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Abstract

A breakthrough in representation theory is the discovery of canonical bases of quan-
tum groups by Lusztig. In type A, the canonical bases can be used to reformulate the
Kazhdan-Lusztig theory for the BGG category O of general linear Lie algebras, which
enables further generalization to Brundan’s Kazhdan-Lusztig conjecture for general
linear Lie superalgebras.

In this dissertation, we first show a coideal subalgebra of the quantum group
of type A and the Hecke algebra of type B satisfy a double centralizer property,
generalizing the Schur-Jimbo duality. The quantum group of type A and its coideal
subalgebra form a quantum symmetric pair. Then we initiate a theory of canonical
bases arising from quantum symmetric pairs. We show simple integrable modules of
the quantum group of type A and their tensor products admit new canonical bases
different from Lusztig’s canonical bases. Finally we use such new canonical bases to
formulate and establish the Kazhdan-Lusztig theory for the BGG category O of the
ortho-symplectic Lie superalgebra osp(2m + 1|2n) for the first time. The non-super
specialization of our theory amounts to a new formulation of the classical Kazhdan-

Lusztig theory for the BGG category O of the Lie algebras of type B/C.
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Introduction

Background

A milestone in representation theory was the Kazhdan-Lusztig (KL) theory initiated
in [KIJ] (and completed in [BB|, BK]), which offered a powerful solution to the diffi-
cult problem of determining the irreducible characters in the BGG category O of a
semisimple Lie algebra g. The Hecke algebra Hy associated to the Weyl group W of
g plays a central role in the KL formulation, which can be paraphrased as follows: the
simple modules of the principal block in O correspond to the Kazhdan-Lusztig basis
of Hy, while the Verma modules correspond to the standard basis of Hy,. The char-
acters of the simple modules in singular blocks are then determined from those in the
principal block via translation functors [Sol], and the characters of tilting modules
were subsequently determined in [So2, [So3].

Though the classification of finite-dimensional simple Lie superalgebras over C
was achieved in 1970’s by [Kac], the study of representation theory such as the BGG

category O for a Lie superalgebra turns out to be very challenging and the progress



has been made only in recent years. One fundamental reason is that the Weyl group
(of the even part) of a Lie superalgebra alone is not sufficient to control the linkage
principle in O, and hence the corresponding Hecke algebra can not play a crucial role
as in the classical Kazhdan-Lusztig theory. Among all basic Lie superalgebras, the
infinite series gl(m|n) and osp(m|2n) are arguably the most fundamental ones. Since
these Lie superalgebras specialize to Lie algebras when one of the parameters m or n
is zero, any possible (conjectural) approach on the irreducible character problem in
the BGG category of such a Lie superalgebra has to first provide a new formulation
for a classical Lie algebra in which the Hecke algebra does not feature directly.

Brundan [Brl] in 2003 formulated a conjecture on the irreducible and tilting char-
acters for the BGG category O for the general linear Lie superalgebra gl(m|n), using
Lusztig’s canonical basis. In this case, fortunately Schur-Jimbo duality [Jim] between
a Drinfeld-Jimbo quantum group U and a Hecke algebra of type A enables one to
reformulate the KL theory of type A in terms of Lusztig’s canonical basis on some
Fock space V¥, where V is the natural representation of U. Brundan’s formulation
for gl(m|n) makes a crucial use of the Fock space V¥ @ W®" where W denotes the
restricted dual to V. The longstanding conjecture of Brundan was settled in [CLW2],
where a super duality approach developed earlier [CWTL [CT] (cf. [CW2, Chapter 6])
plays a key role. A second and different proof of Brundan’s conjecture has appeared
in Brundan, Losev, and Webster [BLW].

To date, there has been no (conjectural) formulation for a solution of the irre-



ducible character problem in the BGG category O of the ortho-symplectic Lie super-
algebras in general. The reason should have become clear as we explain above: no
alternative approach to KL theory of type BC'D existed without using Hecke algebras
directly.

A super duality approach was developed in |[CLW1] which solves the irreducible
character problem for some distinguished parabolic BGG categories of the osp Lie
superalgebras, but it was not sufficient to attack the problem in the full BGG category.
In these cases, a Brundan-type Fock space formulation was not available. One of the
implications of the super duality which is important to us though is that the linkage
for the distinguished parabolic categories of osp(2m + 1|2n)-modules is controlled by
Hecke algebra of type B, and so one hopes that it remains to be so for the full BGG

category of 0sp(2m + 1|2n)-modules.

The goal

The goal of this dissertation is to give a complete solution to the irreducible character
problem in the BGG category O of modules of integer and half-integer weights for the
ortho-symplectic Lie superalgebras osp(2m+1|2n) of type B(m,n). In particular, the
non-super specialization of our work amounts to a new approach to Kazhdan-Lusztig
theory of Lie algebras of classical type.

To achieve the goal, we are led to develop in Part 1 a new theory of canonical

bases (called 2-canonical basis) arising from quantum symmetric pairs (U,U"). A



new formulation of the KL theory for Lie algebras of type B is then made possible by
our new duality that the coideal subalgebra U’ of U and the Hecke algebra of type
B,, form double centralizers on V¥ generalizing the Schur-Jimbo duality. Part 1
(which consists of Chapters has nothing to do with Lie superalgebras and should
be of independent interest, even though there was no particular motivation to do
so without being desperately demanded from the super representation theory — the
powerful Kazhdan-Lusztig theory in its original form has worked well after all.

We develop in Part 2 an infinite-rank version of the constructions in Part 1, and
then relate the 2-canonical basis to the BGG category Oy, of 0sp(2m + 1]2n)-modules
of (half-)integer weights relative to a Borel subalgebra whose type is specified by a
0™1™-sequence b. In this approach, the role of Kazhdan-Lusztig basis is played by
the (dual) ¢-canonical basis for a suitable completion of the U’-module T associated
to b; Here TP is a tensor space which is a variant of V¥ @ W% This dissertation

is largely based on the preprint [BW13].

An overview of Part 1

Our starting point is actually natural and simple. The generalization of Schur duality
beyond type A in the literature is not suitable to our goal, since it replaces the Lie
algebra/group of type A by its classical counterpart and modifies the symmetric group
to become a Brauer algebra (or a quantum version of such). For our purpose, as we

look for a substitute for KL theory where the Hecke algebras have played a key role,



we ask for some quantum group like object with a coproduct (not Schur type algebra)
which centralizes the Hecke algebra of type B, when acting on V®". We found the
answer and recognized it as a coideal subalgebra of the quantum group U, a quantum
version of the enveloping algebra of the subalgebra of s[(V) fixed by some involution,
which forms a quantum symmetric pair with U.

Note that the formulation of Part 1 is in the setting that V is finite-dimensional,
while it is most natural to set V to be infinite-dimensional when making connection
with category O in Part 2.

The structure theory of quantum symmetric pairs was systematically developed by
Letzter and then Kolb (see [Lel, [Ko] and the references therein). Though our coideal
subalgebra can be identified with some particular examples in literature by an explicit
(anti-)isomorphism, the particular form of our presentation and its embedding into U
are different and new. The coideal subalgebra in our presentation manifestly admits
a bar involution, and the specialization at ¢ = 1 of our presentation has a natural
interpretation in terms of translation functors in category O. Depending on whether
the dimension of V is even or odd, we denote the (right) coideal subalgebra by U”
or U7, respectively. The two cases are similar but also have quite some differences,
and the case of U" is more challenging as it contains an unconventional generator
which we denote by t (besides the Chevalley-like generators e,, and f,,). We mainly
restrict our discussion to U* (and so dim V is even) below. The bar involutions on the

coideal subalgebra U7 and a variant of the coideal subalgebra U* have been observed



independently in [ES|], where the generators of these algebras have been interpreted
as translation functors of certain parabolic category O of type D.

Recall that the coproduct A : U — U ® U is not compatible with the bar
involution ¢ on U and ¥ ®1 on U® U, and Lusztig’s quasi-R-matrix O is designed to
intertwine A and A, where A(u) := (Y®¢)A()(u)), for u € U. Lusztig’s construction
of © is a variant of Drinfeld’s construction of universal R-matrix [Dr], and it takes
great advantage of the triangular decomposition and a natural bilinear form of U.
The bar involution on V®™ was then constructed by means of the quasi-R-matrix ©.
Inspired by the type A reformulation of KL theory (cf., e.g., [VV1] Brll [CLW2]), as
an alternative of the Kazhdan-Lusztig theory without using Hecke algebras we ask
for a canonical basis theory arising from the quantum symmetric pair.

The embedding ¢ : U* — U which makes U* a coideal subalgebra of U does not
commute with the bar involution v, on U* and @ on U. We have a coproduct of the
coideal form A : U* — U'®U. Define A : U* — U'®U by A(u) = (¢, @9) A, (u)),
for all u € U*. Note that the A here is not a restriction of Lusztig’s A. Toward our
goal, in place of Lusztig’s quasi-R-matrix for U one would need a quasi-R-matrix ©*
which intertwines A and A for U*. The problem here is that U* does not have any
obvious triangular decomposition or bilinear form as for U.

Our key strategy is to ask first for some suitable intertwiner Y which intertwines ¢
and 7: U* — U, where 7(u) := ¢ (2(¢,(v))), for u € U note the remarkable analogy

with a key property of Lusztig’s ©. We succeed in constructing such an intertwiner



T in some completion of the negative half U~ of U and show that it is unique up
to a scalar multiple (see Theorem . Then by combining T with Lusztig’'s ©
we are able to construct the quasi-R-matrix ©', which lies in some completion of
U* ® U~. The crucial properties YY = 1 and ©'0* = 1 hold. The intertwiner T can
also be applied to turn an involutive U-module into an z-involutive U-module (see
Proposition , Definitions and .

It turns out to be a subtle problem to show that T lies in (a completion of) the
integral A-form U, where A = Z[q,q"!|. We are led to study the simple lowest
weight U-modules “L(\) for A € At regarded as U-modules. By a detailed study on
the behavior of the generator ¢ in U" in the rank one case, we show that T preserves
the A-form “L4(\) for all A € AT, and this eventually allows us to establish the
integrality of T (see Theorem[4.4.2). We then construct the ¢-canonical basis of “ L(\)
which is v,-invariant and admits a triangular decomposition with respect to Lusztig’s
canonical basis on “L()) with coefficients in Zg| (see Theorem [4.5.2)). Consequently,
we construct an 2-canonical basis for any tensor product of several finite-dimensional
simple U-modules, which differs from Lusztig’s canonical basis on the same tensor
product.

Generalizing the Schur-Jimbo duality in type A, we show that the action of the
coideal algebra U* and Hecke algebra Hp_ on V¥ form double centralizers, where
V is the natural representation of U (see Theorem . With T and ©" at hand,

we are able to construct a bar involution ¢, on the (U*, Hp, )-bimodule V®™ which



is compatible with the bar involutions on U" and Hp,, (see Theorem [5.3.2)). In par-
ticular, the s-canonical basis on the involutive U’-module (V®™ 4),) alone is sufficient

to reformulate the KL theory of type B.

An overview of Part 2

Part 2 is very close to [CLW?2] in spirit, where the category O of gl(m|n)-modules was
addressed. In this Part, we take the Q(g)-space V to be the direct limit as r + oo of
the 2r-dimensional ones considered in Part 1. Also let U and U’ be the corresponding
infinite-rank limits of their finite-rank counterparts in Part 1.

For an 0™1™-sequence b (which consists of m zeros and n ones), we define a tensor
space TP using m copies of V and n copies of W with the tensor order prescribed by
b (with 0 corresponds to V); for instance, associated to b** = (0,...,0,1,...,1), we
have TP™ = V€™ @ W%"  Such a tensor space (called Fock space) was an essential
ingredient in the formulation of Kazhdan-Lusztig-type conjecture for gl(m|n) and its
generalizations [Brll [Ku, [CCW2]. In this approach, T® at ¢ = 1 (denoted by T2)
is identified with the Grothendieck group of the BGG category of gl(m|n)-modules
(relative to a Borel subalgebra of type b), and the (dual) canonical bases of the U-
module TP play the role of Kazhdan-Lusztig basis which solves the irreducible and
tilting character problem in the BGG category for gl(m|n).

Now with the intertwiner T and the quasi-R-matrix ©* for the quantum symmetric

pair (U, U") at disposal, we are able to construct the s-canonical and dual ¢-canonical



bases for TP (or rather in its suitable completion with respective to a Bruhat ordering);
see Theorem In the finite-rank setting, this was already proved in Part 1.
Nevertheless, the infinite-rank setting requires much care and extra work to deal with
suitable completions, similar to [CLW2] (see also [Brl]). A simple but crucial fact
is that the partial ordering for TP used in [CLW?2] is coarser than the one used in
this paper and this allows various constructions in loc. cit. to carry over to the
current setting. We will ignore the completion issue completely in the remainder of
the Introduction.

Our main theorem (Theorem [11.6.1]), which will be referred to as (b-KL) here,
states that there exists an isomorphism between the Grothendieck group of the BGG
category Oy, of 0sp(2m + 1|2n)-modules of integer weights (relative to a Borel subal-
gebra of type b) and T®, which sends the Verma, simple, and tilting modules to the
standard monomial, dual ¢-canonical, and :-canonical bases (at ¢ = 1), respectively.
In other words, the entries of the transition matrix between (dual) +-canonical basis
and monomial basis play the role of Kazhdan-Lusztig polynomials in our category
Op.

Granting the existence of the (dual) 2-canonical bases of TP, the overall strategy
of a proof of (b-KL) follows the one employed in [CLWZ2] in establishing Brundan’s
Kazhdan-Lusztig-type conjecture, which is done by induction on n with the base case
solved by the classical Kazhdan-Lusztig theory of type B [KL, BBl [BK] (as reformu-

lated above in terms of the +-involutive U'-module V®™). There are two main steps
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in the proof. First, we need (an easy generalization of) the super duality developed in
[CLWT] for osp, which is an equivalence of parabolic categories of osp(2m+1|2n+o00)-
modules and osp(2m+1|n|oo)-modules. We establish the corresponding combinatorial
super duality which states that there is an U-isomorphism between T? ® A®V and
TP ® AW, which matches the corresponding standard monomial, s-canonical, and
dual ¢-canonical bases.

The second step is a comparison of (b-KL) and (b’-KL) for adjacent sequences b
and b’ (here “adjacent” means differing exactly by an adjacent pair 01). Let us assume
for simplicity that the first entries of b and b’ are both 0 here (see Remarks
and for the removal of this assumption), as this is sufficient in solving the
irreducible and tilting character problems for osp(2m+1|2n)-modules. Thanks to the
coideal property of U*, the iterated coproduct for U* has images in U@ U ®...®U.
Therefore the comparison of (b-KL) and (b’-KL) for adjacent b and b’ can be carried
out exactly as in the type A setting [CLW2] since the exchange of the adjacent 0 and
1 does not affect the first tensor factor and hence will not use U*. The upshot is that
the validity of the statement (b-KL) for one 0™1"-sequence implies the validity for
an arbitrary 0™1"-sequence.

The infinite-rank version of the other quantum symmetric pairs (U, U’) and its
J-canonical basis theory is used to solve a variant of the BGG category O of osp(2m +

112n)-modules, now of half-integer weights; see Chapter .



11

Some further works

One influential and persuasive philosophy in the last two decades, supported by the
quiver variety construction of Nakajima and reinforced by the categorification pro-
gram of Chuang, Rouquier, Khovanov and Lauda, is that “all constructions” are of
“type A” locally. A general philosophical message of this dissertation is that there
exists a whole range of new yet classical -constructions, algebraic, geometric and
categorical, which are of “type A with involution”. This dissertation (and [BW13])
will serve as a new starting point in several (closely related) directions.

While we have developed adequately a theory for s-canonical basis for quantum
symmetric pairs to solve the irreducible character problem in the category Oy, a full
fledged theory of canonical bases for quantum symmetric pairs remains to be devel-
oped. The quantum symmetric pairs (U, U") and (U, U?) are just two examples of
general quantum symmetric pairs in the Kac-Moody setting (see [Ko]). The existence
of bar involutions on general quantum symmetric pairs was mentioned explicitly in
[BW13], and a detailed proof has been given in [BK]. The most significant quantum
symmetric pairs beyond U* and U’ in our view would be the ones associated to the
quantum group of affine type A.

In their influential work [BLM], Beilinson, Lusztig and MacPherson gave a ge-
ometric realization of the modified quantum group associated to gl, using partial
flag varieties of type A. A geometric realization of the Jimio-Schur duality has been

provided in [GL]. It is natural to ask for a geometric interpretation of the modified
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coideal subalgebras U* and U?, the type B duality as well as ¢-canonical bases devel-
oped algebraically and categorically in this paper. This turns out to have a classical
answer which is provided in [BKLW] and [LW]. A geometric Schur duality of type D
has been provided in the subsequent paper [FL].

The constructions of this dissertation will be adapted to deal with the BGG cate-
gory O for Lie superalgebras osp(2m/|2n) in the future following the blue print of this
dissertation.

In [KLa, Ro|, Khovanov, Lauda and independently Rouquier introduced the KLR
algebras, whose module categories categorify halves of the quantum groups. Lusztig’s
canonical basis for simply laced types was matched with indecomposable projective
modules in those categories in |[Rol [VV2]. Khovanov and Lauda ([KLal) categori-
fied the modified algebra U, which admits a geometric 2-representation on the “flag
category”, in terms of partial flag varieties of type A. We expect to categorify the
modified coideal subalgebra U? (as well as UZ) based on the geometric framework of

[BKLW].

Organization

The dissertation is divided into two parts. Part 1, which consists of Chapters
[6] provides various foundational constructions on quantum symmetric pairs, where
dimV is assumed to be finite. Part 2, which consists of Chapters [TH12] extends

the 2-canonical basis and dual -canonical basis to the setting where V is infinite-
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dimensional and uses this to solve the irreducible and tilting character problems of
category O for Lie superalgebra osp(2m + 1|2n).

In the preliminary Chapter [I} we review various basic constructions for quantum
group U. We also introduce the involution 6 on the root system and integral weight
lattice of U and a “weight lattice” Ay which will be used in quantum symmetric pairs.

In Chapter [2, we introduce the right coideal subalgebra U* of U and an algebra
embedding + : U* — U. The algebra U’ is endowed with a natural bar involution.

Then we construct an intertwiner T = > . Ty, which lies in a completion ﬁ‘, for

1
the two bar involutions on U* and U under 2, and show it is unique once we fix the
normalization Ty = 1. We prove that T = 1. The intertwiner Y is used to construct
a U’module isomorphism 7 on any finite-dimensional U-module, which should be
viewed as an analogue of R-matrix on the tensor product of U-modules.

In Chapter [3 we define a quasi-R-matrix ©* for U*, which will play an analogous
role as Lusztig’s quasi-R-matrix for U. Our first definition of ©* is simply obtained
by combining the intertwiner T and ©. More detailed analysis is required to show
that (a normalized version of) ©* lies in a completion of U* ® U~. We prove that
©'©' = 1. Then we use T to construct an s-involutive module structure on an
involutive U-module, and then use ©° to construct an involution on a tensor product
of a U’-module with a U-module.

In Chapter {4, we first study the rank one case of U and U" in detail, which turns

out to be nontrivial. In the rank one setting, we easily show that T is integral and then



14

construct the z-canonical bases for simple U-modules “L(s) for s > 0. We formulate
a U'-homomorphism from “L(s + 2) to “L(s) and use it to study the relation of -
canonical bases on “ L(s + 2) and “ L(s), which surprisingly depends on the parity of s.
This allows us to establish the +-canonical basis for U* in two parities, which is shown
to afford integrality and should be regarded as “divided powers” of the generator t.

Then we apply the rank one results to study the general higher rank case. We
show that the intertwiner Y is integral and hence the bar involution 1, on the simple
U-module “L(\) preserves its A-form. Then we construct the s-canonical basis for
“L(A) for A € AT,

In Chapter [5], we recall Schur-Jimbo duality between quantum group U and Hecke
algebra of type A. Then we establish a commuting action of U* and Hecke algebra
Hp,, of type B on V¥ and show that they form double centralizers. Just as Jimbo
showed that the generators of Hecke algebra of type A are realized by R-matrices,
we show that the extra generator of Hecke algebra of type B is realized via the U’-
homomorphism T introduced in Chapter 2] We then show the existence of a bar
involution on V®™ which is compatible with the bar involutions on U* and Hp, .
This allows a reformulation of Kazhdan-Lusztig theory for Lie algebras of type B/C
via the involutive Umodule V¥ (without referring directly to the Hecke algebra).

In Chapter @, we consider the other quantum symmetric pair (U, U?) with U
of type As,., so its natural representation V is odd-dimensional. We formulate the

counterparts of the main results from Chapter [2| through Chapter [5[ where U was
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of type As,,1 and dimV was even. The proofs are similar and often simpler for U’
since it does not contain a generator ¢ as U’ does, and hence will be omitted almost

entirely.

In Part 2, which consists of Chapters [{I2] we switch to infinite-dimensional V
and infinite-rank quantum symmetric pair (U, U").

In the preliminary Chapter [7], we set up variants of BGG categories of the ortho-
symplectic Lie superalgebras, allowing possibly infinite-rank and/or parabolic ver-
sions.

In Chapter 8, we formulate precisely the infinite-rank limit of various constructions
in Part 1, such as V, U, U", T, 4, and so on. We transport the Bruhat ordering from
the BGG category Oy, for 0sp(2m + 1]2n) to the Fock space TP by noting a canonical
bijection of the indexing sets. We formulate the g-wedge versions of the Fock spaces,
which correspond to parabolic versions of the BGG categories.

In Chapter [0, we construct the s-canonical bases and dual ¢-canonical bases in
various completed Fock spaces, where the earlier detailed work on completion of Fock
spaces in [CLW2] plays a fundamental role.

In Chapter we are able to compare (dual) ¢-canonical bases in three different
settings: a tensor space versus its (partially) wedge subspace, a Fock space versus
an adjacent one, and a Fock space with a tensoring factor A*V versus another with
AW,

In Chapter [I1} we show that the coideal subalgebra U* at ¢ = 1 is realized by
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translation functors in the BGG categories. This underlies the importance of the
coideal subalgebra U’. Then we put all the results in earlier chapters of Part 2
together to prove the main theorem which solves the irreducible and tilting character
problem for osp(2m + 1|2n)-modules of integer weights.

The last Chapter |12| deals with a variant of the BGG category of osp(2m + 1|2n)-
modules with half-integer weights. The Kazhdan-Lusztig theory of this half-integer
variant is formulated and solved by the quantum symmetric pair (U, U?), an infinite-

rank version of the ones formulated in the last chapter of Part 1.

Convention and notation. We shall denote by N the set of nonnegative integers,
and by Z-( the set of positive integers. In Part 1, where dimV = 2r + 2 (except
in Chapter @ where dimV = 2r 4+ 1), r is fixed and so will not show up in most
of the notations (such as V, U, U, T, 1, and so on). In Part 2 (more precisely in
Chapter , subscripts and superscripts are added to the notation used in Part 1 to
indicate the dependence on r (e.g., V,, Uy, UL, T, @Dz(r) and so on). In this way
we shall consider V as a direct limit lier, and various constructions including the
intertwiner T as well as the bar involution v, arise as limits of their counterparts in

Part 1.



Part 1

Canonical bases arising from
quantum symmetric pairs
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Chapter 1

Preliminaries on quantum groups

In this preliminary chapter, we review some basic definitions and constructions on
quantum groups from Lusztig’s book, including the braid group action, canonical
basis and quasi-R-matrix. We also introduce the involution 6 and the lattice Ay

which will be used in quantum symmetric pairs.

1.1 The involution # and the lattice Ay

Let ¢ be an indeterminate. For r € N, we define the following index sets:

H2T+1:{i€Z|_T§i§r}u
(1.1.1)

1
HQT:{Z'EZ+§|—7*<2'<7"}.
Set k = 2r + 1 or 2r, and we use the shorthand notation I = I in the remainder
of Chapter [1] Let
II = {aiZEi_% _5i+% |Z€]I}

19
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be the simple system of type A, and let ® be the associated root system. Denote by
il

the integral weight lattice, and denote by (-, ) the standard bilinear pairing on A such

that (e4,€p) = dap for all a,b. For any p =), c;o; € NII, set ht(p) = >, ¢;.

Let 6 be the involution of the weight lattice A such that

0,

1—=

):—5_i+%, for all 7 € 1.

1
We shall also write A\ = §()), for A € A. The involution # preserves the bilinear form
(+,+) on the weight lattice A and induces an automorphism on the root system ® such
that of = a_; for all i € I.

Denote by A’ = {u € A | u? = p} the subgroup of f-fixed points in A. It is easy

to see that the quotient group

Ag:=A/A? (1.1.2)

is a lattice. For p € A, denote by 1z the image of ;1 under the quotient map. There
is a well-defined bilinear pairing Z[a; — a_;lier X Ag — Z, such that (>, ai(a; —

Qi) 1) = oo @i(a; — a_j, p) for any 71 € Ap with any preimage p € A.

1.2 The algebras 'f, f and U

Consider a free Q(q)-algebra 'f generated by F,, for i € I associated with the Cartan

datum of type (I, (+,-)) [Lu2]. As a Q(q)-vector space, 'f has a direct sum decompo-
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sition as

'F— E}) ,ﬂu

pEeNIIL

where F,,, has weight «; for all ¢ € I. For any = € 'f,,, we set |z| = p.

For each i € I, we define r;, ;7 to be the unique Q(¢)-linear maps on 'f such that
ri(1) =0, 7ri(Fy,) =0, ri(za’) =ari(a’) + q(a““l)ri(a:)x',

(1.2.1)
(1) =0, w(Fy,) =0y, r(za’)= ¢z (z!) 4 ir(x)a,

for all z € 'f, and 2’ € 'f,,. The following lemma is well known (see [Lu2] and [Jan|

Section 10.1]).

Lemma 1.2.1. The Q(q)-linear map r; and ;v commute; that is, r; ;v = ;rr; for all

i,jeL

Proposition 1.2.2. [Lu2] There is a unique symmetric bilinear form (-,-) on'f which

satisfies that, for all x,z" €'f,
1. (Fy,, F,,) =0;5;(1—q7%)7",
2. (Fy,x,2') = (F,,, F,,)(x, (),
3. (xFy,,2") = (Fa,, Fu,)(z,m:i(2")).

Remark 1.2.3. Our version of bilinear form differs by some scalars from Lusztig’s

bilinear form, and coincides with the one used in [Janl.



22

Let I be the radical of the bilinear form (-,-) on 'f. It is known in [Lu2] that I is

generated by the quantum Serre relators S;;, for 7 # j € I, where

FftiFaj + Fangi — (g + qil)FaiFajFai, if |i —j| =1;
Sij = (1.2.2)
Fo Foy — Fo,Fa,, if i — j| > 1.

Let f ='f/I. By [Lu2], we have
T'g(Sij) = gT’(Sij) = 0, Vﬁ,z,j el (Z 7& j) (123)

Hence 7, and ,r descend to well-defined Q(g)-linear maps on f.

We introduce the divided power F\" = F§ /la)!, where a > 0, [a] = (¢"—q™*)/(q—
g ') and [a)! = [1][2]---[a]. Let A = Z[q,q""]. Let f4 be the A-subalgebra of f
generated by Fo(la) for various @ > 0 and 7 € L.

The quantum group U = U,(sl(k + 1)) is defined to be the associative Q(q)-

algebra generated by E,., F,,, K,,, K;', i €I, subject to the following relations for

;)
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i,jel:

Ko K'=KJ'K,, =1,

Ko Ka, = Ko, Ko,

Ko Bo, K = ¢ E,,,

K, F, K ' =g @)
13 J 7 J

67

Ko, — K!
EoFoy — Fo By, = 0y j————=
q—q
7 Bo; + Eo, E;, = (¢ + ¢ ") Eo, Ba, Ea,, if fi - j| = 1,
Eo By, = By E,,, if |i — 4| > 1,
FO%Z‘FOZJ‘_'—F&]'FO&QZ‘:(q+q_1)FaiFC¥jFai7 if i —j| =1,
FoFy, = Fo F, if |i — j| > 1.

Let UT, UY and U~ be the Q(g)-subalgebra of U generated by E,,, Kjil, and
F,, respectively, for ¢ € 1. Following [Lu2], we can identify f = U~ by matching the
generators in the same notation. This identification induces a bilinear form (-,-) on
U~ and Q(g)-linear maps r;, ;7 (i € I) on U~. Under this identification, we let U_,
be the image of f,,, and let U, be the image of £4. The following Serre relation holds
in U™:

Sij =0, Vi,j €l (i # 7). (1.2.4)
Similarly we have f = U™ by identifying each generator F,,, with E,,. Similarly we let
U7 denote the image of f4 under this isomorphism, which is generated by all divided

powers B\ = ES /la]l.
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Proposition 1.2.4. 1. There is an involution w on the Q(q)-algebra U such that

w(Ea,) = Fa,, w(Fy,) = Eq,, and w(K,,) = K for alli € 1.

2. There is an anti-linear (q — q ') bar involution of the Q-algebra U such that

Eo, = E,,, Fo, =F,,, and K,, = K;! for alli € .

(Sometimes we denote the bar involution on U by 1.)

Recall that U is a Hopf algebra with a coproduct

A:U—UxU,

A(E,,) =1® E,, + E,, ® K,

(1.2.5)
A(F@z) :F@z®]‘+KOé1®Faza
A(Ko;) = Ko, ® Ko,

There is a unique Q(g)-algebra homomorphism € : U — Q(g), called counit, such

that €(E,,) =0, €(F,,) =0, and €(K,,) = 1.

1.3 Braid group action and canonical basis

Let W := Wy, = &,41 be the Weyl group of type A. Recall [Lu2] for each «; and
each finite-dimensional U-module M, a linear operator 7, on M is defined by, for

A €A and m € M,,

T, (m) = Z (_1)bqb—acEc(Z) Féb) E&i)m_
a,b,c>0;—a+b—c=(\, ;)
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These T,,,’s induce automorphisms of U, denoted by T, as well, such that
To, (um) = Ty, (u)Ty, (m), for all w € U,m € M.

As automorphisms on U and as Q(g¢)-linear isomorphisms on M, the T, ’s satisfy the

braid group relation ([Lu2l, Theorem 39.4.3|):

T T, = To, T, if i — j] > 1,

TaiTajTai = TajTOéiTaj7 if ‘Z - j’ =1,

Hence for each w € W, T, can be defined independent of the choices of reduced
expressions of w. (The Ty, here is consistent with 7}, in [Jan], and it is 7}", in [Lu2]).

Denote by £(-) the length function of W, and let wy be the longest element of .

Lemma 1.3.1. The following identities hold:
TwO<Kai) = Kc;,lp Two(Eai) = _FafiKa7i7 Two(FOéfi) = _Koz-lEam fOT’i el

Proof. The identity T, (K,,) = K;' is clear (see [Lu2] or [Jan]).

Let us show that T,,(F,,) = —F,_,K,_,, for any given ¢ € I. Indeed, we can

always write wg = ws; with £(w) = ¢(wy) — 1. Then we have T,, = T,,T%s,, and

TWO(EC%‘> = Tw(TS¢(Ea¢)) = Tw(_FaiKai) = _Tw(Fai)Ka =l Ka i

—q i —

where the last identity used w(—a;) = wo(y) = —a—; and [Jan, Proposition 8.20].

The identity T, (Fu_,) = —K;'E,, can be similarly proved. O
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Let

AT ={xe A|2(a;,\)/(as, ;) €N, Vi € T}

be the set of dominant weights. Note that u € A if and only if 4? € AT, since the
bilinear pairing (-, ) on A is invariant under 6 : A — A.

Let M (\) be the Verma module of U with highest weight A € A and with a highest
weight vector denoted by 7 or n,. We define a U-module “ M (\), which has the same
underlying vector space as M(A) but with the action twisted by the involution w
given in Proposition When considering 7 as a vector in “M (), we shall denote
it by € or £_,. The Verma module M (\) associated to dominant A € A™ has a unique
finite-dimensional simple quotient U-module, denoted by L(\). Similarly we define
the U-module “L(\). For A € AT, we let Ly(\) = Uy n and “La(\) = U be the
A-submodules of L(\) and “L(\), respectively.

In [Lull Lu2] and [Ka], the canonical basis B of f4 is constructed. Recall that we
can identify f with both U~ and U*. For any element b € B, when considered as an
element in U~ or U™, we shall denote it by b~ or b™, respectively. In [Lu2|, subsets
B(\) of B is also constructed for each A € AT, such that {b™n, | b € B(\)} gives the
canonical basis of L4 (A). Similarly {bT¢_, | b € B(\)} gives the canonical basis of
“L()\). By [Lu2, Proposition 21.1.2], we can identify “L(\) with L(\’) = L(—wo\)
such that the set {b*¢_, | b € B(A\)} is identified with the set {b=nye | b € B(\?)} =
{71 _wor | b € B(—wo))}. We shall identify  L()\) with L(\?) in this way throughout

this paper.
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1.4 Quasi-R-matrix ©

Proposition 1.4.1. [Lu2, Theorem 4.1.2] There exists a unique family of elements

©, in U:j ®UZ, with u € NII, such that ©g = 1® 1 and the following identities hold

I

for all p and all i:

(1 ® EOéi)@M + (Eoci ® K(;il)@li—ai = @M(l ® Eai) + ®M—Oti(EOti ® Kai)?
(FOéi ® 1)@M + (KOéi ® Fai)@ﬂ—ai = @M(Fai ® 1) + @M—Oéi(Ko_zil ® FCW,)’

(Kai ® Kai)@ﬂ = @H(Kai ® KCV'L)'

Remark 1.4.2. We adopt the convention in this paper that ©, lies in UT ® U~ due
to our different choice of the coproduct A from [Lu2]. (In contrast the ©, in [Lu2]
lies in U~ ® UT.) The convention here is adopted in order to be more compatible

with the application to category O in Part 2.

Lusztig’s quasi-R-matrix for U is defined to be

O:=> 6, (1.4.1)

HENIT

For any finite-dimensional U-modules M and M’, the action of © on M ® M’ is well

defined. Proposition implies that
A(w)O(m@m') = OA[@)(mem'), forallme M,m' e M', and uw € U. (1.4.2)

By [Lu2l Corollary 4.1.3], we have

OO(mem')=m®m/, forallme M and m' € M. (1.4.3)
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In [Lu2l 32.1.5], a U-module isomorphism
IRZRM’M/ : M/®M—)M®M/

is constructed. As an operator, R can be written as R = Qogo P where g : M@ M' —
M ® M’ is the map g(m @ m') = ¢*™m @ m' for all m € My,m' € M}, and

P:M&®@M — M® M is a Q(g)-linear isomorphism such that P(m®@m’) = m' @ m.

Definition 1.4.3. A U-module M equipped with an anti-linear involution ) is called
involutive if

Y(um) = P(u)p(m), Vu e U,m e M.

Given two involutive U-modules (M, 1) and (Ms, 19), following Lusztig we define

a map ¢ on M; ® My by
P(m @m') = 0(¢1(m) @ Py(m)). (1.4.4)

By Proposition [1.4.1] we have ¢ (u(m®@m')) = ¢ (u)p(m@m’) for all uw € U, and the
identity ((1.4.3]) implies that the map ¢ on M; ® M, is an anti-linear involution. This
proves the following result of Lusztig (though the terminology of involutive modules

is new here).

Proposition 1.4.4. [LuZ, 27.53.1] Given two involutive U-modules (M, 1) and (Ma, 1),

(M; ® My, 1) is an involutive U-module with v given in (1.4.4)).

It follows by induction that M; ® --- ® M, is naturally an involutive U-module

for given involutive U-modules My, ..., Mj; see [Lu2, 27.3.6].
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As in [Lu2], there is a unique anti-linear involution ¢ on “L(\) such that ¢ (u) =
¥(u)¢ for all w € U. Similarly there is a unique anti-linear involution ¢ on L(\) such
that ¢(un) = ¥(u)n for all w € U. Therefore “L(\) and L(\) are both involutive

U-modules.



Chapter 2

Intertwiner for a quantum

symmetric pair

In Chapters [25, we will formulate and study in depth the quantum symmetric pair
(U, U") for U of type Ay with k = 2r + 1 being an odd integer. In these chapters, we

shall use the shorthand notation
I=Ty 4 ={-r,...,—1,0,1,...,7}
as given in (L.1.1]), and set
I':=Z-.onI={1,...,7}. (2.0.1)

In this chapter, we will introduce the right coideal subalgebra U* of U and an
algebra embedding 2 : U* — U. Then we construct an intertwiner Y for the two bar
involutions on U’ and U under 2, and use it to construct a U-module isomorphism

30
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T on any finite-dimensional U-module.

2.1 Definition of the algebra U’

The algebra U = U is defined to be the associative algebra over Q(q) generated by

€ars fais kays k3! (1 €T') , and ¢, subject to the following relations for 7, j € I":

(67

Fack! = ko ke, = 1,

QG Vo
k;ai kaj = kaj kam

-1 _ (j—a_j,a;
Fos€a kg = ¢’ i)

(P
;o

Koo faka! = g~ @70 £

ko tk, ' =t,

ko, — k]!

€a,fo; = foy€oi = 0ij= — 5
€2 Ca; + €a;€h, = (@ + 47 )ea;Ca,Ca;, if |i —j| =1,
€a,;€a; = €a;Ca;, if ’7’ - ]| > 1,
f2ifo, + fo, £o. = (a+ a7 ") fau oy four if i —j| =1,
faifaj:fajfan if |Z_]| >]->

Ca,t = teq,, if i > 1,

k3

€i1t + tegq = (q + qil)ealteaﬂ
t2€a1 + ea1t2 = (q + qil)temt + €ay s

fait =tfa,, ifi>1,
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ft+tf2 =(q+q ") futfon,

752fO¢1 + foqtz = (q + q_l)tfalt + fau-
We introduce the divided powers €& = et /lall, o f&/la]! for a > 0,4 € I".

Lemma 2.1.1. 1. The Q(q)-algebra U" has an involution w, such that w,(ka,) =
kol wi(ea,) = farr wi(fa;) = €a,. and w,(t) =t for all i € I".
2. The Q(q)-algebra U" has an anti-involution T, such that 7,(€q;) = €a;, To(fa;) =
fai, T(t) = t, and 7,(ko,) = k3! for alli e T,

2

3. The Q-algebra U* has an anti-linear (q — q~') bar involution such that Eai =

kol €a; = €ays fa, = fai, and T =1 for alli € I".

(Sometimes we denote the bar involution on U* by 1,.)

Proof. Follows by a direct computation from the definitions. O]

2.2 Quantum symmetric pair (U, U’)

The Dynkin diagram of type As,.,1 together with the involution # can be depicted as

follows:
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A general theory of quantum symmetric pairs via the notion of coideal subalgebras
was developed systematically by Letzter [Le] (also see [KP. [Ko|). As the properties

in Propositions and below indicate, the algebra U’ is a (right) coideal

subalgebra of U and that (U, U") forms a quantum symmetric pair.

Proposition 2.2.1. There is an injective Q(q)-algebra homomorphism 1 : U — U

which sends

ko, — KaiKolliy
ea; — o, + KojilFo_i,
fa; FaiK(;,li + Ea_,,

t = Eoy + qFo K+ K
for all i € T".

Proof. This proposition is a variant of a general property for quantum symmetric
pairs which can be found in [Le, Theorem 7.1]. Hence we will not repeat the proof,
except noting how to covert the result therein to the form used here.

It follows from a direct computation that 2 is a homomorphism of Q(q)-algebras.

We shall compare 2 with the embedding in [KP| Proposition 4.1] (as modified by
[KP|, Remark 4.2]), which is a version of [Le, Theorem 7.1]. Set U = C(g2) ®Rq(q) U.
Recall from [KP), §4] a Q(q)-subalgebra U, (£) of Uc with a generating set & consisting
of FaO—Kojolan—l—q’%KOjol, Ko, K;' Fy . —K;'E, Fo—E, K;! forall0#iel"

Claim. The algebras C(q?) ®qg(g) Y(U*) and C(q2) Rq(q) U, (£) are anti-isomorphic.
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Consider the (C(q%)—algebra anti-automorphism x : Uc — Ug such that
E, —~v—-1F, ,, F,, ——-1E, ., K, — K, ,, forall0#iel,

an =V _1q%Fao7 Fao Y —1C]_%Ea0, Kao = KCVO‘

A direct computation shows that x sends

KaiK(;,li = KaiK;}i’
B, + K'Fy = V=1(F, ,— K;' E..),

«

FaiK;_li + EOéfi = v _1<F0¢i - Ea—iK_'1)7

o

By + qFog K3t + Kl V=1q2 (Fy, — K ' Eo + q? K.

Hence, r restricts to an anti-isomorphism between the algebras C(q%) ®q(q) +(U") and
C(q2) ®q(q) U, (£), whence the claim.

We observe that [KP), Proposition 4.1] provides a presentation of the algebra U; (€)
with the generating set & and a bunch of relations, which correspond under x exactly

to (the images of) the defining relations of U’. In other words, the composition

N
~

C(q2) ®q() U" = C(q2) R0 1(UY) = C(q2) ®q(q) Uy(E) is an anti-isomorphism.

Hence ¢ : U* — U must be an embedding. O

Remark 2.2.2. Note that the coproduct for U used in [KP] follows Lusztig [Lu2]
and hence differs from the one used in this paper; this leads to somewhat different
presentations of the quantum symmetric pairs. Our choices are determined by the

application we have in mind: the (U, Hp, )-duality in Chapter |5 and the translation
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functors for category O in Part 2. One crucial advantage of our presentation is the

existence of a natural bar involution as given in Lemma [2.1.13).

Any U-module M can be naturally regarded as a U’-module via the embedding

Remark 2.2.3. The bar involution on U* and the bar involution on U are not com-

patible through ¢, i.e., 1(u) # +(u) for u € U* in general. For example,

Z(Eai) = Z(ea'L) = Eai + Kozb-lFOé,iy

©ea;) = Boy + Fo [ K} = Eo, + Fo_ Ko,

Note that Eo, (K, 'F,_,) = ¢*(K.'F,_,)Eq, for all 0 # i € I. Using the quantum

binomial formula [Lu2, 1.3.5], we have, for all i € I, a € N,

() = 3 D KB, 221
=0

Z(féciz)) _ Z qj(a—]')F(iJi')K;jiE&a_—ij)‘ (2.2.2)
=0

Proposition 2.2.4. The coproduct A : U — U ® U restricts via the embedding 1 to

a Q(q)-algebra homomorphism A : U" +— U'® U such that, for all i € I',

A(kai) = kOéi ® KOéiKoj—li’
Alea,) =1® Eo, + €0, ® KJ' + k' @ K'F,_,
A(fai) = kai ® Fach:,lZ + fai & Koj,lz +1® Eoz_ia

Alt) =t® K, +1® qFa K, +1® E,,.
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Similarly, the counit € of U induces a Q(q)-algebra homomorphism ¢ : U — Q(q)

such that €(en,) = €(fa,) =0, €(t) =1, and €(k,,) =1 for alli € T".

Proof. This follows from a direct computation. O]

Remark 2.2.5. Propositions[2.2.1{and 2.2.4]imply that U* (or rather «(U")) is a (right)

coideal subalgebra of U in the sense of [Le|. There exists a Q(¢)-algebra embedding
1z, : U* — U which makes U* (or rather 17, (U")) a left coideal subalgebra of U; that
is, the coproduct A : U — U ® U restricts via 11, to a Q(¢)-algebra homomorphism
A :U"— U ® U We will not use the left variant in this paper.

Remark 2.2.6. The pair (U, U") forms a quantum symmetric pair in the sense of
[Lel. At the limit ¢ — 1, it reduces to a classical symmetric pair (sl(2r 4 2), sl(2r +
2)"0); here wy is the involution on gl(2r + 2) which sends E;; to E_; _; and its
restriction to s[(2r + 2) if we label the rows and columns of sl(2r + 2) by {—r —
1/2,...,—1/2,1/2, ..., r +1/2}.

The following corollary follows immediately from the Hopf algebra structure of U.
Corollary 2.2.7. Let m : U® U — U denote the multiplication map. Then we have
m(e®1)A =2: U — U.

The map A : U’ — U' ® U is clearly coassociative, i.e., we have (1 ® A)A =
(A®1)A : U — U'® U ® U. This A will be called the coproduct of U’, and
e : U — Q(q) will be called the counit of U'. The counit map ¢ makes Q(q) a

U’-module. We shall call this the trivial representation of U".
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Remark 2.2.8. The 1-dimensional space Q(¢q) can be realized as U’-modules in differ-
ent (non-isomorphic) ways. For example, we can consider the Q(g)-algebras homo-
morphism € : U* — Q(q), such that €'(e,,) = €' (fa,) =0, €(ka,) = 1 for all ¢ € Z~o,
and €'(t) = z for any x € Q(q). We shall only consider the one induced by ¢ as the
trivial representation of U*, which is compatible with the trivial representation of U

via 1.

2.3 The intertwiner Y

Let U be the completion of the Q(g)-vector space U with respect to the following
descending sequence of subspaces U*UO( thw)z N U:#), for N > 1. Then we have
the obvious embedding of U into U. We let U~ be the closure of U~ in ﬁ, and so
U~ C U. By continuity the Q(g)-algebra structure on U extends to a Q(g)-algebra
structure on U. The bar involution ~ on U extends by continuity to an anti-linear
involution on fJ, also denoted by ~. Recall the bar involutions on U* and U are not

compatible via the embedding 2 : U* — U, by Remark [2.2.3]

Theorem 2.3.1. There is a unique family of elements T, € UZ, for p € NII such
that T = Z# T, € U~ intertwines the bar involutions on U and U wvia the embedding

v and Yo = 1; that is, Y satisfies the following identity (in IAJ)

@)Y =71 o(u), forallu e U" (2.3.1)

Moreover, T, = 0 unless w = p.
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Remark 2.3.2. Define 7 : U* — U, where 7(u) := ¢ (1(¢,(u))), for u € U". Then the

identity (2.3.1) can be equivalently reformulated as
v(u)Y =7 7(u), forallue U" (2.3.2)

This reformulation makes it more transparent to observe the remarkable analogy with
Lusztig’s O; see (1.4.2).

Sometimes it could be confusing to use ~ to denote the two distinct bar involutions
on U and U*. Recall that we set in Section that ¢(u) = @ for all u € U, and

set in Section that ¢,(u) = u € U* for u € U". In the t-notation the identities

and read
)T = TYG), )T = TE(( (). Tor allu e U

Definition 2.3.3. The element T in Theorem [2.3.1]is called the intertwiner for the

quantum symmetric pair (U, U").

As we shall see, the intertwiner T leads to the construction of what we call quasi-
R-matrix for U’, which plays an analogous role as Lusztig’s quasi-R-matrix for U.
We shall prove later on that T, € U for all y; see Theorem m

The proof of Theorem will be given in below. Here we note immediately

a fundamental property of Y.

Corollary 2.3.4. We have Y- T = 1.
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Proof. Clearly T is invertible in U. Multiplying T~! on both sides of the iden-
tity in Theorem , we have
T h(u) = o(u)Y 7, Vu e U
Applying ~ to the above identity and replacing @ by u, we have
T 9w =1@T ', VueU.

Hence T (in place of T) satisfies the identity (2.3.1)) as well. Thanks to the unique-

ness of T in Theorem , we must have T = T, whence the corollary. m

2.4 Constructing T

The goal here is to construct T and establish Theorem [2.3.1}

The set of all u € U* that satisfy the identity is clearly a subalgebra of U’.
Hence it suffices to consider the identity when u is one of the generators e,,,
fais ka,, and t in U*, that is, the following identities for all 4 € NIl and 0 # ¢ € I:

KaiK;,liTu = TuKaiK;,li>
Fo K Yyvicai ¥ Ba Xy =Ypai—a ;Fo, Ko, + TuFu_,,
0F o K Y poag + Ko Yoo + Eag Yy = ¢ T ussaeFaoKag + Tu—aoKag + TyEag-
Using [Lu2l, Proposition 3.1.6], we can rewrite the above identities in terms of _;r

and r_; as follows:

Ko, K'Y, — T, Ko, K =0, (2.4.1)

«
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(g = q)gle-srmemed Y, o Fo 4+ r(T,) =0, (2.4.2)
(= q)ql et E T, o0 4 ri(T,) =0, (2.4.3)
(07" = 0)q @ (g7 g0 Fag + Tpao) + or(T,) =0, (2.4.4)
(" — ) g @0 (g7 Fy Ty 0ag + Toao) +70(T,) = 0. (2.4.5)

Recall the non-degenerate bilinear form (-,-) on U~ in Section ; see Proposi-
tion m The identities — can be shown to be equivalent to the following
identities —:

(T Fai2) = (1 — q2) 7 glomormommad (T, (2)), (2.4.6)
(T 2Fa ) = (1= q2)7hglommmomad (T, (=), (2.4.7)
(T Fag?) = (1= 4270 (T, 0, 70(2)) + gO0# 0 (T, . 2), (24.8)

(T 2Fag) = (1= 427 (Y, gy, 0r(2)) + g @F (T, oy, 2), (24.9)

for all z € UZ

-

between ([2.4.6)) and (2.4.2)) is shown as follows:

v € NII, p € NII, and 0 # ¢ € . For example, the equivalence

242 < (—r(Yh),2) = —(¢ " = @)g ) (Vpa,—a_ Fa, 2) Yz,
s (Fy ,,F, ) (T, Fa2)
= —(¢7" = q)g TNy Fo ) (Tymaa (7)) V2,
& (2.4.6) V=

The remaining cases are similar.

Summarizing, we have established the following.
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Lemma 2.4.1. 1. The validity of the identity (2.3.1) is equivalent to the validity

of the identities (2.4.1) and (2.4.2])-(2.4.5)).

2. The validity of the identity (2.3.1)) is equivalent to the validity of the identities

and (ET0)-ET9)

Let 'f* (respectively, (U7)*) be the non-restricted dual of 'f (respectively, of U™).
In light of Lemma M(Q), we define T3 and Y7, in 'f*, inductively on weights, by

the following formulas:

TH(1) = Th(l) = 1,
Y7 (Fa i2) = (1= ¢ %) gm0t (r(2)),

Y3 (Fapz) = (1 — ¢72) 7 gl Y (r9(2)) + ¢'* 1 T(2), (2.4.10)
Tr(zFa ) = (1= ¢ ) g IT] (ir(2)),

Th(2Fa,) = (1= q7) 70T (or(2)) + ¢ "1T*(2),

for all i € I and z € f, with v € NII. (The formulas (2.4.10) are presented here only

for the sake of latter reference as they also make sense in the case of U/.)

Note that since (o, a_;) = 0 for all ¢ # 0, we can simplify the definition (2.4.10))
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of T7 and T7% as follows:

TL(1) = Tx(1) =1,
Y (Fa_2) = (1—q72) 7 g5 (ri(2)),
Y5 (Faoz) = (1= ¢ %) g0 (ro(2)) + ¢4 T (2), (2.4.11)
Th(zFa_,) = (1= ¢ %) g5 (ir(2)),

Th(2Fag) = (1= %) 7 'q 0T (or(2)) + ¢ 1T (2),
forall i € I and 2z € f, with v € NII.
Lemma 2.4.2. For all x € 'f,, with u’ # pu, we have T3 (x) = Th(x) = 0.

Proof. We will only prove that T%(z) = 0 for all z € 'f, with u’ # p, as the proof
for the identity T%(x) = 0 is the same. By definition of T} (2.4.11)), the value of
Tj(x) for x € 'f, is equal to (up to some scalar multiple) Y7 (z’) for some 2’ € 'f,,,
where ¢/ = p— a; — a_; for some i; here we recall 6(«;) = a_;. Also by definition
(2-4.11), we have Yj (F,,) = 0 for all i € I. Now the claim follows by an induction on

weights. O]
Lemma 2.4.3. We have T} = T5,.

Proof. We shall prove the identity Y} (x) = T5(x) for all homogeneous elements
x €'f, by induction on ht(|z|).
When ht(|z]) = 0 or 1, this is trivial by definition. Assume the identity holds

for all z with ht(|z|) < k, for & > 1. Let 2’ = F, 2"F, ; € "f, 1 q 1o, with



43

ht(|2'|) = k+ 1 > 2. We can further assume that (v +a_; +a_;) =v+a_; + a_;,
since otherwise Y75 (z') = T5(2") = 0 by Lemma [2.4.2] The proof is divided into four
cases (1)-(4).

(1) Assume that ¢,5 # 0. Then we have
TZ([E’) _ (1 _ q_2)_1q(a7i7y+aij)+1’rz(7ﬂi(x//Fa,j)) — L, + Lo,
where
Ly = (1—q?) glemrtom) oy (r(a")F, ),
L2 — (1 o q—2)—lq(a,i,u+a,j)+15i7_sz(x/l).
We also have
T*R($,) _ (1 _ q—2)—1q(a,j,u+a7i)+1~r}%(jr(Faiix//)) _ Rl + RQ,
where
Rl — (1 . q—2)—1q(o¢,j,V—i—a,i)—i—(aj,oa,i)—&—lT*R(Faii jT(ZE”)),
Ry = (1 _ q—2)—1q(06_j,V+a—i)+15i7_j’r}<z($//).
Applying the induction hypothesis to r;(2”)F,_; and F,_, jr(z") gives us
L = (1= q2) 2ot K e mad 2 (r(r(27))
= (1= g ?) 2qle-mtatlasse 2y (i (ry(2”)));
Ry = (1 — ) 2w o Hoss 0 Hew e 20 (1, r(a)))

= (1 — g ?)2glo-tlegmtla—g a2y (v, (r(2”))).
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Note that ;r(r;(z")) = r;(;r(2")) by Lemma and ht(|,;7(r;(z"))|) < ht(|2’]). By
the induction hypothesis, Y75 (;r(r;(z"))) = Th(r:(jr(z"))). Hence L; = R;.
By the induction hypothesis, we also have 17 (") = Y5 (2”). When i = —j, we

0

have ¥ = v, and hence

(1 _ q—2>—1q(a_i,1/+a_j)+1 — (1 _ q—2>—1q(o¢_i,lx+ai)+1

— (1 . q—2>—1q(aﬂi,ug+a§)+1

Hence we have Ly, = R».
Summarizing, we have Y7 (2') = L1 + Ly = Ry + Ry = T5,(2') in this case.

(2) Assume that ¢ = 0 and j # 0. Then we have
Y7 ()
— (1 _ q72)71q(a0,u+a,j)frz(ro(x//Faij)) + q(aoywraij)Jrsz(x”Fa,j)
— (1 _ q—2)—1q(o¢0,l/+a,j)T*L(q(ao,a,j)ro(l,//)Fa7j) + q(ao,u—ﬁ-a,j)—&-lT*L(x//Faij)
= (1= ) g0 I (1 (0 F ) g T (0 )

Applying the induction hypothesis to ro(2")F,_, and 2" F,_;, we have

Y5 (ro(a")Fo ) = (1 — q—2)71q(a,j,ufao)ﬂTz(jr(ro(x,,))’

T Fa ) = (1= q2) g T (r(a")).
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Hence we obtain
T3 (a') =(1 = ) 2o el 0 Gy (27))

+ (1 . q72>71q(a0,1/)+(oz,j,1/)+(a,j,a0)+2fr*L(jr<x//)).

From a similar computation we obtain
Thla') =(1 = g72) 2o e oo T (07))

+ (1 . q_2>_1q(ao’y)+(a_j’y)+(a0’a_j)+2T*R(j?“(l’”)).

It follows by Lemma that ro(;7(2")) = ;r(ro(z”). Then, by the induction

hypothesis on ro(;r(z")), ;r(ro(z”), and jr(z”), we obtain Y7 (2z') = YTh(2') in this

case.
(3) Similar computation works for the case where j = 0,7 # 0 as in Case (2).
(4) At last, consider the case where i = j = 0.
1) = (1 g72)7 g0 T (ry (2" F,)) + g0 0T (0 )
= (= )T (0 )

(1— g %) g orte0T] (2") 4 v 0TI (2" F, ).

Applying the induction hypothesis to ro(z”)F,, and z"F,,, we have

TE(TO(I")FQO) (1 . q_2)_1q(a0’l/—a0)T*L(OT’(To(IH))) + q(ao’y_a0)+1T*L<T0(x//))7

Tz(x//Fa()) _ (1 . q—2)71q(ag,z/)Tz(0r(x//)) + q(ao’y)+1Tz(l‘”).
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Hence we have

17 (2")
= (1= g7 2o D Y (o (a”)
+ (1 . q72)71q(ao,u)+(a0,u)+(a0,a0)+1T*L(ro(x//)) + (1 . q—2)—1q(ao,u+ao)frz($//)

+ (1 . q—2)—1q(ao,u)+(oe071/)+(o¢0,ao)+1T*L(Or(xll)) + q(ao,V)+(a07u)+(a0,ao)+2T*L(:EI/)'
Similarly we have

Th(a)
= (1= g2 2o Com G (g o1 (a")))
+ (1 . (]—2)_1q(ao’V)+(a0’V)+(a0’a0)+1T*R(0T(£EH)) + (1 _ q—2)—lq(ao,u+a0)T*R($//)

+ (1 . q—2)—1q(ao,u)+(ao,u)+(a0,ao)—i—lfr}%(ro(:L,//)) + q(ag,y)—l—(ao,u)—i—(ao,ao)—‘ﬂT*R(l,//)‘

Therefore Y7 (2') = TH(2') in this case too by induction and by Lemma (1.2.1]

This completes the proof of Lemma [2.4.3 O]

We shall simply denote Y7 = Y% by T* thanks to Lemma m Recall 'f/I =U",

where I = <SZ]>
Lemma 2.4.4. We have T*(I) = 0; hence we may regard T* € (U™)*.

Proof. Recall 14(S;;) = xr(S;;) =0, for all ¢, j, k. Any element in I is a Q(g)-linear
combination of elements of the form Fa,., ...Famh SijFanl ...Fanl. So it suffices to

prove Y*(F,,, ...F,

10T T Gmy,

SijFan, - Fa ) =0, by induction on h + .

ny
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Recall the Serre relator Sy;, for i # j € I, from (1.2.2). Let us verify that
T*(S;;) = 0, which is the base case of the induction. If |i — j| = 1, the weight of S; is
—2q; — o, which is not f-invariant. If |i — j| > 1, the weight of S;; is —a; — «;, which
is not #-invariant unless ¢ = —j. In case of i = —j, a quick computation by definition
(2.4.11)) gives us that T*(S;;) = 0. In the remaining cases, it follows by Lemma

If h >0, by (2.4.11)), (1.2.1) and (1.2.3) we have

Y (Fa, - Py Sii Fa, - Fouy,)
:T*(r—m1(Fam2 . FathijFanl . Fanl))

:T*<Zcm/n/Fam,l . .Fa ’ SijFozn/ . .Fa ’ >

Mh 1 "y

+ 0y o€ T (Fa,,, - Fay, SijFu <. Fa,),

Fa,,
for some scalars ¢,,,, and ¢’. Similarly if [ > 0, we have

YH(F, ... Fy.
1 h

SijFu, - Fa,)

=T"(_p,r(Fa,,, - F

1T Qmy,

SijFan, - 'Fanl_l))

k
:T ( E Cm//n//Fam,l, . Fam,h,// SijFo‘n’l’ . Fa " )

i

+ 5—nl,OCHT* (F

Qmy

Qmy,

SiiFn o Foy ).

np t T Onpy

for some scalars c¢,,,,» and ¢’. In either case, we have ' +1' = h" +1" < h + L.

Therefore by induction on h + [, Lemma [2.4.4] is proved. [l

Now we are ready to prove Theorem [2.3.1]
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Proof of Theorem[2.3.1. We first prove the existence of T satisfying the identity
(2.3). Set T, = 0if 1 & NII. Let B = {b} be a basis of U~ such that B, = BNU~,
is a basis of UZ,. Let B* = {b*} be the dual basis of B with respect to the bilinear
pairing (-, -) in Section Define T by

Y= T )h=) T,

beB I

As functions on U™, (T,-) = T*. Clearly T is in U~ and Ty = 1. Also T satisfies
the identities in — by the definition of T*. For any € U, it follows by
Lemma that T3 (z) = Th(x) = 0 if ¥ # v. Tt follows that is satisfied.
Therefore, by Lemmal[2.4.1[2), T satisfies the desired identity in the theorem.

By Lemma [2.4.1[1) and the definition of Y, the identity holds for T, and
so _;r(Y,) is determined by Y, with weight v < p. By [Lu2, Lemma 1.2.15], if an
element z € UZ, with v # 0 satisfies _;r(x) = 0 for all i € I then = 0. Therefore, by
induction on weight, the identity together with Ty = 1 imply the uniqueness
of T.

The T as constructed satisfies the additional property that T, = 0 unless u = p,

by Lemmas [2.4.2] 2.4.3| and [2.4.4] The theorem is proved. O
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2.5 The isomorphism T

Consider a function ¢ on A such that

Clp+ o) = —qC(p),
C(p+ o) = —gl@ima-ortadc(y), (2.5.1)

Clp+ amg) = —q@-orte-0=Come () Wue A, i e T

Noting that (a;, ;) = 0 for all i € I', we see that ( satisfying (2.5.1)) is equivalent

to ( satisfying

C(p + ap) = —qC(p),
(2.5.2)
((p+ a;) = —qlorted=l—ome () Ve, 0£iel

Such ( clearly exists. For any weight U-module M, define a Q(g)-linear map on M

C: M — M,
(2.5.3)

((m) =C(p)m, VYm e M,.
Recall that wy is the longest element of W and T, is the associated braid group

element from Section [L.3l

Theorem 2.5.1. For any finite-dimensional U-module M, the composition map

T=To(oTy :M— M

15 a U'-module isomorphism.
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Proof. The map 7T is clearly a Q(g)-linear isomorphism. So it remains to verify that T
commutes with the action of U*; we shall check this on generators of U* by applying
repeatedly Lemma [1.3.1}

Let m € My, and 7 € I'. Then we have

T(ka,m) =T 0 ¢ o Ty, (2(ka,)) Ty (M)
=T 0C 0 Ty (Ko, KL )Ty ()
=T 0 (Ko, K3 Toy(m)
= (Ko, K3' )Y 0G0 Ty (m)

i

= ko, T(m).

We also have

T(eaym) = T 0 {(Tuy(1(ea,)) T (m))
=T 0 ((Tuy(Ba, + K Fo )T (m))
=T 0 (K3 (Ko, Fa_, + Ea,)Ka_,Tuy(m))
= —T(C(p— ay))g D K By Ty (m)
LT+ ag)g @) BT ()

W Y (o, + Ko, Fa )C(12) T (m)

© (Ea, + K7 Fo )T 00 Ty (m)

= e,,T(m).

The identity (a) above follows from the definition of ¢ and the identity (b) follows
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from the definition of Y.
By a similar computation we have Tf,,(m) = f,,T(m).

For the generator ¢, we have

T(tm) =T o 0 Tyy (1(t)) Ty (m)
=To ZO Two (an + qFaoKz;ol + K;(})Two (m)

=T o ((—Fa Koy — q_lEOco + Kag) T (M)

= T(_qg(ﬂ - CYO)(]_IFOA)}(O«) - (]_1C([L + aU)EOéo + C(M)Kao)Tw()(m)

(0 -
= T<q lFﬂtoKao + an + Kao)C(N)Two(m)

D (B + qFag K+ K1) 0 L0 Ty ()

=tT(m).

Here the identity (c) follows from the definition of ¢ and identity (d) follows from the

definition of T. Hence the theorem is proved. O



Chapter 3

Quasi-R-matrix for a quantum

symmetric pair

In this chapter, we define a quasi-R-matrix ©* for U’, which will play an analogous
role as Lusztig’s quasi-R-matrix for U. Our © is constructed from the intertwiner T

and ©.

3.1 Definition of ©*

Recall Lusztig’s quasi-R-matrix © from (1.4.1). It follows by Theorem that T is

a well-defined operator on finite-dimensional U-modules. For any finite-dimensional

U-modules M and M’, the action of T on M ® M’ is also well defined. So we shall

52
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use the formal notation T# to denote the action of T on M ® M’. Hence the operator
0 :=T*0(r 1) (3.1.1)

on M ® M’ is well defined. Note that © lies in (a completion of) U ® U. We shall

prove in Proposition that it actually lies in (a completion of) U' ® U.

Definition 3.1.1. The element ©* is called the quasi-R-matrix for the quantum
symmetric pair (U, U").
Recall that we set in Section [1.2] that 1(u) = @ for all v € U, and in Section
that ¢,(z) := T € U* for = € U*. We shall also set ¢(z) := 2(x) € U for z € U
Define A : U* — U'® U by A(u) = (¢, @ ¥)A(1,(u)), for all u € U*. Recall that
the bar involution on U"® is not compatible with the bar involution on U through 2

(see Remark [2.2.3)); in particular the A here does not coincide with the restriction to

U’ of the map in the same notation A : U — U ® U in [Lu2, 4.1.1].

Proposition 3.1.2. Let M and M’ be finite-dimensional U-modules. As linear op-

erators on M @ M', we have A(u)©" = 0" A(u), for all u € U

Proof. Foru € U, weset A(T) =) uq)@ue) € U'®@U. Then, form € M, m' € M,
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we have

T°0(T' @ HA@)(m @ m') = 1*O(Y | T i(um) @ ug)(m @ m')
@ rsg Zz ) @) (T @ 1)(m @ m')

Drea(@)er e 1)me )

9 A@T2O(T™ © 1)(m @ m').

The identities (a) and (c) follow from Theorem and the identity (b) follows from

(1.4.2). Note that the bar-notation above translates into the i-notation as follows:

u =P, (u), uay = vu(u), Ue) = Pluw), (uq)) = L(uqy)), @) = P((u))).

The proposition is proved. [

3.2 Normalizing ©"

Our next goal is to understand ©® in a precise sense as an element in a completion of
U ® U~ instead of merely as well-defined operators on M ® M’ for finite-dimensional
U-modules M, M’.

Let B = {b} be a basis of U~ such that B, = BNU_, is a basis of U_, for each
w. Let B* = {b*} be the basis of U~ dual to B with respect to the bilinear form (-, -)

in Section For each NV € N, define the Q(g)-linear truncation map tr<y : 'f —'f
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such that, for any iq,...,i; € 1,

iy - Fe, s if k <N,
trSN(FOCiI ...Faik) = (321)
0, if £ > N.
This induces a truncation map on U~ ='f/I, also denoted by tr<y, since I is homo-

geneous. Recalling © from (|1.4.1]), we denote

@SN = Z @M'

ht(p)<N

Then we define

<N = Z id @ tren (A(Y,)0<n (YT ® 1)), (3.2.2)

In

which is actually a finite sum, and hence ©Ly € U® U™ and O, =1 ® 1. Define

O =0y -0y, = Y  a"®becUaU, (3.2.3)

bHeBtht(p’):N

where it is understood that ©%_; = 0. The following lemma is clear from weight

consideration.

Lemma 3.2.1. Let M and M’ be finite-dimensional U-modules. For allm € M and

m' € M', we have
O©'(m®m') =0Ly(mem'), for N> 0.
Note that any finite-dimensional U-module is also a U-module.

Lemma 3.2.2. Let u € U be an element that acts as zero on all finite-dimensional

U-modules. Then u = 0.
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Proof. Tt is well known that any element v € U that acts as zero on all finite-
dimensional U-modules has to be 0 (see [Lu2, Proposition 3.5.4]). Hence the lemma

follows by weight consideration. O
We have the following fundamental property of ©%.
Proposition 3.2.3. For any N € N, we have ©% € 1(U") @ U~.

Proof. The identity in Proposition for u being one of the generators k,,, e,

fa;, and t of U* can be rewritten as the following identities (valid for all N > 0):

(Ko, ® KazKoj_l )ON(m @ m') = O (ka; ® K%K;_ll)(m ®m'),

i

((ka, ® Fo, K, )ON 1 + (fo, ® K10 4+ (1® E,_,)O 4y )(m @ m')

i i

= <®3V—1<k;il ® Fo, Ka_,) + O(fo, ® Ko_,) +ON(1® Ey_,))(m ® m,)a

(k' © K 'Fo )ON_ + (€0, ® KO + (1 ® E,,)O 1) (m @ m)

= ( 3\/—1(’1{50@ ® KaiFa_i> + Oy (€a; ® Kozi) + @§V+1(1 ® Eozz))<m ® m/),

(1@ qFo, Koy )ON 1 + (1 ® K )0 + (1® Eoy)Oly i) (m @ m)

= (Oy,(1® q_lFaoKao) + Oy (t ® Koy) + @3\1-1-1(1 ® Eop))(m @ m/)a

for all 0 £ i € I', m € M and m'’ € M’', where M, M’ are finite-dimensional U-
modules. Write

Oy= >  a"®bcUgU,

bl—LeBuvht(u):N
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where a,’s are fixed once B is chosen. Thanks to Lemma [3.2.2] the above four

identities for all M, M’ are equivalent to the following four identities:

> ko)t @ Ko K by = Y a*a(ka,) @ b Ko, K, (3.2.4)
(=N (=N

N ke )a" ® Fo K by + > ol fa)a @ Kb+ > a" @ B, b,
b o b b
ht(u”SL:N—l ht(,ﬁ):N ht(u)iNH

(3.2.5)

"

= Z a" Z(k;il) @ by Fo Ko, + Z aull(fai) ® by Ka_, + Z a" @ byEa_,,

I bM/ by
ht(p/)=N—1 ht(u/)=N ht(u)=N+1

> ke)a @ K Fo by + ) dlea)d @ K lby 4 ) o @ Eob
7] b b
ht(p/)=N—1 ht(u/)=N ht(u)iNH

(3.2.6)

== Z a“ﬂl(kai) ® bN”KaiFa—i + Z aﬂ/z(eai) ® bH'Kai + Z a# ® b,UEaN

b b b

i
ht(p/)=N—1 ht(u/)=N ht(p)=N+1

Yo " @qF Kb+ Y ) @ Kby + Y ' @ E,b,
b/

b b

ht(u")=N—-1 ht(u/)=N ht(u)£N+1
(3.2.7)
= Y d@buq  FoKey+ Y a”it) @buKao+ Y ' @b,Ea,.

b o bu/ bu
ht(p/)=N—1 ht(p/)=N ht(p)=N+1
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A straighforward rewriting of (3.2.5)-(3.2.7) involves the commutators [E,,,b,] for
various k € I, which can be expressed in terms of ,r and r; by invoking [Lu2, Proposi-

tion 3.1.6]. In this way, using the PBW theorem for U we rewrite the three identities

(3.2.5))-(3.2.7) as the following six identities:

(o—ispta—i)
S k)0 @ Fabyr +3 t(fa)a” @ by + 4 N at@ri(b,) =0,
—q
b .n by b
ht(u/)=N-1 ht(u/) =N Bt(n)=N+1
(3.2.8)
1 q(a pHTo—
Z a* (k') @ b Fy, +Za“ (for) @by + ———— Z a* @ _r(b,) =0,
b 1 b !
ht(u”SL:N—l ht(,u’):N ht(u) “N+1
q(alu“""az)
Z ok, 1)a“ ® Fy byn +Z Weq,)at @ by + ——— Z a' ®ri(b,) =0,
gt —q
b by b
ht(y”H:Nfl ht(u/)=N ht(u)iNH
(3.2.9)
” q(a17//4+041)
> @ ika) @b Fa_ +Y | a"iea,) @by +———— Y a"@r(b,) =0,
—q
b b ! b
ht(u”M:N—l (u) N ht(u)iNH
. q(ao,u+ao)
Yo @ b+ Y at)a” @by + pe > at @ro(b) =0,
b, by b
ht(p/’)=N-1 ht(u')=N B(1)=N+1
(3.2.10)
q(aonu'+a0)
Z CL“ ®q b //Fa0+ Z Cl’u ®b —|——_q Z at ®0 T’(b#)zo
b b ! b
ht(,//)“:N—l ht(,u):N (u)ﬁNH

So far we have the flexibility in choosing the dual bases B and B* of U™. Now
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let us be more specific by fixing B* = {b*} to be a monomial basis of U~ which
consists of monomials in the Chevalley generators F,,,; for example, we can take the
U~ -variant of the basis { F¥((c))} in [Lull, pp.476] where Lusztig worked with U™. Let
B = {b} be the dual basis of B* with respect to (-, -), and write B, = BNU_,, = {b,}
as before. Fix an arbitrary basis element Bu € B, (with p # 0), with its dual basis
element written as I;; =zF,_,, for some z € U™ and some i. We now apply 1 ® (z,-)
to the identities , and , depending on whether ¢ is positive, zero
or negative.

We will treat in detail the case when i is positive, while the other cases are similar.

Applying 1 ® (z,-) to the identity (3.2.8]) above, we have

Y ke @ (@ Fabu) + Y alfa)a @ (2,by)

b#” bul
ht(p")=N-1 ht(p)=N
(a—i,pta_y)
+ QT Z a’ ® (.CC, T,i(bu» =0.
e
ht(p)=N+1

Since (z,7-4(by)) = (1 — ¢ ?)(@Fa_,,bu) = (1 = ¢ )3, 5,, We have

S ke)ad (@, Fabu) + Y ol fa)a (w,by) — g0 g < 0,

bH” bH/
ht(p/)=N-1 ht(p/)=N

(3.2.11)

By an easy induction on height based on (3.2.11]) (where the base case is ) = 1®1),

we conclude that a* € +(U") for all y; that is, ©% € +(U") @ U™. O

By Proposition we have +71(©%) € U'® U for each N. For any finite-

dimensional U-modules M and M’, the action of :~1(©%) coincides with the action
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of O on M @ M.
As we only need to use +'(0%) € U'® U rather than 0, we shall write

OY in place of +71(©%,) and regard ©), € U'® U from now on.

3.3 Properties of ©'

Let (U*® U~)" be the completion of the Q(q)-vector space U* ® U~ with respect to

the following descending sequence of subspaces
Hy =U'® ( > U:M>, for N > 1.
ht (12)>N

The Q(g)-algebra structure on U* ® U~ extends by continuity to a Q(g)-algebra
structure on (U* ® U~)", and we have an embedding U' @ U~ — (U*®@ U~)".

The actions of ) |y~ O (which is well defined by Lemma and of ©* coincide
on any tensor product of finite-dimensional U-modules. From now on, we may and
shall identify

=) Oye(UaU), (3.3.1)

N>0

(or alternatively, one may regard this as a normalized definition of ©").

The following theorem is a generalization of Proposition [3.1.2]

Theorem 3.3.1. Let L be a finite-dimensional U*-module and M be a finite-dimensional

U-module. Then as linear operators on L ® M, we have

A(u)0" = 0'A(u), for all uw € U".



61

Proof. By the identities (3.2.4))-(3.2.7)) in the proof of Proposition [3.2.3 there exists

Ny > 0 (depending on L and M) such that for N > Ny we have
Au)OLy — 0L yAu) =0 on L ® M, (3.3.2)

where u is one of the generators k,,, €, fa;, and t of U’. We then note that, for

uy, ugy € U,

A(Uﬂtg)@%]\[ - @ZSNZ<U1U2)
(3.3.3)
Then by an easy induction using (3.3.3]), we conclude that (3.3.2)) holds for all u € U

and N > Ny. The theorem now follows from (3.3.1)). O
Proposition 3.3.2. We have ©'©* = 1 (an identity in U~ ).

Proof. By construction, ©' =} .0} (with ©f = 1 ® 1) is clearly invertible in
(U@ U")". Write '©* = (0*)7L.

Multiplying ‘©" on both sides of the identity in Theorem we have

'OA@) = A) 'O,  Vue U

Applying ~ to the above identity and replacing @ by u, we have

O Alw) = A@O, VYue U

Hence 'O (in place of '©*) satisfies the same identity in Theorem as well; note

that /6" € (U* ® U~)" has constant term 1 ® 1.
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By reexamining the proof of Proposition and especially (3.2.11]), we note that

the element ©' € (U* @ U™)" (with constant term 1 ® 1) satisfying the identity in
Proposition (and thus Theorem i is unique. Hence we must have ©* = @_1,

and equivalently, ©'0¢ = 1. O]

Recall that m(e ® 1)A = ¢ from Corollary where € is the counit and m

denotes the multiplication in U.

Corollary 3.3.3. The intertwiner Y can be recovered from the quasi-R-matriz ©" as

m(e®1)(©") =7.

Proof. Applying m(e® 1) to the identities (3.2.4)-(3.2.7]), we obtain an identity in U:
o) ( Y mew 1)(%)) - (Z m(e® 1)(%))@, for allu € U'.  (3.3.4)

N>0 N>0

The corollary now follows from (3.3.1)), (3.3.4) and the uniqueness of T in Theorem

2.3.1], as clearly we have m(e ® 1)(0f) = 1. O

3.4 The bar map on U'-modules

In this section we shall assume all the modules are finite dimensional. Recall the bar
map on U and on its modules is denoted by v, and the bar map on U is also denoted

by ,. Tt is also understood that ¢ (u) = ¥(2(u)) for u € U™

Definition 3.4.1. A U’-module M equipped with an anti-linear involution ), is
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called involutive (or 1-involutive to avoid possible ambiguity) if
U, (um) = ¥, (u),(m), Yu € U',m € M.

Proposition 3.4.2. Let M be an involutive U-module. Then M is an 1-involutive

U'-module with involution 1, :== T o 1.

Proof. By Theorem [2.3.1, we have 2(¢,(u))Y = Yi(u), for all u € U'. By definition
the action of ¢,(u) on M is the same as the action of u(¢),(u)) on M. Therefore we

have

n(um) = T (um) = T (u)ip(m) = 1(Pu(u)) Tb(m) = u(u)i(m),

for all wu € U* and m € M.

It remains to verify that 1, is an involution on M. Indeed, for m € M, we have

(1 (m)) = YY(T(m)) = YT (h(m)) = YTm = m,
where the last identity follows from Corollary [2.3.4] O

Corollary 3.4.3. Regarded as U'-modules, L(\) and “L(\) are 1-involutive, for \ €

AT,

Remark 3.4.4. We can and will choose {_, € “L(\) to be t-invariant. It follows that
&_, is also ¥,-invariant, since ¢, = T and T lies in a completion of U™ with constant
term 1. Because of this, it is more convenient to work with a lowest weight vector

instead of a highest weight vector in a finite-dimensional simple U-module.
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Recall the quasi-R-matrix © from (3.1.1)). Given an involutive U’module L and

an involutive U-module M, we define v, : L ® M — L ® M by letting
,(l®@m):= 0" (Y,(1) ®p(m)), foralll € Lym e M. (3.4.1)

Proposition 3.4.5. Let L be an involutive U'-module and let M be an involutive

U-module. Then (L ® M,,) is an involutive U*-module.

Proof. Foralll € L, m € M, u € U, using (3.4.1)) twice we have

b (u(l @ m)) = O (A(u) (1) @ 1 (m)))
= A@)O'(1(1) @ P(m))

= wz(u) wl(l ® m)

The second equality in the above computation uses Theorem [3.3.1}and the first equal-
ity holds since L and M are involutive modules.

It remains to verify that 1, is an involution on L& M. It is occasionally convenient
to use the bar-notation to denote the involution ¥, ® ¢ on U*® U below. Indeed, for

l € L and m € M, using (3.4.1]) twice we have

L (b (l@m)) = 0¥, ®¥).(0"(,(1) ® P (m)))

=00 () ® ¥’ (m)) =l®m,

where the last equality follows from Proposition and the second equality holds

since L and M are involutive modules. O
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Remark 3.4.6. Given two involutive U-modules (M, 1) and (Ma, 1p9), the U-module
M; ® M, is involutive with the involution given by © o (¢ ® 1h9), (see [Lu2l, 27.3.1] or
Proposition|1.4.4)). Now there are two natural ways to define an anti-linear involution

on the U'-module M; ® Ms:
(i) apply Proposition to the involutive U-module (M; ® My, © o (1)1 ® 1));

(ii) apply Proposition by regarding M; as an -involutive U’-module with

involution T o ;.

One checks that the resulting involutions on the U*-module M; ® M, in two different

ways coincide.

The following proposition implies that different bracketings on the tensor product
of several involutive U-modules give rise to the same v,. (Recall a similar property

holds for Lusztig’s bar involution on tensor products of U-modules [Lu2].)

Proposition 3.4.7. Let M, ..., M; be involutive U-modules with k > 2. We have
V(1 @ -+ @my) = O (Y, (m1 ®@ - @ Myy) RY(Myyiq @ - - @ My)),
forany 1 <k < k.

Proof. Recall © = T20O(T~! ®1). Unraveling the definition ¢, = T¢) on M} ® - - - ®



M, we have

O (Y (m1 @ - @ myr) @ P (M1 @ -+ - @ My,))
=TT '@ 1) (TY(m; @ - @ mp) @ V(M1 @ -+ @ my,))
=T20(Y(mi @ -+ @ mypy) @ P(Mypr g1 @ -+ @ My))
=T2(my @ - @ Mgy @ Mg @ - -+ @ M)

:@ij(ml R ® mk)

The proposition follows.
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Chapter 4

The integrality of T and the

i-canonical basis of “L(\)

In this chapter, we first construct the -canonical bases for simple U-modules and
then for the algebra U® in the rank one case. Then we use the rank one results to
study the general higher hank case. We show that the intertwiner Y is integral and

construct the z-canonical basis for “L(\) for A € A™.

4.1 The homomorphism 7, ,

Though only the rank one case of the results in this section will be needed in this

paper, it is natural and causes no extra work to formulate in the full generality below.

Lemma 4.1.1. Let A € AT. We have U'¢_\ =“L(\) and U'ny = L(\).

67
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Proof. We shall only prove U*¢_, = “L()A). The proof for the second identity is
similar and will be skipped.

We write £ = _. Let h € “L()\),. We shall prove h € U by induction on
ht(p + A). When ht(p + A) = 0, the claim is clear since h must be a scalar multiple
of £&. Thanks to UT¢ = “L(\), there exists y € U™ such that y§ = h. Writing y as a
linear combination of PBW basis elements for U™ and replacing E,,, Eq,, F._, (for
alli € I') by t, eq,, fa, in such a linear combination, respectively, we obtain an element
u=u(y) € U Setting 1(u) = y+z for z € U, we have u§ = h+2£. By construction,

z€ is a Q(g)-linear combination of elements in “L(\) of weight lower than h. Hence

by the induction hypothesis, we have 2§ € U*¢, and so is h = ué — z€. O

Recall from Section [1.3|that “L(\) for A € A™ is identified with L(\?) = L(—wo)),

€, is the lowest weight vector of “L()), and nys is the highest weight vector of L(\?).
Lemma 4.1.2. For A\ € A", there is an isomorphism of U'-modules
T:“L(\) — “L(\) = L(\%)

such that T(&,) = ZbeB()\) gb~ny where g, € Q(q) and g1 = 1. Moreover, the

isomorphism T is uniquely determined by the image T(&)).

Proof. Recall the isomorphism T =T o o T,, : “L(\) = “L(\) of U~modules from
Theorem [2.5.1] The existence of T satisfying the lemma follows by fixing the weight
function ¢ such that T(&£,) = nye+ terms in lower weights.

The uniqueness of such T follows from Lemma [4.1.1] n
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The following proposition can be found in [Lu2, Chapter 25].
Proposition 4.1.3. Let A\, N € A*.

1. There exists a unique homomorphism of U-modules
X =t “LA+X) — “L(A) @ “L(X)

such that X(f_)\_)\/) = 5_)\ (29 5_)\/.

2. For b € B(A + X), we have x(0*§_x-n) = 2, 4, F(b501,02)07 6\ ® b3 € v,
summed over by € B(X) and by € B(X'), with f(b;b1,b2) € Z[q]. If bT¢_x # 0,
then f(b;1,0) = 1 and f(b;1,bs) = 0 for any by # b. If b = 0, then

f(b;1,by) =0 for any b,.

3. There is a unique homomorphism of U-modules § = 05 : L(A\) ® “L(\) —
Q(q), where Q(q) is the trivial representation of U, such that 6(ny ® £-,) = 1.
Moreover, for by, by € B(X), 6(byny @by &_y) is equal to 1 if by = by = 1 and is

in qZ[q] otherwise. In particular, 5(byny @ by&_») = 0 if |by| # |bal.
Proposition 4.1.4. Let A\, € AT. There is a unique homomorphism of U'-modules
T CLH 4+ A) — “L()
such that 7T,\,M(§_ug_u_)\) =&,

Proof. The uniqueness of the map is clear, thanks to Lemma [£.1.1]
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We shall prove the existence of 7y ,. Recall that any homomorphism of U-modules
is naturally a homomorphism of U-modules. Note that “L(u?) = L(—wou®) = L(u).
Let 7y, be the composition of the following homomorphisms of U'-modules:

L0+ A+ N) — L0+ p) @ “L(N) 2

“L(p’) @ “L(p) ® “L(N)
lﬂ'@id@id
L(p) @ “L(p) @ “L(A)

(
lé@id

“L(A)

T\, p

where T is the map from Lemma [4.1.2| First, we have

(X @)X (E 0 pmn) = E 0 ®EL @ &

Then applying 7 ® id ® id, by Lemma [4.1.2| we have

(T @ 1d@id)(E_0 ® &, ® E_)

=N @&, ®E N+ Z g9(1; b)b_m ® &y @ E-x-
1#£beB(1)

Applying 6 ® 1 to the above identity, we conclude that 7r,\7u(§w97#7 NEE Y O]

Lemma 4.1.5. Retain the notation in Proposition |4.1.4. The homomorphism 7,

commutes with the involution v,; that is, mx 0, = VY, Ty 4.

Proof. In this proof, we write m = ) ,, { = &_ and ¢ = ¢ ). Then (&) = ¢

po—p—X’
by Proposition |4.1.4L An arbitrary element in “L(u® +pu+ M) is of the form ué for some
u € U', by Lemma Since £ and & are both i,-invariant (see Remark [3.4.4)), we

have

T, (uf) = m,(u)(§) = Y (u)m(§) = 1/’%(“)5/
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On the other hand, we have

@Dzﬂ-(uf) = %(Ufl) = wz(u)¢z(§,) = ¢z(u>§,

The lemma is proved. O

4.2 The i-canonical bases at rank one

In this section we shall consider the rank 1 case of the algebra U’, i.e., U* = Q(q)|[t],
the polynomial algebra in ¢. In order to simplify the notation, we shall write £ = E,,,
F =F,,, and K = K, for the generators of U = U,(sl,). By Proposition we
have an algebra embedding 1 : Q(q)[t] — U,(slz) such that +(t) = E+¢FK '+ K.

In the rank one case, AT can be canonically identified with N. The finite-
dimensional irreducible U-modules are of the form “L(s) of lowest weight —s, with
s € N. Recall [Lu2] the canonical basis of “L(s) consists of {E@¢_,. | 0 < a < s}.
We denote by “£(s) the Z[g]-submodule of “L(s) generated by {E@¢ |0 < a < s}.
Also denote by “L,(s) the A-submodule of “ L(s) generated by {E@¢_, |0 < a < s}.

In the current rank one setting, we can write the intertwiner T = > k>0 Lk, With

Ti = Tray = cxF® for ¢, € Q(q), and ¢p = 1.
Lemma 4.2.1. We have T}, € U, for k > 0.

Proof. Tt is equivalent to prove that ¢, € A = Z[q,q™'| for all k¥ > 0. The equation

(2.3.1)) for u = ¢ implies that

qFK_lTk_Q + K_lTk_l + BT, = q_lTk_QFK + T K+ T E,
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for all £ > 0. Solving this equation, we have the following recursive formula for c¢:
= (=" =) (¢ 'k —1cpo+cpy), forallk>1,
where c_; = 0 and ¢y = 1. Then it follows by induction on k£ that ¢, € A. O

One can show by the recursive relation in the above proof that

k k+1
T — qu(k+1 ( 22 1_ 1 2i F(2k +H 2i—1 q1*27’)F(2k+1)). (4.2.1)
E>0 i=1 i=1

Proposition 4.2.2. Let s € N.
1. The U'-module “L(s) admits a unique Q(q)-basis B'(s) = {12 | 0 < a < s}

which satisfies ,(T7) =TF and

=E“W¢  + ) 6, B, (4.2.2)

a’'<a
where t}.,, € qZ[q]. (We also set t; ,, =1.)

2. B'(s) forms an A-basis for the A-lattice “Ly(s).

3. B'(s) forms a Z[q|-basis for the Z[q]-lattice “L(s).
We call B'(s) the -canonical basis of the U'-module “L(s).

Proof. Parts (2) and (3) follow immediately from (1) by noting (4.2.2)).

It remains to prove (1). Since ¢, = T¢ and P(E@WE ) = E@E_ . we have

¢Z(E(a)£—s) = T(E(a)g—s) = E(a)g—s + Z Pi;afE(a/)f—s,

a'<a

for some scalars p; ,, € A. As 1, is an involution, Part (1) follows by an application

of [Lu2, Lemma 24.2.1] to our setting. O
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Lemma 4.2.3. Write x = 2’ if v — 2’ € ¢ “L(s) with s € N. The U'-homomorphism

T =ms1:“L(s+2) = “L(s) from Proposition satisfies that, for a > 0,

BV o ifs=a—1;

W(E(a)§—8—2)
E@¢_ otherwise.

Proof. Recall Proposition [{.1.4] Proposition and 7 = (0 ®id)(T®id ®id)(x ®

id)x. It is easy to compute the action of T on “L(1) = L(1) is given by
T(E) =B~ (¢ —q)é and  T(BE) =&
For the map d ® id : L(1) @ “L(1) ® “L(s) — “L(s), it is easy to compute that
NEE1®Eq)=1,01@E 1) =—q, and §(§_1 ®& 1) =6(EE, ® EE 1) = 0.
For the map (x ® id)x : “L(s +2) - “L(1) ® “L(1) ® “L(s), we have

(x ® id)x(E@WE )

_ Z q—a1a2—a1a3—a2a3+a1+sa1+sa2E(a1)€_1 ® E(az)g_l ® E(as)g_S

a1taz+as=a

=61 ®E4@EWE +q T @ BE @ BUTVE

+ q—a+2+sE§_1 ® 5_1 ® E(a—l)g_s + q25—2a+4E§_1 ® E§—1 ® E(a—2)§_s'
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Then by applying T ® id ® id, we have

(T®id®id)(x @id)x(EWe )
=F 1 ®E® E(a)f—s - (qfl — ) 1®E4® E(a)ffs
+q PR @FEE, @ BTV — g (g — )6 @ B ® BTYE

+qte  @e @ BTV 4¢P e @ B¢, @ BTYE
At last, by applying 6 ® 1, we have

W(E(a)éfsfﬁ
:E(a)é-fs +04+04+ qfa+2+s<q71 . q>E(a71)€7S +0— q2572a+5E(a72)§78

:E(a)gis + q—a—i-l—i-sE(a—l)gis . q—a+3+sE(a—1)£ . q2s—2a+5E(a—2)£7

—s S-

The lemma follows. [
We adopt the convention that 7 = 0 if s < a.

Proposition 4.2.4. The homomorphism © = w1 @ “L(s+2) — “L(s) sends -
canonical basis elements to 1-canonical basis elements or zero. More precisely, we

have

T2 4, ifs=a—1;
R(T3%?) =

17, otherwise.

Proof. By Proposition and Lemma [1.2.3], the difference of the two sides of the

identity in the proposition lies in ¢“£(s) and hence is a ¢Z[g]-linear combination of
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B'(s). Lemma implies that such a difference is fixed by the anti-linear involution

1, and hence it must be zero. The proposition follows. O

Lemma 4.2.5. Let f(t) € U" = Q(q)[t] be nonzero. Then f(t){_s # 0 for all

s >degf.

Proof. We write £ = £_5. Write a = deg f, and f(t) = > 7 ,¢;t" with ¢, # 0. Then
1(f(t)) = ¢, E* + z, where x is a linear combination of elements in U with weights
lower than that of E*. It follows that f(t)§ = c, B + €& # 0 for s > a, since

coB*€ # 0 and it cannot be canceled out by z¢ for weight reason. O

Proposition 4.2.6. There exists a unique Q(q)-basis {T°% | a € N} of U* = Q(q)[t]

with deg T° = a such that

154, ifs=a—1;
Tode = (4.2.3)

17, otherwise,

for each s € 2N + 1. Moreover, we have T4 = T4,

Proof. By going over carefully the proof of Lemma in the rank one case, we can
prove the following refinement of Lemma

(©2)  Whenever s > a, there erists a unique element T,(s) € U" = Q(q)[t] of
degree a such that T,(s)é—s =T7.

Let s > a and take [ > 0. Since 7, 9 is a U'-homomorphism with 7% (§_(s321)) =
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&_s (see Proposition {4.1.4]), we have by Proposition m

Ta(s + 2l>§—s = 7Ts,l(jja(s + 21)5—(8+2l))

©Z+2l

Q2
= 7Ts,l<TaS+2l) =T

= Ta(s)gf&

Hence T,(s + 21) = T,(s) for all > 0 and s > a, thanks to the uniqueness of T,(s)
in (©2). Hence,

TP .= Jim To(1 +21) € U'
=00

is well defined. It follows by Proposition that 72 satisfies (4.2.3)).

We now show that 7°4 is unique (for a given a). Let 'T°% be another such
clement satisfying (4.2.3). Then (T2 —'T2)¢_, = 0 for all s € 2N+ 1. It follows
by Lemma that 7044 = /0dd,

Applying 9, to both sides of (4.2.3) and using Corollary [3.4.3, we conclude that

Tedd gatisfies (4.2.3]) as well. Hence by the uniqueness we have 7°94 = Tlodd, O

A similar argument gives us the following proposition.

Proposition 4.2.7. There ezists a unique Q(q)-basis {T" | a € N} of U* = Q(q)[t]

with deg 1Y = a such that

T: 1, ifa=s+1;

a

Taevg—s =

T, otherwise,

for each s € 2N. Moreover, we have T = T".
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Clearly we have Tgdd = TV = 1. It is also easy to see that T°% and T¢" for a > 1
are both of the form

a

Tall +g(t), where degg < a. (4.2.4)

We have the following conjectural formula (which is not needed in this paper).

Conjecture 4.2.8. For a € N, we have

t(t —[2a+2])(t — [-2a+4]) - (t — [2a — 4])(t — [2a — 2])

1 = [2a]! ’
qodd _ (t—[=2a))(t — [-2a+2]) - (t — [2a — 2])(t — [24])
20t 2a + 1]! ’
T (t—[-2a+1])(t = [-2a+3])-- (t — [2a = 3])(t — [2a — 1])
2a 2a]! )
e _ tit—[—2a+ 1))t = [-2a+3])--- (t — [2a — 3])(t — [2a — 1])
2atl 2a + 1]! '

4.3 Integrality at rank one

Lemma 4.3.1. Let s,l € N.
1. There exists a unique homomorphism of U'-modules
T =mYL(s+20) — L) ® “L(s + 1)
such that 1= (§_s_o) =M @ & 5.
2. m~ induces a homomorphism of A-modules

o =m,“La(s +20) — La(l) ® “La(s +1).
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Proof. The uniqueness of such a homomorphism is clear, since U'¢_;_o = “L(s + 2)

by Lemma

We let 7= = T~y be the composition of the U*-homomorphisms

“L(s+2) YL @“L(s + ) " LI @“L (s + 1),

where x is the U’-homomorphism from Proposition and T = T o E 0 Ty, 18
the U'-homomorphism from Theorem [2.5.1] As the automorphism T, preserves the
A-forms, we can choose the weight function ¢ in ([2.5.2)) with suitable value ((I) € ¢
such that T 1;01~_1(£,l) = n. It follows by that ¢ must be A-valued. Then
7~ = T !y is the map satisfying (1) since x(€_s_ o) =& @& 4.

By Proposition X maps “La(s+20) to La(l) @“La(s +1). It is also well
known that T, is an automorphism of the A-form “L,4(l). By Lemma , T1=7
preserves the A-form “Ly4(l) as well. As a composition of all these maps, 7= =

(Yo (oT,,) 'x preserves the A-forms, whence (2). O

The following lemma is a variant of Lemma and can be proved in the same

way.
Lemma 4.3.2. Let s,l € N.

1. There exists a unique homomorphism of U'-modules
mt=ml Y L(s+2l) — L(s +1) @ “L(1),

such that (& o) = Ny @ &y
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2. © induces a homomorphism of A-modules

7T+ . wL/{(S + 2[) — LA(S + l) ® wL/{(l)

Recall that a modified Q(q)-algebra U as well as its A-form U, are defined in
[Lu2, Chapter 23]. Any finite-dimensional unital U-module is naturally a weight
U-module, and vice versa (see [Lu2l 23.1.4]). In the rank one setting, U (or Uy) is
generated by E, F and the idempotents 1, for s € Z. As U is naturally a U-bimodule,

o(T24)1, and 2(T)1, make sense as elements in Ul,, for a € N and s € Z.
Proposition 4.3.3. 1. We have 1(T°)1, € Uy, forallaeN, s € 2Z + 1.
2. We have o(T)1, € Uy, for alla €N, s € 2Z.

Proof. (1). Let s € 2N 4 1. Fix an arbitrary a € N. Recall Lusztig’s canonical basis

{650’} of Ul_, in [Lu2, Theorem 25.2.1]. We write
UTY 1, =) b,
by
for some scalars ¢,y € Q(g). Consider the map

7 YLa(s+20) — La(l) ®“La(s+1)

in Lemma for all | > 0. We have T°4¢ o € “L4(s+2l) by Propositions m

and [£.2.6] Therefore we have

TP (@& o) =T @ Esy) = (T3 sz) € La(l) @ “La(s +1).
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Hence we have (in Lusztig’s notation [Lu2, Theorem 25.2.1])

Z Copr (DY) 160 = (T N1y (m @ Es—y) € La(l) @ “La(s +1).

(bb)
Since this holds for all I and (b<OV); s # 0 for [ > 0, all ¢,y must belong to A.
Hence 2(T°)1_, € Uy,

By considering the map
7t YLa(s+20) — La(s+1) @“La(l)

in Lemma for all [ > 0, we can show that 1(7T°)1, € Uy for s € 2N +11n a

similar way. This proves (1). The proof of (2) is similar and will be skipped. O

4.4 The integrality of T

Back to the general higher rank case, we are now ready to prove the following crucial

lemma with the help of Proposition [4.3.3]
Lemma 4.4.1. For each A € AT, we have T(“La(\)) C“La(N).

Proof. We write £ = £_,. We shall prove that Yo € “L4(\) by induction on the
height ht(p 4+ A), for an arbitrary weight vector x € “L4(X),. It suffices to consider
z of the form z = EC(S;)E&?;) .. E&‘fj)ﬁ which is v-invariant.

The base case when ht(px + \) = 0 is clear, since x = £ and T¢ = &.

Denote 2’ = E&‘jj) e ngz)f € “Ly(A), and so xz = Ec(gi)a:’. The induction step is
divided into three cases depending on whether 7; > 0, iy < 0, or 2; = 0. Recall that,

for any u € U*, the actions of u and 2(u) on “Ly4(\) are the same by definition.
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(1) Assume that i; > 0 (i.e., i1 € I'). Replacing Eé‘ji) in the expression of x by
egﬁ), we introduce a new element 2 = e&‘zi)x’ which lies in “L4(\) thanks to (2.2.1).
Then y := 2" —x € “L,(A) is a linear combination of elements of weights lower than
the weight of x.

We shall consider ,(z") in two ways. By Corollary “L4(A) is e-involutive.

Since egﬁ) is ¥,-invariant and 1, = Y1), we have

G = (') = eV (') = el T (a).

It is well known (cf. [Lu2]) that ¢ preserves “L4()\), and so ¢(z') € “L4(N). Since
(") has weight lower than x, we have Y (2') € “L4(\) by the induction hypothesis.
Equation (2.2.1]) implies that ¢,(z") = egﬁ)sz(x’) €“La(N).

On the other hand, we have

@ij(x//) = ¢z(x) + @ij(y) = T@D({E) + T%U(y) =Tz + T¢(y)'

Since ¥(y) € “Ly(A\) has weight lower than z, we have Ty (y) € “La(\) by the
induction hypothesis. Therefore we conclude that Yo = ¢, (2") — Yo (y) € “La(N).
(2) Assume that i; < 0. In this case, replacing Ec(yai) in the expression of = by
f(gﬁ.)l instead, we consider a new element x” = fé?ll)a:/ which also lies in “Ly () by
(2.2.2). Then an argument parallel to (1) shows that Ta € “ L4 ().
(3) Now consider the case where i; = 0. Set § = Z;ZQ a;a;, — A. We decide into
two subcases (i)-(ii), depending on whether (ag, ) is odd or even.

)

Subcase (i). Assume that (g, ) is an odd integer. Replacing E&all in the ex-
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pression of z by the element 729 defined in Proposition |4.2.6, we introduce a new
element " = T2%2’, which belongs to “L4(\) by Proposition m (as we can write
2" =T (4, 52"). Thanks to (4.2.4), y := 2" — 2 € “L4() is a linear combination

of elements of weights lower than x. Then similarly as in case (1), we have
hi(2") = e(Tpa') = T4, (o)) = T T ().

As in (1), we have YTi(2') € “La(N). Recall from Theorem m that T =3, T,
where Y, # 0 only if u’ = p. Note that (ag, 1) must be an even integer if p® = p.
Hence (ap, 1+ 3) is always odd whenever u? = u. Therefore by Proposition |4.3.3, we

have

G(2") = TETH() = 3 T gy Tuta') € “La(N).

ppb=p
Now by the induction hypothesis we have T (y) € “La(\), and hence Tz =
(") =T (y) € “La(A).
Subcase (ii). Assume that (ap, §) is an even integer. In this subcase, we replace

ESZII) by Ty¥. The rest of the argument is the same as Subcase (i) above.

This completes the induction and the proof of the lemma. O
Theorem 4.4.2. We have Y, € U}, for all p € NII.

Proof. Recall Lusztig’s canonical basis B of f in Section with B, = BNf,. We

write T, = 3 ycp, b~ for some scalars ¢, € Q(¢). By Lemma we have

Yo=Y by €La(d), forall XeA™.

bEB,,
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For an arbitrarily fixed b € B,,, b~ # 0 for A large enough, and hence we must have

c, € A. Therefore T, € Uj,. O

4.5 The -canonical basis of “L(\)

By Corollary [3.4.3, “L(\) for A € A" is an ¢-involutive U’-module with involution

Y, =T,
Lemma 4.5.1. The bar map 1, preserves the A-form “La(X), for A € A™.

Proof. Tt is well known (cf. [Lu2]) that v preserves “L(\). As “L4(A) is preserved

by T by Lemma it is also preserved by 1), = T). O

Define a partial ordering < on the set B(\) of canonical basis for A € AT as

follows:

by <by <& the images of |bi|, |bs| are the same in Ay and |by| — |by| € NII.

(4.5.1)
(Recall that |b| denotes the weight of b as in §L.2).
For any b € B()), we have
(b€ ) = TY(bTE ) = T(bTE Z porbTE, (4.5.2)

b'eB(A

where pyy € A by Theorem m Since T lies in a completion of U~ satisfying
T, = 0 unless 4’ = p (see Theorem [2.3.1)), we have pp, = 1 and ppyy = 0 unless

b < b. As 1, is an involution, we can apply [Lu2l Lemma 24.2.1] to our setting to
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establish the following theorem, which is a generalization of Proposition [4.2.2]in the

rank one case.

Theorem 4.5.2. Let A € A™.
1. The U'-module “ L(\) admits a unique basis
B'(\) = {T}" | b € B(\)}
which is ,~invariant and of the form

) =bTé, + Ztl’,\;b,b'+§_>\, for 3, € qZ[q).

b’ <b

2. B*(\) forms an A-basis for the A-lattice “L4(\).

3. BY(\) forms a Z[q]-basis for the Z[q]-lattice “L(N).

Definition 4.5.3. B'()\) is called the 2-canonical basis of the U’-module “L(\).

Remark 4.5.4. The 1-canonical basis B*(\) is not homogenous in terms of the weight

lattice A, though it is homogenous in terms of Ay.

Remark 4.5.5. Lusztig’s canonical basis B(\) is computable algorithmically. As T

is constructed recursively in §2.4] there is an algorithm to compute the structure
constants pyy in ([(£.5.2) and then ¢},
Set ty, = 1, and t3, = 0if b, b € B(X) satisfy ¥ £ b. We conjecture that

toy € N[g], for b,0' € B()).
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Recall [Lu2, Chapter 27] has developed a theory of based U-modules (M, B) (for
general quantum groups U of finite type). The basis B generates a Z[g]-submodule
M and an A-submodule 4 M of M. Applying the same argument for Theorem [4.5.2

above, we have established the following.

Theorem 4.5.6. Let (M, B) be a finite-dimensional based U-module.

1. The U'-module M admits a unique basis (called 1-canonical basis) B* := {T, |

b € B} which is Y,-invariant and of the form

To=b+ > twl, for ty €qZ[q]. (4.5.3)

veB,b/'<b
2. B forms an A-basis for the A-lattice 4M, and B* forms a Z[q]-basis for the

Z[q]-lattice M.

Recall that a tensor product of finite-dimensional simple U-modules is a based

U-module by [Lu2l Theorem 27.3.2]. Theorem implies now the following.

Theorem 4.5.7. Let \y,...,\. € AT. The tensor product of finite-dimensional sim-

ple U-modules “L(A\) @ ... @ “L(\,) admits a unique ,-invariant basis of the form

(4.5.3)) (called v-canonical basis).



Chapter 5

The (U', Hp )-duality and

compatible bar involutions

In this chapter, we recall Schur-Jimbo duality between quantum group U and Hecke
algebra of type A. Then we establish a duality between U* and Hecke algebra Hp
of type B acting on V®™ and show the existence of a bar involution on V¥ which is
compatible with the bar involutions on U* and Hp, . This allows a reformulation of
Kazhdan-Lusztig theory for Lie algebras of type B/C' via the involutive U-module

yer,

86
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5.1 Schur-Jimbo duality

Recall the notation Iy, from ([1.1.1)), and we set

i1 _{ 1 3 113 +1}
= lopyo = T 2,..., 2, 2,2,2,...,7" 9 .

Let the Q(g)-vector space V := 3" _, Q(q)v, be the natural representation of U. We
shall call V the natural representation of U* (by restriction) as well. For m € Z-,,

the tensor space V¥ is naturally a U-module (and a U’-module) via the coproduct

A. The U-module V is involutive with 1 defined by
Y(vg) =1y, forallael.

Then V®™ is an involutive U-module and hence an -involutive U’-module by Propo-

sition [3.4.2] and Remark [3.4.6]

We view f € I"™ as a function f: {1,...,m} — I. For any f € I"™, we define
My = vr0) @ -+ @ Vy(m)-

Then {M; | f € I"™} forms a basis for V¥,

Let Wpg,, be the Coxeter groups of type B,, with simple reflections s;,0 < 57 < m,
where the subgroup generated by s;, 1 < i < m is isomorphic to Wy, = &,,. The
group Wp  and its subgroup 5,, act naturally on /™ on the right as follows: for any

fel™ 1<i<m,we have
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Let Hp,, be the Iwahori-Hecke algebra of type B,, over Q(q). It is generated by

Hy, Hi, Hs, ..., Hy,_1, subject to the following relations,

(Hi —q ")(Hi +q) =0, for i > 0,
H;H;1H; = Hi1HiH;yq, for i > 0,
HiHj = HjHi, for |Z —]| > 1,

HOH1HOH1 - H1HOH1H0.

Associated to 0 € Wp,, with a reduced expression o = s;, ---s;,, we define H, :=
H;, --- H;,. The bar involution on Hp,, is the unique anti-linear automorphism defined
by H, = H ' ,g=q ' forall 0 € Wg,,.

There is a right action of the Hecke algebra Hp,, on the Q(g)-vector space V&™

as follows:

.

q ' My, ifa>0, f(a) = fla+1);

My.s,, ifa>0,f(a) < fla+1);

MyH, = My, + (gt — )My, ifa>0,f(a)> fla+1); (5.1.2)

My.s, if a =0, f(l) > 0;

Mg+ (gt —q)My, ifa=0,f(1)<0.

\

Identified as the subalgebra generated by Hi, Hs, ..., H, 1 of Hp,_, the Hecke

algebra J 4 inherits a right action on V®™. Note that the bar involution on

m—1

a4, , is just the restriction of the bar involution on Hp,,.

m—1
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Recall from Section the operator R. We define the following operator on V®™
foreach 1 <i<m —1:
R, = id ' QR id™ YO YO,
The following basic result was due to Jimbo.
Proposition 5.1.1. [Jiml]/
1. The action of R;' coincides with the action of H; on V™ for 1 <i <m — 1.

2. The actions of U and Ha,, _, on V™ commute with each other, and they form

double centralizers.

5.2 The (U, Hp  )-duality

Introduce the Q(q)-subspaces of V:

Vo= D Qv g +aviy):

0<i<r

Lemma 5.2.1. The subspace V_ is a U*-submodule of V generated by v_1 —q_lv% and

Vi is a U'-submodule of V generated by v_1+qui. Moreover, we have V=V_@V,.
Proof. Follows by a direct computation. O]

Now we fix the function ¢ in (2.5.2) with {(¢_,_1) =1 so that

1
2

(s =(-)™",  for0<i<2r+1.

Y
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Let us compute the U’-homomorphism T = T o Z o Ty, (see Theorem [2.5.1)) on the

U-module V; we remind that wy here is associated to U instead of Wp, or Wy, .

Lemma 5.2.2. The U'-isomorphism T~' on V acts as a scalar (—q)id on the sub-

module V_ and as ¢ 'id on the submodule V..

Proof. First one computes that the action of 7,,, on V is given by
Two (v_r_%ﬂ.) = (—q)zr“_ivﬂr%_i, for 0 <7 <2r+1.

Hence

CoTy (V) = Vgs,, forallael. (5.2.1)

We have Y, = —(¢~! — q)F,, from the proof of Theorem in §2.4 Therefore,

using T =T o go T, we have

-1 N — oLy,
T (07% —q v%) = q(vf% q U§>’ (5.2.2)
‘J"l(v_% +quy) = q_l(v_% +quy). (5.2.3)
The lemma now follows from Lemma since 77! is a U'-isomorphism. ]

We have the following generalization of Schur-Jimbo duality in Proposition |5.1.1]

Theorem 5.2.3 ((U*, Hp, )-duality). 1. The action of T-'®id™ " coincides with

the action of Hy € Hp,, on V™.

2. The actions of U* and Hpg, on V™ commute with each other, and they form

double centralizers.
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Proof. Part (1) follows from Lemma and the action of Hy € Hp,, on
e,

By Proposition , the actions of U* and H,,,_, on V¥ commute with each
other. The action of U* on V& comes from the iterated coproduct U* — Ut@U®m 1,
Since T-! : V — V is a U-homomorphism, we conclude that the actions of T~'®@id™*
and U* on V¥ commute with each other. Hence by (1) the actions of U* and Hp,,
on V®™ commute with each other.

The double centralizer property is equivalent to a multiplicity-free decomposition
of V¥ as an U' ® Hp, -module. The latter follows by the same multiplicity-free
decomposition claim at the specialization ¢ — 1, in which case U* specializes to the
enveloping algebra of sl(r+1)@gl(r+1) and Hp,, to the group algebra of Wg . Then
V=V, ®V_ at ¢ =1 becomes the natural module of sl(r 4+ 1) @ gl(r + 1), on which
sg € Wpg,, acts as (idy,, —idy_). A multiplicity-free decomposition of V¥ at ¢ =1
can be established by a standard method with the simples parameterized by ordered

pairs of partitions (A, p) such that /(\) <r+1,0(u) <r+1and |\ + |u|=m. O

Remark 5.2.4. The homomorphism T (or T7!) is not needed in Theorem [5.2.3(2),
as one can check directly that the action of Hy commutes with the action of U".
However, it is instructive to note that the action of Hy arises from T which plays an

analogous role as the R-matrix.

Remark 5.2.5. A version of the duality in Theorem was given in [Gr], where a

Schur-type algebra was in place of U* here. For the applications to BGG categories
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in Part 2, it is essential for us to work with the “quantum group” U"* equipped with

a coproduct.

5.3 Bar involutions and duality

Definition 5.3.1. An element f € I"™ is called anti-dominant (or i-anti-dominant),

if0< f(1) < f(2) <... < f(m).

Theorem 5.3.2. There exists an anti-linear bar involution 1, : VO™ — V™ which
1s compatible with both the bar involution of Hpg, and the bar involution of U*; that

is, for allv €e V¥ o € Wy, and v € U, we have

Uy (uwwHy) = ,(u) b, (v)H . (5.3.1)
Such a bar involution is unique by requiring 1,(My) = My for all v-anti-dominant f.

Proof. Applying the general construction in §3.4]to our setting, we have an +-involutive
Umodule (V™ 4),); in other words, we have constructed an anti-linear involution
P, : VO™ — V¥ which is compatible with the bar involution of U

As the Hp, -module V¥ is a direct sum of permutation modules of the form
Hp,, /H for various Hecke subalgebras JH;, there exists a unique anti-linear involu-

tion on V®™ denoted by 1/, such that

/
77

1. ¢/(My) = My, if f is r-anti-dominant;

2. Y(M,H,) = ¢!(M,)H,, for all g € I"™ and o € Wjp,,.
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To prove the compatibility of ¢, with the bar involution of Hp_, it suffices to
prove 1, satisfies the conditions (1)-(2) above; note that it suffices to consider ¢ in
(2) to be the simple reflections.

By the construction in §3.4] the bar involution v, : V&™ — V™ is given by
Y, = T, where ¢ : V& — V¥ ig a bar involution of type A. The following
compatibility of the bar involutions in the type A setting is well known (see, e.g.,
[Brl]) (Here we note that our z-anti-dominant condition is stronger than the type A

anti-dominant condition):
(1) (My) = My, if f is 1-anti-dominant;
(2") w(M,H,) = MyH,, for any g € I"™ and any H, € Ha,, ,.

The U-weight of My is wt(f) :== >/ €@ € A. Define the U'-weight of M;
wto(f) ==Y 1" Ef(a) € Np, which is the image of wt(f) in Ag = A/A? (here we have
denoted by Z; the image of g in Ay). Defined the following partial ordering < on I™

(which is only used in this proof):
g=f & wte(g) =wto(f) and wt(gf) —wt(g) € NIL

Applying the intertwiner ¥ = > pent L from Theorem 2.3.1} we can write for

any f € I that

T(My) = Z cgM,, for ¢, € Q(q).

gelm

Here the sum can be restricted to g with wto(g) = wto(f) (since T, = 0 unless uf = p

by Theorem [2.3.1]); hence we have wt(gf) —wt(g) € NII (since T, € U™). Therefore
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we have

T(My) = My + chMg, for ¢, € Q(q).

g=f
So if f is ¢-anti-dominant then we have Y (M) = My, and thus by Proposition m
and (1) above, 1,(My) = Typ(My) = T(My) = My. Hence ¢, satisfies Condition (1).
To verify Condition (2) for v,, let us first consider the special case when m = 1.

Note that 9 (v,) = v, and hence ¥,(v,) = Y(v,) for all a. By Definition a is

r-anti-dominant if and only if a > 0. Thus we have
¥, (vy) = vy = V) (va), for a > 0. (5.3.2)

On the other hand, by (5.2.1)) and Lemma we have

(V) = T(vg) =T o ZO T (Va-so)
(5.3.3)

= T(Vasy) = Vaso Hy ' = V! (va), for a < 0.

Hence v, = ¢! and (5.3.1)) holds when m = 1.

Now consider general m € Zo. For 1 <7 < m—1, by applying Proposition |3.4.2]

the identity (2') above, and Proposition in a row, we have, for g € I"™,

U(MyH;) = T (MyH;) = T () (My)H;) = (M) H;.
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When i = 0, we write M, = vy1) ® My, and hence
U (MgHo) = 1/’1(“9(1)]—[0 ® My)
= 0" (¢, (vg1)Ho) @ Y(My)) by Proposition [3.4.7]

— O'(th (00 Ho ® $(My)) by (E30) in case m = 1,

= ' (Y, (vy(1)) ® V(My))Hy by Theorem [5.2.3
= %(Mg)ﬁo by Proposition

This proves ¢, = v/ in general, and hence completes the proof of the compatibility of
all these bar involutions.

The uniqueness of 1, in the theorem follows from the uniqueness of ¢! above. [

Remark 5.3.3. The anti-linear involution 1, defined on V®™ from the Hecke algebra
side gives rise to the Kazhdan-Lusztig theory of type B. Theorem implies that
the (induced) Kazhdan-Luszig basis on V¥ coincides with its s-canonical basis (see
Theorem . Hence Kazhdan-Lusztig theory of type B can be reformulated from
the algebra U® side through 1, without referring to the Hecke algebra; see Theo-

rem [T4.7]

Remark 5.3.4. Tt follows by (5.3.2) and ({5.3.3) that {vi+%,(v_i_% - q_lvH%) |0 <
i < r} forms a 1,-invariant basis of V. Also {’UH_%, (v_i_% + qu%) | 0<i<r}
forms another ,-invariant basis of V, which must be the ¢-canonical basis by the

characterization in Theorem [4.5.2]



Chapter 6

The quantum symmetric pair

(U, U)

In this chapter we consider the quantum symmetric pair (U, U?) with U of type As,..
We formulate the counterparts of the main results from Chapter [2[through Chapter
where U was of type As,.1. The proofs are similar and often simpler for U’ since it

does not contain a generator ¢t as U* does, and hence will be omitted almost entirely.

6.1 The coideal subalgebra U’
We shall write T =T, as given in (1.1.1]) in this chapter. We define

1 13 1

The Dynkin diagram of type As, together with the involution € are depicted as follows:

96
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0
m
As, ° o o °
(0% 1 a_1 a1 Q. 1
3 22 T3

The algebra U’ is defined to be the associative algebra over Q(gq) generated by

€air fois Koy k:;il, 1 € 17, subject to the following relations for i, j € I7:

ko kit = ke, = 1,

Qi Vo o
kjaikaj = kaj ka,-y

-1 (aj—a—s,ay)
koo, = q @ 0%

Caj

-1 __  —(a;—a—_;,a5
k‘al‘fa]’kai _q ( J)faj7

kai - k‘;ll P 1
eOlifOlj - fOéieaj = 51',]'?7 if 2 7é 55
eiieaj + eajeii =(q+ q_l)eaieajeai, if i — j| =1,

fi S, + fo, £o = (a4 a7 ") far oy four if [ — j| =1,
€a;€a; = Ca,;Cas if |i — 5] > 1,
faifaj:fajfai7 if |Z_j’ >17

a21€al + ealfil = (q + q71)<fo¢lealfa
2 2 2 2 2 2

2

- Qfalkl;ll - qilfalkal)7
3 5 3 32

1
2

ei;fa1 +foz1ei = (q+q71)<€a1faleal _qilkaleal _qk;;leal>‘
7 2 z 27 2 2 z 2 7 2

Nl

() _

We introduce the divided powers es, = €% /[a]!, A o /all.

The following is a counterpart of Lemma [2.1.1

Lemma 6.1.1. 1. The algebra U’ has an involution w, such that
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2. The algebra U’ has an anti-involution 7, such that
T(€a;) = €a;s Ty(fai) = fai, and 7)(kq,) = qigi’%k:;il, foralli eIV,

3. The algebra U’ has an anti-linear (q — ¢ ') bar involution such that

ko, = k!, €, = €a,, and fo = fa,, for alli € V.

K3

(Sometimes we denote the bar involution on U7 by ,.)

The following is a counterpart of Proposition [2.2.1} the proof of which relies on

[KPL Proposition 4.1] and [Le, Theorem 7.1].

Proposition 6.1.2. There is an injective Q(q)-algebra homomorphism j : U’ — U

defined by, for all i € IV,

€ai - By + KJ'F,

fai = FaiKoj_li + Eoé—i'

Note that E., (K 'F,_,) = ¢*(K_'F,_,)E,, for i € I'. We have for i € IV,

7 i

o S(KJF, ) B
(a)y — E J(a—J)< Qi ~ Qi o) 6.1.1

°e  (F,.K! )j Eei
(a)y — E ](a_])( HiT Qi @i 6.1.2
.](foci ) —~ q []]‘ [(I _ j]' ( )

The following is a counterpart of Proposition [2.2.4]
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Proposition 6.1.3. The coproduct A : U — U ® U restricts under the embedding

to a Q(q)-algebra homomorphism A : U7 +— U’ @ U such that for alli € 17,

A(kai> = Ko, ® KaiK;}iJ
Aleq,) =1® By + €0, @ K+ k) @ K F,

A(foi) = ko, ® Fo, K '+ fo, @ K1 + 10 Eq .

Similarly, the counit € of U induces a Q(q)-algebra homomorphism ¢ : U7 — Q(q)

such that €(eqy,) = €(fo,) =0 and €(ky,) =1 for all i € 1.

It follows by Proposition that U’ is a (right) coideal subalgebra of U. The
map A : U7 — U’ ® U will be called the coproduct of U’ and € : U’ — Q(q)
will be called the counit of U’. The coproduct A : U’ — U’ ® U is coassociative,
le, (1®A)A = (A®1)A : U’ - U’ ® U ® U. The counit map € makes Q(q) a
(trivial) U%-module. Let m : U® U — U denote the multiplication map. Just as in

Corollary [2.2.7, we have m(e ® 1)A = 5: U? — U.

6.2 The intertwiner T and the isomorphism T

As in , we let U be the completion of the Q(q)-vector space U. We have the
obvious embedding of U into U. By continuity the Q(g¢)-algebra structure on U
extends to the Q(g)-algebra structure on U. The bar involution ~ on U extends
by continuity to an anti-linear involution on ﬁ, which is also denoted by ~. The

following is a counterpart of Theorem [2.3.1]
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Theorem 6.2.1. There is a unique family of elements Y, € UZ, for p € NII such

that T = Zu T, € U intertwines the bar involutions on U? and U via the embedding

g and Yo = 1; that is, Y satisfies the following identity (in [AJ)

)@Y =7 y(u), for allu e U. (6.2.1)
Moreover, T, = 0 unless u° = pu.
The following is a counterpart of Corollary 2.3.4]
Corollary 6.2.2. We have Y - T = 1.

Consider a function ¢ on A such that

(et i) = =g ),
(6.2.2)

Qi) = —qlommtemd=eang(y),

for all p € A, i € I?. Such ( exists. For any U-module M, define a Q(g)-linear map
Z M — M by
¢(m) =¢(u)m, for all m € M,.
Let wy denote the longest element of the Weyl group W of type As.. As in

Section |1.3| we denote by T),, the braid group element. The following is a counterpart

of Theorem 2.5.11
Theorem 6.2.3. Given any finite-dimensional U-module M, the composition map

T="To(oTy, : M —M

1s an isomorphism of U’-modules.
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6.3 Quasi-R matrix on U’

It follows by Theorem that T is a well-defined operator on finite-dimensional
U-modules. For any finite-dimensional U-modules M and M’, we shall use the formal

notation T# to denote the well-defined action of T on M ® M’. Hence the operator
e =T"0(Y '®1) (6.3.1)
on M ® M’ is well defined. Define

AU —UeU

by letting A(u) = A(u), for all u € U,

The construction in §3.2| carries over with little modification, and we will be
sketchy. For each N € N, we have a truncation map tr<y on U~ as in (3.2.1)).
Then the same formulas as in and give us ©Ly and O3 in U U™,

The following is a counterpart of Proposition [3.2.3]
Proposition 6.3.1. For any N € N, we have ©), € J(U’) @ U~.

Proposition allows us to make sense of j71(©%) € U’ ® U for each N. For
any finite-dimensional U-modules M and M’, the action of 577!(©%;) coincides with
the action of ©) on M ® M’'. As we will only need to use 77 '(0%) € U@ U
rather than ©7%;, we will simply write ©%, for ;7'(0’,) and regard 0%, € U'@U
from now on. Similarly, it is now understood that ©L = SN,0. e U'@U. The

actions of Y+, ©% and of ©7 coincide on any tensor product of finite-dimensional
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U-modules. From now on, we may and shall identify

e’ =Y 0}

N>0
(or alternatively, use this as a normalized definition of ©7) as an element in a com-
pletion (U’ @ U™)" of U@ U~

The following is a counterpart of Theorem [3.3.1]

Theorem 6.3.2. Let L be a finite-dimensional U’-module and let M be a finite-

dimensional U-modules. Then as linear operators on L @ M, we have
Au)®’ = 07A(u), foru e U
The following is the counterpart of Proposition [3.3.2]
Proposition 6.3.3. We have ©707 = 1.
The following is the counterpart of Corollary [3.3.3]

Corollary 6.3.4. We have m(e ® 1)07? = 7T.

6.4 The j-involutive modules

In this chapter we shall assume all modules are finite dimensional. Recall the bar map
on U and its modules is also denoted by 1/, and the bar map on U7 is also denoted

by 1,. It is also understood that ¢(u) = ¢ (y(u)) for u € U
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Definition 6.4.1. A U’-module M equipped with an anti-linear involution v, is

called involutive (or j-involutive) if

¥y (um) = b, (u)ip,(m), Yu € U, m € M.

The following is a counterpart of Proposition [3.4.2]

Proposition 6.4.2. Let M be an involutive U-module. Then M 1is an j-involutive

U’-module with involution 1, := T o).

The following is a counterpart of Corollary |3.4.3|

Corollary 6.4.3. Let A € AT. Regarded as U’-modules, L(\) and “L()\) are j-

mvolutive.

Given an involutive U’-module L and an involutive U-module M, we define v, :

L® M — L® M by letting

P,(l@m) == (¢P,(1) ® p(m)), foralll € Lym € M. (6.4.1)

The following is a counterpart of Proposition [3.4.5|

Proposition 6.4.4. Let L be an involutive U’-module and let M be an involutive

U-module. Then (L ® M,1,) is an involutive U?-module.

Remark 6.4.5. Given two involutive U-modules (M7, 1) and (Ms,1)s), the two dif-
ferent ways, via Proposition [6.4.2 or Proposition [6.4.4] of defining an j-involutive

U’-module structure on M; ® My coincide; compare with Remark (3.4.6]
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The following proposition, which is a counterpart of Proposition [3.4.7, implies
that different bracketings on the tensor product of several involutive U-modules give

rise to the same ;.

Proposition 6.4.6. Let My, ..., M, be involutive U-modules with k > 2. We have
Yy (my @ -+ @my) = (Y, (M @ -+ @ M) @ p(Mpry1 ® -+ - @ my)),

forany 1 <k < k.

6.5 Integrality of T

Similar to Lemma for U*, we can show that
e =L, U= L.

The following is a counterpart of Lemma |4.1.2

Lemma 6.5.1. For any \ € A", there is a unique isomorphism of U?-modules

T:“L(\) — “L(\) = L(\?),

such that T(&x) = D pep(ny 90~ M0 for g € Q(g) and g1 = 1.

Proposition 6.5.2. Let A\, u € A*. There is a unique homomorphism of U’-modules
T L’ + p+ ) — “L(N),

such that 7T,\,u(§_u9_u_/\) =& .
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Recall that “L(u® + p + A\) and “L()\) are both j-involutive U?-modules with
1, = T o). Similar to Lemma , the U’-homomorphism 7, commutes with the
bar involution v,, i.e., my 41, = ¥Y,7x 4.

The following is a counterpart of Lemma [4.4.1] with a much easier proof. Indeed,

since the identities (6.1.1]) and (6.1.2)) give us all the divided powers we need, we can

bypass the careful study of the rank one case as in for U
Lemma 6.5.3. For each A € A*, we have T(YLy(\)) C¥La(N).
The following is a counterpart of Theorem |4.4.2

Theorem 6.5.4. We have Y, € U, for all n € NIIL.

6.6 The j-canonical basis of “L(\)

The following is a counterpart of Lemma[4.5.1} which now follows from Theorem [6.5.4]
and Proposition [6.4.2] Note that we do not need the input from the rank one case

here.
Lemma 6.6.1. The bar map v, preserves the A-form “L4(X), for A € AT.

Recall a partial ordering < on the set B(\) of canonical basis for A € AT from

(4.5.1)). For any b € B(\), recalling ¢, = T, we have

Py (bTEn) = T(DTE) = Z Popr b Ex (6.6.1)

YeEB())
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where ppy € A by Theorem [6.5.4] Since T lies in a completion of U~ satisfying
T, = 0 unless w = p (see Theorem [6.2.1]), we have ppp, = 1 and pppy = 0 unless
b’ < b. Since v, is an involution, we can apply [Lu2, Lemma 24.2.1] to our setting to

establish the following counterpart of Theorem {4.5.2

Theorem 6.6.2. Let A € AT. The U’-module “L(\) admits a unique basis
B'(\) :={T;} | be B(\)}

which is ,-invariant and of the form

T} =b ¢\ + Zt{)\;b,b”r{_)\, for tg‘;b, € qZq|.
b'<b

Definition 6.6.3. B’(\) is called the j-canonical basis of the U%-module “L(\).

Similar to Section [4.5] we can generalize Theorem to any based U-module

(M, B). Thus we establish the following counterparts of Theorem 4.5.6{ and [4.5.7]

Theorem 6.6.4. Let (M, B) be a finite-dimensional based U-module.

1. The Ul-module M admits a unique basis (called j-canonical basis) B? := {T, |

b € B} which is 1,-invariant and of the form

T, =b+ Z tb;b/b/, for tyy € qZ[q]. (662)
b eB,b <b

2. B’ forms an A-basis for the A-lattice 4 M, and B? forms a Z[q]-basis for the

Z|q]-lattice M.
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Theorem 6.6.5. Let \y,...,\. € AT. The tensor product of finite-dimensional sim-

ple U-modules “L(\) @ ... ®“L(\,) admits a unique 1,-invariant basis of the form

(6.6.2)) (called j-canonical basis).

6.7 The (U’,Hyp, )-duality

Again in this section U is of type As, with simple roots parametrized by I, in (1.1.1]).

Recall the notation Iy, from (1.1.1]), and we set
I:]I27-+1 = {—7”,...,—1,0,1,...,7"}.

Let the Q(g)-vector space V := > _,Q(q)v, be the natural representation of U,
hence a U-module. We shall call V the natural representation of U’ as well. For
m € Zsg, V¥ becomes a natural U-module (hence a U?-module) via the iteration

of the coproduct A. Note that V is an involutive U-module with v defined as
UV(vg) :=v,, forallael.

Therefore V¥ is an involutive U-module and hence a j-involutive U’-module by

Proposition [6.4.6]
For any f € I, we define My = vy1) ® -+ @ vy(y). The Weyl group Wp,, acts on

I by (b.1.1) as before. Now the Hecke algebra Hp, acts on the Q(g)-vector space



V@™ as follows:

MfHa = 3

Identified as the subalgebra generated by Hq, Hs, . ..

Ha,,_, inherits a right action on V™.

if a>0,f(a) = fla+1);
if a >0, f(a) < f(a+1);
if a >0, f(a) > f(a+1);
if a =0, f(1) > 0;
if a=0,f(1) <0

ifa=0,f(1)=0.
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(6.7.1)

, Hy—q of Hp, , the Hecke algebra

The Schur-Jimbo duality as formulated in

Proposition remains to be valid in the current setting, i.e., the actions of U and

Hy

m—1

Introduce the Q(q)-subspaces of V:

on V¥ commute with each other and they form double centralizers.

V_= P Qg)(v_i — ¢ vy),

1<i<r

Vi = Qg)v P P Qa)(v-s + qui).

1<i<r

The following is a counterpart of Lemma [5.2.1

Lemma 6.7.1. V_ is a U’-submodule of V generated by v_1 — ¢ vy and V4 is a

U’-submodule of V generated by vy. Moreover, we have V=V_@ V.
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Now we fix ¢ in (6.2.2)) such that ((¢_,) = 1. It follows that

(—q) ™+, i
qg-(—q)", ifi=r.
Let us compute the U/-homomorphism 7 = T o go Ty, (see Theorem D on the

U-module V; we remind that wy here is associated to U instead of Wp, or Wy, ..

Lemma 6.7.2. The U’-isomorphism T~' on 'V acts as a scalar (—q)id on the sub-

module V_ and as ¢~ tid on the submodule V..

Proof. First one computes that the action of 7,,, on V is given by
Tuo(V—rti) = (=@)* "0y for 0 <i < 2r,

Hence

_ Vasgs if a #0;
€ 0Ty (va) = (6.7.2)

qUo, if a=0.

One computes that T, |10, = —(¢7'—q)F,, F,, ,. Therefore using T = ’I”og:oTw0
-2 2 2 -2
we have
T vy = ¢y, (6.7.3)
T oy —q ') = (=) (vo1 — ¢ '), (6.7.4)
T vy +qui) = ¢ Hv_1 + qup). (6.7.5)

The lemma now follows from Lemma since T~! is a U’-isomorphism. O
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We have the following generalization of Schur-Jimbo duality, which is a counter-
part of Theorem [5.2.3] The proof is almost identical as the one for Theorem [5.2.3],
and for Part (1) we now use Lemma and the action (6.7.1) of Hy € Hp,, on

yer,

Theorem 6.7.3 ((U’, Hp, )-duality). 1. The action of T-'®id™ " coincides with

the action of Hy € Hp,, on V™.

2. The actions of U? and Hpg, on V" commute with each other, and they form

double centralizers.
Definition 6.7.4. An element f € I"™ is anti-dominant (or j-anti-dominant) if
0< f1) < f(2) <+ < f(m).
The following is the counterpart of Theorem [5.3.2]

Theorem 6.7.5. There exists an anti-linear involution v, : V™ — V™ which is
compatible with both the bar involution of Hp,, and the bar involution of U’; that s,

for allv e VO H, € Hp, , and u € U’, we have

wJ(UUHU> = w](“) w](mﬁa-

Such a bar involution is unique by requiring V,(My) = My for all j-anti-dominant f.



Part 11

Kazhdan-Lusztig theory
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In this Part 2, we shall focus on the infinite-rank limit (r — oo) of the algebras
and spaces formulated in Part 1. In Chapter [7] through Chapter [L1] we will mainly
treat in detail the counterparts of Chapter [2 through Chapter [5| where U was of type
Agpy1 in Part 1. In Chapter (12| we deal with a variation of BGG category with half-
integer weights which corresponds to the second quantum symmetric pair (U, U?) in
Chapter [6] where U was of type As,.

As it becomes necessary to keep track of the finite ranks, we shall add subscripts
and superscripts to various notation introduced in Part 1 to indicate the dependence
on r € N. Here are the new notations in place of those in Part 1 without super-
scripts/subscripts (Chapter 2| through Chapter [5)):

Aorst, Torsr, v, Iy Uzesn, Uy, YO,V W, 000, 417, 000,

Part 2 of this paper follows closely [CLW2| with new input from Part 1. The
notations here often have different meaning from the same notations used in [CLW2],

as the current ones are often “of type B”.



Chapter 7

BGG categories for

ortho-symplectic Lie superalgebras

In this chapter, we recall the basics on the ortho-symplectic Lie superalgebras such as
linkage principle and Bruhat ordering. We formulate various versions of (parabolic)

BGG categories and truncation functors.

7.1 The Lie superalgebra osp(2m + 1|2n)

We recall some basics on ortho-symplectic Lie superalgebras and set up notations to
be used later on (cf. [CW2] for more on Lie superalgebras). Fix integers m > 1 and
n > 0 throughout this paper.

Let Zo = {0,1}. Let C*"*+!2" he a superspace of dimension (2m + 1|2n) with
basis {e; | 1 <i <2m+1}U{e; |1 < j < 2n}, where the Z;-grading is given by the

113
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following parity function:
ple:) =0,  ple;) =1 (¥i,9).

Let B be a non-degenerate even supersymmetric bilinear form on C?"+!12"  The
general linear Lie superalgebra gl(2m + 1|2n) is the Lie superalgebra of linear trans-
formations on C?™*+12" (in matrix form with respect to the above basis). For s € Z,

we define

osp(2m + 1|2n), := {g € gl(2m + 1|2n), | B(g(x),y) = —(~1)**“ B(z, g(y))},

0sp(2m + 1]2n) := osp(2m + 1|2n)5 & osp(2m + 1|2n)1.

We now give a matrix realization of the Lie superalgebra osp(2m + 1|2n). Take
the supersymmetric bilinear form B with the following matrix form, with respect to

the basis (e, €, ..., €2m11, €71, €3, - - ., €37):

Jomtizn =10 0 1 0 0

Let Ejj, 1 <i,j <2m+1, and Egz, 1 < k, h < 2n, be the (7, j)th and (k, h)th ele-

mentary matrices, respectively. The Cartan subalgebra of osp(2m + 1|2n) of diagonal
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matrices is denoted by b,,),, which is spanned by

Hy =L ;- Entimyi, 1<i1<m,

Hy = E55 — Baggaags
We denote by {e;, €5 |1 <i<m,1<j<n} the basis of hjnln such that

€a(Hp) = 0ap, fora,be{i,j|1<i<m,1<j<n}.

We denote the lattice of integral weights of osp(2m + 1|2n) by

X(m|n) := ZZQ—}—ZZE;. (7.1.1)
i=1 j=1

The supertrace form on osp(2m + 1|2n) induces a non-degenerate symmetric bilinear

form on by, determined by (-[-), such that
(€il€a) = 0ia, (e;-|ea) = —0;,, forae {i,71<i<m,1<j<n}
We have the following root system of osp(2m + 1|2n) with respect to by,
¢ = Oy U Oy = {£e; L€, k¢, e £ €, £265} U {£¢, £ €5, £e5),

where 1 <i<j<n, 1<p<n, 1<qg<m,1<k<l<m.

In this paper we shall need to deal with various Borel subalgebras, hence various
simple systems of ®. Let b = (b1, by, ..., by,1,) be a sequence of m + n integers such
that m of the b;’s are equal to 0 and n of them are equal to 1. We call such a sequence

a 0™1"-sequence. Associated to each 0™1"-sequence b = (by, ..., byyin), we have the
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following fundamental system I, and hence a positive system &) = <I>+ U -, of

b,1’

the root system ® of osp(2m + 1|2n):
Hb:{ 617 zi_ez:rll|1<2<m+n_]'}

where €? = ¢, for some 1 < z < m, ejl. = ¢ for some 1 < y < n, such that €, — €,41
and €5 — e;77 are always positive. It is clear that Il is uniquely determined by these
. . . ._ 1 1
restrictions. The Weyl vector is defined to be py, := 5 Zaeq);(j a— 5 Za@;i a.
Corresponding to b = (0,...,0,1,...,1), we have the following standard Dynkin

diagram associated to ITpst:

O=0—0—+—@—0—0—

€1 €1 — €2 €m — €] €] — €3

O

As usual, @ stands for an isotropic simple odd root, () stands for an even simple
root, and e stands for a non-isotropic odd simple root. A direct computation shows

that

1 3 1 1 1
Post = —o€1 = GE = (m — §)em+ (m — §)ei+...+ (m—n+§)eﬁ. (7.1.2)

More generally, associated to a sequence b which starts with 0 is a Dynkin diagram

which always starts on the left with a short even simple root:

) OO0 —O—O0—0——0O
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Here () stands for either Q) or () depending on b. Associated to a sequence b which
starts with 1 is a Dynkin diagram which always starts on the left with a non-isotropic

odd simple root:

() OO —O—0—0— 0

Remark 7.1.1. For general b, one checks that pp has a summand (m —n + %)eﬁ as

for ppst in ((7.1.2)) if the Dynkin diagram associated to b has () as its rightmost node,

1

5 )€ if the Dynkin diagram associated to b has

and that p, has a summand (m —n

Q) as its rightmost node.
Now we can write the non-degenerate symmetric bilinear form on ¢ as follows:

) = (=1)%dy, 1<i,j<m+n.

(€i'le;

We define nﬁ to be the nilpotent subalgebra spanned by the positive/negative root
vectors in 0sp(2m + 1|2n). Then we obtain a triangular decomposition of osp(2m +
1]2n):

osp(2m + 1]2n) = n & by Sy,

with n @ by, as a Borel subalgebra.
Fix a 0™1"-sequence b and hence a positve system ®;. We denote by Z(osp(2m+
1|2n)) the center of the enveloping algebra U (osp(2m+1|2n)). There exists a standard

projection ¢ : U(osp(2m + 1|2n)) — U(by,pn) which is consistent with the PBW basis
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associated to the above triangular decomposition ([CW2 §2.2.3]). For A € b* . we

mln’

define the central character y, by letting
xA(2) = ANo(2)), for z € Z(osp(2m + 1]2n)).

Denote the Weyl group of (the even subalgebra of) osp(2m + 1|2n) by W, which

is isomorphic to (Zg X &,,) X (Zy x &,). Then for p, v € b we say [, V are

*
min’

linked and denote it by p ~ v, if there exist mutually orthogonal isotropic odd roots

aq,Qa, ..., qq, complex numbers ¢y, ¢z, ..., ¢, and an element w € W, satisfying

I
/L—l—pb:w(v—l—pb—Zciai), (v+pplay) =0, j=1...,L
=1

It is clear that ~ is an equivalent relation on hfnm. Versions of the following basic

fact went back to Kac, Sergeev, and others.

Proposition 7.1.2. [CW2, Theorem 2.30] Let \, i € b:n|n‘ Then X\ is linked to p if

and only if Xn = Xpu-

We define the Bruhat ordering =y on by, and hence on X (m|n) as follows:

A=ppu<pu—NeNI, and A ~ p, for A, i1 € by, (7.1.3)
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7.2 Infinite-rank Lie superalgebras

We shall define the infinite-rank Lie superalgebras osp(2m + 1|2n+ 00) and osp(2m +

1]2n|00). Define the sets

q]] = {]. 2 2 1,1,2 2 }U{—l 1 —3 }U{—l/ ]., —3/ }
) 4y ) ) Ly 4y ) 27_727 27_727 )

T:={1,2,....2m+1,1,2,....20  U{1,2,...}U{1,2,... },

3 1" 3

v - — 1
=11,2,...,2 1,1,2,...,2 = . — =, ..
J {7 ) 7m+ ) Ly 4y Jn}U{2 }U{2727

R By

Let V be the infinite-dimensional superspace over C with the basis {e; | i € J}, whose

Zo-grading is specified as follows:

ple)) =0 (1 <i<2m+1), ple;) =1 (1 <j < 2n),

pley) =ples) =0 (s € Zsy), pley) =ple)) =1 (t € = +N).

With respect to this basis, a linear map on 1% may be identified with a complex matrix

(ars), .- Let gl(V) be the Lie superalgebra consisting of (a,s), .7 With a,s = 0 for
almost all but finitely many a,,’s. The standard Cartan subalgebra of g[(f?) is spanned
by {E,, | r € J}, with dual basis {e, | » € J}. The superspaces V and V are defined
to be the subspaces of V with basis {e;} indexed by J and J respectively. Similarly
we can define gl(V) and gl(V).

Recall the supersymmetric non-degenerate bilinear form B define in §7.1 We can

easily identify C*"+12" a5 a subspace of V. Define a supersymmetric non-degenerate
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bilinear form B on V by

Bl(es, e;) = Bles, ), Bl(es, e,) = B(es,ey) =0,

Bley,e,) = Blew,ey) =0, Bleg,ey) = 0,y = (=)' B(e, e,),

where s,t € {i,j |1 <i<2m+1,1<j<2n}andx,y € {i,lé. .. }. By restriction,

we can obtain a supersymmetric non-degenerate bilinear form on V' and V.
Following we define osp(V) and osp(V) to be the subalgebra of gl(V) and

g[(‘u/) preserving the bilinear forms, respectively. With respect to the standard basis

of V and V, we identify
0sp(2m + 1]2n|oc) = osp(V), 0sp(2m + 1]2n + 00) = osp(V).

The standard Cartan subalgebras of 0sp(2m + 1|2n|oo) and osp(2m + 1|2n + co) are
obtained by taking the intersection of the standard Cartan subalgebra of g[(v) with
0sp(2m+1|2n|oo) and osp(2m+ 1|2n+00), respectively, which are denoted by hy,jn)00

and bjnq0e. For any 0™1"-sequence b, we assign the following simple system to the
Lie superalgebra osp(2m + 1|2n|c0):

Hb,O = {_6?176? o 6??11762?—:17 - 62762 - €2i1 | I<i<m+n-— 17 1< ]}
Similarly, we assign the following simple system to osp(2m + 1]2n + oo):

. b1 b; bit1  bmin 1 1 1 . .
Hb,l T {_61 7€ T €41 Emtn _el7€l_€j+1 | 1 S ? S m-+n— ]-7]- S]}

The ¢%’s are defined in the same way as in and it is understood that €} :=¢;

NI
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€l = ¢;j for any 1 < j. We introduce the following formal symbols:

J
0 ._ 0 1. 1
€oo i= € €oo i= E €-

Jj=21 Jj=21

Let P be the set of all partitions. We define

m—+n

=D N Y TN Hded [ d N €2, (FAL A, ) €PY, (T.20)
i=1 1<j
m—+n

=D N Y TN +del [ d N €Z, (A, Ay, ) €P) (722)
i=1 1<

7.3 The BGG categories

We shall define various parabolic BGG categories for ortho-symplectic Lie superalge-

bras.

Definition 7.3.1. Let b be a 0™1"-sequence. The Bernstein-Gelfand-Gelfand (BGG)

category Oy, is the category of b,,|,-semisimple osp(2m + 1|2n)-modules M such that
(i) M =D, cx(mpny My and dim M, < oo;

(ii) there exist finitely many weights '\,2\,...,*\ € X(m|n) (depending on M)

such that if p is a weight in M, then p € ‘A — > Ne, for some 1.

aclly
The morphisms in Oy, are all (not necessarily even) homomorphisms of osp(2m-+1|2n)-

modules.

Similar to [CLW2l, Proposition 6.4], all these categories Oy, are identical for various
b, since the even subalgebras of the Borel subalgebras n; & Bmin are identical and the

odd parts of these Borels always act locally nilpotently.
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Denote by Mp(\) the b-Verma modules with highest weight A\. Denote by Ly ()
the unique simple quotient of Mp(A). They are both in Oy.
It is well known that the Lie superalgebra gl(2m + 1|2n) has an automorphism 7

given by the formula:

T(Ey) = _(_1)p(i)(p(i)+p(j))Eji‘

The restriction of 7 on 0sp(2m+1|2n) gives an automorphism of osp(2m +1|2n). For

an object M = ®uex (mjn)Myu € Op, we let
MY = ®uex minM;;

be the restrictd dual of M. We define the action of osp(2m + 1|2n) on MY by
(g- f)(x):=—f(r(g) - x), for f € MY, g € osp(2m + 1|2n), and x € M. We denote
the resulting module by M7.

An object M € Oy, is said to have a b-Verma flag (respectively, dual b-Verma flag),
if M has a filtration 0 = My C M; C My C --- C M, = M, such that M;/M; ; =

My (7v:),1 <i <t (respectively, M;/M;_1 = M (~;)) for some ~; € X(m|n).

Definition 7.3.2. Associated to each A € X(m|n), a b-tilting module T}, ()) is an
indecomposable o0sp(2m + 1|2n)-module in Oy characterized by the following two

conditions:
(i) Tb(N) has a b-Verma flag with My()) at the bottom;

(i) Exty, (My(p), To(X)) = 0, for all 4 € X (m|n).
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Recall the definition of the infinite-rank Lie superalgebras in For a nonempty
0m1™-sequence b = (by, by, ..., byui,) and k € N U {oco}, consider the extended se-
quence (b, 0%) = (by, by, ..., bmin,0,...,0). This sequence corresponds to the follow-
ing simple system of the Lie superalgebra osp(2m + 2k + 1|2n), which we shall denote

by o0sp(2m + 1|2n|2k) throughout this paper to indicate the choice of I gry:
Hpory = {— 1 el —esz |1<i<m+n+k}, whereb; =0 fori>m+n.

Let HEQ = {éb —(—:Zfl1 | i > m+n}. Define the following Levi subalgebra and parabolic
subalgebra of osp(2m + 1|2n|2k):

[%,o = Z osp(2m + 1|2n|2k).,,

a€ZIly

Pro = > osp(2m + 1]2n)2k),.
acd Ok)UZH%,O

Let Lo(\) be the irreducible [%O—module with highest weight \. It can be extended

trivially to a pﬁo—module. We form the parabolic Verma module

Mg o(A) i= Ind?P R L)

Pb,0

For k € N, we define

m+n k
{Z)\E +Z+)\ +dz€§) ‘ d,)\Z GZ,(+)\l,+)\2,...) Eip}, (731)

j=1

m+n k

{Z)\G +Z+)\ —i—dZe;\d,)\iGZ,(+)\1,+)\2,...)ET}. (732)
=1

Recall the definition of Xp%" and Xp5" from (7.2.1)-(7.2:2).
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Definition 7.3.3. Let b be a 0™1"-sequence and k € N U {oo}. Let (9%0 be the

category of By, k-semisimple osp(2m + 1|2n|2k)-modules M such that
(i) M =€, M, and dim M,, < oo;
(ii) M decomposes over ly into a direct sum of Lo(X) for A € Xﬁ’g ;

(iii) there exist finitely many weights X, 2\, ... k) € XEE):(J)F (depending on M) such

that if u is a weight in M, then u € ‘A — > Na, for some 1.

a€lly, ok

The morphisms in (f)%o are all (not necessarily even) homomorphisms of osp(2m +

1|2n|2k)-modules.

Let A\ € X,f’ar . We shall denote by Lﬁb’o()\) the simple module in (f)ﬁo with highest

weight . Following Definition [7.3.2) we can define the tilting module Téo(/\) in O%,o-

Similar construction exists for the sequence (b, 1*), where we consider the Lie

superalgebras osp(2m+1|2n+2k) for k € NU{oo} with the following simple systems:
My ry = {—€}, j—esz |1<i<m+n+k}, whereb; =1 fori>m+n.

Let H%l = {eb — ezjjf | @ > m + n}. Define the following Levi subalgebra and
parabolic subalgebra of osp(2m + 1|2n|2k):

fy= Y o0sp(2m+ 1[2n[2k).,

Q€L ||

Pﬁ,l = Z 0sp(2m + 1|2n|2k),.

k
aECI’zLJk)UZ[HEJ]
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Let Li(A) be the simple [%Vl—module with highest weight A. It can be extended trivially

to a p%yl—module. Similarly we can define the parabolic Verma module

M&l()\) — Indozp(2m+ll2n+2k)L1(/\).

Pb,1
Definition 7.3.4. For k € NU{oo}, let O%jl be the category of Hap, 1)20426-semisimple

0sp(2m + 1|2n + 2k)-modules M such that
(i) M =€, M, and dim M,, < oo;
(ii) M decomposes over p%l into a direct sum of Ly (\) for A € Xl%f;

(iii) there exist finitely many weights X, 2\, ... k) € Xéj (depending on M) such

that if ;1 is a weight in M, then pu € '\ — Zaéﬂ( N Nea, for some 1.
b,1

The morphisms in (9%1 are all (not necessarily even) homomorphisms of osp(2m +

1|2n + 2k)-modules.

For ¢ € Xf:f, we shall denote by Lﬁl(f) the simple module in Oﬁl with highest

weight £. Following Definition [7.3.2, we can define the tilting module Tél(é) in Oﬁl.

7.4 Truncation functors

Recall the definition of XEZSL and Xﬁf in (7-3.1) and (7.3.2). Forany A = 371" N4

Z1§j +/\l-63+ des, € Xl?j;r, we define

m-+n k

k
i s s k,
M= E A€l + g +>‘l€1+ d E € € Xb;, for s € {0, 1}.
i=1 j=1

J=1
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Let My, € Op and M3 € Opy. Then we have the weight space decompositions

> o0 > je.o)
My =DMy, My =P M,

o ju

We define an exact functor tvg : Op, — O% o by

teo (M @ bOu’

where p satisfies (u, 60 —€),,) =0,¥j > k+1and j € N. Similarly, we define an

exact functor te; : O — OF, by

t‘Cl . @ bl;ﬂ

where 1 satisfies (p, 61 — 6 1) =0,V >k+1and j € N. The following has been

known [CWI, [CLWT]; also see [CW2l, Proposition 6.9].

Proposition 7.4.1. For s =0, 1, the functors tt : O,?fs — O%S satisfy the following:
forY =M, L, T, \=3""" Nebi + doicj A€ Fdel, € Xl%?:r, we have

YE OB, ifl(tA) <k,
tr, (Y{i()\)) =

0, otherwise.



Chapter 8

Fock spaces and Bruhat orderings

In this chapter, we formulate the infinite-rank variants of the basic constructions
in Part 1. We set up various Fock spaces which are the g-versions of Grothendieck
groups, and transport Bruhat ordering from the BGG categories to the corresponding

Fock spaces.

8.1 Infinite-rank constructions
Let us first set up some notations which will be used often in Part 2. We set
o0 (2 oo (2 1
]I - Ur:OI[QTJrl - Z, ]I = Ur:OHT - Z>0, [ - Z + 5 (811)

Recall from Chapter [2] the finite-rank quantum symmetric pair (Usg,. 41, U%). We

127
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have the natural inclusions of Q(g)-algebras:

++ CUgy CUgy1 CUgyz C v
--CcU,_,cU.cUu,, c---.

Define the following Q(q)-algebras:

U’ = G U. and U:= O Uyt

r=0 r=0
It is easy to see that U’ is generated by {eq,, fa,, ki',t | i € I'}, and U is generated
by {Ea,, Fa,, K | i € I}. The embeddings of Q(g)-algebras ¢ : U. — Uy, induce
an embedding of Q(¢)-algebras, denoted also by ¢ : U* — U. Again U is naturally a
Hopf algebra with coproduct A, and its restriction under ¢, A : U* — U*® U, makes
U’ (or more precisely +(U")) naturally a (right) coideal subalgebra of U. The anti-
linear bar involutions on U} and Usy,;; induce anti-linear bar involutions on U* and
U, respectively, both denoted by ~ as well. As in Part 1, in order to avoid confusion,
we shall sometimes set ¢(u) :=u for v € U, and set ¢,(u) := u for u € U".
Recall Iy, denotes the simple system of Us.,y. Then II := U:O:o Mg,y is a

simple system of U. Recall we denote the integral weight lattice of Usg,,1 by Ag.iq.

Then
A= @i€%+ZZ[€i] = U Ao
r=0
is the integral weight lattice of U. Following §1.1} we have the quotient lattice Ay of

the lattice A.
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Recall the intertwiner of the pair (U1, U%) in §2.3] which we shall denote by

T, We have T = TS") in a completion of U, ; with Tg) = 1. Follow-

pENIIo, 41

ing the construction of T in Theorem [2.3.1] we see that

T+ — ()

M 0 for p € NIy, 1.

Hence we can define an element T, € U, for u € NII by letting

T

p = lim Tff).

T—00

Define the formal sum YT (which lies in some completion of U™) by

Ti=> T, (8.1.2)

HENII

We shall view T as a well-defined operator on U-modules that we are concerned.

8.2 The Fock space TP

Let V:=3" ., Q(q)v, be the natural representation of U, where the action of U on

V is defined as follows (for i € I, a € I):
Eaiva = 5@'-1—%,(11)&—17 Fociva = 5i—%7ava+1a Kaiva = q(ai7€a)va-

Let W := V* be the restricted dual module of V with basis {w, | a € I'} such that
(Way Vp) = (—q) *0qp. The action of U on W is given by the following formulas (for

iel,ael):

—(aj,e
aniwa = 5i_%,awa+1> Faiwa = 5i+%,awa—17 Koaiwa =dq (e a)wa-
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By restriction through the embedding ¢, V and W are naturally U’-modules.
Fix a 0™1"-sequence b = (by,bs,...,byn1n). We have the following tensor space

over Q(q), called the b-Fock space or simply Fock space:

™ =V V" g... . me+n’ (8.2.1)
where we denote
V, lf bz = 0,
Vi =
W, if b =1.

The tensors here and in similar settings later on are understood to be over the field
Q(q). Note that both algebras U and U* act on TP via an iterated coproduct.

For f € I™™" we define

b._ b b brn
v, if bl = 0,
where we use the notation v’ := We refer to {Mp | f € I"™"} as

the standard monomial basis of TP.

For r € N, we shall denote the natural representation of Uy, ; by V, now, where
V, admits a natural basis {v, | a € Iy.12}. Let W, be the dual of V, with basis
{w, | a € Iy 42} such that (w,,v) = (—q) “0ap. We have natural inclusions of

Q(q)-spaces

eCcV,, VvV, cV,yy---, and - CW,  CW,. CW,yq---.
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Similarly we can define the space
TP =V2@V2®.. @Vimn,
where we denote
VT, if bl - 0,

Wr, lf bz - 1
Then {Mp | f € 1575} forms the standard monomial basis of TP. In light of the

standard monomial bases, we may view
e CTPCTE,C---, and TP = U,enTP. (8.2.3)

Definition 8.2.1. For f € I3,%5, let wty(f) be the U'-weight of Mp, i.e., the image

of the U-weight in Ay.

8.3 The ¢g-wedge spaces

Recall from §5| the right action on V®* on the Hecke algebra Hp, , where V is now of
infinite dimension. We take A*V as the quotient of V¥¥ by the sum of the kernel of
the operators H; — ¢!, 1 <1i < k — 1. The AFV is naturally a U-module, hence also
a Umodule. For any v,, ® v, ® --- ® v,, in V¥* we denote its image in AFV by

Upy NUpy N -+ AN Up, .
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For d € Z and | > k, consider the Q(g)-linear maps
NS ARy — AV
Upy Ao N, = Up Ao Ay, /\vd%fkf1 /\vdJr%,kf2 AN /\UdJr%—l'
Let APV := hgl ARV be the direct limit of the Q(q)-vector spaces with respect to the

maps /\Z’l, which is called the dth sector of the semi-infinite g-wedge space A*°V; that

is,

Note that for any fixed v € U and fixed d € Z, we have
/\s’lu = u/\Z’l APV — /\IV, forl > k> 0.

Therefore APV and hence A*V become both U-modules and U’-modules.
We can think of elements in A®V as linear combinations of infinite ¢-wedges of
the form

Upy N Upy N Upg N vy

where p; > ps > p3 > -+, and p; — p;y1 = 1 for i > 0. Alternatively, the space AV

has a basis indexed by pairs of a partition and an integer given by
A d) =05, 4q-1 AVrgra—3 AUyas Ao

where A = (A1, Ag, ...) runs over the set P of all partitions, and d runs over Z. Clearly

we can realize APV as the subspace of A*V spanned by {|A,d) | A € P}, for d € Z.



In the rest of this paper, we shall index the q-wedge spaces by [k] := {1,2,...,k}

and [oo] :={1,2...}. More precisely, let

LE={f:k=T|fQ)>f2)> > fk)}, forkel,

I ={f:]oc] = T| f(1)> f(2) >---; f(t) = f(t£1)=1fort> 0}.
For f € I¥, we denote
V= Avpe) A Avp).

Then {V; | f € I} is a basis of A"V, for k € Z-¢ U {oco}.

For k € Z~, we let w(()k) be the longest element in &;. Define

.: _ ) ) —1(w§™)
Lw(()k) : Z ( q) o 'H, € J{Ak_r

It is well known [KL| [So2] that Té’“) = ng’“>' The right action by Lw(()k) define a
Q(g)-linear map (the g-skew-symmetrizer) SkSym,, : V€¥ — YV Then the ¢-wedge
space AFV can also be regarded as a subspace Im(SkSym,,) of V& while identifying
Vv, = M]Ef’:ék)Lwék) for f € I* (cf. e.g. [CLW2, §4.1]).

Similar construction gives rise to A*W. For each d € Z and | > k, consider the

Q(g¢)-linear maps

NS ARW — AW (8.3.1)

Wpy A= N Wpy =22 Wy Ao AWy ANWg_ 1y gy AN Wa—dyppa N AWa_ 1y

Let AW = liﬂ/\kw be the direct limit of the Q(g)-vector spaces with respect to
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the maps /\S’l. Define

AW = P A7
d€eZ

Note that for any fixed v € U and fixed d € Z, we have
/\Z’lu = u/\];’l AW — /\lW, for{ > k> 0.

Therefore AW and hence AW become both U-modules and U*-modules.
We can think of elements in AW as linear combinations of infinite ¢-wedges of
the form

Wpy N\ Wpy N Wpy N+

where p; < py < p3 < ---, and p; — piy1 = —1, for i > 0. Alternatively, the space

AW has a basis indexed by partitions given by
[Ard) :=way 1 3, Aways s, Nwgys y, A-ee

where A = (A1, Ag, - - - ) runs over the set P of all partitions, and d runs over Z. Clearly
we can realize AW as the subspace of AW spanned by {|\.,d) | A € P}, for d € Z.

Let

IE={f: k] =] fQ1) < f(2) << flk)}, for kEN,

I ={f:[oc] = I| f(1) < f(2) <---;f(t) = f(t+1) = —1for t > 0}.
For f € I*, we denote
Wi =wpa)y Ny A AW

Then {W; | f € I*} is a basis of AW, for k € NU {oo}.
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Remark 8.3.1. The semi-infinite g-wedge spaces considered in this paper will involve

all sectors, while only the Oth sector was considered and needed in [CLW2| §2.4].

8.4 Bruhat orderings

Let b = (b1, -+ ,bpmin) be an arbitrary 0™1"-sequence. We first define a partial
ordering on I"™*" which depends on the sequence b. There is a natural bijection

I 5 X (m|n) (recall X (m|n) from (7.1.1))), defined as

m—+n
fr A, where A? = > " (=1)" f(i)e — pp, for f € I, (8.4.1)

=1

A= fP, where f(i) = (A + pp|e), for A € X(m|n). (8.4.2)

We transport the Bruhat ordering ((7.1.3) on X (m|n) by the above bijection to I™*™.

Definition 8.4.1. The Bruhat ordering or b-Bruhat ordering <y on I"™*" is defined

as follows: For f, g € I™™ [ <y g if )\'J? =b )\'g”. We also say f ~ g if )\}’ ~ )\;’.
The following lemma follows immediately from the definition.

Lemma 8.4.2. Given f,g € I™™ such that g <y f, then the set {h € I™™ | g <y,

h <p [} is finite.
Recalling the weight wtp(-) on ™" from Definition [8.2.1] we set
wtp(\) == wtp(f7), for A € X(m|n). (8.4.3)

We have the following analogue of [Brll Lemma 4.18].
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Lemma 8.4.3. For any f,g € I™™, f ~ g if and only if wtp(f) = wtn(g).

Proof. This proof is analogous to [CW2, Theorem 2.30]. Assume f ~ ¢ at first.

Recall §7.1] this means

I
)\;’ +pp = w()\? + pp — Zciozi), ()\? +pplay) =0,5=1,....,1
i=1
where «;’s are mutually orthogonal isotropic odd roots. Recall the Weyl group of
0sp(2m + 1|2n) is isomorphic to (Zy X &,,) X (Zy x &,,). Thanks to Definition [2.2.4]
and the actions the k,,’s on V and W, we have wtp(w(A} 4 pp — Zi‘:l cioy)) =
wtb()\}’ + pp — Zi’:l c;;). Isotropic odd roots of @ are of the form e’ + eZy, where
b, and b, are distinct. We shall discuss one case here, as the others will be similar.

Let o = b — e = ¢ — ¢} be an isotropic odd root such that (AR + ppla) =

(S ()P i)
ca) =wtp(..., f(s=1), f(s)+e, f(s+1),....f(t=1), f(t)+c, f(t+1),...) =wtp(f),

a) = 0. Therefore, f(s) = f(t). Hence we have wtb()\? + pp +

where the last equality comes from the actions of k,,’s on V and W. Therefore

wtp(f) = web(g)-

Now suppose wtp(f) = wtp(g). We have

m-+n m—+n

(=D = Y (1) ey (8.4.4)

i=1 i=1

For distinct b;,, bj, (ia # ja), if f(ia) = £f(ja), (=1)Pac i)+ (—1)%aepg,) = 0 (recall

that ey = €_f(s)). Similar results hold for g. After canceling all such pairs (all i,

and all j, are distinct) on both sides of (8.4.4), the survived terms match bijectively

up to signs. More precisely, for any survived f(x), there exists a suvived g(y), such
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that g(y) = £f(x), b, = b,. Hence the same number of pairs cancelled on both sides,

say [ pairs. Therefore we have A} + py, — Zfl:l ca(€), = sa€j,) = w(AP + pp) for some

€ (Zy X Gy) X (Zg x &,,), s, € {£}. The s,’s are chosen to satisfy
(A} + pole), — sac),) = 0.

Therefore /\J'i’ ~ )\;’ by the definition in . Hence f ~ g.

This completes the proof of the lemma. n

Now let us define partial orderings on the sets I"™™ x I°, which again depend on

b. Recall (7.2.1)) and (7.2.2)) for the definitions of Xﬁfr and X{,%’Jr. We define a map
Xpgt—= I IR, A Y (8.4.5)

by sending each A\ = S27" Nl + > o1<; TA€) + del, to the element fY°0 = F0%)

given below (which is consistent with the p-shift associated to a simple system of the

type (%) in §7.1| by Remark [7.1.1] -

0y = fP(), ifi€m+n]:={1,2,...,m+n},
(8.4.6)

1
YY) =N +d+n—m m+5—j 1<

This map is a bijection, where the inverse sends f € I"™*" x I to

m-+n
b0 . __
A= Y N+ S Al gl
=1 1<j

Similarly we define a bijection

Xpim — I x I A )1 (8.4.7)



138

by sending each A = Zm+n>\ €+ D 1< +)\Je + del_ to the element fP! = ib’loo)

given below:

Vi) = fR(0),  ifi e [m+nl,
X (8.4.8)
V)= =N A n—m =St 1<
The inverse sends f € ™" x I to A}! := S )\b7i€?i +30, FAp el + dpel,

Note that for s € {0,1}, the sum Y " )\fl i T 1< "Apge; lies in the root

system of a finite-rank Lie superalgebra. Hence the following definitions make sense.

Definition 8.4.4. For f, g € I x I, we say f ~ g if

m+n m—4n

dy =d, and ZAMZ +> A€ ZAW &+ Y A
1<j 1<j
in the sense of We say f =<p g if
frg and AP?— A0 € NIl

We similarly define an equivalence ~ and a partial ordering <y ; on I"™*" x [,

Definition 8.4.5. For f, g € "™ x [, we say f ~ g if

m+n m+n
— + b _b; + 1
df =d, and Z flel +Z )\f,] i Z)\glez +Z )xg,lel)
=1 1<y =1 1<y

in the sense of We say f <p1 g if
frg and AP' =AY € NIIp, ;.

The following lemma follows from Definition[8.4.4] Definition[8.4.5] and Lemma/[8.4.2]
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Lemma 8.4.6. 1. Given f,g € I"™™ x I such that g =vo f, the set {h €

I I | g Zpo h Zuo [} is finite.

2. Giwen f,g € I x I® such that g <p1 [, the set {h € I"™T" x I | g <p1

h <w1 f} is finite.
The following lemma is an infinite-rank analogue of Lemma [8.4.3

Lemma 8.4.7. For any f, g € I™*" x I° (respectively, I™*" x I*), f ~ g if and

only if wtno(f) = wtuo(g) (respectively, wty1(f) = wtn1(g)).

Proof. The lemma follows from Definition Definition [8.4.5] and Lemma [8.4.3]

]



Chapter 9

1-Canonical bases and

Kazhdan-Lusztig-type polynomials

In this chapter, suitably completed Fock spaces are constructed and shown to admit
1-canonical as well as dual ¢-canonical bases. We introduce truncation maps to study
the relations among bases for different Fock spaces, which then allow us to formulate

1-canonical bases in certain semi-infinite Fock spaces.

9.1 The B-completion and T

Let b be a 0™1"-sequence. For r € N, we let

T, : T — TP (9.1.1)

140
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be the natural projection map with respect to the standard basis {Mp | f € I"™*"}
of TP (see (8.2.3)). We then let TP be the completion of TP with respect to the
descending sequence of subspaces {ker 7, | 7 > 1}. Formally, every element in TP is
a possibly infinite linear combination of My, with f € I™*". We let TP denote the
subspace of TP spanned by elements of the form

My + ) epp(a)M,,  for cpy(q) € Qlg). (9.1.2)

9=bf

Definition 9.1.1. The Q(g)-vector spaces T* and TP are called the A-completion

and B-completion of TP, respectively.

Remark 9.1.2. The B-completion we defined here is different from the one defined in
[CLW?2], since they are based on different partial orderings. However, observing that
the partial ordering used in [CLWZ2] is coarser than the partial ordering here, our B-
completion here contains the B-completion in [CLW2|, Definition 3.2] as a subspace.

This fact very often allows us to cite directly the results therein.
Lemma 9.1.3. Let f € I™™. Then we have M; € TP, and
T (YOMp) = YOMy,  forall 1> 7.

Proof. Note that NIy, C NIy 4, for I > 7. It is clear from the construction of Y(")

in Theorem 2.3.1] that we have

TO = 7@ 4 Z TO

"
WENII; 11 \NIT2r4q
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By U-weight consideration, it is easy to see WT(TS)M]@) = 01if p & NIly, 4. There-
fore

7TT<T(I)Mf) = WT(T(T)M]C) = T(T)Mf

The lemma follows. L]

It follows from Lemma [9.1.3[that lim T M 7, for any f € I, is a well-defined

T—00

element in TP. Therefore we have

TM; = lim Y My,

T—00

where T is the operator defined in (8.1.2)).

Lemma 9.1.4. For f € I we have

YM;= M+ Z ror(@) Mg, forry:(q) € A. (9.1.3)

9=nf

In particular, we have Y : TP — T®.

Proof. For any u € U~ with U'-weight 0, f € I"™"", let uMy = c,sM,. Fix any
g with ¢, # 0. Since u has U’-weight 0, we know by Lemma that g ~ f and so
)x'; ~ )\?. By a direct computation (by writing u in terms of Chevalley generator F’s),
it is easy to see that u € U~ implies that )\}’ — )\;’ € NIly,. Hence we have g <y, f.
Recall that Y, € U™ for all g and T, # 0 only if p = p?, i.e., p is of U-weight
0. Hence we have the identity (9.1.3), where r/;(¢) € A follows from Theorem m

The lemma follows. L]
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Lemma 9.1.5. The map Y : TP — TP extends uniquely to a Q(q)-linear map Y :
TP — TP,

Proof. We adapt the proof of [CLW2, Lemma 3.7] here. To show that the map T
extends to T® we need to show that if y = M; T s Ta(@) M, € TP for r,(¢) € Q(q)
then Ty € T®. By Lemma and the definition of 'i‘b, it remains to show that
Ty € TP. To that end, we note that if the coefficient of M) in Ty is nonzero, then
there exists g < f such that 77,,(q) # 0. Thus we have h =y, g < f. However, by
Lemma there are only finitely many such ¢’s. Thus, only finitely many ¢’s can

contribute to the coefficient of M}, in Ty, and hence Ty € T®. O

9.2 1-Canonical bases

Anti-linear maps v : T®> — TP and ¢ : T®> — T® were defined in [CLW2, §3.3] (recall
Remark that our B-completion contains the one therein as a subspace, so TP
here can and will be understood in the sense of this paper). We define the map
¥, : TP — TP by

0,(My) 1= To(My). (9.2.1)
Recall from that TP is an +-involutive U’-module with anti-linear involution s

Lemma 9.2.1. We have 7, (¢,(My)) = Q/JST)(MJ:>, for f e I,

Proof. Recall that @/JZ(T) =YM") By a variant of Lemma , we have

(Y (My)) = 7 (T (M)
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by a U-weight consideration. Therefore we have

T (u(My)) = TOm (0(My)) = TP (My),
where the last identity follows from [CLW2, Lemma 3.4]. The lemma follows. [

It follows immediately that we have

U, (M;) = lim " (My),  for f e ™™ (9.2.2)

T—00

Lemma 9.2.2. Let f € I™™™. Then we have

U(My) = My + > rgp(q)My,  for rgr(q) € A.

g=bf

Hence the anti-linear map 1, : TP? — TP extends to a map Y, : TP — TP. Moreover

W, is independent of the bracketing orders for the tensor product TP.

Proof. Following [CLW2, Proposition 3.6] and Remark [9.1.2] we have

(M) = My + Z ror(@) My, for 1:(q) € A.

9=uf

Hence the first part of the lemma follows from Lemma [0.1.4]

We can show that the map 1, : T° — TP extends to a map v, : TP — TP by
applying the same argument used in the proof of Lemmal9.1.5] Since v is independent
from the bracketing orders for the tensor product TP by [CLW2, Proposition 3.5], so

is ,. O

Lemma 9.2.3. The map 1, : TP — TP is an anti-linear involution.
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Proof. In order to prove the lemma, we need to prove that for fixed f, h € I"™*" with

h <y f, we have

Z rhg(q)m = Ony-

h=2pg=pf

By Lemma [8.4.2, there is only finitely many ¢ such that h <, ¢ =<p f. Recall
. We know ¢ is an involution. By (0.2.2), this is equivalent to the same
identities in the finite-dimensional space TP with 7 > 0. Then the lemmas follows

from Proposition |3.4.2] O

Thanks to Lemmas [9.2.2] and [9.2.3] we are in a position to apply [Lu2, Lemma

24.2.1] to the anti-linear involution 1, : TP — TP to establish the following.

Theorem 9.2.4. The Q(q)-vector space TP has unique P, -invariant topological bases
{TP | fel™} and {L} | f € I}

such that
TP =M+ Y o (q)MP, Lh=Mp+ Y (5(q)Mp,
9=3bf 9=bf

with t9:(q) € qZlq), and €2;(q) € ¢ 'Z[qg™"], for g =u f. (We shall write t3:(q) =

(2p(q) =1, tgp(a) = €5(q) = 0 for g Zp f.)

Definition 9.2.5. {Tp | f € I"*"} and {L? | f € I"™""} are call the 1-canonical
basis and dual 1-canonical basis of ﬁ'b, respectively. The polynomials t;’f(q) and ﬁ;’f(q)

are called 1-Kazhdan-Lusztig (or 1-KL) polynomials.

Conjecture 9.2.6. 1. (Positivity) We have t2(q) € N[g].
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MP is finite, for all f € I™*™,

b
2. The sum TP = My + 3 ctoe(q) M,

Note that tP;(1) € N and the finite sum claim in (2) at the ¢ = 1 specialization
holds by Theorem [11.6.1] Hence, the validity of the positivity conjecture (1) implies
the validity of (2). We also raise the question on a possible positivity of the coefhi-
cients in the expansion of the +-canonical basis elements here relative to the (type A)

canonical basis on T® as constructed in [CLW?2].

9.3 Bar involution and ¢g-wedges of W
Let k € NU{oo}. For f = (fimin), fig) € I™™ x I, set
bO b k
MpCi=Mp @V, €T @AMV

Then {M;”O | f € I™™ x I¥} forms a basis, called the standard monomial basis, of
the Q(g)-vector space TP ® AFV. Similarly, TP @ A*W admits a standard monomial
basis given by
Myt = Mg @Wg, € TP @ A'W,
where ¢ = (Gpnin], 9i) € ™ x I*. Following [CLW2, §4], here we shall focus on
the case T® @ A*W, while the case T® ® AFV is similar.
Let us consider k € N first. As in [CLW2| §4], T°> ® A*W can be realized as a

subspace of TP @ W&k = T®1") . Therefore we can define a B-completion of TP @ A*W,

denoted by TP® AF W, as the closure of the subspace TP @ AFW C TPRWEF = T(b:1")
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with respect to the linear topology {kerm, | 7 > 1} defined in §9.1] By construction
TP® AF W is invariant under the involution 1,, i.e., we have
b,1 b,1 b,
G(MPY) = M Y (@) My
g<(b,1k)f
where 7,;(q) € A, and the sum running over g € I™™™ x I* is possibly infinite.
Remark 9.3.1. If £ =0, MJE”O and M;”l are understood as MJ'? and M;’, respectively;

also, TP® A° W and TP® A° V are understood as TP.

Recall the linear maps /\S’l defined in (8.3.1). For [ > k and each d € Z, define

the Q(¢)-linear map

id @ AE TP @ APW — TP @ A'W.

It is easy to check that the map id ® Afl’l extends to the B-completions; that is, we

have

id @ AR TP AP W — TP AL W,
Let TP® NG W = ligTb@) A¥ W be the direct limit of the Q(q)-vector spaces with
respect to the linear maps id ® /\S’l. It is easy to see that T°®@ AT W C T® AT W.
Define the B-completion of TP®@ A® W as follows:

TP® A W := (P T°® A7 W. (9.3.1)

deZ

By the same argument as in , we see that TP® Ay W and TP® A® W are (topo-

logical) U-modules, hence (topological) U’-modules.
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Following the definitions of the partial orderings in Definition and Defini-

tion [8.4.5 we see that TP® A W is spanned by elements of the form

M;”l + Z cgf(q)Mgb’l, for g, f € I x I,

g=<pb,1f

Following [CLW2, §4.1], we can extend the anti-linear involution v : TP® A* W —

TP® AF W to an anti-linear involution ) : TP® A® W — TP® A® W such that

YMPY) = MP 4+ > el (@MY, for vl (q) € A.

9=b,1f

Here we have used the fact that our B-completion contains the B-completion in loc.
cit. as a subspace (see Remark 9.1.2)).
Following the definition of the B-completion TP® A® W, we have T as a well-

defined operator on TP® A® W such that

T(M;”l) = M;”l + Z r;f(q)M;”l, for 4+ (q) € A.

g
9=<b,1f

Therefore we can define the anti-linear map
Y, =Ty TP A® W — TPR AW,

such that

%(M}D’l) = M}”l + Z rgf(q)M;?’l, for r,¢(q) € A.

g=<b,1f

Lemma 9.3.2. Let k € NU {co}. The map 1, : TP® AFW — TP® AF' W is an

mvolution.

Proof. For k € N, the lemma was already established. For k = oo, the lemma can be

proved in the same way as Lemma [9.2.3 with the help of Lemma [8.4.6] O
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9.4 Truncations

In this section we shall again only focus on TP ® AFW for k € NU {occ}. We shall use
f& e I+ x I¥ as a short-hand notation for the restriction of Jim+nju of a function
fermtmxIe.

Now let us define the truncation map Tr : TP © AW — TP @ A*W, for k € N, as

follows:

m @ Wy, i h(i) —h(i+1) = -1, fori >k +1,
Tr(m @ W),) =

0, otherwise.

Lemma 9.4.1. Let k € N. The truncation map Tr : T® @ AXW — TP @ AFW is
compatible with the partial orderings, and hence extends naturally to a Q(q)-linear

map Tr: TP A W — TPR AF W,

Proof. Let f, g € I x I with g <p; f. According to Definition this means

f(@) = g(@) for all i > 0. If Tr(M;”l) # 0 and Tr(Mp') # 0, we must have g(i) = f(2),

Vi > k 4 1. Hence we have )\Sz’lk) =(b,1%) )\ﬁ’lk) by comparing Definition |8.4.5| with

Definition |8.4.1l Thanks to Lemma and Lemma [8.4.7, we have g& ~ f£ as well.

Therefore we have gk =(b,1%) fE.

Now suppose Tr(M}”l) =0and g <p1 [. If floe] = Gjoo), then Tr(MP') = 0. If
not, choose ¢ with ¢ maximal such that f(i) # ¢(2). If i < k, then again we have
Tr(M;”l) = 0. So suppose i > k + 1. Since g <p1 f, we have g(j) = f(j) for j >0

and ¢(2) < f(i). Hence there must be some ¢ > k + 1 such that g(t) — g(t +1) >
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f(t) — f(t+1) > —1. Therefore Tr(M') = 0. The lemma follows. O

Lemma 9.4.2. The truncation map Tr : T°PQ A®° W — TP AF W commutes with

the anti-linear involution 1,, that is,
Y(Tr(MPY) = Tr(v,(M}Y)),  for fe ™™ x I,

Proof. Following [CLW2|, Lemma 4.2], we know Tr commutes with 1. As shown in
the proof of [CLW2, Lemma 4.2], Tr is a homomorphism of U~-modules. By (8.1.2)),

we have T =% _, T, where T, € U~. The lemma follows. O

HEA

Proposition 9.4.3. Let k € NU {cc}. The anti-linear map 1, : T°® ANF W —
TP® AR W is an involution. Moreover, the space TP® A* W has unique ,-invariant

topological bases
™Y fer™ x 1Y and  {LP'| fe It x I*
f f
such that

b,1 b,1 bl b,1 b,1 bl b,1
TP =M > i gMPt, LY =Mt > 2 (g MP
g<<b71k)f g= b,lk)f

with t;’}l € qZlq], and E;’}l(q) € ¢ 'Zlg7Y. (We shall write tff = Z?}l(q) =1, and

tl =00 =0, for g Awar f.)

We call {T}D’l} and {L?’l} the 2-canonical and dual 1-canonical bases of TP® AFW.

We conjecture that t:;]’cl € Nlq|.
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Proposition 9.4.4. Let k € N. The truncation map Tr : TP® A® W — TP@ AF W
preserves the standard, 1-canonical, and dual 1-canonical bases in the following sense:

forY = M,L,T and f € I x I> we have

YRl if i) = fit1) =1, fori>k+1,
Tr (be’1> = ~

0, otherwise.

b,1
_67
g*kfk

Consequently, we have t];}l(q) = t;’élfﬁ(q) and Ks}l(q) (q), for g, f e I x I

such that (i) — f(i+1) = g(i) — g(i+1) = —1, fori >k +1.

Proof. The statement is true for Y = M by definition. Lemma and Lemma

now imply the statement for Y =T, L. n

9.5 Bar involution and g-wedges of V

The constructions and statements in §9.3| and have counterparts for TP ® AFV,
k € NU{oo}. We shall state them without proofs. Let T°®A*V be the B-completion
of TP ® AFV. For k € N, we define the truncation map Tr : TP ® A®V — TP @ AFV
by

m & Vi, if h(i) —h(i+1)=1, fori >k+1,
Tr(m@Vh) =

0, otherwise .

The truncation map Tr extends to the B-completions.

Proposition 9.5.1. Let k € NU{oco}. The bar map 1, : TP@ AFV — TPR APV is an
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involution. Moreover, the space TP® A* V has unique 1,-invariant topological bases
(TP | feI™m x I8} and {L3°| fe I x It}
such that
TP =MpO+ Nt MPC, LY =M+ Y P (q) MDY,
9<(byok)f 9<(b10k)f
7 b, b, _ _ , b, b,
with tgfo(q) € qZlq], and ﬁgfo(q) € ¢ 'Zlg7']. (We will write tffo(q) = fffo(q) =1,

tbfo = Eb}o =0, for g Awor) [-)

We shall refer to the basis {T° ;’ Y as the 1-canonical basis and refer to the basis
{L?’O} the dual 1-canonical basis for T°® A V. Also we shall call the polynomials

t;’}o(q), t;’]’}( ), E;’fo( ) and ES}I(Q) the +-KL polynomials.

Proposition 9.5.2. Let k € N. The truncation map Tr : TP@ A® V — TP Ak V
preserves the standard, 1-canonical, and dual 1-canonical bases in the following sense:

forY = M,L, T and f € I™*" x I we have

YR, i fE) - fi+1) =1, fori>k+1,

bo) fk )
Tr (Yf )—

0, otherwise.

_ b0

Consequently, we have t:}o(q) = t;’é(}&(q) and ES}O( ) =Lip(q), forg, feI™™ x I

such that £(i) — f(i+1) = g(i) — i+ 1) = 1, fori >k + 1.



Chapter 10

Comparisons of -canonical bases in

different Fock spaces

In this chapter, we study the relations of :-canonical and dual :-canonical bases be-

tween three different pairs of Fock spaces.

10.1 Tensor versus g-wedges

As explained in , we can and will regard AFV as a subspace of V®¥, for a finite k.
Let b be a fixed 0™1"-sequence and k € N. We shall compare the 2-canonical and
dual 2-canonical bases of TP ® V®* and its subspace TP @ AFV .

k
Let f € I™ x I¥. As before, we write the dual +-canonical basis element Lgcb’o )

153
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in TP®V®* and the corresponding dual z-canonical basis element L?’O in TP@ AFV as

L;b,o% - ¥ gé?o’“)(q)Mg(b,okg (10.1.1)
geIm+nxJk
b, b, )
Lfo _ Z ggfo(q)]\/[;o_ (10.1.2)
gEIm+”><I_If_

The following proposition states that the -KL polynomials ¢’s in TP®AFV coincide

with their counterparts in TPRV®*,
Proposition 10.1.1. Let f,g € I™" x I%. Then (°0(q) = €% (q).
Proof. The same argument in [CLW2| Proposition 4.9] applies here. O

k
Let feI™"x] _’i Similarly as before we write the canonical basis element T’ }b’o )

in TP®V®* and the canonical basis element T;’ Y in TP® AF V respectively as

b,0F b,0% k
TP = N RO (g ), (10.1.3)
gelmtnx [k
b, b, ,
0= Y () MP. (10.1.4)
gelm+nxIk

Proposition 10.1.2. For f, g € I"™™ x I}, we have

b0 wi 1), (b,0"
tor (@) = D_ (=)™ 2 ) 6 (a).

g7 frw
TESE

Proof. Similar proof as for [CLW2, Proposition 4.10] works there.

Via identifying Vg, = M (0%)
k)

wL @, we have, as in [Brll, Lemma 3.8],
9lk]"Wo Wo

b0 _ (b,0%)
Ty _Tf_wék)Lwém.
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A straightforward variation of [Brll, Lemma 3.4] using (10.1.3)) gives us

b,0 _ (b,0%) _ (b,0%) (b,0%)
Tp? =T 20 Ly = Ztgj_wék) M{POL,
g

_ (b,0%) (b,0%)
=D > W MBI

7€8 gelImtnxIk

_ (b,0%) o= 1w(® b,0
= Z Z tg-7'7f~wék)(_q)( 0 )Mg

€6 geImtnxIk

_ (b,0%) twlFr b,0
- Z ( tg-nﬁwék)(_q) o )> Mg :
TESE

gelm+nxik
The proposition now follows by comparing with (10.1.4)). m

Remark 10.1.3. The counterparts of Propositions [10.1.1{ and [10.1.2] hold if we replace

V by W.

10.2 Adjacent :-canonical bases

Two 0™1"-sequences b, b’ of the form b = (b!,0,1,b?) and b’ = (b',1,0,b?) are
called adjacent. Now we compare the 2-canonical as well as dual 2-canonical bases in
Fock spaces TP and ﬁf‘b', for adjacent 0™1™-sequences b and b'.

In type A setting, a strategy was developed in [CLW2, §5] for such a comparison
of canonical basis in adjacent Fock spaces. We observe that the strategy applies to
our current setting essentially without any change, under the assumption that bl is
nonempty. So we will need not copy over all the details from loc. cit. to this paper.

Let us review the main ideas in type A from [CLW2l §5]. We will restrict the
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discussion here to the case of canonical basis while the case of dual canonical basis is
entirely similar. The starting point is to start with the rank two setting and compare
the canonical bases in the B-completions of V® W and W ® V. These canonical
bases can be easily computed: they are either standard monomials or a sum of two
standard monomials with some ¢g-power coefficients. The problem is that the partial
orderings on VW and WRV are not compatible. This problem is overcome by
a simple observation that matching up the canonical bases directly is actually a U-
module isomorphism of their respective linear spans, which is denoted by R : U SU.
So the idea is to work with these smaller spaces U and U’ instead of the B-completions
directly. We use U and U’ to build up smaller completions of the adjacent TP and
T, which are used to match the canonical bases by T}’ — T}’H}. Here the index shift
f + fU is shown to correspond exactly under the bijection ™™™ <+ X (m|n) to the
shift A — AU on X (m|n) in Remark below (which occurs when comparing the
tilting modules relative to adjacent Borel subalgebras of type b and b’).

Now we restrict ourselves to two adjacent sequences b and b’, where b! is nonempty;
this is sufficient for the main application of determining completely the irreducible
and tilting characters in category Oy for osp(2m + 1|2n)-modules (see however Re-
mark below for the removal of the restriction). We will compare two Fock
spaces of the form T* @ V@ W@ TP* and TP’ @ W& V ® TP*, where b* is nonempty.
The coideal property of the coproduct of the algebra U* in Proposition [2.2.4] allows

us to consider V@ W and W® V as U-modules (not as U’-modules), and so the type
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A strategy of [CLWZ2, §5] applies verbatim to our setting.

Remark 10.2.1. Now we consider V® W and W ® V as U’-modules (instead of U-
modules). The i-canonical bases on their respective B-completions can be computed
explicitly, though the computation in this case (corresponding to the BGG category
of 0sp(3|2)) is much more demanding; the formulas are much messier and many more
cases need to be considered, in contrast to the easy type A case of gl(1|1). Denote
by U, and U] the linear spans of these canonical bases respectively. We are able to
verify by a direct computation that matching the canonical bases suitably produces
a U-module isomorphism U, — Uj. (The details will take quite a few pages and
hence will be skipped.) Accepting this, the strategy of [CLW2, §5] is adapted to work
equally well for comparing the (dual) ¢-canonical bases between arbitrary adjacent

Fock spaces TP and T?'.

Remark 10.2.2. Let b = (b',0,1,b?) and b’ = (b!,1,0,b?) be adjacent 0™1"-
sequences. Let a be the isomorphic simple root of osp(2m + 1|2n) corresponding
to the pair 0,1 in b. Following [CLW2|, §6], we introduce the notation associated to

A€ X(m|n):

A, if (\,a)=0 A—2a, if(\a)=0
)\IL: )\U:

A—a, if (N a)#0, A—a, if (A, ) #0.

Then we have the following identification of simple and tilting modules (see [PS] and
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[CLW2|, Lemma 6.2, Theorem 6.10]):

Ly(\) = Ly(A"),  Tu(\) = Ty (AY),  for A € X(m|n).

10.3 Combinatorial super duality

For a partition g = (pq, p2, - . .), we denote its conjugate partition by ' = (uf, pb, . . .).
We define a Q(g)-linear isomorphism f : APV — AW (for each d € Z), or equiva-

lently define f: AV — AW by
1A, d)) = |\, d), for e P deZ.
The following is a straightforward generalization of [CWZ, Theorem 6.3].

Proposition 10.3.1. The map t : AV — APW (for each d € Z) orfj : A°V —

AW s an tsomorphism of U-modules.

Proof. 1t is a well-known fact that AV and AW as U-modules are both isomorphic
to the level one integrable module associated to the dth fundamental weight (by the
same proof as for [CWZ], Proposition 6.1]; also see the references therein).

Now the proof of the proposition is the same as for [CWZ, Theorem 6.3], which

is our special case with d = 0. O]

This isomorphism of U-modules § : AV — A®W induces an isomorphism of

U-modules

iy = 1d @ TP @ ACV—TP @ ACW.
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Let f € I™*" x 1. There exists unique A\ € P and d € Z such that |\, d) = Vy_.
We define f* to be the unique element in I™*" x I determined by f4(i) = f(i), for

i € [m+n], and Wf[u = |\, d). The assignment f ~ f% gives a bijection (cf. [CWZ])
31 Im X [0 s [T T (10.3.1)

If we write /\'}”0 = YA e Do TAp €] +dsed, € X" under the bijection

defined in (8.4.5)), then we have

m—+n
A=A Y TN e el € X (10.3.2)

i=1 1<j

The following is the combinatorial counterpart of the super duality on represen-
tation theory in Theorem [11.5.1] . We refer to [CLW2, Theorem 4.8] for a type A

version, on which our proof below is based.
Theorem 10.3.2. Let b be a 01" -sequence.

1. The isomorphism by, respects the Bruhat orderings and hence extends to an

isomorphism of the B-completions i : TP® A® V — TPR A® W.
2. The map O, commutes with the bar involutions.

3. The map ty, preserves the 1-canonical and dual 1-canonical bases. More precisely,

we have bp(MPY) = MR, t(T7°) = TR, and 1 (LY°) = LY, for | €

m+n 0
1 X I%°.
o Eb’l

4. We have the following identifications of 1-KL polynomials: Es}o(q) gufu(Q):

and t:}o(q) = t;’h’}h(q), forall g, f e I™™ x I
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Proof. The statements (2)-(4) follows from (1) by the same argument as [CLW2,

Theorem 4.8]. It remains to prove (1).

Recall the definition of the partial orderings in Definitions [8.4.4] and [8.4.5, To

prove (1), we need to show for any f, g € I™™" x I, g =ppo f if and only if

g% =p1 f% This is equivalent to say that f ~ g and )\;”0 =bo )\?’0 if and only if

fi~ g and A% <51 AL by Definitions 8.4.4/and 8.4.5

Since fp, : TP@AXV—=TPRA®W is an isomorphism of U-modules, by Lemmam,
we have f ~ g if and only if f% ~ ¢*. We shall assume that f ~ g, hence ff ~ ¢* for
the rest of this proof.

We shall only prove that /\';’0 =b0 )\?’O implies /\1;’1 =b,1 )\;’;1 here, as the converse

is entirely similar. We write

m+n—1

/\?’0 - )\5,0 = a(—€") + Z a; (el — e?ff) + am+n(e%jﬁ — )+ Z a;(€; — e?il),
=1 i=1

1= O

where all coefficients are in N and a; = 0 for all but finitely many 7. Set
AP0 = A?’O —a(—et)

for some h € I™t™ x I, Apparently we have )\';’O =b,0 )\2’0 =b,0 )\?’0.
Note that )\IZ’O actually dominates )\lg”o with respect to the Bruhat ordering of
type A defined in J[CLW2| §2.3]. Therefore following [CLW2, Theorem 4.8] and Re-

mark [9.1.2, we have

At o1 A (10.3.3)

On the other hand, by definitions of AZ’O and the isomorphism of f, we have that
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At = A% —a(—=€l"), and hence Ay <p,1 A%’ Combining this with (10.3.3) implies

that /\lg)h’1 =b,1 /\?;1. The statement (1) is proved. O



Chapter 11

Kazhdan-Lusztig theory of type B

and -canonical basis

In this chapter, we formulate connections between Fock spaces and Grothendieck
groups of various BGG categories. We establish relations of simple as well as tilting
modules between a BGG category and its parabolic subcategory. We show that U* at
q = 1 are realized as translation functors in the BGG category. Finally, we establish

the Kazhdan-Lusztig theory for osp(2m + 1|2n), which is the main goal of the paper.

11.1 Grothendieck groups and Fock spaces

Recall the Fock space TP in . Starting with an A-lattice T% spanned by the
standard monomial basis of the Q(q)-vector space TP, we define TP = Z ®4 TS where
A acts on Z with ¢ = 1. For any u in the A-lattice T%, we denote by u(1) its image
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in T.
Recall the category Oy from . Let Of be the full subcategory of Oy, consisting
of all modules possessing a finite b-Verma flag. Let [0£] be its Grothendieck group.

The following lemma is immediate from the bijection I™™™ < X (m|n) (A < fP)

given by (B4.1) and (B42).

Lemma 11.1.1. The map
V08 — TS [MaV)] o M),
defines an isomorphism of Z-modules.

Recall the category O%,o from . We shall denote O%ﬁ the full subcategory
of O%,o consisting of all modules possessing finite parabolic Verma flags. Recall in
, we defined the g-wedge spaces AFV and A*W. Recall a bijection X,%(;Jr —

I I X — fP0 from (8.4.5). Similarly, we have a bijection
Xpg — I < I8, A 20

(Here fPO is understood as the natural restriction to the part [m + n] x k.) Now the

following lemma is clear.

Lemma 11.1.2. For k € NU {oo}, the map

U [05)] — T8 ® APV, [Miyo(N)] = Mo (1),

defines an isomorphism of Z-modules.
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We have abused the notation W for all the isomorphisms unless otherwise specified,
since they share the same origin. For k& € NU{oo}, we define [[O%’ﬁ]] as the completion

of [O%’ﬁ] such that the extensions of W
U :[[0p5]] — TE® ARV, (11.1.1)

are isomorphism of Z-modules. Recall the category O%l from . We shall denote
O%’f the full subcategory of O%’l consisting of all modules possessing parabolic Verma
flags. Recall a bijection X%ﬁ — I x [ X+ fP! from (8.4.7). Similarly, we

have a bijection
k,+ m+n k bl
Xy — 1 X 1%, A= fy.

(Here fP!is understood as the natural restriction to the part [m + n] x k.) Now the

following lemma is clear.
Lemma 11.1.3. For k € NU {oc}, the map

V(0] = TR AW, [Myy (V)] = MR (D),
s an isomorphism of Z-modules.

For k € NU {00}, we define [[O%f]] as the completion of [O%’f] such that the

extensions of W
U {[0p7]) — T3 A Wy (11.1.2)

are isomorphism of Z-modules.
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Proposition 11.1.4. The truncation maps defined here are compatible under the

isomorphism 1 with the truncations in Propositions|9.4.4) and [9.5.2. More precisely,

we have the following commutative diagrams,

10551 —— TE& A< Vg (022 —X TES A Wy
lt“" lTT lttl lT’I‘
[050]] —— TE® Ak Vy [OF5]) —L— TS Ak W,

Proof. The proposition follows by a direct computation using the respective standard

bases {[Mp(N)]} and {[M7(N)]}, and applying Propositions [9.4.4, 9.5.2, and [7.4.1}

O

11.2 Comparison of characters

Let b be a fix 0™1"-sequence. For k € N, consider the extended sequences (b, 0*)
and (b, 1¥). Associated to the extended sequences, we introduced in Chapter [7] the
categories O?Z,J,Bil; and Og'ﬁ:)k, as well as the parabolic categories O%,o and Oﬁb’l, re-
spectively.

For A € Xf):a', we can express the simple module [L, ory(A)] in terms of Verma
modules as follows:

Loy = D anMpe(w)],  foraun € Z.

pEX (m+k|n)

Since the simple modules {L, gr) () = L%,o()‘) | A € X%:Sr also lie in the parabolic
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category O% 0, We can express them in terms of parabolic Verma modules as follows:

[L(b,ok)<)\)} = Z buA[M];%o(V)L for b, € Z.
uexfj
Recall that Mt%o(k) = Indzzp(QmHum%)Lo()\). By the Weyl character formula
b,0

applied to Lo(\), we obtain that a,, = b, for v, \ € X%:Sr. This proves the following.

Proposition 11.2.1. Let \ € ijar and let § € Xﬁf Then we have

[Lipory(A)] = Z aun[Mp o0y ()] = Z [ Mo (V).

peX (m+kln) VEXf’ar

L@ = D aeMp ()] = > ape[Me,(n)].

HEX (m|n+k) next
Now we proceed with the tilting modules. Let \ € Xg’a' and £ € Xff We can
express the tilting modules Ty, or)(A) and Tip or) (&) in terms of Verma modules as

follows:

TooyN] = Y. cMpory(w)],  for e € Z,
REX (m-+k|n)

T = > delMpu(n)], for dy € Z.
neX(m|n+k)

Recall the tilting modules T,f,o()\) and T&l(ﬁ) in the parabolic categories O%O and
O%,l' The following proposition is a counterpart of [CLW2, Proposition 8.7] with the
same proof, which is based on [So3| Br2]. Recall w(()k) denotes the longest element in

Sy

Proposition 11.2.2. 1. Let A € ijar, and write Tﬁo()\) =>

k
vext dnMpo(v).

Then we have d,\ = (—1)5(Twék))

TEG CT-V,w(()k)-)\'
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2. Let £ € X2 and write TE(€) = _on+ d;igMgl(n). Then we have
) ) ,1 7

neXy
¢ (k)
die = Poree, (10 o

TM,Wy

11.3 Translation functors

In [Brl], Brundan established a U-module isomorphism between the Grothendieck
group of the category O of gl(m|n) and a Fock space (at ¢ = 1), where some properly
defined translation functors act as Chevalley generators of U at ¢ = 1. Here we shall
develop a type B analogue in the setting of osp(2m + 1|2n).

Let V' be the natural osp(2m+1|2n)-module. Notice that V' is self-dual. Recalling

7.1, we have the following decomposition of Op:

Ob = @ Ob,xxv
XA

where x, runs over all the integral central characters. Thanks to Lemma [8.4.3| we
can set Op ., 1= Opy,, if wtp(A) = 7 (recall wty, from (8.4.3)). For » > 0, let SV be
the rth supersymmetric power of V. For i € I', M € Oy, ,, we define the following

translation functors in Oy:

FOM =pr, o o H(M&SV), (11.3.1)
e(a:)M = pr’Y+T(€i_%—€i+%)(M ® Srv)y (1132)
tM :=pr, (M ®V), (11.3.3)

where pr), is the natural projection from Oy to Oy .
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Note that the translation functors naturally induce operators on the Grothendieck
group (O8], denoted by fé:), ef{} , and t as well. The following two lemmas are

analogues of [Brll, Lemmas 4.23 and 4.24]. Since they are standard, we shall skip the

proofs.

Lemma 11.3.1. On the category Oy, the translation functors fo(éf), eg;), and t are all

exact. They commute with the T-duality.

Lemma 11.3.2. Let vy, ..., vy be the set of weights of S™V' ordered so that v; > v;
if and only if i < j. Let A\ € X(mn). Then My(\) ® SV has a multiplicity-free
Verma flag with subquotients isomorphic to My(A+11), ..., My(A+vy) in the order

from bottom to top.

Denote by Uy, = Z®4 U, the specialization of the A-algebra U, at ¢ = 1. Hence
we can view TP as a Uz-module. Thanks to (2.2.1)) and (2.2.2)), we know «( £ ) and

L(eg;)) lie in Uy, hence their specializations at ¢ = 1 in Uy act on T%.

Proposition 11.3.3. Under the identification [05] and TY via the isomorphism ¥,

the translation functors féj), eg;), and t act in the same way as the specialization of

fo(cz), eg;), and t in U".

Proof. Let us show in detail that the actions match for » = 1 (i.e. ignoring the higher

divided powers). Set

m-+n
A pp = Z ajeg-j € X(m|n) and v = wtp(N).

J=1
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Then we have Mp(A) € Op,. By Lemma |11.3.2] Mp(A) ® V has a multiplicity-

free Verma flag with subquotients isomorphic to My(A + €1), ..., Mp(A + €man),
My(A), Mu(A = €min), -5 Mp(A — €1). Applying the projection pr,_ . e 1)
T3 T2

to the filtration, we obtain that f,, My(A\) has a multiplicity-free Verma flag with

subquotients isomorphic to My (X £ ¢€;) such that a; = £(i — 1) respectively.

On the other hand, we have W(My (X)) = M}’b(l). Recall the formulas for the
A

embedding ¢ from Proposition [2.2.1, Suppose L(fai)M]E}\)<1) = >, Mp(1), for i € T.

It is easy to see that for M, ;3 to appear in the summands, we must have )\;’ + pp =
A+ pp £ ¢; such that a; = £(i — 3) respectively. Hence the action of ¢(f,,) on TS
matchs with the translation functor f., on [0f] under V.

Similar argument works for the translation functor e,,.

Applying the projection pr., to the Verma flag filtration of My (\) ® V', we obtain
that tMp(A) from has a multiplicity-free Verma flag with subquotients iso-
morphic to My(A) and My (A % ¢;) such that a; = F3 respectively. Then one checks
that the action of ¢(t) on TH matchs with the translation functor ¢ on [Of] under 0.

For the general divided powers, the proposition follows from a direct computation

using Lemma [11.3.2], [Brll, Corollary 4.25], and the expressions of L(fo(f)) and L(eg))

i

in (2.2.1) and (2.2.2). We leave the details to the reader. O
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11.4 Classical KL theory reformulated

The following is a reformulation of the Kazhdan-Lusztig theory for Lie algebra of type
B, which was established by [BB, BK| [Soll, [So3]; also see [Vo]. Recall for b = (0™)
we have TP = V2™,

Theorem 11.4.1. Let b = (0™) and let k € N U {oo}. Then the isomorphism

U : [[052]] = TR AR V5 in (11.1.1) satisfies
b,0 Z

U([Lo(N]) = Liso(1), U([TyoW) = Tho(1),  for A€ Xy

=T
Proof. For k € N, the theorem follows easily from Remark that the parabolic

Kazhdan-Lusztig basis is matched with the ¢-canonical basis. The case with £k = oo

follows from Proposition and Proposition [7.4.1] O

11.5 Super duality and Fock spaces

Theorem 11.5.1. [CLW2Z, Theorem 7.2] There is an equivalence of categories (called
. 00,A 0,A . 0,A 00,A
super duality) SD : Oy~ — Oy~ such that the induced map SD : [[O557]] — [[0577]]

satisfies, for anyY = M, L, or T,
SDIY (M) = [Yes(AY)],  for X e Xp3'.

Proposition 11.5.2. Let b be any 0™1"-sequence. Assume that the isomorphism
U [[0%%]] — TB® A® Vg in (TLL1) satisfies

U([Lg(N]) = Lia(D), V([T = Tho(1),  for de X5

73 73
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Then the isomorphism U : [[O{%A]] — TP® A® Wy satisfies

V) =I5, W(EEO) =T, forde X
Proof. By the combinatorial super duality in Theorem [10.3.2] we have the following
isomorphism

ib 1 TH® A Vg — TE® A Wy,
which preserves the +-canonical and dual +-canonical bases. Combining this with the

super duality, we have the following diagram:

(0557 —— TE® A® Vg (11.5.1)
lSD lbb
(0557 == T5® A> Wy,
where SD is the super duality from Theorem [11.5.1

With the help of the basis {[M}(A)]}, it is easy to check that the diagram (11.5.1)

commutes. Hence we have the following two commutative diagrams:

(Lo —— La(1) [Too (W] ——Ts(1)
[La (M) —— L?gl(l) [T (A7) HTE;;(U
The two horizontal arrows on the bottom give us the proposition. O

11.6 KL theory for osp

We can now formulate and prove the main result of Part 2, which is a generalization

of [CLW2, Theorem 8.11] (Brundan’s conjecture [Brl]) to the ortho-symplectic Lie
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superalgebra osp(2m + 1|2n).

Theorem 11.6.1. For any 0™1"-sequence b starting with 0, the isomorphism W :
[[0A]] = T in ([{T.1.1) (with k =0) satisfies

V(L) = (1), (W) =TR(1).  for A€ X(mln).

The following proposition is a counterpart of [CLW2, Theorem 8.8]. It can now be
proved in the same way as in loc. cit. as we have done all the suitable preparations

in §10.2] (as in [CLW2| §6]). We will skip the details.

Proposition 11.6.2. Let b = (b',0,1,b?) and b’ = (b',1,0,b?) be adjacent 0™1"-
sequences with nonempty b starting with 0. Then Theorem|11.6.1| holds for b if and

only if it holds for b'.

Remark 11.6.3. The assumption “nonempty b! starting with 0” in Proposition
is removable, if we apply the observation in Remark Subsequently, we can
also remove a similar assumption on b from Proposition [I1.5.2) and Theorem [I1.6.1]
Theorem|[11.6.1]in its current form already solves completely the irreducible and tilting
character problem on Oy, for an arbitrary b, since Oy is independent of b and the

relations between the simple/tilting characters in Oy, for different b are understood

(see Remark |10.2.2)).

Proof of Theorem [11.6.1. The overall strategy of the proof is by induction on n, fol-
lowing the proof of Brundan’s KL-type conjecture in [CLW2]. The inductive proce-

dure, denoted by KL(m|n)Vm > 1 = &KL(m|n + 1), is divided into the following
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steps:
1KL(m + k|n) Vk = KL(m|n|k) Vk, by changing Borels (11.6.1)
— 1KL(m|n|k) Vk, by passing to parabolic (11.6.2)
= 1KL(m|n|x), by taking k — oo (11.6.3)
= 1KL(m|n + o), by super duality (11.6.4)
= KL(m|n + 1) Vm, by truncation. (11.6.5)

It is instructive to write down the Fock spaces corresponding to the steps above:

Ve @ W vE — VI @ WO @ VEF vk
— V¥ @ W @ AFV Vi
= V¥ @ W @ A®V
= V¥ @ W @ AW

— VO @ W)y > 1.

A complete proof would be simply a copy from the proof of [CLW2, Theorem

8.10], as we are in a position to take care of each step of ((11.6.1)—(11.6.5). Here we

will be contented with specifying how each step follows and refer the reader to the
proof of [CLW2|, Theorem 8.10] for details.
Thanks to Theorem [5.3.2} the base case for the induction, «KL(m|0), is equivalent

to the original Kazhdan-Lusztig conjecture [KL] for so(2m + 1), which is a theorem
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of [BB| and [BK] (and extended to all singular weights by [Soll); The tilting module
characters were due to [So2, [So3].

Step is a special case of Proposition .

Step is based on (Propositions|10.1.1}and [10.1.2]) and §11.2f (Propo-
sitions IT.2.7] and IT.2.21

Step is based on Proposition

Step is based on Proposition

Step is based on Propositions and (with & = 1 therein).

The theorem is proved. O

Remark 11.6.4. There is a similar Fock space formulation for various parabolic sub-
categories of 0sp(2m + 1|2n)-modules, which can be derived as a corollary to Theo-

rem [11.6.1) and Remark [11.6.3] Theorem [11.6.1] also raises the natural question on

Koszul graded lift for Oy; cf. [BGS].



Chapter 12

BGG category of
0sp(2m + 1|2n)-modules of

half-integer weights

In this chapter we shall deal with a version of BGG category for osp(2m + 1|2n)
associated with a half-integer weight set ‘X (m|n). The relevant quantum symmetric
pair turns out to be the r — oo limit of (Us,, UZ) established in Chapter [6] This
chapter is a variant of Chapters in which we will formulate the main theorems

while skipping the identical proofs.
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12.1 Setups for half-integer weights

Let us first set up some notations. Switching the sets of integers and half-integers in

(8.1.1), we set

1
P=U . =N+= I

7. 12.1.1
: (12.1.1)

1

Recall from Chapter @ the finite-rank quantum symmetric pairs (U, UZ) with

T

embedding 7 : UJ — Uy,. Let

U’ = [_]()Ufn, U .= [_jOUQT.

The pair (U, U?) forms a quantum symmetric pair as well, with the obvious induced
embedding j : U’ — U. Let II := (J 2 Iy, be the simple system of U. Recall the
intertwiner Y™ of the pair (Us,, U?). Note that T ™" = Y. for 4 € NIl,,, and

this allows us to define

Y, = lim T,  for 4 € NIL

r—00

We then define the formal sum (which lies in some completion of U™)
Ti=> T, (12.1.2)
HENIIT

which shall be viewed as a well-defined operator on U-modules that we are concerned.

Introduce the following set of half-integer weights

'X(mln) := Z(Z + %)61 + Z(Z + %)ej. (12.1.3)

i=1 j=1
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Let b = (by,...,byutn) be an arbitrary 0"1™-sequence. We first define a partial
ordering on I"™*", which depends on the sequence b. There is a natural bijection
I« '"X(m|n), [ — )\]'? and A — [P, defined formally by the same formulas
(8-4.1)-(8-4.2) for the bijection I™™ <+ X (m|n) therein, though I here has a different
meaning.

Recall the Bruhat ordering =<}, given by on b, and hence on "X (m|n).

We now transport the ordering on ‘X (m|n) by the above bijection to I"*".

Definition 12.1.1. The Bruhat ordering or b-Bruhat ordering <y, on I"™*" is defined

as follows: For f, g € I, f <y, g & AR < AP. We also say f ~ g if A} ~ AP,

A BGG category 'Oy, of 0sp(2m+1|2n)-modules with weight set ' X (m|n) is defined
in the same way as in Definition [7.3.1, where the weight set was taken to be X (m|n).

Again, the category 'Oy, contains several distinguished modules: the b-Verma modules

My, (), simple modules Ly (A), and tilting modules Ty, (), for A € X (m|n).

12.2 Fock spaces and j-canonical bases

Let V := 3" ., Q(q)v, be the natural representation of U. Let W := V* be the re-
stricted dual module of V with the basis {w, | a € I} such that (wa,vs) = (—¢) “Oap-
By restriction through the embedding 3, V and W are naturally U’-modules. For a
given 0™1"-sequence b = (b1, by, ..., byin), we again define the Fock space TP by the

formula (8.2.1) and the standard monomial basis M, for f € I"™*" by the formula
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(8.2.2)). Following , we define the B-completion of the Fock space TP with respect
to the Bruhat ordering defined in Definition [12.1.1}

Following and we define an anti-linear involution
Y, =Ty T — ']/I\‘b,
where T is the operator defined in ((12.1.2]), such that

Uy (My) = Mp+ ) rgp(q)My,  for rp(q) € A.

9=uf

Therefore we have the following counterpart of Theorem m (here we emphasize
that the index set I here is different from the same notation used therein and U7 is

a different algebra than U").

Theorem 12.2.1. The Q(q)-vector space TP has unique V,-invariant topological bases
{TP | fel™"} and {L}|fel™"}

such that
TP =M+ ) to@)My, Ly =M+ Y tp(a)My,
9=3bf 9=3bf

with t9:(q) € qZlq), and €2:(q) € ¢ 'Z[qg"], for g =u f. (We shall write t3;(q) =

:(q) =1, tgr(q) = Lp(q) =0 for g Zv f.)

{Tp | f eI} and {L} | f € I™™"} are call the j-canonical basis and dual
9-canonical basis of TP, respectively. The polynomials t;’f(q) and ﬁ;’f(q) are called

J-Kazhdan-Lusztig (or 3-KL) polynomials.
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12.3 KL theory and j-canonical basis
Starting with an A-lattice T% spanned by the standard monomial basis of the Q(q)-
vector space TP, we define TS = Z ®4 T where A acts on Z with ¢ = 1. For any u
in the A-lattice T%, we denote by u(1) its image in T%.
Let ‘Of be the full subcategory of 'Oy consisting of all modules possessing a

finite b-Verma flag. Let [’ ObA] be its Grothendieck group. The following lemma is

immediate from the bijection I <> 'X(m|n).

Lemma 12.3.1. The map
v [05] — Tz, [My(A)] = MR.(1),
defines an isomorphism of Z-modules.

Denote by U, the A-form of U’ generated by the divided powers, and set U7, =

Z @4 UY.

Remark 12.3.2. The map V¥ is actually a Uj-module isomorphism, where U?, acts on

[’ Obﬂ via translation functors analogous to Proposition |11.3.3]

We define [['Of]] as the completion of ['Of] such that the extension of ¥
v [[0p]] — T

is an isomorphism of Z-modules. We have the following counterpart of Theorem12.3.3

with the same proof.
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Theorem 12.3.3. For any 0™1"-sequence b starting with 0, the isomorphism W :

[[og]] — Tb satisfies

T([Lu(N)]) = L (1), V([T(N)]) = Tp(1), for X €' X(mln).
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