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“Itis not the critic who counts; not the man who points out how
the strong man stumbles, or where the doer of deeds could have
done better. The credit belongs to the man who is actually in the
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at the best knows in the end the triumph of high achievement,
and who at the worst, if he fails, at least fails while daring
greatly, so that his place shall never be with those cold and timid
souls who know neither victory nor defeat”

- Theodore Roosevelt

address at the Sorbonne, 1910



Abstract

This dissertation describes tache Filter Modelan analytical framework for cache
system analysis. This framework provides a language and formal notation that enables
researchers to reason and communicate about systems in an insightful new way. There are
four major components that form the framework. First, Ti&pec notatioms a formal way
for researchers to communicate with clarity about memory references generated by a
processor. Second, the concept ofeguivalence classf memory references provides an
abstraction for eliminating artifacts due to chance address bindings or specific inputs.
Third, the functional cache filter modalses the TSpec notation and equivalence class
concept to allow designers to more clearly understand the effects of cache systems on
particular memory references. Fountlew metricgprovide more insight into cache system
behavior than current measures such as hit rate or average memory access time. This
dissertation presents the cache filter framework in detail and demonstrates its use on

several example kernels.
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Chapter 1

Introduction

This dissertation describes tache Filter Modelan analytical framework for cache
system analysis. This framework provides a language and formal notation that enable
researchers to reason and communicate about systems in an insightful new way. There are
four major components that form the framework. First, Ti&pec notatioms a formal way
for researchers to communicate with clarity about memory references generated by a
processor. Second, the concept ofeguivalence classf memory references provides an
abstraction for eliminating artifacts due to chance address bindings or specific inputs.
Third, the functional cache filter modalses the TSpec notation and equivalence class
concept to allow designers to more clearly understand the effects of cache systems on
particular memory references. Fountlew metricgprovide more insight into cache system

behavior than current measures such as hit rate or average memory access time.



1.1 Cache System Hierarchy

Figure 1 depicts a simplified diagram of the portion of the computer system closest to
the CPU. The model, notation, and measures discussed in this dissertation may be used for
other levels of the memory hierarchy, but we focus ondhehing systermA cache is a
memory located close to the CPU. Whenever the CPU issues a memory reference, the
cache checks to see if it contains the appropriate valumadhe hitoccurs when the value
is found in cache. Aache mis®ccurs when the value is not in cache and must be fetched
from a cache farther away from the CPU or from main memory. Caches are faster than
main memory, and so more expensive. For that reason they are also smaller than main
memory. Caching systems typically consist of a cache hierarchy, with one or more caches
arranged in sequence to service the CPU. The smaller, faster caches are closer to the CPU

with the first level almost always on the same chip.

|-Cache

L2 Main

CPU
Cache

A
v

Memory

D-Cache

Cache System

FIGURE 1: Cache System Hierarchy

Caches are arranged as an array of memory locations. Typically, they exploit the
principle of locality of referenceby fetching a fixed amount of data contiguous to the

referenced value. The assumption is that whenever a memory location is referenced, it is



likely that the referenced location or nearby locations will also be referenced in the near
future. Caches can vary widely in their organization, but we concentrate here on direct
mapped, set associative, and fully associative caches of varying size with an LRU line
replacement policy.

The associativity of a cache determines how the memory locations (lines) are arranged
and accessed. Indirect mapped cachen address will map to only one line in the cache.
Usually that mapping iéaddress)mod (number of lines in the cachdh aset associative
cache an address will map to a set of lines. The number of lines in that set will depend on
the associativity of the cache. For example, a two-way set associative cache will have two
lines in each set. The mapping for the address in associative caches is usddiiyss
mod (humber of sets in the cachén afully associative cachan address can map to any
line in the cache. The range of cache associativities is really a continuum of levels of set
associativity. Direct mapped caches can be thought of as having an associativity of one.
Fully associative caches withlines can be thought of as having an associativity of

The line replacement policy of a cache determines the line of the data that will be
removed from a cache when it becomes completely full. Iéast Recently Used (LRU)

replacement policy replaces the line that was least recently referenced.

1.2 The Cache Design Problem

The work of today’s cache designer is becoming increasingly difficult. It is well-
accepted that there is a processor-memory performance gap that must be compensated for
with the caching system [Bur95, Hen96, Jou97, Wul94]. Processor speeds are increasing

much faster than memory speeds. While microprocessor performance has improved



steadily at an annual rate of 55% since 1987, DRAM performance has increased at an
annual rate of less than 10% [Hen96]. This disparity has caused memory to become the
performance bottleneck for many applications. Not only is the current problem serious,
but it is growing at an exponential rate.

Every time there is an increase in the speed of a microprocessor, the cache and
corresponding memory system must be redesigned to meet the need for faster delivery of
instructions and data. There continues to be research and improvement to cache
functionality. Smith [Smi82] and Hennessy [Hen96] provide an excellent survey of this
research. Typically it focuses more on improvements to the cache system itself and less on
the process, or underlying theory behind cache design. The most common approach is to
propose a modification to the cache hierarchy and then judge that design by running
benchmarks through a simulator to determine “hit rates” or average memory access times.

While the above approach has yielded many improvements to the performance of
caching systems, it is primarily ad-hoc experimentation with little theory to guide new
designs. This hampers the ability of the cache designer to effectively design to specific
performance points, or fully understand the impact of research results on actual systems,
or even to know if a slight variant of the proposed modification would have better
performance. For example, the interaction between specific features such as out-of order
execution, branch prediction, pre-fetching, or cache replacement algorithms in the real-
time execution of a user application is unclear. Optimizing each one separately may not
necessarily lead to a global optimum. In addition, it is difficult to control all the
parameters one needs to perform an experiment to isolate the effects of any one of these

features.



A final complicating factor is that the current approach to cache design depends on
benchmarks and a simulation infrastructure that are non-standard (where different
researchers use different compilers, linkers, instructions sets, etc.). These benchmarks and
simulators were developed primarily for the purpose of evaluating processor architectures.
While being extremely useful and appropriate for analyzing the effects of many CPU
optimizations, they do not provide a unified or complete experimental infrastructure that
includes memory hierarchy design. An analysis framework, such as proposed here, would
allow researchers to abstract away from a particular CPU environment to communicate
ideas about the fundamental characteristics of memory systems.

In addition to the lack of unifying theory, cache design is complicated by a lack of
measures appropriate for evaluating modern systems. For exampl€onmputer
Architecture: A Quantitative Approachy Hennessy and Patterson [Hen96], caching
systems are evaluated using metrics such as (1) the aggregseaate or fraction of
accesses that cannot be serviced by the cache, (2) the execution time of a benchmark, and
(3) average memory access time. These metrics are considered by many to be appropriate
cache evaluation metrics; this text is a widely used architecture text for both graduate and
undergraduate course work.

There are problems with using these measures, however. Evaluating a caching system
based only on hit rate ignores the fact that components comprising main memory no

longer have a uniform access time for every sequence of requests. Features such as



fast- page modeallow certain combinations of references to be retrieved faster than
others. If some accesses are faster than others, it is possible for a cache with a lower hit
rate to provide better performance than a second cache with a higher hit rate. The first
cache’s misses could be faster memory accesses and require less total time to service than
the misses of the second cache. Evaluating based only on average memory access time
ignores the fact that memory accesses are generally bursty in nature and difficult to spread
out evenly.

Metrics that make use of the characteristics of the references presented to the cache
provide greater insight and guidance in the design of cache systems than hit rate, average
memory access time, or even execution time. This assertion is motivated by a simple
observation: two caches with precisely the same hit rate (or average memory access time
or execution time) may achieve that performance in quite different ways. These
differences have important implications for certain aspects of modern cache design, multi-

level caching systems for example.

1.3 A Motivating Example

A brief example will clarify the shortcomings of hit rate. Consider a loop that accesses
memory for two vector elements and two global variables in each iteration. All other code

and data references reside in registers. Let 0 and N be the addresses of the global data and

1 Fast-page mode devices behave as if implemented with a single, on-chip cache line, or page. A
memory access falling outside of the address range of the current page forces a new one to be set

up, a process that is significantly slower than repeating an access to the current page.



let 1 through N-1 represent the addresses of the vector elements. The expression below
represents this loop within a second larger loop.

(O,N,1,2,0,N,3,4,0,N,5,6,..., N-2, N-1, 0, N)*.
The first iteration of the inner loop generates the addresses 0, N, 1, 2. The ()* indicates an
indefinite number of repetitions of the pattern inside the parentheses, as in Kleene’s *.
While this is a contrived example reference sequence, it is useful to illustrate a few points.

The references that miss in steady state when this example is presented to a direct-
mapped cache of size N and a fully associative, LRU cache of size N are the same in
number, but have completely different characteristics. In the direct-mapped cache, 0 and N
conflict, but all the references to the vector fit in the cache. As a result, the misses of the
direct-mapped cache are (0, N)*. For the fully-associative LRU cache, however, 0 and N
stay in the cache, but the vector references always miss. The resulting misses are (1, 2, 3,
4,...)*. In both cases there are exactly two misses per loop iteration after the caches are
primed, but the references that miss in the direct-mapped cache are easily captured by a
small victin? cache. Those that miss in the fully-associative cache need an N-1 size
structure to capture.

This does not mean the direct-mapped cache is generally better, but rather that the
effectiveness of a caching system is not fully described by hit rate. This is true even for a
single-level cache hierarchy. In the above example, if the two reference streams are going
directly to a main memory composed of DRAM with fast-page mode, it may be preferable

for it to see the reference stream generated when a fully-associative cache is used. Fast-

2 A victim cache is a small fully associative cache at the output of another larger cache that

captures the conflicts (or victims) of the larger cache. See [Jou90] for details.



page mode devices behaag ifimplemented with a single, on-chip cache linepage A

memory access falling outside the address range of the current page forces a new one to be
set up, a process that is significantly slower than repeating an access to the current page.
Because vector references will often hit in the row- or page-buffer, where they can be
accessed more quickly than access sequences without spatial locality, the sequential

accesses may be faster than the accesses to N if N is on a different page than 0.

1.4 The Cache Filter Model

The analysis approach described here is inspired by viewing a cache as a filter. As
depicted in Figure 2, a cache filters out the references that hit and transforms an input set
of references into another, hopefully sparser, output set. Thus, designing memory
hierarchies can be seen as akin to designing a compound optical lens: no single lens has all
the desired properties, but by cascading several lenses, optical designers can achieve
amazing acuity. Likewise, we can view a cache as a filter that transforms an input
sequence of data references into an output sequence representing a subset of its input. By
composing a series of such caches, as many references as possible are filtered from the
request string before it is presented to main memory. To get the best overall performance,
the goal of a particular level of cache is not only to filter out the most references, but to
“shape” the unfiltered references in a way that makes the next level most effective. Then,
for example, in the contrived example presented earlier, a cache configuration could be

chosen to maximize the effectiveness for this reference sequence of main memory (by



choosing a fully-associative cache), or the effectiveness of a second level cache (by

choosing the direct mapped cache).

T=<a a, &, &, ..>| cache |T =<a A a,..>
filter | S
S = nitial cache state | f(T, S) [ s' = final cache state

FIGURE 2: The Cache Filter Model

To formalize what is meant by the Cache Filter Model, a few definitions are necessary.
We define areference stringo be the list of addresses (read or write) presented to the
memory system, and denote it as a sequereg, a;, ay, 8z, ay, ...>. The subscript
indicates thgositionin the reference string, and is only loosely related to wall-clock time.
At first it may seem thah, and the filtereda,' will always be the same address. In most
cases, this is true, but if an entire line is fetched to fill the cache, the order and value of the
address may change. The termeerence stringreference sequencandtrace are used
interchangeably, and are denoted by the capital [Etter

We use the symbadl to indicate the position of a reference removed by a cache filter.
This allows correlation between the input and output reference strings. For instance, the
input<a, a, a>generates the outpsla, A, A> for most caches.

We view the cache as a filter functidi,on the input of the reference strinfy,and the
state of the caché&. The output of a filter functiof(T;S) consists of an output tracg;,
and an output stat&' (represented as the pdi;,S'). Figure 2 illustrates this relationship.

The trace-only portion of the output of a filter function is dendtb@S), and the state-

only portion is denoteti(T:S).



10

In analogy to signal processing, the reference string corresponds to a signal and the
cache to a filter. Comparing a cache’s input and output signals reveals what kind of
filtering effect the cache has on that input. The signal processing analogy has appeal, but it
only goes so far: tools like Fourier analysis and Laplace transforms don’t immediately
apply, because caches are not linear or time-invadant.

Because traditional transforms do not give significant insight into cache design, we
developed a new transform that is specific to cache design and simplifies modeling of the
cache in the new domain. The domain that we transform reference strings to is the TSpec
notation described in Chapter 2. Viewing reference strings as combinations of primitive
reference patterns allows us to determine the overall effect of a cache on that reference

string in a straightforward manner.

1.5 Summary

We claim it is possible to design and evaluate cache memory systems more effectively
than is currently done. Specifically, we propose an analytical framework for cache design
that provides a common notation for expressing the memory references of a program, a
functional cache filter model for comparing traditional cache hierarchy effects, and new
instantaneougvaluation metrics that give greater insight into the operation of caches. The
functional cache filter model is made possible by the concept of an equivalence class of
memory references that provides an abstraction for eliminating certain types of random

address placement effects. In addition to aiding in the design of improved cache systems,

3 Linearity requires that an input equal to the sum of two other inputs generates an output equal to
the sum of the corresponding two outputs. In terms of a cache, this would require that earlier ref-
erencesot affect the output of later references, meaning that the cache has no state.



11

we hope this approach will lay a foundation for more rigorous analysis of other
components of the computer system.

Our intent here is to demonstrate that this type of analysis can be done. The analysis
itself can be facilitated in many ways through the use of automation, or software tools
designed to assist the researcher. Tools to generate TSpec from source code, perform the
filter function table look up, perform the state-trace merge, or compute the alternative
measures are all examples of such automation. While these tools are beyond the scope of
this dissertation, they will be mentioned when appropriate and are discussed further in the

Future Work section of Chapter 6.

1.6 Organization of the Dissertation

This dissertation describes an analytical framework for cache analysis consisting of
four components: the TSpec notation, the concept of an equivalence class, a functional
filter model of cache behavior, and new cache metrics. The dissertation is organized
around these four components. Chapter 2 describes the TSpec notation and the
equivalence class concept in detail, including a grammar for the notation. Chapter 3
describes the functional filter approach to cache analysis. Chapter 4 describes two new
metrics for cache evaluation, instantaneous locality and instantaneous hit-rate. Chapter 5
demonstrates application of the framework on several kernel examples, and a multi-level
cache example. Chapter 6 is the concludes the dissertation. The functional filter dictionary,
whose use is described in Chapter 3, is available in Appendix A. Appendix B is a listing of
the C code, assembly language and TSpec for all examples used in the dissertation. A

glossary of the TSpec notation, a list of Symbols, a list of functions, and a list of figures
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are available in the front of the dissertation for quick reference. Related work is addressed

at the end of each chapter.

1.7 Related Work

Other researchers have also explored better ways to design and analyze caches through
new models or measures. Voldman and Hoevel [Vol81] describe an adaptation of standard
Fourier analysis techniques to the study of cache systems. The cache is viewed as a “black
box” boolean signal generator, where “ones” correspond to cache misses and “zeroes” to
cache hits. The spectrum of this time sequence is used to identify tight loops accessing
regular data structures and the general structure of instruction localities. Thiebaut [Thi89]
models programs as one-dimensional fractal random-walks and uses the model to predict
the behavior of the miss ratio curve of that program in fully-associative caches of varying
sizes. Thiebaut and Stone [Thi87] develop an analytical model—“footprints in the
cache™—for cache-reload transients to describe the effects of context switches. Lebeck
and Wood [Leb94] describe a cache profiling system and show how it can guide code
modifications that reduce cache misses.

McKinley and Temam [McKK96] take a step towards more detailed analysis by
qguantifying the locality characteristics of numerical loop nests. Their locality
measurements reveal important differences between loop nests and whole programs, and
refute some popular assertions, but present results as histograms of the locality
distributions for the parts of programs in question. In contrast, our approach provides

much more than summary information.
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Jacob, Silverman, Mudge and Chen [Jac96] develop a mathematical model for
determining the optimal size of each level of a cache hierarchy given a certain budget by
applying a specific, parameterized model of workload locality. The model is verified
against exhaustive simulation of two case studies and in all but one case, the model
performs within 5% of optimal. This model is useful for quickly determining the optimal
cache sizes for a hierarchy, but relies on a workload characterization model of locality that
may not be appropriate for all applications. In addition, no information about other aspects
of the caches, such as associativity or line size, is provided. Our approach characterizes
the reference string in addition to several aspects of the cache configuration.

Two recent frameworks share many of the same goals as ours. Ghosh and Martonosi’'s
Cache Miss Equations (CMEs) [Gho98] perform compile-time analysis of loops to
generate a system of linear Diophantine equations describing the program’s memory
behavior such that solutions to these equations represent potential misses in the code.
CMEs allow for precise, mathematical, compile-time analysis of cache misses in cache
memories of arbitrary associativity, but are currently limited to analysis of loops without
interior control-flow structures. Harper, Kerbyson, and Nudd [Har99] extend the cache
footprints concept [Thi87] and develop a mathematical framework that permits the
determination of cache miss ratios as well as conflicts within loops. As in our work, they
abstract away chance address bindings using equivalence classes (which they call
“translation groups”). Unfortunately, as with CMEs, the analysis is limited to nested loops
without internal control-flow constructs. The caches-as-filters model is therefore more
advanced in terms of providing a general framework in which any program behavior can

be examined.



Chapter 2

TSpec: A Notation for Memory Traces

2.1 Introduction

Interpreting patterns in a processor’s output references is complicated by the lack of a
succinct notation for human use. Since a reference trace is simply a long list of addresses,
it is difficult to see the underlying patterns inherent in it. The source code, while simpler
to look at, does not include the effects of compiler optimizations such as loop unrolling, or
of linker/loader/compiler/variable address mappings and so can be misleading as to the
actual references and order seen by the memory system. To simplify communication of
traces between researchers and to understand them more completely, we have developed a
notation for representing them that is easy for humans to read, write, and analyze. This
notation is called Specfor tracespecification notation.

TSpec has been designed for use in memory hierarchy design with four goals in mind.
First, it is intended to assist in communication between people, especially with respect to
understanding the patterns inherent in memory references traces. Second, it is the object

on which the cache filter model operates. Specifically, the trace and state of the cache are

14
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represented in TSpec, these are then the inputs for a function that models the cache, and
the result of that function is a modified trace and state that are also represented in TSpec.
Third, it supports the future creation of a machine readable version that could be used to
generate traces to drive simulators, or for use in tools (such as translators from assembly
language to TSpec). Finally, it can be used to represent different levels of abstraction in
benchmark analysis.

This work focusses on four different levels of abstraction. Current cache analysis is
based on single traces, so TSpec can specify an individual trace. However, there are many
accidents of address binding by the compiler or loader in such a trace. It is desirable to be
able to analyze all the traces that differ only in those artifacts of binding, or as we call it,
the equivalence clas®f traces that differ only because of those binding artifacts. So
TSpec has been designed to describe the abstraction of an equivalence class under varying
address bindings. Similarly, there are many traces that result from the execution of a single
program that, given different input data, follows different execution paths through the
program. Here again, TSpec can represent this abstraction. Finally, there exists a set of
traces that result from both different address bindings and different input data.

Section 2.2 through Section 2.4 which follow describe the TSpec constructs that are
used to describe a single trace, where all the address bindings and the path through the
program are known. Descriptions of the other levels of abstraction and the TSpec

constructs to support them begin in Section 2.5.
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2.2 TSpec Constructs for Single Traces

A trace specifications a formal rule that describes a specific trace. It consists of a set
of definitionsfollowed by atrace list Definitions can be eithevariable or subtrace
definitions. A trace list is a concatenation of trace atoms, the most basic TSpec construct,
surrounded by angle brackets (<>). Trace atomsaneatenatethy separating each trace
atom with a comma. The simplest example of a trace specification has no definitions and
only one trace in the trace list. It is a list of address references such as:

<100, 200, 104, 300, 108, 100, 204, 104, 304, 108, 100, 208, 104, 308, 108>

A trace atommay be (1) a literal, (2) the symbal (3) a variable, or (4) a subtrace. A
literal is an integer with an optional attribute tag. The integer represents an address, and
may be specified in decimal or hexadecimal; hexadecimal numbers will be preceded by
Ox. Attribute tags other than read/write are not defined by TSpec, but are intended to
connote code vs. data, system vs. user, etc. Non-null attribute tags will be represented by
an underscore and one or more letters appended to the end of an integer representing the
address — thud00_r is an integer/tag pair. The read vs. write attribute will be used
consistently throughout this document. Read is denoted by _r and write by _w.

A is used as a placeholder for an integer/tag pair. Its primary role is to maintain the
relative order of the integer/tag pairs, which represent the event of a memory request.
SinceA is a placeholder for a memory request, and not a clock tick, it does not represent
the passage of time. There may be more wall-clock time pass between two consecutive
integer/tag pairs than two that are separated by one or Ar€his would simply mean
that the memory requests represented by ileoccurred closer together than the

consecutive integer/tag pairs.
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Variables and subtraces are constructs that allow regular patterns of literals to be
described compactly. Variables are described more fully in Section 2.3, and Section 2.4.1
and subtraces in Section 2.3.2.

In the paragraphs that follow we will use two different words to describe what is
represented by a TSpec definition. The first is “elaborate”, which we use to refer to the set
of all traces that a TSpec specification could be used to represent. The second is
“execute”, which we use when we produce a specific trace from the set of all traces.
Formally, an instance of a TSpec definition represents a set of traces - all the traces that
result from its elaboration. Informally, we speak of “executing” the definition to produce a
particular trace in this set. There is a certain amount of useful ambiguity in this duality of

terminology. The overall intent should be clear, however, from the context.

2.3 Simple Variables and Operations on Variables

More will be said about variables later, but here we introduce the basic concept and the
simple operations on them. Yariable represents a regular sequence of addresses and is
specified by a base address with the appropriate attribute, and an increment or decrement
(stride). An example of a variable definitionX§400_r, 8) x is the name of the variable,

400 is the value of the base address, _rindicates that it is a read, and 8 is the value of the
increment. A variable can baitialized (denoted!x) to set its current value to its base
address. A variable can also pest-incremente@denotedx,) to add the increment to its
current value opost-decremente(ienotedx_) to subtract the increment from its current
value. Each time a variable occurs, it generates an address unless it is being initialized.

Note that the + and - operators are subscripts. The reason for this will be explained later.
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2.3.1 Definite Iteration

A list of trace atoms can be grouped together with parentheses and an optional label.
In this way the group is set apart to assist in pattern identification, or to be operated on.
The format of a parenthesized group(i0_r, 200_r, 300_rpr ( ageL 100_r, 200_r,
300_r) ageL Or LABEL:(100_r, 200_r, 300_r):LABEL Both possibilities are included
because there are times when one will be significantly easier to read than the other. The
notation that results in the clearest specification is the one that should be used. Note that a
LABEL must be unigue within a TSpec specification.

A trace atom or a group of trace atoms can be repeated withettaion operator, *.
For example, x*4 repeats the value represented by X, 4 tingest), *4 generates the
value of x and post-increments x four times. If the initial valuexofvas 100 and the
increment 4, the above would generate the tret@0_r, 104 r, 108 r, 112 r and the

next time x was used, it would generate the address 116 _r.

2.3.2 Subtraces

Often it is useful to separate a part of a trace that is reused frequently and use a label to
refer to it rather than specifying the whole trace. This makes larger patterns in the
reference stream more obvious. It is also useful to have parameters for these subtraces in
the instances where subtraces are the same except for one or two positions. The definition
of a subtrace has the form:

s(pl, p2) =<100 r, p1, 104 r, p2, 108 r>

The name of the subtrace is s. pl and p2 are parameters to the subtrace and following

the = symbol is simply another trace specification. When using the subtrace in a trace, the
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% operator indicates the subtrace should be fully elaborated (i.e., substituted as a whole
into the trace). The specification

s(pl, p2) =<100 r, p1, 104 r, p2, 108 r>
<Is, %s(200_r, 300_w), !s, %s(204 _r, 304 _w)>

would generate the following trace:

<100 1, 200, r 104 _r, 300_w, 108_r, 100 _r, 204 _r, 104 1, 304_w, 108 _r>

The parameters of the subtrace are substituted textually, and then evaluated when that
element of the subtrace is executed. This allows variables to be used as parameters; these
variables are then evaluated in the context where they are substituted, and thus can
evaluate to different addresses. For example, the above trace could also be generated by
the following trace specification:

s(pl, p2) =<100 r, p1, 104 r, p2, 108 r>;

f(200_r, 4); t(300_w, 4);

<If, It, Is, %s(f,, t,), !s, %s(f,, t,)>

There are two modes of execution for a subtrace. The first is to run the subtrace from
beginning to end without any intervening references. This is the mode demonstrated in
both of the previous examples, is callachning the subtrace, and is denoted with a %
symbol preceding the name of the subtréés(f,, t,)).

The second mode of address generation for a subtrace is pal&idga subtrace and
is denoted with an @ symbol before the name of the subt@=£{1, p2) Each subtrace
has a control pointer which operates like the control pointer of a program. When a
subtrace is “run”, the control pointer moves from the beginning to the end of the subtrace

as each element is executed. When a subtrace is pulsed, the control pointer is moved one

element and only the address(es) associated with that element are generated. The next
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time the subtrace is pulsed, the control pointer is moved one more element, and so on. To
set the control pointer of a subtrace to its beginning the subtrace is initialized with !, just
like a variable.

d =<200 r, 300 _r, 204 r, 304 r>;

c(100_r, 4);

<!, (¢, ¢, @d, ¢, @d, ¢)*2>

The above specification generates the trace below.

<100_r, 200 r, 104 1, 300_r, 108 r, 100 _r, 204 r, 104_r, 304 r, 108_r>

2.3.3 Merge

The merge(denoted t1 & t2) of multiple traces is formed positionally, one “address”
(or variable) at a time. The merge of a single address with any number isfdefined to
be the address. The merge of any numberis defined to ba. The merge of more than
one address is undefined and should never occur. For example),<ag A> & <A, &, A,
a> = < @, &, &, a>. It is easiest to visualize this operation by lining the traces up one
above the other as if they were going to be “added” and merging each set in the same

position in the reference string.

<al! )\5 a31 )\>
&<\, &y, A, >

<&, 8, 8, 8>

FIGURE 3: Merge Example
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2.4 Specific Example

So far we have discussed the basic element of TSpec (the trace atom), how a variable
can represent a trace atom, and several operations including:

« definite iteration of a variable or a trace (*),

* initialization of a variable or a subtrace (!),

* variable post-increment or decrement (+,-),

» merge of multiple traces (&), and

» concatenation of variables to form a trace (,).

Figure 3 shows a more complete example for a simplified version of the inner loop of a
routine to copy a vector from one location to another. The code, denoted by the variable ¢
in this example, has been simplified to allow the pattern to be easily seen in the reference
string. One might think of the first,cas the address of the instruction to load the element
being copied, the second as that of the store to the new location, and the third as that of the
branch back for the next element. Notice that this TSpec description represents a very
specific tracd, as the address bindings and the specific path through the program (number

of iterations in this example) are known.
C Code: for i=1 to 3 t[i] = f[i];

TSpec: ¢(100_r, 4); f(200_r, 4); t(300_w, 4);
<If, It,(lc, ¢, T4, Cy, By, C) *3>

Reference

String: 100 r, 200 _r, 104 r, 300 _w, 108 r,
100 _r, 204 1, 104 r, 304 _w, 108 r,
100 _r, 208 r, 104 r, 308 w, 108 r

FIGURE 4: Copy Example
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2.4.1 Trace Variables In More Detall

Now a more complex example can be created by introducing a more general definition
and use otrace variables Variables and the increment operator as introduced in Section
2.3 are adequate for describing any trace, but they are most convenient for single-
dimensional arrays. We shall therefore extend the definition and increment/decrement
syntax to more naturally handle multi-dimensional arrays and multiple code segments.

In the abstract, a variable has a single base address and several increments. Each
increment has three components. Tiherement value (ividetermines the size of the
increment or stride of a vector access and appears only in the definitionindreenent
count (ic)determines how many of a particular iterator value is added to the base address
to get the current value of the variable. Tiherement operator (iojs used to change the
value of the increment count. There are four increment operators. ! clears the increment
count to zero. + post increments the appropriate increment count by one, - post
decrements the approriate increment count by one, and ~ leaves it alone.

The increment values appear only in a variable definition. A complete definition has
the formvariable_name(base, ivl, iv2, ...[For examplex(200_r, 4, 64) has the variable
name of X, a base address of 200 (is a read), and two increments. Increment 1 has a value
of 4 and increment 2 has a value of 64.

The increment counts and their operators appear in variable instances in a trace as a
comma delimited subscript to the variable name, called dbwetrol tag string The
position of the increment count and operator pair in the control tag string indicates which
of the increments will be used to increment or decrement the variable. The characters in

the first position describe what will happen with the first increment, the ones in the second
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position what will happen with the second increment, etc. Convention is that the increment
that changes fastest is closest to the variable. The general form of a variable instance is
variable_name.io1 ic2io2 ic3io3,... Where icX stands for increment count X, and ioX
stands for increment operator X. For examplg, x. would set the first increment count to

2, and the second increment count to 3, then post-increment each of the increment counts
by one.

The value generated by a variable instance is its value after the last time it was used.
The value of a variable is given by the following formula:

var = baset+ (il xicl) +(iv2xic2) +... wherevar is the current value of the
variable, baseis the base address of the variable in the definitionrepresents the
increment count for a specific increment, andrepresents the increment value for a
specific increment. Incrementing an increment count increases the value of the variable by
the value of the corresponding increment in the variable definition because it increases the
corresponding increment count by one. For example, with a definition of x(100_g.4), X
would generate the value 112_r, and change the value of the variable to 116 r.

In practice, it is rare to be incrementing more than one increment at a time, or to need
to specify the increment count. For convenience then, this general notation,
variable_name.io1 ic2io2 ic3io3,... IS Simplified with the following assumptions:

1. Increment counts and the comma-delimiters may be left out of the control string

of a variable instance. If the increment count is left out, it is assumed that it is the
same as the last time the variable was used.

2. Operators left off of the end of a control string are assumed to be ~., 80 x

equivalent to x-.. . (Notice that this is different than if there is no control
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string at all. See Section 2.7 for details.)

With this notation !c, ¢ can be expressed ag.cThe ! notation for initialization is still
required with subroutines and is also useful when initialization is separated from the first
address generation as in the first example below. Initializing a variable to its base address
with ! also sets all the increment counts to zero.

Generally, multiple increments are used to traverse a data structure such as a matrix
with different strides and the number often reflects the number of loop nests used to
traverse the structure. As an example of this usage, consider the data portion of matrix
multiplication,x * y = z:

X(1000_r, 4, N);

y(4000_r, 4, N);

z(8000_w, 4, N);

<X, ly, 1z, (%4~ Yo Z_T ZZ)*N-1, X1_ Y4, Z_1-, 2, )*N-1,

o Z_Ty Zy, Yir) *N>

Here the innermost loop does a read of a row froend a read of a column frow
multiplying them and keeping a running sum of the productszirg is traversed
completely once. Each element nis computed completely before going on to the next
one.y is traversed by “column” (the second increment first) whiie traversed by “row”

(the first increment first).

The above example does not use increment counts in the control tag. Increment counts
are generally used in the control tag to model a program counter for code jumps. These are
not necessary until conditionals are introduced. An example of such a program counter
model is shown later in Section 2.6.

The attributes of a variable are generally specified as attributes of the base address and

are modified in a logical way for each address generated by the variable. In some
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situations it may make sense to override the attribute for a specific variable in a trace as is
done in the matrix multiply example above. In this case, the trace variable may be
followed by an underscore and an attribute tag in the trace.

The following sections provide a more complete description of equivalence classes
and the more advanced TSpec constructs to support them. At the end is a complete

grammar for the TSpec notation.

2.5 Equivalence Classes In Depth and the Larger Picture

As described in the introduction, computer architects typically evaluate cache designs
on a few specific traces. These traces are generated by running a particular benchmark
suite on a simulation of their new design. This trace is then compared to another single
trace resulting from a system that is as close as possible to the same, but without the
particular improvement under investigation. While there has been significant work and
improvements to benchmarks in the last decade, these results are still point solutions for a
whole range of possible results for a specific piece of source code. For example, the results
from benchmark runs are for one set of input data, one set of address bindings, and one
compiler. Another instance of any of these parameters may conceivably produce
drastically different results. To make it clear where a trace has come from and what type of
dynamic run it corresponds to, we have developed the concept of equivalence classes of
reference traces, or different levels of abstraction as described in the introduction.

If two traces are generated by the same piece of source code, then they will share at
least one equivalence class, but which one may vary depending on one or more parameters

that are used to describe the equivalence class. For our work we have broken down the set
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of traces that could be generated by a specific piece of source code into four sets,
depending on whether or not the address bindings are known and whether or not the input
data is known. The relationship between these groups is shown in Figure 5. The specific
trace generated by a benchmark could be thought of as theTirddes set of traces that
would be generated with the same source code and the same set of bindinpatasith
different sets of input data is denoted f, and is referred to as thequivalence clasef
traceswith respect to input datg Ty} is referred to as thequivalence classf traceswith

respect to address bindingsnd is the set of traces that has the same source code and input
data asT, but a different set of address bindings. (Note that this is a generalization of the
concept of translation arrays in Harpedral. [Har99]) {T4 is the set of traces that has the
same source code, but varies the address bindings and the input data. Other equivalence
classes exist, such as the equivalence class of traces under varying virtual to physical

address bindings, but we do not treat them in our Work.

Same data {Tod
5 Yy | N
._g
35 | Y T {Td
z 7
8 N | {Tp} [{Tod

FIGURE 5: Equivalence Classes
The relationship between traces generated by a specific source program by
varying bindings only ({T}), input data only ({T4}), or both bindings and input
data ({Tyg})-

1 While examining kernels, it is unlikely that a difference would appear between virtual and phys-
ical addresses. The actual addresses may differ, but the form of the reference pattern would be
the same unless a page boundary was crossed.
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Each of the four sets shown in Figure 5 has corresponding constructs in TSpec. A
specific trace, T, can be fully described using the constructs shown in Section 2 above. The
set of traces {F}, the equivalence class of traces under varying address bindings, can be
represented by the constructs described in Section 2, but without the specific base
addresses. Consider the copy example in Figure 4. By substituting ? for the specific base
address information, one specification can describe a whole class of traces that includes all
possible mappings of the code (variable c), and the two data streams (f and t).

c(?_r,4);1(?_r, 4); t(?_w, 4);
<!f1 Ita (CO+1 f+1 C+1 t+l C+)*3>

Depending on the cache designer’s goal, this form of TSpec can be used to do a case
analysis of what different mappings would mean to cache performance, or to allow the
cache designer to abstract away from those side effects, choose a representative trace for
the class as a whole, and understand how a particular cache system would handle the basic

reference pattern.

2.6 Expanding TSpec to Describe {J} and {Tpq4}

To describe the equivalence class of traces under varying input data, a way to express
conditionals is required. Specifically, support for trace patterns generated by procedural

case statements (if-then-else) or indefinite iteration of loops is needed.

2.6.1 Case Statements

An if-then-else clause is a special case of a procedural case statement. To support the

description of several different execution paths through a case statement, we use a
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parenthesized group of trace items separated by |. This denotes a set of smaller traces; only
one of which is executed. For example:

c(1000_r, 4);
<Cos Cs Cp, {C4 | G }>

would generate one of the following two trace lists, or the set (equivalence class)
containing them both.

<1000 _r, 1004 r, 1008 _r, 1012 _r> or <1000_r, 1004 r, 1008 _r, 1016 _r>

The above example describes a code segment where the last statement executed is an
if-then-else. The then clause is represented by executing the, Jastdthe else clause by
cs. Here, either the ¢ or the g is executed, but not both. For clarity, it is sometimes
desirable to label the conditional symbols (|) and the curly brackets that designate the set
of possible statements so that their relationship is obvious. Labels are similar to those for
parentheses. For example:

c(1000._r, 4);
<CO+! Gy Gy {LC+ ||_ Cs }L>

When conditionals are used, it sometimes becomes necessary to change the increment
count of a variable without actually generating that variable. Specifically, there are times
when an array pointer may be incremented, but because of a conditional, sometimes
accessed and other times not accessed. In those cases, an instance of the variable is
preceded by " to suppress generation of the address. For examplectements the first

increment count of variable ¢ by one, but does not generate an address value.
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2.6.2 Indefinite Iteration, Break, and ExceptLast

To represent indefinite iteration, the * symbol is used for loops without a
corresponding number to represent the number of iterations. For example, x* means zero
or more repetitions of x.

The break construct is analogous to the break in C and continues the specification after
the right parenthesis with the same label as the break. For example, consider the above
example with a loop and break added.

c(1000_r, 4);
<(RCo+ Cts Cy, {LC4 | C54, break R } )R*, C>

Here, if the second case option is taken, the outer loop labeled R is exited and execution
continues with the lasgc

In many cases, it may be unclear how many times a particular loop is executed, but
clear that a particular branch case in the loop is executed every time except for the last
time through the loop when the exit condition is reached. These cases are so frequent, it is
useful to have a specific construct for modeling them. This is done in TSpec by using the
key wordexceptlasand following it with the frequently taken branch code in parentheses.

Consider the following example:

(1000 _r, 4);
<(Co4» C4, G4, EXCEPLlASt(G))*, C4>

Here the ¢ in the exceptlast parentheses will generate an address all but the last time
through the loop.
These four constructs; case options (|), indefinite iteration (*), break, and exceptlast

allow us to model very general paths through a piece of source code. From another
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perspective, these constructs allow us to describe sets of possible traces that could be

generated by a piece of source code. Both are useful models.

2.7 Notational Conventions

The above paragraphs outline the formal notation. Often it is useful to have some
shorthand for specific operations. Some of these conveniences have been outlined in
earlier sections, but they are all listed here for completeness.

 Ix is used for !y . This initializes the variable to its base address and all the

increment counts to zero.

» X is used for X _because it is the most frequent operation. x- is used for x

and x~ for x__ . Similarly, G, is used for g, .

» The default operation on a subtrace is to pulse it, so if s1 is a subroutine, sl is

equivalent to @s1.

« Commas as a delimiter between trace atoms may be left out if the result is a

description that is easier to read.

* Increment counts and commas may be left out of the control string of a variable

instance if the meaning is clear.

* If multiple increments are defined for a variable, but only one is explicitly stated,

the assumption is that increment counts other than the first one are left alone. So
X3~ iS equivalenttox. . .
» The label for a parenthesized group of trace atoms may be left out.

« lall initializes all defined variables and subroutines to their base, and all increment

counts to zero without generating any addresses
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* // indicates all other characters to the end of the line are a comment, and not TSpec

* if no attribute tag is specified the atom is assumed to be a read rather than a write

1. Grammar
In this section, we provide the syntactic definition of the notation. Here, single quotes

surround the delimiters of the language being defined. Thus, in the first definition below, a
<trace_specification>consists of a semicolon-separated sequence<a#finition>s
followed by a<trace_list>.

<trace_specification> ::= {<definition>';'}* {<trace_list>}
<trace_list> ::= {<' <trace> ">&}*'<' <trace> >’
<definition> ::=
{<variable_def>’;'}*<variable_def> |
{<subtrace_def>";'}*<subtrace_def>

<variable_def> ::=
<trace_variable> ‘(‘ <baseset>')’

<baseset> ::=
<integer> <attr_tag> ‘, <increments>
<attr_tag>:=‘r|‘"w

<subtrace_def> ::=
<identifier> ‘(* <param_list> ')’ ‘=’ <trace_list>

<increments> ::= {<increment>,}*<increment>
<increment> ::= <integerl>’; <integer2>

<param_list> ::=
{<identifier> *,}*<identifier>

<trace_variable> ::= <identifier><;ontro|_tag>
<subtrace> ::= <identifier> ‘( <param_list> ‘)’
<trace> ::= <trace_item>

| <trace> ', <trace_item>

<trace_item> ::= ‘I’<action_atom>
| ‘( <identifier> <trace>")’ cigentifier>
| <identifier> ‘:(* <trace> ‘).’ <identifier>
| ‘( <identifier> <trace> ‘&’ <trace> ")’ <igentitier>
| <trace_item>"'<integer>
| <trace_atom>
| ‘break <identifier>
| {' <trace> |’ <trace> '}’
| ‘exceptlast’(<trace> ‘)’
| ‘N<trace_variable>

<trace_atom> ::= <integer><attr_tag> | A’ | <action_atom>
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<action_atom> ::= <subtrace> | <trace_variable>

<control_tag> ::= {<integer><control_char> ‘/}* <integer> <control_char>
| {<control_char>}* <control_char>
<control_char> :="*+"| " | 'I"| "~

2.8 Related Work

Some of the first work done characterizing reference patterns was performed by
Denninget al. on working sets [Den68]. Batson and Madison [Bat76, Mad76, and Bat77]
describe reference patterns in terms of their residence in localities of various sizes and
lifetimes, and the transitions between these localities. Methods for identifying “major”
phases in programs which correspond to intervals of distinctive referencing behavior are
outlined. The concept of a Bounded Locality Interval (BLI) is defined and used to discuss
the potential use of these concepts in predictive memory management algorithms. Hill
[Hil87] and Sugumar and Abraham [Sug92] classify the misses of a cache as one of three

types: compulsory, conflict, or capacity.



Chapter 3

The Functional Filter Model

3.1 Introduction

The previous chapter outlined a notatidigpec¢that can be used to describe memory
reference traces. This chapter uses the notation, extends it to express cache state, and
defines dfilter function modelof a cache that operates on the traces depicted by these
descriptions. The overall approach is explained and detailed examples of thedaypel
are shown with analyses for each equivalence class outlined in the previous chapter.

The filter function model formalizes the definition of a cache’s function given a
specific state and a specific reference trace. This formalism is its chief advantage, allowing
designers to perform an extensive formal analysis for a set of reference traces that
represent the execution of a piece of source code. The model igaaieoa] it can be used
to describe and analyze any sequence or pattern of memory references for any standard
type of caché. It is not limited to loop, array, or other reference patterns with an affine

relationship, or to fully-associative caches.
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3.2 The Functional Cache Filter Model

As explained earlier, this analysis approach is inspired by viewing a cache as a filter.
As previously described, a cache filters out the references that hit and transforms an input
set of references into another, hopefully sparser, output set. By composing a series of
cache filters, as many references as possible are removed from the request string before it
is presented to the next level of the memory hierarchy. To get the best overall performance,
the goal of a particular level of cache is not only to filter out the most references, but to

complement the next level by filtering references that it would not be able to capture.

T=<aay, &, &, ...> | cache [T =<a A a,..>
p| filter |— g
S =nitial cache state [ f(T; S) | S’ = final cache state

FIGURE 6: The Cache Filter Model

We use the symbal to indicate the position of a reference removed by a cache filter.
This allows correlation between the input and output reference strings. For instance, the
input <a, a, a>generates the outpwsia, A, A> for most caches. We view the cache as a
filter function,f, on the input of the reference strinf,and the state of the cache, The
output of a filter functionf(T;S) consists of an output tracé,, and an output stat&'
(represented as the pdi,S'). Figure 6 illustrates this relationship. The trace-only portion
of the output of a filter function is denotéa(T;S), and the state-only portion is denoted

f(T:S).

1 Standard cache refers to any sie fully associative, set associative, or direct-mapped cache with

LRU replacement whether it is write back or write through.
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The representation of a tracg&, is the TSpec notation described in the previous
chapter. To further clarify definitiong; is used to represent an unfiltered trace gnit
represent an element in tradeat position (or indexk. The position is determined by
counting the trace elements from left to right. For exampld, # < 100, 200, 300 >
t,=100, t,=200 andt3=300Q So, in the abstract, each trace is represented by a set of value-
index pairs. The value is the address being read or written and the index is the order or
position; elements presented to the cache first have lower indices than those presented
later? Also, T, refers to the entire trace up to and including SoT, =ty, t, t3, ..., t,
and using the definition af above,T,= <100, 200>.

The state can be viewed as a subset of the value-index pairs in the trace. Again, the
value refers to the address of the item stored in the cache and the index refers to the order
the addresses have been presented to the cache. The most recent address gets the largest
index and the element with the smallest index is next to be replaced in a cache that uses the
LRU (Least Recently Used) replacement algorithm. Note that the state is a subset of the
trace and, in most instances, will have several value-index pairs missing when compared
to the trace. It is not necessarily a strict subset, however. When all the references in the
trace fit in the cache, and there are no duplicate references in the trace, the state and the
trace are exactly the same.

In practice, we use two notations to represent the value-index pairs of a state. First,
the state can be explicitly represented as a set of address-index pairs. Generally these are

written in reverse order of their indices, so the righmost reference has the smallest index

2 Recall from the introduction that the order here is only loosely related to wall-clock time. There

may be a different, arbitrary amount of wall-clock time between any two TSpec references.
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and is the next to be replaced. Writing the state in this order is more straightforward
because one starts at the left and writes down the most recent reference and continues back
through the trace until the cache size number of references is reached. For example, with
indices explicitly stated, the state for a fully-associative, bigger than size three cache after
the trace<<100, 1>, <200, 2>, <300, 3>has been presented to it would e {<300, 3>,

<200, 2>, <100, 1>=}Usually, the addresses only are written as with trace§ sd300,

200, 100} Note that this trace and state may also be represented in TSpec notation with a
variable.

The second notation is to use a trace to denote a state, without explicitly writing the
trace (or state) elements. In the simplest case the state isTth@o expand the set of
caches for which this type of notation applies, some additional functions on aTiaue,
defined.

Theuniqueof T, denoted.J(T)3, is formed by eliminating any duplicatesTin
(1o if x=0
U(T,) = EFJ(Tx_l), A if (t, such that, = t, andy < x
%J(Tx—l)1 t, otherwise

The first occurrence of an address is retained, but all subsequent occurrences are replaced
with A. For example, iff = <100, 200, 100, 300, 200, 400>, U(T) = <100, 280300,

400>,

8 U(T) is extended in Section 3.4.2 to account for conflicts in set-associative caches.
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The second function is denotd&(T) and is simplyT with all As removed. Continuing
D(T,) = [D(Tx-1) if t, :?\
(T,_),t,  otherwise
with the example trace abov@(U(T)) = <100, 200, 300, 400>

The final functions on a trace defined here [dijethelengthof T, andT, thereverseof
T. The length ofT is an integer representing the largest index of an element in T, or simply
the number of elements in T, including As. More formally,

IT| = xsuch thax>y Ot, 0 T. The reverse of, T, is formed by reversing the order of
the elements in T so that the value that was previously paired with the smallest index, is
now paired with the largest index, etc. Formallty OT ty & tiy_,.;

The state for fully associative, LRU caches can now be writters as {<v, i> €
D(U(T)) | (ID(U(T))| - i) <= sz}whereszrefers to the cache size. This says that the state
consists of the last cache-size, unique, elemens in

In the sections below, the notation will be expanded to include additional cache types
and reference strings. The overall analysis method will be presented first with simple

unrelated examples, then a complete analysis of the kernel copy will be given.

3.3 Analysis Method

3.3.1 Overview

The method of analyzing caches as filter functions can be broken down into four
steps.

1. Expressing the trace in TSpdte original trace may come from static analysis



38

of source code, the tracing of a specific run of the source code, or simply by
creating a TSpec description of an interesting pattern to analyze.

2. Simplifying the TSpec descriptiorby dividing it into intellectually
comprehensible units. This is accomplished with two consecutive techniques.
First, segmentatioreaks the reference string of an entire source code program
into smaller concatenated pieces of TSpec. Secdadpmpositiorseparates
these trace segments into even simpler traces, calleditives If remerged,
these primitives would form the original trace segment, making decomposition
the opposite of merge. The objective of both segmentation and decomposition is
to simplify the trace and subsequently the analysis.

3. Applying the filter function®f the cache system to the primitives individually
using thefilter function dictionary (See Appendix A) In most cases, these
decomposed traces correspond to primitive that have been previously analyzed
and the result of filtering can be looked up in this dictionary.

4. Recombining the filtered tracedio recombine the filtered version of the
primitives, the definition of merge is extended to include the state. The filtered
primitive are re-merged to form a filtered segment, then the filtered segments can
be concatenatedo see the effect of the entire trace. (In the simplest case this
trace-state merge becomes the trace-only merge described in Chapter 2. This is
the case where there are no conflicts between the decomposed or segmented
traces.)

The approach above assunfésl & T2; S) = f(T1; S) & f(T2; S): the effect of

merging two traces and then filtering them is the same as filtering each trace separately
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and remerging the resulBy extending the definition of merge to include trace-state pairs
this equality can be made to hold. The benefit of this approach is that the effect of many
standard caches can be analyzed on a wide spectrum of traces by defining cache-filter
functions for only a relatively small number of simple traces calpanitives In
addition, it is easier to gain insight intwhy and how particular traces are affected by
particular caches because the effects from the interaction of primitive traces with the cache
type are separated from the effects from the interaction of primitive traces with each other.
The sections below describe each of these steps in more detail. After the steps are

explained, a complete analysis for the kernel copy is given as an example.

3.3.2 Expressing the Trace in TSpec

A TSpec description may be derived in any of three different methods: static analysis
of source code, direct translation of a reference trace from a specific run of a program, or
by directly writing an interesing pattern in TSpec.

Static analysis of the source code can be performed by human interpretation of
assembly or other source code, or by a machine translator. The majority of the examples
in this dissertation were derived by human analysis of assembled C code snippets.
Appendix B shows the C code, assembly, and TSpec for these examples. A preliminary
investigation of a machine translator built into a compiler based on vpo (Very Portable
Optimizer) [Ben] is underway in conjunction with researchers at the University of Utah
[WanO01].

Direct translation of large reference traces is tedious enough to require machine

assistance. A prototype of a stand-alone machine translator was developed bgtahas
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[Nah97]. This C program used a simple search algorithm and heuristics to translate traces
of the Spec Benchmark suite captured by researchers at Brigham Young University
[Fla92, Fla93, Gri92]. The focus of this translator was to determine the length, frequency
and effect on caches of streams found in the benchmark suite. A second system [Amy99]
to provide bookkeeping mechanisms for a human who performs the pattern recognition,
was developed in conjunction with researchers at the University of Utah. Writing a TSpec
description of an interesting pattern under investigation allows a cache designer to easily
describe important reference behaviors and perform analyses to determine the effects of
different cache designs on these patterns.

There are many ways to accomplish the transformation into TSpec and more than one
valid TSpec description for a particular reference trace. The description chosen should be
the one that makes the analysis most straightforward. The analysis approach outlined
below makes only one substantial assumption on the transformation; the variables in the
description must béendependent Independent means that no address is represented by
more than one variable. Guaranteeing independence between variables ensures that an

address is accessed by only one variable and no aliasing occurs.

3.3.3 Simplifying the TSpec Description

3.3.3.1 Segmentation
Previous research indicates that memory referencing behavior tends to occur in phases
as shown in Figure 7 [Bat76, Bat77, Den68]. First a referencing behavior of one type

(pictured as Rx) occurs, then a transition phase (pictured as Tx) occurs, followed by
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another phase of referencing behavior.  The source code of the referencing phase is

T1 T2
ERCERY,

FIGURE 7: Phase Referencing Behavior

referred to as a kernel. Segmentation is the process of identifying these kernels, or the
section of trace corresponding to a referencing phase and so the primary referencing
behavior of the kernel. There are several ways that segments might be identified, but the
crucial point is that this identification simplifies the piece of trace or source code being
analyzed.

The method chosen for segmentation depends on the level at which the analysis is to
be done. If the general effects of a cache-filter are desired, only kernel analysis may be
necessary. If the intent is to fine-tune the operation of a cache already selected, or see
what details are causing an effect at a higher level, transition segments may also be
analyzed.

In the majority of the examples in this dissertation, segments have been derived by
human analysis of the TSpec corresponding to the assembly language as described above.
The most common referencing behavior is identified and used as a segment for analysis.
Consider the trace portion of the TSpec description for the optimized version of copy
shown in Figure 8. The C code, assembly language, and TSpec definitions are given in

Section B.2 of Appendix B.
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<lall, c1*3, (c1tl rclt2)*3 cl*2 /I copy “to” vector to frame
(c1flclf2_w)*3, c1*3, /I copy “from” vector to frame
Ic2, c*3, {g1 C2*5f (. CcZ;, t, c2*3, {c2, 1, | break L}) *3 |g;}, // main

copy
C& €2, cL, clyg, c174>

FIGURE 8: TSpec, SPARC, Optimized Copy

There are three separate segments in this TSpec description that resemble the pattern
(fc, c*, f, c*, t, c¥)*; that is, some number of code references (represented by ‘c’), followed
by a read of a “from” element (represented by 'f'), followed by more code references and a
write to the “to” element (represented by 't"), followed by some more code references to
determine whether another element should be copied. Transitions between this pattern are
different forms ofc*. Since the basic copy is the most common reference pattern for this
source, a specific form of it from the TSpec description above is selected as a segment for
analysis. Specifically, we choose the main copy ldppZ, t, c*3, { c2, f, | break L}) *3

for the examples in the appendix.

3.3.3.2 Decomposition

Despite the fact that there are an infinite number of possible source programs with an
infinite number of inputs, we have found the bulk of the reference patterns that they
generate can be described by combinations of a modest set of parameterized primitive
patterns (See Chapter 5). This is true because source programs are themselves composed
of combinations of similar code constructs. Decomposition has both a mechanism as to
how the decomposition is performed, and a goal. The goal is to decompose the segment
into primitive traces found in the dictionary described in Appendix A. The details of how

the decomposition is performed are described in the following paragraphs.
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The two simplest families of primitive patterns are the code loop and the data stream.
Consider the general form of the copy kernel from the previous section:

<('c, c*, f, c* t, c*)*>
The use of thé andt variables are examples of streams. These consist of a base address
and an increment(stride). The pattern created by the var@ldean example of a code
loop. These consist of a base address, an increment that defines the length of the code
word, and a number of loop iterations. Note that the essential difference between the data
stream and code loop is that the data stream has no repeated addresses, while the code
loop does.

Until now, A has been used only as a placeholder for filtered references. By extending
the use ofA as a placeholder for references from other primitives, the frequency of a
primitive within a reference string can be made explicit without describing the particulars
of the other primitives. For example, a stream primitive could appear every 4th reference
within a reference string representing a code loop. In this case the primitive depicted with
f, can be described agf+, A, A, A)*>. TheAs represent the references to the code.

When decomposing a trace into primitives, there are two considerations. First, all
references to a particular variable within a segment should be wholly contained within one
primitive. This reduces the chances of conflicts between primitives. Second, if possible,
the primitives should be available in the functional filter dictionary described below. This
will simplify the analysis process. If necessary, the dictionary can also be extended to

include additional primitives.
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3.34 Applying the Filter Functions

3.34.1 Defining Filter Functions

Once the primitive set is defined, we must derive the effect of the cache filter function
for each primitive and for each type of cache. In general, the filtering function for a cache
can be defined to operate recursively one reference at a time, as shown below. This
function describes the output of a traditional cache. The model works for either write back
caches (where dirty/modified lines are written back to the next level only when the line is
evicted) or write through caches (where all writes modify main memory by writing the
cache line and main memory).

There are three possibilities for the output of the functional filter model. In the first
situation, where the cache is write back, the line is dirty, and the referancesses, the
output trace consists of the dirty line evicted from the cacté)), and the line that
includes the new refereneg(l(a)). The new state§’, is the same as the initial state except
that the dirty lined(a) has been replaced by the new li(@). The write through version of
the cache would not have a dirty line to evict, so the output would simply be the reference
to fill the line that includes the new referenag(l(a)), and the new stat&'. If a hits, the
values of the state remain the same, but the new state is defbtedindicate the new
indices of the values that were just referenced and hence the updated LRU status. The
recursive definition of a cache filter is formalized below. Each of the three situations
outlined above are included in the definition.

RecallF(T; S =T; S

WhereS = (Sx-1—d(a)) 01(a) andS = Sx_1—I(@)O1(a) for a miss with no

eviction. This definition requires a formal definition of subtraction and union of state. In
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ol 'v—1, d(a),1(a); S if cache wb, dirty line, and 0 S
F(Ty,S) = %‘T’X_l, l(a); S if a0 Sand cache wt or wb and clean line
or'y_1, A; S otherwise

subtraction, the elements with the indices of the subtracted line are eliminatédd die
set of indices of the elements of the subtracted Id{a), in S, andJ be the set of indices

of allelementsinS. 18— d(@ = S ,therk1J

. O kD1
. ED kO |

Union is just the insertion of the new linKa), into the state. Since the last element
presented to the cache has the highest index in the state, this amounts to adding all of the
new elements to the state with an index greater than the last index. For the purposes of this
methodology, there is no “order” within the line; the whole line is given the same index in
the state. This makes the assumption that lines are replaced or written all at one time. If
S = sO I(a), i is the index of the elemerd in T, andJ is the set of indices of all

elements in S, thérk 0 J

While the above definition of a filtering function is very general, it provides little
insight into what happens on the primitive or kernel levels. To assist the human analyzer,
we have developed a dictionary of cache filter functions to be used much like a set of
integration tables. One looks up the desired pattern to obtain the corresponding filtering

result. See Appendix A for the set of tables.
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The primitives are listed with parameters for the number of repetitionsAandhe
filtered trace and stat§(T; S) = T'; S', are listed with parameters for cache associativity,
lines per set, linesize, write policy, and any other parameter that is relevant to the
primitive. Each primitive can be filtered by looking it up in the dictionary and substituting
specific values for the parameters. The whole dictionary would be inappropriate here, but
we give the dictionary entry needed for the example at the end of the chapter.

In the dictionary, the state is represented in TSpec and for that, an additional TSpec
construct is useful. To write TSpec starting from the end of a trace so that the references
appear in with the least recently used (and hence next to be evicted) last on the line, we
start from theendof a TSpec construct, rather than the beginning. By analogy'wjtive
definec! to initialize a variable to it¢ast value in the trace. In the dictionary entry below,
the “n” variables represent parameters for the number of repetitions in the trace. The
effective set numbdesn) refers to the number of sets in a cache that can effectively be
used by a particular reference pattern and depends on the line size of the cache, the
capacity of the cache, and the stride of the reference pattern. P is used in the dictionary to
stand forprimitive and is simply a piece of decomposed trace. Details on the derivation of
the formula for effective set number is in the beginning of Appendix A.

if P=!p, A*nl, p,A*n2)*n3 then
fra, «1(P; &) = P; {p!, (p-)*min(esn, n3)}

This entry says that for any read stream, with any number of intervexsnghe
filtering effect of an empty, fully associative, LRU cache with a line size equal to the fetch
size, will result in an output trace that is the same as the input trace and a cache state that

is the part of the reverse stream that will fit in the cache. If the size of the stream is less
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than the effective set number in the cache then the whole stream remains in the cache.

Otherwise, only the last part of the stream remains.
3.35 Recombining The Filtered Traces

3.35.1 Merge

Recombining filtered primitives requires merging the trace and state of two or more
separate filtered primitived(T1; S1) = T1'; S1'andf(T2; S2) = T2'"; S2'. We will define
T, S8 =(T1,; S1') & (T2'; S2'). LetT, represent the trace up through index andS;
indicate the state of the cache after the value with indexT has been presented to the
cache. d(t) represents the dirty cache line thahaps to and(t) represents the cache line
that containg. Without loss of generality, whichever trace has a Aoslement at thex

position is referred to aBl. Then

' _ 1, A; Sy if t,0S,_,and wb ort, is read
10,S1,) & (T20S2) = Oy 1(t1); Sy if t,0S,_, wb not dirty or wttwrit
ET'X_L d(t1,).I(t1y); S otherwise

where

S,_.—1((t1,) O1(t1))) ift1, 0S,_; and wb ortl, is read

S, =
“~ Hs, ,—d((t1) O1(tL))  otherwise

The first line of the equation for the merge says that when the element in the original,
unseparated trace is in the cache, that element is filtered out of the trace and replaced with

A as long as the cache isnb (write back) cache or if the cachewg (write through) and
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the original element is a read. The filter®as concatenated to the filtered trace from the
previous element. The state is simply a reordering of the state from the previous element,
so that now the line that was accessed is now in the most recently used index. In this way
the merged, filtered trace is built up positionally one element at a time.

The second line says that when the original, unseparated trace element is not in the
cache, the line for that elemen¢tl,), must be fetched, so it is reflected in the filtered
trace. The state is changed by adding the fetched line to the old state, with the LRU index,
removing the replaced line from the old staw(tl,), and reordering the indices
appropriately. This happens whenever the requested element is not in a write back cache
where the line being evicted is not dirty, or when the element is being written in a write
through cache.

In all other cases, the dirty line that is being evicted from the cadfi&,), must also
be written to main memory and so is included in the filtered trace, and removed from the
state.

Notice that when the line is bigger than a single element, or an element is dirty, there
may be more elements in the filtered output trace than in the original input trace for a
given element. This means that the indices in the input and output will not match up
exactly on an element-by-element basis. To resolve this problem, we conceptuall) add a
to any trace], that is involved in the analysis. We add onée T for each line added for a
write back. This keeps the positions comparable for all traces involved in the analysis. If
dirty lines are added when filtering primitives, the same positioning adjustment is made to

all other primitives and the original trace T.
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As an example of merge, let the cache be a fully associative, LRU, write through cache
with 5 word-size lines and
(T; S) = (<100, 204, 104, 304 _w, 108>;
{<108,5>, <300_w, 4>, <104, 3>, <200, 2>, <100, 1>}),
(T1; S1) = (<100}, 104,A, 108>; {<108,5>, <104, 3>, <100, 1>})
(T2; S2) = (A, 204,A, 304_wA>; {<300_w, 4>, <200, 2>})
Then using the above definition of merge yields:
(T1 S1) = (A, A\ A A, A>; {<108, 10>, <104, 8>, <100, 6>})
(T2, S2") = (A, 204,A, 304_wA>; {<304_w, 9>, <204, 7>})

(T S) = (<, 204,), 304 WA>;
{<108, 10>, <304_w, 9>,<104, 8>, <204, 7>, <100, 6>}),

3.35.2 Concatenation

The concatenation of two segments, denoted (T1'; S1'), (T2"; S2'), can be defined in

terms of the merge from the section above. Specifically,

(T1"; S1'),(T2'; S2") = (T2, A*|T2|; S1') & ((A*|T1'|, T2"); S2')

3.4 Example Analysis

The following examples illustrate the kinds of analyses that can be performed on
individual traces and sets of traces from the equivalence classes. For clarity, all examples
are expansions of the copy function. Each starts with C code and the corresponding
assembly language generated by @(We then show the translation into TSpec and the
subsequent analyses for fully associative and direct-mapped caches. Since the examples

are small, we choose small cache sizes to highlight situations where interesting behavior
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occurs. Our intent here is to explain the caches-as-filters framework and to demonstrate its
application to easily grasped examples, and thus we simplify the explanations by using
only virtual addresses. Except for pathological cases where small-sized data hit page

boundaries, the analyses given below would apply to either virtual or physical addresses.

3.4.1 Unconditional Copy C Code, Assembly Language and

TSpec

We generated the C code for the more extensive version of the vector copy in Figure 9
with gcc -02 -fno-delay-slots 5 Figure 10 shows the assembler output, excluding error-

and operand-checking code.

I* The assembly code below is for this copy() function */
void copy(int *f, int *t, int N)
{ . .

inti;

for (i=0; i<N; i++)

tfi] = fil;

}
/* This main() is simply to illustrate the calling of copy() */
main(int argc, char **argv)
{ . .

inti;

int t[3] = {0, 0O, 0};

int f[3] = {10, 11, 12};

copy(f, t, 3);

return O;

FIGURE 9: C Code For Copy Example

4 We use SPARC assembly language, but we abstract away the delay slot and delete extraneous
code produced by gcc.
5 This command runs the gnu C compiler, with most optimizations active, but without filling the

delay slots.
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TSpec for this assembly language appears below the figures. For easy verification, the

assembly instructions corresponding to the TSpec code references are presented under the

TSpec notation. Since we use source code instead of a trace, the number of loop iterations

is unknown in this example.

set

/I 00 = f's base address
/I 01 =t's base address

/o2 =N

/I 03 =i (local)
/I The arguments appear in the "o" registers because this is a leaf
/I procedure and so the compiler does not allocate a new register

/I window

disassembly for a.out

section.text

copy()

10b64:
10b68:

10b6c:
10b70:
10b74:
10b78:
10b7c:

C(10b64 r, 4);

f(~_r, 4);
t(~_w, 4);

<lc,'f,It,c, (g, ¢, ¢ f,c,

96 10 20 00
87 2a e0 02

96 02 e0 01
c4 02 00 03
80 a2 c00a
c4 22 40 03
06 bf ff fb

FIGURE 10: Disassembler Output For Copy Example

clr %03 IIi=0
sl %03, 2, %g3 // compute off-
add %03, 1, %03 //increment i
Id [%600 + %g3], %g2
cmp %03, %02
st %92, [Y00l + %g3]

0x10b68

c, t, c)* c>

clr slladdId cmpst bl jmp
/I Simplifying this trace yields:
<lc, If, It, c, (g, c*2, f, c*2, t, C)*, c>

FIGURE 11: TSpec, SPARC, GNU, Simplified Copy
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3.4.2 Copy Analysis Specific Trace {T}

First, the most straightforward example uses the equivalence class consisting of only a
specific traceT. To this end, we arbitrarily set the number of iterations at three, and
assume values for the base addressésnfit. We segment this example, and choose the

loop as the segment for analysis. The modified TSpec description is shown in Figure 12.

c(10b68_r, 4);

f(FSTART_r, 4);

t(TSTART _w, 4);

<If, It, ('c, c*3, f, c*2, t, )*3>

FIGURE 12: Copy TSpec, {T}

The next analysis step, decomposition, breaks the TSpec trace into primitives. Any set
of primitives that when merged form the original trace can be used as long as there are no
overlapping addresses between primitives, but the analysis is simplified if they are also
chosen such that the primitives themselves are already in the filtering dictionary. One
possible decomposition of the above TSpec into primitives yields:

P1= (!¢, c*3,A, c*2, A, C)*3

P2 = If (A*3,f, A*2, A, A)*3

P3= It (A*3, A, A*2, t, A\)*3

We are now able to apply the filter functions to the individual primitives. For this
example, we will consider two different styles of cache. The first cadhe,will be a
direct-mapped write through cache and the second cdaheill be a fully associative
write through cache with LRU replacement.

The most straightforward case is where all references fit in both caches. This is the

case wheref(T1 & T2; S) = (T1; S) & f(T2; S) and the final merge is simply a TSpec

merge of filtered primitives.
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If each cache has 12 lines and a linesize of one reference, then all the references can
fit. Transforming T into its primitive traces generates the primitive traces P1-P3 above.
P1 corresponds to the code references, P2 to the vector being copied from, and P3 to the
vector being copied to. A filtering function from the dictionary is now applied to each of
the primitives singly. The trace portion of the output prior to merging is the same for each
cache in this example. The code output is:

fe wt 1 T(P1, S) Ham. wt, 1 {(P1,S)=P1

= (Ic, ¢*3\, ¢*2, A, €),A\*16. 8

This shows that the first iteration of the code misses while subsequent iterations all hit
in both caches. The sixte@s at the end represent the 12 filtered code references from the
second and third iterations (6 from each) and the extra 4 from the decomposed data
streams (2 per loop). Filtering the two data stream primitives from the dictionary yields:

fe wt 1'(P2, S) Fgm we 1 (P2, S) = P2'
=If, (A\*3, f, A*2, A, A\)*3 = P2 and

fo wt 1 (P3, S) Fgm. we. 1 (P3, S) = P3'
=1It, \*3, A\, A*2, 1, A)*3 = P3.
This demonstrates that each of the streams comes through untouched because they
contain no repeating addresses.
Assuming the primitives are assigned to cache lines 0, 6, and 9 repectively and
merging the three filtered primitives gives the final result:

fe wt 1 (T, S) =f. at, 1(P1, S) & wt, (P2, S) &f. Wt 1 T(P3, S) =
P1'& P2' & P3' = (Ic, c*3, f, c*2, t,@)3, f, A*2, t, A)*2.

6 We use *in subscripts of f() to indicate any parameter can be substituted here.
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Here there are the least possible number of misses for the types of caches we are

considering - 12 compulsory misses.

Next, consider what happens when the reference string will not fit into either cache.
Let the caches be of size $iwith a line size of one reference. The filtered primitives, P1'-
P3' remain the same as in the above example.

When merging the filtered primitives, though, we must use caution. Different types of
caches will have different effects during a merge when the capacity is exceeded and
conflicts are considered. The state must be included in performing the final merge of the
filtered primitives.

For a fully-associative cache, our experiments have shdinﬁ, S) has two
possibilities for a loop with no inner repetitions. The first is that a single iteration of the
loop fits in the cache, and the output is only the compulsory misses. The second possibility
is if the loop does not fit, in which cas&,(T, S) = Tbecause the references at the end of
the loop always evict the first references in the loop before they can be reused. For this
example:

il Ja.w, (T, S)=T'=T=4f 1, (Ic, c*3, f, c*2, t, ¢)*3>
S ta, wt, 1T, S) = {c!, th, fl, c-, t, c-*2, f, ¢-} = {<v, i D(U(T)) | [D(U())| - i <= 6}

All of the references miss and there are a total of 24 misses.
For the direct-mapped cache, the results are better (a total of 14 misses) because each

address is mapped to a specific location, so the worst-case behavior is avoided. Assuming

” We realize that this is an odd cache size. We use it here, because it demonstrates what happens

when each individual primitive fits, but together they do not.
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that the code references start in cache line 0, and that the véatms start in cache lines

4 and 5, respectively, we obtain:

fam, wt, AT, S) = T'= <, It, (ic, ¢*3, f, ¢*2, , ©),
MS! f! )\*21 t) 051
lcAE2, f, A*2, t, A >
fsdm, wt, 4T, S) ={c!, t, fI, c-, t~, c-*3, ~} = {<v, i> D(U(T)) | ID(U())| - i <= 6}
Since there is only one line that each reference can be assigned to, some items are not
at resk of eviction before they can be used again. Figure 13 illustrates how this occurs.
Each item is written in its line as it occurs in the trace, T. If the item that is currently in

that line is referenced againAais written in the line. The set consisting of the last item

written in each line is the contents of the cache.

< O <
Q -Q - QO
/& /&) F
o/ & /& /.
/) N % >
0 Co A tl Co f2
1 Cq1 A A t2
2 Co A A
3|C3 A A
4 fo Cy A A
5|ty cs | f1 5| A

FIGURE 13: Cache Line Assignments for Copy, DM
Cache, Six Lines

This analysis provided at least one insight: when a loop reference pattern does not fit
in a fully-associative LRU cache, an MRU replacement algorithm or a direct mapped

cache provides better performance! The fully-associative, LRU cache is capable of best
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case performance, but it is also capable of worst case performance when the “unique”
reference string of the loop does not fit in the cache. Though a fully associative cache of
large size is too expensive in practice, it is often considered a sought-after standard for
maximizing hit rates. This example indicates that while in some circumstances it might
have the best case performance, a set associative cache that does not exhibit this worst
case behavior may be a more appropriate cha&een without adding the cost and
complexity issués

Notice that if the cache line assignment were different, the state for the direct-mapped
cache may not have begrv, i> & D(U(T)) | ID(U(T))| - i <= 6} as we have previously
defined U(T). In particular, the previous definition of U(T) does not account for conflicts

between elements in a set-associative cache, so we expand it as follows:

Xo if x=0

u(T,) = %‘J(Tx—l), A if [, such that, = t, andy < x
O and there is ndi, such thai (t,)= i(t,) for y<k< x
%—J(Tx—l)y ty otherwise

where i(t) is the number of the cache Iline of address Formally,

i(t) = (tdivIs) modsn, wherels = line sizeandsn = set number

3.4.3 Copy Analysis - Equivalence Class Under Varying Bindings
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{Tp}

The above analysis uses a specific set of address bindings and hence, a specific set of
cache line assignments for each cache. In this section we will expand the analysis to
include all possible address bindings. We will focus on the worst case and best case
performance of two different caches on the same copy example we have been using.
Specifying the worst and best case performance will give us an idea of the range of
possible outcomes for different caches on this reference pattern.

First, we will strip the base address information from the copy reference string as

shown in Figure 14.

c(10b68 r, 4);

f(~_r, 4);

t(~_w, 4);

<If, It, ('c, c*3, f, c*2, t, ¢)*3>

FIGURE 14: Copy TSpec, {F}

Second, the primitive decomposition is done the same way as in the previous section.
Specifically,

P1= (!¢, c*3,A, c*2, A, ©)*3

P2 = If, (A*3,f, A*2, A, A\)*3

P3= It (A*3, A\, A*2, t, A)*3

Let us consider a direct-mapped, write through cache with 12 lines the size of a
reference. If we consider all possible cache line assignments, we will have three different
groups. The first represents the best case performance and consists of all address (cache

line) assignments where there is no conflict between the different primitives. This set of

possibilities can be represented by the assignment of P1 to begin in cache line 0, P2 to
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begin in cache line 6, and P3 to begin in cache line 9. The final result after filtering the
primitives has 12 compulsory misses:

fam, wt, 1 (To S) =Fe wt, 11 (PL, S) &fe y 17(P2, S) &f+ yy, 1" (P3, S) =

P1'& P2' & P3'=<lc, ¢*3, f, c*2, ()3, f, A*2, t, A\)*2> =T
fam, wt, (T, S) ={<v, i>& DUM)) | IDUM)| - i <= 12}=
{c!, tI, fI, c-, t-, Cc-*2, f-, Cc-*3, (t-, f-)*2}

The second group of address (cache line) assignments consists of those that conflict
somewhat, but not completely. This set will have a variety of miss rates, all that are
greater than 12, but less than that of the worst case performance outlined below.

The third group of address (cache line) assignments consists of those that conflict as
much as possible. This can be represented by the assignment of P1 to cache line 0, P2 to
cache line 3, and P3 to cache line 0. The final results of merging the filtered primitives is:

fam, wt, 1 (To S) =Fe i, 11 (PL, S) &Fe y 17(P2, S) &f+ yy, 1'(P3, S) =

P1' & P2' & P3' =<lc, c*3, f, c*2, t, C,
)\1 Cf_]_) )\1 f! 031 )\1 tv)\a
A*2, ¢, f,C*2,t,c>=T
fam, wt, (T, S) ={<v, i>& D(U(T)) | [DU)| - i <= 12}={c!, c-*6}
The figure below shows how this result is obtained. The total number of misses is 18;

one for every compulsory miss as in the best case (12), and one for every stream reference

(6), which in this worst case evicts a code reference before it can be used again.
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FIGURE 15: Cache Line Assignments, Copy, DM Cache,
Twelve Lines

The diagram above also shows that the cache in this example is extremely under-
utilized. In fact, this worst case scenario is also the performance that would be obtained
from the worst case scenario with a direct mapped, write through cache of only size 6.

Now, let us consider a fully-associative, LRU, write through cache with 12 lines the
size of a single reference. Since a fully-associative cache allows a reference to be placed
anywhere, and has a replacement policy of LRU, there will be only compulsory misses
and the results are the same as in the best case direct mapped example above.

fra wt, 1 (T, S) =fe wp 1 (P1, S) &y 17 (P2, S) &fv . 1'(P3, S) =

P1' & P2' & P3' =<lc, ¢*3, f, c*2, t(X3, f, A*2, t, \)*2>=T'

fia, wt, (T, S) ={<v, i>e DU(M)) | IDU))] - i <= 12}=
{c!, t!, {1, c-, t-, c-*2, f-, Cc-*3, (t-, f-)*2}
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Notice that in the fully associative cache of this size, the best case results are equal to

the worst case results, so for this reference string there is no range in performance.

3.4.4 Copy Analysis - Equivalence Class, Varying Data {f

To expand our analysis methods to include the equivalence class under varying data
inputs, we must have a conditional in our code. As an example, the C code in Figure 16
has been modified from Figure 9 to include a conditional. The example is artificial in the

interest of clarity. The corresponding assembly code follows in Figure 17.

void copy(int *f, int *t, int N)

inti;
for (i=0; i<N; i++)
if (i=1)
t[i] = f{i];
}

main(int argc, char **argv)
{ . .

inti;

int t[3] = {0, 0, O};

int f[3] = {10, 11, 12};

copy(f, t, 3);
return O;

FIGURE 16: Copy C Code, Embedded Conditional
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// 00 = f's base address

/l 01 = t's base address

/lo2=N

/l 03 =i (local)

/I The arguments appear in the "0" registers because this is a leaf

/I procedure and so the compiler chooses not to allocate a new register

/I window
section .text
copy()
10b64: 96 10 20 00 clr %03 /li=0
10b68: 80 a2 e0 01 cmp %03, 1
10b6c: 02 80 00 05 be 0x10b7c
10b70: 87 2a e0 02 sll %03, 2, %g3 // compute offset
10b74: c4 02 00 03 Id [%00 + %g3], %g2
10b78: c4 22 40 03 st %02, [%01 + %g3]

10b7c: 96 02 e0 01 add %03, 1, %03 //increment i
10b80: 80 a2 c0 0a cmp %03, %02

10b84: 06 bf ff fb bl 0x10b68

10b88: 81 c3 e0 08 jmp %07 + 8 /I return

FIGURE 17: Disassembler Output For Conditional Copy
The TSpec for this new example appears below. The assembly instructions are shown
underneath the code variable for comparison with the source code. Notice that the pointers

for f and t are updated outside of the conditional to make sure they are modified even when

the copy does not occur.

c(10b64_r; 4);

f(?_r; 4);

t(?_w; 4);

<lc,!f,It,c, (¢, c (cC,c f~c tv]) G M M c, ©€)*3, ce>
clrcmp be sllild st add cmp bl jmp

We again focus on analyzing only the loop and assume the base addresses are known.
This yields the following simplified TSpec:

c(10b68 r; 4);

f(FSTART_r; 4);

t(TSTART _w; 4);
<If, It, (L lc, c*2(, ¢, C, f~, C, t~|);, G5, M, A, C*2) *3>
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Let us start with the simplest cache situation: a fully-associative LRU cache of size 14
or larger so that everything fits in the cache.

frawt, AT S%) =<If, It, (LCp C, ( €*2, f~, C, t~ )}, G M, AL, C*2) *3> ; S

whereS' = {c!, t!, f!, c-*3, t-, c-, f-, c-*4, (t-, f-)*2}OR- case where if is always taken
{c!, tI, fI, c-*3, t-, c-, f-, c-*4, (t-, f-)} OR - cases where if is taken twice
{c!, t!, fI, c-*3, t-, C-, f-, Cc-*4, M-, M-, t-, f- } OR
{c!, tI, fI, c-*3, t-, c-, f-, c-*4} OR - cases where if is taken once
{c!, tI, fI, c-*3, ~t-, c-, -, c-*4, t-, -} OR
{c, t!, fI, c-*3, M-, c-, M-, c-*4, M-, M-, t-, f-} OR
{c, t, fI, c-*3, g, c-} - case where if is never taken

By inspecting the source code, we can obtain more information. The TSpec above did
not preserve the knowledge that only the second element can be skipped in the copy.
Retaining this information in the TSpec lengthens the original TSpec description, but
simplifies the final state possibilities. Consider the revised TSpec and resulting cache
output.

c(10b68 r; 4);

f(FSTART_r; 4);

t(TSTART _w; 4);

<If, I, Ic, c*4, 1, c, t, C*3,

Ic, c*2, (c*2, f~, ¢, t~ ), G5, M, /M, C*2,
Ic, c*4, f, c, t, c*3>

Notice that the first and third iterations simplify considerably because no jump or
conditional needs to be anticipated. The second iteration still has a conditional and we
cannot tell from the source code (only from the set-up data itself) whether or not the if will
be taken. Now the filtered results from the revised TSpec are:

frawt, 1(T; S°) = <If, 1t, Ic, ¢*4, 1, ¢, t, ¢*3, (f~, t=}), ™, *t, f, t> ;S

whereS'={c!, t!, f!, c-*3, t-, c-, -, c-*4, -, -, t-, f-}OR - case where if is taken twice

{ci, tI, f1, c-*3, g, c-} - case where if is never taken

This notation is useful for analyzing all possibilities, but it is cumbersome: the number

of cases grows with the number of loop iterations. A simpler approach expresses the state
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in terms of the MIN and MAX possible cache states after execution of the trace. For the

above example, without narrowing down how many times the if is taken:

MIN O S O MAX

where MIN = {c!, t!, fl, c-*3, ¢-, c-} and
MAX = {c!, t!, fl, c-*3, t-, c-, f-, c-*4, (t-, f-)*2}

This second method would be useful for a compiler: the MIN indicates which items
will alwaysbe available in the cache, and the MAX, which additional itenaybe in the
cache. Software prefetching and other techniques should be applied first to items that are

known not be in the cache.

3.4.5 Copy Analysis - Equivalence Class Under Varying Bindings

and Data Inputs {T,q}

In Section 3.4.4 and Section 3.4.5 we show how an analysis can be extended to include
entire equivalence classes rather than just one representative. A more complex example is
included here, by using the conditional example from Section 3.4.5 and analyzing it for
{Tpg- Consider the more general copy example:

c(10b68 r; 4);

f(FSTART _r; 4);

t(TSTART _w; 4);

<If, It, (L lc, c*2(; ¢, C, f~, C, t~|);, G5, M, A, C*2) *3>

Expanding this to analyze it for {J3 by making the number of iterations of the copy
arbitrary and the starting positions of the variables unknown yields:

c(?_r; 4);

f(?_r; 4);

t(?_w; 4);
<!f, I, (L!C, C*2(| c*2, f"', c, t~ || )|, Cs, Af, N, C*Z)L*>
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To analyze this TSpec, we must do a worst-case analysis and best case analysis for the
address assignments as well as the varying number of loop iterations and paths through the
conditional. This can be accomplished by combining the mechanisms described in the

two preceding sections.

3.5 Conclusion

The analysis methodology explained above allows a cache designer to gain insight into
the filtering effect of different types of caches on different types of reference strings. Even
the few analyses above have led to some useful insights. First, fully associative caches
become completely ineffective in a loop situation where the unique reference strifyg, U(
of one loop iteration does not fit in the cache. This insight does not only apply to reference
caches, but may also explain some thrashing phenomena in translation lookaside buffers
(TLBs) as well. Second, direct-mapped caches have to be managed well to have best-case
behavior, but their worst-case behavior is almost never as bad as that of a fully-associative
cache that is too small. This explains in part the effectiveness of the victim cache
following a direct-mapped cache. In particular, the direct-mapped cache ensures the
worst-case performance of the fully-associative cache does not occur and filters the
reference string into the small set of conflicts that will almost certaintly fit into the fully
associative victim cache.

The next chapter discusses different evaluation metrics for caches, then Chapter 5

illustrates the entire methodology on several kernels.
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3.6 Related Work

The majority of the related work for this section was discussed in the related work
section of the introduction, Section 1.7. It is useful to note that the work on an analytical
model for determining the optimal cache sizes for a hierarchy by Jatai. [Jac96]
develops a series of stack distance curves to describe how many bytes of data are touched
between two references to the same item. Measurements are taken directly from address
streams, normalized, and plotted to produce a cumulative probability function and a
probability density function.

Ladner, Fix, and LaMarca [Lad99] describe a model for the cache performance of
algorithms in a direct mapped cache. Several commonly occurring memory access
patterns are studied: (i) sequential and random memory traversals, (ii) systems of random
accesses, and (iif) combinations of each. Still, characterizations are focused around the
number of cache misses per memory access.

Tam, Rivers, Srinivasan, Tyson, and Davidson [Tam99] discuss the effectiveness of
multilateral caches that exploit reuse pattern information. Multilateral refers to a level of
cache that contains two or more data stores that have disjoint contents and operate in
parallel. References are split between two caches depending on whether they exhibit more
temporal or spatial locality. Another example of a multilateral caching system sadhlk
value file system described in [LeeOl]. The stack value file system partitions data
references into stack and non-stack references, routes the non-stack references to a
conventional cache and then exploits characteristics of the stack references in the stack
value file to improve performance. Some of the stack reference characteristics were frist

noticed in the development of the CRISP architecture by Dizell. [Dit87a, Dit87a].
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These systems are evaluated using average memory access time, but their success in the
research confirms the intuition from the caches as filters model that caches should be
combined in such a way that the references they remove complement, rather than
duplicate, one another.

Kin, Gupta, and Mangione-Smith [Kin00] also discusses the concept of a cache as a
filter by presenting théilter cache The goal is to have a very small filter cache on chip
with the processor to filter out the majority of references, allowing the larger second level
cache to be in low-power mode most of the time. Performance is slowed because of the

particularly small size of the filter cache, but power is saved.



Chapter 4

New Measures

4.1 Introduction

In Computer Architecture: A Quantitative Approadly Hennessy and Patterson
[Hen96], caching systems are evaluated using metrics such as (1) the aggrsgaiate
or fraction of accesses that cannot be serviced by the cache, (2) the execution time of a
benchmark, and (3) average memory access time. These metrics are considered by many
to be appropriate cache evaluation metrics - this text is a widely used architecture text for
both graduate and undergraduate course work. As first discussed in the introduction to this
dissertation, however, there are problems with the use of these measures alone. Evaluating
a caching system based only on miss rate ignores the fact that components comprising
main memory no longer have a uniform access time for every sequence of requests and
that non-blocking caches [Kro81] and out-of-order execution can tolerate some miss
latencies. Likewise, evaluating a cache based only on execution time generates little

insight into how to improve on a design. Finally, evaluating a cache based only on average

66
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memory access time ignores the fact that memory accesses are generally bursty in nature
and difficult to spread out evenly over the lifetime of a program.

Metrics that focus on characteristics of the references presented to the cache provide
greater insight and guidance in the design of cache systems than do hit rate, average
memory access time, or even execution time. This assertion is motivated by a simple
observation: two caches with precisely the same hit rate (or average memory access time
or execution time) may achieve that performance in quite different ways. These
differences have important implications for certain aspects of modern cache design; multi-
level caching systems for example.

Consider a permutation of the example presented in the introduction: a loop that
accesses memory for a vector element and a global variable in each iteration, and for
which all other code and data references reside in registers. Let 0 and N be the addresses
of the global data and let 1 through N-1 represent the addresses of the vector elements: (0,
1,N, 2,0, 3 N,..,0,N-1, N)*. The first iteration of the inner loop generates the addresses
0, 1. While this is a contrived example, it is useful to illustrate a few points.

The references that miss when this example is presented to a direct-mapped cache of
size N and a fully associative, LRU cache of size N will be the same in number, but have
different forms. In the direct-mapped cache, 0 and N will conflict but all the references to
the vector will fit in the cache. As a result, once the cache is primed, the misses of the
direct-mapped cache will be (0, N)*. For the fully-associative LRU cache, however, 0 and
N will stay in the cache, but the vector references will always miss. The resulting misses
are (1, 2, 3, 4,...)*. In both cases there is exactly one miss per loop iteration, but the

references that miss in the direct-mapped cache are easily captured by a small victim
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cache, while those that miss in the fully-associative cache need an N-1 size structure to
capture.

This does not mean the direct-mapped cache is generally better, but that the
effectiveness of a caching system is not fully described by hit rate. This is true even for a
single-level cache hierarchy because main memory no longer has a uniform access time.
In the example above, if the two reference streams are going directly to a main memory
composed of a single DRAM, it may be preferable to have the output of the fully-
associative cache because vector references will often hit in the row- or page-buffer, where

they can be accessed more quickly than access sequences without spatial locality.

4.2 Two New Measures of Effectiveness

To address the issues with performance measures described above, we have developed
two alternative measures. The definitions of these measures were chosen for simplicity
and correlation to intuition, to expand the concept of caches-as-filters, and to explore the
usefulness of non-aggregate measures to memory hierarchy analysis. Others may choose
different such definitions.

The first new measure is thestantaneous hit rateh, . The usual definition of hit rate
averages over all references in a string. By contrast, is a function measueadhat
pointin the reference string, to emphasize recent behavior. The definition is:

hy =9 +otlh_,
whered; is 0 if thei reference is a miss and 1 if itis a hit, aBk <1 . This definition
exhibits the desirable property of decreasing the contribution of hits and misses according

to how far they occurred in the past.
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In our experiments, we choge= 1/2, because this measure may be useful at run-time
to indicate phases of reference behavior and dividing by two has a fast implementation.
Note that witho = 1/2, h; has a maximum value of 2. This happens because a series of
cache hits yields the sequence: 1, 3/2, 7/4, 15/8Each element of this sequence can be

represented by:

n
maxh, _; = 2 -1, 1

2n—l 2n—l

This expression has a limit of 2 as n approaches infinity. Thus

maxh; = 1+%maxhi_l = 1+%(2) =2

The second new measure is that of locality in the reference string. To give substance to
the intuitive notion, thenstantaneous locality; lof a reference in a string, a;, @,, ... is

defined as:

i—1

1 1
I, = X ——
' jZO|ai_aj| +1 |i—j|

The precise form of this definition is not critical, but this particular form attempts to

follow our intuition:

* The first term in the product corresponds gpatial locality by forming the
difference between two references, the term is larger when the two addresses are
closer together.

» The second term loosely corresponds to a notiotenfporal locality weighting
the spatial components by the positional difference makes the term larger for

references that are closer together in the reference string.
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The product of these terms is largest for references that are close both spatially and
temporally. By summing over all previous references, we get a measure that is large when
there are many prior references that are spatially and temporally local. As a practical
matter, since reference strings can be exceedingly long, we generally do not sum from
j = 0, butrather sum from = (i —w) for some window sizelf w is sufficiently large,
the terms for smallgrare irrelevant to our results, and they can safely be ignored:

i—1

_ 1 1
= z la; —ay| +1X|i—j|

j=i-w

This definition of instantaneous locality has at least two immediate uses. First, the
difference in locality between the input and output of a cache provides an alternative and
enlightening figure of merit for caches. We belidyes a more informative measure than
an aggregate miss ratio. The ideal composite of cache filters removes not only the most
references possible, but removes all available locality (i.e., any that may be present in the
input reference string). This new figure of merit corresponds closely to intuition about the
guality of a cache. Caches exploit locality to intercept and remove references. Thus any
locality left in the output string signals a failure of the cache (or that the corresponding
misses are compulsory). Although, it is the existence of this locality that gives us hope that
another level of cache can be effective. Alternatively, if there is no locality in the input to
start with, a high miss ratio is not a sign of cache failure.

The second immediate use is that both the instantaneous locality and hit-rate measures
give us insight into the underlying patterns of the reference string and the effect of a cache
on that string. For example, they reveal that locality is “bursty” — real reference streams

tend to have regions of high locality separated by regions of relatively low locality. [Bat76,
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Bat77, Mad76] Even after a reference string is filtered by a cache, we may still see regions
of relatively high locality.

These observations are demonstrated in the example output of Figure 18. The trace is a
small portion of the KENBUS workload from the SPEC SDM 1.1 workload suite,
captured by the BACH system from Brigham Young University [Gri93]. This workload
simulates a multiuser environment by executing a series of common system commands.
Figure 18 (a) shows the locality of the input reference string. Figure 18(b) is the
instantaneous hit rate as determined by an 8K, direct-mapped, 1-byte line size cache, and
Figure 18(c) is the instantaneous locality of the reference string output from this same
cache. The reference strings include both instructions and data references. Each dot and
hash mark graphed represents one reference in the original string. The windotv,
previous references Inis 100. The value af in h; is 0.5.

Notice the areas of higher locality in the graph for the input reference trace of Figure
18(a). The peaks indicate there are periods during which a trace may have more locality
and a cache can be very effective in eliminating references, but other periods in which it is
not effective at all, resulting in bursts of misses as shown in Figure 18(b) and (c). The
extent of the burstiness is important because the longer the bursts are, the more difficult it
is to minimize the memory latency seen by the processor.

The filtering effect of the cache is also visible in Figure 18. Notice how the spikes in
the input locality graph, (a), are filtered out in the output locality graph, (c). Finally, these
new measures allow us to identify and analyze regions of higher locality to examine the
fine structure of their references and determine what source code constructs generated the

higher locality. Examples of this are included in the following section.
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FIGURE 18: Example Measure Output, KENBUS Trace

As mentioned above, we do not claim that the precise definitions we u$gdod|;
are the best possible measures and we have not run exhaustive experiments on the effect of
each parameter on each measure under consideration. Experiments to date have focused
on the qualitative aspects of these measures and their ability to provide more insight into

the nature of reference patterns.

4.3 Computed Locality Examples

4.3.1 The Motivating Example

Applying these new measures to the example in Section 4.1(repeated below) yields the

results in Figure 19 and Figure 20. Here we use k=1 and N=8192 (8K).
[0,1,8K,20 3 &,4,0,..., (8K -1), 8K]U
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Figure 19(a) shows the instantaneous locality after the above expression has been run
through once, and the caches are primed. The output locality of the direct-mapped cache
shown in Figure 19(b) exhibits a steady-state instantaneous locality close to 2, once the
cache is primed. Figure 19(c) and Figure 19(d) display the instantaneous locality of the
output of a fully-associative cache. Random replacement yields more hits and a very
different output pattern, shown in Figure 19(c). The line from the last locality point visible
in Figure 19(c) connects it to the one for the next reference. Since the next miss coming
out of the cache happens far in the future, it does not appear on this graph. This separation
occurs because references retain their positions from the original input trace. With LRU
replacement, the reference string from the primed fully-associative cache would repeat
[1,2 3 4 ..., (8K —1)]1, and the graph of its instantaneous locality would resemble the
picture in Figure 19(d), leveling off at a value close to 1, and dipping slightly when the
pattern begins again.

The fact that the direct-mapped cache produces higivatues indicates that there is
more locality left in the output string. Hence another level of cache would be more
effective here than it would be backing the fully-associative cache. This also means that
the direct-mapped cache is not as effective at exploiting the locality in its input string, and
perhaps a stand-alone direct-mapped organization is not the best design choice for this
level of the hierarchy with this reference string. A direct-mapped cache backed by a small
victim! cache, however, might be more effective than one or more levels of associative

cache.

1 The victim cache (developed by Jouppi [Jou90]) refers to a small fully associative cache placed

after the first level cache to capture conflict misses.
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FIGURE 19: Motivating Example: Instantaneous Locwlit
Transition to Steady-State

Figure 20 shows the instantaneous hit rate for the motivating example reference string
after the caches are primed, with the input from Figure 19(a). Unlike an aggregate
measure, the instantaneous hit rate shows for what part of the trace the cache is performing
well, and for what part it is not. Further attention can then be given to the problem regions.
For example, looking at the instantaneous locality for a region of poor performance can
determine if the input string has any significant amount of locality for the cache to use.
Looking at the trace itself in that region will identify the reference pattern that exhibits the

problem.
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FIGURE 20: Motivating Example: Instantaneous Hit
Rate Transition to Steady-State

Recognizing Program Constructs

To get a better feel for what the instantaneous locality measures can tell us, we used

TSpec to describe a simple loop accessing multiple data stredampy and a loop nest

accessing two-dimensional arraymdtmu). Figure 21 shows pseudocode for these

program fragments. Figure 22 through Figure 27 show the locality measures for 8K

caches.

In the discussion that follows, three categories of program constructs are

identified. One is a stream, or vector-like access. The other two are code loops; one single

loop and one doubly-nested loop.

daxpy fori=1to 10000
yli] = ylil +a* x[i]
matmul fori=1to 10
fork=1to 10
reg = X[i][k]
forj=1to 10
Z[i][i] += reg * yIK][j]

FIGURE 21: Pseudocode for Program Constructs
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4321 Daxpy Example

Figure 22 shows input and output locality from start-up for the code portion of a
10,000-elementlaxpy computation. Each loop iteration is easily discerned in the input
locality pattern in Figure 22(a) because each single loop forms a hump in the locality
graph. Once the loop is loaded, all references hit in the instruction cache, thus all of the
locality from the input in Figure 22(a) is filtered out in the output in Figure 22(b). This
output was generated with a direct-mapped cache, but because this loop fits in cache,
results for both replacement policies are nearly identical (e.g., see the combined reference

string output of both caches in Figure 24).
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FIGURE 22: Instantaneous Locality fataxpy
Instructions, DM or FA cache

Figure 23 shows the locality graphs at start-up for the data portion afakpytrace.
It's easy to see the pattern in the input of Figure 23(a). The first three referenags|ih
and y[1], have relatively little locality, but the instantaneous locality value rises
dramatically at the second referenceyf]. The rising curve defined by every fourth dot
represents the repeated references to sealarthe direct-mapped cache output of Figure
23(b), the locality from the repeated referencea tmdy|i] are filtered out (the repeated

sets of two ticks just above theaxis indicate where these cache hits occurred). Since the
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data set does not fit in an 8K cache, the patterns at the right end of the locality graphs in
Figure 23 will repeat throughout the computation for both the direct-mapped and
associative data caches. Notice how in both parts of Figure 23 the locality values
representing sequential references to a vector (whether it be to vector a with stride zero, or
x and y, each with stride one) ramp up to a point and then become a straight line. This
ramping up to a straight line is the basic pattern behind every stream. (For more details see
Section 4.4.1) The actual value the line approaches is dependent on the stride of the stream

and the separation between individual references to that stream
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FIGURE 23: Instantaneous Locality fataxpy
Data

Figure 24 shows what happens wilaxpyfor a unified instruction and data cache,
either direct-mapped or 4-way set associative. The loop iterations are still evident in the
repeated patterns in the input of Figure 24(a). It is also possible to see the stream patterns
from Figure 23(a). The output locality in Figure 24(c) and Figure 24(d) resembles the
output locality of Figure 23(b) spread out in time. In all these traces, each new reference to
x and y misses the cache, but all other instruction and data references hit. The

instantaneous hit rate in Figure 24(b) demonstrates this graphically. The vdipérops
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at precisely two points during each loop iteration corresponding to each referenceyto

The replacement policy never comes into play.
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FIGURE 24: Results FodaxpyCombined Trace

4.3.2.2 Matmul Example

Figure 25 through Figure 27 illustrate results for matrix multiplication on 10x10
matrices. We choose the small problem size to make patterns in the resulting graphs more
readily apparent. The code description for this computation is modeled after the assembly
language output of gcc on an HP PA-RISC. There are 36 static instructions jitoibye,

27 more in the&k-loop, 5 more in the surroundirigoop, and 5 in the prologue. The nested
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loops give rise to a more complex locality pattern than the singa®py loop, as
evidenced by the graph in Figure 25(a).

The prologue and the first iteration of each loop generate roughly the first inch of the
input locality graph in Figure 25(a); the instruction addresses for this segment are
sequential, so input locality rises steadily as for a stream. The numerical value of any
locality point is much less important than the patterns the points create. The larger dips
signal the backward branch at the end of jHeop. The entire segment depicts 3+
iterations of the innermost loop, or roughly 140 total instructions.

Figure 25(b) shows the instantaneous hit rate, which is the same for both the direct-
mapped and the 4-way set associative cache. Once the loops are loaded, the computation
runs entirely from cache. Since there are no cache misses until all 10 iterationsjof the
loop have finished, there is no locality left in the cache output shown in Figure 25(c).
(Recall that the small hash marks at the bottom of the graph represent hits in the cache.)

Figure 25(d)-Figure 25(f) show the locality and hit rate graphs at the end of the first
iteration of thek-loop. The dip in input locality in Figure 25(d) at the same place that the
instantaneous hit rate drops in Figure 25(e) marks the execution of the remaining
instructions in the intermediate loop (and the corresponding cache misses), then the
pattern for the inner loop picks up again in the right half of Figure 25(d). Notice the
pattern of the doubly nested loop apparent in the combination of Figure 25(a) and (d).
Smaller dips indicate the backward branch in the inner loop and the less frequent large dip
in (d) corresponds to the backward branch of the outer loop. By this point, all instructions
for all three loops are resident in cache, and there are no more instruction misses in the

entire trace. This can be seen in the low output locality in Figure 25(f).
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Figure 26 illustrates data locality at the beginning of thatmultrace. The peaks in
the input locality graph represent references to automatic or temporary variables on the
stack in between references to arrgigsdz. We can see one iteration of tkdoop ending
where the locality pattern in Figure 26(a) dips slightly when we load the next element of
The locality output in Figure 26(c) shows that stack references and repeated accesses to
are filtered out by the cache. Recall that we modeled a cache with very short lines; one
with longer lines could take more advantage of spatial locality among the array references
Figure 27 shows the combined code and data string ak-thep completes its first
iteration. The hit rate in Figure 27(b) drops as the cache services the compulsory
instruction misses we saw in Figure 25(e). The locality output in Figure 27(c) reflects the

drop in hit rate during this transition from inner loop to intermediate loop.
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FIGURE 27: Results FomatmulCombined Trace

In this section, we have taken two program fragments, and have decomposed the full
reference traces coming from the CPU, separating the strings into individual primitives
representing code and data. In applying our locality measures to the individual and merged
strings, we have observed that one can discern the contributions of individual scalars or
data strings in the locality graphs, as for the scalar variabtedaxpy the stack references
in matmul) or the vector accesses in both benchmark fragments. In addition, loops are also

clearly visible as “hump” patterns.

4.4 Analytical Locality Measures

Now that these new measures are defined, we show their relationship to the analysis
methodology presented in the last chapter by demonstrating the instantaneous locality
applied to two primitives: streams and code loops. Recall that in the analysis methodology

developed earlier, we decompose each reference string into primitives. If the locality



83

measure can be defined analytically for these primitives and if L(F(T1 & T2)) = L(F(T1)
& L(F(T2)), we will be able to see the effect of the filter functions on the locality measure
analytically.

Recall the copy example:

<If, It, ('c, c*3, f, c*2, t, )*3>

Consider the three primitives:

P1= (¢, c*3,A, c*2, A, ©)*3

P2=If, (A*3,f, A*2, A, A)*3

P3= It (A*3, A, A*2, t, A\)*3

To compute the locality measure exactly as described above, we need to have the
address values represented hyin these primitives. If we make the simplifying
assumption that all variables have a large distance from each other so that the locality
contribution of any address with respectXar an address from a different primitive is

effectively 0, the instantaneous locality can be computed analytically. The revised

instantaneous locality, , is defined as follows:

D 0 |f ai: )\
g
_0i-1
E, z i otherwise
O =i-w
h I =
wherel; = [0 1 x—_  otherwise
H\ai‘aj“l j =il

With this extended definition, L(F(T1 & T2)) = L(F(T1) & L(F(T2)) holds because only
the locality contributed by addresses within the same primitive contribute to the locality of

a particular referenceyen in the merged representation of the trace
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4.4.1 Analytical Instantaneous Locality for Streams

Working through some complicated algebra, a closed form for the analytic locality of a

stream can be found. L&t= <!f, (A*, f, A*)*>. Then,

i—ip) divi,

Z -.-—1—-—x.1, otherwise
jxst+1 Jx'e

B
0
i) =
_ 0 if t, = A

whereiy, = index of the base address of the streatnefers to the stride of the stream, and

ie is the index difference between the stream references in the overall string (i.e., the
number ofAs in the primitive plus 1). This makes j range from 1 to the number of previous
non-A references in the stream andi,  represents the distance (in indices) bejwadn

the previous nork reference. Note that the stride from the original TSpec description is
necessary to perform this computation. As with the computed version, this measure
corresponds closely to intuition:

* The first term in the product corresponds gpatial locality by forming the
difference between two references, the term is larger when the two addresses are
closer together.

» The second term loosely corresponds to a notiotenfporal locality weighting
the spatial components by the positional difference makes the term larger for
references that are closer together in the reference string.

As an example, consider the specific stream described by:

f(100_r, 4);
<If, (A%2, f, \)*4>
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When executed, this description yields:

T=<<\, 1> 9, 2> <100, 3>, X, 4>, A, 5>, <A, 6>, <104, 7>, X, 8>,
A, 9>, <, 10>, <108, 11>, X, 12>, A, 13>, A, 14>, <112, 15>, X, 16>>

If tj = <112, 15>then

(15— 3) div 4

_ 1 1
() = .zl AT T T WX WA (/9 x (1/8) + (113 x (1/12)
J:

= (1/20) + (1/72) +(1/ 156)= 0.70299

which, as we expect, corresponds to the “computed” version from Section 4.2:
= 1 1
1 1
.= ——=0+0+
DY @ -aj+i -1 O+ 0+ 15100+ 13139

j=i—-w

+0+0+0

1 1 1 1
+ +0+0+0+
112- 104+ 1 77-15 10 0% O* 15708y 1* 11— 15

+0+0+0=

(1/13) x (1/12) + (1/9) x (1/8) + (1/5) x (1/ 4)= 0.70299

4.4.2 Analytical Instantaneous Locality for Code Loops

In a similar fashion, a closed form of the analytic instantaneous locality of a code loop
can be derived. Let = <(!c, c*)*> andiy, andi, are the index of the first instance of the

base address and the number of elements in the loop respectively. Then,

1=y

1 xl_
2 [T o) (0 7o) modi <

() =

Here ] moves backwards in the trace fronl, summing the relative localities. The
difference between the addresses corresponding to the elgraadtthe element referred
to by j is determined by their relative positions in the inner lo¢f.—j —i,) modi,)

determines the position in the inner loop of jledement, anq(i —i,) modi,) determines
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the position of the element. The difference between these two positions multiplied by the
stride gives the distance between the two addresses.
As an example, consider the specific code loop as specified by:

c(100_r, 4);
<(!c, c*3)*4>

Executing this description yields:

T =<<100, 1>, <104, 2>, <108, 3>, 400, 4>, <104, 5>, <108, 6>,
<00, 7>, <104, 8>, <108, 9>, 400, 10>, <104, 11>, <108, 12>>

If tj = <104, 5> then

5-1
1 1_

j;|((5—j ") mod 3 —((5-1)mod [ x4+1 ]

It =

gl
X
[y
+
Ul
X
NI
+
=i
X
Wi
+
Ul
X
AR

It is left to the reader to see that this corresponds to the computed version.

Closed-form analytical versions can be derived for other basic patterns found in the
filter function dictionary. Other patterns generate much more complicated formulae and
little insight is gained by their additional derivation. In practice, the locality measure of the
specific primitives under evaluation is straightforward to compute. The main point behind
these analytical versions is not the precise form. Rather it is the idea that they can be
derived without using the actual addresses present in the basic pattern by focusing on the
relationships between the addresses in the primitive. This allows us to gain insight into a
large number of specific trace patterns without computing the locality for each individual
trace. The next sections shows graphs of the analytic locality of several different streams

and code loops to demonstrate their general form.
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4.4.3 Analytical Locality Graphs for Streams

Figure 28 illustrates the instantaneous locality for a variety of streams. These values

FIGURE 28: Stream Analytical Locality

were obtained usind(?, stride); <!f, f*>, as the TSpec description of the stream. The
different lines are the result of varying the size of the stride. Notice that the Stride 0 stream
is a maximum value for the locality measure and does not have a limit. A Stride O stream
represents repeated references to the same location, generating a locality value that
increases steadily. Using the measure in this form has the feature that the longer a trace is,
the greater its locality for capacity or the greater its locality can be. All other stride values

approach a limit, which decreases as the stride increases.
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4.4.4 Analytical Locality Graphs for Code Loops

Figure 29 shows the basic shape of the analytic locality of code loops of differing

lengths. The results were obtained using the TSpec descrip{®); <('c, c*length)*>

Loop Length 5
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FIGURE 29: Analytic Locality For Code Loops (!c, c+*)*
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where the length is varied between 5 and 9. As the loop gets longer, the locality value

decreases and the humps representing the loops get wider.

FIGURE 30: Analytical Locality for Nested Code Loop
('c, c*3, (c4, c*3)*3)*

Figure 30 shows the analytic locality for a nested code loop. The TSpec description

used here is:

c(?, 4);
<(!c, c*3, (c4, c*3)*3, c*2)*>

Each major hump in the graph represents the locality of an iteration of the outer loop. The
lowest points at the beginning of each major hump represent the start of the loop where the
locality is lowest because of a jump back to the beginning of the loop. Each major hump
consists of first three increasing locality points for the initial three references at the
beginning of the outer loop, then three sets of three points generating smaller humps that
represent iterations of the inner loop, then a final two decreasing locality points

representing the final two references in the outer loop.
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4.5 Example - Computed Locality With Real Traces

Next we will look at an example of the computed locality on a real trace with a
realistic cache system. Consider a cache hierarchy similar to one of the Intel Féntium
Pro chip sets [9], with L1 instruction and data caches that are both of size 8K with 32-byte
lines. The L1 data cache is 2-way set associative, and the instruction cache is 4-way set
associative. The L2 cache is unified, 256K, 4-way set associative with 32-byte lines. We
compared this L2 with two other unified, 256K caches, both direct-mapped, but the first
has 32-byte lines, and the second has 128-byte lines. Our experiments used random
replacement, which differs from the LRU and pseudo-LRU policies of the PentiBno,
but this difference in policies does not materially affect our conclusions

When we analyzed the 061.kenbusl [Gri93] trace for these hierarchies, we found that
the direct-mapped L2 with 128-byte lines performs much better than either of the L2
caches with 32-byte lines. The two 32-byte line L2 caches performed very similarly.
Figure 31 shows input and output localities for a section of the trace. It is evident that the
associative L2 cache with 32-byte lines fails to capture much of the available locality in

the reference string: the locality output graph in Figure 31(c) is almost identical to the
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locality input graph in Figure 31(a). In contrast, there is relatively little locality left in

Figure 31(e) for the direct-mapped L2 with 128-byte lines.
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FIGURE 31. Comparison of Two L2 Configurations

Based on our analyses, our intuition is that the cache at ev&lshould be designed
with a different organization and/or replacement policy from the cache at Nvel

Otherwise both caches are likely to miss on the same kinds of inputs. For instance, our
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results suggest that longer lines are preferable in an L2 cache backing L1 caches similar to
the Pentiurl Pro’s.

We cannot draw conclusions about the L2 replacement policies, since 450,000
references is not enough to observe performance differences between direct-mapped and
set-associative L2 caches of this size. Nonetheless, we expect that making the L1 and L2
replacement algorithms different will also yield better performance. Comparing aggregate
hit-rates should indicate that other L2 configurations may perform better than the
implementation with 32-byte lines, but would not be as useful in explaining why. Future

work will test this hypothesis for a range of replacement policies.

4.6 Conclusions

We have introduced the concept of viewing caches as filters, and have presented the
results of and observations on some initial experiments with this new approach to memory
hierarchy performance analysis. We have demonstrated that the instantaneous hit rate and
the instantaneous locality measures can give us more insight into memory referencing
behavior than the traditional aggregate hit rate, related these measures back to our analysis
methodology with analytical forms of the measures, and shown an example of these
measures in analyzing the effectiveness of a particular memory hierarchy. The next
chapter will use aspects of the new framework on specific examples to demonstrate its

effectiveness.
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4.7 Related Work

The traditional measures of the quality of a caching strategy have been aggregates
such as the miss rate. Other measures break down summary performance data spatially or
according to bandwidth requirements. For instance, Tysbmal. perform a detailed
characterization of cache behavior for individual load instructions [Tys95], and Abraham
et al. study the memory referencing behavior of individual machine-level instructions
[Abr93]. Both studies confirm that a very small number of load and store instructions
account for a majority of data cache misses. Evidence that misses are bursty in both time
and space are available in Thiebaut's work regarding the fractal dimensions of computer
programs and the work of Voldman and Hoevel regarding software-cache interactions.
[Thi89, VoI81] Johnsoret al. measure spatial reuse fractions for cache lines, finding that
over half the time data fetched in a cache with a uniform, large line size wastes bus
bandwidth and cache space [Joh97]. Huang and Shen measure the average bandwidth
requirements of a program as a function of available local memory [Hua96], and Bairger
al. calculate traffic ratios, traffic inefficiencies, and effective pin bandwidths for different
levels of the memory hierarchy, arguing that pin bandwidth will be a severe performance
bottleneck for future microprocessors [Bur96].

New approaches to characterizing program locality make it possible to represent and
discuss locality and caching properties in concrete terms. Brehob and Enbody propose a
mathematical model of locality that uses the distance between references in a trace to
capture temporal locality, and a correspondence to cache lines to capture spatial locality
[Bre96]. Grimsrudet al. introduce a method of quantifying the locality in a trace and

visually representing it as a three dimensional surface [Gri96]. They explore some of the
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properties of this formulation, and show the correlation between graphical features and
specific reference patterns, demonstrating the utility of their locality measure through two
applications as a visualization tool: characterizing and summarizing workload locality,
and evaluating the effectiveness of benchmarks in exercising memory hierarchies.

Although these kinds of summary data provide some insight into characteristics of the
benchmark being analyzed, they do not provide details about cache behavior during
specific phases of the program’s execution or how cache behavior changes over time.
McKinley and Temam take a step towards more detailed analysis by quantifying the
locality characteristics of numerical loop nests [McKK96]; their locality measurements
reveal important differences between loop nests and whole programs, and refute some
popular assertions, but like Brehob and Enbody’s, their approach presents results as
histograms of the locality distributions for the parts of programs in question. In contrast,
our approach aims to provide much more than summary information.

Finally, Riverset al. [Riv98] catogorize references into four groups, non-temporal-
non-spatial, non-temporal-spatial, temporal-non-spatial, and temporal-spatial. They track
the movement of references between these categories and use this information to

determine which cache should be used for each particular reference.



Chapter 5

Example Analyses

5.1 Introduction

The preceding chapters elaborated on the four components of a new framework for
memory hierarchy analysis: the TSpec notation for expressing memory reference traces,
the equivalence class concept for identifying a set of traces to analyze, the filter function
model of a cache for gaining insight into the effects of a cache on a reference string, and
new metrics for evaluating caching systems. This chapter uses the framework in several
examples to show it can work for different reference behavior categories, different
assembly languages, and multi-level caches. Conditional constructs were covered in
Chapter 3. Due to space limitations, we do not give exhaustive analyses for each of these
situations; rather, we sample the space with a few indicative examples. In particular, we
focus on the TSpec constructs and filter functions necessary to evaluate the examples.
Some readers have found it useful to read several sections of Appendix A prior to

continuing with the examples in the rest of this Chapter.

95
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5.2 Reference Pattern Applicability

To demonstrate the framework applies to source programs with different types of
referencing behavior, we target here three general categories: scientific computation,

recursion and pointer chasing (heap use), and conditionals.

5.2.1 Scientific Computation Examples

We use the term scientific computation to refer to code that has a predictable reference
pattern consisting of loops that operate on large data structures where the basic access
pattern is known from the source code. Examples are daxpy, matmul, and a sampling of
the Livermore Fortran Kernels. The C code, assembly language and TSpec translations for
all examples are in Appendix B. The TSpec translation for the data accesses of the
Livermore Fortran Kernels is in Table 1. These examples were compiled using a vpo (Very
Portable Optimizer) [Ben88] backend combined with an Icc front end. The assembly
language was generated with one or more of three possible optimization options:
completely unoptimized, unoptimized with register allocation, and fully optimized. (For
more specific details on the exact optimizations and flag options used, please see
Appendix B, Section B.1) In this section, we focus on the unoptimized versions. See

Section 5.3.2 for the effect of optimizations.

5.21.1 Daxpy Example
Daxpy multiplies a vectorx, by a scalarA, and stores the result in a vectgr, It
consists of one main loop that performs the computation and has three main data

structures X, y, and A) that are not put in registers. Here we focus on the SPARC
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unoptimized assembly with register allocation. The C code and assembly for the kernel are

in Figure 32.

C Code for (i=0; i<N; i++) {
yli] += A * X[i;
}

Assembly Code .L2:sll  %04,3,%g1
add %g1,%01,%03
ldd  [%03],%f0
sethi  %hi(L7_78297),%05
Idd  [%05 + %lo(L7_78297)],%f2
ldd  [%g1 + %00],%f4
fmuld  %f2,%f4,%f2
faddd %f0,%f2,%f0
std  %f0,[%03]
add %o04,1,%04
cmp  %o04,%02
bl L2
nop

FIGURE 32: Daxpy Kernel, C and SPARC Code

The TSpec for the unoptimized assembly code with register allocation is:
c(?_r, 4);

y(?_r, 4, 8);

x(?_r, 4, 8);

A(?_r, 4);

< !a", C*4, 0_204’ C*2, Vi Vo 0*2, A+, A-, C, %, Xes,
C*3, Y_YL, Y_W., C*4) »*5, c*2>

The c variable represents the references to the codey, KhandA variables represent the

same variables in the source code. Each load double in the assembly code is represented
by two references to the variable in the TSpec representation. The first increment value in
each definition is for the intra-word access. The second increment value is for the element
access. If appropriate, a load double could be modeled as one word, or fetch size in the

TSpec. The double fetch is used here to provide a different example than those presented
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in Chapter 3. The four initial code references and two final code references represent code
outside the loop, L2, and not shown in the assembly code.

To model the double fetch of the scalar, A, only an increment with the value of the
word size is needed. Consider the double fetoh+, A->. By incrementing on the first
fetch, the value of A for the second fetch will be the second part of A. By decrementing on
the second fetch, the value of A for the next loop iteration will return to the first part of A.
For each of the vectors, two increment values are needed. The first handles the double
fetch as described above for A. The second provides the increment for the next element of
the vector for the next loop iteration. ky,_, y.,>, the first access increments only the
first increment to implement the double fetch. The second access decrements by the first
increment value (a word size) to reset to the beginning of a word, and increments by the
second increment value to get to the next element.

Since the second increment is exactly twice the first increment in the above example,
the vector double fetches could also have been implementeygsy+> The above
example was used to demonstrate a more general solution.

The daxpy TSpec can be decomposed into the following primitives as described in
Section 3.3.3.2:

P1 =<lc, c*4, (5Cyq, C*2,A*2, C*2, A\*2, C,A*2, C*2, A*2, C*4) 5*5, c*2>

P2 = <lyA\*4, (LoA*3, Yoy Yuu A9, YW, YWy, A*4)| 5*5, A*2>

P3 = < IA N4, (LoA*7, A+, A-, A\¥11) ,*5, A*2>

P4 = < IX,A*4, (| oA*10, X4, X4, A*8)| o*5, A*2>
Note that functional filters for each of these primitives are included in Appendix A. We
could now continue with the analysis of this kernel by filtering the primitives above and

remerging the results. For such an analysis see Section 5.4. The point to be made by this

decompostion is that the kernel daxpy can be analyzed by the methods that we have
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outlined in Chapter 3. It can be described in TSpec and it has functional filters available in

the dictionary for a possible primitive decomposition.

5.2.1.2 Matmul Example

Matmul (Matrix multiply) multiplies an NxN matrixx, by an NxN matrix,y, and
stores the result in an NxN matrix, It consists of three code loops and has three major
data structures (the three NxN matrices) that do not fit in registers. For this kernel, all three
possible optimization options were used to generate the assembly language and are
included in Appendix B. In this section we focus on the unoptimized version with register

allocation. The C code for the kernel is shown below.

void matmul(double x[SIZE][SIZE], double y[SIZE][SIZE],
double z[SIZE][SIZE], int N)

inti;
int j;
int k;
double r;

for (i=0; i<N; i++) {
for (j=0; j<N; j++){
r = x[i][;
for (k=0; k<N; k++) {
z[i][k] += rry[i][k];
}
}
}

FIGURE 33: C Code Matmul

The unoptimized assembly language with register allocation is shown in Appendix B.
Recall the initial increment of four enables intra-word accesses. The corresponding TSpec

description is:
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zZ(BASEz 1, 4, 8, 40);

y(BASEYy r, 4, 8, 40);

X(BASEXx_r, 4, 8, 40);

c(BASEc 1, 4);

<lall, c*4, (]_2C5, c*3,

16Car C*3, X4~y Xy, C*4,
{o€17:C*5, 2, 2, C*2, Yy, Y, C*3, Z_W, Z_W,,
C*Ifllb*S’
c*4, WW)Le*S,
C*4, N, ™X14)L2*5, C*2>

Again, the c variable represents the code accesses and the other TSpec variables represent
accesses to the variables in the source with the same name. In this example, the L2-loop in
the TSpec corresponds to the i-loop in the source code, L6 in the TSpec corresponds to the
j-loop in the source, and L10 in the TSpec corresponds to the k-loop in the source. Inside
the L10 loop there are first several code references. This code updates the addresses to be
fetched. The last of this set of 6 code references represents the load of the z-value. Then
there is an update of another address and the load of the y-value. The y-value is then
multiplied by the x-value already fetched and currently in a register. That result is then
added to the z-value, and the result stored with the write to z. The final code references are
to test the counter and branch back to the beginning of the loop if appropriate. For detailed
assembly code, see Appendix B.

Each of the matrices have increment values corresponding to a word size, an element

size (double word), and a row size. Recall that the » suppresses the generation of an

address while incrementing or initializing the increment counters for a variable.
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This TSpec description can be broken down into the following primitives:
P1 = <lc, c*4, (»Cs, C*3,
L6Co, C*3,A*2, C*4,
L{oC17> C*5,A*2, €*2, A\*2, c*3, A*2, ¢*4)| 10*5,
C*A)L6"™S,
C*A\*2) 5*5, c*2>

P2 = <!X,)\*4, (Lz)\*4, (Ls)\*4, gy Xepy )\*4, (L10A*19)L10*5’ )\*5) L6*5’
)\*5, AX”+)L2*5, A*2>

P3 = <!Z,)\*4, (Lz)\*4, (L67\*101 (LlO)\*6’ 2y L Z )\*9, Z Wy, Z W4, )\*4) L10*5’
A*5) 65,
)\*4, AZ!H_, )\)LZ*S, AF2>

P4 = <ly,\*4, (LoA*4, (LeA*8, (L10A*10, Yieny Youus A*9) 10 A*4, "Yii4)1L6™S,
A*6), 5*5, A*2>

Since the x variable in P2 never uses the second increment, it can be seen as a double
access to a repeated stream of stride 40. This primitive is available in the functional filter
dictionary. Primitive P1, a triple nested code loop, is a straightforward extension of the
filter function entry for a doubly nested code loop. P3, a series of repeated read-write
streams, can be filtered by using the dictionary entry for a single read-write stream and
concatenating the results, or by extending the dictionary to include a doubly nested read-
write stream. P4 is a doubly nested read stream and is a straightforward extension to the

dictionary’s repeated read stream.

5.2.1.3 Livermore Fortran Kernel Examples

The above examples highlight most of the characteristics of the code patterns in the
scientific examples. To investigate a larger number of data access patterns, we considered
a sampling of the Livermore Fortran Kernels. The Livermore Fortran Kernels are a set of
scientific benchmark codes [McM86]. We include them here because they include

examples of sparse matrix computations. Table 1shows the C code and corresponding
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TSpec of the general form of the data accesses for each of six kernel loops. More details
are available in Appendix B.

The data patterns from these loops are either similar to those seen in daxpy or matmul
(k1, k3, k5, k12) as described above, or are rather unique (k2, k4). Those that are unique
have not been added to the filter function dictionary largely because their general form is
unweildy combined with the fact that their inclusion would not solve a large number of
existing problems. However, writing down the filtering function for a specific example of a

primitive can be done from first principles as described in Chapter 3.
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TABLE 1: Livermore Fortran Kernel Data Access Patterns

k# Kernel Code TSpec Data Reference Form

fOI‘ (k :_0; k < n1 k++) <|a”1 AZ'].O’ (L192X+... ZX+~; ZX+~! ZX|+’y+"*’
kLc | x[Kl=q+y[k]*(r* zx[k + 10] | '

+t*zx[k + 11]); ¥ X Wiy X_W)*>

L2: ipnt = ipntp;
ipntp = ipntp-ii;
i =1i/2;
I = ipntp;
k2.c for (k = ipnt+1; k <ipntp;k+=2) | <!lall, ((X—., V-, X+, V_y, X__y, X_W__)*)*>
{i++;
X[i] = x[K] - v[K]*x[k-1] -
vlk+1]*x[k+1];}
if (il > 1) goto L2;

for (k =0; k <n; k++)
k3.c g =q+z[K] *x[k] + z[k + 1] * | <lall, (X-, z-, X_y, Z_4)*>
X[k + 1]

for 1=0;i<n;i++){
for (k = 7; k<1001; k +=m) {

Iw = k-6;
k4.c temp = X[k-l], <((!X’ Xty Iy’ (y+~!y—+1 X+, X_)*! y51
' for j=5;j<n;j+=5){ "Nr X)*)F>
temp = temp - X[Iw]*y[j];
lw++; }
X[k-1] = y[5] * temp; } }
K5 C for (i=0;i<n;i++) <lall, (x+, X4, Y+, V.4, Z+, Z4, X_W+,
' X[i] = z[i] * (y[i] - x[i - 1]); X_W,)*>
k12. | for (k =0; k < n; k++) <fall, (y+~, y-,-, y+~, y+, Xx_w+~,
c X[K] = y[k + 1] - y[K]; X_W-+)*>
5.2.14 Discussion of Scientific Examples

While the examples above are not exhaustive, they show that reference behaviors
similar to these scientific kernels can be described by TSpec and analyzed with the filter

function model. Specifically, it is interesting to note that the TSpec construct of a variable
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is well suited to describe the access patterns in all of these kernels. Multiple increments
allow data structures (in particular matrices and vectors) to be traversed with different
strides or element sizes. For example, this allowed convenient notation for striding
through matrices of double words either by element, or by row size. Which stride or size is
being used can be changed depending on the loop index or fetch size desired. TSpec also
allows for setting the “code” variables to different starting values. This enables a
straightforward expression of an arbitrary number of nested code loops.

The primitives in the function filter dictionary of Appendix A include many of those
necessary to analyze scientific codes. It could be supplemented in a straight forward
manner to include more primitives for kernels of this type of behavior. In those situations
where a filter function is unwieldy, the function for the primitive can be written using the
basic principles outlined in Chapter 3. Even in these cases, some of the primitives in the

kernel will be in the filter dictionary, which simplifies the analysis for the whole kernel.

5.2.2 Recursion Example

For a discussion of the effect of recursion and heap use, we use pseudocode from the
Quicksort algorithmh as shown in Figure 34. From the scientific examples above we
learned that basic code loops and leaf subroutine calls can be modeled with TSpec. Also,
we learned that these compilers fetched the operands in the order that the expressions are

evaluated (from right to left) in the examples. Using this information and the pseudocode

L This pseudocode is from Cormenal[Cor89].
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for quicksort, we can write the general form of the TSpec that corresponds to this source

code.

initial call to sort entire array Quicksort(A, 1, length[A])

Quicksort (A, p, 1)
ifp<r
then g = Partition(A, p, 1)
Quicksort(A, p, q)
Quicksort(A, g+1, 1)

Partition (A, p, 1)
X = A[p]
i=p-1
j=r+l
while TRUE
dorepeatj=j-1
until A[j] <=x
repeati =i+l
until Afi] >= x
ifi<j
then exchange A[i], A[j]
else return j

FIGURE 34: Quicksort Pseudocode

Let us assume that the loop indices and local variables will be put in registers at the
beginning of subroutine calls, and a “callee saves” protocol where the called subroutine
saves and restores registers. This means that the array A is the only data structure that is in
memory as the subroutines run. The TSpec corresponding to the pseudocode for Partition

in Figure 34 is:
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c(?_r, 4); // variable representing code accesses
A(?_r, 4); /l variable representing accesses to array A
sp(?_r, 4); // variable representing accesses to stack
<lall, (c, sp_w)*, /] save registers
c, Ay, C*, Il first three assignments and reference to A
(LA, (c*, A), I/ beginning of while, first repeat
o, (c*, A)*, I/l second repeat
c*, exceptlast(c*, A-, /) 1*, ¢* // end of Partition
(c, sp-)*> I restore registers

Quicksort can now be modeled as multiple concatenated calls to Partition. When one
call to Partition is broken down into primitives, we get a nested code loop, one “write
stream” and one “read stream” each for the save and restore of registers, and a “random
within a range” primitive for the accesses to A. All of these primitives are included in the
filter function dictionary. For some caches, the “random within a range” primitive
requires the specific instance of the primitive to be analyzed from the basic principles
outlined in Chapter 3 because the behavior is not regular enough to be characterized by

any of the current dictionary entries.

5.2.2.1 Heap Use (Linked Lists)

The obvious data structure that is not included in the above examples is that of a linked
list or other linked data structures that make use of the heap. In the model developed here,
the general case of these data structures could be modeled as the “random within a range”
primitive or decomposed further into “repeated single read/write” or “read-write stream”
primitives. This approach has the benefit of simplifying the analysis of the rest of the code
and separating the effects of the heap accesses from the effects of the other data accesses

on the cache.
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Another approach to analyzing the linked data structures using the heap would be to
investigate the actual access patterns generated by these accesses. There has been research
done that indicates these type of accesses have much more regularity than indicated by
their structure. This concentrated analysis is beyond the scope of this dissertation, but the
framework proposed here provides a mechanism for approaching such an analysis and

presenting the results.

5.3 Assembly Language Applicability

5.3.1 Different Assembly Languages

The examples throughout the dissertation at this point have been generated using
assembly language for a SPARC target machine. Several of the examples presented in
Section 5.2 have also been assembled using a MIPS target machine. Those results are
available in Appendix B. The TSpec descriptions corresponding to the different assembly
languages differ little for the kernels studied. An example of the daxpy kernel in MIPS
assembly language and corresponding TSpec is shown in Figure 35.

The differences between these two languages are primarily small differences in the
number of code references to accomplish a task and in branches. The SPARC has a
delayed branch. Instructions in the delayed branch can be annulled if the branch is taken.
This results in more use of tlexceptlast(jeature in TSpec modeling SPARC code than in
TSpec modeling MIPS code.

Modeling assembly language for a target machine without a RISC instruction set

would differ slightly, but could still be represented in TSpec. For example, modeling a
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Pentium instruction set would require modeling instructions of varying lengths. This could

be accomplished with different increment values for a single code variable.

C Code:for (i=0; i<N; i++) {
ylil += A * x[i];}

MIPS Code:.L2: sl $7,%$8,3
addu $9,%7,%5

lLd  $f0,($9)

ld  $f2,L7
addu $2,$7,%4
Ld  $4,0($2)

mul.d $f2,$f2,$f4
add.d $f0,$f0,$f2

s.d  $f0,($9)
addu $8,%$8,1
blt $8,$6,.L.2
.L000: j  $31
TSpec Description:
c(?_r, 4);
y(?_r, 4, 8);
x(?_r, 4, 8);
A(?_r, 4);
MIPs:

<lall, ¢*3, (»C3, C*2, Y;-, Y., C, A+, A-, C*2, % _, X4, C*2,
YW, Y W4, C*Z)LZ*S’ c>
SPARC:
<lall, c*4, ( oC4, C*2, Y4, Y., C*2, A+, A-, C, X, X4,
C*3,Y_W, Yy W, c*4) 5*5, c*2>

FIGURE 35: Daxpy, MIPS Assembly and TSpec Description

5.3.2 Optimizations

Many of the examples in the appendix were also assembled with different optimization

levels. Three different categories of optimizations were used: completely unoptimized,
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unoptimized with register allocation, and fully optimized. The examples in the sections
above are primarily unoptimized with register allocation.

Without register allocation, all locals and parameters require memory fetches so the
TSpec descriptions are longer and more tedious. The primitives introduced by these
additional fetches can be modeled with “read-write”, “single read/write”, or “uneven read/
write within a range” primitives. All of these primitives are available in the filter function
dictionary of Appendix A.

Fully optimized assembly language for these small kernels differs little from
unoptimized assembly code with register allocation. Occasionally the memory fetches are
in a slightly different order or a memory fetch may be eliminated or moved out of a loop.
The most common difference is that the fully optimized version has fewer code references
because code is moved outside a loop, or other, more efficient code sequences have been
substituted. These more efficient sequences are ususally shorter. An example of the TSpec
description for the kernel portion of matrix multiply assembled with each optimization
category is in Figure 36. The variables for the TSpec descriptions and the assembly

language corresponding to each are included in detail in Appendix B.
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C Code:for (i=0; i<N; i++) {
for (j=0; j<N; j++){
r = x[Ll;
for (k=0; k<N; k++) {
z[i][k] += rry[i][K];}}}

Unoptimized:

< lall, ¢*2, px_w~, ¢, py_w~, ¢, pz_w~, ¢, pN_w~, ¢, li_w~, c,
G C, li~, ¢, pN~, c*3, /I ¢67 is where L5 starts
(o€, li_w~, c,

Gg, lj~, c, pN~, c*3,

(Lg Cos li~, €*2,11_w~, c, lj~, c*2, I11~, ¢, px~, C*2, X, X_4, C, Ir_w+, Ir_w-, ¢, [k_w~, c,
c51, ¢, Ik~, ¢, pN~, c*3,

(L10r Co1, li~, €*2, 13_w~, ¢, lj~, ¢*2, 14_w~, c, [k~, c*2,15_w~, c, I5~, ¢, I3~, ¢, pz~,
c*3,16_w~,c,16~,¢,2.,z_, ¢, Ir+,Ir-, c, I5~, ¢, 14~, c, py~, C*2, ¥, Y4, C*3,
16~, ¢c,.z, z, ¢, Ik~, c*2, [k_w~, ¢, pN~, c*3)¢*5,
c, lj~, c*2, li_w~, ¢, li~, ¢, pN~, c*3, fi¥)_ 6*5,
c, li~, ¢*2, li_w~, ¢, li~, ¢, pN~, ¢*3, 'z, ™Xi1+)2*5,
c*2 >

Unoptimized with Register Allocation:
<lall, c*4, ( »Cs, C*3,
L6Cgs C*3, Xy, Xy, C*4,
(LlOCl7' C*5, Zi 72, C*2, Viea Yonros C*3, Z Wy, Z W4, C*4)|_10*5,
c*4, c*3, {\¥)6*5.
C*4, W, "X14)L2¥5, C*2>

Fully optimized:
< lall, ¢*6, ( »Cg, C*6,
L6C*3, X4~ X4, C*10,
L(001 Yiur Yeu G 4, 2, c*3, Z W, Z_Wy, C*4)L10*5'
c*4, M )L6™S,
C*4, N2, ™14 12¥5,
c*2>

FIGURE 36: Matmul TSpec Descriptions, Different Optimization Levels

54 Multi-level Cache System Example

Up to this point we concentrated on generating the TSpec and primitives for several

kernels, but stopped short of a complete analysis. This section takes one of the kernels,



111

daxpy, and analyzes it for the multi-level cache hierarchy shown in Figure 37. This
hierarchy is similar to the basic cache configuration of many modern microprocessors. It
consists of separate instruction and data caches at the L1 level, directly connected to the
CPU, and a single, unified cache at the L2 level.

To perform the analysis we will look at the daxpy trace at each level in the hierarchy.
The traces are labeled at each point of interest in Figure 37. T is the initial combined
instruction and data trace for the daxpy kernel. Tl is the instruction-only portion of T. TD
is the data-only portion of T. TI' and TD' are the filtered versions of Tl and TD
respectively. TID' is the merged version of the traces TI' and TD'. TID' is then filtered by

L2 to produce TID2'.

Tr
Tl
W—@» I-Cache %4/

CPU - O el L2

T TID" TID2

}-» D-Cache g
TD D'

FIGURE 37: Multi-level Cache Hierarchy Example

The initial daxpy trace from the unoptimized SPARC assembly with register allocation

as described in Section 5.2 4i4:

2 The code of the internal loop is different here by one code reference.
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c(?_r, 4);
y(?_r, 4, 8);
x(?_r, 4, 8);
A(?_r, 4);

T =< lall, c*4, G_2C4! C*2, Vi Ve c*2. A+, A-, C, % Xoss
C*2, Y_YL, Y_W., C*4) 5*5, c*2>

By focusing on the kernel, we have performed segmentation, the first step of the
analysis approach discussed in Section 3.3.3.1. Since we have chosen a hierarchy that uses
separate instruction and data caches, the next step is to separate T into Tl and TD.

TI = <A*3, Ic, c*4, (oCy, C*2,A*2, C*2, A\*2, C, A*2,
C*R}2, c*4) 5*5, c*2>

TD =<y, IA, IX, A*5, (1 oA*3, V4o, Yooy A*2, A+, A-) A, Xy Xogs
A2,y Wi, YWy, A*4) 5*5, A*2>

One advantage to the TSpec descriptions is worth mentioning at this point; the TSpec
description contains most of the information needed to design a cache that can maximize
performance on that particular reference stream. In this example, we can tell from the
number of code references in the loop L2 that the I-cache needs a minimum of 12 lines to
hold the loop and so obtain only compulsory misses in the output. Any smaller cache
would have worse performance and a larger instruction cache is unnecessary for this
particular kernel. We can also tell that the data cache would need to be big enough to hold
two arrays of five double elements (x and y), plus a double scalar (A). If there were write-
around capabilities, we could identify x as a candidate for write-around because it is never

reused.
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54.1 Locality of Daxpy, Daxpy Code, and Daxpy Data

In addition to looking at cache requirements, it is worthwhile to note at this point the

locality graphs of the three traces T, Tl, and TD. These graphs are shown in Figure 38.

FIGURE 38: Daxpy Instantaneous Locality

Each trace assumes the same starting address for a particular variable. ¢ starts at 100, A at

1000, y at 1008, and x at 2000. Note that the overall locality of each Tl and TD on their
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own is generally higher than that of T. This helps explain why separating the reference
string into two separate strings improves performance. Not only are there two paths to the
cache, but the locality of each reference string is greater, giving each cache more potential
for success. It also gives the cache system designer an opportunity to tune each cache to

the different types of reference strings for which it will be used.

5.4.2 Decomposition Into Primitives

Continuing with our analysis, we focus on the loop and decompose Tl and TD into
primitives. Tl is already in the form of a repeated code loop concatenated with a couple
short code segments on each side. For this example we will just focus on the loop.

TI=TI1 = <A*3, Ic, (1 9Cyq, C*2,A*2, C*2, A*2, C, A\*2,
C*R¥2, c*4) 5*5, >

TD can be decomposed into three primitives:
TD1 = <y, A*4, (1oA*3, Ve, Yo, A*9, Y Wi, Y Wy, A*4)| 5*5>
TD2 = <A, !A, A*3, ([ oA*7, A+, A-, A1), ,*5>

TD3 = <A*2 IX, A*2, (,A*10, X,y Xy, A*8, ) 2*5>

The next step is to filter the primitives either with the filter function dictionary in
Appendix A, or by reverting to the recursive definition in Chapter 3. The rest of the
analysis proceeds assuming that the I-Cache is a direct-mapped, read-only, cache of size
16 lines with a line size of one, and the D-Cache is a two-way set associative cache with a

LRU line replacement policy and cache size of 16 lines (8 sets of two) of size one.
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5.4.3 Filtering Tl

TI1 can be filtered using the primitive entry in Section A.2.4 of the filter function
dictionary for a “repeated read stream” or “single code loop”. The dictionary entry reads
as follows:

p(?,st); [/Ist>0
P = <P1*n2> such that D(P1) = <!p, p*nl1>

fi s 1 (P; ) =<P1, A\*P1)*(n2-1)>; {p!, (p-)*n1} if nl<ecl (i)

The top two lines describe the primitive that this entry can filter. Recall that D(P) is equal
to P with all of theAs removed. Specifying P as the repetition of another trace P1, and
describing P1 in terms of D(P1) allows this entry to work for a code loop with any number
of interveningAs. n2 represents the number of repetitions of the stream, and nl the
number of elements in the stream.

The third line (labeled (i)) is the entry that is applicable if the loop fits into the cache
(n1 < ecl). The term ecl stands for effective cache lines and refers to the number of lines
that this stream can make use of in the cache. This is dictated by whether the stride and the
number of sets are relatively prime. For details on how to obtain this number for streams
of varying strides, see Appendix A, Section A.1.1. In this case, ecl = 16 and n1 = 12. This
filtering function is subscripted with *,*,1. The first * indicates it applies for a cache with
any kind of associativity: direct mapped, set associative, or fully associative. The second *
indicates the function applies for either a write through cache or a write back cache. The 1
indicates it applies for caches with a linesize of 1 (or where the linesize equals the fetch
size).

Applying (i) to TI1 generates TI1' arft ,p, T11; S)as shown below.
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TI1' = <A*3, Ic, (1 »Cy, C*2,A*2, C*2, A*2, C,A*2,
C*R¥2, c*4) 5, A*80, >
b (T1L S) = (¢!, (¢)*12}
The first iteration of the code loop is reflected at the output. The code loop fits in the

cache, so the subsequent iterations are just represemsd@isice there are 20 references

in each iteration of the loop, the last four iterations are representedisy 80

5.4.4 Fill and Bind

To understand the filter function entries for TD, two additional functions on TSpec
descriptions are required. The first function is dengi€d) and removes all of the nok-
elements in T and replaces them with the placehald€imot A”). For example, ifT = <
M ANt A >thenA(T) =< A, A A, A, A, A >. More formally, Oi such thaf ki< |[T|)

if T=/A(T1) then

=Y AGIEDY

= )
O\ otherwise

The second function, callgdl and denoted by/), operates on two traces by filling
the elements of the first trace with the second trace. An element in the second trace may
beA, in which case\ is replaced by\. For example iff1 = <A, A\, A, A\, A, A >andT2 =<
f,A>, thenT=T1IAT2=<A A, f,A AN N>,

The combination oA andA are used to allow us to remove all the nbrelements
from a trace and then “refill” those nonslots with the filtered version of the original non-

A elements. This process is necessary to maintain the correct placemenhsfiraithe

filtered trace.
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5.4.5 Filtering TD

Recall that the D-Cache is a two-way associative, write back cache consisting of 16
lines (8 sets of 2 lines) with LRU replacement on the lines. The primitives being filtered
are:

TD1 = <y, A*4, (1 oA*3, Y4, Yo, A*9, YV W4, Y W, A*4) 5*5>

TD2 = <\, IA, A*3, (oA*7, A+, A-, AL1), ,*5>

TD3 = <A*2 IX, A*2, (1 oA*10, X4, X4, A*8, ) o*5>
TD1 is a “double read-write” stream. It can be filtered by extending the function in
Appendix A, Section A.2.9 for a “read-write” stream. Since we have 10 actual writes in
TD1 and 16 lines available, the appropriate entry is (ii):

p(?,st)y /Ist>0
P such that D(P) = <!p, (p~, p_w)*n1>

fowb 1(P; ) = <AP) A ('p, (p,N)*n1)>; {p!, (p_w-)*n1} nl<ecl (ii)
Since the primitive in this entry is for a single read-write, the function must be

extended to handle double read-writes. The effect of doubling the size of the read-write is
that only half as many elements will fit. In this case the definition can be extended simply
by representing the ps as double reads and double writes, and replacing n1 by 2 x nl.
Filtering TD1 with this extended definition generates:

TD1' = < ly,\*4, ([ LA*3, Yoy Yooy A*15) 5*5>

15 wb A(TDL; ) = { Y, (y_w-, y_w,.)*5}
Note that the state captures the idea that the elements have been written. This is important
for a write back cache, where if these elements are evicted, their values will need to be

written back to the next level of cache.
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Filtering TD2 and TD3 is a straightforward application of the filter function dictionary
entry for a “repeated read”, Appendix A, Section A.2.1, and a “double read stream”,
Appendix A, Section A.2.10. The results of that filtering are shown below.

TD2' = <A, 1A, A*3, (LoA*7, A+, A-, A[L1), 5, A*80>

b (TD2; &) = { AL, A-, A}

TD3' = <A*2 Ix, A*2, ([oA*10, X,y X4, A*8, ) *5>

5 wb,A(TD3; &) = { X!, (x-, X,.)*5}

The last step is to perform a trace-state merge on the TD primitives to obtain TD'.

5.4.6 Merging TD1', TD2', and TD3'

So far it has not been necessary to know the base addresses or the particular cache set
to which the elements map. We will perform this part of the analysis ongfTBnd
determine a best-case and a worst-case performance for the daxpy data through the D-
Cache. When this approach is used, we write one TSpec description for the worst-case
result and one for the best-case-case result. Note that in these examples the TSpec
descriptions each represent a set of traces that have the same result, namely all those
whose base address assignments result in the assumed cache set assignment.

When performing the trace-state merge, it may be necessary to return to the original
trace and replacas with elements that were originally filtered, but that are evicted by
another primitive. In the worst case, a trace-state merge can approximate the complexity of
a cache simulation. Therefore, this merge is one of the areas of the filter function approach
that would benefit from automation. To perform the merge on the primitives of TD, we

will use diagrams similar to those introduced in Chapter 3.
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Recall,

TD3 =<y, IA, IX, A, (LMA*3, Vae, Yoo A¥2, At, A-) A, X4oy s,
A2,y Wi, YWy, A*4) 5*5, A*2>

TD1' = < ly,A*4, (L oA*3, Y4o, Y., A¥15) 5*5>

TD2' = <A, 'A, A*3, (LoA*7, A+, A-, A1), ,, A*80>

TD3' = <A*2 IX, A*2, (1 oA*10, X4, X4, A*8, ) »*5>

The worst D-cache performance will occur when the most references possible are
evicted. Since there are no repeated references to x, these references will always miss and
do not need to be evicted to generate a worst-case performance scenario. The second set of
references to y are filtered in TD1', but if they were to conflict with two other primitives
then they would be evicted and need to be referenced again. It would require a conflict
with two other primitives because the cache is two-way set associative. y will conflict with
two other primitives the most when all primitives map to the same cache set.

This worst-case scenario is reflected in Figure 39. This figure displays the cache set
assignments for the D-Cache. The cache set number is on the left and each reference is
placed in the appropriate cache set for each iteration. If a reference hitspéaced in the
appropriate cache set instead. Without loss of generality, we assume the single cache set

that all primitives map to is 0.

3 This TD is slightly different than the original TD because we focus here on the loop only,

removing the few code references at either end of the loop.
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Set Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration

0 |YoAoXoY_Wo |Ao A A Yg A Xgy_Wg

1 (yiAr Xy w (A A A Yo A XgY_Wq

2 Yo X2)\

3 Y3 X3 A

4 Y4 X4)\

5 Y5 X5)\

6 Y6 X6 A

7 Y7 X7 A

FIGURE 39: Daxpy Data, Worst-case Cache Set Assignments,
2-way, 16 lines

In the first iteration, all references are to the same two cache sets. The initial references
to y and A each take one line in set 0, when x is referenced it evicts y because it is the least
recently used line in set 0. Then when vy is referenced for the second time in the first
iteration, it evicts A, so when A is referenced in the second iteration it must be referenced
again. In subsequent iterations, x and y map to the same cache set, but since there are two
lines in each set, y is still present in the cache when the write occurs. This happens until
the final iteration, when all primitives reference the same cache line again. The reference
to A still hits because it has not been evicted, but the y write reference in this last iteration

misses again.
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The result of the trace-state merge for the worst-case cache set assignment is:
TD' =<y A A, A*3, Yo, Voo, A¥2, A+, A=) A Xy Xy A¥2, Y Wy Y Wy, A*4)*2,
A3, Vie, Yooy A*5, X4, Xy, A*8)*2,
A3, Vi, Voou A*5, X4y X, A*2, Y Wi, Y Wy, A%4>

5 wb ATD; ) = {ly, IX, (y_W-, y_W-, X-, x-)*4}

In the first two iterations every reference will miss. In the third and fourth iterations
references to A and the second references to y will hit. In the final iteration, the references
to y miss again. Recall that this result is for an entire set of traces whose base address
assignments result in all three primitives beginning in the same cache set. The state is just
the last 4 elements of each stream. With two streams, each a double size, 4 elements
apiece fill the 16 available lines in the cache. Note that the state includes the information
that the y values have been written. In this way, the notion of a dirty line is captured in
case these values are evicted and a write back required later.

The best-case cache set assignment for the daxpy data would be an assignment where
no more than two primitives access the same set in a single iteration, resulting in only
compulsory misses. One such possible assignment is depicted in Figure 40. The critical
issues for finding such a best-case cache set assignment are to make sure that as x and y

wrap around to the cache set to which A is assigned, they touch that cache set over an

iteration apart so that A is never the least recently used item in the set.
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Set Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5
0 [YoAo Yy Wo |A A X A ygA y_Wg

1 (yiAryw |A A Xs A YoA y_Wo

2 Yo A Xg

3 y3 A X7

4 %o Ya A Xg

5 |x1 Y5 A Xg

6 Xo Yo A

7 X3 y7 A

FIGURE 40: Daxpy Data, Best-case Cache Set Assignments,
2-way, 16 lines

With the best-case scenario of only compulsory misses, the output of the D-cache
becomes:

TD' = <ly,IAIXA, A*3, Yoo, Yooy A*2, A+, A A, X4y Xy, A¥B),
AE3, Vi, Yooy A5, Xy, Xy, A*8)*4>

55 wb,A(TD; S%) = {y!, X!, Al, y_W-*8, x-*4, "x-*2, x-*2, A-*2}
Since this case of only compulsory misses is uninteresting for the analysis of the L2 cache
because the L2 cache output would be just the compulsory misses no matter what the

cache looked like, we continue the analysis using the worst-case TD'.
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5.4.7 Merging TD' and TI'

The merging of TD' and TI' is a straightforward trace-only merge as defined in
Chapter 2. It is performed on an element-by-element basmerged with any element
produces that element. Twa merged together producksAny two elements other than
A merged together is undefined. The resulting TSpec description of TID' is shown below.

TD' =<y A A, A*3, Yoo, Voo s, A¥2, A+, A-) N Xy X, A*2, Y Wo, Y Wy, A*4)*2,

A3, Vio, Yooy A*5, X4, Xy, A*8)*2,
N3, Vi Yoou N5, X4y Xy A*2, YW, Y W, A*4>

TI'=<A*3, Ic, (1 oCqy C*2,A*2, C*2, A*2, C, A*2,
C*ZTZ, C*4)|_2, )\*80, >
TID. = <!y1!A;!X1!C; C4! C*21 y+~! y—~! 0*2; A+1 A-! C! )g-~! X—+l 0*2'
YWy W, C*4,
A3, Vi, Vo, N2, A+, AN, Xy X, A*2, Y W, Y Wy, AY4

A3, Vio, Yooy A*5, X4, Xy, A*8)*2,
N3, Yy Yoou N5, X4y Xy A*2, YW, Y W, A*4>

5.4.8 Filtering TID' with L2

Several recent microprocessor designs have L2 caches that are significantly larger than
the L1 data cache and are direct mapped. In keeping with this ratio, let the L2 cache used
for this analysis be a 64 line direct mapped cache. We will perform the analysis assuming
that the base address assignments result in the cache set assignments chosen for the D-
Cache. We will still do best and worst-case analysis.

In the worst-case L2 scenario, the primitives that mapped to the same cache set in the
D-Cache would still map to the same cache set in L2. This could happen because the size
of the L2 cache is a multiple of the size of the D-Cache. In addition to the conflicts this
generated in the D-Cache, there is now a code segment that could conflict. Because only

one set of code references comes through to this cache, it does not cause any extra misses
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Set Iteration 1 Iteration 2 Iteration 3 Iteration 4 Iteration 5
0 [cdypAgXgy_Wo Ag
1 |cSyAIXIYy W Aq
2 |c6 Yo Xo Y Wy
3 |c7 V3 X3 Y_Ws
4 |c8 Ya X4
5 |c9 ¥5 X5
6 |cl0 ¥% X6
7 |cl1 Y X7
8 |cl2 ¥ Xg y_Wg
9 |cl13 ¥ Xg y_Wg
cl4 c15
63

FIGURE 41: Daxpy L2, Worst-case Cache Set Assignments, DM,
64 lines

though. With this worst-case set assignment, all of the data primitives still conflict and
none of the references in TID' are filtered out. A diagram of the cache set assignments are

shown in Figure 41.
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The resulting TSpec description is:
TID2' = TID' = <ly,IA,IX,Ic, ¢4, C*2, Y4, Y., C*2, A+, A-, C, %, X4, C*2,
y_-l-\N1 y_W-+1 C*41
A3, Vi, Voo, A2, A+ AN, Xy, X, A*2, Y W, Y Wy, AY4
AE3, Vi, Yooy A*5, Xy, Xy, A*8)*2,
)\*31 y+~1 y-~1 )\*5! X+~! X—+1 }\*21 y_W+~1 y_W-+1 )\*4>

b A(TID; S9) = {C!, ¥1, Al, c-*2, y-*2, Ay-*4, y-*2, X7, X-*3}

In the best-case scenario, all of the primitives map to completely different areas of the
direct mapped cache and everything but compulsory misses are eliminated. In this case,
the result is:

TID2' = <ly,IAIX,!c, ¢4, C*2, V4, Y-, C*2, A+, A-, C, %, X4, C*2,

A*2, c*4,
A3, Vio, Yooy A*5, Xy, Xy, A*8)*4>

5, wb,A(TID; S% = {c!, AL X!, y!, c-*12, A-*2, x-*8, y_w*8}

5.4.9 Locality of T, TID', and TID2'

It is now possible to evaluate the multi-level cache system in Figure 37 with the
locality measure. The locality graph below shows the locality graphs of the first parts of
the input trace, T, both best and worst-case output of the combined instruction and data
caches, and both best and worst-case output of the L2 cache. Since the best-case output of
the L1 level is the same as the best-case output of L2, and the worst-case output of L2 is
the same as the worst-case output of L1, there are only a total of three traces in the graph.
The traces to correspond to the TSpec descriptions were generated using the following
base address assignments: c- 0, y - 1024, x - 2048, A - 3072. These numbers reflect the
assumptions in the cache set assignments and place each primitive relatively far from each
other. Notice that the locality measures for all three traces are the same for the majority of

the first iteration. The only difference is the TID2' trace has hits for the second two
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references to y. Then the curves begin to differ. TID2' has misses only for the first
references to y and x. The TID' trace has misses for all those of the TID2' trace, and some
additional misses from conflicts, including the very last two misses from y at the end of

the graph.

FIGURE 42: Locality of T*, Worst-case TID', and Best-case TID2'



127

Recall the TSpec descriptions.

T* = <1all, (| »C4, C*2, Y4, Y-, C*2, A+, A-, C, %m, X4,
C*2,y_W, Yy W, C*4) 5,*5>

TID' = <ly!AIx,Ic, ¢4, €2, Y,oy Yo, €2, At, A, €, %o, Xy, CF2,
y_-l.-\N1 y_W-+1 C*41

A3, Vi, Voo, A¥2, A+ AN, Xy, X, A*2, Y W, Y Wy, AY4

AE3, Vioy Yooy A5, Xy, Xy, A*8)*2,

A3, Vi, Voou A*5, X4y X, A*2, Y Wo, Y Wy, A¥4>

TID2' = <ly,IA,IX,IC, €4, C*2, Y4, Y., C*2, A+, A-, C, %, X4, C*2,
A*2, c*4,
A3, Voo, Voo A*5, Xy, X4, A*8)*4>
When analyzing the relationship between the input and output of the different levels in

this cache hierarchy, it can be seen that the first level cache does a fairly good job
removing most of the locality. Indeed it performs perfectly if the cache set assignments in
the D-Cache are done well. If the cache set assignments are not done well, the L2 cache
can capture the other non-compulsory references from T, as long as the cache set
assignments are not the worst-case scenario. It is possible, though, with certain cache set
assignments, that the L2 cache will not capture any more references than the L1
combination caches. This is because the direct mapped aspect of the L2 cache makes it
vulnerable to poor cache set assignments. Increasing the size of the L2 cache by making it
more associative rather than simply a big direct mapped cache would allow these potential
worst-case conflicts to be captured. This last observation is consistent with the approach
taken by the filter function model; each cache acts as a filter and those further down the

hierarchy should be designed to capture references that cannot be captured by the

preceding caches.
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5.5 Summary

This chapter has shown that analysis with the functional filter framework as defined in
Chapters 2-3 can be done. First we examined several kernel examples to demonstrate they
could be translated into TSpec and filtered using the functional filter model. Then we
performed an analysis for a multi-level cache hierarchy on the kernel daxpy. The next
chapter summarizes the dissertation, making specific conclusions and outlining future

work.



Chapter 6

Conclusion

We have shown it is possible to design and evaluate cache memory systems more
formally than is currently done. For this formalization, we have proposed an analytical
framework for cache design that provides a common notation, TSpec, for expressing the
memory references of a program, a functional cache filter model for comparing traditional
cache hierarchy effects, and new instantaneous evaluation metrics that give greater insight
into the operation of caches. The functional cache filter model is made possible by the
concept of an equivalence class of memory references that provides an abstraction for
eliminating certain types of random address placement effects. In addition to aiding in the
design of improved cache systems, we believe this approach can provide a foundation for

more rigorous analysis of other components of the computer system.

6.1 Contributions

The development of the caches-as-filters framework has enabled several observations.

The first and most important of these is that, taken as a whole, the framework provides a
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formalism through the language that enables a researcher to focus on the caching system
and reason about it in new and insightful ways. We have found the TSpec language,
aspects of the filter function model such as U(T), and the locality measure to have
reshaped our conversations as researchers, leading us to further investigation and inquiry.

Several other observations are listed below, but this is the most important contribution.

6.1.1 Additional Observations

Observation 1Primitives provide comprehensible and reusable units for analysis.

Observation 2Decomposition identifies independent sources of locality.

Observation 3Decomposition separates internal construct conflicts from external.

Observation 4Equivalence classes differentiate between point results and class results for

experiments or analyses.

Observation 5:Equivalence classes differentiate between what can be expected from a

cache and what is dictated by other aspects of the system.

Observation 6:Fully associative caches may not be the high standard for removing
references that they are often expected to be and this framework allows a researcher to

identify when they are likely not to meet this expectation.
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Observation 7:The instantaneous locality provides an enlightening figure of merit for

caches, enabling discussion about how a cache “shapes” references to the next level.

Observation 8:The instantaneous locality measure helps explain some known design
benefits, such as the benefit of separate instruction and data caches, or the use of multi-

lateral caches [Tam99].

Observation 9Caching systems should be designed so that individual caches complement

each other, removing references others in the system cannot.

Observation 10TSpec provides a formal language for researchers to discuss reference

patterns and exchange information about them.

6.2 Future Work

6.2.1 Memory Access Patterns

One of the more interesting pieces of future work would be to perform more
experiments on real codes to determine exactly how well the primitives in the filter
function dictionary span the space of reference traces. Frequently in our discussions we
have analyzed a trace for a particular kernel, just to realize it looks very similar to some
other kernel. This effort would need to be supported by some of the automation discussed

in Section 6.2.4 below.
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6.2.2 Filter Function Model

This dissertation showed that the filter function model can be used to analyze kernels
and gave some insight into why some traditional cache designs provide performance
improvements. Developing new caching solutions was beyond the scope of this work, but
we feel sure that this kind of analysis methodology will allow us to do just that. Future
work could expand the filter function dictionary for different application spaces and
expand the model to include larger line sizes. In addition, the model could be used to
investigate the behavior of translation look aside buffers (TLBs), write buffers, and
possibly branch predictors. These structures are relatively small, lending themselves well
to analysis with this model. They are also critical to performance and even small

improvements might make an impact.

6.2.3 Locality Measures

Our initial locality measures have proven useful in preliminary investigations, but
there are several ways in which they might be improved (or changed to illustrate other
properties of memory system behavior). We describe some potential differences here.

To reduce the amount of computation time and state required for each memory
reference, we have developed a simpler measure that has similar analytical characteristics
to the instantaneous locality measure described in Section 4.2. This measure introduces
the concept of &historical addressthat attempts to summarize information about all
previous addresses in the string. It does this by applying an exponentially smoothed
weighting factorf3, to each address. Assuming a reference stfiag a,, a,, 8, a,, ...U ,

this “quick” instantaneous locality measugg,is defined as:



133

0o = 0
- o
|A_1—a| +1

Where the historical address, |, is:

of +(1-a) [f_4 wherei >0, a<1
Ao = &g
A = Ba+(1-B) A _; wherei >0, <1

This measure is sensitive to the values of weighting faatoasd 3, so care must be

taken in choosing them, but preliminary investigations show that this formula produces

similar curves to those presented in Chapter 4.

Other formulas for the spatial locality component may be more useful than the

difference in bytes between two addresses. Measures that use a step function to

incorporate the notion of cache line sizes or bus fetch sizes should be investigated, so that

items that are equally “close” in terms of the memory system organization will have the

same spatial locality value. Similarly, for memory components that perform automatic

prefetching, the spatial locality component could reflect the prefetch distance, since items

that lie within the prefetch distance are “closer” than those beyond this distance.

In the temporal component of a locality measure for cache hierarchies, it may make

more sense to use the number of unique addresses between two references (the LRU

distance), instead of the total number of addresses. Another potentially interesting variant

entails incorporating optimal replacement (the OPT distance, or the number of unique

addresses between the current reference and the next reference to it in the future) into the

temporal locality component.

Another measure we are considering in conjunction with locality measures, is an

entropy measure to determine the predictability of a reference string.
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Future work could expand these results by:

* running more experiments on longer traces;

* developing new measures of locality and cache efficiency;

* using our measures to characterize workloads and to evaluate their effectiveness

with respect to exercising memory hierarchies;

« defining the mathematical properties required in a locality measure.

In addition to developing these new measures, the current measures could be refined.
In particular an investigation into the appropriate method for normalizing them should be
undertaken. The measures as they stand were meant to be exercised with different window
values and smoothing factors. In addition, we found it useful for the instantaneous locality
value to have the properties that a longer trace has more capacity for locality, and that two
traces, one simply a first part of the second, would have the same locality graph for the
parts of the trace that are the same. Care would need to be taken that any normalization

maintain these properties and facilitate comparisons between different traces.

6.2.4 Automation

Several aspects of this framework can be automated now that some of the basic ideas
have been worked out. First, a translator packaged with a compiler that could generate a
form of TSpec for a given source program would enable quick and accurate examination
of more kernels. Second, tools that assist in determining patterns in memory reference
traces and categorizing them would enable further investigation into potential primitives.
Third, assistance in the merge operation would enable larger segments to be concatenated

and analyzed in a timely manner. Finally, the new measures could be incorporated into
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current simulation infrastructures such as SimpleScalar [Bur97] so that more researchers
could make use of them. Some of these tools have been developed. While not appropriate

for public distribution, they demonstrate that much of this automation is feasible.

6.3 Closing Remarks

It is worthwhile to emphasize that this framework formalizes the operation of a
caching system, providing a means for researchers to reason about such systems in
insightful ways. It is our sincere hope that others will adopt the philosophy of this
framework and assist in improving and adding to it to develop a shared body of knowledge
about fundamental aspects of caching systems. In this way, the community can reap the

full benefits of the talents of every research team.



Appendix A

Filter Dictionary

A.l General Information

This appendix contains the functional filter dictionary referred to in the previous
chapters. This section contains information that is applicable to all of the individual filter
functions including an explanation of the formula for the effective set number (esn) in a
cache, the formal definitions dill andbind, and an explanation of the format for each
entry in the dictionary. Section A.2 describes the filter function for each primitive in detail.

Section A.3 contains a table listing of the filter functions without any explanations.

A.l.l Explanation of the Effective Set Number (esn) Formula

Throughout this dissertation we have used the teffiective set numbéesn) to refer
to the number of sets in a cache that can be used by a particular reference string. This leads
to the termeffective cache line®cl) to refer to the total number of cache lines that can be
used by a particular reference string for the entire cache. The number of effective cache

lines is simply the number dfnes per sef(lps) multiplied by the effective set number
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(esn),ecl = Ipsx esn. For a fully associative cacligsis equal to the number of lines in
the cache and the effective set number is always one because there is only one set. For a
direct mapped cachlps = 1 andesn =number of lines in the cache.

Effective set number is used primarily to generalize stream accesses. [Since code can
be seen as a stream access with a stride equal to the word size of an instruction, this
includes many common primitives.] The formal definition of effective set number is given

below. Heresn represents the number of sets in the cadteepresents stride of the

SN

esn= gcf(st 19 x gcf(stsn

stream, ands represents the line sizgcf refers to the greatest common factor of the
numbers in parentheses. For fully associative cachres; 1 For direct mapped or set
associative cachesnis equal to the number of lines in the cache set. Linesize and stride
are discussed in terms of the memory fetch size. If one whole line is fetched from the next
level of memory at once, we consider the line size to be one. If the stride is one line size,
then we consider the stride to be one. A two-way set associative cache with a line size of
one memory fetch, a memory fetch size of 4 bytes, and total cache size of 4K bytes would
have an effective set number of 512. A stream with a stride of 4 lines (16 bytes) would be
able to use 128 sets of this cache, thus it would haesrar 128

The intuition behind this formula is that the number of sets a stream can make use of in
a cache is dependent on how many sets the stream can map to before it begins to conflict
with itself. If a stream’s stride is relatively prime to the number of sets and Is, then every

set in the cache can be used before the stream begins to evict itself. The evictions due to
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the conflicting stream elements effectively reduce the cache sets available to the stream in
a particular cache, hence the name effective set number.

Consider the case where the line size is one and the formula simplifies to:

- Sh
gcf(stsn’
want to find the element), in the stream where the conflicts begin. Without loss of

esn In this case the derivation of the formula is fairly straightforward. We
generality we can assume that the first element in the stream maps to cache set zero. We
are then looking for the smallest greater than zero such théh x st) modsn = 0

Hencen x st = k x snfor some(k = 1,2,3,...) . Certaintly this is true whest = k = 1

andn = sn. In some cases, however, where the stride has factors in commorsmyith

could be even smaller. Specifically, thecan be smaller by the number of factors that

Sn

andlps have in common, ogcf(st, Ips) andn = esn= gcf(stsh

. A similar argument

can be made for the effect of the line sizesnn

A1.2 A(T), Fill (4) and Bind

To simplify the description of the output of several of the functional filters, some
additional functions on a trace T, and one function on TSpec elements are useful.

The first function is denoted\(T) and removes all of the nok-elements in T and
replaces them with the placeholde(“not” A). For example, iff = <A, A, f, A, t, A > then

A(T) =<\, N A A A, A >, More formally, i such thafl ki <|[T|) if T =A(T1) then
O\ if (11, = A)

= _
[\ otherwise

The second function, callgdl and denoted by/), operates on two traces by filling

the elements of the first trace with the second trace. An element in the second trace may
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beA, in which case\ is replaced by\. For example iT1 = <A, A\, A, A\, A, A>andT2 =<
f, A>,thenT = TLAT2 = <A, A, f, A, A, A >. Note that fill is not commutative.

Finally, the last function we define herelbd, denoted by (:). Bind “binds” together
two TSpec constructs so that they may be considered as having the same index in a trace.
For exampleT = <f: f_w > is considered to b& = < <f: f_w, 1> >rather thanl = < <f,
1>, <f_w, 2>> Bind is useful when using a fill to describe the output of a write back
cache. When a write back occurs, it can be bound to the access that caused the write back

and so “filled” in to a singla.

A.1.3 Dictionary Format Details

The filtering function for a number of primitives are detailed in the section below.
Each primitive and its filtering function(s) for a variety of caches are described in a
separate subsection. First the general form of the primitive is given using parameters. P is
used to denote the primitive, and specific elements in P are denoted with p. Then the
filtering function formula is presented in terms of the primitive (P) and its parameters.
Each function has three cache characterization modifiers in the subscript that specify its
applicability as far as associativity (as), write policy (wp) and line size (Is). Fully
associative caches are denofadIf a function applies to every cache associativity other
than a fully associative, it is denotéal(“not” fa). Direct mapped caches are denoted by an
associativity of 1. All other set associativities are denoted by the number of lines per set.
The write policy can either be write thriwf) or write back wb). The line size (as
discussed above) is represented in terms of the number of memory fetches required to fill

the line. Each function is then represented@s,p §P; ) =P, S' Itis assumed that all
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cache line replacement algorithms are (Least Recently Used) LRU. If any cache parameter

is listed as *, the function applies to caches with any value for that parameter.

A.2 Detailed Descriptions of Filters for Primitives
A.2.1 Repeated Single Read
p(?, ?);

P =<lIp, A*nl, p~, P1> where D(P1) = <(p~)*n2>

fu v (P; &) = <Ip, M*n1, p~,M|P1|>; {p!, p~}

This function describes the filtering of any single repeated read for a cache of any
associativity, whether it is write thru or write back, and of any line size. Note that the
primitive may contain an arbitrary number of precedhsgand that the repeated reads may
be separated by any number of interleavig) These\s are retained in the output by

adding |P1)s instead of n2 or [D(P1)$.

A.2.2 Read Stream

p(?, st); /[st>0
P =<Ip, (A*n1, p,A*n2)*n3>

fu v 1 (P; &) = <P>; {p!, (p-)*min(ecl, n3)}

This result is a sub case of the primitive presented in Section A.2.3. Since there are no
repeated addresses in the read stream, the cache passes every read from the input to the
output and the output trace equals the input trace. After the read, the cache state consists of

as much of the stream as will fit in the cache.
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A.2.3 Read Stream, Straight Line Code

p(?,st); [/st>0
P such that D(P) = <!p, p*n1>

fr 1 (P; §) = <P>; {p!, (p-)*min(ecl, n1)}

Since there are no repeated addresses in the read stream, the cache passes every read
from the input to the output and the output trace equals the input trace. After the read, the
cache state consists of as much of the stream as will fit in the cache. (Note this is a

generalization of Section A.2.2 for irregular interleavksg)

A24 Repeated Read Stream, Single Nest Code Loop

p(?,st); //st>0
P = <P1*n2> such that D(P1) = <!p, p*nl1>

fix 1 (P; §) =<P1, (A\*|P1)*(n2-1)>; {p!, (p-)*n1l} if nl<ecl (i)

ffa,*ll(P;SO) = <P>; {p!, (p-)*ecl} if n1=ecl (i)

frax1(P; ) = <AP) A [PL, (| Plyy ec) M(26ch-n1), Reiva, PH(NL-eC-1)) *(n2-1)]>;
{p!, (p-)*ecl} if eclsnl<2xecl (i)

frax 1(P; 50) = <P>; {p!, (p-)*ecl} if (2 xecl<snl) (iv)

Some general comments are useful to set the stage for the more complicated results.
First, recall that\(T) removes all the noi-elements from T and TA T2 “ills” the A
elements of T1 with consecutive elements of T2. These definitions allow us to use
A(P)A P' to remove the noi-elements of P and refill it with the filtered version of P and
S0 maintain the corredt relationships. Second, there are three categories of behavior for
streams in set associative caches. These three categories correspond to the stream fitting

completely in the cache, case (i) above, the stream partially fitting in the cache, case (iii)
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above, or the stream completely evicting itself before it can be reused, case (iv) above. The

values for when these boundary points arise are depicted in Figure 43. The parameters are

Po Pn
P Pn1
P2
ecl D3 T
Pa 2ecl - nl
Pn-1 l

FIGURE 43: Values for Behavioral Boundaries As Stream Size
Increases
those applicable for (iii) and the primitive above.

(i) states that if the loop or stream (P1) is small enough to fit in the cache, then the
trace output consists of just one iteration of P1 followedbyor the rest of the iterations.

The state is also one iteration of P1, but the last one. This is true regardless of the
associativity or write policy of the cache. If P1 does not fit in the cache, the results differ
depending on the associativity of the cache and the length of P1.

(i) describes the case where the cache is fully associative and P1 does not fit in the
cache. Then the cache does not filter any references from the input and the output trace is
equal to the input trace. The state contains as much of the latter part of P1 as will fit in the
cache.

(iif) and (iv) cover two separate cases for direct mapped and set associative caches.
The first (iii) is the situation where P1 does not all fit in the cache, but partially fits in the

cache. Some parts of the middle of P1 (specifically, 2ecl - n1 elements) will stay in the



143

cache and be available for future iterations, but the beginning and end of P1 will evict one
another, and so be passed on to the output trace.

(iv) shows the case where the length of P1 is greater than twice the effective number of
cache lines (ecl), so all of P1 is evicted from the cache before it can be used again. Here, as

in the fully associative case, all of the input trace is passed on to the output trace and they

are equal.

A.2.5 Repeated Single Write
p(?, ?);
P =<Ip, A*nl, p_w~, P1> where D(P1) = <(p_w~)*n2>
feut,1(P; ) = <P>; {p!, p_w~} (i)
fewp,1(P; $) = <Ip, A*n1, p_w~A*|P1[>; {p!, p_w-~} (i)

(i) shows the case of a write thru cache, of any associativity. In this case, all writes are
passed on to the output, so the output trace is equal to the input trace. (ii) shows the case of
a write-back cache. Regardless of the associativity of a write back cache, a single write
will never conflict with itself, so only the first write will be passed from the input to the
output trace. Note that the repetitions of the write in the input may be interleaved with any
number ofAs. To retain thesas in the output trace, |P1]| is used instead of n2 to indicate

the number oAs in the output trace.
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A.2.6 Write Stream

p(?,st)y; /st>0
P such that D(P) = <!p, p_w*nl1>

fi i 1(P; $) = <P>; {p!, (p_w-)*min(ecl, n1)} 0]
fowpa(P; $) = <P>; {pl,(p_w-)*n1} nl<ecl (ii)
fx b, 1(P; ) = <A(P) A [D(Peg)., (P_W:P_Wy4ec)*(n1-ech)]>; (i)
where y=1,2,3,...(n1-ecl)
{p!, (p_w-)*ecl} ecl<nl

(i) shows that for a write through cache, all writes are passed through to the output and
the output is equal to the input. The state contains as much of the end of the stream as will
fit in the cache. (ii) describes what happens when the whole stream fits into a write back
cache. Since there are no repeated accesses, every access passes through to the output and
again the output equals the input. Since the whole stream fits in the cache, the state is
equal to the stream. (iii) describes the situation when the stream is longer than the number
of effective cache lines and once the stream begins to wrap around, the write back of the
dirty line from earlier in the stream must be added for each access. The state is as much of
the end of the stream as will fit in the cache. Note that the subscript ecl on P refers to the
trace index where the subscripts of p represented by the variable y are a TSpec iterator

count.

A.2.7 Uneven Reads Within Range, R x st

p(?, 1);
P such that D(P) = <Ip, (B*n1> where x = random value 1-R

fiux 1 (P; ) = <U(P)>; {last ecl of D(UP))}
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For this primitive, the function is reverting back to the recursive definition to
determine the output by computing U(P) andP)l((RecallP is the reverse of P.) For the
purpose of computing ecl, this primitive has a stride of one so esn is equal to sn. Note that
it is possible that there are enough conflicts or so few references in the primitive that the
cache may not be filled with the pattern. When dealing with this kind of primitive, it may
be preferable to break it down to even smaller primitives where there is a clear relationship

between the elements.

A.2.8 Uneven Writes Within Range, R x st

p(?, 1);
P such that D(P) = <!Ip, (p_y;)*n1> where y =random value 1 ... R

fx wi 1(P; ) = P; {last ecl of D(UP))} (1)

frawb AP; $) = <U(P)>; {D(U(P))}  [D(U(P))<ecl (i)

frawb AP &) = <A(P) A [U(P)eq, (***)>; {last ecl of D(U(P))Xii)

(i) shows the case of a write through cache where every write passes from the input to
the output and the output is equal to the input. The state is the last effective cache lines of
D(U(P)). Again the stride is equal to one so the esn equals the actual set number. Also,
there may be so few references in DR)) that the cache is not filled with the pattern. (ii)
covers the case of a fully associative cache where the pattern fits in the cache. Here the
duplicates only are removed from the input. There are no conflicts or write backs because
it is a fully associative cache and everything fits. (iii) shows the write backs that would be
needed once the fully associative cache is filled. Here the subscript ecl on U(P) refers to
the trace index. Note that there is no entry for the set associative and direct-mapped cases

in a write back cache. This is because it is impossible to tell when the conflicts will occur
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and cause write backs without making use of the recursive definition. In this situation the
primitive should either be broken into smaller primitive whose elements have a more clear
relationship to one another, or the recursive definition given in Chapter 3 (***) should be

used.

A.2.9 Read, Write Stream

p(?,st)y [/st>0
P such that D(P) = <!p, (p~, p_w)*n1>

fo e 1(P; §) = <P>; {p!, (p_w-)*min(ecl, n1)} (i)

fowp,2(P; ) = <AP) A (Ip, (p,A)*n1)>; {p!, (p_w-)*n1} ni<ecl (ii)

fwb,1(P; S0) = SA(P) A [D(Pec), (P_W:P_W4ec)*(n1-ech)]>; (ii)

where y=1,2,3,...(n1-ecl) ecl<nl
{p!, (p_w-)*ecl}

Recall that p~ does not increment the variable, but p_w or p_w+ do. (i) shows that for
a write through cache, all writes are passed through to the output and since all the reads
are the first access to that address they are also passed through. Therefore, the output is
equal to the input. The state contains as much of the end of the stream as will fit in the
cache. Note that the write is kept as part of the state to indicate this line is dirty in case a
future write back is needed.

(i) describes what happens when the whole stream fits into a write back cache. Since
the writes are repeated accesses, they do not pass through to the output. Since the whole
stream fits in the cache and the last access to each element is a write, the state contains the
write accesses.

(iif) describes the situation when the stream is longer than the number of effective

cache lines and once the stream begins to wrap around, the write back of the dirty line
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from eatrlier in the stream must be added for each access. The state is as much of the end
of the stream as will fit in the cache. Note that the subscript ecl on P refers to the trace

index where the subscripts of p represented by the variable y are a TSpec iterator count.

A.2.10 Double Read Stream

p(?,ws,st) [//st>0
P such that D(P) = <Ip, (p-, p.+)*n1>

fux 1 (P; &) = <P>; {p!, (p-~, p+-)*min(ecl, n1)}
This shows the form of a double read stream and its filtered output. A double read is
one to a vector element that is twice the word size of the machine, and twice the line size.

Since there are no repeated accesses, the output trace is equal to the input trace.

A2.11 Double Write Stream

p(?,ws,st) //st>0
P such that D(P) = <Ip, (p_\W., p_W,)*n1>

fowt 1(P; ) = <P>; {p!, (p_w-~, p_w+-)*min(ecl, n1)} (i)

fuwp,2(P; $) = <P>; {p!, (p_w-~, p_w+-)* n1} n1< ecl (ii)

fwb 1(P; $) = <A(P) A [D(Pec), (P_W:P_Wyrech P_Wpa1:P_Wyrqrec)*(N1-€Ch]>;

where y=1,2,3,...(n1-ecl)
{p!, (p_w-~, p_w+-)*ecl} ecl<nl (i)

(i) shows that for a write through cache, all writes are passed through to the output and
the output is equal to the input. The state contains as much of the end of the stream as will
fit in the cache. (ii) describes what happens when the whole stream fits into a write back
cache. Since there are no repeated accesses, every access passes through to the output and

again the output equals the input. Since the whole stream fits in the cache, the state is

equal to the stream. (iii) describes the situation when the stream is longer than the number



148

of effective cache lines and once the stream begins to wrap around, the write back of the
dirty linse from earlier in the stream must be added for each access. The state is as much
of the end of the stream as will fit in the cache. Note that the subscript ecl on P refers to the
trace index where the subscripts of p represented by the variable y are a TSpec iterator

count.

A.2.12 Conditional

p(?, ws);

P1 = <Ip, p*nl>

P2 = <pyy.1, P25

P3 = <pp1+n2+2 P*N3>
P4 = <pp1+n2+n3+3 P*N4>

P such that D(P) = <P1, {P2 | P3}, P4>

for1(P; S) = <P>; {last ecl of D(P)} =

<P>; {{last ecl d?4,P2,P1} OR {last ecl oP4,P3,P1}}
This entry shows two different ways of representing the state when encountering a
conditional. The actual output will depend on which part of the input is actually used.

Since there are no repeating references the output trace is equal to the input trace.

A.2.13 Single Nest Code Loop With Conditional

p(?, ws);

P1 =<Ip, p*n1>

P2 = <pp1+1, P*N2>

P3 = <pp1+n2+2 P*N3>
P4 = <pn1+n2+n3+3 P*N4>

P such that D(P) = <(P1, {P2 | P3}, P4)*n5>
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fox 1 (P; ) = <A(P)A[P1, {P2 | P3}, P4), (A*n1, P2,A*(n4+1) | (i)
A*nl, P3,A*(n4+1) |
A*(n1+n2+n4+2) |
A*(n1+n3+n4+2)})*(n5-1)]>;
{CR)} where DP) = {{ P4,P2,P1} OR P4,P3,P1} OR
P4{P3,P2,P1}}
nl+n2+n3+n4+3<ecl

(i) shows the filtering function in the case where the loop fits in the cache. The output
passes through the whole loop in the first iteration, with either P2 or P3, but not both. In
the subsequent iterations one of four possibilities can occur each time. First the loop
could be run with either P2 or P3 again, whichever was not executed in the first loop.
Second, the loop could rerun P2 or P3 again. The state for this case is just the part of the
loop outside the conditional, and whatever conditional piece of code is actually run. The
conditional part could be either P2 or P3 alone, or both P2 and P3.

The filtering function when part of the loop does not fit in the cache depends on how
much of the loop does not fit. The output for subsequent iterations will be changed in that
the beginning and ends of the loop will overlap and kick each other out of the cache much
like the nested loop code in Section A.2.4. There will be more dependence on exactly
which section of the code is executed and the relative sizes, but once the loop is at least
twice as long as ecl, every piece of code will be evicted before it is used again and the

output trace will equal the input trace, and the state will equal the last part of the loop that

is executed.
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A.2.14 Doubly Nested Code Loop

p(?, ws);

P1 =<Ip, p*n1>

P2 = <pp1+1, P*N2>
P3 = <pp1+n2+2, P*N3>

P such that D(P) = <(P1, (P2)*n4, P3)*n5>

frax1(P; ) = < A(P) A <P1, P2 A\*((n2+1)(n4-1)), P3, (i)
A*(n1+(n2+1)(n4)+n3+1)(n5-1)>>;
{f3,P2,P1>} nl+n2+n3+2<ecl
frax1(P; ) = < A(P) A <(P1, P2,\*((n2+1)(n4-1)), P3)*n5>>; (ii)

{last ecl ofR3,P2,P1>} n2<ecl<nl+n2+n3+2

frax1(P; ) = <P>; {last ecl of <P3,P2,P1>} ecl<n2 (iii)

(i) demonstrates the effect of a fully associative cache on the doubly nested loop when
everything fits in the cache. One iteration of each access is passed on to the output trace.
The state contains one of each reference. (ii) demonstrates the effect of the fully
associative cache when the inner loop only fits into the cache. (iii) demonstrates the effect
when even the inner loop does not fit in the cache. In this every reference is evicted before

it can be used again and the output trace equals the input trace. The state is as much of the

last part of the loop as will fit in the cache.



Appendix B

Code and TSpec Listings

B.1 General Settings

All assembly code included in this appendix was generated with a vpo (very portable
optimizer) back end and an Icc front end. Two versions of the backend were used: one for
the SPARC instruction set and one for the MIPS instruction set. Both backends are being
developed at the University of Virginia by Davidsen al. [Ben88]. This compiler was
chosen because its method of implementing optimizations is similar for different target
machines and it was believed to generate relatively accurate comparisions in addition to
being readily available. Three different sets of compiler options were used for most of the
kernels. The first, referred to as completely unoptimized uses the settings -VGLA. The
second, referred to as unoptimized with register allocation uses the settings -VGLAO. The
third, referred to as fully optimized uses the settings -VGLAOFICMSV. The details of

what each setting means are included in Table 2.
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TABLE 2: VPO Compiler Option Descriptions

Option Description
\% evalutation order determination
G sets global links
L does control flow fixups
A indicates assembly output
F delay slot filling (SPARC only)
O register assignment

I instruction scheduling (SPARC only)

C common subexpression elimination

M code motion

S strength reduction and induction variable elimination
B.2 Copy
B.2.1 Copy C Code Listing

more copy.c

void copy(int *f, int *t, int N)

{

inti;
for (i=0; i<N; i++)
t[i] = fi];
}

main(int argc, char **argv)
{

inti;

int t[3] = {0, 0O, 0};

int f[3] = {10, 11, 12};
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copy(f, t, 3);
return O;

}
B.2.2 SPARC, Optimized, Assembly Code

more copy_opt.s
.section ".data"
.align 8
.K_DO:
.word 0
.word 0
K_FO:
.word 0
.common __va_first_parm,4,4
.common __ builtin_alloca,4,4
.global copy
.global main
.section ".text"
.align 8
copy:
.type copy,#function
I File = "../ccode/copy.c", Line = 3
I File = "../ccode/copy.c", Line =5
cmp  %g0,%02
bge .LOOO
nop
sll - %02,2,%g4
mov  %01,%g2
sub  %00,%01,%9g3
add  %g4,%01,%94
ld [%g2 + %g3],%04
.L2:
I File = "../ccode/copy.c", Line = 6
st %04,[%g2]
I File = "../ccode/copy.c", Line =5
add %g2,4,%92
cmp  %g2,%04
blLa .L2
Id [%g2 + %g3],%04
.LOO0O0:
I File = "../ccode/copy.c", Line =7
retl



nop
.section ".rodata"
.align 4
Jocal L8 59018
L8_59018:
.word 0
.word 0
.word 0
.align 4
Jocal L10_59018
L10_59018:
.word 10
.word 11
.word 12
.section ".text"
.align 8
main:
.type main,#function
1.1 f=-16
1.0 t=-32
save %sp,(-128),%sp
I File = "../ccode/copy.c", Line = 10
I File = "../ccode/copy.c”, Line = 12
sethi  %hi(L8_59018),%00
add  %00,%lo(L8_59018),%00
ld  [%00 + 0],%01
st %o01,[%fp + .11.0_t]
Id  [%00 + 4],%01
st %01,[%fp + (.11.0_t + 4)]
ld  [%00 + 8],%01
st %o01,[%fp + .11.0_t]
Id  [%00 + 4],%01
st %01,[%fp + (.11.0_t + 4)]
ld  [%00 + 8],%01
st %01,[%fp + (.11.0_t + 8)]
I File = "../ccode/copy.c", Line = 13
sethi  %hi(L10_59018),%00
add %00,%lo(L10_59018),%00
ld  [%o00 + 0],%01
st %o01,[%fp + .11.1_f]
Id  [%o00 + 4],%01
st %01,[%fp + (11.1_f+ 4)]
Id  [%o00 + 8],%01
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st %01,[%fp + (.11.1_f + 8)]
I File = "../ccode/copy.c", Line = 14

add  %fp,.11.1_f,%00
add  %fp,.I11.0_t,%01
call copy

mov  3,%02

I File = "../ccode/copy.c”, Line = 19

mov  %g0,%i0
ret
restore

SPARC, Optimized, TSpec

TSpec (copy_opt.s)
c1(MAIN_r, 4)

c2( COPY_r, 4);

t (T_w, 4);

f(F_r, 4);

t1 (L8_59018 w, 4);
t2 (11.0_t_w, 4);

f1 (L10_59018 r, 4);
f2 (11.1_f r, 4);

<lall, ¢1*3, (c1 t1_r c1 t2)*3 c1*2

B.2.4

(c1flclf2_w)*3, cl*3,

/I code variable
/I “to” vector
/I “from” vector

/I main “to” vector

/l frame “to” vector

/l main “from” vector
/I frame “from” vector

/I copy “to” vector to frame
/I copy “from” vector to frame

Ic2, c*3,d4;1 c2*5 f (L cZ, t, c2*3, {c2, f, | break L}) *3 |g4},// main copy routine

C& €2, CL, clyp, c1*4>

SPARC, Unoptimized Assembly Code

more copy_nopt.s

.section ".data"

.align 8

.K_DO:

.word 0

.word 0

K_FO:

.word 0

.common __va_first parm,4,4
.common __ builtin_alloca,4,4
.global copy

.global main

.section ".text"
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.align 8
copy:
.type copy,#function
0.0 i=-4
0.1 1=-8

save %sp,(-72),%sp
.p0.0_f =168

st %i0,[%fp + .p0.0_f]
p0.1_t=72

st %il,[%fp + .p0.1_{]
p0.2_N=76

st %i2,[%fp + .p0.2_N]

I File = "../ccode/copy.c”, Line = 3
I File = "../ccode/copy.c", Line =5
st %g0,[%fp + .10.0_i]

ba,a .L5
.L2:
I File = "../ccode/copy.c", Line = 6
Id [%fp +.10.0_i],%00
sl %00,2,%00
st %00,[%fp + .10.1_1]
Id [%fp +.10.1_1],%00
Id [%fp + .p0.0_f],%01
Id  [%00 + %01],%00
Id [%fp +.10.1_1],%01
Id [%fp + .p0.1_t],%02
st %00,[%01 + %02]
I File = "../ccode/copy.c", Line =5
Id [%fp +.10.0_i],%00
add %00,1,%00
st %00,[%fp + .10.0_i]
.LS5:
Id [%fp +.10.0_i],%00
Id [%fp + .p0.2_N],%01
cmp  %00,%01
bl L2
nop
I File = "../ccode/copy.c", Line =7
ret
restore
.section ".rodata"
.align 4
Jocal L8 59018



L8_59018:

.word 0

.word 0

.word 0

.align 4

Jocal L10_59018

L10_59018:

.word 10

.word 11

.word 12

.section ".text"

.align 8

main:

.type main,#function

1.0 _t=-16

1.1 £=-32

11.2_i=-36
save %sp,(-128),%sp

.p1.0_argc = 68
st %i0,[%fp + .p1.0_argc]

.pl.1_argv=72
st %il,[%fp + .pl.1_argv]

I File = "../ccode/copy.c”, Line = 10

I File = "../ccode/copy.c", Line = 12
sethi  %hi(L8_59018),%00
add %00,%lo(L8_59018),%00
add  %fp,.11.0_t,%01
Id  [%00 + 0],%02
st %02,[%01 + 0]

Id  [%00 + 4],%02
st %02,[%01 + 4]
Id  [%00 + 8],%02
st %02,[%01 + 8]
Id  [%00 + 8],%02
st %02,[%01 + 8]

I File = "../ccode/copy.c", Line = 13
sethi  %hi(L10_59018),%00
add %00,%lo(L10_59018),%00
add %fp,.11.1_f,%o01
Id  [%00 + 0],%02
st %02,[%01 + 0]

Id  [%00 + 4],%02
st %02,[%01 + 4]
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Id  [%o00 + 8],%02
st %02,[%01 + 8]
I File = "../ccode/copy.c”, Line = 14
add %fp,.11.1 f,%00
add  %fp,.11.0_t,%o01
mov  3,%02
call copy
nop
I File = "../ccode/copy.c”, Line = 19
mov  %g0,%i0
ret
restore

B.2.5 SPARC, Unoptimized, TSpec

argc(ARGC _r, 0);
argv(ARGV_r, 0);
d1(.12.0_t_w, 4);
d2(.11.1_f r, 4);
t(TO_w, 4);
f(FROM_r, 4);
c(MAIN_r, 4; COPY_r, 4; COPY+24 1, 4; RET 1, 4);
F(.p0.0_f_r, 0);
T(.p0.1_t r, 0);
N(.p0.2_N_r, 0);
i(.10.0_i_r, 0);
[(.10.2_1_r, O);

<lall, c*2, arc, c, argv, c*3, (c, d1, c, t)*3, /I set up TO vector
c*3, (c, d2, c, f_w)*3, /I set up FROM vector
c*5, 1o, ¢*2, F_w, ¢, T, ¢, N_w, ¢, i_w, c, /I set up locals for copy
(leg c,i,c*2, 1w, ¢, I, ¢, Fc, f,c I, c, T_r,c, t,c i, c*2,i_w,
C, i, c, N, c*3)*3, c*2, lg, c*3>

B.3 Matmul

B.3.1 Matmul C Code Listing

(mamba) /af4/daw4q/vpostuff/ccode $ more matmul.c
#define SIZE 5

void matmul(double x[SIZE][SIZE], double y[SIZE][SIZE],
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double z[SIZE][SIZE], int N)

inti;
int j;
int k;
doubler;

for (i=0; i<N; i++) {
for (j=0; j<N; j++){
r = Xx[ilfl;
for (k=0; k<N; k++) {
z[i][K] += ry[j][KI;
}
}
}

}

/* This main() is simply to illustrate the calling of matmul() */
main(int argc, char **argv)
{

inti;

int j;

double x[SIZE][SIZE];

double y[SIZE][SIZE];

double z[SIZE][SIZE];

for (i=0; i < SIZE; i++)
for (j=0; j < SIZE; j++)
X[i]0] = y[iJ{] = 2.0;

matmul(x, y, z, SIZE);

#ifdef DEBUG

printf("t = {%d, %d, %d})\n", t[0], t[1], t[2]);
#endif

return O;

}
B.3.2 SPARC, Unoptimized Assembly with Register Allocation

(mamba) /af4/daw4q/vpostuff/sparc $ more matmul_noptr.s
.section ".data"
.align 8



.K_DO:

.word 0

.word 0

.K_FO:

.word 0

.common __va_first_parm,4,4
.common __ builtin_alloca,4,4
.global matmul

.global main

.section ".text"

.align 8

matmul:

.type matmul #function

| File ="../ccode/matmul.c", Line = 6
I File = "../ccode/matmul.c”, Line = 12

mov  %g0,%g6
cmp  %g6,%03
bge .LOOO
nop

.L2:

I File = "../ccode/matmul.c”, Line = 13

mov  %g0,%g2
cmp  %g2,%03
bge .LO01
nop

.L6:

I File = "../ccode/matmul.c”, Line = 14

smul  %g6,40,%g93

sl %g2,3,%qg7

add %g3,%00,%g3
ldd [%g7 + %g3],%f6

I File ="../ccode/matmul.c", Line = 15

mov  %g0,%05
cmp  %05,%03
bge .L002
nop

.L10:

I File ="../ccode/matmul.c", Line = 16

smul  %g6,40,%Q93
smul  %g2,40,%g1
sl %05,3,%9g5

add %g3,%02,%93
add  %g5,%03,%04
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ldd  [%04],%f0

add %g1,%01,%g3
ldd  [%g5 + %g3],%f4
fmuld  %f6,%f4,%f2
faddd %f0,%f2,%f0
std  %f0,[%04]

| File = "../ccode/matmul.c”, Line = 17
I File ="../ccode/matmul.c", Line = 15

add %05,1,%05
cmp  %05,%03
bl .L10
nop

.L002:

I File ="../ccode/matmul.c", Line = 18
I File = "../ccode/matmul.c”, Line = 13

add %g2,1,%g2
cmp  %g2,%03
bl L6
nop

.LOO1:

I File = "../ccode/matmul.c”, Line = 19
| File = "../ccode/matmul.c”, Line = 12

add  %g6,1,%06
cmp  %g6,%03
bl L2
nop

.LOO0O0:

| File ="../ccode/matmul.c”, Line = 21

retl
nop
.align 8
main:
.type main,#function
11.2_x=-200
11.3_y =-400
1.4 z =-600
save %sp,(-696),%sp

| File = "../ccode/matmul.c”, Line = 24
I File = "../ccode/matmul.c”, Line = 31

mov  %g0,%g1
.L15:

I File ="../ccode/matmul.c", Line = 32

mov  %g0,%05
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.L19:

I File ="../ccode/matmul.c", Line = 33

smul
sll
sethi
ldd
add
add
std
add
add
std

%g1,40,%03

%05,3,%04

%hi(L24_47095),%00

[%00 + %lo(L24_47095)],%f2
%fp,.11.3_y,%02
%03,%02,%01

%f2,[%04 + %01]
%fp,.11.2_x,%02
%03,%02,%01

%f2,[%04 + %01]

I File = "../ccode/matmul.c”, Line = 32

add
cmp
bl
nop

%05,1,%05
%05,5

.L19

I File ="../ccode/matmul.c", Line = 31

add
cmp
bl
nop
add
cmp
bl
nop

%0g1,1,%g1
%g1,5

.L15

%0g1,1,%g1
%g1,5

.L15

I File = "../ccode/matmul.c”, Line = 35

add
add
add
mov
call
nop

%fp,.11.2_x,%00
%fp,.11.3_y, %01
%fp,.11.4_z,%02
5,%03

matmul

I File ="../ccode/matmul.c", Line = 40

mov
ret

%g0,%i0

restore
.section ".rodata"

.align 8

Jocal L24 47095
L24 47095:
.word 0x40000000

.word 0
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B.3.3 Matmul TSpec, Unopt. SPARC with Register Allocation

Z(BASEz_r, 4, 8, 40);
y(BASEy 1, 4, 8, 40);
X(BASEX_r, 4, 8, 40);
c(BASEc 1, 4);

<lc, Ix, ly, 1z, c*4, ( »Cs, C*3,
LdCq, C*3, X, X_~4, C*4,
Ll()cl71 C*51 ZI-~~1 Z.___.,, C*Zv Y+~~: y—~~1 0*31 Z_\NI-~~1 Z_\N-+~1 C*4)L10*5'
c*4, ¢*3,(), 65,
C*4, 7, X4 L2™5, €*2>

B.3.4 TSpec, Unopt. SPARC, No Register Allocation

px(?_r, 0);
py(?_r, 0);
pz(?_r, 0);
PN(?_r, 0);
li(?_r, 0);

lj(?_r, 0);
11(?_r, 0);
lj(?_r, 0);
Ik(?_r, 0);
13(?_r, 0);
14(?_r, 0);
I5(?_r, 0);
16(?_r, 0);
Ir(?_r, 4, 8, 40);
x(?_r, 4, 8. 40);
y(?_r, 4, 8, 40);
z(?_r, 4, 8, 40);

<lall, ¢*2, px_w~, ¢, py_w~, ¢, pz_w~, ¢, pN_w~, ¢, li_w~, c,
G C, li~, ¢, pN~, ¢c*3, [/l c67 is where L5 starts
(oG, ll_w~, c,
Gg, lj~, c, pN~, c*3,
(6 Cg, li~, c*2, 11_w~, ¢, lj~, c*2, I11~, ¢, pX~, C*2,X, X4, C, Ir_w+, Ir_w-, c, k_w~, c,

cb1, c, lk~, ¢, pN~, c*3,

(10 ©1 li~, €*2, 13_w~, ¢, lj~, c*2, 14_w~, c, [k~, ¢*2, I5_w~, ¢, I5~, ¢, I3~, ¢, pz~,
c*3,16_w~, ¢, 16~,¢c,Z z, ¢, Ir+, Ir-, ¢, I5~, ¢, l4~, ¢, py~, C*2,,¥_, Y.+, C*3,
16~, c,.z, Z, ¢, Ik~, c*2, k_w~, ¢, pN~, c*3)¢*5,

c, lj~, c*2, lj_w~, c, lj~, ¢, pN~, c*3, 1i¥) 65,
c, li~, c*2, li_w~, ¢, li~, ¢, pN~, ¢*3, M, “Xn+).2*5,
c*2 >
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B.3.5 TSpec, Optimized SPARC Matmul

This TSpec represents the inner kernel code only.

x(?_r, 4, 8, 40);
y(?_r, 4, 8, 40);
z(?_r, 4, 8, 40);
c(?_r, 4);

< lall, c*6, ( »Cg, C*6,
L6C*3, X4~, X4, €*10,
L{aC: Yo~ Yors C, Z4, Z, C*3, Z_W,o, Z_W.4, C*4) 10*5,
C*4, M )Le"S,
C*4, Nz, "X+ )12*5,
c*2>

B.4 Daxpy

B.4.1 Daxpy C Code Listing

(mamba) /af4/daw4q/vpostuff/ccode $ more daxpy.c

#define A 3.0
#define SIZE 5

void daxpy(double x[SIZE], double y[SIZE], int N)
{

int i;

for (i=0; i<N; i++) {
yli] += A * X[iJ;
}

}

/* This main() is simply to illustrate the calling of daxpy() */
main(int argc, char **argv)
{

inti;

int j;

double x[SIZE];

double y[SIZE];



B.4.2

for (i=0; i < SIZE; i++)
x[i] = 2.0;

daxpy(x, y, SIZE);

SPARC, Unopt. Assembly with Register Allocation

(mamba) /af4/daw4q/vpostuff/sparc $ more daxpy_noptr.s

.section ".data"

.align 8

.K_DO:

.word 0

.word 0

.K_FO:

.word 0

.common __va_first_parm,4,4
.common __ builtin_alloca,4,4
.global daxpy

.global main

.section ".text"

.align 8

daxpy:

.type daxpy,#function

I File = "../ccode/daxpy.c", Line = 6
I File = "../ccode/daxpy.c”, Line =9

mov  %g0,%04
cmp  %o04,%02
bge .LOOO
nop

.L2:

I File = "../ccode/daxpy.c", Line = 10

sll - %04,3,%g1

add  %g1,%01,%03

ldd  [%03],%f0

sethi  %hi(L7_78297),%05

Idd  [%05 + %lo(L7_78297)],%f2

ldd [%g1 + %00],%f4
fmuld  %f2,%f4,%f2
faddd %f0,%f2,%f0
std  %f0,[%03]

I File = "../ccode/daxpy.c”, Line = 11
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I File = "../ccode/daxpy.c”, Line =9

add %o04,1,%04
cmp  %04,%02
bl L2
nop

.LOOO:

I File = "../ccode/daxpy.c”, Line = 13

retl
nop
.align 8
main:
.type main,#function
1.1 x=-40
11.2_y=-80
save %sp,(-176),%sp

I File = "../ccode/daxpy.c", Line = 16
I File = "../ccode/daxpy.c", Line = 22

mov  %g0,%02
.LO:

I File = "../ccode/daxpy.c", Line = 23
sethi 9%hi(L14_78297),%00
Idd  [%00 + %lo(L14_78297)],%f0

sl %02,3,%00
add  %fp,.11.1_x,%o01
std  %f0,[%00 + %01]

I File = "../ccode/daxpy.c", Line = 22

add %o02,1,%02

cmp %025
bl L9
nop

I File = "../ccode/daxpy.c”, Line = 25

add  %fp,.11.1_x,%00
add %fp,.11.2_y,%01
mov  5,%02

call daxpy

nop

mov  %g0,%i0

I File = "../ccode/daxpy.c", Line = 27

ret

restore
.section ".rodata"
.align 8
Jocal L14 78297
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L14 78297:

.word 0x40000000
.word 0

.align 8

Jocal L7_78297
L7_78297:

.word 0x40080000
.word 0

B.4.3 TSpec, Daxpy, Unopt. SPARC with Register Allocation

This is the TSpec translation for the daxpy function only.

c(?_r, 4);
y(?_r, 4, 8);
x(?_r, 4, 8);
A(?_r, 4);

<lall, c*4, ( oC4, C*2, Y4, Y-, C*2, A+, A-, C, %oy X4, C*2, Y W, ¥ W4, C*4) 5*5, c*2>

B.4.4 SPARC, Optimized Assembly

mov  5,%02
call daxpy
nop
mov  %g0,%i0
I File = "../ccode/daxpy.c", Line = 27
ret
restore
.section ".rodata"
.align 8
Jocal L14 78297
L14 78297:
.word 0x40000000
.word 0
.align 8
Jocal L7_78297
L7_78297:
.word 0x40080000
.word 0
sub  %00,%01,%g4
mov  %g0,%g5
sl %02,3,%96
.L2:



I File = "../ccode/daxpy.c”, Line = 10
ldd  [%05 + %lo(L7_78297)],%f2
ldd  [%g3 + %g4],%f0
fmuld  %f2,%f0,%f0
ldd  [%g3],%f2
faddd %f2,%f0,%f0
std  %f0,[%g3]
I File = "../ccode/daxpy.c", Line = 11
I File = "../ccode/daxpy.c”, Line =9
add %g5,8,%0g5
cmp  %g5,%g6
bl L2
add  %g3,8,%03
.LOOO:
I File = "../ccode/daxpy.c”, Line = 13
retl
nop
.align 8
main:
.type main,#function
1.1 x=-40
11.2_y=-80
save %sp,(-176),%sp
I File = "../ccode/daxpy.c", Line = 16
I File = "../ccode/daxpy.c", Line = 22
add %fp,.11.1_x,%04
sethi %hi(L14_78297),%03
mov  %04,%g1
add  %04,40,%92
ldd [%03 + %lo(L14_78297)],%f0
.L9:
I File = "../ccode/daxpy.c", Line = 23
std  %f0,[%g1]
I File = "../ccode/daxpy.c", Line = 22
add %g1,8,%091
cmp  %g1,%92
bl,a .L9
ldd  [%03 + %lo(L14_78297)],%f0
I File = "../ccode/daxpy.c", Line = 25
add  %fp,.11.1_x,%00
add %fp,.11.2_y,%01
mov  5,%02
call daxpy
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mov  %g0,%i0
I File = "../ccode/daxpy.c", Line = 27
ret
restore
.section ".rodata"
.align 8
Jocal L14_78297
L14_78297:
.word 0x40000000
.word 0
.align 8
Jocal L7_78297
L7_78297:
.word 0x40080000
.word 0

B.4.5 TSpec, Daxpy, SPARC Optimized

c(?_r, 4);
y(?_r, 4, 8);
x(?_r, 4, 8);
A(?_r, 4);

< 'a“! C*81 (|_2C8! C, A+1 A_l C, )§—~1 X_+! C*21 y+~1 y-~1 C*Zl y_V\L{—~l _W-+| C*4)L2*51 C*2>

B.4.6 MIPS, Unoptimized Assembly with Register Allocation

AC(mamba) /afd/daw4q/vpostuff/mips $ more daxpy_noptr.s
.globl daxpy
.globl main
text
.align 8
.ent daxpy
daxpy:
frame $sp,0,$31
# File = "../ccode/daxpy.c", Line = 6
# File = "../ccode/daxpy.c", Line =9
move $8,$0
bge $8,$6,.L000
.L2:
# File = "../ccode/daxpy.c", Line = 10
sl $7,$8,3
addu $9,$7,%$5
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lLd  $f0,($9)

ld  $f2,L7
addu  $2,$7,$4
Ld  $f4,0($2)

mul.d $f2,$f2,$f4
add.d $f0,$f0,$f2
s.d  $f0,($9)

# File = "../ccode/daxpy.c", Line =11
# File = "../ccode/daxpy.c", Line =9

addu $8,$8,1
blt $8,$6,.L2
.LOO0O:

# File = "../ccode/daxpy.c", Line = 13

j $31
.end daxpy
.align 8
.ent main
main:
.set noreorder
.cpload $25
.set reorder
subu  $sp,$sp,112
frame $sp,112,$31
11.1.84 x=16
11.2.84_y =56
sw  $31,108($sp)
.cprestore 104
.mask 0x90000000,-4

# File = "../ccode/daxpy.c", Line = 16
# File = "../ccode/daxpy.c", Line = 22

move $4,%0
.L9:

# File = "../ccode/daxpy.c", Line = 23

l.d $fo,L14

sl $2,$4,3

addu $3,$sp,.11.1.84_x
addu $2,$2,$3

sd  $f0,0($2)

# File = "../ccode/daxpy.c", Line = 22

addu $4,$4,1
li $3,5
blt $4,$3,.L9

# File = "../ccode/daxpy.c", Line = 25
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B.4.7

addu $4,%$sp,.11.1.84_x
addu $5,$sp,.11.2.84 vy
i $6,5

la  $25,daxpy

jal  $25

move $2,$0

# File = "../ccode/daxpy.c", Line = 27

lw  $31,108($sp)
addu $sp,$sp,112
j $31

.end main

.data

.align 8

L14:

.word 1073741824

.word 0

.align 8

L7:

.word 1074266112

.word 0

TSpec, MIPS Unopt. Daxpy with Register Allocation

c(?_r, 4);
y(?_r, 4, 8);
x(?_r, 4, 8);
A(?_r, 4);

< 'a“! C*31 (LZCS! C*21 y+~y y-~1 C, A+| A_y C*2! x|—~1 X_+! C*2! y_WI—~l _W-+1 C*Z)LZ*S, c>

B.5

B.5.1

B.5.1.

Livermore Loops

Hydro (k1.c)

1 C Code Listing

(mamba) /af4/daw4q/vpostuff/ccode/livermore $ more kl.c

/*
* Kernel 1 Hydro

*
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* Translated from Fortran by Sanjay Jinturkar
* 6/28/92

*

#define LOOP 50000

#ifndef TIMES
#define TIMES 100
#endif

main()

{
double x[LOOP], y[LOOP], zx[LOOP+23];
inti;

for (i=0; i <LOOP; i++)
X[i] = y[i] = zx[i] = 3.0;

for (| = 0, i< T|MES, i++)
loop (X, y, zx, LOOP);

loop(X, Y, zx, n)
double x[], y[I, zx[I;
int n;
{
int k;
double q = 12.0;
doubler=5.2;
double t =13.4;

for (k = 0; k < n; k++)
X[K] =q + y[K] * (r * zx[k + 10] + t * zx[k + 11]);
}

B.5.1.2 TSpec, k1 kernel, SPARC Optimized Data Accesses Only

zx(?_r, 4, 8);
x(?_r, 4, 8);
y(?_r, 4, 8);

<lall, *z10, (1 19ZX4~ ZX4my ZX4my ZX0ts Yirms Yo X Wiy X_ W )*>
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B.5.2 First Differential (k12.c)

(mamba) /af4/daw4q/vpostuff/ccode/livermore $ more k12.c
/*

* Kernel 12 First Diff.

* Translated from Fortran by Sanjay Jinturkar

* 6/28/92

*

#define LOOP 50000

#ifndef TIMES
#define TIMES 100
#endif

main()

{
double x[LOOP], y[LOOP];

inti;
for (i=0; i <LOOP; i++)

x[i] = y[i] = 3.0;

for (i=0; i < TIMES; i++)
loop (%, y, LOOP);

loop(x, y, n)
double x[], y[l;
int n;
{

int k;

for (k = 0; k < n; k++)
X[K] = y[k + 1] - y[K];

B.5.2.1 TSpec, k12 kernel, SPARC, Unopt. with Register Allocation

The TSpec below is for the data accesses only.

x(?_w, 4, 8);
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y(?_r, 4, 8);
<lall, (y+~, y-,-, y+=, Y, X_W+~, X_W-+)*>
B.5.3 ICCG, Incomplete Cholesky (k2.c)

(mamba) /af4/daw4q/vpostuff/ccode/livermore $ more k2.c
/*

* Kernel 2 ICCG (incomplete cholesky)

*

* Translated from Fortran by Sanjay Jinturkar

* 6/28/92

*/

#define LOOP 50000

#ifndef TIMES
#define TIMES 4000
#endif

main()

{
double x[LOOP], v[LOOP];
inti;

for (i = 0; i < LOOP; i++)
x[i] = v[i] = 3.0;

for (i=0; i < TIMES; i++)
loop (%, v, LOOP);

/*

* KERNEL 2

*

* Translated from Fortran by Sanjay Jinturkar
* 6/28/92

*/

loop(x, v, n)
double x[], V[I;
int n;

{
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inti, k;
int i, ipntp, ipnt;

i =1001;
ipntp = 0;
L2: ipnt = ipntp;
ipntp = ipntp+ii;
il =ii/2;
i = ipntp;
for (k = ipnt+1; k < ipntp; k+=2) {
i++;
X[i] = X[K] - V[K]*x[k-1] - V[K+1]*x[k+1];
}
if (il > 1) goto L2;
}

B.5.3.1 TSpec, k2 kernel, Optimized SPARC

The TSpec below is for data accesses only.

v(?_r, 4, 8);
x(?_r, 4, 8, "ii");

<lall, ((X-_, V-, X+, Vg, Xy X WL_)* )*>

B.5.4 Inner Product (k3.c)

B.5.4.1 C Code Listing

(mamba) /af4/daw4q/vpostuff/ccode/livermore $ more k3.c
/*

* Kernel 3 Inner Product

* Translated from Fortran by Sanjay Jinturkar

* 6/28/92

*

#define LOOP 50000

#ifndef TIMES
#define TIMES 100
#endif



main()

{
double x[LOOP], z[LOOP];

int i;

for (i=0; i <LOOP; i++)
X[i] = z[i] = 3.0;

for (i=0; i < TIMES; i++)
loop (X, z, LOOP);

/*

* KERNEL 3 INNER PRODUCT

*

* Translated from Fortran by Sanjay Jinturkar
*6/28/92

*/

loop(x, z, n)
double x[], z[];
int n;
{
int k;
double g =52.3;

for (k =0; k < n; k++)
q =g+ z[K] * x[k] + z[k + 1] * x[k + 1];

}

B.5.4.2 TSpec, k3 kernel, Optimized SPARC

x(?_r, 4, 8);
z(?_r, 4, 8);

<lall, (x-, z-, X4, Z.)*>
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B.5.5 Tri-Diagonal Elimination (k4.c)

B.5.5.1 C Code Listing

(mamba) /af4/daw4q/vpostuff/ccode/livermore $ more k4.c
/*

* Kernel 4 Tri-Diagonal Elimination

* Translated from Fortran by Sanjay Jinturkar

* 6/28/92

*

#define LOOP 1001

#ifndef TIMES
#define TIMES 100
#endif

main()

{
double x[LOOP], y[LOOP];
inti;

for (i=0; i <LOOP; i++)
X[i] = y[i] = 3.0;

for (i=0; i < TIMES; i++)
loop (%, y, LOOP);

/*

* KERNEL 4 BANDED LINEAR EQUATIONS
* Translated from Fortran by Sanjay Jinturkar
* 6/28/92

*

loop(x, y, n)
double x[], y[l;
int n;

{
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inti, k, lw, j;

int m = (1001-7)/2;
double fw = 1.00000E-25;
double temp;

for(i=0;i<n;i++){
for (k = 7; k<1001; k +=m) {
Iw = k-6;
temp = x[k-1];
for (j=5;j<n;j+=5){
temp = temp - X[Iw]*y[j];
w++;
}
X[k-1] = y[5] * temp;
}
}
}

B.5.5.2 TSpec, k4 kernel, Optimized SPARC

x(?_r, 4, 20, m);
y(?_r, 4, 20);

<((!X! X~+1 Iya (y+~1y-+1 X+, X_)*! y5! AX.+’ X)*)*>

B.5.6 Tri-diagonal Elimination (k5.c)

B.5.6.1 C Code Listing

(mamba) /af4/daw4q/vpostuff/ccode/livermore $ more k5.c
/*

* Kernel 5 Tri-Diagonal Elimination

*

* Translated from Fortran by Sanjay Jinturkar

* 6/28/92

*/

#define LOOP 50000

#ifndef TIMES
#define TIMES 100
#endif



main()

{
double x[LOOP], y[LOOP], z[LOOP];

inti;

for (i=0;i < LOOP; i++)
X[i] = z[i] = 3.0;

for (i=0; i < TIMES; i++)
loop (%, Yy, z, LOOP);

/*

* KERNEL 5 TRI-DIAG

*

* Translated from Fortran by Sanjay Jinturkar
*6/28/92

*/

loop(x, Y, z, n)
double x[], y[I, z[I;
int n;
{

inti;

double g = 52.3;

for i=0;i<n;i++)
X[i] = z[i] * (y[i] - xi - 1]);
}

B.5.6.2 TSpec, k5 kernel, Optimized SPARC

z(?_r, 4, 8);
y(?_r, 4, 8);
x(?_r, 4, 8);

<lall, (X+, X4, Y+, You, 2+, Zyy, X W+, X_W,)*>
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