes Uı a coideal subalgebra of U does not

commute with the bar involution ψı on Uı and ψ on U. We have a coproduct of the

coideal form ∆ : Uı → Uı⊗U. Define ∆ : Uı → Uı⊗U by ∆(u) = (ψı⊗ψ)∆(ψı(u)),

for all u ∈ Uı. Note that the ∆ here is not a restriction of Lusztig’s ∆. Toward our

goal, in place of Lusztig’s quasi-R-matrix for U one would need a quasi-R-matrix Θı

which intertwines ∆ and ∆ for Uı. The problem here is that Uı does not have any

obvious triangular decomposition or bilinear form as for U.

Our key strategy is to ask first for some suitable intertwiner Υ which intertwines ı

and ı : Uı → U, where ı(u) := ψ
(
ı(ψı(u))

)
, for u ∈ Uı; note the remarkable analogy

with a key property of Lusztig’s Θ. We succeed in constructing such an intertwiner
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Υ in some completion of the negative half U− of U and show that it is unique up

to a scalar multiple (see Theorem 2.3.1). Then by combining Υ with Lusztig’s Θ

we are able to construct the quasi-R-matrix Θı, which lies in some completion of

Uı ⊗U−. The crucial properties ΥΥ = 1 and ΘıΘı = 1 hold. The intertwiner Υ can

also be applied to turn an involutive U-module into an ı-involutive Uı-module (see

Proposition 3.4.2, Definitions 1.4.3 and 3.4.1).

It turns out to be a subtle problem to show that Υ lies in (a completion of) the

integral A-form U−A, where A = Z[q, q−1]. We are led to study the simple lowest

weight U-modules ωL(λ) for λ ∈ Λ+ regarded as Uı-modules. By a detailed study on

the behavior of the generator t in Uı in the rank one case, we show that Υ preserves

the A-form ωLA(λ) for all λ ∈ Λ+, and this eventually allows us to establish the

integrality of Υ (see Theorem 4.4.2). We then construct the ı-canonical basis of ωL(λ)

which is ψı-invariant and admits a triangular decomposition with respect to Lusztig’s

canonical basis on ωL(λ) with coefficients in Z[q] (see Theorem 4.5.2). Consequently,

we construct an ı-canonical basis for any tensor product of several finite-dimensional

simple U-modules, which differs from Lusztig’s canonical basis on the same tensor

product.

Generalizing the Schur-Jimbo duality in type A, we show that the action of the

coideal algebra Uı and Hecke algebra HBm on V⊗m form double centralizers, where

V is the natural representation of U (see Theorem 5.2.3). With Υ and Θı at hand,

we are able to construct a bar involution ψı on the (Uı,HBm)-bimodule V⊗m which
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is compatible with the bar involutions on Uı and HBm (see Theorem 5.3.2). In par-

ticular, the ı-canonical basis on the involutive Uı-module (V⊗m, ψı) alone is sufficient

to reformulate the KL theory of type B.

An overview of Part 2

Part 2 is very close to [CLW2] in spirit, where the category O of gl(m|n)-modules was

addressed. In this Part, we take the Q(q)-space V to be the direct limit as r 7→ ∞ of

the 2r-dimensional ones considered in Part 1. Also let U and Uı be the corresponding

infinite-rank limits of their finite-rank counterparts in Part 1.

For an 0m1n-sequence b (which consists of m zeros and n ones), we define a tensor

space Tb using m copies of V and n copies of W with the tensor order prescribed by

b (with 0 corresponds to V); for instance, associated to bst = (0, . . . , 0, 1, . . . , 1), we

have Tbst
= V⊗m ⊗W⊗n. Such a tensor space (called Fock space) was an essential

ingredient in the formulation of Kazhdan-Lusztig-type conjecture for gl(m|n) and its

generalizations [Br1, Ku, CLW2]. In this approach, Tb at q = 1 (denoted by Tb
Z)

is identified with the Grothendieck group of the BGG category of gl(m|n)-modules

(relative to a Borel subalgebra of type b), and the (dual) canonical bases of the U-

module Tb play the role of Kazhdan-Lusztig basis which solves the irreducible and

tilting character problem in the BGG category for gl(m|n).

Now with the intertwiner Υ and the quasi-R-matrix Θı for the quantum symmetric

pair (U,Uı) at disposal, we are able to construct the ı-canonical and dual ı-canonical
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bases for Tb (or rather in its suitable completion with respective to a Bruhat ordering);

see Theorem 9.2.4. In the finite-rank setting, this was already proved in Part 1.

Nevertheless, the infinite-rank setting requires much care and extra work to deal with

suitable completions, similar to [CLW2] (see also [Br1]). A simple but crucial fact

is that the partial ordering for Tb used in [CLW2] is coarser than the one used in

this paper and this allows various constructions in loc. cit. to carry over to the

current setting. We will ignore the completion issue completely in the remainder of

the Introduction.

Our main theorem (Theorem 11.6.1), which will be referred to as (b-KL) here,

states that there exists an isomorphism between the Grothendieck group of the BGG

category Ob of osp(2m+ 1|2n)-modules of integer weights (relative to a Borel subal-

gebra of type b) and Tb
Z, which sends the Verma, simple, and tilting modules to the

standard monomial, dual ı-canonical, and ı-canonical bases (at q = 1), respectively.

In other words, the entries of the transition matrix between (dual) ı-canonical basis

and monomial basis play the role of Kazhdan-Lusztig polynomials in our category

Ob.

Granting the existence of the (dual) ı-canonical bases of Tb, the overall strategy

of a proof of (b-KL) follows the one employed in [CLW2] in establishing Brundan’s

Kazhdan-Lusztig-type conjecture, which is done by induction on n with the base case

solved by the classical Kazhdan-Lusztig theory of type B [KL, BB, BK] (as reformu-

lated above in terms of the ı-involutive Uı-module V⊗m). There are two main steps
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in the proof. First, we need (an easy generalization of) the super duality developed in

[CLW1] for osp, which is an equivalence of parabolic categories of osp(2m+1|2n+∞)-

modules and osp(2m+1|n|∞)-modules. We establish the corresponding combinatorial

super duality which states that there is an Uı-isomorphism between Tb ⊗ ∧∞V and

Tb ⊗ ∧∞W, which matches the corresponding standard monomial, ı-canonical, and

dual ı-canonical bases.

The second step is a comparison of (b-KL) and (b′-KL) for adjacent sequences b

and b′ (here “adjacent” means differing exactly by an adjacent pair 01). Let us assume

for simplicity that the first entries of b and b′ are both 0 here (see Remarks 10.2.1

and 11.6.3 for the removal of this assumption), as this is sufficient in solving the

irreducible and tilting character problems for osp(2m+1|2n)-modules. Thanks to the

coideal property of Uı, the iterated coproduct for Uı has images in Uı⊗U⊗ . . .⊗U.

Therefore the comparison of (b-KL) and (b′-KL) for adjacent b and b′ can be carried

out exactly as in the type A setting [CLW2] since the exchange of the adjacent 0 and

1 does not affect the first tensor factor and hence will not use Uı. The upshot is that

the validity of the statement (b-KL) for one 0m1n-sequence implies the validity for

an arbitrary 0m1n-sequence.

The infinite-rank version of the other quantum symmetric pairs (U,U) and its

-canonical basis theory is used to solve a variant of the BGG category O of osp(2m+

1|2n)-modules, now of half-integer weights; see Chapter 12.
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Some further works

One influential and persuasive philosophy in the last two decades, supported by the

quiver variety construction of Nakajima and reinforced by the categorification pro-

gram of Chuang, Rouquier, Khovanov and Lauda, is that “all constructions” are of

“type A” locally. A general philosophical message of this dissertation is that there

exists a whole range of new yet classical ı-constructions, algebraic, geometric and

categorical, which are of “type A with involution”. This dissertation (and [BW13])

will serve as a new starting point in several (closely related) directions.

While we have developed adequately a theory for ı-canonical basis for quantum

symmetric pairs to solve the irreducible character problem in the category Ob, a full

fledged theory of canonical bases for quantum symmetric pairs remains to be devel-

oped. The quantum symmetric pairs (U,Uı) and (U,U) are just two examples of

general quantum symmetric pairs in the Kac-Moody setting (see [Ko]). The existence

of bar involutions on general quantum symmetric pairs was mentioned explicitly in

[BW13], and a detailed proof has been given in [BK]. The most significant quantum

symmetric pairs beyond Uı and U in our view would be the ones associated to the

quantum group of affine type A.

In their influential work [BLM], Beilinson, Lusztig and MacPherson gave a ge-

ometric realization of the modified quantum group associated to gln using partial

flag varieties of type A. A geometric realization of the Jimio-Schur duality has been

provided in [GL]. It is natural to ask for a geometric interpretation of the modified
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coideal subalgebras U̇ı and U̇, the type B duality as well as ı-canonical bases devel-

oped algebraically and categorically in this paper. This turns out to have a classical

answer which is provided in [BKLW] and [LW]. A geometric Schur duality of type D

has been provided in the subsequent paper [FL].

The constructions of this dissertation will be adapted to deal with the BGG cate-

gory O for Lie superalgebras osp(2m|2n) in the future following the blue print of this

dissertation.

In [KLa, Ro], Khovanov, Lauda and independently Rouquier introduced the KLR

algebras, whose module categories categorify halves of the quantum groups. Lusztig’s

canonical basis for simply laced types was matched with indecomposable projective

modules in those categories in [Ro, VV2]. Khovanov and Lauda ([KLa]) categori-

fied the modified algebra U̇, which admits a geometric 2-representation on the “flag

category”, in terms of partial flag varieties of type A. We expect to categorify the

modified coideal subalgebra U̇ (as well as U̇ı) based on the geometric framework of

[BKLW].

Organization

The dissertation is divided into two parts. Part 1, which consists of Chapters 1-

6, provides various foundational constructions on quantum symmetric pairs, where

dimV is assumed to be finite. Part 2, which consists of Chapters 7-12, extends

the ı-canonical basis and dual ı-canonical basis to the setting where V is infinite-
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dimensional and uses this to solve the irreducible and tilting character problems of

category O for Lie superalgebra osp(2m+ 1|2n).

In the preliminary Chapter 1, we review various basic constructions for quantum

group U. We also introduce the involution θ on the root system and integral weight

lattice of U and a “weight lattice” Λθ which will be used in quantum symmetric pairs.

In Chapter 2, we introduce the right coideal subalgebra Uı of U and an algebra

embedding ı : Uı → U. The algebra Uı is endowed with a natural bar involution.

Then we construct an intertwiner Υ =
∑

µ Υµ, which lies in a completion Û−, for

the two bar involutions on Uı and U under ı, and show it is unique once we fix the

normalization Υ0 = 1. We prove that ΥΥ = 1. The intertwiner Υ is used to construct

a Uı-module isomorphism T on any finite-dimensional U-module, which should be

viewed as an analogue of R-matrix on the tensor product of U-modules.

In Chapter 3, we define a quasi-R-matrix Θı for Uı, which will play an analogous

role as Lusztig’s quasi-R-matrix for U. Our first definition of Θı is simply obtained

by combining the intertwiner Υ and Θ. More detailed analysis is required to show

that (a normalized version of) Θı lies in a completion of Uı ⊗ U−. We prove that

ΘıΘı = 1. Then we use Υ to construct an ı-involutive module structure on an

involutive U-module, and then use Θı to construct an involution on a tensor product

of a Uı-module with a U-module.

In Chapter 4, we first study the rank one case of U and Uı in detail, which turns

out to be nontrivial. In the rank one setting, we easily show that Υ is integral and then
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construct the ı-canonical bases for simple U-modules ωL(s) for s ≥ 0. We formulate

a Uı-homomorphism from ωL(s+ 2) to ωL(s) and use it to study the relation of ı-

canonical bases on ωL(s+ 2) and ωL(s), which surprisingly depends on the parity of s.

This allows us to establish the ı-canonical basis for Uı in two parities, which is shown

to afford integrality and should be regarded as “divided powers” of the generator t.

Then we apply the rank one results to study the general higher rank case. We

show that the intertwiner Υ is integral and hence the bar involution ψı on the simple

U-module ωL(λ) preserves its A-form. Then we construct the ı-canonical basis for

ωL(λ) for λ ∈ Λ+.

In Chapter 5, we recall Schur-Jimbo duality between quantum group U and Hecke

algebra of type A. Then we establish a commuting action of Uı and Hecke algebra

HBm of type B on V⊗m, and show that they form double centralizers. Just as Jimbo

showed that the generators of Hecke algebra of type A are realized by R-matrices,

we show that the extra generator of Hecke algebra of type B is realized via the Uı-

homomorphism T introduced in Chapter 2. We then show the existence of a bar

involution on V⊗m which is compatible with the bar involutions on Uı and HBm .

This allows a reformulation of Kazhdan-Lusztig theory for Lie algebras of type B/C

via the involutive Uı-module V⊗m (without referring directly to the Hecke algebra).

In Chapter 6, we consider the other quantum symmetric pair (U,U) with U

of type A2r, so its natural representation V is odd-dimensional. We formulate the

counterparts of the main results from Chapter 2 through Chapter 5 where U was
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of type A2r+1 and dimV was even. The proofs are similar and often simpler for U

since it does not contain a generator t as Uı does, and hence will be omitted almost

entirely.

In Part 2, which consists of Chapters 7-12, we switch to infinite-dimensional V

and infinite-rank quantum symmetric pair (U,Uı).

In the preliminary Chapter 7, we set up variants of BGG categories of the ortho-

symplectic Lie superalgebras, allowing possibly infinite-rank and/or parabolic ver-

sions.

In Chapter 8, we formulate precisely the infinite-rank limit of various constructions

in Part 1, such as V, U, Uı, Υ, ψı, and so on. We transport the Bruhat ordering from

the BGG category Ob for osp(2m+ 1|2n) to the Fock space Tb by noting a canonical

bijection of the indexing sets. We formulate the q-wedge versions of the Fock spaces,

which correspond to parabolic versions of the BGG categories.

In Chapter 9, we construct the ı-canonical bases and dual ı-canonical bases in

various completed Fock spaces, where the earlier detailed work on completion of Fock

spaces in [CLW2] plays a fundamental role.

In Chapter 10, we are able to compare (dual) ı-canonical bases in three different

settings: a tensor space versus its (partially) wedge subspace, a Fock space versus

an adjacent one, and a Fock space with a tensoring factor ∧∞V versus another with

∧∞W.

In Chapter 11, we show that the coideal subalgebra Uı at q = 1 is realized by
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translation functors in the BGG categories. This underlies the importance of the

coideal subalgebra Uı. Then we put all the results in earlier chapters of Part 2

together to prove the main theorem which solves the irreducible and tilting character

problem for osp(2m+ 1|2n)-modules of integer weights.

The last Chapter 12 deals with a variant of the BGG category of osp(2m+ 1|2n)-

modules with half-integer weights. The Kazhdan-Lusztig theory of this half-integer

variant is formulated and solved by the quantum symmetric pair (U,U), an infinite-

rank version of the ones formulated in the last chapter of Part 1.

Convention and notation. We shall denote by N the set of nonnegative integers,

and by Z>0 the set of positive integers. In Part 1, where dimV = 2r + 2 (except

in Chapter 6 where dimV = 2r + 1), r is fixed and so will not show up in most

of the notations (such as V, U,Uı, Υ, ψı and so on). In Part 2 (more precisely in

Chapter 8-9), subscripts and superscripts are added to the notation used in Part 1 to

indicate the dependence on r (e.g., Vr, U2r+1, Uı
r, Υ(r), ψ

(r)
ı and so on). In this way

we shall consider V as a direct limit lim−→Vr, and various constructions including the

intertwiner Υ as well as the bar involution ψı arise as limits of their counterparts in

Part 1.



Part I

Canonical bases arising from
quantum symmetric pairs
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Chapter 1

Preliminaries on quantum groups

In this preliminary chapter, we review some basic definitions and constructions on

quantum groups from Lusztig’s book, including the braid group action, canonical

basis and quasi-R-matrix. We also introduce the involution θ and the lattice Λθ

which will be used in quantum symmetric pairs.

1.1 The involution θ and the lattice Λθ

Let q be an indeterminate. For r ∈ N, we define the following index sets:

I2r+1 = {i ∈ Z | −r ≤ i ≤ r},

I2r =
{
i ∈ Z+

1

2
| −r < i < r

}
.

(1.1.1)

Set k = 2r + 1 or 2r, and we use the shorthand notation I = Ik in the remainder

of Chapter 1. Let

Π =
{
αi = εi− 1

2
− εi+ 1

2
| i ∈ I

}
19
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be the simple system of type Ak, and let Φ be the associated root system. Denote by

Λ =
∑
i∈I

(
Zεi− 1

2
+ Zεi+ 1

2

)
the integral weight lattice, and denote by (·, ·) the standard bilinear pairing on Λ such

that (εa, εb) = δab for all a, b. For any µ =
∑

i ciαi ∈ NΠ, set ht(µ) =
∑

i ci.

Let θ be the involution of the weight lattice Λ such that

θ(εi− 1
2
) = −ε−i+ 1

2
, for all i ∈ I.

We shall also write λθ = θ(λ), for λ ∈ Λ. The involution θ preserves the bilinear form

(·, ·) on the weight lattice Λ and induces an automorphism on the root system Φ such

that αθi = α−i for all i ∈ I.

Denote by Λθ = {µ ∈ Λ | µθ = µ} the subgroup of θ-fixed points in Λ. It is easy

to see that the quotient group

Λθ := Λ/Λθ (1.1.2)

is a lattice. For µ ∈ Λ, denote by µ the image of µ under the quotient map. There

is a well-defined bilinear pairing Z[αi − α−i]i∈I × Λθ → Z, such that (
∑

i>0 ai(αi −

α−i), µ) :=
∑

i>0 ai(αi − α−i, µ) for any µ ∈ Λθ with any preimage µ ∈ Λ.

1.2 The algebras ′f , f and U

Consider a free Q(q)-algebra ′f generated by Fαi for i ∈ I associated with the Cartan

datum of type (I, (·, ·)) [Lu2]. As a Q(q)-vector space, ′f has a direct sum decompo-
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sition as

′f =
⊕
µ∈NΠ

′fµ,

where Fαi has weight αi for all i ∈ I. For any x ∈ ′fµ, we set |x| = µ.

For each i ∈ I, we define ri, ir to be the unique Q(q)-linear maps on ′f such that

ri(1) = 0, ri(Fαj) = δij, ri(xx
′) = xri(x

′) + q(αi,µ
′)ri(x)x′,

ir(1) = 0, ir(Fαj) = δij, ir(xx
′) = q(αi,µ)x ir(x

′) + ir(x)x′,

(1.2.1)

for all x ∈ ′fµ and x′ ∈ ′fµ′ . The following lemma is well known (see [Lu2] and [Jan,

Section 10.1]).

Lemma 1.2.1. The Q(q)-linear map rj and ir commute; that is, rj ir = ir rj for all

i, j ∈ I.

Proposition 1.2.2. [Lu2] There is a unique symmetric bilinear form (·, ·) on ′f which

satisfies that, for all x, x′ ∈ ′f ,

1. (Fαi , Fαj) = δij(1− q−2)−1,

2. (Fαix, x
′) = (Fαi , Fαi)(x, ir(x

′)),

3. (xFαi , x
′) = (Fαi , Fαi)(x, ri(x

′)).

Remark 1.2.3. Our version of bilinear form differs by some scalars from Lusztig’s

bilinear form, and coincides with the one used in [Jan].
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Let I be the radical of the bilinear form (·, ·) on ′f . It is known in [Lu2] that I is

generated by the quantum Serre relators Sij, for i 6= j ∈ I, where

Sij =


F 2
αi
Fαj + FαjF

2
αi
− (q + q−1)FαiFαjFαi , if |i− j| = 1;

FαiFαj − FαjFαi , if |i− j| > 1.

(1.2.2)

Let f = ′f/I. By [Lu2], we have

r`(Sij) = `r(Sij) = 0, ∀`, i, j ∈ I (i 6= j). (1.2.3)

Hence r` and `r descend to well-defined Q(q)-linear maps on f .

We introduce the divided power F
(a)
αi = F a

αi
/[a]!, where a ≥ 0, [a] = (qa−q−a)/(q−

q−1) and [a]! = [1][2] · · · [a]. Let A = Z[q, q−1]. Let fA be the A-subalgebra of f

generated by F
(a)
αi for various a ≥ 0 and i ∈ I.

The quantum group U = Uq(sl(k + 1)) is defined to be the associative Q(q)-

algebra generated by Eαi , Fαi , Kαi , K
−1
αi

, i ∈ I, subject to the following relations for
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i, j ∈ I:

KαiK
−1
αi

= K−1
αi
Kαi = 1,

KαiKαj = KαjKαi ,

KαiEαjK
−1
αi

= q(αi,αj)Eαj ,

KαiFαjK
−1
αi

= q−(αi,αj)Fαj ,

EαiFαj − FαjEαi = δi,j
Kαi −K−1

αi

q − q−1
,

E2
αi
Eαj + EαjE

2
αi

= (q + q−1)EαiEαjEαi , if |i− j| = 1,

EαiEαj = EαjEαi , if |i− j| > 1,

F 2
αi
Fαj + FαjF

2
αi

= (q + q−1)FαiFαjFαi , if |i− j| = 1,

FαiFαj = FαjFαi , if |i− j| > 1.

Let U+, U0 and U− be the Q(q)-subalgebra of U generated by Eαi , K
±1
αi

, and

Fαi respectively, for i ∈ I. Following [Lu2], we can identify f ∼= U− by matching the

generators in the same notation. This identification induces a bilinear form (·, ·) on

U− and Q(q)-linear maps ri, ir (i ∈ I) on U−. Under this identification, we let U−−µ

be the image of fµ, and let U−A be the image of fA. The following Serre relation holds

in U−:

Sij = 0, ∀i, j ∈ I (i 6= j). (1.2.4)

Similarly we have f ∼= U+ by identifying each generator Fαi with Eαi . Similarly we let

U+
A denote the image of fA under this isomorphism, which is generated by all divided

powers E
(a)
αi = Ea

αi
/[a]!.
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Proposition 1.2.4. 1. There is an involution ω on the Q(q)-algebra U such that

ω(Eαi) = Fαi, ω(Fαi) = Eαi, and ω(Kαi) = K−1
αi

for all i ∈ I.

2. There is an anti-linear (q 7→ q−1) bar involution of the Q-algebra U such that

Eαi = Eαi, Fαi = Fαi, and Kαi = K−1
αi

for all i ∈ I.

(Sometimes we denote the bar involution on U by ψ.)

Recall that U is a Hopf algebra with a coproduct

∆ :U −→ U⊗U,

∆(Eαi) = 1⊗ Eαi + Eαi ⊗K−1
αi
,

∆(Fαi) = Fαi ⊗ 1 +Kαi ⊗ Fαi ,

∆(Kαi) = Kαi ⊗Kαi .

(1.2.5)

There is a unique Q(q)-algebra homomorphism ε : U → Q(q), called counit, such

that ε(Eαi) = 0, ε(Fαi) = 0, and ε(Kαi) = 1.

1.3 Braid group action and canonical basis

Let W := WAk = Sk+1 be the Weyl group of type Ak. Recall [Lu2] for each αi and

each finite-dimensional U-module M , a linear operator Tαi on M is defined by, for

λ ∈ Λ and m ∈Mλ,

Tαi(m) =
∑

a,b,c≥0;−a+b−c=(λ,αi)

(−1)bqb−acE(a)
αi
F (b)
αi
E(c)
αi
m.
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These Tαi ’s induce automorphisms of U, denoted by Tαi as well, such that

Tαi(um) = Tαi(u)Tαi(m), for all u ∈ U,m ∈M.

As automorphisms on U and as Q(q)-linear isomorphisms on M , the Tαi ’s satisfy the

braid group relation ([Lu2, Theorem 39.4.3]):

TαiTαj = TαjTαi , if |i− j| > 1,

TαiTαjTαi = TαjTαiTαj , if |i− j| = 1,

Hence for each w ∈ W , Tw can be defined independent of the choices of reduced

expressions of w. (The Tαi here is consistent with Tαi in [Jan], and it is T ′′i,+ in [Lu2]).

Denote by `(·) the length function of W , and let w0 be the longest element of W .

Lemma 1.3.1. The following identities hold:

Tw0(Kαi) = K−1
α−i
, Tw0(Eαi) = −Fα−iKα−i , Tw0(Fα−i) = −K−1

αi
Eαi , for i ∈ I.

Proof. The identity Tw0(Kαi) = K−1
α−i

is clear (see [Lu2] or [Jan]).

Let us show that Tw0(Eαi) = −Fα−iKα−i , for any given i ∈ I. Indeed, we can

always write w0 = wsi with `(w) = `(w0)− 1. Then we have Tw0 = TwTsi , and

Tw0(Eαi) = Tw(Tsi(Eαi)) = Tw(−FαiKαi) = −Tw(Fαi)Kα−i = −Fα−iKα−i ,

where the last identity used w(−αi) = w0(αi) = −α−i and [Jan, Proposition 8.20].

The identity Tw0(Fα−i) = −K−1
αi
Eαi can be similarly proved.
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Let

Λ+ = {λ ∈ Λ | 2(αi, λ)/(αi, αi) ∈ N, ∀i ∈ I}

be the set of dominant weights. Note that µ ∈ Λ+ if and only if µθ ∈ Λ+, since the

bilinear pairing (·, ·) on Λ is invariant under θ : Λ→ Λ.

Let M(λ) be the Verma module of U with highest weight λ ∈ Λ and with a highest

weight vector denoted by η or ηλ. We define a U-module ωM(λ), which has the same

underlying vector space as M(λ) but with the action twisted by the involution ω

given in Proposition 1.2.4. When considering η as a vector in ωM(λ), we shall denote

it by ξ or ξ−λ. The Verma module M(λ) associated to dominant λ ∈ Λ+ has a unique

finite-dimensional simple quotient U-module, denoted by L(λ). Similarly we define

the U-module ωL(λ). For λ ∈ Λ+, we let LA(λ) = U−Aη and ωLA(λ) = U+
Aξ be the

A-submodules of L(λ) and ωL(λ), respectively.

In [Lu1, Lu2] and [Ka], the canonical basis B of fA is constructed. Recall that we

can identify f with both U− and U+. For any element b ∈ B, when considered as an

element in U− or U+, we shall denote it by b− or b+, respectively. In [Lu2], subsets

B(λ) of B is also constructed for each λ ∈ Λ+, such that {b−ηλ | b ∈ B(λ)} gives the

canonical basis of LA(λ). Similarly {b+ξ−λ | b ∈ B(λ)} gives the canonical basis of

ωL(λ). By [Lu2, Proposition 21.1.2], we can identify ωL(λ) with L(λθ) = L(−w0λ)

such that the set {b+ξ−λ | b ∈ B(λ)} is identified with the set {b−ηλθ | b ∈ B(λθ)} =

{b−η−w0λ | b ∈ B(−w0λ)}. We shall identify ωL(λ) with L(λθ) in this way throughout

this paper.
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1.4 Quasi-R-matrix Θ

Proposition 1.4.1. [Lu2, Theorem 4.1.2] There exists a unique family of elements

Θµ in U+
µ ⊗U−−µ with µ ∈ NΠ, such that Θ0 = 1⊗ 1 and the following identities hold

for all µ and all i:

(1⊗ Eαi)Θµ + (Eαi ⊗K−1
αi

)Θµ−αi = Θµ(1⊗ Eαi) + Θµ−αi(Eαi ⊗Kαi),

(Fαi ⊗ 1)Θµ + (Kαi ⊗ Fαi)Θµ−αi = Θµ(Fαi ⊗ 1) + Θµ−αi(K
−1
αi
⊗ Fαi),

(Kαi ⊗Kαi)Θµ = Θµ(Kαi ⊗Kαi).

Remark 1.4.2. We adopt the convention in this paper that Θµ lies in U+ ⊗U− due

to our different choice of the coproduct ∆ from [Lu2]. (In contrast the Θµ in [Lu2]

lies in U− ⊗ U+.) The convention here is adopted in order to be more compatible

with the application to category O in Part 2.

Lusztig’s quasi-R-matrix for U is defined to be

Θ :=
∑
µ∈NΠ

Θµ. (1.4.1)

For any finite-dimensional U-modules M and M ′, the action of Θ on M ⊗M ′ is well

defined. Proposition 1.4.1 implies that

∆(u)Θ(m⊗m′) = Θ∆(u)(m⊗m′), for all m ∈M,m′ ∈M ′, and u ∈ U. (1.4.2)

By [Lu2, Corollary 4.1.3], we have

ΘΘ(m⊗m′) = m⊗m′, for all m ∈M and m′ ∈M ′. (1.4.3)
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In [Lu2, 32.1.5], a U-module isomorphism

R = RM,M ′ : M ′ ⊗M −→M ⊗M ′

is constructed. As an operator, R can be written as R = Θ◦ g̃◦P where g̃ : M⊗M ′ →

M ⊗ M ′ is the map g̃(m ⊗ m′) = q(λ,µ)m ⊗ m′ for all m ∈ Mλ,m
′ ∈ M ′

µ, and

P : M ′⊗M →M ⊗M ′ is a Q(q)-linear isomorphism such that P (m⊗m′) = m′⊗m.

Definition 1.4.3. A U-module M equipped with an anti-linear involution ψ is called

involutive if

ψ(um) = ψ(u)ψ(m), ∀u ∈ U,m ∈M.

Given two involutive U-modules (M,ψ1) and (M2, ψ2), following Lusztig we define

a map ψ on M1 ⊗M2 by

ψ(m⊗m′) := Θ(ψ1(m)⊗ ψ2(m′)). (1.4.4)

By Proposition 1.4.1, we have ψ(u(m⊗m′)) = ψ(u)ψ(m⊗m′) for all u ∈ U, and the

identity (1.4.3) implies that the map ψ on M1⊗M2 is an anti-linear involution. This

proves the following result of Lusztig (though the terminology of involutive modules

is new here).

Proposition 1.4.4. [Lu2, 27.3.1] Given two involutive U-modules (M,ψ1) and (M2, ψ2),

(M1 ⊗M2, ψ) is an involutive U-module with ψ given in (1.4.4).

It follows by induction that M1 ⊗ · · · ⊗Ms is naturally an involutive U-module

for given involutive U-modules M1, . . . ,Ms; see [Lu2, 27.3.6].
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As in [Lu2], there is a unique anti-linear involution ψ on ωL(λ) such that ψ(uξ) =

ψ(u)ξ for all u ∈ U. Similarly there is a unique anti-linear involution ψ on L(λ) such

that ψ(uη) = ψ(u)η for all u ∈ U. Therefore ωL(λ) and L(λ) are both involutive

U-modules.



Chapter 2

Intertwiner for a quantum

symmetric pair

In Chapters 2-5, we will formulate and study in depth the quantum symmetric pair

(U,Uı) for U of type Ak with k = 2r+ 1 being an odd integer. In these chapters, we

shall use the shorthand notation

I = I2r+1 = {−r, . . . ,−1, 0, 1, . . . , r}

as given in (1.1.1), and set

Iı := Z>0 ∩ I = {1, . . . , r}. (2.0.1)

In this chapter, we will introduce the right coideal subalgebra Uı of U and an

algebra embedding ı : Uı → U. Then we construct an intertwiner Υ for the two bar

involutions on Uı and U under ı, and use it to construct a Uı-module isomorphism

30
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T on any finite-dimensional U-module.

2.1 Definition of the algebra Uı

The algebra Uı = Uı
r is defined to be the associative algebra over Q(q) generated by

eαi , fαi , kαi , k
−1
αi

(i ∈ Iı) , and t, subject to the following relations for i, j ∈ Iı:

kαik
−1
αi

= k−1
αi
kαi = 1,

kαikαj = kαjkαi ,

kαieαjk
−1
αi

= q(αi−α−i,αj)eαj ,

kαifαjk
−1
αi

= q−(αi−α−i,αj)fαj ,

kαitk
−1
αi

= t,

eαifαj − fαjeαi = δi,j
kαi − k−1

αi

q − q−1
,

e2
αi
eαj + eαje

2
αi

= (q + q−1)eαieαjeαi , if |i− j| = 1,

eαieαj = eαjeαi , if |i− j| > 1,

f 2
αi
fαj + fαjf

2
αi

= (q + q−1)fαifαjfαi , if |i− j| = 1,

fαifαj = fαjfαi , if |i− j| > 1,

eαit = teαi , if i > 1,

e2
α1
t+ te2

α1
= (q + q−1)eα1teα1 ,

t2eα1 + eα1t
2 = (q + q−1)teα1t+ eα1 ,

fαit = tfαi , if i > 1,
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f 2
α1
t+ tf 2

α1
= (q + q−1)fα1tfα1 ,

t2fα1 + fα1t
2 = (q + q−1)tfα1t+ fα1 .

We introduce the divided powers e
(a)
αi = eai /[a]!, f

(a)
αi = fai /[a]! for a ≥ 0, i ∈ Iı.

Lemma 2.1.1. 1. The Q(q)-algebra Uı has an involution ωı such that ωı(kαi) =

k−1
αi

, ωı(eαi) = fαi, ωı(fαi) = eαi, and ωı(t) = t for all i ∈ Iı.

2. The Q(q)-algebra Uı has an anti-involution τı such that τı(eαi) = eαi , τı(fαi) =

fαi , τı(t) = t, and τı(kαi) = k−1
αi

for all i ∈ Iı.

3. The Q-algebra Uı has an anti-linear (q 7→ q−1) bar involution such that kαi =

k−1
αi

, eαi = eαi, fαi = fαi, and t = t for all i ∈ Iı.

(Sometimes we denote the bar involution on Uı by ψı.)

Proof. Follows by a direct computation from the definitions.

2.2 Quantum symmetric pair (U,Uı)

The Dynkin diagram of type A2r+1 together with the involution θ can be depicted as

follows:

A2r+1 :
α−r α−1 α0 α1 αr
• • • • •

θ
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A general theory of quantum symmetric pairs via the notion of coideal subalgebras

was developed systematically by Letzter [Le] (also see [KP, Ko]). As the properties

in Propositions 2.2.1 and 2.2.4 below indicate, the algebra Uı is a (right) coideal

subalgebra of U and that (U,Uı) forms a quantum symmetric pair.

Proposition 2.2.1. There is an injective Q(q)-algebra homomorphism ı : Uı → U

which sends

kαi 7→ KαiK
−1
α−i
,

eαi 7→ Eαi +K−1
αi
Fα−i ,

fαi 7→ FαiK
−1
α−i

+ Eα−i ,

t 7→ Eα0 + qFα0K
−1
α0

+K−1
α0

for all i ∈ Iı.

Proof. This proposition is a variant of a general property for quantum symmetric

pairs which can be found in [Le, Theorem 7.1]. Hence we will not repeat the proof,

except noting how to covert the result therein to the form used here.

It follows from a direct computation that ı is a homomorphism of Q(q)-algebras.

We shall compare ı with the embedding in [KP, Proposition 4.1] (as modified by

[KP, Remark 4.2]), which is a version of [Le, Theorem 7.1]. Set UC = C(q
1
2 )⊗Q(q) U.

Recall from [KP, §4] a Q(q)-subalgebra U ′q(k) of UC with a generating set S consisting

of Fα0−K−1
α0
Eα0 +q−

1
2K−1

α0
, KαiK

−1
α−i
, Fα−i−K−1

α−i
Eαi , Fαi−Eα−iK−1

αi
, for all 0 6= i ∈ Iı.

Claim. The algebras C(q
1
2 )⊗Q(q) ı(U

ı) and C(q
1
2 )⊗Q(q)U

′
q(k) are anti-isomorphic.
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Consider the C(q
1
2 )-algebra anti-automorphism κ : UC → UC such that

Eαi 7→
√
−1Fα−i , Fαi 7→ −

√
−1Eα−i , Kαi 7→ Kα−i , for all 0 6= i ∈ I,

Eα0 7→
√
−1q

1
2Fα0 , Fα0 7→ −

√
−1q−

1
2Eα0 , Kα0 7→ Kα0 .

A direct computation shows that κ sends

KαiK
−1
α−i
7→ KαiK

−1
α−i
,

Eαi +K−1
αi
Fα−i 7→

√
−1(Fα−i −K−1

α−i
Eαi),

FαiK
−1
α−i

+ Eα−i 7→
√
−1(Fαi − Eα−iK−1

αi
),

Eα0 + qFα0K
−1
α0

+K−1
α0
7→
√
−1q

1
2 (Fα0 −K−1

α0
Eα0 + q−

1
2K−1

α0
).

Hence, κ restricts to an anti-isomorphism between the algebras C(q
1
2 )⊗Q(q) ı(U

ı) and

C(q
1
2 )⊗Q(q) U

′
q(k), whence the claim.

We observe that [KP, Proposition 4.1] provides a presentation of the algebra U ′q(k)

with the generating set S and a bunch of relations, which correspond under κ exactly

to (the images of) the defining relations of Uı. In other words, the composition

C(q
1
2 ) ⊗Q(q) Uı ı→ C(q

1
2 ) ⊗Q(q) ı(U

ı)
κ→ C(q

1
2 ) ⊗Q(q) U

′
q(k) is an anti-isomorphism.

Hence ı : Uı → U must be an embedding.

Remark 2.2.2. Note that the coproduct for U used in [KP] follows Lusztig [Lu2]

and hence differs from the one used in this paper; this leads to somewhat different

presentations of the quantum symmetric pairs. Our choices are determined by the

application we have in mind: the (Uı,HBm)-duality in Chapter 5 and the translation
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functors for category O in Part 2. One crucial advantage of our presentation is the

existence of a natural bar involution as given in Lemma 2.1.1(3).

Any U-module M can be naturally regarded as a Uı-module via the embedding

ı.

Remark 2.2.3. The bar involution on Uı and the bar involution on U are not com-

patible through ı, i.e., ı(u) 6= ı(u) for u ∈ Uı in general. For example,

ı(eαi) = ı(eαi) = Eαi +K−1
αi
Fα−i ,

ı(eαi) = Eαi + Fα−iK
−1
αi

= Eαi + Fα−iKαi .

Note that Eαi(K
−1
αi
Fα−i) = q2(K−1

αi
Fα−i)Eαi for all 0 6= i ∈ I. Using the quantum

binomial formula [Lu2, 1.3.5], we have, for all i ∈ Iı, a ∈ N,

ı(e(a)
αi

) =
a∑
j=0

qj(a−j)F (j)
α−i
K−jαi E

(a−j)
αi

, (2.2.1)

ı(f (a)
αi

) =
a∑
j=0

qj(a−j)F (j)
αi
K−jα−iE

(a−j)
α−i

. (2.2.2)

Proposition 2.2.4. The coproduct ∆ : U→ U⊗U restricts via the embedding ı to

a Q(q)-algebra homomorphism ∆ : Uı 7→ Uı ⊗U such that, for all i ∈ Iı,

∆(kαi) = kαi ⊗KαiK
−1
α−i
,

∆(eαi) = 1⊗ Eαi + eαi ⊗K−1
αi

+ k−1
αi
⊗K−1

αi
Fα−i ,

∆(fαi) = kαi ⊗ FαiK−1
α−i

+ fαi ⊗K−1
α−i

+ 1⊗ Eα−i ,

∆(t) = t⊗K−1
α0

+ 1⊗ qFα0K
−1
α0

+ 1⊗ Eα0 .
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Similarly, the counit ε of U induces a Q(q)-algebra homomorphism ε : Uı → Q(q)

such that ε(eαi) = ε(fαi) = 0, ε(t) = 1, and ε(kαi) = 1 for all i ∈ Iı.

Proof. This follows from a direct computation.

Remark 2.2.5. Propositions 2.2.1 and 2.2.4 imply that Uı (or rather ı(Uı)) is a (right)

coideal subalgebra of U in the sense of [Le]. There exists a Q(q)-algebra embedding

ıL : Uı → U which makes Uı (or rather ıL(Uı)) a left coideal subalgebra of U; that

is, the coproduct ∆ : U → U ⊗U restricts via ıL to a Q(q)-algebra homomorphism

∆ : Uı → U⊗Uı. We will not use the left variant in this paper.

Remark 2.2.6. The pair (U,Uı) forms a quantum symmetric pair in the sense of

[Le]. At the limit q 7→ 1, it reduces to a classical symmetric pair (sl(2r + 2), sl(2r +

2)w0); here w0 is the involution on gl(2r + 2) which sends Ei,j to E−i,−j and its

restriction to sl(2r + 2) if we label the rows and columns of sl(2r + 2) by {−r −

1/2, . . . ,−1/2, 1/2, . . . , r + 1/2}.

The following corollary follows immediately from the Hopf algebra structure of U.

Corollary 2.2.7. Let m : U⊗U→ U denote the multiplication map. Then we have

m(ε⊗ 1)∆ = ı : Uı −→ U.

The map ∆ : Uı 7→ Uı ⊗ U is clearly coassociative, i.e., we have (1 ⊗ ∆)∆ =

(∆ ⊗ 1)∆ : Uı −→ Uı ⊗ U ⊗ U. This ∆ will be called the coproduct of Uı, and

ε : Uı → Q(q) will be called the counit of Uı. The counit map ε makes Q(q) a

Uı-module. We shall call this the trivial representation of Uı.
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Remark 2.2.8. The 1-dimensional space Q(q) can be realized as Uı-modules in differ-

ent (non-isomorphic) ways. For example, we can consider the Q(q)-algebras homo-

morphism ε′ : Uı → Q(q), such that ε′(eαi) = ε′(fαi) = 0, ε′(kαi) = 1 for all i ∈ Z>0,

and ε′(t) = x for any x ∈ Q(q). We shall only consider the one induced by ε as the

trivial representation of Uı, which is compatible with the trivial representation of U

via ı.

2.3 The intertwiner Υ

Let Û be the completion of the Q(q)-vector space U with respect to the following

descending sequence of subspaces U+U0
(∑

ht(µ)≥N U−−µ
)
, for N ≥ 1. Then we have

the obvious embedding of U into Û. We let Û− be the closure of U− in Û, and so

Û− ⊆ Û. By continuity the Q(q)-algebra structure on U extends to a Q(q)-algebra

structure on Û. The bar involution ¯ on U extends by continuity to an anti-linear

involution on Û, also denoted by .̄ Recall the bar involutions on Uı and U are not

compatible via the embedding ı : Uı → U, by Remark 2.2.3.

Theorem 2.3.1. There is a unique family of elements Υµ ∈ U−−µ for µ ∈ NΠ such

that Υ =
∑

µ Υµ ∈ Û− intertwines the bar involutions on Uı and U via the embedding

ı and Υ0 = 1; that is, Υ satisfies the following identity (in Û):

ı(u)Υ = Υ ı(u), for all u ∈ Uı. (2.3.1)

Moreover, Υµ = 0 unless µθ = µ.
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Remark 2.3.2. Define ı : Uı → U, where ı(u) := ψ
(
ı(ψı(u))

)
, for u ∈ Uı. Then the

identity (2.3.1) can be equivalently reformulated as

ı(u)Υ = Υ ı(u), for all u ∈ Uı. (2.3.2)

This reformulation makes it more transparent to observe the remarkable analogy with

Lusztig’s Θ; see (1.4.2).

Sometimes it could be confusing to use ¯ to denote the two distinct bar involutions

on U and Uı. Recall that we set in Section 1.2 that ψ(u) = u for all u ∈ U, and

set in Section 2.1 that ψı(u) = u ∈ Uı for u ∈ Uı. In the ψ-notation the identities

(2.3.1) and (2.3.2) read

ı(ψı(u))Υ = Υψ(ı(u)), ı(u)Υ = Υψ
(
ı(ψı(u))

)
, for all u ∈ Uı.

Definition 2.3.3. The element Υ in Theorem 2.3.1 is called the intertwiner for the

quantum symmetric pair (U,Uı).

As we shall see, the intertwiner Υ leads to the construction of what we call quasi-

R-matrix for Uı, which plays an analogous role as Lusztig’s quasi-R-matrix for U.

We shall prove later on that Υµ ∈ U−A for all µ; see Theorem 4.4.2.

The proof of Theorem 2.3.1 will be given in §2.4 below. Here we note immediately

a fundamental property of Υ.

Corollary 2.3.4. We have Υ ·Υ = 1.
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Proof. Clearly Υ is invertible in Û. Multiplying Υ−1 on both sides of the iden-

tity (2.3.1) in Theorem 2.3.1, we have

Υ−1ı(u) = ı(u)Υ−1, ∀u ∈ Uı.

Applying ¯ to the above identity and replacing u by u, we have

Υ
−1
ı(u) = ı(u)Υ

−1
, ∀u ∈ Uı.

Hence Υ
−1

(in place of Υ) satisfies the identity (2.3.1) as well. Thanks to the unique-

ness of Υ in Theorem 2.3.1, we must have Υ
−1

= Υ, whence the corollary.

2.4 Constructing Υ

The goal here is to construct Υ and establish Theorem 2.3.1.

The set of all u ∈ Uı that satisfy the identity (2.3.1) is clearly a subalgebra of Uı.

Hence it suffices to consider the identity (2.3.1) when u is one of the generators eαi ,

fαi , kαi , and t in Uı, that is, the following identities for all µ ∈ NΠ and 0 6= i ∈ I:

KαiK
−1
α−i

Υµ = ΥµKαiK
−1
α−i
,

FαiK
−1
α−i

Υµ−αi−α−i + Eα−iΥµ = Υµ−αi−α−iFαiKα−i + ΥµEα−i ,

qFα0K
−1
α0

Υµ−2α0 +K−1
α0

Υµ−α0 + Eα0Υµ = q−1Υµ−2α0Fα0Kα0 + Υµ−α0Kα0 + ΥµEα0 .

Using [Lu2, Proposition 3.1.6], we can rewrite the above identities in terms of −ir

and r−i as follows:

KαiK
−1
α−i

Υµ −ΥµKαiK
−1
α−i

= 0, (2.4.1)
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(q−1 − q)q(α−i,µ−α−i−αi)Υµ−αi−α−iFαi + −ir(Υµ) = 0, (2.4.2)

(q−1 − q)q(α−i,µ−α−i−αi)FαiΥµ−αi−α−i + r−i(Υµ) = 0, (2.4.3)

(q−1 − q)q(α0,µ−α0)(q−1Υµ−2α0Fα0 + Υµ−α0) + 0r(Υµ) = 0, (2.4.4)

(q−1 − q)q(α0,µ−α0)(q−1Fα0Υµ−2α0 + Υµ−α0) + r0(Υµ) = 0. (2.4.5)

Recall the non-degenerate bilinear form (·, ·) on U− in Section 1.2; see Proposi-

tion 1.2.2. The identities (2.4.2)-(2.4.5) can be shown to be equivalent to the following

identities (2.4.6)-(2.4.9):

(Υµ, Fα−iz) = (1− q−2)−1q(α−i,µ−α−i−αi)+1(Υµ−αi−α−i , ri(z)), (2.4.6)

(Υµ, zFα−i) = (1− q−2)−1q(α−i,µ−α−i−αi)+1(Υµ−αi−α−i , ir(z)), (2.4.7)

(Υµ, Fα0z) = (1− q−2)−1q(α0,µ−α0)(Υµ−2α0 , r0(z)) + q(α0,µ−α0)+1(Υµ−α0 , z), (2.4.8)

(Υµ, zFα0) = (1− q−2)−1q(α0,µ−α0)(Υµ−2α0 , 0r(z)) + q(α0,µ−α0)+1(Υµ−α0 , z), (2.4.9)

for all z ∈ U−−ν , ν ∈ NΠ, µ ∈ NΠ, and 0 6= i ∈ I. For example, the equivalence

between (2.4.6) and (2.4.2) is shown as follows:

(2.4.2)⇔ ( −ir(Υµ), z) = −(q−1 − q)q(α−i,µ−α−i−αi)(Υµ−αi−α−iFαi , z) ∀z,

⇔ (Fα−i , Fα−i)
−1(Υµ, Fα−iz)

= −(q−1 − q)q(α−i,µ−α−i−αi)(Fαi , Fαi)(Υµ−αi−α−i , ri(z)) ∀z,

⇔ (2.4.6) ∀z.

The remaining cases are similar.

Summarizing, we have established the following.
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Lemma 2.4.1. 1. The validity of the identity (2.3.1) is equivalent to the validity

of the identities (2.4.1) and (2.4.2)-(2.4.5).

2. The validity of the identity (2.3.1) is equivalent to the validity of the identities

(2.4.1) and (2.4.6)-(2.4.9).

Let ′f∗ (respectively, (U−)∗) be the non-restricted dual of ′f (respectively, of U−).

In light of Lemma 2.4.1(2), we define Υ∗L and Υ∗R in ′f∗, inductively on weights, by

the following formulas:

Υ∗L(1) = Υ∗R(1) = 1,

Υ∗L(Fα−iz) = (1− q−2)−1q(α−i,ν−αi)+1Υ∗L(ri(z)),

Υ∗L(Fα0z) = (1− q−2)−1q(α0,ν)Υ∗(r0(z)) + q(α0,ν)+1Υ∗(z), (2.4.10)

Υ∗R(zFα−i) = (1− q−2)−1q(α−i,ν−αi)+1Υ∗L(ir(z)),

Υ∗R(zFα0) = (1− q−2)−1q(α0,ν)Υ∗(0r(z)) + q(α0,ν)+1Υ∗(z),

for all i ∈ I and z ∈ fν with ν ∈ NΠ. (The formulas (2.4.10) are presented here only

for the sake of latter reference as they also make sense in the case of U.)

Note that since (αi, α−i) = 0 for all i 6= 0, we can simplify the definition (2.4.10)
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of Υ∗L and Υ∗R as follows:

Υ∗L(1) = Υ∗R(1) = 1,

Υ∗L(Fα−iz) = (1− q−2)−1q(α−i,ν)+1Υ∗L(ri(z)),

Υ∗L(Fα0z) = (1− q−2)−1q(α0,ν)Υ∗(r0(z)) + q(α0,ν)+1Υ∗(z), (2.4.11)

Υ∗R(zFα−i) = (1− q−2)−1q(α−i,ν)+1Υ∗L(ir(z)),

Υ∗R(zFα0) = (1− q−2)−1q(α0,ν)Υ∗(0r(z)) + q(α0,ν)+1Υ∗(z),

for all i ∈ I and z ∈ fν with ν ∈ NΠ.

Lemma 2.4.2. For all x ∈ ′fµ with µθ 6= µ, we have Υ∗L(x) = Υ∗R(x) = 0.

Proof. We will only prove that Υ∗L(x) = 0 for all x ∈ ′fµ with µθ 6= µ, as the proof

for the identity Υ∗R(x) = 0 is the same. By definition of Υ∗L (2.4.11), the value of

Υ∗L(x) for x ∈ ′fµ is equal to (up to some scalar multiple) Υ∗L(x′) for some x′ ∈ ′fµ′ ,

where µ′ = µ − αi − α−i for some i; here we recall θ(αi) = α−i. Also by definition

(2.4.11), we have Υ∗L(Fαi) = 0 for all i ∈ I. Now the claim follows by an induction on

weights.

Lemma 2.4.3. We have Υ∗L = Υ∗R.

Proof. We shall prove the identity Υ∗L(x) = Υ∗R(x) for all homogeneous elements

x ∈ ′f , by induction on ht(|x|).

When ht(|x|) = 0 or 1, this is trivial by definition. Assume the identity holds

for all x with ht(|x|) ≤ k, for k ≥ 1. Let x′ = Fα−ix
′′Fα−j ∈ ′fν+α−i+α−j with
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ht(|x′|) = k + 1 ≥ 2. We can further assume that θ(ν + α−i + α−j) = ν + α−i + α−j,

since otherwise Υ∗L(x′) = Υ∗R(x′) = 0 by Lemma 2.4.2. The proof is divided into four

cases (1)-(4).

(1) Assume that i, j 6= 0. Then we have

Υ∗L(x′) = (1− q−2)−1q(α−i,ν+α−j)+1Υ∗L(ri(x
′′Fα−j)) = L1 + L2,

where

L1 = (1− q−2)−1q(α−i,ν+α−j)+(αi,α−j)+1Υ∗L(ri(x
′′)Fα−j),

L2 = (1− q−2)−1q(α−i,ν+α−j)+1δi,−jΥ
∗
L(x′′).

We also have

Υ∗R(x′) = (1− q−2)−1q(α−j ,ν+α−i)+1Υ∗R( jr(Fα−ix
′′)) = R1 +R2,

where

R1 = (1− q−2)−1q(α−j ,ν+α−i)+(αj ,α−i)+1Υ∗R(Fα−i jr(x
′′)),

R2 = (1− q−2)−1q(α−j ,ν+α−i)+1δi,−jΥ
∗
R(x′′).

Applying the induction hypothesis to ri(x
′′)Fα−j and Fα−i jr(x

′′) gives us

L1 = (1− q−2)−2q(α−i,ν+α−j)+(αi,α−j)+(α−j ,ν−αi)+2Υ∗L( jr(ri(x
′′)))

= (1− q−2)−2q(α−i,ν)+(α−j ,ν)+(α−i,α−j)+2Υ∗L(jr(ri(x
′′)));

R1 = (1− q−2)−2q(α−j ,ν+α−i)+(αj ,α−i)+(α−i,ν−αj)+2Υ∗R(ri(jr(x
′′)))

= (1− q−2)−2q(α−i,ν)+(α−j ,ν)+(α−j ,α−i)+2Υ∗R(ri(jr(x
′′))).
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Note that jr(ri(x
′′)) = ri(jr(x

′′)) by Lemma 1.2.1 and ht(|jr(ri(x′′))|) < ht(|x′|). By

the induction hypothesis, Υ∗L(jr(ri(x
′′))) = Υ∗R(ri(jr(x

′′))). Hence L1 = R1.

By the induction hypothesis, we also have Υ∗L(x′′) = Υ∗R(x′′). When i = −j, we

have νθ = ν, and hence

(1− q−2)−1q(α−i,ν+α−j)+1 = (1− q−2)−1q(α−i,ν+αi)+1

= (1− q−2)−1q(αθ−i,ν
θ+αθi )+1

= (1− q−2)−1q(αi,ν+α−i)+1

= (1− q−2)−1q(α−j ,ν+α−i)+1.

Hence we have L2 = R2.

Summarizing, we have Υ∗L(x′) = L1 + L2 = R1 +R2 = Υ∗R(x′) in this case.

(2) Assume that i = 0 and j 6= 0. Then we have

Υ∗L(x′)

= (1− q−2)−1q(α0,ν+α−j)Υ∗L(r0(x′′Fα−j)) + q(α0,ν+α−j)+1Υ∗L(x′′Fα−j)

= (1− q−2)−1q(α0,ν+α−j)Υ∗L(q(α0,α−j)r0(x′′)Fα−j) + q(α0,ν+α−j)+1Υ∗L(x′′Fα−j)

= (1− q−2)−1q(α0,ν+α−j)+(α0,α−j)Υ∗L(r0(x′′)Fα−j) + q(α0,ν+α−j)+1Υ∗L(x′′Fα−j)

Applying the induction hypothesis to r0(x′′)Fα−j and x′′Fα−j , we have

Υ∗L(r0(x′′)Fα−j) = (1− q−2)−1q(α−j ,ν−α0)+1Υ∗L(jr(r0(x′′)),

Υ∗L(x′′Fα−j) = (1− q−2)−1q(α−j ,ν)+1Υ∗L(jr(x
′′)).
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Hence we obtain

Υ∗L(x′) =(1− q−2)−2q(α0,ν)+(α−j ,ν)+(α−j ,α0)+1Υ∗L(jr(r0(x′′))

+ (1− q−2)−1q(α0,ν)+(α−j ,ν)+(α−j ,α0)+2Υ∗L(jr(x
′′)).

From a similar computation we obtain

Υ∗R(x′) =(1− q−2)−2q(α0,ν)+(α−j ,ν)+(α0,α−j)+1Υ∗R(r0(jr(x
′′))

+ (1− q−2)−1q(α0,ν)+(α−j ,ν)+(α0,α−j)+2Υ∗R(jr(x
′′)).

It follows by Lemma 1.2.1 that r0(jr(x
′′)) = jr(r0(x′′). Then, by the induction

hypothesis on r0(jr(x
′′)), jr(r0(x′′), and jr(x

′′), we obtain Υ∗L(x′) = Υ∗R(x′) in this

case.

(3) Similar computation works for the case where j = 0, i 6= 0 as in Case (2).

(4) At last, consider the case where i = j = 0.

Υ∗L(x′) = (1− q−2)−1q(α0,ν+α0)Υ∗L(r0(x′′Fα0)) + q(α0,ν+α0)+1Υ∗L(x′′Fα0)

= (1− q−2)−1q(α0,ν+α0)+(α0,α0)Υ∗L(r0(x′′)Fα0)

(1− q−2)−1q(α0,ν+α0)Υ∗L(x′′) + q(α0,ν+α0)+1Υ∗L(x′′Fα0).

Applying the induction hypothesis to r0(x′′)Fα0 and x′′Fα0 , we have

Υ∗L(r0(x′′)Fα0) = (1− q−2)−1q(α0,ν−α0)Υ∗L(0r(r0(x′′))) + q(α0,ν−α0)+1Υ∗L(r0(x′′)),

Υ∗L(x′′Fα0) = (1− q−2)−1q(α0,ν)Υ∗L(0r(x
′′)) + q(α0,ν)+1Υ∗L(x′′).
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Hence we have

Υ∗L(x′)

= (1− q−2)−2q(α0,ν)+(α0,ν)+(α0,α0)Υ∗L(0r(r0(x′′)))

+ (1− q−2)−1q(α0,ν)+(α0,ν)+(α0,α0)+1Υ∗L(r0(x′′)) + (1− q−2)−1q(α0,ν+α0)Υ∗L(x′′)

+ (1− q−2)−1q(α0,ν)+(α0,ν)+(α0,α0)+1Υ∗L(0r(x
′′)) + q(α0,ν)+(α0,ν)+(α0,α0)+2Υ∗L(x′′).

Similarly we have

Υ∗R(x′)

= (1− q−2)−2q(α0,ν)+(α0,ν)+(α0,α0)Υ∗R(r0(0r(x
′′)))

+ (1− q−2)−1q(α0,ν)+(α0,ν)+(α0,α0)+1Υ∗R(0r(x
′′)) + (1− q−2)−1q(α0,ν+α0)Υ∗R(x′′)

+ (1− q−2)−1q(α0,ν)+(α0,ν)+(α0,α0)+1Υ∗R(r0(x′′)) + q(α0,ν)+(α0,ν)+(α0,α0)+2Υ∗R(x′′).

Therefore Υ∗L(x′) = Υ∗R(x′) in this case too by induction and by Lemma 1.2.1.

This completes the proof of Lemma 2.4.3.

We shall simply denote Υ∗L = Υ∗R by Υ∗ thanks to Lemma 2.4.3. Recall ′f/I = U−,

where I = 〈Sij〉.

Lemma 2.4.4. We have Υ∗(I) = 0; hence we may regard Υ∗ ∈ (U−)∗.

Proof. Recall rk(Sij) = kr(Sij) = 0, for all i, j, k. Any element in I is a Q(q)-linear

combination of elements of the form Fαm1
. . . FαmhSijFαn1

. . . Fαnl . So it suffices to

prove Υ∗(Fαm1
. . . FαmhSijFαn1

. . . Fαnl ) = 0, by induction on h+ l.
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Recall the Serre relator Sij, for i 6= j ∈ I, from (1.2.2). Let us verify that

Υ∗(Sij) = 0, which is the base case of the induction. If |i− j| = 1, the weight of Sij is

−2αi−αj, which is not θ-invariant. If |i− j| > 1, the weight of Sij is −αi−αj, which

is not θ-invariant unless i = −j. In case of i = −j, a quick computation by definition

(2.4.11) gives us that Υ∗(Sij) = 0. In the remaining cases, it follows by Lemma 2.4.2

that Υ∗(Sij) = 0.

If h > 0, by (2.4.11), (1.2.1) and (1.2.3) we have

Υ∗(Fαm1
. . . FαmhSijFαn1

. . . Fαnl )

=Υ∗(r−m1(Fαm2
. . . FαmhSijFαn1

. . . Fαnl ))

=Υ∗
(∑

cm′n′Fαm′1
. . . Fαm′

h′
SijFαn′1

. . . Fαn′
l′

)
+ δ−m1,0c

′Υ∗(Fαm2
. . . FαmhSijFαn1

. . . Fαnl ),

for some scalars cm′n′ and c′. Similarly if l > 0, we have

Υ∗(Fαm1
. . . FαmhSijFαn1

. . . Fαnl )

=Υ∗(−nlr(Fαm1
. . . FαmhSijFαn1

. . . Fαnl−1
))

=Υ∗
(∑

cm′′n′′Fαm′′1
. . . Fαm′′

h′′
SijFαn′′1

. . . Fαn′′
l′′

)
+ δ−nl,0c

′′Υ∗(Fαm1
. . . FαmhSijFαn1

. . . Fαnl−1
).

for some scalars cm′′n′′ and c′′. In either case, we have h′ + l′ = h′′ + l′′ < h + l.

Therefore by induction on h+ l, Lemma 2.4.4 is proved.

Now we are ready to prove Theorem 2.3.1.
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Proof of Theorem 2.3.1. We first prove the existence of Υ satisfying the identity

(2.3.1). Set Υµ = 0 if µ 6∈ NΠ. Let B = {b} be a basis of U− such that Bµ = B∩U−−µ

is a basis of U−−µ. Let B∗ = {b∗} be the dual basis of B with respect to the bilinear

pairing (·, ·) in Section 1.2. Define Υ by

Υ :=
∑
b∈B

Υ∗(b∗)b =
∑
µ

Υµ.

As functions on U−, (Υ, ·) = Υ∗. Clearly Υ is in Û− and Υ0 = 1. Also Υ satisfies

the identities in (2.4.6)-(2.4.9) by the definition of Υ∗. For any x ∈ U−ν , it follows by

Lemma 2.4.2 that Υ∗L(x) = Υ∗R(x) = 0 if νθ 6= ν. It follows that (2.4.1) is satisfied.

Therefore, by Lemma 2.4.1(2), Υ satisfies the desired identity (2.3.1) in the theorem.

By Lemma 2.4.1(1) and the definition of Υ, the identity (2.4.2) holds for Υ, and

so −ir(Υµ) is determined by Υν with weight ν ≺ µ. By [Lu2, Lemma 1.2.15], if an

element x ∈ U−−ν with ν 6= 0 satisfies −ir(x) = 0 for all i ∈ I then x = 0. Therefore, by

induction on weight, the identity (2.4.2) together with Υ0 = 1 imply the uniqueness

of Υ.

The Υ as constructed satisfies the additional property that Υµ = 0 unless µθ = µ,

by Lemmas 2.4.2, 2.4.3 and 2.4.4. The theorem is proved.
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2.5 The isomorphism T

Consider a function ζ on Λ such that

ζ(µ+ α0) = −qζ(µ),

ζ(µ+ αi) = −q(αi−α−i,µ+αi)ζ(µ), (2.5.1)

ζ(µ+ α−i) = −q(α−i,µ+α−i)−(αi,µ)ζ(µ), ∀µ ∈ Λ, i ∈ Iı.

Noting that (αi, α−i) = 0 for all i ∈ Iı, we see that ζ satisfying (2.5.1) is equivalent

to ζ satisfying

ζ(µ+ α0) = −qζ(µ),

ζ(µ+ αi) = −q(αi,µ+αi)−(α−i,µ)ζ(µ), ∀µ ∈ Λ, 0 6= i ∈ I.
(2.5.2)

Such ζ clearly exists. For any weight U-module M , define a Q(q)-linear map on M

ζ̃ : M −→M,

ζ̃(m) = ζ(µ)m, ∀m ∈Mµ.

(2.5.3)

Recall that w0 is the longest element of W and Tw0 is the associated braid group

element from Section 1.3.

Theorem 2.5.1. For any finite-dimensional U-module M , the composition map

T := Υ ◦ ζ̃ ◦ Tw0 : M −→M

is a Uı-module isomorphism.
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Proof. The map T is clearly a Q(q)-linear isomorphism. So it remains to verify that T

commutes with the action of Uı; we shall check this on generators of Uı by applying

repeatedly Lemma 1.3.1.

Let m ∈Mw0(µ) and i ∈ Iı. Then we have

T(kαim) = Υ ◦ ζ̃ ◦ Tw0(ı(kαi))Tw0(m)

= Υ ◦ ζ̃ ◦ Tw0(KαiK
−1
α−i

)Tw0(m)

= Υ ◦ ζ̃KαiK
−1
α−i
Tw0(m)

= (KαiK
−1
α−i

)Υ ◦ ζ̃ ◦ Tw0(m)

= kαiT(m).

We also have

T(eαim) = Υ ◦ ζ̃(Tw0(ı(eαi))Tw0(m))

= Υ ◦ ζ̃(Tw0(Eαi +K−1
αi
Fα−i)Tw0(m))

= −Υ ◦ ζ̃(K−1
αi

(KαiFα−i + Eαi)Kα−iTw0(m))

= −Υ(ζ(µ− α−i))q(α−i,µ)−(αi,µ−α−i)KαiFα−iTw0(m))

−Υ(ζ(µ+ αi)q
(α−i,µ)−(αi,µ+αi)EαiTw0(m))

(a)
= Υ(Eαi +KαiFα−i)ζ(µ)Tw0(m)

(b)
= (Eαi +K−1

αi
Fα−i)Υ ◦ ζ̃ ◦ Tw0(m)

= eαiT(m).

The identity (a) above follows from the definition of ζ and the identity (b) follows
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from the definition of Υ.

By a similar computation we have Tfαi(m) = fαiT(m).

For the generator t, we have

T(tm) = Υ ◦ ζ̃ ◦ Tw0(ı(t))Tw0(m)

= Υ ◦ ζ̃ ◦ Tw0(Eα0 + qFα0K
−1
α0

+K−1
α0

)Tw0(m)

= Υ ◦ ζ̃(−Fα0Kα0 − q−1Eα0 +Kα0)Tw0(m)

= Υ(−qζ(µ− α0)q−1Fα0Kα0 − q−1ζ(µ+ α0)Eα0 + ζ(µ)Kα0)Tw0(m)

(c)
= Υ(q−1Fα0Kα0 + Eα0 +Kα0)ζ(µ)Tw0(m)

(d)
= (Eα0 + qFα0K

−1
α0

+K−1
α0

)Υ ◦ ζ̃ ◦ Tw0(m)

= tT(m).

Here the identity (c) follows from the definition of ζ and identity (d) follows from the

definition of Υ. Hence the theorem is proved.



Chapter 3

Quasi-R-matrix for a quantum

symmetric pair

In this chapter, we define a quasi-R-matrix Θı for Uı, which will play an analogous

role as Lusztig’s quasi-R-matrix for U. Our Θı is constructed from the intertwiner Υ

and Θ.

3.1 Definition of Θı

Recall Lusztig’s quasi-R-matrix Θ from (1.4.1). It follows by Theorem 2.3.1 that Υ is

a well-defined operator on finite-dimensional U-modules. For any finite-dimensional

U-modules M and M ′, the action of Υ on M ⊗M ′ is also well defined. So we shall

52
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use the formal notation ΥM to denote the action of Υ on M⊗M ′. Hence the operator

Θı := ΥMΘ(Υ−1 ⊗ 1) (3.1.1)

on M ⊗M ′ is well defined. Note that Θı lies in (a completion of) U ⊗U. We shall

prove in Proposition 3.2.3 that it actually lies in (a completion of) Uı ⊗U.

Definition 3.1.1. The element Θı is called the quasi-R-matrix for the quantum

symmetric pair (U,Uı).

Recall that we set in Section 1.2 that ψ(u) = u for all u ∈ U, and in Section 2.1

that ψı(x) := x ∈ Uı for x ∈ Uı. We shall also set ψ(x) := ı(x) ∈ U for x ∈ Uı.

Define ∆ : Uı → Uı⊗U by ∆(u) = (ψı⊗ψ)∆(ψı(u)), for all u ∈ Uı. Recall that

the bar involution on Uı is not compatible with the bar involution on U through ı

(see Remark 2.2.3); in particular the ∆ here does not coincide with the restriction to

Uı of the map in the same notation ∆ : U→ U⊗U in [Lu2, 4.1.1].

Proposition 3.1.2. Let M and M ′ be finite-dimensional U-modules. As linear op-

erators on M ⊗M ′, we have ∆(u)Θı = Θı ∆(u), for all u ∈ Uı.

Proof. For u ∈ Uı, we set ∆(u) =
∑
u(1)⊗u(2) ∈ Uı⊗U. Then, for m ∈M , m′ ∈M ′,
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we have

ΥMΘ(Υ−1 ⊗ 1)∆(u)(m⊗m′) = ΥMΘ(
∑

Υ−1ı(u(1))⊗ u(2))(m⊗m′)

(a)
= ΥMΘ(

∑
ı(u(1))⊗ u(2))(Υ

−1 ⊗ 1)(m⊗m′)

(b)
= ΥM∆

(
ı(u)

)
Θ(Υ−1 ⊗ 1)(m⊗m′)

(c)
= ∆(u)ΥMΘ(Υ−1 ⊗ 1)(m⊗m′).

The identities (a) and (c) follow from Theorem 2.3.1 and the identity (b) follows from

(1.4.2). Note that the bar-notation above translates into the ψ-notation as follows:

u = ψı(u), u(1) = ψı(u(1)), u(2) = ψ(u(2)), ı(u(1)) = ψ(ı(u(1))), ı(u) = ψ(ı(ψı(u))).

The proposition is proved.

3.2 Normalizing Θı

Our next goal is to understand Θı in a precise sense as an element in a completion of

U⊗U− instead of merely as well-defined operators on M ⊗M ′ for finite-dimensional

U-modules M,M ′.

Let B = {b} be a basis of U− such that Bµ = B ∩U−−µ is a basis of U−−µ for each

µ. Let B∗ = {b∗} be the basis of U− dual to B with respect to the bilinear form (·, ·)

in Section 1.2. For each N ∈ N, define the Q(q)-linear truncation map tr≤N : ′f → ′f
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such that, for any i1, . . . , ik ∈ I,

tr≤N(Fαi1 . . . Fαik ) =


Fαi1 . . . Fαik , if k ≤ N,

0, if k > N.

(3.2.1)

This induces a truncation map on U− = ′f/I, also denoted by tr≤N , since I is homo-

geneous. Recalling Θ from (1.4.1), we denote

Θ≤N :=
∑

ht(µ)≤N

Θµ.

Then we define

Θı
≤N :=

∑
µ

id⊗ tr≤N(∆(Υµ)Θ≤N(Υ−1 ⊗ 1)), (3.2.2)

which is actually a finite sum, and hence Θı
≤N ∈ U⊗U− and Θı

≤0 = 1⊗ 1. Define

Θı
N := Θı

≤N −Θı
≤N−1 =

∑
bµ∈Bµ,ht(µ)=N

aµ ⊗ bµ ∈ U⊗U−, (3.2.3)

where it is understood that Θı
≤−1 = 0. The following lemma is clear from weight

consideration.

Lemma 3.2.1. Let M and M ′ be finite-dimensional U-modules. For all m ∈M and

m′ ∈M ′, we have

Θı(m⊗m′) = Θı
≤N(m⊗m′), for N � 0.

Note that any finite-dimensional U-module is also a Û-module.

Lemma 3.2.2. Let u ∈ Û be an element that acts as zero on all finite-dimensional

U-modules. Then u = 0.
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Proof. It is well known that any element u ∈ U that acts as zero on all finite-

dimensional U-modules has to be 0 (see [Lu2, Proposition 3.5.4]). Hence the lemma

follows by weight consideration.

We have the following fundamental property of Θı
N .

Proposition 3.2.3. For any N ∈ N, we have Θı
N ∈ ı(Uı)⊗U−.

Proof. The identity in Proposition 3.1.2 for u being one of the generators kαi , eαi ,

fαi , and t of Uı can be rewritten as the following identities (valid for all N ≥ 0):

(kαi ⊗KαiK
−1
α−i

)Θı
N(m⊗m′) = Θı

N(kαi ⊗KαiK
−1
α−i

)(m⊗m′),

((kαi ⊗ FαiK−1
α−i

)Θı
N−1 + (fαi ⊗K−1

α−i
)Θı

N + (1⊗ Eα−i)Θı
N+1)(m⊗m′)

= (Θı
N−1(k−1

αi
⊗ FαiKα−i) + Θı

N(fαi ⊗Kα−i) + Θı
N(1⊗ Eα−i))(m⊗m′),

((k−1
αi
⊗K−1

αi
Fα−i)Θ

ı
N−1 + (eαi ⊗K−1

αi
)Θı

N + (1⊗ Eαi)Θı
N+1)(m⊗m′)

= (Θı
N−1(kαi ⊗KαiFα−i) + Θı

N(eαi ⊗Kαi) + Θı
N+1(1⊗ Eαi))(m⊗m′),

((1⊗ qFα0K
−1
α0

)Θı
N−1 + (t⊗K−1

α0
)Θı

N + (1⊗ Eα0)Θı
N+1)(m⊗m′)

= (Θı
N−1(1⊗ q−1Fα0Kα0) + Θı

N(t⊗Kα0) + Θı
N+1(1⊗ Eα0))(m⊗m′),

for all 0 6= i ∈ Iı, m ∈ M and m′ ∈ M ′, where M,M ′ are finite-dimensional U-

modules. Write

Θı
N =

∑
bµ∈Bµ,ht(µ)=N

aµ ⊗ bµ ∈ U⊗U−,
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where aµ’s are fixed once B is chosen. Thanks to Lemma 3.2.2, the above four

identities for all M,M ′ are equivalent to the following four identities:

∑
bµ

ht(µ)=N

ı(kαi)a
µ ⊗KαiK

−1
α−i
bµ =

∑
bµ

ht(µ)=N

aµı(kαi)⊗ bµKαiK
−1
α−i
, (3.2.4)

∑
bµ′′

ht(µ′′)=N−1

ı(kαi)a
µ′′ ⊗ FαiK−1

α−i
bµ′′ +

∑
bµ′

ht(µ′)=N

ı(fαi)a
µ′ ⊗K−1

α−i
bµ′ +

∑
bµ

ht(µ)=N+1

aµ ⊗ Eα−ibµ

(3.2.5)

=
∑
bµ′′

ht(µ′′)=N−1

aµ
′′
ı(k−1

αi
)⊗ bµ′′FαiKα−i +

∑
bµ′

ht(µ′)=N

aµ
′
ı(fαi)⊗ bµ′Kα−i +

∑
bµ

ht(µ)=N+1

aµ ⊗ bµEα−i ,

∑
bµ′′

ht(µ′′)=N−1

ı(k−1
αi

)aµ
′′ ⊗K−1

αi
Fα−ibµ′′ +

∑
bµ′

ht(µ′)=N

ı(eαi)a
µ′ ⊗K−1

αi
bµ′ +

∑
bµ

ht(µ)=N+1

aµ ⊗ Eαibµ

(3.2.6)

=
∑
bµ′′

ht(µ′′)=N−1

aµ
′′
ı(kαi)⊗ bµ′′KαiFα−i +

∑
bµ′

ht(µ′)=N

aµ
′
ı(eαi)⊗ bµ′Kαi +

∑
bµ

ht(µ)=N+1

aµ ⊗ bµEαi ,

∑
bµ′′

ht(µ′′)=N−1

aµ
′′ ⊗ qFα0K

−1
α0
bµ′′ +

∑
bµ′

ht(µ′)=N

ı(t)aµ
′ ⊗K−1

α0
bµ′ +

∑
bµ

ht(µ)=N+1

aµ ⊗ Eα0bµ

(3.2.7)

=
∑
bµ′′

ht(µ′′)=N−1

aµ
′′ ⊗ bµ′′q−1Fα0Kα0 +

∑
bµ′

ht(µ′)=N

aµ
′
ı(t)⊗ bµ′Kα0 +

∑
bµ

ht(µ)=N+1

aµ ⊗ bµEα0 .
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A straighforward rewriting of (3.2.5)-(3.2.7) involves the commutators [Eαk , bµ] for

various k ∈ I, which can be expressed in terms of kr and rk by invoking [Lu2, Proposi-

tion 3.1.6]. In this way, using the PBW theorem for U we rewrite the three identities

(3.2.5)-(3.2.7) as the following six identities:

∑
bµ′′

ht(µ′′)=N−1

ı(kαi)a
µ′′ ⊗ Fαibµ′′ +

∑
bµ′

ht(µ′)=N

ı(fαi)a
µ′ ⊗ bµ′ +

q(α−i,µ+α−i)

q−1 − q
∑
bµ

ht(µ)=N+1

aµ ⊗ r−i(bµ) = 0,

(3.2.8)

∑
bµ′′

ht(µ′′)=N−1

aµ
′′
ı(k−1

αi
)⊗ bµ′′Fαi +

∑
bµ′

ht(µ′)=N

aµ
′
ı(fαi)⊗ bµ′ +

q(α−i,µ+α−i)

q−1 − q
∑
bµ

ht(µ)=N+1

aµ ⊗ −ir(bµ) = 0,

∑
bµ′′

ht(µ′′)=N−1

ı(k−1
αi

)aµ
′′ ⊗ Fα−ibµ′′ +

∑
bµ′

ht(µ′)=N

ı(eαi)a
µ′ ⊗ bµ′ +

q(αi,µ+αi)

q−1 − q
∑
bµ

ht(µ)=N+1

aµ ⊗ ri(bµ) = 0,

(3.2.9)

∑
bµ′′

ht(µ′′)=N−1

aµ
′′
ı(kαi)⊗ bµ′′Fα−i +

∑
bµ′

ht(µ′)=N

aµ
′
ı(eαi)⊗ bµ′ +

q(αi,µ+αi)

q−1 − q
∑
bµ

ht(µ)=N+1

aµ ⊗ ir(bµ) = 0,

∑
bµ′′

ht(µ′′)=N−1

aµ
′′ ⊗ q−1Fα0bµ′′ +

∑
bµ′

ht(µ′)=N

ı(t)aµ
′ ⊗ bµ′ +

q(α0,µ+α0)

q−1 − q
∑
bµ

ht(µ)=N+1

aµ ⊗ r0(bµ) = 0,

(3.2.10)

∑
bµ′′

ht(µ′′)=N−1

aµ
′′ ⊗ q−1bµ′′Fα0 +

∑
bµ′

ht(µ′)=N

aµ
′
ı(t)⊗ bµ′ +

q(α0,µ+α0)

q−1 − q
∑
bµ

ht(µ)=N+1

aµ ⊗0 r(bµ) = 0.

So far we have the flexibility in choosing the dual bases B and B∗ of U−. Now
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let us be more specific by fixing B∗ = {b∗} to be a monomial basis of U− which

consists of monomials in the Chevalley generators Fαi ; for example, we can take the

U−-variant of the basis {E((c))} in [Lu1, pp.476] where Lusztig worked with U+. Let

B = {b} be the dual basis of B∗ with respect to (·, ·), and write Bµ = B∩U−µ = {bµ}

as before. Fix an arbitrary basis element b̃µ ∈ Bµ (with µ 6= 0), with its dual basis

element written as b̃∗µ = xFα−i , for some x ∈ U− and some i. We now apply 1⊗ (x, ·)

to the identities (3.2.8), (3.2.9) and (3.2.10), depending on whether i is positive, zero

or negative.

We will treat in detail the case when i is positive, while the other cases are similar.

Applying 1⊗ (x, ·) to the identity (3.2.8) above, we have

∑
bµ′′

ht(µ′′)=N−1

ı(kαi)a
µ′′ ⊗ (x, Fαibµ′′) +

∑
bµ′

ht(µ′)=N

ı(fαi)a
µ′ ⊗ (x, bµ′)

+
q(α−i,µ+α−i)

q−1 − q
∑
bµ

ht(µ)=N+1

aµ ⊗ (x, r−i(bµ)) = 0.

Since (x, r−i(bµ)) = (1− q−2)(xFα−i , bµ) = (1− q−2)δbµ,b̃µ , we have

∑
bµ′′

ht(µ′′)=N−1

ı(kαi)a
µ′′(x, Fαibµ′′) +

∑
bµ′

ht(µ′)=N

ı(fαi)a
µ′(x, bµ′)− q(α−i,µ+α−i)−1ãµ = 0.

(3.2.11)

By an easy induction on height based on (3.2.11) (where the base case is Θı
0 = 1⊗1),

we conclude that aµ ∈ ı(Uı) for all µ; that is, Θı
N ∈ ı(Uı)⊗U−.

By Proposition 3.2.3 we have ı−1(Θı
N) ∈ Uı ⊗ U for each N . For any finite-

dimensional U-modules M and M ′, the action of ı−1(Θı
N) coincides with the action
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of Θı
N on M ⊗M ′.

As we only need to use ı−1(Θı
N) ∈ Uı⊗U rather than Θı

N , we shall write

Θı
N in place of ı−1(Θı

N) and regard Θı
N ∈ Uı ⊗U from now on.

3.3 Properties of Θı

Let (Uı⊗U−)∧ be the completion of the Q(q)-vector space Uı⊗U− with respect to

the following descending sequence of subspaces

H ı
N := Uı ⊗

( ∑
ht(µ)≥N

U−−µ

)
, for N ≥ 1.

The Q(q)-algebra structure on Uı ⊗ U− extends by continuity to a Q(q)-algebra

structure on (Uı ⊗U−)∧, and we have an embedding Uı ⊗U− ↪→ (Uı ⊗U−)∧.

The actions of
∑

N≥0 Θı
N (which is well defined by Lemma 3.2.1) and of Θı coincide

on any tensor product of finite-dimensional U-modules. From now on, we may and

shall identify

Θı =
∑
N≥0

Θı
N ∈ (Uı ⊗U−)∧, (3.3.1)

(or alternatively, one may regard this as a normalized definition of Θı).

The following theorem is a generalization of Proposition 3.1.2.

Theorem 3.3.1. Let L be a finite-dimensional Uı-module and M be a finite-dimensional

U-module. Then as linear operators on L⊗M , we have

∆(u)Θı = Θı∆(u), for all u ∈ Uı.
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Proof. By the identities (3.2.4)-(3.2.7) in the proof of Proposition 3.2.3, there exists

N0 > 0 (depending on L and M) such that for N ≥ N0 we have

∆(u)Θı
≤N −Θı

≤N∆(u) = 0 on L⊗M, (3.3.2)

where u is one of the generators kαi , eαi , fαi , and t of Uı. We then note that, for

u1, u2 ∈ Uı,

∆(u1u2)Θı
≤N −Θı

≤N∆(u1u2)

= ∆(u1)
(
∆(u2)Θı

≤N −Θı
≤N∆(u2)

)
+
(
∆(u1)Θı

≤N −Θı
≤N∆(u1)

)
∆(u2).

(3.3.3)

Then by an easy induction using (3.3.3), we conclude that (3.3.2) holds for all u ∈ Uı

and N ≥ N0. The theorem now follows from (3.3.1).

Proposition 3.3.2. We have ΘıΘı = 1 (an identity in Û−).

Proof. By construction, Θı =
∑

N≥0 Θı
N (with Θı

0 = 1 ⊗ 1) is clearly invertible in

(Uı ⊗U−)∧. Write ′Θı = (Θı)−1.

Multiplying ′Θı on both sides of the identity in Theorem 3.3.1, we have

′Θı∆(u) = ∆(u) ′Θı, ∀u ∈ Uı.

Applying ¯ to the above identity and replacing u by u, we have

′Θı ∆(u) = ∆(u) ′Θı, ∀u ∈ Uı.

Hence ′Θı (in place of ′Θı) satisfies the same identity in Theorem 3.3.1 as well; note

that ′Θı ∈ (Uı ⊗U−)∧ has constant term 1⊗ 1.
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By reexamining the proof of Proposition 3.2.3 and especially (3.2.11), we note that

the element Θı ∈ (Uı ⊗U−)∧ (with constant term 1 ⊗ 1) satisfying the identity in

Proposition 3.1.2 (and thus Theorem 2.3.1) is unique. Hence we must have Θı = Θı−1
,

and equivalently, ΘıΘı = 1.

Recall that m(ε ⊗ 1)∆ = ı from Corollary 2.2.7, where ε is the counit and m

denotes the multiplication in U.

Corollary 3.3.3. The intertwiner Υ can be recovered from the quasi-R-matrix Θı as

m(ε⊗ 1)(Θı) = Υ.

Proof. Applying m(ε⊗ 1) to the identities (3.2.4)-(3.2.7), we obtain an identity in Û:

ı(u)
(∑
N≥0

m(ε⊗ 1)(Θı
N)
)

=
(∑
N≥0

m(ε⊗ 1)(Θı
N)
)
ı(u), for all u ∈ Uı. (3.3.4)

The corollary now follows from (3.3.1), (3.3.4) and the uniqueness of Υ in Theorem

2.3.1, as clearly we have m(ε⊗ 1)(Θı
0) = 1.

3.4 The bar map on Uı-modules

In this section we shall assume all the modules are finite dimensional. Recall the bar

map on U and on its modules is denoted by ψ, and the bar map on Uı is also denoted

by ψı. It is also understood that ψ(u) = ψ(ı(u)) for u ∈ Uı.

Definition 3.4.1. A Uı-module M equipped with an anti-linear involution ψı is
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called involutive (or ı-involutive to avoid possible ambiguity) if

ψı(um) = ψı(u)ψı(m), ∀u ∈ Uı,m ∈M.

Proposition 3.4.2. Let M be an involutive U-module. Then M is an ı-involutive

Uı-module with involution ψı := Υ ◦ ψ.

Proof. By Theorem 2.3.1, we have ı(ψı(u))Υ = Υψ(u), for all u ∈ Uı. By definition

the action of ψı(u) on M is the same as the action of ı(ψı(u)) on M . Therefore we

have

ψı(um) = Υψ(um) = Υψ(u)ψ(m) = ı(ψı(u))Υψ(m) = ψı(u)ψı(m),

for all u ∈ Uı and m ∈M .

It remains to verify that ψı is an involution on M . Indeed, for m ∈M , we have

ψı(ψı(m)) = Υψ(Υψ(m)) = ΥΥψ(ψ(m)) = ΥΥm = m,

where the last identity follows from Corollary 2.3.4.

Corollary 3.4.3. Regarded as Uı-modules, L(λ) and ωL(λ) are ı-involutive, for λ ∈

Λ+.

Remark 3.4.4. We can and will choose ξ−λ ∈ ωL(λ) to be ψ-invariant. It follows that

ξ−λ is also ψı-invariant, since ψı = Υψ and Υ lies in a completion of U− with constant

term 1. Because of this, it is more convenient to work with a lowest weight vector

instead of a highest weight vector in a finite-dimensional simple U-module.



64

Recall the quasi-R-matrix Θı from (3.1.1). Given an involutive Uı-module L and

an involutive U-module M , we define ψı : L⊗M → L⊗M by letting

ψı(l ⊗m) := Θı(ψı(l)⊗ ψ(m)), for all l ∈ L,m ∈M. (3.4.1)

Proposition 3.4.5. Let L be an involutive Uı-module and let M be an involutive

U-module. Then (L⊗M,ψı) is an involutive Uı-module.

Proof. For all l ∈ L, m ∈M , u ∈ Uı, using (3.4.1) twice we have

ψı(u(l ⊗m)) = Θı
(
∆(u)(ψı(l)⊗ ψ(m))

)
= ∆(u)Θı(ψı(l)⊗ ψ(m))

= ψı(u)ψı(l ⊗m).

The second equality in the above computation uses Theorem 3.3.1 and the first equal-

ity holds since L and M are involutive modules.

It remains to verify that ψı is an involution on L⊗M . It is occasionally convenient

to use the bar-notation to denote the involution ψı⊗ψ on Uı⊗U below. Indeed, for

l ∈ L and m ∈M , using (3.4.1) twice we have

ψı(ψı(l ⊗m)) = Θı(ψı ⊗ ψ).
(
Θı(ψı(l)⊗ ψ(m))

)
= ΘıΘı(ψ2

ı (l)⊗ ψ2(m)) = l ⊗m,

where the last equality follows from Proposition 3.3.2 and the second equality holds

since L and M are involutive modules.
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Remark 3.4.6. Given two involutive U-modules (M1, ψ1) and (M2, ψ2), the U-module

M1⊗M2 is involutive with the involution given by Θ ◦ (ψ1⊗ψ2), (see [Lu2, 27.3.1] or

Proposition 1.4.4). Now there are two natural ways to define an anti-linear involution

on the Uı-module M1 ⊗M2:

(i) apply Proposition 3.4.2 to the involutive U-module (M1 ⊗M2,Θ ◦ (ψ1 ⊗ ψ2));

(ii) apply Proposition 3.4.5 by regarding M1 as an ı-involutive Uı-module with

involution Υ ◦ ψ1.

One checks that the resulting involutions on the Uı-module M1⊗M2 in two different

ways coincide.

The following proposition implies that different bracketings on the tensor product

of several involutive U-modules give rise to the same ψı. (Recall a similar property

holds for Lusztig’s bar involution on tensor products of U-modules [Lu2].)

Proposition 3.4.7. Let M1, . . ., Mk be involutive U-modules with k ≥ 2. We have

ψı(m1 ⊗ · · · ⊗mk) = Θı(ψı(m1 ⊗ · · · ⊗mk′)⊗ ψ(mk′+1 ⊗ · · · ⊗mk)),

for any 1 ≤ k′ < k.

Proof. Recall Θı = ΥMΘ(Υ−1 ⊗ 1). Unraveling the definition ψı = Υψ on M1 ⊗ · · · ⊗
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Mk′ , we have

Θı(ψı(m1 ⊗ · · · ⊗mk′)⊗ ψ(mk′+1 ⊗ · · · ⊗mk))

=ΥMΘ(Υ−1 ⊗ 1)(Υψ(m1 ⊗ · · · ⊗mk′)⊗ ψ(mk′+1 ⊗ · · · ⊗mk))

=ΥMΘ(ψ(m1 ⊗ · · · ⊗mk′)⊗ ψ(mk′+1 ⊗ · · · ⊗mk))

=ΥMψ(m1 ⊗ · · · ⊗mk′ ⊗mk′+1 ⊗ · · · ⊗mk)

=ψı(m1 ⊗ · · · ⊗mk).

The proposition follows.



Chapter 4

The integrality of Υ and the

ı-canonical basis of ωL(λ)

In this chapter, we first construct the ı-canonical bases for simple U-modules and

then for the algebra Uı in the rank one case. Then we use the rank one results to

study the general higher hank case. We show that the intertwiner Υ is integral and

construct the ı-canonical basis for ωL(λ) for λ ∈ Λ+.

4.1 The homomorphism πλ,µ

Though only the rank one case of the results in this section will be needed in this

paper, it is natural and causes no extra work to formulate in the full generality below.

Lemma 4.1.1. Let λ ∈ Λ+. We have Uıξ−λ = ωL(λ) and Uıηλ = L(λ).

67
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Proof. We shall only prove Uıξ−λ = ωL(λ). The proof for the second identity is

similar and will be skipped.

We write ξ = ξ−λ. Let h ∈ ωL(λ)µ. We shall prove h ∈ Uıξ by induction on

ht(µ + λ). When ht(µ + λ) = 0, the claim is clear since h must be a scalar multiple

of ξ. Thanks to U+ξ = ωL(λ), there exists y ∈ U+ such that yξ = h. Writing y as a

linear combination of PBW basis elements for U+ and replacing Eα0 , Eαi , Eα−i (for

all i ∈ Iı) by t, eαi , fαi in such a linear combination, respectively, we obtain an element

u = u(y) ∈ Uı. Setting ı(u) = y+z for z ∈ U, we have uξ = h+zξ. By construction,

zξ is a Q(q)-linear combination of elements in ωL(λ) of weight lower than h. Hence

by the induction hypothesis, we have zξ ∈ Uıξ, and so is h = uξ − zξ.

Recall from Section 1.3 that ωL(λ) for λ ∈ Λ+ is identified with L(λθ) = L(−w0λ),

ξλ is the lowest weight vector of ωL(λ), and ηλθ is the highest weight vector of L(λθ).

Lemma 4.1.2. For λ ∈ Λ+, there is an isomorphism of Uı-modules

T : ωL(λ) −→ ωL(λ) = L(λθ)

such that T(ξλ) =
∑

b∈B(λ) gbb
−η

λθ
where gb ∈ Q(q) and g1 = 1. Moreover, the

isomorphism T is uniquely determined by the image T(ξλ).

Proof. Recall the isomorphism T = Υ ◦ ζ̃ ◦ Tw0 : ωL(λ)→ ωL(λ) of Uı-modules from

Theorem 2.5.1. The existence of T satisfying the lemma follows by fixing the weight

function ζ such that T(ξλ) = ηλθ+ terms in lower weights.

The uniqueness of such T follows from Lemma 4.1.1.
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The following proposition can be found in [Lu2, Chapter 25].

Proposition 4.1.3. Let λ, λ′ ∈ Λ+.

1. There exists a unique homomorphism of U-modules

χ = χλ,λ′ : ωL(λ+ λ′) −→ ωL(λ)⊗ ωL(λ′)

such that χ(ξ−λ−λ′) = ξ−λ ⊗ ξ−λ′.

2. For b ∈ B(λ + λ′), we have χ(b+ξ−λ−λ′) =
∑

b1,b2
f(b; b1, b2)b+

1 ξ−λ ⊗ b+
2 ξ−λ′,

summed over b1 ∈ B(λ) and b2 ∈ B(λ′), with f(b; b1, b2) ∈ Z[q]. If b+ξ−λ′ 6= 0,

then f(b; 1, b) = 1 and f(b; 1, b2) = 0 for any b2 6= b. If b+ξ−λ′ = 0, then

f(b; 1, b2) = 0 for any b2.

3. There is a unique homomorphism of U-modules δ = δλ : L(λ) ⊗ ωL(λ) →

Q(q), where Q(q) is the trivial representation of U, such that δ(ηλ ⊗ ξ−λ) = 1.

Moreover, for b1, b2 ∈ B(λ), δ(b−1 ηλ ⊗ b+
2 ξ−λ) is equal to 1 if b1 = b2 = 1 and is

in qZ[q] otherwise. In particular, δ(b−1 ηλ ⊗ b+
2 ξ−λ) = 0 if |b1| 6= |b2|.

Proposition 4.1.4. Let λ,µ ∈ Λ+. There is a unique homomorphism of Uı-modules

πλ,µ : ωL(µθ + µ+ λ) −→ ωL(λ)

such that πλ,µ(ξ−µθ−µ−λ) = ξ−λ.

Proof. The uniqueness of the map is clear, thanks to Lemma 4.1.1.
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We shall prove the existence of πλ,µ. Recall that any homomorphism of U-modules

is naturally a homomorphism of Uı-modules. Note that ωL(µθ) = L(−w0µ
θ) = L(µ).

Let πλ,µ be the composition of the following homomorphisms of Uı-modules:

ωL(µθ + µ+ λ)
χ

//

πλ,µ

**

ωL(µθ + µ)⊗ ωL(λ)
χ⊗id

// ωL(µθ)⊗ ωL(µ)⊗ ωL(λ)

T⊗id⊗id
��

L(µ)⊗ ωL(µ)⊗ ωL(λ)

δ⊗id
��

ωL(λ)

where T is the map from Lemma 4.1.2. First, we have

(χ⊗ id)χ(ξ−µθ−µ−λ) = ξ−µθ ⊗ ξ−µ ⊗ ξ−λ.

Then applying T ⊗ id⊗ id, by Lemma 4.1.2 we have

(T ⊗ id⊗id)(ξ−µθ ⊗ ξ−µ ⊗ ξ−λ)

= ηµ ⊗ ξ−µ ⊗ ξ−λ +
∑

16=b∈B(µ)

g(1; b)b−ηµ ⊗ ξµ ⊗ ξ−λ.

Applying δ ⊗ 1 to the above identity, we conclude that πλ,µ(ξ−µθ−µ−λ) = ξ−λ.

Lemma 4.1.5. Retain the notation in Proposition 4.1.4. The homomorphism πλ,µ

commutes with the involution ψı; that is, πλ,µψı = ψıπλ,µ.

Proof. In this proof, we write π = πλ,µ, ξ = ξ−µθ−µ−λ, and ξ′ = ξ−λ. Then π(ξ) = ξ′

by Proposition 4.1.4. An arbitrary element in ωL(µθ+µ+λ) is of the form uξ for some

u ∈ Uı, by Lemma 4.1.1. Since ξ and ξ′ are both ψı-invariant (see Remark 3.4.4), we

have

πψı(uξ) = πψı(u)(ξ) = ψı(u)π(ξ) = ψı(u)ξ′.
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On the other hand, we have

ψıπ(uξ) = ψı(uξ
′) = ψı(u)ψı(ξ

′) = ψı(u)ξ′.

The lemma is proved.

4.2 The ı-canonical bases at rank one

In this section we shall consider the rank 1 case of the algebra Uı, i.e., Uı = Q(q)[t],

the polynomial algebra in t. In order to simplify the notation, we shall write E = Eα0 ,

F = Fα0 , and K = Kα0 for the generators of U = Uq(sl2). By Proposition 2.2.1, we

have an algebra embedding ı : Q(q)[t]→ Uq(sl2) such that ı(t) = E+ qFK−1 +K−1.

In the rank one case, Λ+ can be canonically identified with N. The finite-

dimensional irreducible U-modules are of the form ωL(s) of lowest weight −s, with

s ∈ N. Recall [Lu2] the canonical basis of ωL(s) consists of {E(a)ξ−r | 0 ≤ a ≤ s}.

We denote by ωL(s) the Z[q]-submodule of ωL(s) generated by {E(a)ξ−s | 0 ≤ a ≤ s}.

Also denote by ωLA(s) the A-submodule of ωL(s) generated by {E(a)ξ−s | 0 ≤ a ≤ s}.

In the current rank one setting, we can write the intertwiner Υ =
∑

k≥0 Υk, with

Υk = Υkα0 = ckF
(k) for ck ∈ Q(q), and c0 = 1.

Lemma 4.2.1. We have Υk ∈ U−A, for k ≥ 0.

Proof. It is equivalent to prove that ck ∈ A = Z[q, q−1] for all k ≥ 0. The equation

(2.3.1) for u = t implies that

qFK−1Υk−2 +K−1Υk−1 + EΥk = q−1Υk−2FK + Υk−1K + ΥkE,
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for all k ≥ 0. Solving this equation, we have the following recursive formula for ck:

ck = (−qk−1)(q−1 − q)(q−1[k − 1]ck−2 + ck−1), for all k ≥ 1,

where c−1 = 0 and c0 = 1. Then it follows by induction on k that ck ∈ A.

One can show by the recursive relation in the above proof that

Υ =
∑
k≥0

qk(k+1)
( k∏
i=1

(q2i−1 − q1−2i)F (2k) +
k+1∏
i=1

(q2i−1 − q1−2i)F (2k+1)
)
. (4.2.1)

Proposition 4.2.2. Let s ∈ N.

1. The Uı-module ωL(s) admits a unique Q(q)-basis Bı(s) = {T sa | 0 ≤ a ≤ s}

which satisfies ψı(T
s
a ) = T sa and

T sa = E(a)ξ−s +
∑
a′<a

tsa;a′E
(a′)ξ−s, (4.2.2)

where tsa;a′ ∈ qZ[q]. (We also set tsa;a = 1.)

2. Bı(s) forms an A-basis for the A-lattice ωLA(s).

3. Bı(s) forms a Z[q]-basis for the Z[q]-lattice ωL(s).

We call Bı(s) the ı-canonical basis of the Uı-module ωL(s).

Proof. Parts (2) and (3) follow immediately from (1) by noting (4.2.2).

It remains to prove (1). Since ψı = Υψ and ψ(E(a)ξ−s) = E(a)ξ−s, we have

ψı(E
(a)ξ−s) = Υ(E(a)ξ−s) = E(a)ξ−s +

∑
a′<a

ρsa;a′E
(a′)ξ−s,

for some scalars ρsa;a′ ∈ A. As ψı is an involution, Part (1) follows by an application

of [Lu2, Lemma 24.2.1] to our setting.
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Lemma 4.2.3. Write x ≡ x′ if x− x′ ∈ q ωL(s) with s ∈ N. The Uı-homomorphism

π = πs,1 : ωL(s+ 2)→ ωL(s) from Proposition 4.1.4 satisfies that, for a ≥ 0,

π(E(a)ξ−s−2) ≡


E(a−1)ξ−s, if s = a− 1;

E(a)ξ−s, otherwise.

Proof. Recall Proposition 4.1.4, Proposition 4.1.3, and π = (δ ⊗ id)(T ⊗ id⊗ id)(χ⊗

id)χ. It is easy to compute the action of T on ωL(1) = L(1) is given by

T(ξ−1) = Eξ−1 − (q−1 − q)ξ−1 and T(Eξ−1) = ξ−1.

For the map δ ⊗ id : L(1)⊗ ωL(1)⊗ ωL(s)→ ωL(s), it is easy to compute that

δ(Eξ−1 ⊗ ξ−1) = 1, δ(ξ−1 ⊗ Eξ−1) = −q, and δ(ξ−1 ⊗ ξ−1) = δ(Eξ−1 ⊗ Eξ−1) = 0.

For the map (χ⊗ id)χ : ωL(s+ 2)→ ωL(1)⊗ ωL(1)⊗ ωL(s), we have

(χ⊗ id)χ(E(a)ξ−s−2)

=
∑

a1+a2+a3=a

q−a1a2−a1a3−a2a3+a1+sa1+sa2E(a1)ξ−1 ⊗ E(a2)ξ−1 ⊗ E(a3)ξ−s

=ξ−1 ⊗ ξ−1 ⊗ E(a)ξ−s + q−a+1+sξ−1 ⊗ Eξ−1 ⊗ E(a−1)ξ−s

+ q−a+2+sEξ−1 ⊗ ξ−1 ⊗ E(a−1)ξ−s + q2s−2a+4Eξ−1 ⊗ Eξ−1 ⊗ E(a−2)ξ−s.
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Then by applying T ⊗ id⊗ id, we have

(T ⊗ id⊗ id)(χ⊗ id)χ(E(a)ξ−s−2)

=Eξ−1 ⊗ ξ−1 ⊗ E(a)ξ−s − (q−1 − q)ξ−1 ⊗ ξ−1 ⊗ E(a)ξ−s

+ q−a+2+sEξ−1 ⊗ Eξ−1 ⊗ E(a−1)ξ−s − q−a+1+s(q−1 − q)ξ−1 ⊗ Eξ−1 ⊗ E(a−1)ξ−s

+ q−a+1+sξ−1 ⊗ ξ−1 ⊗ E(a−1)ξ−s + q2s−2a+4ξ−1 ⊗ Eξ−1 ⊗ E(a−2)ξ−s.

At last, by applying δ ⊗ 1, we have

π(E(a)ξ−s−2)

=E(a)ξ−s + 0 + 0 + q−a+2+s(q−1 − q)E(a−1)ξ−s + 0− q2s−2a+5E(a−2)ξ−s

=E(a)ξ−s + q−a+1+sE(a−1)ξ−s − q−a+3+sE(a−1)ξ−s − q2s−2a+5E(a−2)ξ−s.

The lemma follows.

We adopt the convention that T sa = 0 if s < a.

Proposition 4.2.4. The homomorphism π = πs,1 : ωL(s+ 2) → ωL(s) sends ı-

canonical basis elements to ı-canonical basis elements or zero. More precisely, we

have

π(T s+2
a ) =


T sa−1, if s = a− 1;

T sa , otherwise.

Proof. By Proposition 4.2.2 and Lemma 4.2.3, the difference of the two sides of the

identity in the proposition lies in q ωL(s) and hence is a qZ[q]-linear combination of
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Bı(s). Lemma 4.1.5 implies that such a difference is fixed by the anti-linear involution

ψı and hence it must be zero. The proposition follows.

Lemma 4.2.5. Let f(t) ∈ Uı = Q(q)[t] be nonzero. Then f(t)ξ−s 6= 0 for all

s ≥ deg f .

Proof. We write ξ = ξ−s. Write a = deg f , and f(t) =
∑a

i=0 cit
i with ca 6= 0. Then

ı(f(t)) = caE
a + x, where x is a linear combination of elements in U with weights

lower than that of Ea. It follows that f(t)ξ = caE
aξ + xξ 6= 0 for s ≥ a, since

caE
aξ 6= 0 and it cannot be canceled out by xξ for weight reason.

Proposition 4.2.6. There exists a unique Q(q)-basis {T odd
a | a ∈ N} of Uı = Q(q)[t]

with deg T odd
a = a such that

T odd
a ξ−s =


T sa−1, if s = a− 1;

T sa , otherwise,

(4.2.3)

for each s ∈ 2N+ 1. Moreover, we have T odd
a = T odd

a .

Proof. By going over carefully the proof of Lemma 4.1.1 in the rank one case, we can

prove the following refinement of Lemma 4.1.1:

(♥sa) Whenever s ≥ a, there exists a unique element Ta(s) ∈ Uı = Q(q)[t] of

degree a such that Ta(s)ξ−s = T sa .

Let s ≥ a and take l ≥ 0. Since πs,2l is a Uı-homomorphism with πs,2l(ξ−(s+2l)) =
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ξ−s (see Proposition 4.1.4), we have by Proposition 4.2.4

Ta(s+ 2l)ξ−s = πs,l(Ta(s+ 2l)ξ−(s+2l))

♥s+2l
a= πs,l(T

s+2l
a ) = T sa

♥sa= Ta(s)ξ−s.

Hence Ta(s + 2l) = Ta(s) for all l ≥ 0 and s ≥ a, thanks to the uniqueness of Ta(s)

in (♥sa). Hence,

T odd
a := lim

l 7→∞
Ta(1 + 2l) ∈ Uı

is well defined. It follows by Proposition 4.2.4 that T odd
a satisfies (4.2.3).

We now show that T odd
a is unique (for a given a). Let ′T odd

a be another such

element satisfying (4.2.3). Then (T odd
a − ′T odd

a )ξ−s = 0 for all s ∈ 2N + 1. It follows

by Lemma 4.2.5 that T odd
a = ′T odd

a .

Applying ψı to both sides of (4.2.3) and using Corollary 3.4.3, we conclude that

T odd
a satisfies (4.2.3) as well. Hence by the uniqueness we have T odd

a = T odd
a .

A similar argument gives us the following proposition.

Proposition 4.2.7. There exists a unique Q(q)-basis {T ev
a | a ∈ N} of Uı = Q(q)[t]

with deg T ev
a = a such that

T ev
a ξ−s =


T sa−1, if a = s+ 1;

T sa , otherwise,

for each s ∈ 2N. Moreover, we have T ev
a = T ev

a .



77

Clearly we have T odd
0 = T ev

0 = 1. It is also easy to see that T odd
a and T ev

a for a ≥ 1

are both of the form

ta

[a]!
+ g(t), where deg g < a. (4.2.4)

We have the following conjectural formula (which is not needed in this paper).

Conjecture 4.2.8. For a ∈ N, we have

T odd
2a =

t(t− [−2a+ 2])(t− [−2a+ 4]) · · · (t− [2a− 4])(t− [2a− 2])

[2a]!
,

T odd
2a+1 =

(t− [−2a])(t− [−2a+ 2]) · · · (t− [2a− 2])(t− [2a])

[2a+ 1]!
,

T ev
2a =

(t− [−2a+ 1])(t− [−2a+ 3]) · · · (t− [2a− 3])(t− [2a− 1])

[2a]!
,

T ev
2a+1 =

t(t− [−2a+ 1])(t− [−2a+ 3]) · · · (t− [2a− 3])(t− [2a− 1])

[2a+ 1]!
.

4.3 Integrality at rank one

Lemma 4.3.1. Let s, l ∈ N.

1. There exists a unique homomorphism of Uı-modules

π− = π−s,l : ωL(s+ 2l) −→ L(l)⊗ ωL(s+ l)

such that π−(ξ−s−2l) = ηl ⊗ ξ−s−l.

2. π− induces a homomorphism of A-modules

π− = π−s,l : ωLA(s+ 2l) −→ LA(l)⊗ ωLA(s+ l).
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Proof. The uniqueness of such a homomorphism is clear, since Uıξ−s−2l = ωL(s+ 2l)

by Lemma 4.1.1.

We let π− = T−1χ be the composition of the Uı-homomorphisms

ωL(s+ 2l)
χ
// ωL(l)⊗ ωL(s+ l)

T−1⊗1
// L(l)⊗ ωL (s+ l),

where χ is the Uı-homomorphism from Proposition 4.1.3 and T = Υ ◦ ζ̃ ◦ Tw0 is

the Uı-homomorphism from Theorem 2.5.1. As the automorphism Tw0 preserves the

A-forms, we can choose the weight function ζ in (2.5.2) with suitable value ζ(l) ∈ qZ

such that T−1
w0
ζ̃−1(ξ−l) = ηl. It follows by (2.5.2) that ζ must be A-valued. Then

π− = T−1χ is the map satisfying (1) since χ(ξ−s−2l) = ξ−l ⊗ ξ−s−l.

By Proposition 4.1.3 χ maps ωLA(s + 2l) to LA(l) ⊗ ωLA(s + l). It is also well

known that Tw0 is an automorphism of the A-form ωLA(l). By Lemma 4.2.1, Υ−1 = Υ

preserves the A-form ωLA(l) as well. As a composition of all these maps, π− =

(Υ ◦ ζ̃ ◦ Tw0)−1χ preserves the A-forms, whence (2).

The following lemma is a variant of Lemma 4.3.1 and can be proved in the same

way.

Lemma 4.3.2. Let s, l ∈ N.

1. There exists a unique homomorphism of Uı-modules

π+ = π+
s,l : ωL(s+ 2l) −→ L(s+ l)⊗ ωL(l),

such that π+(ξ−s−2l) = ηs+l ⊗ ξ−l.
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2. π+ induces a homomorphism of A-modules

π+ : ωLA(s+ 2l) −→ LA(s+ l)⊗ ωLA(l).

Recall that a modified Q(q)-algebra U̇ as well as its A-form U̇A are defined in

[Lu2, Chapter 23]. Any finite-dimensional unital U̇-module is naturally a weight

U-module, and vice versa (see [Lu2, 23.1.4]). In the rank one setting, U̇ (or U̇A) is

generated by E,F and the idempotents 1s for s ∈ Z. As U̇ is naturally a U-bimodule,

ı(T odd
a )1s and ı(T ev

a )1s make sense as elements in U̇1s, for a ∈ N and s ∈ Z.

Proposition 4.3.3. 1. We have ı(T odd
a )1s ∈ U̇A, for all a ∈ N, s ∈ 2Z+ 1.

2. We have ı(T ev
a )1s ∈ U̇A, for all a ∈ N, s ∈ 2Z.

Proof. (1). Let s ∈ 2N+ 1. Fix an arbitrary a ∈ N. Recall Lusztig’s canonical basis

{b3−sb′} of U̇1−s in [Lu2, Theorem 25.2.1]. We write

ı(T odd
a )1−s =

∑
b,b′

cb,b′b3−sb
′,

for some scalars cb,b′ ∈ Q(q). Consider the map

π− : ωLA(s+ 2l) −→ LA(l)⊗ ωLA(s+ l)

in Lemma 4.3.1 for all l ≥ 0. We have T odd
a ξ−s−2l ∈ ωLA(s+ 2l) by Propositions 4.2.2

and 4.2.6. Therefore we have

ı(T odd
a )1−s(ηl ⊗ ξ−s−l) = T odd

a (ηl ⊗ ξ−s−l) = π−(T odd
a ξ−s−2l) ∈ LA(l)⊗ ωLA(s+ l).
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Hence we have (in Lusztig’s notation [Lu2, Theorem 25.2.1])

∑
(b,b′)

cb,b′(b3b
′)l,s+l = ı(T odd

a )1−s(ηl ⊗ ξ−s−l) ∈ LA(l)⊗ ωLA(s+ l).

Since this holds for all l and (b3b′)l,s+l 6= 0 for l � 0, all cb,b′ must belong to A.

Hence ı(T odd
a )1−s ∈ U̇A.

By considering the map

π+ : ωLA(s+ 2l) −→ LA(s+ l)⊗ ωLA(l)

in Lemma 4.3.2 for all l ≥ 0, we can show that ı(T odd
a )1s ∈ U̇A for s ∈ 2N + 1 in a

similar way. This proves (1). The proof of (2) is similar and will be skipped.

4.4 The integrality of Υ

Back to the general higher rank case, we are now ready to prove the following crucial

lemma with the help of Proposition 4.3.3.

Lemma 4.4.1. For each λ ∈ Λ+, we have Υ(ωLA(λ)) ⊆ ωLA(λ).

Proof. We write ξ = ξ−λ. We shall prove that Υx ∈ ωLA(λ) by induction on the

height ht(µ + λ), for an arbitrary weight vector x ∈ ωLA(λ)µ. It suffices to consider

x of the form x = E
(a1)
αi1

E
(a2)
αi2
· · ·E(as)

αis ξ which is ψ-invariant.

The base case when ht(µ+ λ) = 0 is clear, since x = ξ and Υξ = ξ.

Denote x′ = E
(a2)
αi2
· · ·E(as)

αis ξ ∈ ωLA(λ), and so x = E
(a1)
αi1

x′. The induction step is

divided into three cases depending on whether i1 > 0, i1 < 0, or i1 = 0. Recall that,

for any u ∈ Uı, the actions of u and ı(u) on ωLA(λ) are the same by definition.
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(1) Assume that i1 > 0 (i.e., i1 ∈ Iı). Replacing E
(a1)
αi1

in the expression of x by

e
(a1)
αi1

, we introduce a new element x′′ = e
(a1)
αi1

x′ which lies in ωLA(λ) thanks to (2.2.1).

Then y := x′′− x ∈ ωLA(λ) is a linear combination of elements of weights lower than

the weight of x.

We shall consider ψı(x
′′) in two ways. By Corollary 3.4.3, ωLA(λ) is ı-involutive.

Since e
(a1)
αi1

is ψı-invariant and ψı = Υψ, we have

ψı(x
′′) = ψı(e

(a1)
αi1

x′) = e(a1)
αi1

ψı(x
′) = e(a1)

αi1
Υψ(x′).

It is well known (cf. [Lu2]) that ψ preserves ωLA(λ), and so ψ(x′) ∈ ωLA(λ). Since

ψ(x′) has weight lower than x, we have Υψ(x′) ∈ ωLA(λ) by the induction hypothesis.

Equation (2.2.1) implies that ψı(x
′′) = e

(a1)
αi1

Υψ(x′) ∈ ωLA(λ).

On the other hand, we have

ψı(x
′′) = ψı(x) + ψı(y) = Υψ(x) + Υψ(y) = Υx+ Υψ(y).

Since ψ(y) ∈ ωLA(λ) has weight lower than x, we have Υψ(y) ∈ ωLA(λ) by the

induction hypothesis. Therefore we conclude that Υx = ψı(x
′′)−Υψ(y) ∈ ωLA(λ).

(2) Assume that i1 < 0. In this case, replacing E
(a1)
αi1

in the expression of x by

f
(a1)
α−i1

instead, we consider a new element x′′ = f
(a1)
αi1

x′ which also lies in ωLA(λ) by

(2.2.2). Then an argument parallel to (1) shows that Υx ∈ ωLA(λ).

(3) Now consider the case where i1 = 0. Set β =
∑s

p=2 aiαip − λ. We decide into

two subcases (i)-(ii), depending on whether (α0, β) is odd or even.

Subcase (i). Assume that (α0, β) is an odd integer. Replacing E
(a1)
αi1

in the ex-
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pression of x by the element T odd
a1

defined in Proposition 4.2.6, we introduce a new

element x′′ = T odd
a1

x′, which belongs to ωLA(λ) by Proposition 4.3.3 (as we can write

x′′ = T odd
a1

1(α0,β)x
′). Thanks to (4.2.4), y := x′′ − x ∈ ωLA(λ) is a linear combination

of elements of weights lower than x. Then similarly as in case (1), we have

ψı(x
′′) = ψı(T

odd
a1

x′) = T odd
a1

ψı(x
′) = T odd

a1
Υψ(x′).

As in (1), we have Υψ(x′) ∈ ωLA(λ). Recall from Theorem 2.3.1 that Υ =
∑

µ Υµ,

where Υµ 6= 0 only if µθ = µ. Note that (α0, µ) must be an even integer if µθ = µ.

Hence (α0, µ+β) is always odd whenever µθ = µ. Therefore by Proposition 4.3.3, we

have

ψı(x
′′) = T odd

a1
Υψ(x′) =

∑
µ:µθ=µ

T odd
a1

1(α0,µ+β)Υµψ(x′) ∈ ωLA(λ).

Now by the induction hypothesis we have Υψ(y) ∈ ωLA(λ), and hence Υx =

ψı(x
′′)−Υψ(y) ∈ ωLA(λ).

Subcase (ii). Assume that (α0, β) is an even integer. In this subcase, we replace

E
(a1)
αi1

by T ev
a1

. The rest of the argument is the same as Subcase (i) above.

This completes the induction and the proof of the lemma.

Theorem 4.4.2. We have Υµ ∈ U−A, for all µ ∈ NΠ.

Proof. Recall Lusztig’s canonical basis B of f in Section 1.3 with Bµ = B ∩ fµ. We

write Υµ =
∑

b∈Bµ cbb
− for some scalars cb ∈ Q(q). By Lemma 4.4.1, we have

Υµηλ =
∑
b∈Bµ

cbb
−ηλ ∈ LA(λ), for all λ ∈ Λ+.
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For an arbitrarily fixed b ∈ Bµ, b−ηλ 6= 0 for λ large enough, and hence we must have

cb ∈ A. Therefore Υµ ∈ U−A.

4.5 The ı-canonical basis of ωL(λ)

By Corollary 3.4.3, ωL(λ) for λ ∈ Λ+ is an ı-involutive Uı-module with involution

ψı = Υψ.

Lemma 4.5.1. The bar map ψı preserves the A-form ωLA(λ), for λ ∈ Λ+.

Proof. It is well known (cf. [Lu2]) that ψ preserves ωLA(λ). As ωLA(λ) is preserved

by Υ by Lemma 4.4.1, it is also preserved by ψı = Υψ.

Define a partial ordering � on the set B(λ) of canonical basis for λ ∈ Λ+ as

follows:

b1 � b2 ⇔ the images of |b1|, |b2| are the same in Λθ and |b2| − |b1| ∈ NΠ.

(4.5.1)

(Recall that |b| denotes the weight of b as in §1.2).

For any b ∈ B(λ), we have

ψı(b
+ξ−λ) = Υψ(b+ξ−λ) = Υ(b+ξ−λ) =

∑
b′∈B(λ)

ρb;b′b
′+ξ−λ, (4.5.2)

where ρb;b′ ∈ A by Theorem 4.4.2. Since Υ lies in a completion of U− satisfying

Υµ = 0 unless µθ = µ (see Theorem 2.3.1), we have ρb;b = 1 and ρb;b′ = 0 unless

b′ � b. As ψı is an involution, we can apply [Lu2, Lemma 24.2.1] to our setting to
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establish the following theorem, which is a generalization of Proposition 4.2.2 in the

rank one case.

Theorem 4.5.2. Let λ ∈ Λ+.

1. The Uı-module ωL(λ) admits a unique basis

Bı(λ) := {T λb | b ∈ B(λ)}

which is ψı-invariant and of the form

T λb = b+ξ−λ +
∑
b′≺b

tλb;b′b
′+ξ−λ, for tλb;b′ ∈ qZ[q].

2. Bı(λ) forms an A-basis for the A-lattice ωLA(λ).

3. Bı(λ) forms a Z[q]-basis for the Z[q]-lattice ωL(λ).

Definition 4.5.3. Bı(λ) is called the ı-canonical basis of the Uı-module ωL(λ).

Remark 4.5.4. The ı-canonical basis Bı(λ) is not homogenous in terms of the weight

lattice Λ, though it is homogenous in terms of Λθ.

Remark 4.5.5. Lusztig’s canonical basis B(λ) is computable algorithmically. As Υ

is constructed recursively in §2.4, there is an algorithm to compute the structure

constants ρb;b′ in (4.5.2) and then tλb;b′ .

Set tλb;b = 1, and tλb;b′ = 0 if b, b′ ∈ B(λ) satisfy b′ � b. We conjecture that

tλb;b′ ∈ N[q], for b, b′ ∈ B(λ).
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Recall [Lu2, Chapter 27] has developed a theory of based U-modules (M,B) (for

general quantum groups U of finite type). The basis B generates a Z[q]-submodule

M and an A-submodule AM of M . Applying the same argument for Theorem 4.5.2

above, we have established the following.

Theorem 4.5.6. Let (M,B) be a finite-dimensional based U-module.

1. The Uı-module M admits a unique basis (called ı-canonical basis) Bı := {Tb |

b ∈ B} which is ψı-invariant and of the form

Tb = b+
∑

b′∈B,b′≺b

tb;b′b
′, for tb;b′ ∈ qZ[q]. (4.5.3)

2. Bı forms an A-basis for the A-lattice AM , and Bı forms a Z[q]-basis for the

Z[q]-lattice M.

Recall that a tensor product of finite-dimensional simple U-modules is a based

U-module by [Lu2, Theorem 27.3.2]. Theorem 4.5.6 implies now the following.

Theorem 4.5.7. Let λ1, . . . , λr ∈ Λ+. The tensor product of finite-dimensional sim-

ple U-modules ωL(λ1)⊗ . . .⊗ ωL(λr) admits a unique ψı-invariant basis of the form

(4.5.3) (called ı-canonical basis).



Chapter 5

The (Uı,HBm)-duality and

compatible bar involutions

In this chapter, we recall Schur-Jimbo duality between quantum group U and Hecke

algebra of type A. Then we establish a duality between Uı and Hecke algebra HBm

of type B acting on V⊗m, and show the existence of a bar involution on V⊗m which is

compatible with the bar involutions on Uı and HBm . This allows a reformulation of

Kazhdan-Lusztig theory for Lie algebras of type B/C via the involutive Uı-module

V⊗m.

86
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5.1 Schur-Jimbo duality

Recall the notation I2r from (1.1.1), and we set

I = I2r+2 =
{
− r − 1

2
, . . . ,−3

2
,−1

2
,
1

2
,
3

2
, . . . , r +

1

2

}
.

Let the Q(q)-vector space V :=
∑

a∈I Q(q)va be the natural representation of U. We

shall call V the natural representation of Uı (by restriction) as well. For m ∈ Z>0,

the tensor space V⊗m is naturally a U-module (and a Uı-module) via the coproduct

∆. The U-module V is involutive with ψ defined by

ψ(va) := va, for all a ∈ I.

Then V⊗m is an involutive U-module and hence an ı-involutive Uı-module by Propo-

sition 3.4.2 and Remark 3.4.6.

We view f ∈ Im as a function f : {1, . . . ,m} → I. For any f ∈ Im, we define

Mf := vf(1) ⊗ · · · ⊗ vf(m).

Then {Mf | f ∈ Im} forms a basis for V⊗m.

Let WBm be the Coxeter groups of type Bm with simple reflections sj, 0 ≤ j ≤ m,

where the subgroup generated by si, 1 ≤ i ≤ m is isomorphic to WAm−1
∼= Sm. The

group WBm and its subgroup Sm act naturally on Im on the right as follows: for any

f ∈ Im, 1 ≤ i ≤ m, we have

f · sj =


(. . . , f(j + 1), f(j), . . . ), if j > 0,

(−f(1), f(2), . . . , f(m)), if j = 0.

(5.1.1)
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Let HBm be the Iwahori-Hecke algebra of type Bm over Q(q). It is generated by

H0, H1, H2, . . . , Hm−1, subject to the following relations,

(Hi − q−1)(Hi + q) = 0, for i ≥ 0,

HiHi+1Hi = Hi+1HiHi+1, for i > 0,

HiHj = HjHi, for |i− j| > 1,

H0H1H0H1 = H1H0H1H0.

Associated to σ ∈ WBm with a reduced expression σ = si1 · · · sik , we define Hσ :=

Hi1 · · ·Hik . The bar involution on HBm is the unique anti-linear automorphism defined

by Hσ = H−1
σ−1 , q = q−1, for all σ ∈ WBm .

There is a right action of the Hecke algebra HBm on the Q(q)-vector space V⊗m

as follows:

MfHa =



q−1Mf , if a > 0, f(a) = f(a+ 1);

Mf ·sa , if a > 0, f(a) < f(a+ 1);

Mf ·sa + (q−1 − q)Mf , if a > 0, f(a) > f(a+ 1);

Mf ·s0 , if a = 0, f(1) > 0;

Mf ·s0 + (q−1 − q)Mf , if a = 0, f(1) < 0.

(5.1.2)

Identified as the subalgebra generated by H1, H2, . . . , Hm−1 of HBm , the Hecke

algebra HAm−1 inherits a right action on V⊗m. Note that the bar involution on

HAm−1 is just the restriction of the bar involution on HBm .
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Recall from Section 1.4 the operator R. We define the following operator on V⊗m

for each 1 ≤ i ≤ m− 1:

Ri := idi−1 ⊗ R⊗ idm−i−1 : V⊗m −→ V⊗m.

The following basic result was due to Jimbo.

Proposition 5.1.1. [Jim]

1. The action of R−1
i coincides with the action of Hi on V⊗m for 1 ≤ i ≤ m− 1.

2. The actions of U and HAm−1 on V⊗m commute with each other, and they form

double centralizers.

5.2 The (Uı,HBm)-duality

Introduce the Q(q)-subspaces of V:

V− =
⊕

0≤i≤r

Q(q)(v−i− 1
2
− q−1vi+ 1

2
),

V+ =
⊕

0≤i≤r

Q(q)(v−i− 1
2

+ qvi+ 1
2
).

Lemma 5.2.1. The subspace V− is a Uı-submodule of V generated by v− 1
2
−q−1v 1

2
and

V+ is a Uı-submodule of V generated by v− 1
2

+qv 1
2
. Moreover, we have V = V−⊕V+.

Proof. Follows by a direct computation.

Now we fix the function ζ in (2.5.2) with ζ(ε−r− 1
2
) = 1 so that

ζ(εr+ 1
2
−i) = (−q)i−2r−1, for 0 ≤ i ≤ 2r + 1.
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Let us compute the Uı-homomorphism T = Υ ◦ ζ̃ ◦ Tw0 (see Theorem 2.5.1) on the

U-module V; we remind that w0 here is associated to U instead of WBm or WAm−1 .

Lemma 5.2.2. The Uı-isomorphism T−1 on V acts as a scalar (−q)id on the sub-

module V− and as q−1id on the submodule V+.

Proof. First one computes that the action of Tw0 on V is given by

Tw0(v−r− 1
2

+i) = (−q)2r+1−ivr+ 1
2
−i, for 0 ≤ i ≤ 2r + 1.

Hence

ζ̃ ◦ Tw0(va) = va·s0 , for all a ∈ I. (5.2.1)

We have Υα0 = −(q−1−q)Fα0 from the proof of Theorem 2.3.1 in §2.4. Therefore,

using T = Υ ◦ ζ̃ ◦ Tw0 we have

T−1(v− 1
2
− q−1v 1

2
) = −q(v− 1

2
− q−1v 1

2
), (5.2.2)

T−1(v− 1
2

+ qv 1
2
) = q−1(v− 1

2
+ qv 1

2
). (5.2.3)

The lemma now follows from Lemma 5.2.2 since T−1 is a Uı-isomorphism.

We have the following generalization of Schur-Jimbo duality in Proposition 5.1.1.

Theorem 5.2.3 ((Uı,HBm)-duality). 1. The action of T−1⊗idm−1 coincides with

the action of H0 ∈ HBm on V⊗m.

2. The actions of Uı and HBm on V⊗m commute with each other, and they form

double centralizers.
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Proof. Part (1) follows from Lemma 5.2.2 and the action (5.1.2) of H0 ∈ HBm on

V⊗m.

By Proposition 5.1.1, the actions of Uı and HAm−1 on V⊗m commute with each

other. The action of Uı on V⊗m comes from the iterated coproduct Uı → Uı⊗U⊗m−1.

Since T−1 : V→ V is a Uı-homomorphism, we conclude that the actions of T−1⊗idm−1

and Uı on V⊗m commute with each other. Hence by (1) the actions of Uı and HBm

on V⊗m commute with each other.

The double centralizer property is equivalent to a multiplicity-free decomposition

of V⊗m as an Uı ⊗ HBm-module. The latter follows by the same multiplicity-free

decomposition claim at the specialization q 7→ 1, in which case Uı specializes to the

enveloping algebra of sl(r+1)⊕gl(r+1) and HBm to the group algebra of WBm . Then

V = V+⊕V− at q = 1 becomes the natural module of sl(r+ 1)⊕ gl(r+ 1), on which

s0 ∈ WBm acts as (idV+ ,−idV−). A multiplicity-free decomposition of V⊗m at q = 1

can be established by a standard method with the simples parameterized by ordered

pairs of partitions (λ, µ) such that `(λ) ≤ r + 1, `(µ) ≤ r + 1 and |λ|+ |µ| = m.

Remark 5.2.4. The homomorphism T (or T−1) is not needed in Theorem 5.2.3(2),

as one can check directly that the action of H0 commutes with the action of Uı.

However, it is instructive to note that the action of H0 arises from T which plays an

analogous role as the R-matrix.

Remark 5.2.5. A version of the duality in Theorem 5.2.3 was given in [Gr], where a

Schur-type algebra was in place of Uı here. For the applications to BGG categories
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in Part 2, it is essential for us to work with the “quantum group” Uı equipped with

a coproduct.

5.3 Bar involutions and duality

Definition 5.3.1. An element f ∈ Im is called anti-dominant (or ı-anti-dominant),

if 0 < f(1) ≤ f(2) ≤ . . . ≤ f(m).

Theorem 5.3.2. There exists an anti-linear bar involution ψı : V⊗m → V⊗m which

is compatible with both the bar involution of HBm and the bar involution of Uı; that

is, for all v ∈ V⊗m, σ ∈ WBm, and u ∈ Uı, we have

ψı(uvHσ) = ψı(u)ψı(v)Hσ. (5.3.1)

Such a bar involution is unique by requiring ψı(Mf ) = Mf for all ı-anti-dominant f .

Proof. Applying the general construction in §3.4 to our setting, we have an ı-involutive

Uı-module (V⊗m, ψı); in other words, we have constructed an anti-linear involution

ψı : V⊗m → V⊗m which is compatible with the bar involution of Uı.

As the HBm-module V⊗m is a direct sum of permutation modules of the form

HBm/HJ for various Hecke subalgebras HJ , there exists a unique anti-linear involu-

tion on V⊗m, denoted by ψ′ı, such that

1. ψ′ı(Mf ) = Mf , if f is ı-anti-dominant;

2. ψ′ı(MgHσ) = ψ′ı(Mg)Hσ, for all g ∈ Im and σ ∈ WBm .
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To prove the compatibility of ψı with the bar involution of HBm , it suffices to

prove ψı satisfies the conditions (1)-(2) above; note that it suffices to consider σ in

(2) to be the simple reflections.

By the construction in §3.4, the bar involution ψı : V⊗m → V⊗m is given by

ψı = Υψ, where ψ : V⊗m → V⊗m is a bar involution of type A. The following

compatibility of the bar involutions in the type A setting is well known (see, e.g.,

[Br1]) (Here we note that our ı-anti-dominant condition is stronger than the type A

anti-dominant condition):

(1′) ψ(Mf ) = Mf , if f is ı-anti-dominant;

(2′) ψ(MgHσ) = MgHσ, for any g ∈ Im and any Hσ ∈ HAm−1 .

The U-weight of Mf is wt(f) :=
∑m

a=1 εf(a) ∈ Λ. Define the Uı-weight of Mf

wt0(f) :=
∑m

a=1 εf(a) ∈ Λθ, which is the image of wt(f) in Λθ = Λ/Λθ (here we have

denoted by εk the image of εk in Λθ). Defined the following partial ordering � on Im

(which is only used in this proof):

g � f ⇔ wt0(g) = wt0(f) and wt(gf)− wt(g) ∈ NΠ.

Applying the intertwiner Υ =
∑

µ∈NΠ Υµ from Theorem 2.3.1, we can write for

any f ∈ Im that

Υ(Mf ) =
∑
g∈Im

cgMg, for cg ∈ Q(q).

Here the sum can be restricted to g with wt0(g) = wt0(f) (since Υµ = 0 unless µθ = µ

by Theorem 2.3.1); hence we have wt(gf)− wt(g) ∈ NΠ (since Υµ ∈ U−). Therefore
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we have

Υ(Mf ) = Mf +
∑
g≺f

cgMg, for cg ∈ Q(q).

So if f is ı-anti-dominant then we have Υ(Mf ) = Mf , and thus by Proposition 3.4.2

and (1′) above, ψı(Mf ) = Υψ(Mf ) = Υ(Mf ) = Mf . Hence ψı satisfies Condition (1).

To verify Condition (2) for ψı, let us first consider the special case when m = 1.

Note that ψ(va) = va and hence ψı(va) = Υ(va) for all a. By Definition 5.3.1, a is

ı-anti-dominant if and only if a > 0. Thus we have

ψı(va) = va = ψ′ı(va), for a > 0. (5.3.2)

On the other hand, by (5.2.1) and Lemma 5.2.2 we have

ψı(va) = Υ(va) = Υ ◦ ζ̃ ◦ Tw0(va·s0)

= T(va·s0) = va·s0H
−1
0 = ψ′ı(va), for a < 0.

(5.3.3)

Hence ψı = ψ′ı and (5.3.1) holds when m = 1.

Now consider general m ∈ Z>0. For 1 ≤ i ≤ m−1, by applying Proposition 3.4.2,

the identity (2′) above, and Proposition 5.1.1 in a row, we have, for g ∈ Im,

ψı(MgHi) = Υψ(MgHi) = Υ(ψ(Mg)H i) = ψı(Mg)H i.
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When i = 0, we write Mg = vg(1) ⊗Mg′ , and hence

ψı(MgH0) = ψı(vg(1)H0 ⊗Mg′)

= Θı(ψı(vg(1)H0)⊗ ψ(Mg′)) by Proposition 3.4.7,

= Θı(ψı(vg(1))H0 ⊗ ψ(Mg′)) by (5.3.1) in case m = 1,

= Θı(ψı(vg(1))⊗ ψ(Mg′))H0 by Theorem 5.2.3,

= ψı(Mg)H0 by Proposition 3.4.7.

This proves ψı = ψ′ı in general, and hence completes the proof of the compatibility of

all these bar involutions.

The uniqueness of ψı in the theorem follows from the uniqueness of ψ′ı above.

Remark 5.3.3. The anti-linear involution ψı defined on V⊗m from the Hecke algebra

side gives rise to the Kazhdan-Lusztig theory of type B. Theorem 5.3.2 implies that

the (induced) Kazhdan-Luszig basis on V⊗m coincides with its ı-canonical basis (see

Theorem 4.5.7). Hence Kazhdan-Lusztig theory of type B can be reformulated from

the algebra Uı side through ψı without referring to the Hecke algebra; see Theo-

rem 11.4.1.

Remark 5.3.4. It follows by (5.3.2) and (5.3.3) that
{
vi+ 1

2
, (v−i− 1

2
− q−1vi+ 1

2
) | 0 ≤

i ≤ r
}

forms a ψı-invariant basis of V. Also
{
vi+ 1

2
, (v−i− 1

2
+ qvi+ 1

2
) | 0 ≤ i ≤ r

}
forms another ψı-invariant basis of V, which must be the ı-canonical basis by the

characterization in Theorem 4.5.2.



Chapter 6

The quantum symmetric pair

(U,U)

In this chapter we consider the quantum symmetric pair (U,U) with U of type A2r.

We formulate the counterparts of the main results from Chapter 2 through Chapter 5

where U was of type A2r+1. The proofs are similar and often simpler for U since it

does not contain a generator t as Uı does, and hence will be omitted almost entirely.

6.1 The coideal subalgebra U

We shall write I = I2r as given in (1.1.1) in this chapter. We define

I = Ir = (
1

2
+ N) ∩ I =

{1

2
,
3

2
, . . . , r − 1

2

}
.

The Dynkin diagram of type A2r together with the involution θ are depicted as follows:

96
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A2r :
α−r+ 1

2
α− 1

2
α 1

2
αr− 1

2

• • • •

θ

The algebra U is defined to be the associative algebra over Q(q) generated by

eαi , fαi , kαi , k
−1
αi

, i ∈ I, subject to the following relations for i, j ∈ I:

kαik
−1
αi

= k−1
αi
kαi = 1,

kαikαj = kαjkαi ,

kαieαjk
−1
αi

= q(αi−α−i,αj)eαj ,

kαifαjk
−1
αi

= q−(αi−α−i,αj)fαj ,

eαifαj − fαieαj = δi,j
kαi − k−1

αi

q − q−1
, if i, j 6= 1

2
,

e2
αi
eαj + eαje

2
αi

= (q + q−1)eαieαjeαi , if |i− j| = 1,

f 2
αi
fαj + fαjf

2
αi

= (q + q−1)fαifαjfαi , if |i− j| = 1,

eαieαj = eαjeαi , if |i− j| > 1,

fαifαj = fαjfαi , if |i− j| > 1,

f 2
α 1

2

eα 1
2

+ eα 1
2

f 2
α 1

2

= (q + q−1)
(
fα 1

2

eα 1
2

fα 1
2

− qfα 1
2

k−1
α 1

2

− q−1fα 1
2

kα 1
2

)
,

e2
α 1

2

fα 1
2

+ fα 1
2

e2
α 1

2

= (q + q−1)
(
eα 1

2

fα 1
2

eα 1
2

− q−1kα 1
2

eα 1
2

− qk−1
α 1

2

eα 1
2

)
.

We introduce the divided powers e
(a)
αi = eaαi/[a]!, f

(a)
αi = faαi/[a]!.

The following is a counterpart of Lemma 2.1.1.

Lemma 6.1.1. 1. The algebra U has an involution ω such that
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ω(kαi) = q
−δ

i, 12 k−1
αi

, ω(eαi) = fαi, and ω(fαi) = eαi, for all i ∈ I.

2. The algebra U has an anti-involution τ such that

τ(eαi) = eαi, τ(fαi) = fαi, and τ(kαi) = q
−δ

i, 12 k−1
αi

, for all i ∈ I.

3. The algebra U has an anti-linear (q 7→ q−1) bar involution such that

kαi = k−1
αi

, eαi = eαi, and fαi = fαi, for all i ∈ I.

(Sometimes we denote the bar involution on U by ψ.)

The following is a counterpart of Proposition 2.2.1, the proof of which relies on

[KP, Proposition 4.1] and [Le, Theorem 7.1].

Proposition 6.1.2. There is an injective Q(q)-algebra homomorphism  : U → U

defined by, for all i ∈ I,

kαi 7→ KαiK
−1
α−i
,

eαi 7→ Eαi +K−1
αi
Fα−i ,

fαi 7→ FαiK
−1
α−i

+ Eα−i .

Note that Eαi(K
−1
αi
Fα−i) = q2(K−1

αi
Fα−i)Eαi for i ∈ I. We have for i ∈ I,

(e(a)
αi

) =
a∑
j=0

qj(a−j)
(K−1

αi
Fα−i)

j

[j]!

Ea−j
αi

[a− j]!
, (6.1.1)

(f (a)
αi

) =
a∑
j=0

qj(a−j)
(FαiK

−1
α−i

)j

[j]!

Ea−j
α−i

[a− j]!
. (6.1.2)

The following is a counterpart of Proposition 2.2.4.



99

Proposition 6.1.3. The coproduct ∆ : U→ U⊗U restricts under the embedding 

to a Q(q)-algebra homomorphism ∆ : U 7→ U ⊗U such that for all i ∈ I,

∆(kαi) = kαi ⊗KαiK
−1
α−i
,

∆(eαi) = 1⊗ Eαi + eαi ⊗K−1
αi

+ k−1
αi
⊗K−1

αi
Fα−i ,

∆(fαi) = kαi ⊗ FαiK−1
α−i

+ fαi ⊗K−1
α−i

+ 1⊗ Eα−i .

Similarly, the counit ε of U induces a Q(q)-algebra homomorphism ε : U → Q(q)

such that ε(eαi) = ε(fαi) = 0 and ε(kαi) = 1 for all i ∈ I.

It follows by Proposition 6.1.3 that U is a (right) coideal subalgebra of U. The

map ∆ : U → U ⊗ U will be called the coproduct of U and ε : U → Q(q)

will be called the counit of U. The coproduct ∆ : U → U ⊗ U is coassociative,

i.e., (1 ⊗ ∆)∆ = (∆ ⊗ 1)∆ : U → U ⊗ U ⊗ U. The counit map ε makes Q(q) a

(trivial) U-module. Let m : U⊗U→ U denote the multiplication map. Just as in

Corollary 2.2.7, we have m(ε⊗ 1)∆ =  : U −→ U.

6.2 The intertwiner Υ and the isomorphism T

As in §2.3, we let Û be the completion of the Q(q)-vector space U. We have the

obvious embedding of U into Û. By continuity the Q(q)-algebra structure on U

extends to the Q(q)-algebra structure on Û. The bar involution ¯ on U extends

by continuity to an anti-linear involution on Û, which is also denoted by ¯. The

following is a counterpart of Theorem 2.3.1.
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Theorem 6.2.1. There is a unique family of elements Υµ ∈ U−−µ for µ ∈ NΠ such

that Υ =
∑

µ Υµ ∈ Û intertwines the bar involutions on U and U via the embedding

 and Υ0 = 1; that is, Υ satisfies the following identity (in Û):

(u)Υ = Υ (u), for all u ∈ U. (6.2.1)

Moreover, Υµ = 0 unless µθ = µ.

The following is a counterpart of Corollary 2.3.4.

Corollary 6.2.2. We have Υ ·Υ = 1.

Consider a function ζ on Λ such that

ζ(µ+ αi) = −q(αi−α−i,µ+αi)ζ(µ),

ζ(µ+ α−i) = −q(α−i,µ+α−i)−(αi,µ)ζ(µ),

(6.2.2)

for all µ ∈ Λ, i ∈ I. Such ζ exists. For any U-module M , define a Q(q)-linear map

ζ̃ : M →M by

ζ̃(m) = ζ(µ)m, for all m ∈Mµ.

Let w0 denote the longest element of the Weyl group W of type A2r. As in

Section 1.3 we denote by Tw0 the braid group element. The following is a counterpart

of Theorem 2.5.1.

Theorem 6.2.3. Given any finite-dimensional U-module M , the composition map

T := Υ ◦ ζ̃ ◦ Tw0 : M −→M

is an isomorphism of U-modules.
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6.3 Quasi-R matrix on U

It follows by Theorem 6.2.1 that Υ is a well-defined operator on finite-dimensional

U-modules. For any finite-dimensional U-modules M and M ′, we shall use the formal

notation ΥM to denote the well-defined action of Υ on M ⊗M ′. Hence the operator

Θ := ΥMΘ(Υ−1 ⊗ 1) (6.3.1)

on M ⊗M ′ is well defined. Define

∆ : U −→ U ⊗U

by letting ∆(u) = ∆(u), for all u ∈ U.

The construction in §3.2 carries over with little modification, and we will be

sketchy. For each N ∈ N, we have a truncation map tr≤N on U− as in (3.2.1).

Then the same formulas as in (3.2.2) and (3.2.3) give us Θ
≤N and Θ

N in U ⊗U−.

The following is a counterpart of Proposition 3.2.3.

Proposition 6.3.1. For any N ∈ N, we have Θ
N ∈ (U)⊗U−.

Proposition 6.3.1 allows us to make sense of −1(Θ
N) ∈ U ⊗U for each N . For

any finite-dimensional U-modules M and M ′, the action of −1(Θ
N) coincides with

the action of Θ
N on M ⊗M ′. As we will only need to use −1(Θ

N) ∈ U ⊗U

rather than Θ
N , we will simply write Θ

N for −1(Θ
N) and regard Θ

N ∈ U⊗U

from now on. Similarly, it is now understood that Θ
≤N =

∑N
r=0 Θ

r ∈ U⊗U. The

actions of
∑

N≥0 Θ
N and of Θ coincide on any tensor product of finite-dimensional
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U-modules. From now on, we may and shall identify

Θ =
∑
N≥0

Θ
N

(or alternatively, use this as a normalized definition of Θ) as an element in a com-

pletion (U ⊗U−)∧ of U ⊗U−.

The following is a counterpart of Theorem 3.3.1.

Theorem 6.3.2. Let L be a finite-dimensional U-module and let M be a finite-

dimensional U-modules. Then as linear operators on L⊗M , we have

∆(u)Θ = Θ∆(u), for u ∈ U.

The following is the counterpart of Proposition 3.3.2.

Proposition 6.3.3. We have ΘΘ = 1.

The following is the counterpart of Corollary 3.3.3.

Corollary 6.3.4. We have m(ε⊗ 1)Θ = Υ.

6.4 The -involutive modules

In this chapter we shall assume all modules are finite dimensional. Recall the bar map

on U and its modules is also denoted by ψ, and the bar map on U is also denoted

by ψ. It is also understood that ψ(u) = ψ((u)) for u ∈ U.
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Definition 6.4.1. A U-module M equipped with an anti-linear involution ψ is

called involutive (or -involutive) if

ψ(um) = ψ(u)ψ(m), ∀u ∈ U,m ∈M.

The following is a counterpart of Proposition 3.4.2.

Proposition 6.4.2. Let M be an involutive U-module. Then M is an -involutive

U-module with involution ψ := Υ ◦ ψ.

The following is a counterpart of Corollary 3.4.3.

Corollary 6.4.3. Let λ ∈ Λ+. Regarded as U-modules, L(λ) and ωL(λ) are -

involutive.

Given an involutive U-module L and an involutive U-module M , we define ψ :

L⊗M → L⊗M by letting

ψ(l ⊗m) := Θ(ψ(l)⊗ ψ(m)), for all l ∈ L,m ∈M. (6.4.1)

The following is a counterpart of Proposition 3.4.5.

Proposition 6.4.4. Let L be an involutive U-module and let M be an involutive

U-module. Then (L⊗M,ψ) is an involutive U-module.

Remark 6.4.5. Given two involutive U-modules (M1, ψ1) and (M2, ψ2), the two dif-

ferent ways, via Proposition 6.4.2 or Proposition 6.4.4, of defining an -involutive

U-module structure on M1 ⊗M2 coincide; compare with Remark 3.4.6.
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The following proposition, which is a counterpart of Proposition 3.4.7, implies

that different bracketings on the tensor product of several involutive U-modules give

rise to the same ψ.

Proposition 6.4.6. Let M1, . . ., Mk be involutive U-modules with k ≥ 2. We have

ψ(m1 ⊗ · · · ⊗mk) = Θ(ψ(m1 ⊗ · · · ⊗mk′)⊗ ψ(mk′+1 ⊗ · · · ⊗mk)),

for any 1 ≤ k′ < k.

6.5 Integrality of Υ

Similar to Lemma 4.1.1 for Uı, we can show that

Uξ−λ = ωL(λ), Uηλ = L(λ).

The following is a counterpart of Lemma 4.1.2.

Lemma 6.5.1. For any λ ∈ Λ+, there is a unique isomorphism of U-modules

T : ωL(λ) −→ ωL(λ) = L(λθ),

such that T(ξλ) =
∑

b∈B(λ) gbb
−η

λθ
for gb ∈ Q(q) and g1 = 1.

Proposition 6.5.2. Let λ, µ ∈ Λ+. There is a unique homomorphism of U-modules

πλ,µ : ωL(µθ + µ+ λ) −→ ωL(λ),

such that πλ,µ(ξ−µθ−µ−λ) = ξ−λ.
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Recall that ωL(µθ + µ + λ) and ωL(λ) are both -involutive U-modules with

ψ = Υ ◦ ψ. Similar to Lemma 4.1.5, the U-homomorphism πλ,µ commutes with the

bar involution ψ, i.e., πλ,µψ = ψπλ,µ.

The following is a counterpart of Lemma 4.4.1, with a much easier proof. Indeed,

since the identities (6.1.1) and (6.1.2) give us all the divided powers we need, we can

bypass the careful study of the rank one case as in §4.2 for Uı.

Lemma 6.5.3. For each λ ∈ Λ+, we have Υ(ωLA(λ)) ⊆ ωLA(λ).

The following is a counterpart of Theorem 4.4.2.

Theorem 6.5.4. We have Υµ ∈ U−A, for all µ ∈ NΠ.

6.6 The -canonical basis of ωL(λ)

The following is a counterpart of Lemma 4.5.1, which now follows from Theorem 6.5.4

and Proposition 6.4.2. Note that we do not need the input from the rank one case

here.

Lemma 6.6.1. The bar map ψ preserves the A-form ωLA(λ), for λ ∈ Λ+.

Recall a partial ordering � on the set B(λ) of canonical basis for λ ∈ Λ+ from

(4.5.1). For any b ∈ B(λ), recalling ψ = Υψ, we have

ψ(b
+ξ−λ) = Υ(b+ξ−λ) =

∑
b′∈B(λ)

ρb;b′b
′+ξ−λ (6.6.1)
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where ρb;b′ ∈ A by Theorem 6.5.4. Since Υ lies in a completion of U− satisfying

Υµ = 0 unless µθ = µ (see Theorem 6.2.1), we have ρb;b = 1 and ρb;b′ = 0 unless

b′ � b. Since ψ is an involution, we can apply [Lu2, Lemma 24.2.1] to our setting to

establish the following counterpart of Theorem 4.5.2.

Theorem 6.6.2. Let λ ∈ Λ+. The U-module ωL(λ) admits a unique basis

B(λ) := {T λb | b ∈ B(λ)}

which is ψ-invariant and of the form

T λb = b+ξ−λ +
∑
b′≺b

tλb;b′b
′+ξ−λ, for tλb;b′ ∈ qZ[q].

Definition 6.6.3. B(λ) is called the -canonical basis of the U-module ωL(λ).

Similar to Section 4.5, we can generalize Theorem 6.6.2 to any based U-module

(M,B). Thus we establish the following counterparts of Theorem 4.5.6 and 4.5.7.

Theorem 6.6.4. Let (M,B) be a finite-dimensional based U-module.

1. The U-module M admits a unique basis (called -canonical basis) B := {Tb |

b ∈ B} which is ψ-invariant and of the form

Tb = b+
∑

b′∈B,b′≺b

tb;b′b
′, for tb;b′ ∈ qZ[q]. (6.6.2)

2. B forms an A-basis for the A-lattice AM , and B forms a Z[q]-basis for the

Z[q]-lattice M.
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Theorem 6.6.5. Let λ1, . . . , λr ∈ Λ+. The tensor product of finite-dimensional sim-

ple U-modules ωL(λ1)⊗ . . .⊗ ωL(λr) admits a unique ψ-invariant basis of the form

(6.6.2) (called -canonical basis).

6.7 The (U,HBm)-duality

Again in this section U is of type A2r with simple roots parametrized by I2r in (1.1.1).

Recall the notation I2r+1 from (1.1.1), and we set

I = I2r+1 = {−r, . . . ,−1, 0, 1, . . . , r}.

Let the Q(q)-vector space V :=
∑

a∈I Q(q)va be the natural representation of U,

hence a U-module. We shall call V the natural representation of U as well. For

m ∈ Z>0, V⊗m becomes a natural U-module (hence a U-module) via the iteration

of the coproduct ∆. Note that V is an involutive U-module with ψ defined as

ψ(va) := va, for all a ∈ I.

Therefore V⊗m is an involutive U-module and hence a -involutive U-module by

Proposition 6.4.6.

For any f ∈ Im, we define Mf = vf(1)⊗ · · · ⊗ vf(m). The Weyl group WBm acts on

Im by (5.1.1) as before. Now the Hecke algebra HBm acts on the Q(q)-vector space
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V⊗m as follows:

MfHa =



q−1vf , if a > 0, f(a) = f(a+ 1);

Mf ·sa , if a > 0, f(a) < f(a+ 1);

Mf ·sa + (q−1 − q)Mf , if a > 0, f(a) > f(a+ 1);

Mf ·s0 , if a = 0, f(1) > 0;

Mf ·s0 + (q−1 − q)Mf , if a = 0, f(1) < 0;

q−1Mf , if a = 0, f(1) = 0.

(6.7.1)

Identified as the subalgebra generated by H1, H2, . . . , Hm−1 of HBm , the Hecke algebra

HAm−1 inherits a right action on V⊗m. The Schur-Jimbo duality as formulated in

Proposition 5.1.1 remains to be valid in the current setting, i.e., the actions of U and

HAm−1 on V⊗m commute with each other and they form double centralizers.

Introduce the Q(q)-subspaces of V:

V− =
⊕

1≤i≤r

Q(q)(v−i − q−1vi),

V+ = Q(q)v0

⊕ ⊕
1≤i≤r

Q(q)(v−i + qvi).

The following is a counterpart of Lemma 5.2.1.

Lemma 6.7.1. V− is a U-submodule of V generated by v−1 − q−1v1 and V+ is a

U-submodule of V generated by v0. Moreover, we have V = V− ⊕ V+.
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Now we fix ζ in (6.2.2) such that ζ(ε−r) = 1. It follows that

ζ(εr−i) =


(−q)−2r+i, if i 6= r;

q · (−q)−r, if i = r.

Let us compute the U-homomorphism T = Υ ◦ ζ̃ ◦ Tw0 (see Theorem 6.2.3) on the

U-module V; we remind that w0 here is associated to U instead of WBm or WAm−1 .

Lemma 6.7.2. The U-isomorphism T−1 on V acts as a scalar (−q)id on the sub-

module V− and as q−1id on the submodule V+.

Proof. First one computes that the action of Tw0 on V is given by

Tw0(v−r+i) = (−q)2r−ivr−i, for 0 ≤ i ≤ 2r.

Hence

ζ̃ ◦ Tw0(va) =


va·s0 , if a 6= 0;

qv0, if a = 0.

(6.7.2)

One computes that Υα− 1
2

+α 1
2

= −(q−1−q)Fα 1
2

Fα− 1
2

. Therefore using T = Υ◦ζ̃◦Tw0

we have

T−1v0 = q−1v0, (6.7.3)

T−1(v−1 − q−1v1) = (−q)(v−1 − q−1v1), (6.7.4)

T−1(v−1 + qv1) = q−1(v−1 + qv1). (6.7.5)

The lemma now follows from Lemma 6.7.2 since T−1 is a U-isomorphism.
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We have the following generalization of Schur-Jimbo duality, which is a counter-

part of Theorem 5.2.3. The proof is almost identical as the one for Theorem 5.2.3,

and for Part (1) we now use Lemma 6.7.2 and the action (6.7.1) of H0 ∈ HBm on

V⊗m.

Theorem 6.7.3 ((U,HBm)-duality). 1. The action of T−1⊗idm−1 coincides with

the action of H0 ∈ HBm on V⊗m.

2. The actions of U and HBm on V⊗m commute with each other, and they form

double centralizers.

Definition 6.7.4. An element f ∈ Im is anti-dominant (or -anti-dominant) if

0 ≤ f(1) ≤ f(2) ≤ · · · ≤ f(m).

The following is the counterpart of Theorem 5.3.2.

Theorem 6.7.5. There exists an anti-linear involution ψ : V⊗m → V⊗m which is

compatible with both the bar involution of HBm and the bar involution of U; that is,

for all v ∈ V⊗m, Hσ ∈ HBm, and u ∈ U, we have

ψ(uvHσ) = ψ(u)ψ(v)Hσ.

Such a bar involution is unique by requiring ψ(Mf ) = Mf for all -anti-dominant f .
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In this Part 2, we shall focus on the infinite-rank limit (r → ∞) of the algebras

and spaces formulated in Part 1. In Chapter 7 through Chapter 11 we will mainly

treat in detail the counterparts of Chapter 2 through Chapter 5 where U was of type

A2r+1 in Part 1. In Chapter 12 we deal with a variation of BGG category with half-

integer weights which corresponds to the second quantum symmetric pair (U,U) in

Chapter 6 where U was of type A2r.

As it becomes necessary to keep track of the finite ranks, we shall add subscripts

and superscripts to various notation introduced in Part 1 to indicate the dependence

on r ∈ N. Here are the new notations in place of those in Part 1 without super-

scripts/subscripts (Chapter 2 through Chapter 5):

Λ2r+1, Π2r+1, I2r+1, Iır, U2r+1, Uı
r, Υ(r), Vr, Wr, ψ

(r), ψ
(r)
ı , Θ(r).

Part 2 of this paper follows closely [CLW2] with new input from Part 1. The

notations here often have different meaning from the same notations used in [CLW2],

as the current ones are often “of type B”.



Chapter 7

BGG categories for

ortho-symplectic Lie superalgebras

In this chapter, we recall the basics on the ortho-symplectic Lie superalgebras such as

linkage principle and Bruhat ordering. We formulate various versions of (parabolic)

BGG categories and truncation functors.

7.1 The Lie superalgebra osp(2m + 1|2n)

We recall some basics on ortho-symplectic Lie superalgebras and set up notations to

be used later on (cf. [CW2] for more on Lie superalgebras). Fix integers m ≥ 1 and

n ≥ 0 throughout this paper.

Let Z2 = {0, 1}. Let C2m+1|2n be a superspace of dimension (2m + 1|2n) with

basis {ei | 1 ≤ i ≤ 2m+ 1} ∪ {ej | 1 ≤ j ≤ 2n}, where the Z2-grading is given by the

113
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following parity function:

p(ei) = 0, p(ej) = 1 (∀i, j).

Let B be a non-degenerate even supersymmetric bilinear form on C2m+1|2n. The

general linear Lie superalgebra gl(2m+ 1|2n) is the Lie superalgebra of linear trans-

formations on C2m+1|2n (in matrix form with respect to the above basis). For s ∈ Z2,

we define

osp(2m+ 1|2n)s := {g ∈ gl(2m+ 1|2n)s | B(g(x), y) = −(−1)s·p(x)B(x, g(y))},

osp(2m+ 1|2n) := osp(2m+ 1|2n)0 ⊕ osp(2m+ 1|2n)1.

We now give a matrix realization of the Lie superalgebra osp(2m + 1|2n). Take

the supersymmetric bilinear form B with the following matrix form, with respect to

the basis (e1, e2, . . . , e2m+1, e1, e2, . . . , e2n):

J2m+1|2n :=



0 Im 0 0 0

Im 0 0 0 0

0 0 1 0 0

0 0 0 0 In

0 0 0 −In 0


Let Ei,j, 1 ≤ i, j ≤ 2m+1, and Ek,h, 1 ≤ k, h ≤ 2n, be the (i, j)th and (k, h)th ele-

mentary matrices, respectively. The Cartan subalgebra of osp(2m+1|2n) of diagonal
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matrices is denoted by hm|n, which is spanned by

Hi := Ei,i − Em+i,m+i, 1 ≤ i ≤ m,

Hj := Ej,j − En+j,n+j, 1 ≤ j ≤ n.

We denote by {εi, εj | 1 ≤ i ≤ m, 1 ≤ j ≤ n} the basis of h∗m|n such that

εa(Hb) = δa,b, for a, b ∈ {i, j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

We denote the lattice of integral weights of osp(2m+ 1|2n) by

X(m|n) :=
m∑
i=1

Zεi +
n∑
j=1

Zεj. (7.1.1)

The supertrace form on osp(2m+ 1|2n) induces a non-degenerate symmetric bilinear

form on h∗m|n determined by (·|·), such that

(εi|εa) = δi,a, (εj|εa) = −δj,a, for a ∈ {i, j | 1 ≤ i ≤ m, 1 ≤ j ≤ n}.

We have the following root system of osp(2m+ 1|2n) with respect to hm|n

Φ = Φ0 ∪ Φ1 = {±εi ± εj,±εp,±εk ± εl,±2εq} ∪ {±εp ± εq,±εq},

where 1 ≤ i < j ≤ n, 1 ≤ p ≤ n, 1 ≤ q ≤ m, 1 ≤ k < l ≤ m.

In this paper we shall need to deal with various Borel subalgebras, hence various

simple systems of Φ. Let b = (b1, b2, . . . , bm+n) be a sequence of m+ n integers such

that m of the bi’s are equal to 0 and n of them are equal to 1. We call such a sequence

a 0m1n-sequence. Associated to each 0m1n-sequence b = (b1, . . . , bm+n), we have the
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following fundamental system Πb, and hence a positive system Φ+
b = Φ+

b,0̄
∪ Φ+

b,1̄
, of

the root system Φ of osp(2m+ 1|2n):

Πb = {−εb11 , ε
bi
i − ε

bi+1

i+1 | 1 ≤ i ≤ m+ n− 1},

where ε0i = εx for some 1 ≤ x ≤ m, ε1j = εy for some 1 ≤ y ≤ n, such that εx − εx+1

and εy − εy+1 are always positive. It is clear that Πb is uniquely determined by these

restrictions. The Weyl vector is defined to be ρb := 1
2

∑
α∈Φ+

b,0̄
α− 1

2

∑
α∈Φ+

b,1̄
α.

Corresponding to bst = (0, . . . , 0, 1, . . . , 1), we have the following standard Dynkin

diagram associated to Πbst :

© © ©
⊗

© © ©⇐= · · · · · ·
−ε1 ε1 − ε2 εm − ε1̄ ε1̄ − ε2̄ εn−1 − εn̄

As usual,
⊗

stands for an isotropic simple odd root, © stands for an even simple

root, and • stands for a non-isotropic odd simple root. A direct computation shows

that

ρbst = −1

2
ε1 −

3

2
ε2 − . . .− (m− 1

2
)εm + (m− 1

2
)ε1̄ + . . .+ (m− n+

1

2
)εn̄. (7.1.2)

More generally, associated to a sequence b which starts with 0 is a Dynkin diagram

which always starts on the left with a short even simple root:

(?) ©
⊙ ⊙ ⊙ ⊙ ⊙ ⊙

⇐= · · · · · ·
−ε1



117

Here
⊙

stands for either
⊗

or© depending on b. Associated to a sequence b which

starts with 1 is a Dynkin diagram which always starts on the left with a non-isotropic

odd simple root:

(??) •
⊙ ⊙ ⊙ ⊙ ⊙ ⊙

⇐= · · · · · ·
−ε1̄

Remark 7.1.1. For general b, one checks that ρb has a summand (m − n + 1
2
)εn̄ as

for ρbst in (7.1.2) if the Dynkin diagram associated to b has© as its rightmost node,

and that ρb has a summand (m−n− 1
2
)εn̄ if the Dynkin diagram associated to b has⊗

as its rightmost node.

Now we can write the non-degenerate symmetric bilinear form on Φ as follows:

(εbii |ε
bj
j ) = (−1)biδij, 1 ≤ i, j ≤ m+ n.

We define n±b to be the nilpotent subalgebra spanned by the positive/negative root

vectors in osp(2m + 1|2n). Then we obtain a triangular decomposition of osp(2m +

1|2n):

osp(2m+ 1|2n) = n+
b ⊕ hm|n ⊕ n−b ,

with n+
b ⊕ hm|n as a Borel subalgebra.

Fix a 0m1n-sequence b and hence a positve system Φ+
b . We denote by Z(osp(2m+

1|2n)) the center of the enveloping algebra U(osp(2m+1|2n)). There exists a standard

projection φ : U(osp(2m+ 1|2n))→ U(hm|n) which is consistent with the PBW basis
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associated to the above triangular decomposition ([CW2, §2.2.3]). For λ ∈ h∗m|n, we

define the central character χλ by letting

χλ(z) := λ(φ(z)), for z ∈ Z(osp(2m+ 1|2n)).

Denote the Weyl group of (the even subalgebra of) osp(2m + 1|2n) by Wosp, which

is isomorphic to (Z2 o Sm) × (Z2 o Sn). Then for µ, ν ∈ h∗m|n, we say µ, ν are

linked and denote it by µ ∼ ν, if there exist mutually orthogonal isotropic odd roots

α1, α2, . . . , αl, complex numbers c1, c2, . . . , cl, and an element w ∈ Wosp satisfying

µ+ ρb = w(ν + ρb −
l∑

i=1

ciαi), (ν + ρb|αj) = 0, j = 1 . . . , l.

It is clear that ∼ is an equivalent relation on h∗m|n. Versions of the following basic

fact went back to Kac, Sergeev, and others.

Proposition 7.1.2. [CW2, Theorem 2.30] Let λ, µ ∈ h∗m|n. Then λ is linked to µ if

and only if χλ = χµ.

We define the Bruhat ordering �b on h∗m|n and hence on X(m|n) as follows:

λ �b µ⇔ µ− λ ∈ NΠb and λ ∼ µ, for λ, µ ∈ h∗m|n. (7.1.3)
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7.2 Infinite-rank Lie superalgebras

We shall define the infinite-rank Lie superalgebras osp(2m+1|2n+∞) and osp(2m+

1|2n|∞). Define the sets

J̃ := {1, 2, . . . , 2m+ 1, 1, 2, . . . , 2n} ∪ {1

2
, 1,

3

2
, . . . } ∪ {1

2

′
, 1′,

3

2

′
, . . . },

J := {1, 2, . . . , 2m+ 1, 1, 2, . . . , 2n} ∪ {1, 2, . . . } ∪ {1′, 2′, . . . },

J̆ := {1, 2, . . . , 2m+ 1, 1, 2, . . . , 2n} ∪ {1

2
,
3

2
, . . . } ∪ {1

2

′
,
3

2

′
, . . . }.

Let Ṽ be the infinite-dimensional superspace over C with the basis {ei | i ∈ J̃}, whose

Z2-grading is specified as follows:

p(ei) = 0 (1 ≤ i ≤ 2m+ 1), p(ej) = 1 (1 ≤ j ≤ 2n),

p(es′) = p(es) = 0 (s ∈ Z>0), p(et′) = p(et) = 1 (t ∈ 1

2
+ N).

With respect to this basis, a linear map on Ṽ may be identified with a complex matrix

(ars)r,s∈J̃. Let gl(Ṽ ) be the Lie superalgebra consisting of (ars)r,s∈J̃ with ars = 0 for

almost all but finitely many ars’s. The standard Cartan subalgebra of gl(Ṽ ) is spanned

by {Err | r ∈ J̃}, with dual basis {εr | r ∈ J̃}. The superspaces V and V̆ are defined

to be the subspaces of Ṽ with basis {ei} indexed by J and J̆ respectively. Similarly

we can define gl(V ) and gl(V̆ ).

Recall the supersymmetric non-degenerate bilinear form B define in §7.1. We can

easily identify C2m+1|2n as a subspace of Ṽ . Define a supersymmetric non-degenerate
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bilinear form B̃ on Ṽ by

B̃(es, et) = B(es, et), B̃(es, ex) = B̃(es, ex′) = 0,

B̃(ex, ey) = B̃(ex′ , ey′) = 0, B̃(ex, ey′) = δx,y = (−1)
p(ex)p(ey′ )B̃(ey′ , ex),

where s, t ∈ {i, j | 1 ≤ i ≤ 2m+1, 1 ≤ j ≤ 2n} and x, y ∈ {1
2
, 1, 3

2
. . . }. By restriction,

we can obtain a supersymmetric non-degenerate bilinear form on V and V̆ .

Following §7.1, we define osp(V ) and osp(V̆ ) to be the subalgebra of gl(V ) and

gl(V̆ ) preserving the bilinear forms, respectively. With respect to the standard basis

of V and V̆ , we identify

osp(2m+ 1|2n|∞) = osp(V ), osp(2m+ 1|2n+∞) = osp(V̆ ).

The standard Cartan subalgebras of osp(2m+ 1|2n|∞) and osp(2m+ 1|2n+∞) are

obtained by taking the intersection of the standard Cartan subalgebra of gl(Ṽ ) with

osp(2m+1|2n|∞) and osp(2m+1|2n+∞), respectively, which are denoted by hm|n|∞

and hm|n+∞. For any 0m1n-sequence b, we assign the following simple system to the

Lie superalgebra osp(2m+ 1|2n|∞):

Πb,0 := {−εb11 , ε
bi
i − ε

bi+1

i+1 , ε
bm+n

m+n − ε01, ε0j − ε0j+1 | 1 ≤ i ≤ m+ n− 1, 1 ≤ j}.

Similarly, we assign the following simple system to osp(2m+ 1|2n+∞):

Πb,1 := {−εb11 , ε
bi
i − ε

bi+1

i+1 , ε
bm+n

m+n − ε11, ε1j − ε1j+1 | 1 ≤ i ≤ m+ n− 1, 1 ≤ j}.

The εbii ’s are defined in the same way as in §7.1 and it is understood that ε1j := εj− 1
2
,
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ε0j := εj for any 1 ≤ j. We introduce the following formal symbols:

ε0∞ :=
∑
j≥1

ε0j , ε1∞ :=
∑
j≥1

ε1j .

Let P be the set of all partitions. We define

X∞,+b,0 := {
m+n∑
i=1

λiε
bi
i +

∑
1≤j

+λjε
0
j + dε0∞ | d, λi ∈ Z, (+λ1,

+λ2, . . . ) ∈ P}, (7.2.1)

X∞,+b,1 := {
m+n∑
i=1

λiε
bi
i +

∑
1≤j

+λjε
1
j + dε1∞ | d, λi ∈ Z, (+λ1,

+λ2, . . . ) ∈ P}. (7.2.2)

7.3 The BGG categories

We shall define various parabolic BGG categories for ortho-symplectic Lie superalge-

bras.

Definition 7.3.1. Let b be a 0m1n-sequence. The Bernstein-Gelfand-Gelfand (BGG)

category Ob is the category of hm|n-semisimple osp(2m+ 1|2n)-modules M such that

(i) M =
⊕

µ∈X(m|n) Mµ and dimMµ <∞;

(ii) there exist finitely many weights 1λ, 2λ, . . . , kλ ∈ X(m|n) (depending on M)

such that if µ is a weight in M , then µ ∈ iλ−
∑

α∈Πb
Nα, for some i.

The morphisms in Ob are all (not necessarily even) homomorphisms of osp(2m+1|2n)-

modules.

Similar to [CLW2, Proposition 6.4], all these categories Ob are identical for various

b, since the even subalgebras of the Borel subalgebras n+
b ⊕hm|n are identical and the

odd parts of these Borels always act locally nilpotently.
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Denote by Mb(λ) the b-Verma modules with highest weight λ. Denote by Lb(λ)

the unique simple quotient of Mb(λ). They are both in Ob.

It is well known that the Lie superalgebra gl(2m+ 1|2n) has an automorphism τ

given by the formula:

τ(Eij) := −(−1)p(i)(p(i)+p(j))Eji.

The restriction of τ on osp(2m+1|2n) gives an automorphism of osp(2m+1|2n). For

an object M = ⊕µ∈X(m|n)Mµ ∈ Ob, we let

M∨ := ⊕µ∈X(m|n)M
∗
µ

be the restrictd dual of M . We define the action of osp(2m + 1|2n) on M∨ by

(g · f)(x) := −f(τ(g) · x), for f ∈ M∨, g ∈ osp(2m + 1|2n), and x ∈ M . We denote

the resulting module by M τ .

An object M ∈ Ob is said to have a b-Verma flag (respectively, dual b-Verma flag),

if M has a filtration 0 = M0 ⊆ M1 ⊆ M2 ⊆ · · · ⊆ Mt = M, such that Mi/Mi−1
∼=

Mb(γi), 1 ≤ i ≤ t (respectively, Mi/Mi−1
∼= M τ

b(γi)) for some γi ∈ X(m|n).

Definition 7.3.2. Associated to each λ ∈ X(m|n), a b-tilting module Tb(λ) is an

indecomposable osp(2m + 1|2n)-module in Ob characterized by the following two

conditions:

(i) Tb(λ) has a b-Verma flag with Mb(λ) at the bottom;

(ii) Ext1
Ob

(Mb(µ), Tb(λ)) = 0, for all µ ∈ X(m|n).
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Recall the definition of the infinite-rank Lie superalgebras in §7.2. For a nonempty

0m1n-sequence b = (b1, b2, . . . , bm+n) and k ∈ N ∪ {∞}, consider the extended se-

quence (b, 0k) = (b1, b2, . . . , bm+n, 0, . . . , 0). This sequence corresponds to the follow-

ing simple system of the Lie superalgebra osp(2m+ 2k+ 1|2n), which we shall denote

by osp(2m+ 1|2n|2k) throughout this paper to indicate the choice of Π(b,0k):

Π(b,0k) = {−εb11 , ε
bi
i − ε

bi+1

i+1 | 1 ≤ i ≤ m+ n+ k}, where bi = 0 for i > m+ n.

Let Πk
b,0 = {εbii −ε

bi+1

i+1 | i > m+n}. Define the following Levi subalgebra and parabolic

subalgebra of osp(2m+ 1|2n|2k):

lkb,0 :=
∑

α∈ZΠ
k
b,0

osp(2m+ 1|2n|2k)α,

pkb,0 :=
∑

α∈Φ+

(b,0k)
∪ZΠ

k
b,0

osp(2m+ 1|2n|2k)α.

Let L0(λ) be the irreducible lkb,0-module with highest weight λ. It can be extended

trivially to a pkb,0-module. We form the parabolic Verma module

Mk
b,0(λ) := Ind

osp(2m+1|2n|2k)

p
k
b,0

L0(λ).

For k ∈ N, we define

Xk,+
b,0 :=

{
m+n∑
i=1

λiε
bi
i +

k∑
j=1

+λjε
0
j + d

k∑
j=1

ε0j | d, λi ∈ Z, (+λ1,
+ λ2, . . . ) ∈ P

}
, (7.3.1)

Xk,+
b,1 :=

{
m+n∑
i=1

λiε
bi
i +

k∑
j=1

+λjε
1
j + d

k∑
j=1

ε1j | d, λi ∈ Z, (+λ1,
+ λ2, . . . ) ∈ P

}
. (7.3.2)

Recall the definition of X∞,+b,0 and X∞,+b,1 from (7.2.1)-(7.2.2).
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Definition 7.3.3. Let b be a 0m1n-sequence and k ∈ N ∪ {∞}. Let O
k
b,0 be the

category of hm|n|k-semisimple osp(2m+ 1|2n|2k)-modules M such that

(i) M =
⊕

µMµ and dimMµ <∞;

(ii) M decomposes over l∞b,0 into a direct sum of L0(λ) for λ ∈ Xk,+
b,0 ;

(iii) there exist finitely many weights 1λ, 2λ, . . . , kλ ∈ Xk,+
b,0 (depending on M) such

that if µ is a weight in M , then µ ∈ iλ−
∑

α∈Π
(b,0k)

Nα, for some i.

The morphisms in O
k
b,0 are all (not necessarily even) homomorphisms of osp(2m +

1|2n|2k)-modules.

Let λ ∈ Xk,+
b,0 . We shall denote by Lkb,0(λ) the simple module in O

k
b,0 with highest

weight λ. Following Definition 7.3.2, we can define the tilting module T kb,0(λ) in O
k
b,0.

Similar construction exists for the sequence (b, 1k), where we consider the Lie

superalgebras osp(2m+1|2n+2k) for k ∈ N∪{∞} with the following simple systems:

Π(b,1k) = {−εb11 , ε
bi
i − ε

bi+1

i+1 | 1 ≤ i ≤ m+ n+ k}, where bi = 1 for i > m+ n.

Let Πk
b,1 = {εbii − ε

bi+1

i+1 | i > m + n}. Define the following Levi subalgebra and

parabolic subalgebra of osp(2m+ 1|2n|2k):

lkb,1 :=
∑

α∈Z[Π
k
b,1]

osp(2m+ 1|2n|2k)α,

pkb,1 :=
∑

α∈Φ+

(b,1k)
∪Z[Π

k
b,1]

osp(2m+ 1|2n|2k)α.
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Let L1(λ) be the simple lkb,1-module with highest weight λ. It can be extended trivially

to a pkb,1-module. Similarly we can define the parabolic Verma module

Mk
b,1(λ) := Ind

osp(2m+1|2n+2k)

p
k
b,1

L1(λ).

Definition 7.3.4. For k ∈ N∪{∞}, let Ok
b,1 be the category of h2m+1|2n+2k-semisimple

osp(2m+ 1|2n+ 2k)-modules M such that

(i) M =
⊕

µMµ and dimMµ <∞;

(ii) M decomposes over pkb,1 into a direct sum of L1(λ) for λ ∈ Xk,+
b,1 ;

(iii) there exist finitely many weights 1λ, 2λ, . . . , kλ ∈ Xk,+
b,1 (depending on M) such

that if µ is a weight in M , then µ ∈ iλ−
∑

α∈Π
(b,1k)

Nα, for some i.

The morphisms in O
k
b,1 are all (not necessarily even) homomorphisms of osp(2m +

1|2n+ 2k)-modules.

For ξ ∈ Xk,+
b,1 , we shall denote by Lkb,1(ξ) the simple module in O

k
b,1 with highest

weight ξ. Following Definition 7.3.2, we can define the tilting module T kb,1(ξ) in O
k
b,1.

7.4 Truncation functors

Recall the definition ofXk,+
b,0 andXk,+

b,1 in (7.3.1) and (7.3.2). For any λ =
∑m+n

i=1 λiε
bi
i +∑

1≤j
+λjε

s
j + dεs∞ ∈ X

∞,+
b,s , we define

λk :=
m+n∑
i=1

λiε
bi
i +

k∑
j=1

+λjε
s
j + d

k∑
j=1

εsj ∈ X
k,+
b,s , for s ∈ {0, 1}.
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Let M∞
b,0 ∈ O

∞
b,0 and M∞

b,1 ∈ O
∞
b,1. Then we have the weight space decompositions

M∞
b,0 =

⊕
µ

M∞
b,0,µ, M∞

b,1 =
⊕
µ

M∞
b,1,µ.

We define an exact functor tr0 : O∞b,0 → O
k
b,0 by

tr0(M∞
b,0) :=

⊕
µ

M∞
b,0,µ,

where µ satisfies (µ, ε0j − ε0j+1) = 0, ∀j ≥ k + 1 and j ∈ N. Similarly, we define an

exact functor tr1 : O∞b,1 → O
k
b,1 by

tr1(M∞
b,1) :=

⊕
µ

M∞
b,1,µ,

where µ satisfies (µ, ε1j − ε1j+1) = 0, ∀j ≥ k + 1 and j ∈ N. The following has been

known [CW1, CLW1]; also see [CW2, Proposition 6.9].

Proposition 7.4.1. For s = 0, 1, the functors trs : O∞b,s → O
k
b,s satisfy the following:

for Y = M , L, T , λ =
∑m+n

i=1 λiε
bi
i +

∑
1≤j

+λjε
s
j + dεs∞ ∈ X

∞,+
b,s , we have

trs
(
Y ∞b,s(λ)

)
=


Y k
b,s(λ

k), if l(+λ) ≤ k,

0, otherwise.



Chapter 8

Fock spaces and Bruhat orderings

In this chapter, we formulate the infinite-rank variants of the basic constructions

in Part 1. We set up various Fock spaces which are the q-versions of Grothendieck

groups, and transport Bruhat ordering from the BGG categories to the corresponding

Fock spaces.

8.1 Infinite-rank constructions

Let us first set up some notations which will be used often in Part 2. We set

I = ∪∞r=0I2r+1 = Z, Iı = ∪∞r=0Iır = Z>0, I = Z+
1

2
. (8.1.1)

Recall from Chapter 2 the finite-rank quantum symmetric pair (U2r+1,U
ı
r). We
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have the natural inclusions of Q(q)-algebras:

· · · ⊂ U2r−1 ⊂U2r+1 ⊂ U2r+3 ⊂ · · · ,

· · · ⊂ Uı
r−1 ⊂Uı

r ⊂ Uı
r+1 ⊂ · · · .

Define the following Q(q)-algebras:

Uı :=
∞⋃
r=0

Uı
r and U :=

∞⋃
r=0

U2r+1.

It is easy to see that Uı is generated by {eαi , fαi , k±1
αi
, t | i ∈ Iı}, and U is generated

by {Eαi , Fαi , K±1
αi
| i ∈ I}. The embeddings of Q(q)-algebras ι : Uı

r → U2r+1 induce

an embedding of Q(q)-algebras, denoted also by ι : Uı −→ U. Again U is naturally a

Hopf algebra with coproduct ∆, and its restriction under ι, ∆ : Uı → Uı⊗U, makes

Uı (or more precisely ι(Uı)) naturally a (right) coideal subalgebra of U. The anti-

linear bar involutions on Uı
r and U2r+1 induce anti-linear bar involutions on Uı and

U, respectively, both denoted by ¯ as well. As in Part 1, in order to avoid confusion,

we shall sometimes set ψ(u) := u for u ∈ U, and set ψı(u) := u for u ∈ Uı.

Recall Π2r+1 denotes the simple system of U2r+1. Then Π :=
⋃∞
r=0 Π2r+1 is a

simple system of U. Recall we denote the integral weight lattice of U2r+1 by Λ2r+1.

Then

Λ := ⊕i∈ 1
2

+ZZ[εi] =
∞⋃
r=0

Λ2r+1

is the integral weight lattice of U. Following §1.1, we have the quotient lattice Λθ of

the lattice Λ.
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Recall the intertwiner of the pair (U2r+1,U
ı
r) in §2.3, which we shall denote by

Υ(r). We have Υ(r) =
∑

µ∈NΠ2r+1
Υ

(r)
µ in a completion of U−2r+1 with Υ

(r)
0 = 1. Follow-

ing the construction of Υ(r) in Theorem 2.3.1, we see that

Υ(r+1)
µ = Υ(r)

µ , for µ ∈ NΠ2r+1.

Hence we can define an element Υµ ∈ U−µ , for µ ∈ NΠ by letting

Υµ := lim
r→∞

Υ(r)
µ .

Define the formal sum Υ (which lies in some completion of U−) by

Υ :=
∑
µ∈NΠ

Υµ. (8.1.2)

We shall view Υ as a well-defined operator on U-modules that we are concerned.

8.2 The Fock space Tb

Let V :=
∑

a∈I Q(q)va be the natural representation of U, where the action of U on

V is defined as follows (for i ∈ I, a ∈ I):

Eαiva = δi+ 1
2
,ava−1, Fαiva = δi− 1

2
,ava+1, Kαiva = q(αi,εa)va.

Let W := V∗ be the restricted dual module of V with basis {wa | a ∈ I} such that

〈wa, vb〉 = (−q)−aδa,b. The action of U on W is given by the following formulas (for

i ∈ I, a ∈ I):

Eαiwa = δi− 1
2
,awa+1, Fαiwa = δi+ 1

2
,awa−1, Kαiwa = q−(αi,εa)wa.
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By restriction through the embedding ι, V and W are naturally Uı-modules.

Fix a 0m1n-sequence b = (b1, b2, . . . , bm+n). We have the following tensor space

over Q(q), called the b-Fock space or simply Fock space:

Tb := Vb1 ⊗ Vb2 ⊗ · · · ⊗ Vbm+n , (8.2.1)

where we denote

Vbi :=


V, if bi = 0,

W, if bi = 1.

The tensors here and in similar settings later on are understood to be over the field

Q(q). Note that both algebras U and Uı act on Tb via an iterated coproduct.

For f ∈ Im+n, we define

Mb
f := vb1f(1) ⊗ vb2f(2) ⊗ · · · ⊗ v

bm+n

f(m+n), (8.2.2)

where we use the notation vbi :=


v, if bi = 0,

w, if bi = 1.

We refer to {Mb
f | f ∈ Im+n} as

the standard monomial basis of Tb.

For r ∈ N, we shall denote the natural representation of U2r+1 by Vr now, where

Vr admits a natural basis {va | a ∈ I2r+2}. Let Wr be the dual of Vr with basis

{wa | a ∈ I2r+2} such that 〈wa, vb〉 = (−q)−aδa,b. We have natural inclusions of

Q(q)-spaces

· · · ⊂ Vr−1 ⊂ Vr ⊂ Vr+1 · · · , and · · · ⊂Wr−1 ⊂Wr ⊂Wr+1 · · · .
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Similarly we can define the space

Tb
r := Vb1r ⊗ Vb2r ⊗ · · · ⊗ Vbm+n

r ,

where we denote

Vbir :=


Vr, if bi = 0,

Wr, if bi = 1.

Then {Mb
f | f ∈ Im+n

2r+2} forms the standard monomial basis of Tb
r . In light of the

standard monomial bases, we may view

· · · ⊂ Tb
r ⊂ Tb

r+1 ⊂ · · · , and Tb = ∪r∈NTb
r . (8.2.3)

Definition 8.2.1. For f ∈ Im+n
2r+2, let wtb(f) be the Uı-weight of Mb

f , i.e., the image

of the U-weight in Λθ.

8.3 The q-wedge spaces

Recall from §5 the right action on V⊗k on the Hecke algebra HBk , where V is now of

infinite dimension. We take ∧kV as the quotient of V⊗k by the sum of the kernel of

the operators Hi − q−1, 1 ≤ i ≤ k − 1. The ∧kV is naturally a U-module, hence also

a Uı-module. For any vp1 ⊗ vp2 ⊗ · · · ⊗ vpk in V⊗k, we denote its image in ∧kV by

vp1 ∧ vp2 ∧ · · · ∧ vpk .
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For d ∈ Z and l ≥ k, consider the Q(q)-linear maps

∧k,ld : ∧kV −→ ∧lV

vp1 ∧ · · · ∧ vpk 7→ vp1 ∧ · · · ∧ vpk ∧ vd+ 1
2
−k−1 ∧ vd+ 1

2
−k−2 ∧ · · · ∧ vd+ 1

2
−l.

Let ∧∞d V := lim−→∧
kV be the direct limit of the Q(q)-vector spaces with respect to the

maps ∧k,ld , which is called the dth sector of the semi-infinite q-wedge space ∧∞V; that

is,

∧∞V =
⊕
d∈Z

∧∞d V.

Note that for any fixed u ∈ U and fixed d ∈ Z, we have

∧k,ld u = u∧k,ld : ∧kV −→ ∧lV, for l ≥ k � 0.

Therefore ∧∞d V and hence ∧∞V become both U-modules and Uı-modules.

We can think of elements in ∧∞V as linear combinations of infinite q-wedges of

the form

vp1 ∧ vp2 ∧ vp3 ∧ · · · ,

where p1 > p2 > p3 > · · · , and pi− pi+1 = 1 for i� 0. Alternatively, the space ∧∞V

has a basis indexed by pairs of a partition and an integer given by

|λ, d〉 := vλ1+d− 1
2
∧ vλ2+d− 3

2
∧ vλ3+d− 5

2
∧ · · · ,

where λ = (λ1, λ2, . . .) runs over the set P of all partitions, and d runs over Z. Clearly

we can realize ∧∞d V as the subspace of ∧∞V spanned by {|λ, d〉 | λ ∈ P}, for d ∈ Z.
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In the rest of this paper, we shall index the q-wedge spaces by [k] := {1, 2, . . . , k}

and [∞] := {1, 2 . . . }. More precisely, let

Ik+ = {f : [k]→ I | f(1) > f(2) > · · · > f(k)}, for k ∈ N,

I∞+ = {f : [∞]→ I | f(1) > f(2) > · · · ; f(t)− f(t+ 1) = 1 for t� 0}.

For f ∈ Ik+, we denote

Vf = vf(1) ∧ vf(2) ∧ · · · ∧ vf(k).

Then {Vf | f ∈ Ik+} is a basis of ∧kV, for k ∈ Z>0 ∪ {∞}.

For k ∈ Z>0, we let w
(k)
0 be the longest element in Sk. Define

L
w

(k)
0

:=
∑
w∈Sk

(−q)l(w)−l(w(k)
0 )Hw ∈ HAk−1

.

It is well known [KL, So2] that L
w

(k)
0

= L
w

(k)
0

. The right action by L
w

(k)
0

define a

Q(q)-linear map (the q-skew-symmetrizer) SkSymk : V⊗k → V⊗k. Then the q-wedge

space ∧kV can also be regarded as a subspace Im(SkSymk) of V⊗k while identifying

Vf ≡M
(0k)

f ·w(k)
0

L
w

(k)
0

for f ∈ Ik+ (cf. e.g. [CLW2, §4.1]).

Similar construction gives rise to ∧∞W. For each d ∈ Z and l ≥ k, consider the

Q(q)-linear maps

∧k,ld : ∧kW −→ ∧lW (8.3.1)

wp1 ∧ · · · ∧ wpk 7→ wp1 ∧ · · · ∧ wpk ∧ wd− 1
2

+k+1 ∧ wd− 1
2

+k+2 ∧ · · · ∧ wd− 1
2

+l.

Let ∧∞d W := lim−→∧
kW be the direct limit of the Q(q)-vector spaces with respect to



134

the maps ∧k,ld . Define

∧∞W :=
⊕
d∈Z

∧∞d W.

Note that for any fixed u ∈ U and fixed d ∈ Z, we have

∧k,ld u = u∧k,ld : ∧kW→ ∧lW, for l ≥ k � 0.

Therefore ∧∞d W and hence ∧∞W become both U-modules and Uı-modules.

We can think of elements in ∧∞W as linear combinations of infinite q-wedges of

the form

wp1 ∧ wp2 ∧ wp3 ∧ · · · ,

where p1 < p2 < p3 < · · · , and pi − pi+1 = −1, for i � 0. Alternatively, the space

∧∞W has a basis indexed by partitions given by

|λ∗, d〉 := wd+ 1
2
−λ1
∧ wd+ 3

2
−λ2
∧ wd+ 5

2
−λ3
∧ · · · ,

where λ = (λ1, λ2, · · · ) runs over the set P of all partitions, and d runs over Z. Clearly

we can realize ∧∞d W as the subspace of ∧∞W spanned by {|λ∗, d〉 | λ ∈ P}, for d ∈ Z.

Let

Ik− = {f : [k]→ I | f(1) < f(2) < · · · < f(k)}, for k ∈ N,

I∞− = {f : [∞]→ I | f(1) < f(2) < · · · ; f(t)− f(t+ 1) = −1 for t� 0}.

For f ∈ Ik−, we denote

Wf = wf(1) ∧ wf(2) ∧ · · · ∧ wf(k).

Then {Wf | f ∈ Ik−} is a basis of ∧kW, for k ∈ N ∪ {∞}.
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Remark 8.3.1. The semi-infinite q-wedge spaces considered in this paper will involve

all sectors, while only the 0th sector was considered and needed in [CLW2, §2.4].

8.4 Bruhat orderings

Let b = (b1, · · · , bm+n) be an arbitrary 0m1n-sequence. We first define a partial

ordering on Im+n, which depends on the sequence b. There is a natural bijection

Im+n ↔ X(m|n) (recall X(m|n) from (7.1.1)), defined as

f 7→ λbf , where λbf =
m+n∑
i=1

(−1)bif(i)εbii − ρb, for f ∈ Im+n, (8.4.1)

λ 7→ fb
λ , where f(i) = (λ+ ρb|εbii ), for λ ∈ X(m|n). (8.4.2)

We transport the Bruhat ordering (7.1.3) on X(m|n) by the above bijection to Im+n.

Definition 8.4.1. The Bruhat ordering or b-Bruhat ordering �b on Im+n is defined

as follows: For f , g ∈ Im+n, f �b g if λbf �b λ
b
g . We also say f ∼ g if λbf ∼ λbg .

The following lemma follows immediately from the definition.

Lemma 8.4.2. Given f, g ∈ Im+n such that g �b f , then the set {h ∈ Im+n | g �b

h �b f} is finite.

Recalling the weight wtb(·) on Im+n from Definition 8.2.1, we set

wtb(λ) := wtb(fb
λ ), for λ ∈ X(m|n). (8.4.3)

We have the following analogue of [Br1, Lemma 4.18].
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Lemma 8.4.3. For any f, g ∈ Im+n, f ∼ g if and only if wtb(f) = wtb(g).

Proof. This proof is analogous to [CW2, Theorem 2.30]. Assume f ∼ g at first.

Recall §7.1, this means

λbg + ρb = w(λbf + ρb −
l∑

i=1

ciαi), (λbf + ρb|αj) = 0, j = 1, . . . , l.

where αi’s are mutually orthogonal isotropic odd roots. Recall the Weyl group of

osp(2m+ 1|2n) is isomorphic to (Z2 oSm)× (Z2 oSn). Thanks to Definition 2.2.4

and the actions the kαi ’s on V and W, we have wtb(w(λbf + ρb −
∑l

i=1 ciαi)) =

wtb(λbf + ρb −
∑l

i=1 ciαi). Isotropic odd roots of Φ are of the form ±εbxx ± ε
by
y , where

bx and by are distinct. We shall discuss one case here, as the others will be similar.

Let α = εbss − εbtt = ε0s − ε1t be an isotropic odd root such that (λbf + ρb|α) =

(
∑m+n

i=1 (−1)bif(i)εbii |α) = 0. Therefore, f(s) = f(t). Hence we have wtb(λbf + ρb +

cα) = wtb(. . . , f(s−1), f(s)+c, f(s+1), . . . , f(t−1), f(t)+c, f(t+1), . . . ) = wtb(f),

where the last equality comes from the actions of kαi ’s on V and W. Therefore

wtb(f) = wtb(g).

Now suppose wtb(f) = wtb(g). We have

m+n∑
i=1

(−1)biεf(i) =
m+n∑
i=1

(−1)biεg(i). (8.4.4)

For distinct bia , bja (ia 6= ja), if f(ia) = ±f(ja), (−1)biaεf(ia) +(−1)bjaεf(ja) = 0 (recall

that εf(s) = ε−f(s)). Similar results hold for g. After canceling all such pairs (all ia

and all ja are distinct) on both sides of (8.4.4), the survived terms match bijectively

up to signs. More precisely, for any survived f(x), there exists a suvived g(y), such
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that g(y) = ±f(x), bx = by. Hence the same number of pairs cancelled on both sides,

say l pairs. Therefore we have λbf + ρb −
∑l

a=1 ca(ε
0
ia − saε

1
ja) = w(λbg + ρb) for some

w ∈ (Z2 oSm)× (Z2 oSn), sa ∈ {±}. The sa’s are chosen to satisfy

(λbf + ρb|ε0ia − saε
1
ja) = 0.

Therefore λbf ∼ λbg by the definition in §7.1. Hence f ∼ g.

This completes the proof of the lemma.

Now let us define partial orderings on the sets Im+n× I∞± , which again depend on

b. Recall (7.2.1) and (7.2.2) for the definitions of X∞,+b,0 and X∞,+b,1 . We define a map

X∞,+b,0 −→ Im+n × I∞+ , λ 7→ fb0
λ , (8.4.5)

by sending each λ =
∑m+n

i=1 λiε
bi
i +

∑
1≤j

+λjε
0
j + dε0∞ to the element fb0

λ = f
(b,0∞)
λ

given below (which is consistent with the ρ-shift associated to a simple system of the

type (?) in §7.1 by Remark 7.1.1):

fb0
λ (i) = fb

λ (i), if i ∈ [m+ n] := {1, 2, . . . ,m+ n},

fb0
λ (j) = +λj + d+ n−m+

1

2
− j, if 1 ≤ j.

(8.4.6)

This map is a bijection, where the inverse sends f ∈ Im+n × I∞+ to

λb0
f :=

m+n∑
i=1

λbf,iε
bi
i +

∑
1≤j

+λf,jε
0
j + dfε

0
∞.

Similarly we define a bijection

X∞,+b,1 −→ Im+n × I∞− , λ 7→ fb1
λ , (8.4.7)
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by sending each λ =
∑m+n

i=1 λiε
bi
i +

∑
1≤j

+λjε
1
j + dε1∞ to the element fb1

λ = f
(b,1∞)
λ

given below:

fb1
λ (i) := fb

λ (i), if i ∈ [m+ n],

fb1
λ (j) := −+λj + d+ n−m− 1

2
+ j, if 1 ≤ j.

(8.4.8)

The inverse sends f ∈ Im+n × I∞− to λb1
f :=

∑m+n
i=1 λbf,iε

bi
i +

∑
1≤j

+λf,jε
1
j + dfε

1
∞.

Note that for s ∈ {0, 1}, the sum
∑m+n

i=1 λbf,iε
bi
i +

∑
1≤j

+λf,jε
s
j lies in the root

system of a finite-rank Lie superalgebra. Hence the following definitions make sense.

Definition 8.4.4. For f , g ∈ Im+n × I∞+ , we say f ∼ g if

df = dg and (
m+n∑
i=1

λbf,iε
bi
i +

∑
1≤j

+λf,jε
0
j) ∼ (

m+n∑
i=1

λbg,iε
bi
i +

∑
1≤j

+λg,jε
0
j)

in the sense of §7.1. We say f �b,0 g if

f ∼ g and λb,0g − λ
b,0
f ∈ NΠb,0.

We similarly define an equivalence ∼ and a partial ordering �b,1 on Im+n × I∞− .

Definition 8.4.5. For f , g ∈ Im+n × I∞− , we say f ∼ g if

df = dg and (
m+n∑
i=1

λbf,iε
bi
i +

∑
1≤j

+λf,jε
1
j) ∼ (

m+n∑
i=1

λbg,iε
bi
i +

∑
1≤j

+λg,jε
1
j)

in the sense of §7.1. We say f �b,1 g if

f ∼ g and λb,1g − λ
b,1
f ∈ NΠb,1.

The following lemma follows from Definition 8.4.4, Definition 8.4.5, and Lemma 8.4.2.
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Lemma 8.4.6. 1. Given f, g ∈ Im+n × I∞+ such that g �b,0 f , the set {h ∈

Im+n × I∞+ | g �b,0 h �b,0 f} is finite.

2. Given f, g ∈ Im+n × I∞− such that g �b,1 f , the set {h ∈ Im+n × I∞− | g �b,1

h �b,1 f} is finite.

The following lemma is an infinite-rank analogue of Lemma 8.4.3.

Lemma 8.4.7. For any f , g ∈ Im+n × I∞+ (respectively, Im+n × I∞− ), f ∼ g if and

only if wtb,0(f) = wtb,0(g) (respectively, wtb,1(f) = wtb,1(g)).

Proof. The lemma follows from Definition 8.4.4, Definition 8.4.5, and Lemma 8.4.3.



Chapter 9

ı-Canonical bases and

Kazhdan-Lusztig-type polynomials

In this chapter, suitably completed Fock spaces are constructed and shown to admit

ı-canonical as well as dual ı-canonical bases. We introduce truncation maps to study

the relations among bases for different Fock spaces, which then allow us to formulate

ı-canonical bases in certain semi-infinite Fock spaces.

9.1 The B-completion and Υ

Let b be a 0m1n-sequence. For r ∈ N, we let

πr : Tb −→ Tb
r (9.1.1)

140
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be the natural projection map with respect to the standard basis {Mb
f | f ∈ Im+n}

of Tb (see (8.2.3)). We then let T̃b be the completion of Tb with respect to the

descending sequence of subspaces {kerπr | r ≥ 1}. Formally, every element in T̃b is

a possibly infinite linear combination of Mf , with f ∈ Im+n. We let T̂b denote the

subspace of T̃b spanned by elements of the form

Mf +
∑
g≺bf

cbgf (q)Mg, for cbgf (q) ∈ Q(q). (9.1.2)

Definition 9.1.1. The Q(q)-vector spaces T̃b and T̂b are called the A-completion

and B-completion of Tb, respectively.

Remark 9.1.2. The B-completion we defined here is different from the one defined in

[CLW2], since they are based on different partial orderings. However, observing that

the partial ordering used in [CLW2] is coarser than the partial ordering here, our B-

completion here contains the B-completion in [CLW2, Definition 3.2] as a subspace.

This fact very often allows us to cite directly the results therein.

Lemma 9.1.3. Let f ∈ Im+n
r . Then we have Mf ∈ Tb

r , and

πr(Υ
(l)Mf ) = Υ(r)Mf , for all l ≥ r.

Proof. Note that NΠ2r+1 ⊂ NΠ2l+1, for l ≥ r. It is clear from the construction of Υ(r)

in Theorem 2.3.1 that we have

Υ(l) = Υ(r) +
∑

µ∈NΠ2l+1\NΠ2r+1

Υ(l)
µ .
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By U-weight consideration, it is easy to see πr(Υ
(l)
µ Mf ) = 0 if µ 6∈ NΠ2r+1. There-

fore

πr(Υ
(l)Mf ) = πr(Υ

(r)Mf ) = Υ(r)Mf .

The lemma follows.

It follows from Lemma 9.1.3 that lim
r→∞

Υ(r)Mf , for any f ∈ Im+n, is a well-defined

element in T̃b. Therefore we have

ΥMf = lim
r→∞

Υ(r)Mf ,

where Υ is the operator defined in (8.1.2).

Lemma 9.1.4. For f ∈ Im+n, we have

ΥMf = Mf +
∑
g≺bf

r′gf (q)Mg, for r′gf (q) ∈ A. (9.1.3)

In particular, we have Υ : Tb → T̂b.

Proof. For any u ∈ U− with Uı-weight 0, f ∈ Im+n, let uMf =
∑

g cgfMg. Fix any

g with cgf 6= 0. Since u has Uı-weight 0, we know by Lemma 8.4.3 that g ∼ f and so

λbg ∼ λbf . By a direct computation (by writing u in terms of Chevalley generator F ’s),

it is easy to see that u ∈ U− implies that λbf − λbg ∈ NΠb. Hence we have g �b f .

Recall that Υµ ∈ U− for all µ and Υµ 6= 0 only if µ = µθ, i.e., µ is of Uı-weight

0. Hence we have the identity (9.1.3), where r′gf (q) ∈ A follows from Theorem 4.4.2.

The lemma follows.
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Lemma 9.1.5. The map Υ : Tb → T̂b extends uniquely to a Q(q)-linear map Υ :

T̂b → T̂b.

Proof. We adapt the proof of [CLW2, Lemma 3.7] here. To show that the map Υ

extends to T̂b we need to show that if y = Mf +
∑

g≺bf
rg(q)Mg ∈ T̂b for rg(q) ∈ Q(q)

then Υy ∈ T̂b. By Lemma 9.1.4 and the definition of T̂b, it remains to show that

Υy ∈ T̃b. To that end, we note that if the coefficient of Mh in Υy is nonzero, then

there exists g �b f such that r′hg(q) 6= 0. Thus we have h �b g �b f . However, by

Lemma 8.4.2 there are only finitely many such g’s. Thus, only finitely many g’s can

contribute to the coefficient of Mh in Υy, and hence Υy ∈ T̃b.

9.2 ı-Canonical bases

Anti-linear maps ψ : Tb
r → Tb

r and ψ : Tb → T̂b were defined in [CLW2, §3.3] (recall

Remark 9.1.2 that our B-completion contains the one therein as a subspace, so T̂b

here can and will be understood in the sense of this paper). We define the map

ψı : Tb → T̂b by

ψı(Mf ) := Υψ(Mf ). (9.2.1)

Recall from §3.4 that Tb
r is an ı-involutive Uı

r-module with anti-linear involution ψ
(r)
ı .

Lemma 9.2.1. We have πr(ψı(Mf )) = ψ
(r)
ı (Mf ), for f ∈ Im+n

r .

Proof. Recall that ψ
(r)
ı = Υ(r)ψ(r). By a variant of Lemma 9.1.3, we have

πr(ψı(Mf )) = πr(Υ
(r)ψ(Mf ))
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by a U-weight consideration. Therefore we have

πr(ψı(Mf )) = Υ(r)πr(ψ(Mf )) = Υ(r)ψ(r)(Mf ),

where the last identity follows from [CLW2, Lemma 3.4]. The lemma follows.

It follows immediately that we have

ψı(Mf ) = lim
r→∞

ψ(r)
ı (Mf ), for f ∈ Im+n. (9.2.2)

Lemma 9.2.2. Let f ∈ Im+n. Then we have

ψı(Mf ) = Mf +
∑
g≺bf

rgf (q)Mg, for rgf (q) ∈ A.

Hence the anti-linear map ψı : Tb → T̂b extends to a map ψı : T̂b → T̂b. Moreover

ψı is independent of the bracketing orders for the tensor product Tb.

Proof. Following [CLW2, Proposition 3.6] and Remark 9.1.2, we have

ψ(Mf ) = Mf +
∑
g≺bf

r′′gf (q)Mg, for r′′gf (q) ∈ A.

Hence the first part of the lemma follows from Lemma 9.1.4.

We can show that the map ψı : Tb → T̂b extends to a map ψı : T̂b → T̂b by

applying the same argument used in the proof of Lemma 9.1.5. Since ψ is independent

from the bracketing orders for the tensor product Tb by [CLW2, Proposition 3.5], so

is ψı.

Lemma 9.2.3. The map ψı : T̂b −→ T̂b is an anti-linear involution.
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Proof. In order to prove the lemma, we need to prove that for fixed f, h ∈ Im+n with

h ≺b f , we have ∑
h�bg�bf

rhg(q)rgf (q) = δhf .

By Lemma 8.4.2, there is only finitely many g such that h �b g �b f . Recall

§3.4. We know ψ
(r)
ı is an involution. By (9.2.2), this is equivalent to the same

identities in the finite-dimensional space Tb
r with r � 0. Then the lemmas follows

from Proposition 3.4.2.

Thanks to Lemmas 9.2.2 and 9.2.3, we are in a position to apply [Lu2, Lemma

24.2.1] to the anti-linear involution ψı : T̂b → T̂b to establish the following.

Theorem 9.2.4. The Q(q)-vector space T̂b has unique ψı-invariant topological bases

{Tb
f | f ∈ Im+n} and {Lb

f | f ∈ Im+n}

such that

Tb
f = Mf +

∑
g�bf

tbgf (q)M
b
g , Lb

f = Mf +
∑
g�bf

`bgf (q)M
b
g ,

with tbgf (q) ∈ qZ[q], and `bgf (q) ∈ q−1Z[q−1], for g �b f . (We shall write tbff (q) =

`bff (q) = 1, tbgf (q) = `bgf (q) = 0 for g 6�b f .)

Definition 9.2.5. {Tb
f | f ∈ Im+n} and {Lb

f | f ∈ Im+n} are call the ı-canonical

basis and dual ı-canonical basis of T̂b, respectively. The polynomials tbgf (q) and `bgf (q)

are called ı-Kazhdan-Lusztig (or ı-KL) polynomials.

Conjecture 9.2.6. 1. (Positivity) We have tbgf (q) ∈ N[q].



146

2. The sum Tb
f = Mf +

∑
g�bf

tbgf (q)M
b
g is finite, for all f ∈ Im+n.

Note that tbgf (1) ∈ N and the finite sum claim in (2) at the q = 1 specialization

holds by Theorem 11.6.1. Hence, the validity of the positivity conjecture (1) implies

the validity of (2). We also raise the question on a possible positivity of the coeffi-

cients in the expansion of the ı-canonical basis elements here relative to the (type A)

canonical basis on T̂b as constructed in [CLW2].

9.3 Bar involution and q-wedges of W

Let k ∈ N ∪ {∞}. For f = (f[m+n], f[k]) ∈ Im+n × Ik+, set

Mb,0
f := Mb

f[m+n]
⊗ Vf[k]

∈ Tb ⊗ ∧kV.

Then {Mb,0
f | f ∈ Im+n × Ik+} forms a basis, called the standard monomial basis, of

the Q(q)-vector space Tb ⊗ ∧kV. Similarly, Tb ⊗ ∧kW admits a standard monomial

basis given by

Mb,1
g := Mb

g[m+n]
⊗Wg[k]

∈ Tb ⊗ ∧kW,

where g = (g[m+n], g[k]) ∈ Im+n × Ik−. Following [CLW2, §4], here we shall focus on

the case Tb ⊗ ∧kW, while the case Tb ⊗ ∧kV is similar.

Let us consider k ∈ N first. As in [CLW2, §4], Tb ⊗ ∧kW can be realized as a

subspace of Tb⊗W⊗k = T(b,1k). Therefore we can define a B-completion of Tb⊗∧kW,

denoted by Tb⊗̂∧kW, as the closure of the subspace Tb⊗∧kW ⊂ Tb⊗̂W⊗k = T̂(b,1k)
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with respect to the linear topology {kerπr | r ≥ 1} defined in §9.1. By construction

Tb⊗̂ ∧kW is invariant under the involution ψı, i.e., we have

ψı(M
b,1
f ) = Mb,1

f +
∑

g≺
(b,1k)

f

rgf (q)M
b,1
g ,

where rgf (q) ∈ A, and the sum running over g ∈ Im+n × Ik− is possibly infinite.

Remark 9.3.1. If k = 0, Mb,0
f and Mb,1

g are understood as Mb
f and Mb

g , respectively;

also, Tb⊗̂ ∧0 W and Tb⊗̂ ∧0 V are understood as T̂b.

Recall the linear maps ∧k,ld defined in (8.3.1). For l ≥ k and each d ∈ Z, define

the Q(q)-linear map

id⊗ ∧k,ld : Tb ⊗ ∧kW −→ Tb ⊗ ∧lW.

It is easy to check that the map id ⊗ ∧k,ld extends to the B-completions; that is, we

have

id⊗ ∧k,ld : Tb⊗̂ ∧kW −→ Tb⊗̂ ∧lW.

Let Tb⊗̂ ∧∞d W := lim−→T
b⊗̂ ∧k W be the direct limit of the Q(q)-vector spaces with

respect to the linear maps id⊗ ∧k,ld . It is easy to see that Tb⊗ ∧∞d W ⊂ Tb⊗̂ ∧∞d W.

Define the B-completion of Tb⊗ ∧∞W as follows:

Tb⊗̂ ∧∞W :=
⊕
d∈Z

Tb⊗̂ ∧∞d W. (9.3.1)

By the same argument as in §8.3, we see that Tb⊗̂ ∧∞d W and Tb⊗̂ ∧∞W are (topo-

logical) U-modules, hence (topological) Uı-modules.
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Following the definitions of the partial orderings in Definition 8.4.1 and Defini-

tion 8.4.5, we see that Tb⊗̂ ∧∞W is spanned by elements of the form

Mb,1
f +

∑
g≺b,1f

cgf (q)M
b,1
g , for g, f ∈ Im+n × I∞− .

Following [CLW2, §4.1], we can extend the anti-linear involution ψ : Tb⊗̂ ∧k W →

Tb⊗̂ ∧kW to an anti-linear involution ψ : Tb⊗̂ ∧∞W→ Tb⊗̂ ∧∞W such that

ψ(Mb,1
f ) = Mb,1

f +
∑
g≺b,1f

r′′gf (q)M
b,1
f , for r′′gf (q) ∈ A.

Here we have used the fact that our B-completion contains the B-completion in loc.

cit. as a subspace (see Remark 9.1.2).

Following the definition of the B-completion Tb⊗̂ ∧∞ W, we have Υ as a well-

defined operator on Tb⊗̂ ∧∞W such that

Υ(Mb,1
f ) = Mb,1

f +
∑
g≺b,1f

r′gf (q)M
b,1
f , for r′gf (q) ∈ A.

Therefore we can define the anti-linear map

ψı := Υψ : Tb⊗̂ ∧∞W −→ Tb⊗̂ ∧∞W,

such that

ψı(M
b,1
f ) = Mb,1

f +
∑
g≺b,1f

rgf (q)M
b,1
f , for rgf (q) ∈ A.

Lemma 9.3.2. Let k ∈ N ∪ {∞}. The map ψı : Tb⊗̂ ∧k W −→ Tb⊗̂ ∧k W is an

involution.

Proof. For k ∈ N, the lemma was already established. For k =∞, the lemma can be

proved in the same way as Lemma 9.2.3 with the help of Lemma 8.4.6.
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9.4 Truncations

In this section we shall again only focus on Tb⊗∧kW for k ∈ N∪{∞}. We shall use

fk ∈ Im+n× Ik± as a short-hand notation for the restriction of f[m+n]∪[k] of a function

f ∈ Im+n × I∞± .

Now let us define the truncation map Tr : Tb⊗∧∞W→ Tb⊗∧kW, for k ∈ N, as

follows:

Tr(m⊗Wh) =


m⊗Wh[k]

, if h(i)− h(i+ 1) = −1, for i ≥ k + 1,

0, otherwise.

Lemma 9.4.1. Let k ∈ N. The truncation map Tr : Tb ⊗ ∧∞W → Tb ⊗ ∧kW is

compatible with the partial orderings, and hence extends naturally to a Q(q)-linear

map Tr : Tb⊗̂ ∧∞W→ Tb⊗̂ ∧kW.

Proof. Let f , g ∈ Im+n× I∞− with g �b,1 f . According to Definition 8.4.5, this means

f(i) = g(i) for all i� 0. If Tr(Mb,1
f ) 6= 0 and Tr(Mb,1

g ) 6= 0, we must have g(i) = f(i),

∀i ≥ k + 1. Hence we have λ
(b,1k)

gk
�(b,1k) λ

(b,1k)

fk
by comparing Definition 8.4.5 with

Definition 8.4.1. Thanks to Lemma 8.4.3 and Lemma 8.4.7, we have gk ∼ fk as well.

Therefore we have gk �(b,1k) f
k.

Now suppose Tr(Mb,1
f ) = 0 and g �b,1 f . If f[∞] = g[∞], then Tr(Mb,1

g ) = 0. If

not, choose i with i maximal such that f(i) 6= g(i). If i ≤ k, then again we have

Tr(Mb,1
g ) = 0. So suppose i ≥ k + 1. Since g �b,1 f , we have g(j) = f(j) for j � 0

and g(i) < f(i). Hence there must be some t ≥ k + 1 such that g(t) − g(t+ 1) ≥
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f(t)− f(t+ 1) > −1. Therefore Tr(Mb,1
g ) = 0. The lemma follows.

Lemma 9.4.2. The truncation map Tr : Tb⊗̂ ∧∞W → Tb⊗̂ ∧k W commutes with

the anti-linear involution ψı, that is,

ψı(Tr(Mb,1
f )) = Tr(ψı(M

b,1
f )), for f ∈ Im+n × I∞− .

Proof. Following [CLW2, Lemma 4.2], we know Tr commutes with ψ. As shown in

the proof of [CLW2, Lemma 4.2], Tr is a homomorphism of U−-modules. By (8.1.2),

we have Υ =
∑

µ∈Λ Υµ, where Υµ ∈ U−. The lemma follows.

Proposition 9.4.3. Let k ∈ N ∪ {∞}. The anti-linear map ψı : Tb⊗̂ ∧k W →

Tb⊗̂ ∧kW is an involution. Moreover, the space Tb⊗̂ ∧kW has unique ψı-invariant

topological bases

{Tb,1
f | f ∈ Im+n × Ik−} and {Lb,1

f | f ∈ I
m+n × Ik−}

such that

Tb,1
f = Mb,1

f +
∑

g≺
(b,1k)

f

tb,1gf (q)Mb,1
g , Lb,1

f = Mb,1
f +

∑
g≺

(b,1k)
f

`b,1gf (q)Mb,1
g

with tb,1gf ∈ qZ[q], and `b,1gf (q) ∈ q−1Z[q−1]. (We shall write tb,1ff = `b,1ff (q) = 1, and

tb,1gf = `b,1gf = 0, for g 6�(b,1k) f .)

We call {Tb,1
f } and {Lb,1

f } the ı-canonical and dual ı-canonical bases of Tb⊗̂∧kW.

We conjecture that tb,1gf ∈ N[q].
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Proposition 9.4.4. Let k ∈ N. The truncation map Tr : Tb⊗̂ ∧∞W → Tb⊗̂ ∧kW

preserves the standard, ı-canonical, and dual ı-canonical bases in the following sense:

for Y = M,L, T and f ∈ Im+n × I∞− we have

Tr
(
Y b,1
f

)
=


Y b,1
fk
, if f(i)− f(i+ 1) = −1, for i ≥ k + 1,

0, otherwise.

Consequently, we have tb,1gf (q) = tb,1
gkfk

(q) and `b,1gf (q) = `b,1
gkfk

(q), for g, f ∈ Im+n × I∞−

such that f(i)− f(i+ 1) = g(i)− g(i+ 1) = −1, for i ≥ k + 1.

Proof. The statement is true for Y = M by definition. Lemma 9.4.1 and Lemma

9.4.2 now imply the statement for Y = T , L.

9.5 Bar involution and q-wedges of V

The constructions and statements in §9.3 and §9.4 have counterparts for Tb ⊗ ∧kV,

k ∈ N∪{∞}. We shall state them without proofs. Let Tb⊗̂∧kV be the B-completion

of Tb ⊗ ∧kV. For k ∈ N, we define the truncation map Tr : Tb ⊗ ∧∞V→ Tb ⊗ ∧kV

by

Tr(m⊗ Vh) =


m⊗ Vh[k]

, if h(i)− h(i+ 1) = 1, for i ≥ k + 1,

0, otherwise .

The truncation map Tr extends to the B-completions.

Proposition 9.5.1. Let k ∈ N∪{∞}. The bar map ψı : Tb⊗̂∧kV→ Tb⊗̂∧kV is an
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involution. Moreover, the space Tb⊗̂ ∧k V has unique ψı-invariant topological bases

{Tb,0
f | f ∈ Im+n × Ik+} and {Lb,0

f | f ∈ I
m+n × Ik+}

such that

Tb,0
f = Mb,0

f +
∑

g≺
(b,0k)

f

tb,0gf (q)Mb,0
g , Lb,0

f = Mb,0
f +

∑
g≺

(b,0k)
f

`b,0gf (q)Mb,0
g ,

with tb,0gf (q) ∈ qZ[q], and `b,0gf (q) ∈ q−1Z[q−1]. (We will write tb,0ff (q) = `b,0ff (q) = 1,

tb,0gf = `b,0gf = 0, for g 6�(b,0k) f .)

We shall refer to the basis {Tb,0
f } as the ı-canonical basis and refer to the basis

{Lb,0
f } the dual ı-canonical basis for Tb⊗̂ ∧k V. Also we shall call the polynomials

tb,0gf (q), tb,1gf (q), `b,0gf (q) and `b,1gf (q) the ı-KL polynomials.

Proposition 9.5.2. Let k ∈ N. The truncation map Tr : Tb⊗̂ ∧∞ V → Tb⊗̂ ∧k V

preserves the standard, ı-canonical, and dual ı-canonical bases in the following sense:

for Y = M,L, T and f ∈ Im+n × I∞+ we have

Tr
(
Y b,0
f

)
=


Y b,0
fk
, if f(i)− f(i+ 1) = 1, for i ≥ k + 1,

0, otherwise.

Consequently, we have tb,0gf (q) = tb,0
gkfk

(q) and `b,0gf (q) = `b,0
gkfk

(q), for g, f ∈ Im+n × I∞+

such that f(i)− f(i+ 1) = g(i)− g(i+ 1) = 1, for i ≥ k + 1.



Chapter 10

Comparisons of ı-canonical bases in

different Fock spaces

In this chapter, we study the relations of ı-canonical and dual ı-canonical bases be-

tween three different pairs of Fock spaces.

10.1 Tensor versus q-wedges

As explained in §8.3, we can and will regard ∧kV as a subspace of V⊗k, for a finite k.

Let b be a fixed 0m1n-sequence and k ∈ N. We shall compare the ı-canonical and

dual ı-canonical bases of Tb ⊗ V⊗k and its subspace Tb ⊗ ∧kV .

Let f ∈ Im+n × Ik+. As before, we write the dual ı-canonical basis element L
(b,0k)
f

153
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in Tb⊗̂V⊗k and the corresponding dual ı-canonical basis element Lb,0
f in Tb⊗̂∧kV as

L
(b,0k)
f =

∑
g∈Im+n×Ik

`
(b,0k)
gf (q)M (b,0k)

g , (10.1.1)

Lb,0
f =

∑
g∈Im+n×Ik+

`b,0gf (q)Mb,0
g . (10.1.2)

The following proposition states that the ı-KL polynomials `’s in Tb⊗̂∧kV coincide

with their counterparts in Tb⊗̂V⊗k.

Proposition 10.1.1. Let f, g ∈ Im+n × Ik+. Then `b,0gf (q) = `
(b,0k)
gf (q).

Proof. The same argument in [CLW2, Proposition 4.9] applies here.

Let f ∈ Im+n×Ik+. Similarly as before we write the canonical basis element T
(b,0k)
f

in Tb⊗̂V⊗k and the canonical basis element Tb,0
f in Tb⊗̂ ∧k V respectively as

T
(b,0k)
f =

∑
g∈Im+n×Ik

t
(b,0k)
gf (q)M (b,0k)

g , (10.1.3)

Tb,0
f =

∑
g∈Im+n×Ik+

tb,0gf (q)Mb,0
g . (10.1.4)

Proposition 10.1.2. For f , g ∈ Im+n × Ik+, we have

tb,0gf (q) =
∑
τ∈Sk

(−q)`(w
(k)
0 τ)t

(b,0k)

g·τ,f ·w(k)
0

(q).

Proof. Similar proof as for [CLW2, Proposition 4.10] works there.

Via identifying Vg[k]
≡M

(0k)

g[k]·w
(k)
0

L
w

(k)
0

, we have, as in [Br1, Lemma 3.8],

Tb,0
f = T

(b,0k)

f ·w(k)
0

L
w

(k)
0
.
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A straightforward variation of [Br1, Lemma 3.4] using (10.1.3) gives us

Tb,0
f = T

(b,0k)

f ·w(k)
0

L
w

(k)
0

=
∑
g

t
(b,0k)

g,f ·w(k)
0

M (b,0k)
g L

w
(k)
0

=
∑
τ∈Sk

∑
g∈Im+n×Ik+

t
(b,0k)

g·τ,f ·w(k)
0

M (b,0k)
g·τ L

w
(k)
0

=
∑
τ∈Sk

∑
g∈Im+n×Ik+

t
(b,0k)

g·τ,f ·w(k)
0

(−q)`(τ−1w
(k)
0 )Mb,0

g

=
∑

g∈Im+n×Ik+

(∑
τ∈Sk

t
(b,0k)

g·τ,f ·w(k)
0

(−q)`(w
(k)
0 τ)

)
Mb,0

g .

The proposition now follows by comparing with (10.1.4).

Remark 10.1.3. The counterparts of Propositions 10.1.1 and 10.1.2 hold if we replace

V by W.

10.2 Adjacent ı-canonical bases

Two 0m1n-sequences b, b′ of the form b = (b1, 0, 1,b2) and b′ = (b1, 1, 0,b2) are

called adjacent. Now we compare the ı-canonical as well as dual ı-canonical bases in

Fock spaces T̂b and T̂b′ , for adjacent 0m1n-sequences b and b′.

In type A setting, a strategy was developed in [CLW2, §5] for such a comparison

of canonical basis in adjacent Fock spaces. We observe that the strategy applies to

our current setting essentially without any change, under the assumption that b1 is

nonempty. So we will need not copy over all the details from loc. cit. to this paper.

Let us review the main ideas in type A from [CLW2, §5]. We will restrict the
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discussion here to the case of canonical basis while the case of dual canonical basis is

entirely similar. The starting point is to start with the rank two setting and compare

the canonical bases in the B-completions of V ⊗W and W ⊗ V. These canonical

bases can be easily computed: they are either standard monomials or a sum of two

standard monomials with some q-power coefficients. The problem is that the partial

orderings on V⊗̂W and W⊗̂V are not compatible. This problem is overcome by

a simple observation that matching up the canonical bases directly is actually a U-

module isomorphism of their respective linear spans, which is denoted by R : U
∼=→ U′.

So the idea is to work with these smaller spaces U and U′ instead of the B-completions

directly. We use U and U′ to build up smaller completions of the adjacent Tb and

Tb′ , which are used to match the canonical bases by Tb
f 7→ Tb′

fU . Here the index shift

f 7→ fU is shown to correspond exactly under the bijection Im+n ↔ X(m|n) to the

shift λ 7→ λU on X(m|n) in Remark 10.2.2 below (which occurs when comparing the

tilting modules relative to adjacent Borel subalgebras of type b and b′).

Now we restrict ourselves to two adjacent sequences b and b′, where b1 is nonempty;

this is sufficient for the main application of determining completely the irreducible

and tilting characters in category Ob for osp(2m + 1|2n)-modules (see however Re-

mark 10.2.1 below for the removal of the restriction). We will compare two Fock

spaces of the form Tb1⊗V⊗W⊗Tb2
and Tb1⊗W⊗V⊗Tb2

, where b1 is nonempty.

The coideal property of the coproduct of the algebra Uı in Proposition 2.2.4 allows

us to consider V⊗W and W⊗V as U-modules (not as Uı-modules), and so the type
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A strategy of [CLW2, §5] applies verbatim to our setting.

Remark 10.2.1. Now we consider V ⊗W and W ⊗ V as Uı-modules (instead of U-

modules). The ı-canonical bases on their respective B-completions can be computed

explicitly, though the computation in this case (corresponding to the BGG category

of osp(3|2)) is much more demanding; the formulas are much messier and many more

cases need to be considered, in contrast to the easy type A case of gl(1|1). Denote

by U[ and U′[ the linear spans of these canonical bases respectively. We are able to

verify by a direct computation that matching the canonical bases suitably produces

a Uı-module isomorphism U[ → U′[. (The details will take quite a few pages and

hence will be skipped.) Accepting this, the strategy of [CLW2, §5] is adapted to work

equally well for comparing the (dual) ı-canonical bases between arbitrary adjacent

Fock spaces T̂b and T̂b′ .

Remark 10.2.2. Let b = (b1, 0, 1,b2) and b′ = (b1, 1, 0,b2) be adjacent 0m1n-

sequences. Let α be the isomorphic simple root of osp(2m + 1|2n) corresponding

to the pair 0, 1 in b. Following [CLW2, §6], we introduce the notation associated to

λ ∈ X(m|n):

λL =


λ, if (λ, α) = 0

λ− α, if (λ, α) 6= 0,

λU =


λ− 2α, if (λ, α) = 0

λ− α, if (λ, α) 6= 0.

Then we have the following identification of simple and tilting modules (see [PS] and
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[CLW2, Lemma 6.2, Theorem 6.10]):

Lb(λ) = Lb′(λ
L), Tb(λ) = Tb′(λ

U), for λ ∈ X(m|n).

10.3 Combinatorial super duality

For a partition µ = (µ1, µ2, . . .), we denote its conjugate partition by µ′ = (µ′1, µ
′
2, . . .).

We define a Q(q)-linear isomorphism \ : ∧∞d V −→ ∧∞d W (for each d ∈ Z), or equiva-

lently define \ : ∧∞V→ ∧∞W by

\(|λ, d〉) = |λ′∗, d〉, for λ ∈ P, d ∈ Z.

The following is a straightforward generalization of [CWZ, Theorem 6.3].

Proposition 10.3.1. The map \ : ∧∞d V −→ ∧∞d W (for each d ∈ Z) or \ : ∧∞V −→

∧∞W is an isomorphism of U-modules.

Proof. It is a well-known fact that ∧∞d V and ∧∞d W as U-modules are both isomorphic

to the level one integrable module associated to the dth fundamental weight (by the

same proof as for [CWZ, Proposition 6.1]; also see the references therein).

Now the proof of the proposition is the same as for [CWZ, Theorem 6.3], which

is our special case with d = 0.

This isomorphism of U-modules \ : ∧∞V → ∧∞W induces an isomorphism of

U-modules

\b := id⊗ \ : Tb ⊗ ∧∞V−→Tb ⊗ ∧∞W.
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Let f ∈ Im+n × I∞+ . There exists unique λ ∈ P and d ∈ Z such that |λ, d〉 = Vf[∞]
.

We define f \ to be the unique element in Im+n × I∞− determined by f \(i) = f(i), for

i ∈ [m+n], and Wf\
[∞]

= |λ′∗, d〉. The assignment f 7→ f \ gives a bijection (cf. [CWZ])

\ : Im+n × I∞+ −→ Im+n × I∞− . (10.3.1)

If we write λb,0f =
∑m+n

i=1 λbf,iε
bi
i +

∑
1≤j

+λf,jε
0
j + dfε

0
∞ ∈ X∞,+b,0 under the bijection

defined in (8.4.5), then we have

λb,1
f\

=
m+n∑
i=1

λbf,iε
bi
i +

∑
1≤j

+λ′f,jε
1
j + dfε

1
∞ ∈ X

∞,+
b,1 . (10.3.2)

The following is the combinatorial counterpart of the super duality on represen-

tation theory in Theorem 11.5.1 . We refer to [CLW2, Theorem 4.8] for a type A

version, on which our proof below is based.

Theorem 10.3.2. Let b be a 0m1n-sequence.

1. The isomorphism \b respects the Bruhat orderings and hence extends to an

isomorphism of the B-completions \b : Tb⊗̂ ∧∞ V→ Tb⊗̂ ∧∞W.

2. The map \b commutes with the bar involutions.

3. The map \b preserves the ı-canonical and dual ı-canonical bases. More precisely,

we have \b(Mb,0
f ) = Mb,1

f\
, \b(Tb,0

f ) = Tb,1
f\
, and \b(Lb,0

f ) = Lb,1
f\
, for f ∈

Im+n × I∞+ .

4. We have the following identifications of ı-KL polynomials: `b,0gf (q) = `b,1
g\f\

(q),

and tb,0gf (q) = tb,1
g\f\

(q), for all g, f ∈ Im+n × I∞+ .



160

Proof. The statements (2)-(4) follows from (1) by the same argument as [CLW2,

Theorem 4.8]. It remains to prove (1).

Recall the definition of the partial orderings in Definitions 8.4.4 and 8.4.5. To

prove (1), we need to show for any f , g ∈ Im+n × I∞+ , g �b,0 f if and only if

g\ �b,1 f
\. This is equivalent to say that f ∼ g and λb,0g �b,0 λ

b,0
f if and only if

f \ ∼ g\ and λb,1
g\
�b,1 λ

b,1
f\

by Definitions 8.4.4 and 8.4.5.

Since \b : Tb⊗∧∞V→Tb⊗∧∞W is an isomorphism of Uı-modules, by Lemma 8.4.7,

we have f ∼ g if and only if f \ ∼ g\. We shall assume that f ∼ g, hence f \ ∼ g\ for

the rest of this proof.

We shall only prove that λb,0g �b,0 λ
b,0
f implies λb,1

g\
�b,1 λ

b,1
f\

here, as the converse

is entirely similar. We write

λb,0f − λ
b,0
g = a(−εb11 ) +

m+n−1∑
i=1

ai(ε
bi
i − ε

bi+1

i+1 ) + am+n(ε
bm+n

m+n − ε01) +
∑
i=1

ai(ε
0
i − ε0i+1),

where all coefficients are in N and ai = 0 for all but finitely many i. Set

λb,0h := λb,0f − a(−εb11 )

for some h ∈ Im+n × I∞+ . Apparently we have λb,0g �b,0 λ
b,0
h �b,0 λ

b,0
f .

Note that λb,0h actually dominates λb,0g with respect to the Bruhat ordering of

type A defined in [CLW2, §2.3]. Therefore following [CLW2, Theorem 4.8] and Re-

mark 9.1.2, we have

λb,1
g\
�b,1 λ

b,1
h\
. (10.3.3)

On the other hand, by definitions of λb,0h and the isomorphism of \, we have that
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λb,1
h\

= λb,1
f\
− a(−εb11 ), and hence λb,1

h\
�b,1 λ

b,1
f\
. Combining this with (10.3.3) implies

that λb,1
g\
�b,1 λ

b,1
f\
. The statement (1) is proved.



Chapter 11

Kazhdan-Lusztig theory of type B

and ı-canonical basis

In this chapter, we formulate connections between Fock spaces and Grothendieck

groups of various BGG categories. We establish relations of simple as well as tilting

modules between a BGG category and its parabolic subcategory. We show that Uı at

q = 1 are realized as translation functors in the BGG category. Finally, we establish

the Kazhdan-Lusztig theory for osp(2m+ 1|2n), which is the main goal of the paper.

11.1 Grothendieck groups and Fock spaces

Recall the Fock space Tb in §8.2. Starting with an A-lattice Tb
A spanned by the

standard monomial basis of the Q(q)-vector space Tb, we define Tb
Z = Z⊗ATb

A where

A acts on Z with q = 1. For any u in the A-lattice Tb
A, we denote by u(1) its image

162



163

in Tb
Z.

Recall the category Ob from §7.3. Let O∆
b be the full subcategory of Ob consisting

of all modules possessing a finite b-Verma flag. Let [O∆
b ] be its Grothendieck group.

The following lemma is immediate from the bijection Im+n ↔ X(m|n) (λ ↔ fb
λ )

given by (8.4.1) and (8.4.2).

Lemma 11.1.1. The map

Ψ : [O∆
b ] −→ Tb

Z, [Mb(λ)] 7→Mb
fbλ

(1),

defines an isomorphism of Z-modules.

Recall the category O
k
b,0 from §7.3. We shall denote O

k,∆
b,0 the full subcategory

of O
k
b,0 consisting of all modules possessing finite parabolic Verma flags. Recall in

§8.3, we defined the q-wedge spaces ∧kV and ∧kW. Recall a bijection X∞,+b,0 →

Im+n × I∞+ , λ 7→ fb0
λ from (8.4.5). Similarly, we have a bijection

Xk,+
b,0 −→ Im+n × Ik+, λ 7→ fb0

λ .

(Here fb0
λ is understood as the natural restriction to the part [m+ n]× k.) Now the

following lemma is clear.

Lemma 11.1.2. For k ∈ N ∪ {∞}, the map

Ψ : [Ok,∆
b,0 ] −→ Tb

Z ⊗ ∧kVZ, [Mk
b,0(λ)] 7→Mb,0

fb0
λ

(1),

defines an isomorphism of Z-modules.
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We have abused the notation Ψ for all the isomorphisms unless otherwise specified,

since they share the same origin. For k ∈ N∪{∞}, we define [[Ok,∆
b,0 ]] as the completion

of [Ok,∆
b,0 ] such that the extensions of Ψ

Ψ :[[Ok,∆
b,0 ]] −→ Tb

Z⊗̂ ∧k VZ (11.1.1)

are isomorphism of Z-modules. Recall the category O
k
b,1 from §7.3. We shall denote

O
k,∆
b,1 the full subcategory of Ok

b,1 consisting of all modules possessing parabolic Verma

flags. Recall a bijection X∞,+b,1 −→ Im+n × I∞− , λ 7→ fb1
λ from (8.4.7). Similarly, we

have a bijection

Xk,+
b,1 −→ Im+n × Ik−, λ 7→ fb1

λ .

(Here fb1
λ is understood as the natural restriction to the part [m+ n]× k.) Now the

following lemma is clear.

Lemma 11.1.3. For k ∈ N ∪ {∞}, the map

Ψ : [Ok,∆
b,1 ] −→ Tb

Z ⊗ ∧kWZ, [Mk
b,1(λ)] 7→Mb,1

fb1
λ

(1),

is an isomorphism of Z-modules.

For k ∈ N ∪ {∞}, we define [[Ok,∆
b,1 ]] as the completion of [Ok,∆

b,1 ] such that the

extensions of Ψ

Ψ :[[Ok,∆
b,1 ]] −→ Tb

Z⊗̂ ∧kWZ (11.1.2)

are isomorphism of Z-modules.
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Proposition 11.1.4. The truncation maps defined here are compatible under the

isomorphism ψ with the truncations in Propositions 9.4.4 and 9.5.2. More precisely,

we have the following commutative diagrams,

[[O∞,∆b,0 ]] Ψ //

tr0
��

Tb
Z⊗̂ ∧∞ VZ

Tr

��

[[Ok,∆
b,0 ]] Ψ // Tb

Z⊗̂ ∧k VZ

[[O∞,∆b,1 ]] Ψ //

tr1
��

Tb
Z⊗̂ ∧∞WZ

Tr

��

[[Ok,∆
b,1 ]] Ψ // Tb

Z⊗̂ ∧kWZ

Proof. The proposition follows by a direct computation using the respective standard

bases {[M∞
b,0(λ)]} and {[M∞

b,1(λ)]}, and applying Propositions 9.4.4, 9.5.2, and 7.4.1.

11.2 Comparison of characters

Let b be a fix 0m1n-sequence. For k ∈ N, consider the extended sequences (b, 0k)

and (b, 1k). Associated to the extended sequences, we introduced in Chapter 7 the

categories O
m+k|n
(b,0k)

and O
m|n+k

(b,1k)
, as well as the parabolic categories O

k
b,0 and O

k
b,1, re-

spectively.

For λ ∈ Xk,+
b,0 , we can express the simple module [L(b,0k)(λ)] in terms of Verma

modules as follows:

[L(b,0k)(λ)] =
∑

µ∈X(m+k|n)

aµλ[M(b,0k)(µ)], for aµλ ∈ Z.

Since the simple modules {L(b,0k)(λ) = Lkb,0(λ) | λ ∈ Xk,+
b,0 } also lie in the parabolic



166

category O
k
b,0, we can express them in terms of parabolic Verma modules as follows:

[L(b,0k)(λ)] =
∑

ν∈Xk,+
b,0

bνλ[M
k
b,0(ν)], for bνλ ∈ Z.

Recall that Mk
b,0(λ) = Ind

osp(2m+1|2n|2k)

p
k
b,0

L0(λ). By the Weyl character formula

applied to L0(λ), we obtain that aνλ = bνλ, for ν, λ ∈ Xk,+
b,0 . This proves the following.

Proposition 11.2.1. Let λ ∈ Xk,+
b,0 and let ξ ∈ Xk,+

b,1 . Then we have

[L(b,0k)(λ)] =
∑

µ∈X(m+k|n)

aµλ[M(b,0k)(µ)] =
∑

ν∈Xk,+
b,0

aνλ[M
k
b,0(ν)].

[L(b,1k)(ξ)] =
∑

µ∈X(m|n+k)

a′µξ[M(b,1k)(µ)] =
∑

η∈Xk,+
b,1

a′ηξ[M
k
b,1(η)].

Now we proceed with the tilting modules. Let λ ∈ Xk,+
b,0 and ξ ∈ Xk,+

b,1 . We can

express the tilting modules T(b,0k)(λ) and T(b,0k)(ξ) in terms of Verma modules as

follows:

[T(b,0k)(λ)] =
∑

µ∈X(m+k|n)

cµλ[M(b,0k)(µ)], for cµλ ∈ Z,

[T(b,1k)(ξ)] =
∑

η∈X(m|n+k)

c′ηξ[M(b,1k)(η)], for c′ηξ ∈ Z.

Recall the tilting modules T kb,0(λ) and T kb,1(ξ) in the parabolic categories O
k
b,0 and

O
k
b,1. The following proposition is a counterpart of [CLW2, Proposition 8.7] with the

same proof, which is based on [So3, Br2]. Recall w
(k)
0 denotes the longest element in

Sk.

Proposition 11.2.2. 1. Let λ ∈ Xk,+
b,0 , and write T kb,0(λ) =

∑
ν∈Xk,+

b,0
dνλM

k
b,0(ν).

Then we have dνλ =
∑

τ∈Sk(−1)`(τw
(k)
0 )c

τ ·ν,w(k)
0 ·λ

.



167

2. Let ξ ∈ Xk,+
b,1 , and write T kb,1(ξ) =

∑
η∈Xk,+

b,1
d′ηξM

k
b,1(η). Then we have

d′ηξ =
∑

τ∈Sk(−1)`(τw
(k)
0 )c′

τ ·η,w(k)
0 ·λ

.

11.3 Translation functors

In [Br1], Brundan established a U-module isomorphism between the Grothendieck

group of the category O of gl(m|n) and a Fock space (at q = 1), where some properly

defined translation functors act as Chevalley generators of U at q = 1. Here we shall

develop a type B analogue in the setting of osp(2m+ 1|2n).

Let V be the natural osp(2m+1|2n)-module. Notice that V is self-dual. Recalling

§7.1, we have the following decomposition of Ob:

Ob =
⊕
χλ

Ob,χλ ,

where χλ runs over all the integral central characters. Thanks to Lemma 8.4.3, we

can set Ob,γ := Ob,χλ , if wtb(λ) = γ (recall wtb from (8.4.3)). For r ≥ 0, let SrV be

the rth supersymmetric power of V . For i ∈ Iı, M ∈ Ob,γ, we define the following

translation functors in Ob:

f (r)
αi
M := prγ−r(ε

i− 1
2
−ε

i+ 1
2

)(M ⊗ SrV ), (11.3.1)

e(r)
αi
M := prγ+r(ε

i− 1
2
−ε

i+ 1
2

)(M ⊗ SrV ), (11.3.2)

tM := prγ(M ⊗ V ), (11.3.3)

where prµ is the natural projection from Ob to Ob,µ.
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Note that the translation functors naturally induce operators on the Grothendieck

group [O∆
b ], denoted by f

(r)
αi , e

(r)
αi , and t as well. The following two lemmas are

analogues of [Br1, Lemmas 4.23 and 4.24]. Since they are standard, we shall skip the

proofs.

Lemma 11.3.1. On the category Ob, the translation functors f
(r)
αi , e

(r)
αi , and t are all

exact. They commute with the τ -duality.

Lemma 11.3.2. Let ν1, . . . , νN be the set of weights of SrV ordered so that vi > vj

if and only if i < j. Let λ ∈ X(m|n). Then Mb(λ) ⊗ SrV has a multiplicity-free

Verma flag with subquotients isomorphic to Mb(λ+ν1), . . . , Mb(λ+νN) in the order

from bottom to top.

Denote by UZ = Z⊗A UA the specialization of the A-algebra UA at q = 1. Hence

we can view Tb
Z as a UZ-module. Thanks to (2.2.1) and (2.2.2), we know ι(f

(r)
αi ) and

ι(e
(r)
αi ) lie in UA, hence their specializations at q = 1 in UZ act on Tb

Z.

Proposition 11.3.3. Under the identification [O∆
b ] and Tb

Z via the isomorphism Ψ,

the translation functors f
(r)
αi , e

(r)
αi , and t act in the same way as the specialization of

f
(r)
αi , e

(r)
αi , and t in Uı.

Proof. Let us show in detail that the actions match for r = 1 (i.e. ignoring the higher

divided powers). Set

λ+ ρb =
m+n∑
j=1

ajε
bj
j ∈ X(m|n) and γ = wtb(λ).
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Then we have Mb(λ) ∈ Ob,γ. By Lemma 11.3.2, Mb(λ) ⊗ V has a multiplicity-

free Verma flag with subquotients isomorphic to Mb(λ + ε1), . . . , Mb(λ + εm+n),

Mb(λ), Mb(λ − εm+n), . . . , Mb(λ − ε1). Applying the projection prγ−(ε
i− 1

2
−ε

i+ 1
2

)

to the filtration, we obtain that fαiMb(λ) has a multiplicity-free Verma flag with

subquotients isomorphic to Mb(λ± εj) such that aj = ±(i− 1
2
) respectively.

On the other hand, we have Ψ(Mb(λ)) = Mb
fbλ

(1). Recall the formulas for the

embedding ı from Proposition 2.2.1. Suppose ι(fαi)M
b
fbλ

(1) =
∑

gM
b
g (1), for i ∈ Iı.

It is easy to see that for Mb
g to appear in the summands, we must have λbg + ρb =

λ + ρb ± εj such that aj = ±(i − 1
2
) respectively. Hence the action of ι(fαi) on Tb

Z

matchs with the translation functor fαi on
[
O∆

b

]
under Ψ.

Similar argument works for the translation functor eαi .

Applying the projection prγ to the Verma flag filtration of Mb(λ)⊗ V , we obtain

that tMb(λ) from (11.3.2) has a multiplicity-free Verma flag with subquotients iso-

morphic to Mb(λ) and Mb(λ± εj) such that aj = ∓1
2

respectively. Then one checks

that the action of ι(t) on Tb
Z matchs with the translation functor t on

[
O∆

b

]
under Ψ.

For the general divided powers, the proposition follows from a direct computation

using Lemma 11.3.2 , [Br1, Corollary 4.25], and the expressions of ι(f
(r)
αi ) and ι(e

(r)
αi )

in (2.2.1) and (2.2.2). We leave the details to the reader.
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11.4 Classical KL theory reformulated

The following is a reformulation of the Kazhdan-Lusztig theory for Lie algebra of type

B, which was established by [BB, BK, So1, So3]; also see [Vo]. Recall for b = (0m)

we have Tb
Z = V⊗mZ .

Theorem 11.4.1. Let b = (0m) and let k ∈ N ∪ {∞}. Then the isomorphism

Ψ : [[Ok,∆
b,0 ]]→ Tb

Z⊗̂ ∧k VZ in (11.1.1) satisfies

Ψ([Lkb,0(λ)]) = Lb,0

fb0
λ

(1), Ψ([T kb,0(λ)]) = Tb,0

fb0
λ

(1), for λ ∈ Xk,+
b,0 .

Proof. For k ∈ N, the theorem follows easily from Remark 5.3.3 that the parabolic

Kazhdan-Lusztig basis is matched with the ı-canonical basis. The case with k = ∞

follows from Proposition 9.5.2 and Proposition 7.4.1.

11.5 Super duality and Fock spaces

Theorem 11.5.1. [CLW2, Theorem 7.2] There is an equivalence of categories (called

super duality) SD : O∞,∆b,0 → O
∞,∆
b,1 such that the induced map SD : [[O∞,∆b,0 ]]→ [[O∞,∆b,1 ]]

satisfies, for any Y = M , L, or T ,

SD[Y ∞b,0(λ)] = [Y ∞b,1(λ\)], for λ ∈ X∞,+b,0 .

Proposition 11.5.2. Let b be any 0m1n-sequence. Assume that the isomorphism

Ψ : [[O∞,∆b,0 ]]→ Tb
Z⊗̂ ∧∞ VZ in (11.1.1) satisfies

Ψ([L∞b,0(λ)]) = Lb,0

fb0
λ

(1), Ψ([T∞b,0(λ)]) = Tb,0

fb0
λ

(1), for λ ∈ X∞,+b,0 .
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Then the isomorphism Ψ : [[O∞,∆b,1 ]]→ Tb
Z⊗̂ ∧∞WZ satisfies

Ψ([L∞b,1(λ)]) = Lb,1

fb1
λ

(1), Ψ([T∞b,1(λ)]) = Tb,1

fb1
λ

(1), for λ ∈ X∞,+b,1 .

Proof. By the combinatorial super duality in Theorem 10.3.2, we have the following

isomorphism

\b : Tb
Z⊗̂ ∧∞ VZ −→ Tb

Z⊗̂ ∧∞WZ,

which preserves the ı-canonical and dual ı-canonical bases. Combining this with the

super duality, we have the following diagram:

[[O∞,∆b,0 ]] Ψ //

SD
��

Tb
Z⊗̂ ∧∞ VZ

\b
��

[[O∞,∆b,1 ]] Ψ // Tb
Z⊗̂ ∧∞WZ

(11.5.1)

where SD is the super duality from Theorem 11.5.1.

With the help of the basis {[M∞
b,0(λ)]}, it is easy to check that the diagram (11.5.1)

commutes. Hence we have the following two commutative diagrams:

[L∞b,0(λ)]
_

��

� // Lb,0

fb0
λ

(1)
_

��

[L∞b,1(λ\)] � // Lb,1

fb1
λ\

(1)

[T∞b,0(λ)]
_

��

� // Tb,0

fb0
λ

(1)
_

��

[T∞b,1(λ\)] � // Tb,1

fb1
λ\

(1)

The two horizontal arrows on the bottom give us the proposition.

11.6 ı-KL theory for osp

We can now formulate and prove the main result of Part 2, which is a generalization

of [CLW2, Theorem 8.11] (Brundan’s conjecture [Br1]) to the ortho-symplectic Lie
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superalgebra osp(2m+ 1|2n).

Theorem 11.6.1. For any 0m1n-sequence b starting with 0, the isomorphism Ψ :

[[O∆
b ]]→ T̂b

Z in (11.1.1) (with k = 0) satisfies

Ψ([Lb(λ)]) = Lb
fbλ

(1), Ψ([Tb(λ)]) = Tb
fbλ

(1), for λ ∈ X(m|n).

The following proposition is a counterpart of [CLW2, Theorem 8.8]. It can now be

proved in the same way as in loc. cit. as we have done all the suitable preparations

in §10.2 (as in [CLW2, §6]). We will skip the details.

Proposition 11.6.2. Let b = (b1, 0, 1,b2) and b′ = (b1, 1, 0,b2) be adjacent 0m1n-

sequences with nonempty b1 starting with 0. Then Theorem 11.6.1 holds for b if and

only if it holds for b′.

Remark 11.6.3. The assumption “nonempty b1 starting with 0” in Proposition 11.6.2

is removable, if we apply the observation in Remark 10.2.1. Subsequently, we can

also remove a similar assumption on b from Proposition 11.5.2 and Theorem 11.6.1.

Theorem 11.6.1 in its current form already solves completely the irreducible and tilting

character problem on Ob for an arbitrary b, since Ob is independent of b and the

relations between the simple/tilting characters in Ob for different b are understood

(see Remark 10.2.2).

Proof of Theorem 11.6.1. The overall strategy of the proof is by induction on n, fol-

lowing the proof of Brundan’s KL-type conjecture in [CLW2]. The inductive proce-

dure, denoted by ıKL(m|n)∀m ≥ 1 =⇒ ıKL(m|n + 1), is divided into the following
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steps:

ıKL(m+ k|n) ∀k =⇒ ıKL(m|n|k) ∀k, by changing Borels (11.6.1)

=⇒ ıKL(m|n|k) ∀k, by passing to parabolic (11.6.2)

=⇒ ıKL(m|n|∞), by taking k 7→ ∞ (11.6.3)

=⇒ ıKL(m|n+∞), by super duality (11.6.4)

=⇒ ıKL(m|n+ 1) ∀m, by truncation. (11.6.5)

It is instructive to write down the Fock spaces corresponding to the steps above:

V⊗(m+k) ⊗W⊗n ∀k =⇒ V⊗m ⊗W⊗n ⊗ V⊗k ∀k

=⇒ V⊗m ⊗W⊗n ⊗ ∧kV ∀k

=⇒ V⊗m ⊗W⊗n ⊗ ∧∞V

=⇒ V⊗m ⊗W⊗n ⊗ ∧∞W

=⇒ V⊗m ⊗W⊗(n+1) ∀m ≥ 1.

A complete proof would be simply a copy from the proof of [CLW2, Theorem

8.10], as we are in a position to take care of each step of (11.6.1)–(11.6.5). Here we

will be contented with specifying how each step follows and refer the reader to the

proof of [CLW2, Theorem 8.10] for details.

Thanks to Theorem 5.3.2, the base case for the induction, ıKL(m|0), is equivalent

to the original Kazhdan-Lusztig conjecture [KL] for so(2m + 1), which is a theorem



174

of [BB] and [BK] (and extended to all singular weights by [So1]); The tilting module

characters were due to [So2, So3].

Step (11.6.1) is a special case of Proposition 11.6.2.

Step (11.6.2) is based on §10.1 (Propositions 10.1.1 and 10.1.2) and §11.2 (Propo-

sitions 11.2.1 and 11.2.2.

Step (11.6.3) is based on Proposition 11.1.4.

Step (11.6.4) is based on Proposition 11.5.2.

Step (11.6.5) is based on Propositions 7.4.1, 11.1.4, and 9.4.4 (with k = 1 therein).

The theorem is proved.

Remark 11.6.4. There is a similar Fock space formulation for various parabolic sub-

categories of osp(2m + 1|2n)-modules, which can be derived as a corollary to Theo-

rem 11.6.1 and Remark 11.6.3. Theorem 11.6.1 also raises the natural question on

Koszul graded lift for Ob; cf. [BGS].



Chapter 12

BGG category of

osp(2m + 1|2n)-modules of

half-integer weights

In this chapter we shall deal with a version of BGG category for osp(2m + 1|2n)

associated with a half-integer weight set ′X(m|n). The relevant quantum symmetric

pair turns out to be the r 7→ ∞ limit of (U2r,U

r) established in Chapter 6. This

chapter is a variant of Chapters 7-11, in which we will formulate the main theorems

while skipping the identical proofs.
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12.1 Setups for half-integer weights

Let us first set up some notations. Switching the sets of integers and half-integers in

(8.1.1), we set

I = ∪∞r=0I2r = Z+
1

2
, I = ∪∞r=0Ir = N+

1

2
, I = Z. (12.1.1)

Recall from Chapter 6 the finite-rank quantum symmetric pairs (U2r,U

r) with

embedding  : U
r → U2r. Let

U :=
∞⋃
r=0

U
r, U :=

∞⋃
r=0

U2r.

The pair (U,U) forms a quantum symmetric pair as well, with the obvious induced

embedding  : U → U. Let Π :=
⋃∞
r=0 Π2r be the simple system of U. Recall the

intertwiner Υ(r) of the pair (U2r,U

r). Note that Υ

(r+1)
µ = Υ

(r)
µ , for µ ∈ NΠ2r, and

this allows us to define

Υµ = lim
r→∞

Υ(r)
µ , for µ ∈ NΠ.

We then define the formal sum (which lies in some completion of U−)

Υ :=
∑
µ∈NΠ

Υµ, (12.1.2)

which shall be viewed as a well-defined operator on U-modules that we are concerned.

Introduce the following set of half-integer weights

′X(m|n) :=
m∑
i=1

(Z+
1

2
)εi +

n∑
j=1

(Z+
1

2
)εj. (12.1.3)
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Let b = (b1, . . . , bm+n) be an arbitrary 0n1m-sequence. We first define a partial

ordering on Im+n, which depends on the sequence b. There is a natural bijection

Im+n ↔ ′X(m|n), f 7→ λbf and λ 7→ fb
λ , defined formally by the same formulas

(8.4.1)-(8.4.2) for the bijection Im+n ↔ X(m|n) therein, though I here has a different

meaning.

Recall the Bruhat ordering �b given by (7.1.3) on hm|n and hence on ′X(m|n).

We now transport the ordering on ′X(m|n) by the above bijection to Im+n.

Definition 12.1.1. The Bruhat ordering or b-Bruhat ordering �b on Im+n is defined

as follows: For f , g ∈ Im+n, f �b g ⇔ λbf �b λ
b
g . We also say f ∼ g if λbf ∼ λbg .

A BGG category ′Ob of osp(2m+1|2n)-modules with weight set ′X(m|n) is defined

in the same way as in Definition 7.3.1, where the weight set was taken to be X(m|n).

Again, the category ′Ob contains several distinguished modules: the b-Verma modules

Mb(λ), simple modules Lb(λ), and tilting modules Tb(λ), for λ ∈′ X(m|n).

12.2 Fock spaces and -canonical bases

Let V :=
∑

a∈I Q(q)va be the natural representation of U. Let W := V∗ be the re-

stricted dual module of V with the basis {wa | a ∈ I} such that 〈wa, vb〉 = (−q)−aδa,b.

By restriction through the embedding , V and W are naturally U-modules. For a

given 0m1n-sequence b = (b1, b2, . . . , bm+n), we again define the Fock space Tb by the

formula (8.2.1) and the standard monomial basis Mf , for f ∈ Im+n, by the formula
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(8.2.2). Following §9.1, we define the B-completion of the Fock space Tb with respect

to the Bruhat ordering defined in Definition 12.1.1.

Following §9.1 and §9.2, we define an anti-linear involution

ψ := Υψ : T̂b −→ T̂b,

where Υ is the operator defined in (12.1.2), such that

ψ(Mf ) = Mf +
∑
g≺bf

rgf (q)Mg, for rgf (q) ∈ A.

Therefore we have the following counterpart of Theorem 9.2.4 (here we emphasize

that the index set I here is different from the same notation used therein and U is

a different algebra than Uı).

Theorem 12.2.1. The Q(q)-vector space T̂b has unique ψ-invariant topological bases

{Tb
f | f ∈ Im+n} and {Lb

f | f ∈ Im+n}

such that

Tb
f = Mf +

∑
g�bf

tbgf (q)M
b
g , Lb

f = Mf +
∑
g�bf

`bgf (q)M
b
g ,

with tbgf (q) ∈ qZ[q], and `bgf (q) ∈ q−1Z[q−1], for g �b f . (We shall write tbff (q) =

`bff (q) = 1, tbgf (q) = `bgf (q) = 0 for g 6�b f .)

{Tb
f | f ∈ Im+n} and {Lb

f | f ∈ Im+n} are call the -canonical basis and dual

-canonical basis of T̂b, respectively. The polynomials tbgf (q) and `bgf (q) are called

-Kazhdan-Lusztig (or -KL) polynomials.
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12.3 KL theory and -canonical basis

Starting with an A-lattice Tb
A spanned by the standard monomial basis of the Q(q)-

vector space Tb, we define Tb
Z = Z⊗A Tb

A where A acts on Z with q = 1. For any u

in the A-lattice Tb
A, we denote by u(1) its image in Tb

Z.

Let ′O∆
b be the full subcategory of ′Ob consisting of all modules possessing a

finite b-Verma flag. Let
[′O∆

b

]
be its Grothendieck group. The following lemma is

immediate from the bijection I ↔ ′X(m|n).

Lemma 12.3.1. The map

Ψ :
[′O∆

b

]
−→ Tb

Z, [Mb(λ)] 7→Mb
fbλ

(1),

defines an isomorphism of Z-modules.

Denote by U
A the A-form of U generated by the divided powers, and set U

Z =

Z⊗A U
A.

Remark 12.3.2. The map Ψ is actually a U
Z-module isomorphism, where U

Z acts on[′O∆
b

]
via translation functors analogous to Proposition 11.3.3.

We define
[[′O∆

b

]]
as the completion of

[′O∆
b

]
such that the extension of Ψ

Ψ :
[[′O∆

b

]]
−→ T̂b

is an isomorphism of Z-modules. We have the following counterpart of Theorem 12.3.3

with the same proof.
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Theorem 12.3.3. For any 0m1n-sequence b starting with 0, the isomorphism Ψ :[[′O∆
b

]]
→ T̂b

Z satisfies

Ψ([Lb(λ)]) = Lb
fbλ

(1), Ψ([Tb(λ)]) = Tb
fbλ

(1), for λ ∈ ′X(m|n).
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