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Abstract

Pure electric vehicles (EVs) have become popular in current transportation systems

because of their zero air pollution emissions. The battery management system (BMS)

in an EV monitors battery information (current, voltage and temperature) in real time

to prevent batteries from overcharging or overheating and also shares these battery

information to outside-vehicle environments (e.g., smartphone apps) to enrich vehicle

usage experiences. Many researches have studied various aspects regarding vehicle

driving safety, few works have comprehensively studied battery security and its effects

on driving safety of an EV. Besides, autonomous vehicles (AVs) have been adopted

to reduce traffic congestion and multiple AVs will drive on the same road with the

AV population growth. Therefore, It is critical to make optimal control decisions of

multiple AVs in real time to ensure driving safety.

Motivated by the above scenarios, we focus on three areas to improve vehicle

driving safety: (1) battery authentication system for detecting battery attacks (i.e.,

malicious AC-turn-on requests or battery-charge-stop requests) in electric vehicles;

(2) control policy based driving safety system for an individual AV; and (3) multi-AV

control decision making system for multiple AVs to ensure their driving safety. First,

we propose the first battery attack, which can turn on air condition and stop battery

charging process by sending requests through a smartphone without being noticed by

users, and design a Battery authentication method (Bauth) to detect such battery

attacks. Bauth describes a user’s habits in turning on air condition and stopping bat-

tery charging using a data-driven behavior model. It then applies the behavior model

into a reinforcement learning model to judge whether an AC-turn-on or a battery-

charge-stop request is from a real user. From real-life daily driving experiments, we

find that Bauth can prevent EV batteries from being attacked accurately and its ac-

curacy reaches as high as 95.6%. Second, we propose a control policy based driving



safety system (Polsa) to help improve driving safety of a given AV. For a given AV,

Polsa extracts its control policies and determines the safest control behavior among

multiple control behaviors for each given trigger condition. Accordingly, Polsa has

a control policy extraction method using dynamic time warping and k-means clus-

tering technologies to cluster historical driving data with the same control behavior

type together and then analyzes positions and driving speeds in each cluster to extract

control policies of a target AV. It then develops an optimal control policy determina-

tion method to determine the safest control behavior for each given trigger condition

by considering time-varying driving state of its nearby vehicle. We use an industry-

standard AV platform (Baidu Apollo) to evaluate optimal control policy success rate

of Polsa and find that Polsa can extract control policies with as much as 83% accuracy,

and improve optimal control policy success rate by 28% compared with existing meth-

ods. Third, we propose a multi-AV control decision making system (MADM), which

considers multi-AV coexistence driving situations. MADM builds a policy formation

method to form policies to learn driving behaviors of an expert based on the expert

driving trajectory data. It then builds a multi-AV control decision making method,

which adjusts the formed policies through a multi-agent reinforcement learning and

forms safety driving state of each AV, to make multiple control decisions with safety

guarantee. We used a real-world traffic dataset to evaluate optimal control decision

making performance of MADM and experimental results show that MADM reduces

its emergency rate by as high as 51% compared with existing methods.
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Chapter 1

Introduction

An pure electric vehicle (EV) consumes electricity in its battery pack to drive the ve-

hicle and auxiliary functions (e.g., air condition (AC) and play music, etc). Compared

with traditional vehicles, EVs have less air pollution emission and become popular

in recent years [34]. As a key part of pure electrical vehicles (EVs), the battery pack

receives energy during the charging process and provides energy in the discharging

process. Therefore, the driving range of an EV depends on the total energy stored in

its batteries. EV manufacturers have proposed a battery management system (BMS)

to monitor temperature, voltage and current of each cell in a battery pack so that

these cells can work normally. Besides, BMS shares battery information to outside-

vehicle environments (e.g., smartphone apps) to enrich vehicle usage experiences.

Since BMS in EVs allows drivers to turn on AC or stop battery charging remotely

by smartphones via wireless communication [52, 70]. Attacks on vehicle batteries can

cause vehicle malfunctions and even threats to driving safety and human life. For

example, an attacker may modify battery charging settings such as charging current

during the charging process to generate over-high battery temperature and even bat-

tery explosion [1]. An attacker can also greatly consume battery energy without being

noticed by the user to generate driving plan change and driving range anxiety. For
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example, a battery attacker may turn on AC or stop battery charging process of an

EV through the connected smartphone and cannot be caught by the battery manage-

ment system, which only monitors battery states. Under this situation, the driving

range anxiety affects vehicle driving safety and may even cause driving accidents [60].

There have been no methods for current EVs to detect such battery attacks to ensure

battery security. We aim to analyze how to conduct battery attacks through a smart-

phone and design a battery authentication system to detect malicious AC-turn-on or

battery-charge-stop requests from battery attacks.

Autonomous vehicle (AV) technologies have been adopted by many autonomous

companies to reduce traffic congestion and improve driving safety [17, 33, 64]. With

fast technology development of AVs and their possible popularity in the near future,

several countries (e.g., United States, Germany, China and Australia) have stated that

testing autonomous vehicles is allowed on public roads and many autonomous vehicle

relevant researches [5, 7, 8, 12, 55, 72] are also conducted in recent years. An AV has

control policies that specify trigger conditions and the control behavior that the AV

should always execute when a trigger condition is satisfied. It is critical to ensure high

driving safety performance of control policies in AVs. By now, more than 1,400 AVs

have been tested by around 80 companies on public roads in USA [54] and these road

tests have resulted in totally 256 accident reports (e.g., rear-end collisions, sideswipe

collisions, hitting pedestrians or objects) in 2020. Recently, research works [16, 18,

28, 31, 32, 40, 61, 71] start focusing on the control policies of AVs to improve the

driving safety of AVs. Though these methods help ensure driving safety of a target

AV under several specific driving scenarios, they may fail to work when AVs drive

on other different driving scenarios. In other words, the identified driving scenarios

may not cover all possible driving scenarios in public roads by considering highly

complex driving environments in practice [39]. Several AV companies develop their

own control policies for their AVs and these control policies are usually not open for
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the public, which makes it difficult to evaluate driving safety performance of their

control policies for further improvement. In this research, we propose a control policy

based driving safety system, which can derive control policies and choose the optimal

control policy for an AV, to help improve AV driving safety.

With the development of reinforcement learning (RL) technology, RL is a pow-

erful learning framework capable of learning complex policies in a high dimensional

environment and has been used in AVs to make control decisions in real time. For

an AV, the RL iterates control decisions under different driving states based on to

simulation to form policies and its policy performance heavily depends on reward

design and exploration coverage of driving state and action spaces. However, driving

state and action spaces are huge for an AV considering continuous speed changes, it

is difficult for a RL to form accurate policies only based on the simulation. Therefore,

it is necessary for AVs to take the advantage of expert relevant knowledge during the

policy formation process to obtain accurate policies. For an AV in the multi-AV co-

existence situation, driving states of its nearby AVs need to be considered during its

control decision making processes to ensure driving safety. Making control decisions

simultaneously becomes beneficial for multiple AVs in the multi-AV coexistence sit-

uation since such a multiple decision making process considers driving states of AVs

driving on the same road and can help make control decisions with higher driving

safety. In this research, we will propose a multi-AV control decision making system

to make control decisions for multiple AVs simultaneously so that their driving safety

can be guaranteed during driving processes.

1.1 Challenges

We propose a Battery Authentication System, a Control Policy based Driving Safety

System, and a Multi-AV Control Decision Making System to improve vehicle driving

3



safety. However, these exist several challenges to develop the above systems and we

discuss the challenges below in more details.

1.1.1 Battery Authentication System

The proposed battery attack in this research remotely turns on AC or stops battery

charging process through a smartphone, which is registered to connect to the EV.

No previous works discuss the possible attacks on the vehicle batteries through the

connected smartphone and there have been no methods for current EVs to detect such

battery attacks to ensure battery security. One way is to provide authentications on

the AC-turn-on and battery-charge-stop requests based on a user’s habits to make

the EVs resilient to the two battery attacks. However, it is challenging to accurately

learn a user’s habits due to two reasons and apply them to determine whether AC-

turn-on and battery-charge-stop requests come from the driver in practice. Firstly, a

user’s behaviors are greatly affected by vehicle driving environments such as vehicle

indoor temperature and battery State of Charge (SOC). Secondly, the situation where

more than one users share one EV exists in the household and becomes popular

because of the benefits such as insurance discount, which makes it more difficult to

accurately distinguish a user’s habits. Besides, the built user behavior model only

provides statistical probabilities of user behaviors under different vehicle states. It

is a challenge to make a correct authentication decision on a request only based on

statistical probabilities.

1.1.2 Control Policy based Driving Safety System

Research works [16, 18, 28, 61, 71] try to keep developing new control strategies to

control control behaviors of a target AV under different driving scenarios to improve

AV driving safety. Though these methods help ensure driving safety of a target AV

4



under several specific driving scenarios, they may fail to work when AVs drive on

other different driving scenarios. In other words, the identified driving scenarios may

not cover all possible driving scenarios in public roads by considering highly complex

driving environments in practice [39]. Several AV companies develop their own control

policies for their AVs and these control policies are usually not open for the public,

which makes it difficult to evaluate driving safety performance of their control policies

for further improvement. Therefore, how to obtain control policies of a given AV for

driving safety improvement becomes one challenge.

Another group of works try to test driving safety performance of control policies in

an AV without knowing the control policies [31, 32] or with their own designed control

policies [40]. These methods only check whether an AV will fail to work (i.e., hazard)

under a certain driving scenario but cannot know which control policy leads to the

hazard and accordingly make corrections. The method in [40] chooses the control

behavior that leads to the safest condition measured by its relevant distance to its

nearest vehicle. However, the method assumes that the state of its nearby vehicle

always keeps constant in one short time period but actually the nearby vehicle usually

has time-varying driving state in practice. For example, driving speed of the nearby

vehicle may change dynamically or the nearby vehicle may firstly take a left lane

change and then return back to its original road lane. Therefore, this assumption

may result in wrong control policy selection for a target AV. Therefore, the other

challenge is how to choose the optimal control behavior for a given trigger condition

for an AV considering time-varying driving state of its nearby vehicle.

1.1.3 Multi-AV Control Decision Making System

RL based decision making methods [14, 15, 44, 74] have been proposed to apply the

RL technology to make control decisions for an individual AV. Wolf [74] designed a

5



reinforcement learning approach using a deep Q network to form policies to control

an AV based on the simulation. For the deep Q network, it is able to learn human

driving behaviors and its action states are discrete steering angles. Lillicrap [44] pro-

posed a reinforcement learning method which can form a neural policy to control a

vehicle so that the vehicle can be kept driving in a simulated racing track. Chen [14]

designed a reinforcement learning model to control a vehicle and such a model con-

siders complex temporal delayed problems like traffic light passing scenarios during

its decision making process. Yuan [15] applied the RL technology by inputting cam-

era images to make a control decision for a vehicle so that a vehicle drives safely on

different driving scenarios. However, these methods have very low policy formation

efficiency and may even have policy convergence problems by considering that an AV

usually has a huge driving state space. Therefore, how to efficiently form policies for

an AV working on different driving scenarios becomes one challenge. Several multi-

agent based methods [22, 27, 41, 46, 59] are applied to make control decisions for

multi-agent problems. Methods [27, 59] consider join states of all agents as inputs of

a centralized controller and output control decisions for all agents in a step. Specif-

ically, they employed the mixed networks to estimate Q-functions for different joint

states and made control decisions for multiple agents by maximizing global rewards.

Methods [41, 46] tried to build a local reward function for each agent to learn its

individual policy or Q-function and then make a control decision for each agent by

maximizing each local reward without any explicit coordinations. However, these

methods do not have explicit coordinations during the decision making process and

their decisions cannot guarantee driving safety when used to control multiple AVs.

Therefore, the other challenge is how to make control decisions for multiple AVs with

safety guarantee.
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1.2 Thesis Statement

The above discussion on the UBI program and CAV systems leads us to the following

thesis statement:

“By exploring the user behavior model, spatiotemporal features of control behaviors,

and learning expert driving behaviors, one is able to detect malicious action requests

on EV batteries and make control decisions for individual or multiple AVs to improve

driving safety.”

To be more specific, we investigated the following suppositions:

(1) The user behavior habits provide useful probability information about AC-

turn-on requests or battery-charge-stop requests under different vehicle states.

Therefore, we can explore these behavior habits to describe a user’s habits in

turning on AC and stopping battery charging actions.

(2) The spatiotemporal analysis of control behaviors helps us cluster historical driv-

ing data of a target AV with the same control behavior type together to extract

its control policies.

(3) The expert driving trajectory data provides us the expert driving behaviors

under different driving states to form control decisions for an individual AV.

The null hypothesis is that the introduction of a battery authentication system,

a control policy based driving safety system, and a multi-AV control decision making

system do not raise attention to the pre-existing vehicle driving safety concerns.

1.3 Contributions

We have developed a set of techniques to address the challenges mentioned in Sec-

tion 1.1. The major contributions of this dissertation are:
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(1) We design a battery authentication system such that it provides authentications

on AC-turn-on and battery-charge-stop requests from smartphones to eliminate

the effects of battery attacks on EV batteries and ensure battery security.

(2) We develop an effective driving safety technology, which can extract control

policies of a target AV based on its historical driving data and determine optimal

control policies for a target AV considering the time-varying driving state of the

nearby vehicle.

(3) We develop a multi-agent reinforcement learning method to make control de-

cisions for multiple AVs in multi-AV coexistence driving situations with safety

guarantee simultaneously.

(4) We design and evaluate extensive data-driven experiments using Matlab Simu-

lation [47], and Baidu Apollo simulation platform [4] to compare the solutions

to the previously mentioned challenges.

1.4 Dissertation Outline

The rest of this dissertation is organized as follows.

• Chapter 2 discusses the state-of-the-art works related to electric vehicle bat-

tery security, control policy based driving safety analysis, and multi-AV control

decision determination.

• Chapter 3 presents the proposed battery attack on EV batteries through a

smartphone and a battery authentication system that utilizes a reinforcement

learning model to judge if an action request from a smartphone is from battery

attacks.
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• Chapter 4 describes a control policy based driving safety system for an individ-

ual AV, which can derive control policies and choose the optimal control policy

for an AV, to help improve AV driving safety.

• Chapter 5 presents a multi-AV control decision making system to make control

decisions for multiple AVs simultaneously so that their driving safety can be

guaranteed.

• Chapter 6 summarizes the contributions presented in the dissertation and pro-

vide future research directions.
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Chapter 2

Related Work

2.1 Electric Vehicle Battery Security

Several existing attack defense methods have been proposed to ensure the smartphone

security. One group of works [23, 24, 36] focus on improving the defense model in

detecting and pruning malicious Apps from centralized mobile marketplaces. Egele et

al. [23] statistically analyzed mobile Apps to detect possible privacy leaks of sensitive

information. Enck et al. [24] tried to understand the broader security characteristics

of existing Apps by studying free Apps from the official Google Play and identify

malicious Apps from centralized marketplaces. However, they are far from ideal since

malware authors can find new ways to penetrate current marketplaces. Another

group of works [21, 25, 67] aim to develop mitigation solution on mobile devices. For

example, Davi et al. [21] developed a control flow integrity enforcement framework

to prohibit runtime and control-flow attacks on Apple iOS. Enck et al. [25] extended

the Android framework to monitor the information flow of privacy-sensitive data.

However, they all share a common assumption of a trustworthy framework and this

may not be the case for advanced attacks which can directly compromise privileged

system daemons. Since battery attack in this paper is introduced into a smartphone
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during the update process of the App framework and it conducts the attack without

extending vehicle mobile App permissions in a smartphone, it is difficult to detect

battery attacks for existing attack defense methods.

Some works [35, 51, 68] discuss EV battery related security problem. Sripad et

al. [68] built the battery model to analyze the potential impact of cyber-attacks uti-

lizing the auxiliary components on the EV battery in short and long terms. Hunt [51]

et al. controlled vehicle features of Nissan Leafs across the globe via the vulnera-

ble website by knowing the vehicle identification number in advance. However, they

both did not discuss the feasibility of attacks through a smartphone and how to e-

liminate their effects on the remaining battery energy. In this paper, we propose

EV battery attacks through a smartphone which consumes battery energy by turning

on AC or stop battery charging process. Other works discuss how to detect battery

energy related attacks on smartphone. Timothy et al. [10] built a system which cor-

relates smartphone power consumption with its communication activities to provide

threshold monitoring and used the system to generate alert notification to users if

power consumption does not match communication activities. Caviglione et al. [11]

developed a battery energy monitoring system for smartphone so that it can check

battery usage and generate issues alerts when anomalous currents are detected. Kim

et al. [37] proposed a power-aware malware detection framework which collects ap-

plication power consumption signatures to detect energy-greedy mobile malwares.

However, they assume that battery related attack will result in uncommon phenome-

na such as anomalous currents. This assumption does not work on EV batteries since

AC-turn-on and battery-charge-stop will not result in uncommon phenomena.

Some works [2, 19, 48, 63, 73] discuss how to identify the user based on vehicle

related information. These works try to identify the user by analyzing driving behav-

ior signals which can be obtained through sensor measurement or CAN bus message.

Wakita et al. [73] firstly built Gaussian Mixture Model and then generated driving
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simulation data including vehicle speed, distance from vehicle ahead and accelerator

pedal pressure to train the model for user identification. Miyajima et al. [48] collected

brake pedal pressure and gas pedal pressure data through in-vehicle’s sensor data and

applied them into Gaussian Mixture technology to identify the user. Choi et al. [19]

obtained steering wheel, vehicle speed, engine speed and brake position signals by

reading CAN bus messages and input them into Gaussian Mixture Model and Hid-

den Markov Model to identify the user. Though these methods provide relatively

high identification accuracy, these driving behavior signals cannot be obtained easily

in practice.

2.2 Control Policy based Driving Safety Analysis

Methods have been proposed to analyze safety features of AVs to ensure their driving

safety. [16, 18, 28, 61, 71] try to keep developing new control strategies to control

AV’s control behaviors at different driving scenarios so that a target AV can drive

safely under these driving scenarios. For example, Rosolia [61] developed a nonlinear

control approach to generate a collision-free trajectory for a target AV so that a target

AV has the ability of avoiding obstacles when driving on the highway. Chen [16]

developed a fuzzy control system which adjusts driving direction and driving speed

of a target AV in real time with traffic condition consideration to ensure driving

safety. Tian [71] proposed a decision making algorithm which models multi vehicles

driving in a roundabout intersection situation with game theory and helps a target

AV decide whether it should enter and cross the intersection. Galceran [28] proposed

an integrated behavior inference and decision-making approach which models vehicle

behavior of a target AV and determines a set of control behaviors for a target AV with

considering control behavior of its nearby vehicle to avoid possible collisions with its

nearby vehicle. Chen [18] proposed a neural network based control decision-making
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system which uses a neural network to learn driving behavior of a human driver

and make control decisions based on its trained neural network to avoid possible

collisions. Though these methods help to ensure driving safety of a target AV under

several specific driving scenarios, they may fail to work for other driving scenarios. In

other words, the total number of these specific driving scenarios are limited and these

specific driving scenarios cannot cover all possible driving scenarios in public roads

by considering highly complex driving environments in practice. Besides, several AV

companies develop their own control policies for their AVs and these control policies

are usually not open for the public, which makes it difficult to analyze their control

policies for further improvement.

Methods [31, 32, 40] try to test driving safety performance of control policies in an

AV through driving simulation or road experiments. For example, Jha [32] designed

an AV fault injection simulator to test its control policies by injecting fault sensor

information into a target AV and simulating how a target AV responses based on

its control policies. These methods assume that the state of a nearby vehicle always

keeps constant in one short time period, which makes their testing results less rea-

sonable in practice. Road experiments can better test driving safety performance of

control policies in a target AV and Hunger [31] developed a driving scenario formal-

ization method to test control policies under different driving scenarios during road

experiments. However, existing methods only check whether a target AV with control

policies will fail to work under a certain driving scenario but it is difficult for them to

figure out which control policy can be selected to ensure driving safety of the target

AV under a certain driving scenario.
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2.3 Multi-AV Control Decision Determination

Several single-agent RL based methods [14, 15, 44, 74] have been proposed to apply

reinforcement learning to make control decisions for an individual AV. Wolf [74] de-

signed a reinforcement learning approach using a deep Q network to form policies to

control an AV based on the simulation. For the deep Q network, it is able to learn hu-

man driving behaviors and its action states are discrete steering angles. Lillicrap [44]

proposed a reinforcement learning method which can form a neural policy to control

a vehicle so that the vehicle can be kept driving in a simulated racing track. Chen [14]

designed a reinforcement learning model to control a vehicle and such a model con-

siders complex temporal delayed problems like traffic light passing scenarios during

its decision making process. Yuan [15] applied the RL technology by inputting cam-

era images to make a control decision for a vehicle so that a vehicle drives safely on

different driving scenarios. However, these methods have very low policy formation

efficiency and may even have policy convergence problems by considering that an AV

usually has a huge driving state space.

Several multi-agent RL methods [22, 27, 41, 46, 56, 59] are developed to make

control decisions for multi-agent problems. Methods [27, 59] consider join states of all

agents as inputs of a centralized controller and output control decisions for all agents

in a step. Specifically, they employed the mixed networks to estimate Q-functions for

different joint states and made control decisions for multiple agents by maximizing

global rewards. Methods [41, 46] tried to build a local reward function for each agent

to learn its individual policy or Q-function and then make a control decision for each

agent by maximizing each local reward without any explicit coordinations. However,

these methods do not have explicit coordinations during the decision making process

and their decisions cannot guarantee driving safety when used to control multiple

AVs.
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Chapter 3

Battery Authentication System

3.1 Battery Attacks on EVs

Our proposed battery attack remotely turns on AC or stops battery charging process

through a smartphone, which is registered to connect to the EV by the user via ve-

hicle mobile App installation. For a smartphone, it can be easily infected by battery

attacks after the user installs the vehicle mobile App into it. Among existing mal-

ware infection methods [3, 58, 76], we focus on the most popular situation when the

framework of smartphone operating system has self-update functionality or the user

updates it manually, the malicious App loads additional code for so-claimed benign

reasons (e.g., framework update or beta testing) and replaces original code with mali-

cious code which will not be checked by the smartphone operating system [57]. Then,

the battery attack infects the smartphone by running malicious code in the context

of an application without the user’s permission and has full access to the smartphone

functions.

Figure 3.1 shows the details of EV battery attack process. In the smartphone

operating system, vehicle mobile App and other Apps may be installed at different

frameworks or just share the same framework. During the framework self-update

15



Cloud service

• Drive plan change

• Drive range anxiety 

Low battery energy

Request new version

• Turn on air condition

• Stop battery charging

Operating system

App App App 

Framework

App App …

…

Framework

Figure 3.1: Battery attacks on EV batteries through a smartphone.

process, code including battery attack is firstly downloaded from the cloud service

and executed in the vehicle mobile App in the smartphone. This way, the battery

attack infects the smartphone successfully and reduces EV battery energy remotely

by turning on AC or stopping battery charging process of its connected EV. More

specifically, the battery attack may result in battery energy loss by turning on AC

and stopping battery charging process during battery charging process. The vehicle

mobile App provides the user real-time vehicle states and sends out action requests

to the EV through mobile communication network such as 3G, 4G or LTE [75].

Therefore, there is no time or distance constraint for launching the battery attacks

in practice.

Algorithm 1: Part code in a vehicle mobile App

1 client.on connect = on connect
2 while True do
3 schedule.run pending()
4 climate control(climate control instruction)
5 charge control(charge control instruction)
6 mqtt publish(get vehicle status(),get battery update())
7 time.sleep(1)

8 end

Algorithm 1 shows the code snippet in a vehicle mobile App for controlling AC and

battery charge process. The App firstly builds a connection between the smartphone

and the EV when the user opens the vehicle mobile App (Line 1). After successful

connection, the App starts to check for possible pending requests (Line 3). When
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the App receives AC-turn-on and battery-charge-stop commands from the user, it

sends these requests to EV through commands climate control and charge control

to turn on AC or stop battery charging process (Lines 4 and 5). Lastly, the App

updates battery state and vehicle state shown in App interface with frequency of 1

time/second (Lines 6 and 7). In the battery attack, the attacker modifies parame-

ter climate control instruction or charge control instruction to generate malicious

action requests. More specifically, for malicious battery-charge-stop request, it only

happens during the battery charging process. For malicious AC-turn-on request, it

happens at any time. We divide our proposed battery attacks into No-effort attacks

and Smart attacks, which are explained below.

No-effort attacks In a No-effort attack, it sends malicious action requests ran-

domly without considering whether user is in the vehicle. Its objective is to limit the

charged energy by stopping charging process or consume EV battery energy as much

as possible. Therefore, No-effort attack may stop battery charging batteries during

the battery charging process or turn on AC at any time. However, No-effort attack

has high possibility of being detected by a user if the user is in the vehicle.

Algorithm 2: Part code in Smart attack

1 while User is not in the vehicle do
2 climinate control instruction=1
3 SOC = get battery update()
4 if SOC > SOC’ then
5 charge control instruction=0
6 end
7 SOC’=SOC

8 end

Smart attacks Here, we propose smart attacks to reduce the possibility of being

detected by users. Only when the user is not in the vehicle, Smart attack will send ma-

licious battery-charge-stop requests during the battery charging process or malicious

AC-turn-on requests. In other words, Smart attack sends malicious battery-charge-

stop requests when the user is not in the vehicle during the battery charging process.
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For malicious AC-turn-on requests, Smart attack will send them only if the user is

not in the vehicle and will not consider whether the vehicle is in the battery charging

process. The details about how to conduct Smart attack through the vehicle mobile

App are shown in Algorithm 2. When the user is not in the vehicle, Smart attack

will send a malicious AC-turn-on request by modifying climate control instruction

(Line 2). For malicious battery-charge-stop requests, Smart attack firstly obtains

real-time battery SOC through the command get battery update (Line 3). And then,

Smart attack determines whether the vehicle is in the battery charging process by

comparing current battery SOC and its previous value SOC ′ (Line 4). If SOC is

larger than SOC ′, the vehicle is in the battery charging process and Smart attack

will stop battery charging process by modifying charge control instruction (Line 5).

Lastly, SOC is recorded and used for comparison in next loop (Line 7).

3.2 System Design of Bauth

To eliminate the effects of battery attacks on EV batteries and ensure battery security,

we propose Bauth for EVs. Bauth runs on a micro-controller in an EV. We present the

architecture of Bauth in Figure 3.2. Bauth consists of two major parts: data-driven

behavior model and reinforcement learning model. The data-driven behavior model

part firstly uses battery state to identify the user for AC-turn-on and battery-charge-

stop request authentication. More specifically, it identifies the user currently driving

the EV or the user that drove the EV lastly. Here, we assume the user who drove the

vehicle lastly is the person to charge the vehicle. And then, for a user, the data-driven

behavior model calculates state transform probability of taking an action. Here, we

calculate state transform probability by analyzing historical vehicle usage data and

use the state transform probability as the reward in training a reinforcement learning

model. In the reinforcement learning model part, for a given vehicle state, it makes
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Figure 3.2: The architecture of Bauth for action authentication.

decisions on accepting or rejecting an action request (turning on AC or stopping

charging) by maximizing cumulative rewards, i.e. reflecting the user’s habits on the

actions for the request. When Bauth receives an action request (turning on AC or

stopping charging), Bauth first identifies the user. Then, it decides to accept or

reject this request based on the current vehicle state. For reading convenience, we

list frequently used terms and their corresponding meanings in Table 3.1.

Table 3.1: Terms used in this paper

Terms Meanings

Vehicle usage data initial vehicle state, subsequent vehicle state, AC-turn-on/battery-
charge-stop

Vehicle state vehicle indoor temperature (Tem), and battery SOC (SOC)

Battery state battery current (c), battery power output (p), and battery SOC
(SOC)

3.2.1 Data-driven Behavior Model

To judge whether a received AC-turn-on or battery-charge-stop request is authentic,

we hope to check if current vehicle usage and battery states match the user’s habits

in turning on AC or stopping charging battery. However, it is difficult to learn a

user’s such habits. This is because a user’s behaviors are affected by factors including

battery SOC. Besides, the situation where more than one users share one EV exists

(e.g., in the household) and becomes popular because of benefits such as insurance

discount, which makes it more difficult to accurately learn a particular user’s habits.
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If the driving data of the same vehicle from different users is directly used to build

the behavior model, the model accuracy will be decreased greatly. Therefore, we

need to identify each user first before learning the user’s habits. For this purpose,

vehicle mobile App in a smartphone records vehicle usage data. For each sample in

vehicle usage data, it includes battery SOC, vehicle indoor temperature and status

of AC-turn-on and battery-charge-stop. Both battery SOC and status of AC-turn-on

and battery-charge-stop can be obtained by vehicle mobile App. The vehicle indoor

temperature is measured by vehicle internal temperature sensor and its value can be

sent to the smartphone through bluetooth. This way, the behavior model can be built

based on these data samples.

3.2.1.1 User Identification

Several researches [19, 48, 73] use popular classification algorithms to identify users

based on driving features such as accelerator, brake and steering handle speed and

have advantages such as high identification accuracy. However, the data about these

driving features is difficult to be obtained in practice, which limits their application.

To solve this problem without compromising the advantage, we develop a user iden-

tification method to identify users based on only battery state which is much easier

to be obtained.

When a user drives an EV on the road, the user’s driving behaviors can be reflect-

ed by EV battery state. For example, the battery current is positive when the user

accelerates the vehicle and the current magnitude will become larger when the vehicle

accelerates with a larger value. Similarly, the battery current becomes negative when

the user decelerates the vehicle and its magnitude will also increase as deceleration

value becomes larger. Therefore, battery state can be used to describe a user’s driv-

ing behaviors and identify users. The vehicle mobile App connected to EVs provides

real-time battery state. By considering that the battery state can be easily obtained
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through vehicle mobile App, we propose a user identification method which uses ran-

dom forest technology [42] to identify the user using the battery state. Random forest

classifies tasks by constructing a multitude of decision trees at training time and out-

putting the class result, which is the mean prediction of individual trees. Compared

with other classification methods such as decision tree, support vector machine, and

neural network, random forest overcomes possible over-fitting issues during the train-

ing process and has more accurate classification performance for the situation where

training data has unbalanced class populations. This situation happens when users

sharing the same vehicle drive the vehicle with different frequencies [38].

In the proposed user identification method, the real-time battery state is used by

the random forest technology to identify the user. More specifically, the battery state

including battery current c, battery power output p, and battery SOC are the inputs

of random forest. By considering that battery state has different scales, we need to

normalize battery state value x so that these inputs can be equally treated by the

random forest during the training process. The normalization process is shown as

follows:

Xi =
xi −min(xi)

max(xi)−min(xi)
, (3.1)

where xi represents the i
th battery state sample [c, p, SOC] and Xi is the normalized

battery state value. Based on the above equation, the normalized battery state is

located between 0 and 1 and is sent to the random forest to identify the user.

Because of the dynamic changes in traffic condition and driving environment in-

cluding road surface and road gradient, the user usually accelerates and decelerates

frequently to ensure driving safety, which results in high fluctuations in battery state

values. Such fluctuations affect the identification accuracy of the random forest in

training. To eliminate the effects of fluctuations, we use the statistical based method,

in which the mean value of the normalized battery state X from time t − Δ to t
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is considered as the statistical battery state X̄ at time t. For the same normalized

battery state X, the time period Δ determines final statistical battery state X̄. How

to determine the optimal time period Δ so that the random forest has the highest

identification accuracy becomes important for our user identification method. To de-

termine optimal time period Δ, we firstly use the statistical based method to process

the same training data and calculate final statistical battery states under different

time periods. And then, we train the user identification model with these final statis-

tical battery states and use the trained models to identify users. Lastly, we compare

identification accuracies among these models and use the time period of the model

with the highest identification accuracy as the optimal time period. Based on the

normalization and statistical process, final inputs X̄ are obtained and used to train

random forest.

The random forest is an ensemble of E trees T1(X̄), ..., TE(X̄), where Ti is the

ith decision tree and X̄ represents statistical battery state [c̄, p̄, SOC] at each time.

Figure 3.3 shows how Bauth applies a random forest method to identify users based on

Battery state 

…

Tree 1 Tree 2 Tree E

Class 1 Class 2 Class E

Final class (user ID)

Figure 3.3: Random forest
method used for identifying
users.

real-time battery state. Given a set of n training

samples (X̄, Y ) where Y represents user ID of X̄,

each decision tree T will be firstly trained until

the ensemble of E trees is formed. And then, the

trained random forest can identify the user based

on battery state during the driving process. In

practice, road traffic conditions may affect a us-

er’s driving features. To eliminate the effects of

road traffic condition on user identification accuracy, we use driving data at different

traffic level situations to train our model to ensure its identification accuracy. Traffic

level situation such as light, heavy and jam can be directly obtained from Google
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Maps. In summary, for multi-user sharing one vehicle situations, the user can be

identified online based on our user identification method and her/his corresponding

AC-turn-on behavior data will be saved for the following AC-turn-on behavior anal-

ysis. For the battery-charge-stop behavior data, by considering that the user who

lastly drives the vehicle at past time periods is more likely to charge batteries, we

assume that the battery charging process is always conducted by the user who lastly

drives the vehicle at past time periods. Under this condition, the battery-charge-stop

behavior data should belong to the user who lastly drives the vehicle and will be used

for battery-charge-stop behavior analysis.

3.2.1.2 Calculation of State Transform Probability

A user turns on AC only when (s)he feels that the vehicle’s indoor temperature is out

of his/her comfort range. Some users may face the balance between the temperature

and driving plan because of limited battery energy. In other words, some users would

turn on AC only when the battery SOC is high enough to finish their driving plans.

Therefore, AC-turn-on action is determined by both vehicle indoor temperature and

battery SOC. For the battery charging, a user charges the EV either at public charging

parking lot or at private home. The user determines the battery charging time by

considering remaining battery energy and his/her vehicle-use time schedule. However,

the remaining battery energy is determined by vehicle usages and driving situations

such as high road traffic. Therefore, constant battery-charge scheduling of charging

EV batteries does not work on EV batteries. Otherwise, a malicious battery-charge-

stop request can be easily detected by considering whether it follows a driver’s battery-

charge schedule.

Based on the above analysis, we find that both a user’s AC-turn-on and battery-

charge-stop behaviors are mainly affected by vehicle indoor temperature Tem and

battery SOC but there are no published researches that discuss the effects of Tem
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and SOC on user’s AC-turn-on and battery-charge-stop behaviors. Our work is the

first that uses Tem and SOC to predict a user’s AC-turn-on and battery-charge-stop

behaviors. Here, we statistically analyze the dynamics of battery state and vehicle

usage data to calculate statistical probabilities of taking actions under certain vehicle

state (Tem and SOC). Statistical probabilities describe a user’s habits in AC-turn-on

and battery-charge-stop behaviors under different vehicle states. If statistical prob-

abilities are used as reward in reinforcement learning model shown in Section 3.2.2,

decisions made by reinforcement learning model will follow a user’s habits and helps

to authorize AC-turn-on and battery-charge-stop requests.

For a given user and a given action request (AC-turn-on or battery-charge-stop),

we calculate the statistical probability of taking certain actions under different vehicle

states (represented by a matrix B) based on historical vehicle usage data M . In this

paper, we use st to represent vehicle state (Tem and SOC) and dt to represent user

actions (0 represents reject and 1 represents accept) on the given action request. The

element Bst,dt in the matrix B is calculated by the following equation:

Bst,dt =
∑

(s′,d′)∈M
δst,s′δdt,d′ , (3.2)

where (s′, d′) is one data sample which means that the user takes action d′ at vehicle

state s′. δx,y is the Kronecker delta which equals to 1 when x equals to y, and

0 otherwise. Other elements in the matrix equals to zero. The normalization of

Equation (3.2) is calculated as follows:

B̄st,dt =
Bst,dt∑

dt∈{0,1}Bst,dt

. (3.3)

Elements B̄st,dt form a matrix B̄. For each row of B̄, the sum of elements
∑

dt∈{0,1} B̄st,dt

equals to 1. The matrix element B̄st,dt in the normalized matrix can describe the prob-
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Figure 3.4: Statistical probability matrix calculation with vehicle usage data.

ability that the given user takes action dt under vehicle state st when the number

of samples in vehicle usage data is large enough. Figure 3.4 illustrates an example

of calculating the probability. These vehicle state samples over time are expressed

by s1, s2, s3, s4, s5, and s6. Note that s1 is the same as s2 and s5 is the same as

s6. We firstly statistically analyze on the samples to calculate the number of taking

action dt at vehicle state st through Equation (3.2) and form the statistical matrix B.
And then, we normalize the statistical matrix to form statistical probability matrix

B̄ through Equation (3.3).

Next, we will calculate the state transform probability based on the normalized

matrix B̄.
Based on the normalized matrix B̄, we calculate the normalized state transform

probability matrix D̄ from one vehicle state to another vehicle state under action dt.

D̄ indicates how vehicle state would like to be st+1 if a given user takes action dt

under vehicle state st.

Given an initial vehicle state st under action dt, we need to calculate the normal-

ized state transform probability from st to st+1 (denoted by D̄st,dt,st+1) based on the

normalized element B̄st,dt . D̄st,dt,st+1 represents the probability when the user takes

action dt and vehicle state transforms from st to st+1. To calculate D̄st,dt,st+1 , we
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need to figure out state transform probability Dst,dt,st+1 which shows the sum of state

transform probabilities from st to st+1 with action dt. The state transform probability

Dst,dt,st+1 can be calculated as follows:

Dst,dt,st+1 =
∑
s′∈S

δ(st→st+1),(st→s′)B̄st,dt , (3.4)

where S represents all possible vehicle states in vehicle usage data. Here (st → s′)

means that vehicle state changes from st to s′. We use δ(st→st+1),(st→s′) to check

whether vehicle state s′ changing from st equals to st+1. δ(st→st+1),(st→s′) is 1 when s′

equals to st+1, and 0 otherwise. We normalize state transform probability Dst,dt,st+1

to obtain the normalized state transform probability D̄st,dt,st+1 as follows:

D̄st,dt,st+1 =
Dst,dt,st+1∑

st+1∈S Dst,dt,st+1

. (3.5)

We use the same vehicle usage data in Figure 3.4 to calculate state transform proba-

bility and show the calculation process in Figure 3.5. s1, s2, s3, and s4 represent all

possible vehicle states in the sample. We firstly calculate the probability D of vehicle

state transferring from st to st+1 with Equation (3.4) based on vehicle usage data and

matrix B̄ in Figure 3.4. And then, we normalize the state transform probability D to

obtain the normalized state transform probability D̄.

When building the data-driven behavior model offline, Bauth runs in a micro-

controller in the vehicle and collects vehicle usage data using a smartphone registered

to connect the vehicle. Note that the smartphone does not need to be in the vehicle.

Based on the user identification method in Section 3.2.1.1, Bauth identifies the user

currently driving the EV (for AC-turn-on behavior learning) or the user that drove

the EV lastly (for battery-charge-stop behavior learning). Then, Bauth conducts

statistical analysis on the user’s vehicle usage data using the methods introduced in
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Figure 3.5: State transform probability matrix calculation.

Section 3.2.1.2. And then, D̄st,dt,st+1 will be calculated to show the probability that

the user will take action dt on a given action request at vehicle state st and the state

is transformed to st+1. Since the above probability can fully reflect user habits on a

given action request (AC-turn-on or battery-charge-stop), we will use this probability

into reinforce learning to indicate the reward when Bauth chooses decision at under

vehicle state st. That is, reward function r(st, at, st+1) equals to D̄st,dt,st+1 , where dt

equals to at, and indicates the reward after transforming from st to st+1 with decision

at. Here, larger reward means higher probability that the decision at from Bauth will

follow a user’s habits. This way, Bauth chooses decision at based on the corresponding

reward it will obtain to ensure its decision at follow user habits.

3.2.2 Reinforcement Learning based Authentication

Bauth uses the reinforcement learning model to authorize action requests (AC-turn-

on and battery-charge-stop) from a smartphone. As shown in Figure 5.1, the current
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vehicle state is the input to the reinforcement learning model, which outputs the

decision (accept or reject) on the action request. To measure the current vehicle state

st = (Tem, SOC), the vehicle indoor temperature sensor and vehicle mobile App

firstly measure vehicle indoor temperature and battery SOC at time t and send st to

reinforcement learning model for action authentication. Note that the vehicle mobile

App in a smartphone can not only measure battery SOC but also have the function

of sending action request.

In the training of the reinforcement learning model, the inputs are vehicle usage

data and state transform probability matrix (considered as reward), and the output

is the authentication decision a from all possible options (reject or accept) for each

vehicle state (which is called optimal policy π∗). The training firstly uses vehicle

state st and state transform probability matrix to calculate the expected cumulative

discounted rewards E[
∑∞

t′=t γ
(t′−t)rt′ ] (also called Q-value) for different authentication

decisions and then outputs the authentication decision which leads to the maximum

value of E[
∑∞

t′=t γ
(t′−t)rt′ ], where γ ∈ [0, 1] represents discount factor, t′ indicates a

variable changing from t to positive infinity (a value which is larger than t in this

paper), and rt′ means the reward at time t′. Here, the policy is used to choose

authentication decisions and calculate the expected cumulative discounted rewards.

An optimal policy ensures that its authentication decisions for different vehicle states

always conform actions in vehicle usage data.

3.2.2.1 Optimal Policy Formation

The policy π is defined as one map π : st �→ at and guides reinforcement learning

model to choose authentication decision at when vehicle state is st in this paper.

The policy π keeps being adjusted during the training process until its authentication

decisions under different vehicle states conform actions in vehicle usage data to form

optimal policy π∗. For π∗, its authentication decision can follow a user’s habits with
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Figure 3.6: Reinforcement learning application in Bauth.

high confidence. During the training process, action-value function Q at initial vehicle

state st and authentication decision at at time t is introduced to indicate the expected

cumulative discounted reward E[
∑∞

t′=t γ
(t′−t)rt′ ] at vehicle state st and given by:

Qπ(st, at) = r(st, at, st+1) + γmaxQπ(st+1, at+1). (3.6)

We see that Qπ(st, at) is the reward reinforcement learning model receives for entering

current vehicle state st plus the maximum future reward for next vehicle state st+1.

For one vehicle state, the policy π chooses authentication decision which can lead

to the maximum value of action-value function Qπ. Therefore, Qπ affects attack

detection performance of the policy π and needs to be calculated accurately.

Qπ of the policy π will keep being updated through vehicle usage data during

the training process until the authentication decision from the policy π maximizes its

Q-value, and then this π is the optimal policy π∗. However, it is difficult to calculate

Q-values in action-value function and find the optimal policy through Equation (3.6)

when the total number of all possible vehicle states is too large. For the vehicle state

s = (Tem, SOC), if Tem changes between 40F and 90F and SOC changes between 0

and 1, by considering that Tem change unit is 0.01F and SOC change unit is 0.001,

the total number of possible combination of different Tem and SOC reaches at the
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106 level, which will result in the curse of dimensionality problem in practice [44].

Besides, these many vehicle states can result in huge overload in computing Q-values.

Therefore, rather than computing Q-values directly through Equation (3.6), we apply

deep neural network into reinforcement learning model to approximate Q-values.

Neural networks form policy π in reinforcement learning model and help to esti-

mate Q-values under different vehicle states and choose corresponding authentication

decisions. They contain two main parts: actor neural network with parameters θμ

and critic neural network with parameters θQ. These parameters are interconnection

weights in networks and will be adjusted during the policy training process to improve

network performance. More specifically, both inputs of two networks are vehicle usage

data and state transform probability. The outputs of actor and critic neural networks

are action function μ(st|θμ) and Q-value Q(st, at|θQ) for authentication decision at,

respectively. Here, action function μ(st|θμ) makes decisions based on Q-values under

vehicle state st and its output is authentication decision at which obtains maximum

Q-values.

Action function μ(st|θμ) specifies current policy π by mapping vehicle state st to

certain authentication decision at through argmaxat∈{0,1}Q(st, at). We utilize actor-

critic algorithm [49] to adjust parameters θQ and θμ during the policy training process

so that Q-values are calculated accurately and authentication decision from policy π

reflects a user’s habits. As one of state-of-the-art methods, the actor-critic algorithm

adjusts parameters in actor neural network and critic neural network based on gra-

dient of the expected cumulative discounted reward and approximation error, which

are explained in details in the following.

The key idea of actor-critic algorithm is to estimate the gradient of the expected

cumulative discounted reward E[
∑∞

t′=t γ
(t′−t)rt′ ] so that parameters in actor and critic

neural networks can be adjusted. To adjust parameters θμ in actor neural network,
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the gradient of the cumulative discounted reward with respect to the parameters θμ

is calculated as �θμE[
∑∞

t′=t γ
(t′−t)rt′ ] [66]. This gradient describes how the expected

cumulative discounted reward changes when policy with parameters θμ selects au-

thentication decision at vehicle state st. Parameters θμ will be optimized to increase

the expected cumulative discounted reward by following positive gradient direction.

For critic neural network parameters θQ, the difference between Q-values approx-

imated by critic neural network and target Q-values calculated through Equation

(3.6) is considered as the approximation error L(θQ) of critic neural network [49] and

calculated as follows:

L(θQ) = E[(Q(st, at|θQ)−Qπ(st, at))
2], (3.7)

where Qπ(st, at) represents Q-value in the policy π and can be calculated through

Equation (3.6). L(θQ) depends on parameters θQ in critic neural network and θQ can

be updated by minimizing L(θQ) in Equation (3.7).

The above two paragraphes show how actor-critic algorithm uses the gradient and

the approximation error to adjust parameters in networks. More details about how to

adjust parameters in actor and critic neural networks can be found in [49, 66]. Based

on actor-critic algorithm, parameters in the policy will be adjusted in the policy

training process and the policy after the training process will better approximate

Q-values and make authentication decisions on requests. The optimal policy makes

authentication decisions, which can follow a user’s habits so that the battery attacks

will not be authenticated.

3.2.2.2 GAN-based Vehicle Usage Data Generator

For an action request from a smartphone, Bauth firstly obtains vehicle state and then

generates an authentication decision based on its reward function. Reward function is
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Figure 3.7: The architecture of a GAN-based vehicle usage data generator in Bauth.

built by statistically analyzing vehicle usage data. The more historical vehicle usage

data is used for statistical analysis, the more accurate the reward function describes a

user’s habits. However, vehicle usage data is collected from real EVs and it is difficult

to collect a large number of vehicle usage samples, which can cover possible different

action-vehicle state pairs, for statistical analysis. To ensure attack detection perfor-

mance of Bauth, we develop a GAN-based vehicle usage data generator to generate

vehicle usage data. The basic idea of the GAN-based vehicle usage data generator is

to generate new vehicle usage samples, which match the user’s habits. Bauth firstly

collects real vehicle usage data from a vehicle and then uses the GAN-based vehicle

usage data generator to generate new vehicle usage data (user’s action decision on an

AC-turn-on or battery-charge-stop under different vehicle states). Bauth will keep

generating new vehicle usage samples until the total number of vehicle usage samples

is large enough to cover possible different action-vehicle state pairs.

Figure 3.7 shows how the GAN-based vehicle usage data generator in Bauth forms

new vehicle usage samples, which can accurately match the user’s habits. Here, the

GAN-based vehicle usage data generator includes a gain part and a discriminator part

and works by following total three steps. In step 1, for a given user’s action decision,

the generator part adds random noises into its corresponding vehicle state (vehicle

indoor temperature and battery SOC) to generate a new vehicle usage sample. In step

2, the discriminator part firstly checks whether vehicle state in the new vehicle usage
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sample stays in its statistical vehicle state range and then determines whether such

a new vehicle state sample should be stored or ignored. In step 3, the generator part

and the discriminator part influence each other and iteratively update themselves.

Specifically, the generator part updates itself incrementally so that the generated

vehicle usage samples are increasingly more similar to real vehicle usage samples.

Once the discriminator determines that the vehicle state in the new vehicle usage

sample stays in the statistical vehicle state range, the discriminator will store such a

new vehicle usage sample. This iterative updating process will continue until the total

number of new and real vehicle usage samples are large enough to cover all possible

action-vehicle state pairs.

To generate new vehicle usage samples, which match the user’s habits, the gener-

ator firstly needs to calculate statistical vehicle state ranges when the user conducts

a action decision (AC-turn-on or battery-charge-stop) based on real vehicle usage

data. For a given action decision a in the real vehicle usage data, its statistical

vehicle indoor temperature range is indicated with (μa
Tem, σ

a
Tem), where μa

Tem and

σa
Tem indicate the mean value and the standard deviation value of Tem. Similar-

ly, the statistical battery SOC range is indicated with (μa
SOC , σ

a
SOC), where μa

SOC

and σa
SOC indicate the mean value and the standard deviation value of SOC. And

then, the generator forms a new vehicle usage sample (d′, T em′, SOC ′). Specifically,

for a given user’s action decision d under vehicle state (Tem, SOC), the genera-

tor forms a new vehicle usage sample by adding random noises θTem and θSOC in

Tem and SOC. Under this situation, the new vehicle usage sample (d′, T em′, SOC ′)

equals to (d, Tem + θTem, SOC + θTem). The discriminator will calculate vehicle in-

door temperature difference as Tem + θTem − μa
Tem and battery SOC difference as

SOC + θSOC − μa
SOC . If Tem+ θTem − μa

Tem stays in the range [−3σa
Tem, 3σ

a
Tem] and

SOC + θSOC − μa
SOC is located at the range [−3σa

SOC , 3σ
a
SOC ], the discriminator will

consider this new vehicle usage sample (d′, T em′, SOC ′) matches the user’s habits
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Figure 3.8: The reward function update process with our reward self-adjustment
model.

and save this sample into the new vehicle usage dataset. Otherwise, the discrimi-

nator will ignore this new vehicle usage sample (d′, T em′, SOC ′) and start the next

iteration process. Bauth will keep the above iteration process with the GAN-based

vehicle usage data generator to form new vehicle usage samples until the total number

of new vehicle usage samples and real vehicle usage samples are large enough so that

they can cover all possible action-vehicle state pairs.

3.2.2.3 Self-Adjustment in Reward Function

Since reward function in this paper is built by conducting a statistical analysis on

vehicle usage data, it will cause less accurate reward function calculation result by

considering that vehicle usage data may contain wrong user’s action decisions be-

cause of user’s operation errors, which results in false authentication (false alarm or

missed detection) of Bauth. Here, we develop a reward self-adjustment method to

check whether false authentications are caused by the reward function and update

the reward function based on the user action on false authentication decisions. Fig-

ure 3.8 shows how our reward self-adjustment model updates the reward function.

For a request at vehicle state st, we assume that Bauth selects false authentication

decision amt and vehicle state changes from st to s
m
t+1 at a false authentication situa-
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tion, where st and s
m
t+1 represent vehicle states at time t and t+ 1, respectively. For

this false situation, at represents its correct authentication decision. The probabili-

ty that Bauth selects authentication decision amt at vehicle state st is calculated as

D̄st,amt ,smt+1
. Here we use pat to represent D̄st,amt ,smt+1

for simplification and h(st) to rep-

resent total times of this false authentication at vehicle state st. The probability pat

of selecting correct authentication decision at equals to 1−pamt . And then, pat will be

compared with a threshold value ε and h(st) will be compared with a threshold value

β to determine whether the reward needs to be updated. ε is used to indicate the

minimum probability that Bauth selects authentication decision at at vehicle state

st. β indicates total times of false authentication and can be set by users. If pat is

less than ε and h(st) is larger than β, it means that Bauth will never select correct

authentication decision and the reward of selecting correct authentication decision

at this vehicle state needs to be updated to train reinforcement learning model so

that reinforcement learning model can select correct authentication decision. For the

new reward, p′at and p
′
amt

are updated to pat + α(pamt − pat) and pamt − α(pamt − pat),

where α is an update coefficient and determined based on Bauth’s performance in

practice. The reward in Bauth keeps being updated until authentication action from

Bauth conforms action in vehicle usage data. By this way, the reward self-adjustment

method helps to update the reward based on the user action on false authentication

decisions and eliminate negative effects of statistical analysis on reward function.

3.2.2.4 Authentication on Action Requests from Smartphone

The battery attack tries to attack the EV batteries by generating malicious action

requests from a smartphone. For an action request from a smartphone, Bauth firstly

obtains vehicle state and makes its authentication decision with maximum Q-value.

And then, Bauth sends its authentication decision to the Electronic Control Units

(ECUs) in the EV, which control vehicle actuators to execute vehicle functions includ-
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ing AC-turn-on and battery-charge-stop. More details about vehicle control through

ECUs can be found in [6]. Therefore, Bauth can improve EV battery security and

help eliminate negative effects of battery attacks such as driving plan change and

driving range anxiety. The pseudocode of Bauth is shown in Algorithm 3.

When Bauth receives an action request from a smartphone, it firstly observes

vehicle state st = [Temt, SOCt] and selects authentication decision at based on vehicle

state st and policy π∗ (Line 2). And then, Bauth sends its authentication decision to

ECUs in the EV to finish this action authentication process (Line 3). If the user takes

action dt and dt is not the same as authentication decision at, total times h(smt ) of

this false authentication will increase by one. If h(smt ) is larger than β and probability

is less than ε, reward r(st, at, st+1) will be updated to train reinforcement learning

model until new authentication decision at conforms the user action dt (Lines 4-11).

Algorithm 3: Request authentication with Bauth
Data: Trained reinforcement learning model

1 while Receive an action request from a smartphone do
2 Observe vehicle state st = [Temt, SOCt];
3 Make authentication decision at on action request based on vehicle state at and policy

π∗ and send it to ECUs in EV;
4 if dt �= at then
5 if Pat

≤ ε and h(smt ) ≥ β then
6 Update reward r(st, at, st+1) to train reinforcement learning model and output

new authentication decision at;
7 Go back to Line 4;

8 end

9 else
10 h(smt ) = h(smt ) + 1;
11 end

12 end

3.3 Performance Evaluation

We conducted real-world experiments based on real-life EV usage to evaluate the

attack detection performance of Bauth. In the experiment, we firstly conducted EV

driving experiments using total 10 participants to test identification accuracy of our
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user identification method. And then, we recorded AC-turn-on and battery-charge-

stop behaviors of total seven EVs and utilized probability based reward function into

reinforcement learning model to learn these behaviors by training reinforcement learn-

ing model with record data. Lastly, based on the established reinforcement learning

model, Bauth authorized action requests from a smartphone and we compared bat-

tery attack detection results between Bauth and a statistical method (explained in

details in Section 3.3.1 and abbreviated as SM) for performance evaluation.

3.3.1 Experiment Settings

We implemented battery attacks through a smartphone and run Bauth in a laptop

to authorize action requests from a smartphone. To conduct battery attacks through

a smartphone, we installed one App including malicious code into one Android s-

martphone to remotely attack EV batteries by turning on AC or stopping battery

charging process. For such an App, it can conduct commands from users successful-

ly when working normally while it can also conduct battery attacks without being

noticed by users. In the experiment malicious requests are automatically conducted

using a smartphone with frequency 0.1 time/second and these requests are directly

sent to both EVs and Bauth. More specifically, malicious AC-turn-on requests from

No-effort attack are sent out randomly without considering whether a user is in the

vehicle while malicious AC-turn-on requests from Smart attack are sent out only when

the user is not in the vehicle. For malicious battery-charge-stop requests, No-effort

attack and Smart attack also need to ensure that the vehicle is in the battery charging

process. Here, names of the App and vehicle brand in the experiment are anonymous

to avoid the possibility that others may attack these vehicles with this App through

our method.

In EV driving experiments, total 6 male and 4 female participants (with ages
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Figure 3.9: EV driving experiments and battery energy information.

Table 3.2: Vehicle usage case

EV The number of users Driving route type

#1 1 Home-Office

#2 1 Home-Office-Mall

#3 1 Home-Mall-Supermarket

#4 2 Home-Office-Mall-Supermarket

#5 1 Home-Mall

#6 3 Home-Office-Mall-Supermarket

#7 1 Home-Office-Supermarket

range from 20 to 35 years) drove one EV on a 7.4 mile long road shown in Fig-

ure 3.9(a). During the driving process, battery state of EV batteries shown in the

App was recorded with the frequency of 1 time/second to evaluate the identification

performance of our user identification method. The daily driving of total 7 EVs was

used for EV usage experiments and EV usage experiments lasted total 25 days long.

21-day data is used to train reinforcement learning model. 4-day data including mali-

cious requests is used for attack detection performance evaluation. More specifically,

malicious requests in a 2-day data belongs to No-effort attack and malicious requests

in another 2-day data belongs to Smart attack. In the experiment, we applied Bauth

and SM to authorize action requests from a smartphone in the last 4-day experiments,

respectively. Besides, the user would turn off AC or restart the battery charging pro-

cess if the user found attacks which were not detected successfully by Bauth and SM.
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In the experiment, vehicle states and AC-turn-on and battery-charge-stop behaviors

were recorded through the vehicle mobile App. The vehicle indoor temperature was

measured by vehicle internal temperature sensor and its real-time measurement val-

ue was sent to the smartphone through bluetooth. Battery state was measured and

recorded by the vehicle mobile App. The vehicle usage cases such as the number of

users sharing the same EV and driving route types in the EV usage experiments are

shown in Table 3.2. Here, driving route type is determined based on locations where

an EV arrives in one day. All users of these EVs charge their EVs at private homes

and may have different habits in AC-turn-on and battery-charge-stop.

We experimentally evaluated Bauth and our experiments covered a broad set of

vehicle usage cases (i.e., different numbers of users per vehicle and driving route

types). Our results answer the following questions:

•How is Bauth’s performance in identifying different users? Our experimental results

demonstrate that Bauth has high average identification accuracy. Figure 3.10 shows

identification accuracy comparisons among different users.

•How is Bauth’s performance compared to other methods in terms of attack detec-

tion accuracy and precision? Attack detection accuracy describes conformity degree

between detection results and true attack situations and is calculated as the rate of

true positives + true negatives over total requests. Attack detection precision de-

scribes how closely correct detected attacks agree with detected attacks and is cal-

culated as the rate of true positives over true positives + false positives. Here, we

define that battery attack is detected successfully in the experiment only when user

or Bauth or SM detects it in 10s. There exist no available methods for authorizing

action requests (to turn on AC or stop battery charging process) to prevent EV bat-

teries from battery attacks as the battery attack is firstly proposed in this paper. The

most direct way is to analyze vehicle usage data to obtain statistical probabilities of

taking AC-turn-on and battery-charge-stop actions under different vehicle states and
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utilize statistical probabilities to select decisions for action requests, which forms the

statistical method (SM). For one action request at given vehicle state, SM accepts this

action request if statistical probability of accepting AC-turn-on or battery-charge-stop

action is higher than statistical probability of rejecting this action. Otherwise, SM re-

jects this action request. Figure 3.11 and Figure 3.12 show statistical probability and

state transform probability results based on given vehicle usage data, respectively.

We compared attack detection results between Bauth and SM in Figure 3.13.

•How is the effectiveness of GAN based vehicle usage data generator and self-adjustment

algorithm to improve Bauth’s attack detection accuracy? Figure 3.14 shows the ef-

fects of GAN based vehicle usage data generator and reward self-adjustment process

on attack detection performance of Bauth.

• Is Bauth effective in different vehicle usage cases? We find that Bauth is able to

maintain high levels of performance both in the presence of multi-user sharing one EV

situations and different driving route types. Figure 3.15 shows Bauth’s performances

for different vehicle usage cases.

•Can Bauth efficiently avoid the effects of battery attacks on battery energy loss?

Experimental results demonstrate that Bauth helps to avoid battery energy loss and

Figure 3.16 shows battery energy loss results in the experiment.

•Does Bauth have a computation overload problem when authorizing action request-

s? Experimental results demonstrate that Bauth has low computation time and

Figure 3.17 shows computation time of Bauth on different action requests.

3.3.2 User Identification Evaluation

To verify the user identification method, we did EV driving experiments on the road

shown in Figure 3.9(a) and total 10 participants drove the same EV from Startpoint to

Endpoint. During the driving process, the App in the smartphone recorded real-time
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Figure 3.10: User identification accuracy performance evaluation.

EV battery states including battery current, battery power output and battery SOC.

For the battery power output information, its value is positive when the vehicle accel-

erates on the road while it becomes negative when the vehicle brakes. Figure 3.9(b)

shows average absolute battery output values during driving and braking processes

for 10 participants. We see that both values are different among these participants

and reflect participant’s driving habits (acceleration and brake levels), which explains

why these battery states can be used to identify drivers.

The user identification method in Section 3.2.1.1 uses random forest technology

to identify the driver based on the recorded battery states. We utilize 4-fold cross-

validation method [9] to evaluate user identification performance and identification

results among participants are compared in Figure 3.10(a). The average value of iden-

tification accuracies among these drivers reaches 95.7%. Besides, we compare iden-

tification performances among random forest and existing identification technologies

including support vector machines (SVM), Decision Tree, and k-nearest neighbors

(KNN) with different time periods Δ and show them in Figure 3.10(b). We see that

random forest has higher identification accuracy compared with other existing tech-

nologies as time period Δ increases from 1 second to 60 seconds with a 2 seconds

increasing size. More specifically, the identification accuracy for the random forest

keeps almost constant when time period Δ equals to 20seconds, which is less than
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(a) AC-turn-on probability. (b) Battery-charge-stop probability.

Figure 3.11: Statistical probabilities of AC-turn-on and battery-charge-stop.

corresponding time period values of other technologies. It means that random forest

can use less data to identify drivers with the same identification accuracy compared

with other existing technologies.

3.3.3 Authentication Performance Evaluation

To evaluate attack detection performance of Bauth, we apply Bauth and SM to au-

thorize action requests from a smartphone, respectively. SM is formed by statistically

analyzing situations where the driver turns on AC or charges EV batteries based on

the data and Figure 3.11 shows statistical probabilities of turning on AC and stoping

charging batteries under different vehicle states for #4 EV. Color bars in the right

part of figures show the mapping from statistical probabilities to color degrees. Here

we choose #4 EV for attack detection performance evaluation mainly because this

EV is shared by two drivers and its driving route type contains Home, Supermarket,

Office and Mall, which makes #4 EV better represent different vehicle usage cases.

We see that drivers would prefer turning on AC when vehicle indoor temperature is

higher than 55F and SOC is more than 0.5. For the battery charging process, the

driver would often charge EV batteries when battery SOC is located at 0.3-1. This

is reasonable because the driver always charges batteries after EV parks at home or

near the office.
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(a) Reward of AC-turn-on. (b) Reward of battery-charge-stop.

Figure 3.12: The reward of AC-turn-on and battery-charge-stop for different vehicle
states (vehicle indoor temperature (F) and battery SOC).

To implement Bauth, we firstly need to calculate the normalized state transform

probability matrices D̄s based on the training data and apply these matrices as re-

wards to train networks in reinforcement learning. The matrices D̄s of turning on AC

and stoping charging batteries are shown in Figure 3.12. X-axle represents initial ve-

hicle state and Y-axle represents the vehicle state after taking action (turning on AC

or stop charging batteries). We see that the reward reaches the maximum value only

when turning on AC happens at around vehicle state (80, 0.8). For battery-charge-

stop action, the reward reaches the maximum value when battery SOC is large than

0.8. This is mainly because the driver decides to stop charging batteries only when

battery SOC is large enough to finish an user’s driving plan.

3.3.3.1 Performance for different attacks

We firstly trained Bauth and SM based on rewards shown in Figure 3.12 and then

used them to authorize action requests. Specifically, we used different numbers of

training samples in the first 21-day data(changing from 1 day to 21 days) for training

and used the last 4-day data to evaluate the effects of training sample numbers on

their attack detection accuracies. Figure 3.13 shows attack detection accuracies on

No-effort attack and Smart attack for Bauth and SM under different numbers of
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Figure 3.13: Attack detection accuracy comparisons for No-effort attacks and Smart
attacks.

samples (changes from 1 day to 21 days). For both No-effort attack and Smart

attack, Bauth has higher attack detection accuracies on battery-charge-stop and AC-

turn-on requests compared with SM. More specifically, attack detection accuracy of

Bauth is higher than the value of SM when the total training sample is more than

15 days. Besides, Bauth can still keep increasing its attack detection accuracy even

while SM has almost constant authentication accuracy as the training data is more

15 days, which demonstrates good balance between exploitation and exploration for

reinforcement learning.

Here, we trained Bauth and SM with total 21-day samples and used their attack

detection results as examples to better understand attack detection performance of

Bauth on different battery attacks. Figure 3.14 shows attack detection accuracies on

No-effort attack and Smart attack for Bauth and SM. For SM, the maximum attack

detection accuracy on Smart attack and No-effort attack is less than 80% for two

different kinds of action requests (turning on AC and stop charging batteries) As

the number of training samples increases. SM has lower attack detection accuracy

on AC-turn-on requests because the driver decides to turn on AC or not based on

both the remaining battery energy and her/his individual preference on comfortable

temperatures which will not be considered during the battery charging process. More
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Figure 3.14: Attack detection accuracy comparisons on AC-turn-on and battery-
charge-stop requests.

specifically, SM has lower attack detection accuracies on Smart attack compared with

No-effort attack, especially for AC-turn-on requests. This is because Smart attack

happens only when the driver is not in the vehicle and the driver may turn on AC

remotely to ensure vehicle indoor temperature is at the comfortable level, which makes

it difficult to detect Smart attack with SM.

For Bauth, it has higher attack detection accuracy than SM and its maximum

attack detection accuracy reaches 95.6%, which demonstrates that Bauth has good

attack detection performance on both AC-turn-on and battery-charge-stop action

requests. Besides, Figure 3.14 shows the effects of user identification (UI), GAN-

based vehicle usage data generator (GAN), and reward-adjustment (RA) on Bauth’s

attack detection performance. For Bauth without UI (Bauth-NUI), 21-day samples of

all users are used to train reinforcement learning model without identifying users. We

see that Bauth-NUI has lower attack detection accuracies when authorizing action

requests. This is because different drivers may share the same vehicle randomly and

usually have different habits on AC-turn-on and battery-charge-stop, which makes it

hard to accurately learn habits of each driver for an reinforcement learning model.

Bauth without RA (Bauth-NRA) has similar training and testing processes compared

with Bauth and the only difference between Bauth-NRA and Bauth is that Bauth-
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NRA does not adjust rewards when authentication decision is not correct. In the

experiment, a user’s action was recorded and sent to Bauth to adjust rewards if it

was not the same as the authentication decision. Based on Figure 3.14, we see that

attack detection accuracies on No-effort attack and Smart attack of Bauth are larger

than values of Bauth-NRA because of conducting RA processes. For Bauth without

GAN (Bauth-NGAN), 21-day samples of all users are directly used to build reward

functions without generating new vehicle usage data through the GAN-based vehicle

usage data generator. We see that Bauth-NGAN has much lower attack detection

accuracies on both AC-turn-on and battery-charge-stop requests than Bauth, which

demonstrates that the GAN-based vehicle usage data generator helps to improve

Bauth’s attack detection performance.

3.3.3.2 Performance for different vehicle usage situations

To evaluate attack detection performance of Bauth on different vehicle usage situ-

ations, we implemented Bauth on different vehicle usage situations. Vehicle usage

situations shown in Table 3.2 are different because of numbers of sharing drivers and

driving route types. Figure 3.15 shows attack detection accuracy results on No-effort

attack and Smart attack at different vehicle usage situations. The average attack

detection accuracies for No-effort attack and Smart attack are 91.6% and 88.9% re-

spectively, which demonstrates good attack detection performance of Bauth. Bauth

has the lowest attack detection accuracy at the usage situation (#3 EV) because #3

EV (vehicle usage frequency is around 10 times/week) was not used as frequency as

other vehicles and provided limited data to train Bauth. Besides, Bauth has higher

attack detection accuracy on battery-charge-stop requests compared with AC-turn-

on requests. This is because the driver stop charging EV batteries by considering

only battery SOC while the driver turns on AC or not by considering not only vehi-

cle indoor temperature but also battery SOC, which are more difficult to learn than
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Figure 3.15: Bauth’s attack detection accuracy performance for different vehicle usage
cases.
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Figure 3.16: The percent of battery energy consumed by battery attacks in two-hour
experiments.

battery-charge-stop actions in practice.

3.3.3.3 Battery energy consumption with authentication

To evaluate the effects of Bauth on avoiding battery energy loss caused by battery

attack in practice, we did vehicle usage experiments on #1 EV and implemented

Smart attacks and No-effort attacks, respectively. Here we choose #1 EV because

this EV only drives from Home to Office and its user is not in the vehicle in most

cases, which provides many chances of conducting Smart attack in the experiment.

Figure 3.16 shows how total battery energy loss percentage changes as total attack

time increases at battery not-charging situations and battery charging situations. For

the battery not-charging situation, only No-effort attack sent malicious AC-turn-on
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requests in the experiment since the vehicle was not in the battery charging process

and a user was driving the vehicle during the whole battery not-charging situation.

Figure 3.16(a) compares total battery energy loss percentages at the battery not-

charging situation for Bauth and SM. Here, total battery energy loss percentage is

calculated as the rate of total battery SOC loss over initial battery SOC. Based on

Figure 3.16(a), total battery energy loss percentage for Bauth is around 4% while the

value of SM reaches as much as 20% if total attack time lasts two hours. This is be-

cause Bauth has higher attack detection accuracy compared with SM. Figure 3.16(b)

shows results at the battery charging situation. For the battery charging situation,

No-effort attack sent malicious requests randomly while Smart attack would happen

only when the user was not in the vehicle. Though stopping battery charging process-

es will not consume battery energy, battery SOC will not increase as the user expects.

The difference between real battery SOC change and expected battery SOC change

is caused by the battery attacks and is considered as battery energy loss. The ex-

pected battery SOC change is calculated as the difference between final battery SOC

and the battery SOC when attack happens. We see that EV with Bauth has much

less battery energy loss compared with values of SM. More specifically, the battery

energy loss after two hours reaches around 30% for SM. This is to say, driving range

of EV will be reduced from 310 mile into 210 mile if EV suffers 30% energy energy

loss. Based on Figure 3.16(b) we see that Smart attack can result in more energy loss

compared with No-effort attack. This is because detection accuracy on Smart-attack

is lower than value on No-effort attack. This section demonstrates the effectiveness

of Bauth on avoiding battery energy loss caused by malicious action requests and the

importance of researching on EV energy security.
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3.3.3.4 Computation complexity analysis of Bauth

We implemented Bauth on the laptop which has Intel i5 CPU and 4 gigabyte memory.

When Bauth receives an action request (AC-turn-on or battery-charge-stop) from a

smartphone, Bauth firstly observes vehicle states to identify the user and then chooses

an authentication action based on its policy. Computation time per each action re-

quest authentication process is recorded to analyze computation complexity of Bauth.

Figure 3.17 shows average computation time of Bauth on different types of action
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Figure 3.17: Computation time of
Bauth on different action request
types.

requests. We see that average computation

time on different action requests equal to 0.72

seconds and the maximum value of these av-

erage computation time for Bauth is 0.79

seconds, which is less than both time peri-

od (1 second) of measuring battery states and

time period (10 seconds) of sending action re-

quests. Though both our user identification

model and reinforcement learning model in Bauth need a training process and such a

training process usually takes a long time to obtain good performance, Bauth applies

the well-trained user identification model and reinforcement learning model to make

action request authentication processes and does not need much time to authorize an

action request.
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Chapter 4

Control Policy based Driving

Safety System

4.1 System Design

We propose Polsa to extract control policies of a target AV and determine optimal

control policies under different driving scenarios for the target AV to improve its

driving safety. In this paper, we follow safety criteria in References [69, 77] and

use Stop distance and Actual distance to test whether a control policy is optimal

under a driving scenario. Figure 5.4 shows Stop distance and Actual distance in both

longitudinal and latitudinal directions. Specifically, Stop distance dstop indicates the

maximum distance a target AV will travel when it decelerates to a completed stop

with the maximum acceptable deceleration. Actual distance dactual is defined as the

distance a target AV can travel without having a possible collision with its nearby

vehicle. We introduce potential distance dpot to check whether there exists a possible

collision and calculate dpot as dactual − dstop. If dpot is negative in either longitudinal

or latitudinal direction, we conclude that this target AV will have a collision with its

nearby vehicle. Therefore, an optimal control policy should ensure that dpot is always
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Figure 4.1: Stop distance and actual distance in longitudinal and latitudinal direc-
tions.

positive when executed on a target AV.

We present the architecture of Polsa in Figure 4.2. Polsa consists of two major

parts: control policy extraction and optimal control policy determination. The con-

trol policy extraction part firstly analyzes historical driving data of a target AV to

cluster driving events with the same control behavior type together and then extracts

control policies based on driving event cluster results. Here, historical driving data

includes states (position, driving speed) of both a target AV and its nearby vehicle.

Since historical driving data of a target AV collected from driving simulations or

road experiments can be saved in its data center, Polsa can easily access historical

driving data to extract control policies of a target AV. In the optimal control policy

determination part, Polsa firstly predicts driving state of a nearby vehicle in a driv-

ing scenario and then applies its driving state prediction result to determine which

control policy can ensure driving safety of a target AV in a driving scenario. Lastly,

Polsa will send its optimal control policy determination results to AVs as references

to improve their driving safety.

4.1.1 Control Policy Extraction

When a target AV drives on the road, its sensors (e.g., cameras and Lidar) measure

the state of its nearby vehicle and send measurement information to the target AV in
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Figure 4.2: The architecture of Polsa for driving safety analysis on a target AV.

real time. Based on state of its nearby vehicle, a target AV will determine its control

behaviors in longitudinal direction (Acceleration, Deceleration and Constant speed)

and latitudinal direction (Left-lane-change, Right-lane-change and Intersection-turn)

based on its control policies. Based on accident reports of self-driving cars from

California DMV, we find that collisions between a target AV and its nearby vehicle

dominates all different kinds of accidents in accident reports. Therefore, we only

focus on driving scenarios including a target AV and its nearby vehicle in this paper

and discuss how to improve driving safety of a target AV when its control policies are

implemented under these driving scenarios. Here, the nearest vehicle of a target AV is

defined as a vehicle which is the closest to the target AV and their position difference

should be no more than 100m by considering sensor measurement ability [53]. Here,

we use nearby vehicle to indicate the nearest vehicle of a target AV and a nearby

vehicle can be autonomous driving or human-driving type.

By considering that a target AV measures its driving environments through on-

board sensors and these sensors can only measure vehicle features like position and

driving speed, we describe a control policy π of a target AV with a trigger condition

x and a control behavior A. Specifically, trigger condition x represents position

and driving speed related information of the target AV and its nearby vehicle (e.g.,

absolute speed difference between the target AV and its nearby vehicle is more than

20km/h or their absolute position difference is less than 5m) and time duration of
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executing a control policy π depends on its trigger condition x and states of the target

AV and its nearby vehicle. Control behavior A represents control behavior of a target

AV and changes in {Acceleration,Deceleration,Constant-speed,Left-lane-change,
Right-lane-change, Intersection-turn}.

For historical driving data of a target AV, it usually contains many different

control behaviors and these control behaviors result in different driving events. Here,

a driving event of a target AV represents a process where the target AV executes

one of its control policies and includes states of the target AV and its nearby vehicle

during a control policy execution process. Specifically, start-time and end-time of a

driving event indicate specific time when a target AV starts and stops executing a

control policy. Therefore, Polsa firstly needs to find driving events in the historical

driving data and then clusters these driving events based on states of a target AV and

its nearby vehicle to obtain different driving event clusters. Lastly, Polsa analyzes

driving data of each driving event cluster and extracts trigger information and the

corresponding control behavior to form a control policy.

4.1.1.1 Driving Event Clustering in Historical Driving Data

As mentioned above, the historical driving data of a target AV usually includes differ-

ent types of driving events. For example, when a target AV drives behind its nearby

vehicle on the same road lane, it will need to choose a deceleration or lane-change ac-

tion to avoid a possible collision when its nearby vehicle suddenly decelerates. Above

control behaviors (deceleration or lane-change) form different driving events. In prac-

tice, states of a target AV and its nearby vehicle in different driving events usually

have different changes, which results in different time durations. For example, a tar-

get AV takes around 5seconds to reduce its driving speed from 60km/h to 30km/h

during a deceleration process but takes only 3seconds to decelerate from 60km/h to

30km/h during a lane change process. Therefore, it is difficult for Polsa to extract
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control policies of a target AV by directly analyzing state information in its historical

driving data. Here Polsa does the following steps on the historical driving data to

obtain driving event clusters and then analyzes driving data of each driving event

cluster to extract control policies:

• Step 1: Polsa calculates position difference and speed difference of a target AV to

determine control behavior type and time duration of each driving event in historical

driving data.

• Step 2: Polsa analyzes position trajectory difference and speed trajectory difference

between a target AV and its nearby vehicle to extract driving event features.

• Step 3: Polsa clusters driving events with the same control behavior based on driving

event features to form different driving event clusters for control policy extraction.

Driving Event Determination For a historical driving dataset of a target AV,

it includes states of both a target AV and its nearby vehicle. Specifically, each state

contains both position information (latitude and longitude) and driving speed infor-

mation. Therefore, given a driving scenario Y with total T time stamps, its driving

data can be mathematically indicated with {y1, ..., yt, ..., yT}, where yt = [pt, vt, p
′
t, v

′
t]

represents states of a target AV and its nearby vehicle at time t ∈ {1, ..., T}. pt ∈ 	2

and p′t ∈ 	2 indicate position information (longitudes and latitudes) of a target AV

and its nearby vehicle. Similarly, vt ∈ 	 and v′t ∈ 	 indicate driving speeds of a

target AV and its nearby vehicle at time t.

As mentioned earlier, a driving event shows a time period when a control policy

is executed and can be treated as fundamental building parts of a driving scenario

(contains one or more driving events). In other words, the historical driving data of

a driving scenario Y can be divided into a number of driving events Ȳ s and these

driving events do not have temporal overlaps with each other in the same driving

scenario. Therefore, a driving event can be described as Ȳ = {ym, ..., yn}, where
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(a) Acceleration. (b) Deceleration. (c) Constant-speed.

(d) Left-lane-change. (e) Right-lane-change. (f) Intersection-turn.

Figure 4.3: Control behavior types of a target AV when one of its control policies is
executed.

Ȳ ⊆ Y and 1 ≤ m ≤ n ≤ T and its time length equals to n − m + 1. Since Polsa

has limited prior knowledge on driving event types, it needs to segment a historical

driving dataset into small pieces and analyze the target AV’s control behavior at each

piece of the historical driving data to extract driving event features.

Based on historical driving data of a target AV, Polsa analyzes possible control

behaviors of a target AV and uses them to segment the historical driving data into

different driving events. Here, a control behavior of a target AV represents its driving

actions when one of its control policies is executed. By analyzing position and speed

information, Polsa divides control behaviors of a target AV into the following types:

Acceleration, Deceleration, Constant-speed, Left-lane-change, Right-lane-change and

Intersection-turn. Figure 4.3 shows these different control behavior types. Red vehicle

and blue vehicle represent a target AV and a nearby vehicle, respectively. We see

that Polsa can generally determine specific control behavior types of a target AV by

checking its speed change Δv and its latitude difference ΔP in one short time period.

Specifically, a control behavior will be classified as Acceleration, Deceleration and

Constant-speed if Δv equals to a positive value, a negative value and zero, respectively.

Besides, Polsa infers whether a target AV has a Left-lane-change, Right-lane-change
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or Intersection-turn based on ΔP . As shown in Figure 4.3(d), Figure 4.3(e) and

Figure 4.3(f), ΔP will become positive and reach around the width of one road lane

when a target AV makes a right lane change. Similarly, ΔP will become negative and

reach around the width of one road lane when the target AV makes a left lane change.

Besides, ΔP will become much larger than the width of one road lane if the target

AV makes an intersection turn. By this way, Polsa can generally divide historical

driving data of a target AV into different driving events by checking Δv and ΔP .

Since Polsa divides historical driving data of a target AV into driving events

based on the above six control behavior types, each control behavior type may still

result in different driving events for a target AV. For example, the target AV in

Figure 4.3(d) makes a right lane change maybe because its nearby vehicle makes a

sudden deceleration and the target AV has to make a left lane change to avoid a

possible collision with its nearby vehicle or maybe because its nearby vehicle drives

too slow and the target AV wants to pass through its nearby vehicle. Therefore, a

control behavior of a target AV may result in many different driving events in the

historical driving dataset and it is necessary for Polsa to cluster these driving events.

Here, we introduce driving event features by considering both temporal and spatial

spaces in one driving event to ensure that Polsa can cluster driving events accurately

for control policy extraction in Section 4.1.1.2.

Driving Event Features As shown in Figure 4.3, position and driving speed in-

formation of a target AV usually change with a certain regularity when a target AV

conducts the same control behavior in different driving events. For example, a target

AV will always have a large speed change when it conducts a heavy deceleration or

will have a large latitude difference if it makes a fast lane change. Besides, a target

AV needs to consider movements of its nearby vehicle when determining its control

behavior to ensure driving safety. For example, a target AV will decelerate or make
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(a) Left-lane-change situation. (b) Right-lane-change situation.

Figure 4.4: Position (latitude and longitude) trajectory differences between a target
AV and its nearby vehicle when speed difference Δv changes from 5km/h to 29km/h
during one left/right lane change process.

a lane change if its nearby vehicle decelerates suddenly. Based on the above analysis,

we take advantage of position and driving speed information of a target AV and its

nearby vehicle and use their position trajectory difference and speed trajectory dif-

ference as driving event features to cluster these driving events. By this way, Polsa

can cluster driving events with the same control behavior type based on these driving

event features. Given historical driving data {ym, ..., yn} of a target AV and its nearby

vehicle in a driving event Ȳ , Polsa calculates their position trajectory difference and

speed trajectory difference as {Δpm, ...,Δpn} and {Δvm, ...,Δvn}, where Δpm equals

to pm − p′m at time m and Δvm equals to vn − v′n at time n.

Here, we take Left-lane-change and right-lane-change situations where a target AV

and its nearby vehicle drive with different constant speeds as examples to show how

their position trajectory difference changes under different driving events. Figure 4.4

shows position trajectory differences (include latitude trajectory difference and lon-

gitude trajectory difference) between a target AV and its nearby vehicle when the

target AV drives with 65km/h and its nearby vehicle drives with 60km/h, 58km/h,

48km/h, 46km/h, 38km/h and 36km/h, respectively. Their corresponding speed d-

ifferences equal to 5km/h, 7km/h, 17km/h, 19km/h, 27km/h and 29km/h. We see
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that latitude difference between the target AV and its nearby vehicle becomes nega-

tive during a left lane change process and positive during a left lane change process.

Specifically, for any two driving events, their position trajectory differences change

more similarly as their speed differences are close to each other. For example, position

trajectory difference with Δv = 5km/h changes more similarly to position trajectory

difference with Δv = 7km/h than position trajectory difference with Δv = 17km/h.

Based on the above analysis, we conclude that position trajectory differences or speed

trajectory differences are not the same for different driving events, which explains why

we select position difference Δp and speed difference Δv as driving event features for

Polsa.

Driving Event Clustering For given historical driving data of a target AV, it in-

cludes many different driving events and these driving events may have different data

lengths. For example, a target AV usually takes longer time to finish a deceleration

process if its deceleration value is small. In other words, driving events even with the

same control behavior type may have different data lengths. Therefore, Polsa may fail

to cluster driving events if it directly compares their position trajectory differences

and speed trajectory differences. Here, we uses the dynamic time warping (DTW)

method to align position trajectory differences and speed trajectory differences of two

driving events Ȳ and Ȳ ′ by considering that the DTW method belongs to a pattern

matching method and has good performance in clustering time series sequences with

different sequence lengths [29]. For driving events Ȳ and Ȳ ′, the DTW method in

Polsa firstly calculates their position trajectory matrix Dp and speed trajectory ma-

trix Dv and then utilizes Dp and Dv to calculate event dissimilarity degree between

Ȳ and Ȳ ′ for driving event clustering.

Given driving event Ȳ with position differences {Δpm, ...,Δpn} and speed differ-

ences {Δvm, ...,Δvn} and driving event Ȳ ′ with position differences {Δpm′ , ...,Δpn′}
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(a) Δv = 7 for Left-lane-change. (b) Δv = 17 for Left-lane-change.

(c) Δv = 27 for Left-lane-change. (d) Δv = 7 for Right-lane-change.

(e) Δv = 17 for Right-lane-change. (f) Δv = 27 for Right-lane-change.

Figure 4.5: Optimal warping paths of position differences in two driving events when
both a target AV and its nearby vehicle drive with constant speeds but different speed
differences Δ during a left/right lane change process.
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and speed differences {Δvm′ , ...,Δvn′}, Polsa calculates position trajectory matrix

Dp ∈ 	(n−m+1)×(n′−m′+1) and speed trajectory matrix Dv ∈ 	(n−m+1)×(n′−m′+1). Here,

position trajectory matrix Dp is defined to represent point-to-point relationships be-

tween position differences {Δpm, ...,Δpn} and position differences {Δpm′ , ...,Δpn′},
where elementDp(i, j) indicates alignment distance between position differences {Δpm,
...,Δpm+i} and position differences {Δpm′ , ...,Δpm′+j}. Similarly, speed trajectory

matrixMv represents point-to-point relationships between speed differences {vm, ..., vn}
and speed differences {Δvm′ , ...,Δvn′}, where elementDv(i, j) indicates alignment dis-

tance between position differences {Δvm, ...,Δvm+i} and position difference {Δvm′ , ...,

Δvm′+j}.
In Polsa, the DTW method calculates position trajectory matrix Dp or speed

trajectory matrix Dv as a cumulative error matrix of position differences or speed

differences. An element in a cumulative error matrix represents total alignment

distance indicating the sum of errors along the optimal warping path. Figure 4.5

shows optimal warping paths when position differences with different speed differ-

ences are aligned with position differences with Δ = 5km/h. For Left-lane-change

cases in Figure 4.5(a), Figure 4.5(b) and Figure 4.5(c), total alignment distances for

Δ = 7km/h, Δ = 17km/h and Δ = 27km/h situations equal to 5.1e+2, 3.5e+4 and

1.7e+5, respectively. For Right-lane-change cases in Figure 4.5(d), Figure 4.5(e)

and Figure 4.5(f), total alignment distances for Δ = 7km/h,Δ = 17km/h and

Δ = 27km/h situations equal to 4.5e+2, 3.6e+4 and 1.7e+5, respectively. We calcu-

late optimal warping paths when position differences with different speed differences

(Δ = 7km/h, Δ = 17km/h and Δ = 27km/h) are aligned with position differ-

ences with Δ = 5km/h. For Left-lane-change cases, total alignment distances for

Δ = 7km/h, Δ = 17km/h and Δ = 27km/h situations equal to 5.1e+2, 3.5e+4

and 1.7e+5, respectively. For Right-lane-change cases, total alignment distances for
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Δ = 7km/h,Δ = 17km/h and Δ = 27km/h situations equal to 4.5e+2, 3.6e+4 and

1.7e+5, respectively. We see that, for both Left-lane-change and Right-lane-change

situations, total alignment distance will become larger as speed difference Δv in-

creases from 7 km/h to 27 km/h. Here, Polsa clusters driving events by calculating

total alignment distances in position differences and speed differences. Specifically,

the DTW method calculates element Dp(i, j) in the position trajectory matrix Dp as

min(Dp(i, j−1), Dp(i−1, j), Dp(i−1, j−1))+rp(i, j) and elementDv(i, j) in the speed

trajectory matrix Dv as min(Dv(i, j−1), Dv(i−1, j), Dv(i−1, j−1))+rv(i, j), where

rp(i, j) represents alignment distance between the ith position difference Δpm+i in

driving event Ȳ and the jth position difference Δpm′+j in driving event Ȳ ′. Similarly,

rv(i, j) represents alignment distance between the ith speed difference Δvm+i in driv-

ing event Ȳ and the jth speed difference Δvm′+j in driving event Ȳ ′. Compared with

speed differences in driving events Ȳ and Ȳ ′, each position difference includes both

longitude position difference and latitude position difference and hence belongs to a

two dimensional data. Here, Polsa calculates rp(i, j) and rv(i, j) through Euclidean

distance and Manhattan distance as follows:

rp(i, j) = ||Δpm+i −Δpm′+j||2 (4.1a)

rv(i, j) = |Δvm+i −Δvm′+j| (4.1b)

where Δpm+i and Δvm+i represent the ith position difference and the ith speed d-

ifference in the driving event Ȳ . Similarly, Δpm′+j and Δvm′+j represent the jth

position difference and the jth speed difference in the driving event Ȳ ′. Based on

position trajectory matrix Dp and speed trajectory matrix Dv, Polsa can calcu-

late driving event dissimilarity degree MȲ→Ȳ ′ between driving events Ȳ and Ȳ ′ as

Dp(n−m,n′−m′)
max(n−m,n′−m′) +

Dv(n−m,n′−m′)
max(n−m,n′−m′) and uses the driving event dissimilarity degree as an

interpretable representation to cluster driving events. For example, for driving events
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Ȳ and Ȳ ′, smaller driving event dissimilarity degree indicates both their position

differences and their speed differences change more similarly.

Based on driving event dissimilarity degree calculation results, Polsa randomly

picks up the k-means clustering method from existing clustering methods to cluster

driving events in the historical driving data of a target AV by considering its good

classification performance in unlabelled data sets and fast converge speed during the

training process [78]. Given a group of total N driving events {Φ1, ...,ΦN} with the

same control behavior type, Polsa partitions these driving events into k clusters with

optimal cluster centers {C1, ..., Ck} and the jth cluster includes one or more driving

events {φCj

1 , ..., φ
Cj

NCj
}, where NCj

represents the number of driving events in cluster

Cj. For the k-means clustering method, the optimal driving event cluster results

should minimize the total sum of dissimilarity degrees between a driving event and

the center in its corresponding each driving event cluster for all N driving events.

However, the k-means clustering method is prone to produce inconsistent and sub-

optimal cluster solutions (hence sub-optimal k) because of large solution spaces and

needs to consider how to initialize centers of these k driving event clusters during its

classification process.

To generate global optimal cluster solutions, we combine a greedy algorithm and

the k-means clustering method together to form a greedy k-means clustering method

for clustering driving events. The basic idea of the greedy k-means clustering method

is to firstly extend the total cluster numbers K into ρK with an enlargement param-

eter and initialize the center of each cluster with a random sample in the training

data. And then, the greedy k-means clustering method eliminates these cluster centers

one-by-one until the total number of cluster centers keeps constant. During a cluster

elimination iteration, the greedy k-means clustering method uses C∗(k) = {C1, ..., Ck}
to indicate optimal cluster centers of total k clusters and C∗(k−1) to indicate optimal
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Algorithm 4: Pseudocode of clustering driving events with the greedy k-means
clustering method
Data: Total N driving events are known in advance and total cluster numbers are initialized

as k
Result: The optimal cluster numbers k∗ and optimal cluster centers C∗(k∗)

1 Enlarge k into ρk and initialize these cluster centers with random samples in the training
data;

2 Assign k∗ as ρk and calculate the sum of driving event dissimilarity degrees δ(k∗)
3 Assign δ(k∗) as a template value Γ

4 while k∗ > k
ρ do

5 k∗ = k∗ − 1
6 Apply the k-means clustering method to calculate δ(k∗)
7 if δ(k∗) < Γ then
8 Γ = δ(k∗)
9 end

10 end
11 Output the number k∗ of optimal clusters with the minimum Γ
12 Apply the k-means clustering method to determine optimal cluster centers C∗(k∗) through

Equation (4.2)

k−1 cluster centers when the k-means clustering method classifies driving events into

total k − 1 clusters. For the given total k clusters, the k-means clustering method

determines optimal cluster centers C∗(k) by minimizing the sum of driving event

dissimilarity degrees δ(k∗) as follows:

argmin
Cj∈C

N∑
i=1

k∑
j=1

ϕΦi,Cj
MΦi→Cj

(4.2)

where MΦi→Cj
represents driving event dissimilarity degrees between the ith driving

event and the center in the cluster Cj; ϕΦi,Cj
is a binary indicator and equals to 1

if Φi is in Cj. Otherwise, ϕΦi,Cj
becomes 0. Based on Equation (4.2), the k-means

clustering method obtains optimal k driving event cluster centers. Algorithm 4 shows

how to cluster driving events through the greedy k-means clustering method. For

the given total N driving events and initial k clusters, the greedy k-means clustering

method firstly enlarge the total number of clusters into ρk=k∗ and calculates the

sum of driving event dissimilarity degrees as C∗(ρk) as a template value Γ (Lines

1−3). And then, the greedy k-means clustering method applies the greedy algorithm
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to decrease the total number of clusters one-by-one and calculates the sum of driving

event dissimilarity degrees. If the sum value is less than the template value Γ, Γ will be

replaced with sum value (Lines 5−9). The greedy k-means clustering method will keep

repeating this process until the clusters with the minimum driving event dissimilarity

degrees are obtained. Under this condition, the greedy k-means clustering methods

can cluster driving events with global optimal results.

4.1.1.2 Control Policy Extraction

For a given driving event cluster c, Polsa firstly needs to know its control behavior

type A a target AV executes and states x = [v, v′, p, p′] of a target AV and its nearby

vehicle which triggers control behavior type A. And then, Polsa combines control

behavior type A and state related function f(x) together to form a control policy

π = [f(x), A] for the driving event cluster c. For example, a target AV will choose

the control behavior type (Deceleration) to avoid a collision with its front nearby

vehicle when the nearby vehicle decelerates and their relevant distance is less than

stop distance dstop. Under this condition, f(x) becomes {Δv′ ≤ δ1 and ||p′−p||2 ≤ δ2}
and A is described as {Deceleration}, where δ1 and δ2 are two threshold values.

To describe state related function f(x) accurately, we define Tc to indicate the

set of time stamps when a driving event happens and introduce a linear regression

model to figure out state related function f(x) which triggers control behavior A in

the driving event cluster c. In our linear regression model, for each state xit with

x1t=v, x
2
t=v

′, x3t=p and x4t=p
′, Polsa estimates its specific value at time-stamp t ∈ Tc

with other three states as follows:

x̂it =
4∑

j=1∧i �=j

αjx
j
t + α0 (4.3)

where α is used to describe the effect of state xjt on state xit at t. Based on Equation
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(4.3), Polsa obtains the estimated states and uses these estimated values and their true

values to calculate the mean square error 1
Tc

∑Tc

t=1(x̂
i
t − xit)

2 in the whole driving event.

For the well trained model with Ri
c, absolute error |x̂it−xit| at time t should be less than

a small threshold value ρi if a driving event in c is triggered. Ri
c represents a set of

states which co-trigger a driving event in c together with state xit and can be an empty

set when only state xit triggers a driving event. In other words, a driving event in c will

happen if the following trigger conditions are satisfied: |∑j∈Ri
c
αjx

j
t + α0 − xit| ≤ ρi.

By this way, we can extract a control policy of a target AV for the driving event

cluster c and describe it as {|∑j∈Ri
c
αjx

j
t + α0 − xit| ≤ ρi;A}.

4.1.2 Optimal Control Policy Determination

In this section, we will discuss how Polsa takes advantage of the extracted control

policies to determine optimal control policies of a target AV under different driving

scenarios. When a target AV drives on the road, it needs to know states of its nearby

vehicle at next several time-stamps so that it can determine which control policy

should be executed to ensure its driving safety. However, it is difficult for a target

AV to know states of its nearby vehicle at next time-stamps by considering irregular

control behaviors of a nearby vehicle. Existing methods [28, 40] just assume that

states of a nearby vehicle always keep constant in the next several time-stamps for

simplicity. For example, they will consider speed of its nearby vehicle constant at

next time stamps, which is contrary to real driving situations and result in the target

AV’s wrong control policy selection.

To handle this problem, we develop two different driving state prediction models

for Polsa. The first driving state prediction model works through a Support Vector

Machine and a Bayesian filter (SBF) and the other driving state prediction model

predicts driving state based on a long short term memory (LSTM) based recurrent
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neural network. For the SBF based driving state prediction model, it firstly uses a

Support Vector Machine to predict the possibility of being a certain driving state

for a nearby vehicle based on driving states of the ego AV and its nearby vehicle.

and then it applies a Bayesian filter to smooth the probability outputs to improve

driving state prediction accuracy. For the LSTM-neural network based driving state

prediction model, it inputs driving state relevant information of the ego AV and its

nearby vehicle into a LSTM-neural network to predict driving state of the nearby

vehicle. We will explain details of the SBF based driving state prediction model and

the LSTM-neural network based driving state prediction model in Section 4.1.2.1.

4.1.2.1 Driving State Prediction

Here, we propose the SBF based driving state prediction model and the LSTM based

driving state prediction model for Polsa to predict driving state of a nearby vehicle.

SBF based Driving State Prediction Model: For driving events in a driving

event cluster, the SBF based driving state prediction model uses position and driving

speed related information of a target AV and its nearby vehicle to predict driving s-

tate (Acceleration, Deceleration, Constant-speed, Left-lane-change, Right-lane-change,

or Intersection-turn) of a nearby vehicle at next time stamps. Specifically, Support

Vector Machine uses a feature map to transform position and driving speed related in-

formation from a low dimension to a high dimension and finds an optimal hyper-plane

which can maximize the separation margin between samples in two classes. For driv-

ing events with totalM samples {(x1, o1), ..., (xM , oM)}, observation om represents one

driving state type inO = {Acceleration,Deceleration,Constant-speed,Left-lane-change,
Right-lane-change, Intersection-turn} and m ∈ {1, ...,M}. Support Vector Machine

formulates the following constrained optimization problem to find an optimal hyper-
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Figure 4.6: The SBF based driving state prediction model with a Support Vector
Machine and a Bayesian filter.

plane:

argmin
W

1

2
W TW +

C

M

M∑
m=1

ηm (4.4a)

s.t. 1− om(x
T
mW + b) ≥ ηm ∧ ηm ≥ 0 (4.4b)

where W represents the normal vector to a hyperplane and ηm represents a nonnega-

tive variable changing between 0 and 1− om(xTmW + b); C indicates a parameter used

to control the trade-off between maximizing the margin and minimizing the train-

ing error. Specifically, its small value tends to emphasize the margin while ignoring

the outliers in the training data but a large value tends to overfit the training data.

Based on Equation (5.7), Polsa obtains the optimal normal vector W ∗ which forms

an optimal hyperplane to classify any two driving states.

Figure 4.6 how the SBF based driving state prediction model predicts driving

state of a nearby vehicle based on SBF. Support Vector Machine chooses position

and driving speed relevant features to form a feature vector and uses this feature

vector as the input xm of Support Vector Machine: position p′m and driving speed

v′m of the nearby vehicle, position difference pm − p′m and driving speed difference

vm − v′m of the target AV and the nearby vehicle and their first derivatives ∂(pm−p′m)
∂t

and ∂(vm−v′m)
∂t

. Here, we choose these features mainly because patterns of these features
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are remarkably different for each driving state type. Based on feature vectors in total

m time-stamps, Support Vector Machine outputs the probability of an input xm

belonging to driving state om.

As shown in Figure 4.6, the driving state prediction model uses a Bayesian filter

to smooth probability output P (om|xm) from Support Vector Machine by fusing a

sequence of observed featured factors {x1, ..., xm} together and the final probability

output P (om|x1, ..., xm) that the nearby AV’s driving state belongs to om can be

smoothed as:

P (om|x1, ..., xm) = P (om|xm)
∑

om∈O

P (om|om−1)P (om−1|x1, ..., xm−1) (4.5)

where xm represents feature vector at time m and om indicates driving state at time

m; P (om|om−1) represents state transition probability from om−1 to om and can be

learned during the training process. To calculate these state transition probabilities,

we firstly count the total number ST (oi, oj) of transitions from driving state oi to

driving state oj in the training data and then normalize these counted numbers as

follows:

P (oj|oi) = ST (oi, oj)∑
ok∈O ST (oi, oj)

(4.6)

based on Bayesian filter and Support Vector Machine, the driving state prediction

model can predict driving state of a nearby vehicle. And then, Polsa will infer position

and driving speed of the nearby vehicle based on the predicted driving state and apply

them in its optimal control policy determination process.

LSTM-Neural Network based Driving State Prediction Model: Though the

SBF based driving state prediction model can predict driving state of a nearby vehicle

in the next few time stamps, it face an information theoretically infeasible problem in

practice by considering that Bayesian filter needs specific prior knowledge of a nearby

vehicle to tune parameters during the model training process. As one type of deep

neural networks, the long short term memory (LSTM) based recurrent neural network
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Figure 4.7: The architecture of LSTM-neural network based driving state prediction
model.

has been widely used in learning temporal dynamics and analyzing the sequential

structure in the time-series data [62]. Here, we also develop a LSTM-neural network

based driving state prediction model to predict driving state of a nearby vehicle to

avoid the above problems and compared their driving state prediction performance

between SBF and LSTM-neural network in Section 5.2.

For the LSTM-neural network based driving state prediction model, it inputs

position and driving speed relevant information of the ego AV and its nearby vehi-

cle into a LSTM-neural network to predict driving state of the nearby AV at next

time-stamps. The LSTM-NN based driving state prediction model works by putting

convolutional layers and LSTM layers as its front layers and a connected layer as its

end layer. Specifically, convolutional layers are used to extract useful information

from its input data and LSTM layers help to estimate SOH based on the extracted

useful information from convolutional layers.

Figure 4.7 shows the architecture of the LSTM-neural network based driving s-

tate prediction model. The LSTM based neural network includes an input layer,

two convolutional layers, a LSTM layer and a fully connected layer. For the L-

STM based neural network, the input layer inputs [ym−L+1; ym−L+2; ...; ym] at time

stamp m and the fully connected layer outputs [v′(m + 1), p′(m + 1)], where L rep-

resents the length of inputs and affects driving state prediction performance of the
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LSTM-neural network based driving state prediction model. ym−L+1 indicates val-

ues of v, v′, p, p′ and ˙v − v′ at time stamp m − L + 1 and can be described as

[vm−L+1, v
′
m−L+1, pm−L+1, p

′
m−L+1, vm−L+1−v′

m−L+1, pm−L+1−p′
m−L+1,Δvt−L+1,Δpt−L+1].

As shown in Figure 4.7, input data firstly passes through two convolutional layers for

useful information extraction and then the extracted useful information will be sent

into the LSTM layer to conduct regression processes. Lastly, the fully connected layer

will convert outputs from the LSTM layer into a final driving state prediction result

(position and driving speed).

Input length L affects driving state prediction accuracy of the LSTM-neural net-

work based driving state prediction model because an input with a small input length

may lead to information loss of the entire time-series data but an input with a

large input length may result in high computation load. We apply a False Near-

est Neighbors (FNN) method [13] to determine optimal input length L∗. FNN is an

approach of optimizing dimensions of time-series data by assuming that the optimal

input length can minimize the percentage of false nearest neighbors for an input.

Here, we analyze how the percentage of false nearest neighbors for an input changes

as input length L increases to determine the optimal input length. For the input

Y m = [ym−L+1, ym−L+2, ..., ym] and its nearest neighbor Y k = [yk−L+1, yk−L+2, ..., yk],

the FNN method calculates Euclidean distance to indicate their distance as follows:

DL(m, k) =
L∑

j=1

||ym+j−1 − yk+j−1|| (4.7)

where D(m, k) indicates Euclidean distance between Xm and Xk. When input length

changes from L to L+1, their Euclidean distance DL+1(m, k) will become DL(m, k)+

||ym+L − yk+L||. Based on the above distances under different length changes, the

FNN method checks whether Xm is a false nearest neighbor of Xk by comparing

|DL+1(m,k)−DL(m,k)|
DL(m,k)

and a threshold τD. X
m will be detected as a false nearest neighbor
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of input Xk if |DL+1(m,k)−DL(m,k)|
DL(m,k)

is larger than τD. Otherwise, it will be considered as

its true nearest neighbor. By counting the number of false and true nearest neighbors

under different input lengths, the FNN method calculates corresponding percentages

of false nearest neighbors and determines the optimal input length L∗. And then, the

input [ym−L∗+1; ym−L∗+2; ...; ym] at time stamp m will be sent into the LSTM-neural

network based driving state model to predict driving state of the nearby vehicle at

next time stamp.

4.1.2.2 Optimal Control Policy Determination

For a driving event, a target AV measures current state of its nearby vehicle to predict

its states at next time stamps so that the target AV can select an optimal control

policy to ensure its driving safety. Based on Section 4.1.1, Polsa extracts control

policies Π = {π1, ..., πMA
} of a target AV, where MA represents the total number of

extracted control policies for the control behavior type A. Given state y = [p, v] of a

target AV and y′ = [p′, v′] of its nearby vehicle, we propose an optimal control policy

determination method for Polsa to select an optimal control policy. Specifically, the

proposed optimal control policy determination method determines an optimal control

policy by considering states of both the target AV and its nearby vehicle in the near

future. Therefore, the goal of the proposed optimal control policy determination

method is to find an optimal control policy π∗ which maximizes total rewards over its

time period T and this optimal control policy determination problem can be described

as follows:

argmax
πi∈{π1,...,πMA

}

T∑
t=1

γtR(yt, y
′
t)P (yt, y

′
t|πi) (4.8)

where γ represents a reward discount rate; R(yt, y
′
t) is defined as a reward function

representing the reward when the state of a target AV is yt and state of its nearby

vehicle is y′t at time t and can be calculated as eμ1||pt−p′t||+μ2|vt−v′t|, where μ1 is a
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positive constant and μ2 is a negative constant. Based on the reward function, Polsa

will obtain a high reward if position difference between the target AV and its nearby

vehicle becomes large or their speed difference becomes small.

P (yt, y
′
t|πi) in Equation (4.8) represents the probability of state of the target AV

becoming yt and state of its nearby vehicle becoming y′t when the target AV conducts

control policy πi at time t. Since a target AV and its nearby vehicle are independent

on each other, state of the target AV or its nearby vehicle at next time stamp only

depends on its current state and control policy. Therefore, the probability P (yt, y
′
t|πi)

can be calculated as P (yt|πi)P (y′t), where P (yt|πi) and P (y′t) represent the probability
of state of the target AV becoming yt under control policy πi and the probability

of state of its nearby vehicle becoming y′t. For P (yt|πi), Polsa can calculate it by

considering previous state of the target AV and its executed control policy πi. For

P (y′t), Polsa uses the proposed driving state prediction model to obtain the probability

of nearby vehicle’s state becoming y′t at time t. By this way, Polsa calculates the

cumulative rewards in the given time period T for different control policies and selects

optimal control policy π∗ which can maximizes cumulative rewards. Since Polsa uses

the safety criteria to check optimal control policy π∗ before executing it on a target

AV to ensure that the target AV always drives at a safe region.

4.2 Performance Evaluation

We implemented Polsa by running MatLab on one laptop (Intel i5 CPU and 16

gigabyte memory) and used driving datasets from Baidu Apollo simulation platform

[4], by running two existing popular autonomous driving control methods [28, 40] to

extract control policies and test optimal control policy determination performance

of Polsa. As indicated in [26], Apollo simulation platform is developed by Baidu

company to simulate autonomous driving environments based on real-world traffic
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driving data and has good control policy testing performance. Specifically, we firstly

compared control policies extracted by Polsa and real control policies of two existing

autonomous driving control methods to test control policy extraction performance

of Polsa and then compared optimal control policy determination results to evaluate

optimal control policy determination performance of Polsa. For simplicity, we use

ACC, DEC, COS, LLC, RLC, and INT to represent Acceleration, Deceleration,

Constant-speed, Left-lane-change, Right-lane-change and Intersection-turn.

4.2.1 Experiment Settings

Comparison Methods: We implemented two existing popular autonomous driving

control methods into Baidu Apollo simulation platform to generate driving scenario

training datasets, which are used by Polsa to extract control policies for optimal

control policy determination result comparisons. One method is a designed-policy

based driving control system (DPDS) [28] and the other method is a reinforcement

learning based driving control system (RLDS) [40]. DPDS adjusts control behaviors

of a target AV by firstly measuring its states and its nearby vehicle states and then

choosing control policies among the designed control policies to ensure driving safety

of a target AV. DPDP adopts the following designed control policy types and uses

them to control a target AV: lane-maintain, right/left lane change, turn left, turn

right, go straight, and yield at an intersection. RLDS builds a reward function with

driving comfort consideration and uses a reinforcement learning method to determine

a control policy among the designed control policies for a target AV by maximizing its

cumulative rewards. For RLDS, its designed control policies include speed maintain,

lane main, accelerate, hard accelerate, decelerate, hard decelerate, right lane change

and left lane change. Compared with Polsa which considers time-varying driving state

of a nearby vehicle and extracts control policies from driving scenario datasets, DPDS
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and RLDS assume that states of a nearby AV keep constant in the next time-stamps

and control policies of a target AV are known in advance.

Driving Scenario Dataset: In the experiment, we used three driving scenario

datasets (two driving scenario training datasets and a driving scenario testing dataset)

from Baidu Apollo AV simulation platform for performance evaluation. In this simu-

lation platform, we designed two driving scenario training datasets (each dataset in-

cludes total 218 driving scenarios) for control policy extraction and a driving scenario

testing dataset (total 200 driving scenarios) for optimal control policy determination

performance evaluation. For each driving scenario training dataset, it simulates how

a target AV with DPDS or RLDS executes control behaviors under different driving

scenarios and each driving scenario includes a target AV and its nearby vehicle driving

on the same road. Specifically, for driving scenarios with the same control behavior

type, both the target AV and its nearby vehicle may drive with variable or constant

speeds and have different initial relevant positions. For the driving scenario testing

dataset, it contains different driving scenarios to test whether optimal control policies

can ensure driving safety of a target AV.

Evaluation Aspects: In this section, we evaluated Polsa’s performance in extract-

ing control policies and determining optimal control policies. For the control policy

extraction part, we used Polsa to extract control policies of DPDS and RLDS based

on two driving scenario training datasets and showed its control policy extraction

results in terms of policy time duration distributions and control policy extraction

accuracy. Here, control policy extraction accuracy represents the rate of control poli-

cies whose trigger conditions and control behaviors are correctly extracted over all

control policies under different position and driving speed differences. We also tested

driving state prediction accuracy of Polsa and driving state prediction accuracy is

calculated as the rate of driving scenarios where driving state of a nearby vehicle is

correctly predicted over all driving scenarios. For the optimal control policy deter-
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Figure 4.8: Number distributions of driving events with the same control behavior
type and numbers of driving event clusters for each control behavior type in driving
scenario training datasets of DPDS and RLDS.

mination evaluation part, we firstly used DPDS, RLDS and Polsa to determine their

optimal control polices for driving scenarios in the driving scenario testing dataset

and then checked whether the distance between the target AV and its nearby vehicle

is larger than the defined safety criteria in Figure 5.4 to calculate optimal control

policy success rate. Here, optimal control policy success rate indicates the rate of

driving scenarios where a target AV executes the suggested optimal control policy

and its position relevant to its nearby vehicle is always larger than safety criteria

among all driving scenarios.

4.2.2 Evaluation Results

Here, we firstly used Polsa to extract control policies of DPDS and RLDS based on

two driving scenario training datasets. And then, we applied Polsa, DPDS and RLDS

to determine optimal control policies for each driving scenario in the driving scenario

testing dataset. Lastly, we calculated optimal control policy success rates of Polsa,

DPDS and RLDS for optimal control policy determination performance evaluation.
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(b) Comparisons for DEC.
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(c) Comparisons for COS.
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(d) Comparisons for LLC.
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(e) Comparisons for RLC.
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(f) Comparisons for INT.

Figure 4.9: Control policy extraction accuracies of Polsa on DPDS’s control policies
with control behaviors as following types: (a) ACC, (b) DEC, (c) COS, (d) LLC, (e)
RLC and (f) INT.

4.2.2.1 Driving Event Clustering Results

To extract control policies of DPDS or RLDS based on its driving scenario training

dataset, Polsa firstly needs to cluster driving events by calculating their event dissimi-

larity degrees and then compares these event dissimilarity degrees with a threshold to

determine which driving event cluster a driving event belongs to. Figure 4.8(a) shows

distributions of driving event numbers with the same control behavior type in driving

scenario training datasets of DPDS and RLDS, respectively. Figure 4.8(b) compares

the number of driving event clusters for each control behavior type. As shown in Fig-
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ure 4.8(a), Polsa clusters driving events into total six different types, which matches

the number of control behavior types defined in Section 4.1.1.1. We see that driving

events with ACC, DEC, and COS domonate the driving scenario training dataset

for DPDS and RLDS. This is mainly because a target AV meets driving events (i.e.,

ACC, DEC, and COS) more frequently than other driving events (i.e., LLC, RLC and

INT) when driving on the road. As shown in Figure 4.8(b), we see that the number

of driving event clusters for COS is larger than numbers of driving event clusters for

other control behavior types. This is because, compared with other control behavior

types, both latitude and longitude position differences between a target AV and its

nearby vehicle change more dynamically, which requires more driving event clusters

to describe COS accurately. Based on driving event clustering results, Polsa analyzes

the control behavior of the target AV and driving states of the target AV and its

nearby vehicle to form a control policy for each driving event cluster. Therefore, the

number of control policies for each control behavior type should equal to the number

of its corresponding driving event clusters.

4.2.2.2 Control Policy Extraction Results

Based on driving event clustering results, Polsa analyzes control behavior of a target

AV and its trigger condition to extract one control policy for each driving event

cluster. Based on Figure 4.8(b), Polsa extracts total 66 control policies from the

driving scenario training dataset of DPDS and total 60 control policies from the

driving scenario training dataset of DPDS. For DPDS, numbers of control policies

for ACC, DEC, COS, LLC, RLC and INT equal to 9, 9, 21, 9, 9 and 9. For RLDS,

numbers of control policies for ACC, DEC, COS, LLC, RLC and INT equal to 6, 6, 30,

6, 6 and 6. Based on the extracted control policies, we did statistical analysis on time

durations of executing a control policy and find that time durations of many control

77



policies are less than 10seconds. In other words, for many control policies, it takes

less than 10seconds to finish its execution process, which explains why a target AV

needs to predict driving state of its nearby vehicle at next time stamps so that it can

make a correct control behavior. Specifically, around 80% of control behaviors like

LLC and RLC are accomplished within less than 5seconds. This is because position

difference between a target AV and its nearby vehicle changes greatly and the target

AV needs to finish a whole lane change process quickly to ensure its driving safety.

Here, we calculated control policy extraction accuracies of Polsa on DPDS’s control

policies under different Δvs and Δps and showed control policy extraction accuracies

in Figure 4.9. Figure 4.9(a), Figure 4.9(b), Figure 4.9(c), Figure 4.9(d), Figure 4.9(e)

and Figure 4.9(f) show extraction accuracies of Polsa on control policies with control

behavior as ACC, DEC, COS, LLC, RLC and INT, respectively. We see that both Δp

and Δv affect control policy extraction accuracies of Polsa on all control policies with

different control behaviors. Specifically, Polsa keeps high control policy extraction

accuracy (near to 100%) when Δp is less than 30m but its control policy extraction

accuracy reduces as Δp increases from 30m to 60m. Besides, Polsa has lower control

policy as Δv increases from 0 to 30km/h. Here, large Δp or Δv reduces Polsa’s

control policy extraction accuracy because driving scenario training datasets contain

less driving events with large Δp or Δv for extracting control policies, which results

in low control policy extraction accuracy.

We also used Polsa to extract control policies of RLDS and showed its control

policy extraction accuracies under different Δvs and Δps in Figure 4.10. Similar to

the DPDS situation, Δp and Δv also affect control policy extraction accuracies of

Polsa in the RLDS situation. Specifically, control policy extraction accuracy of Polsa

firstly keeps stable and then decreases as Δp increases from 0 to 60m. Besides, control

policy extraction accuracy of Polsa generally becomes lower as Δv increases from 0 to

30km/h. Compared with the DPDS situation, Polsa extracts control policies of RLDS

78



0

0.2

0.4

0.6

0.8

1

(0,10] (10,20] (20,30] (30,40] (40,50] (50,60]

E
x
tr

ac
ti

o
n
 a

cc
u
ra

cy

Position difference Δp (m)
Δv=(0,10] Δv=(10,20] Δv=(20,30]
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0

0.2

0.4

0.6

0.8

1

(0,10] (10,20] (20,30] (30,40] (40,50] (50,60]

E
x

tr
ac

ti
o

n
 a

cc
u

ra
cy

Position difference Δp (m)
Δv=(0,10] Δv=(10,20] Δv=(20,30]

(b) Comparisons for DEC.
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(d) Comparisons for LLC.
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(e) Comparisons for RLC.
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Figure 4.10: Control policy extraction accuracies of Polsa on RLDS’s control policies
with control behaviors as following types: (a) ACC, (b) DEC, (c) COS, (d) LLC, (e)
RLC and (f) INT.

less accurately when Δp is larger than 30m. This is mainly because RLDS considers

driving comfort with a high priority and always tries to avoid large deceleration or

acceleration actions when making control policies for a target AV, which results in

less chances for a target AV to execute control behaviors (e.g., ACC, DEC, LLC and

RLC) and hence less driving events with larger Δp in the training dataset. Based

on above analysis, we conclude that Polsa has acceptable control policy extraction

accuracies on both DPDS and RLDS and can be used to extract control policies of a

target AV based on their historical driving data.
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Figure 4.11: Driving state prediction accuracy comparisons on ACC, DEC, COS,
LLC, RLC and INT as time period increases from 1 to 5seconds.

4.2.2.3 Driving State Prediction

Based on driving event clustering results for each control policy type, Polsa firstly

trained the SBF based driving state prediction model [45] (SBF) and the LSTM-

neural network based driving state prediction model (LSTM) with 70% samples in

the driving scenario training dataset and then used them to predict driving state of

a nearby vehicle at the next time stamp (i.e., 1 second). Here, we compared the

predicted driving states and real driving states to test their driving state prediction

accuracy performance. For control behavior types (i.e., ACC, DEC, COS, LLC, RLC

and INT), average driving state prediction accuracies of SBF equal to (88%, 87%,

96%, 81%, 79%, 92%) while average driving state prediction accuracies of LSTM

equal to (94%, 92%, 97%, 84%, 83%, 87%). Here, LSTM has higher driving state

prediction accuracy than SBF mainly because LSTM has no information theoretically

infeasible problems during the model training process.

Here, we also used SBF and LSTM to predict driving states of a nearby vehicle

when time period increases from 1 to 5 seconds. Figure 4.11 shows driving state

prediction accuracy comparisons between SBF and LSTM on different control be-

havior types. Overall, LSTM has higher driving state prediction accuracy than SBF

as time period increases. Therefore, we applies LSTM into Polsa and Polsa applies
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its driving state prediction results to determine optimal control policies. Specifically,

for both SBF and LSTM, their driving state prediction accuracies on all six control

behavior types firstly decrease greatly and then gradually as time period increases.

This is because large time period usually results in less observation validations during

driving state prediction processes and state prediction processes with less observation

validations will reduce driving state prediction accuracy for SBF and LSTM.

4.2.2.4 Optimal Control Policy Determination

For each driving event in the driving scenario testing dataset, we applied Polsa,

DPDS and RLDS to determine their own optimal control policies and then used the

developed safety criteria to check whether their optimal control policies will guarantee

driving safety of the target AV. Figure 4.12 shows optimal control policy success rate

comparisons between Polsa, DPDS and RLDS. For Polsa, its optimal control policy

success rates on all six control behavior types are more than 80% while values of

DPDS are (67%, 68%, 73%, 67%, 64%, 62%) and values of RLDS are (62%, 64%,

74%, 71%, 69%, 64%). We see that Polsa has higher optimal control policy success

rate than DPDS and RLDS. This is mainly because Polsa predicts driving state of a

nearby vehicle and applies the driving state prediction result during its optimal control

policy determination process to determine optimal control policies for a target AV.

The above analysis result shows that Polsa can determine optimal control policies

with high optimal control policy success rate.

4.2.2.5 Computational Time analysis

We also tested computational time of Polsa when determining optimal control policies

for different numbers of driving events and made computational time comparisons

between Polsa, DPDS and RLDS in Figure 4.13. We see that both Polsa, DPDS
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Figure 4.12: Optimal control policy success rate comparisons among Polsa, DPDS
and RLDS.
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and RLDS have higher computational time

as the number of driving events increases

from 1 to 10. Specifically, their computation

time equal to 0.096second, 0.067second and

0.083second as the number of driving events

becomes to 5. Here, Polsa has the high-

est computation time than DPDS and RLDS

mainly because Polsa takes time to predict driving state of the nearby vehicle for

determining optimal control policies. The maximum computation time of Polsa is

still less than 0.1second and it is small enough for a target AV to execute control

policies to ensure driving safety.

4.3 Related Work

Methods have been proposed to analyze safety features of AVs to ensure their driving

safety. [16, 18, 28, 61, 71] try to keep developing new control strategies to control

AV’s control behaviors at different driving scenarios so that a target AV can drive

safely under these driving scenarios. For example, Rosolia [61] developed a nonlinear
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control approach to generate a collision-free trajectory for a target AV so that a target

AV has the ability of avoiding obstacles when driving on the highway. Chen [16]

developed a fuzzy control system which adjusts driving direction and driving speed

of a target AV in real time with traffic condition consideration to ensure driving

safety. Tian [71] proposed a decision making algorithm which models multi vehicles

driving in a roundabout intersection situation with game theory and helps a target

AV decide whether it should enter and cross the intersection. Galceran [28] proposed

an integrated behavior inference and decision-making approach which models vehicle

behavior of a target AV and determines a set of control behaviors for a target AV with

considering control behavior of its nearby vehicle to avoid possible collisions with its

nearby vehicle. Chen [18] proposed a neural network based control decision-making

system which uses a neural network to learn driving behavior of a human driver

and make control decisions based on its trained neural network to avoid possible

collisions. Though these methods help to ensure driving safety of a target AV under

several specific driving scenarios, they may fail to work for other driving scenarios. In

other words, the total number of these specific driving scenarios are limited and these

specific driving scenarios cannot cover all possible driving scenarios in public roads

by considering highly complex driving environments in practice. Besides, several AV

companies develop their own control policies for their AVs and these control policies

are usually not open for the public, which makes it difficult to analyze their control

policies for further improvement. To handle this problem, we built a control policy

extraction method to extract control policies of an AV from its historical driving data.

Methods [31, 32, 40] try to test driving safety performance of control policies in an

AV through driving simulation or road experiments. For example, Jha [32] designed

an AV fault injection simulator to test its control policies by injecting fault sensor

information into a target AV and simulating how a target AV responses based on

its control policies. These methods assume that the state of a nearby vehicle always
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keeps constant in one short time period, which makes their testing results less rea-

sonable in practice. Road experiments can better test driving safety performance of

control policies in a target AV and Hunger [31] developed a driving scenario formal-

ization method to test control policies under different driving scenarios during road

experiments. However, existing methods only check whether a target AV with control

policies will fail to work under a certain driving scenario but it is difficult for them to

figure out which control policy can be selected to ensure driving safety of the target

AV under a certain driving scenario. To handle this problem, we designed an optimal

control policy determination method to determine an optimal control policy from the

extracted control policies.
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Chapter 5

Multi-AV Control Decision Making

System

5.1 System Design

We present the architecture of MADM in Figure 5.1. MADM consists of two ma-

jor parts: the policy formation method and the multi-AV control decision making

method. The policy formation method combines imitation learning and reinforce-

ment learning together to form policies to learn driving behaviors of an expert based

on the expert driving data. In the multi-AV control decision making part, MADM

firstly uses a multi-agent reinforcement learning model to adjust the learned policy

of each individual AV from the policy formation method to ensure that MADM can

make control decisions for multiple AVs simultaneously. Besides, based on driving

states of each individual AV, MADM forms its backup policy and applies them during

the decision making process to guarantee driving safety of each individual AV. Lastly,

MADM sends its control decisions to multiple AVs and each individual AV will drive

by following its control decision to ensure driving safety.
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Figure 5.1: The architecture of MADM for making control decisions in multi-AV
coexistence situations.

5.1.1 Imitation and reinforcement learning based Policy For-

mation

An AV contains several subsystems (e.g., sensor measurement system, intelligent deci-

sion making system and decision execution system). These subsystems firstly measure

the real-time driving environment to make control decisions based on its policies and

then execute these control decisions to obtain fully autonomous driving functions.

Manually developing policies for an AV and testing the developed policies in a real

driving environment consume huge time and any a poor control decision may cause

physical vehicle damages. Existing RL based control decision making methods have

low efficiency in forming policies and may even face policy convergence problems be-

cause of a huge driving state space. The above two limitations motivate us to take

the advantage of imitation learning for the policy formation.

For the imitation learning, it forms policies by learning driving behaviors of an

expert based on the expert’s driving data and achieves a similar driving performance

as the expert. In practice, the expert driving data only covers a limited number of

different driving situations. Under this situation, the learned policies from imitation

learning will fail to work if the AV drives in driving situations, which are not included
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Figure 5.2: The necessary combination of imitation learning and reinforcement learn-
ing.

in the expert’s driving data. Figure 5.2 shows an example where policies of imitation

learning fail to ensure driving safety of an AV during the decision making process.

The green dot line indicates one expert driving trajectory sample and the red dot

line indicates the trajectory when the AV follows the learned policies at a certain

driving situation. We see that the AV drives away from the road centerline as it

keeps following the learned policies, which means that the learned policies fail to

make correct control decisions to prevent the AV from driving away from the road

centerline when the AV is in such a situation (indicated with red line). Therefore,

the policies from the imitation learning has the sub-optimal policy formation problem

and need to be improved to ensure these policies work on different driving situations.

Based on the above analysis, we take the advantage of both imitation learning and

reinforcement learning and combine them together into MADM to efficiently form

policies for an individual AV based on the expert driving data. Specifically, the

imitation learning specifies state and action spaces which are worth exploring firstly

by reinforcement learning so that policies working on all possible driving situations

can be formed efficiently.

In the proposed policy formation method, MADMmodels an AV as {S;A; πθ,μ; r; γ}.
Here, S indicates the driving state space of an AV; A represents its action space (i.e.,

control decisions); πθ,μ indicates AV’s policy used for determining action a at state

s; r : s × a → r indicates the reward when an AV takes action a at state s; γ is a
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discount reward factor and changes in [0, 1]. MADM describes driving behaviors of

an expert with πE and the expert driving data with a sequence of state-action pairs

{< s1, a1 >,< s2, a2 >, ..., < sT , aT >}, where < s1, a1 > indicates a state-action pair

and shows driving state and driving action at a time-stamp. Based on the expert

driving data, MADM firstly calculates driving state distribution as follows:

pπE
(s) =

1

T

T∑
t=1

δtπE
(s) (5.1)

where T indicates the total number of state-action pairs in the expert driving data

and pπE
(s) indicates the average probability of driving state being s when the driving

behavior of an expert follows πE. δ
t
πE
(s) indicates whether driving state equals to s

at time t. δtπE
(s) equals to 1 if driving state equals to s at time t. Otherwise, δtπE

(s)

equals to 0. For any two pairs of state-actions (si, ai) and (sj, aj) with 0 ≤ i, j ≤ T , a

loss function L(ai, aj) in imitation learning [20] is introduced to indicate the difference

between these two state-action pairs and defined as |si − sj|2 + η|ai − aj|2, where η
is used to balance the effects of driving state difference |si − sj|2 and driving action

difference |ai − aj|2 on L(ai, aj).

Based on all state-action pairs in the expert driving data, MADM forms a policy

so that the policy can map driving state s to driving action a to make control deci-

sions for an AV. Here, MADM describes the policy πθ,μ of an AV with parameters

θ and μ, where θ and μ are used to indicate parameters in an action network and a

reward network. MADM obtains parameters θ and μ by considering both expected

cumulative rewards and loss function values between the predicted driving actions

and the expert driving actions as follows:

πθ,μ = argmax
θ,μ

N∑
i=1

Ti∑
j=1

(R
πθ,μ(s

j)
i − βLi(πθ,μ(s

j), aj)) (5.2)
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where N denotes the total number of driving trajectories in the expert driving data

and Ti indicates the total number of state-action pairs in the ith driving trajecto-

ry; sj indicates the jth driving state in a driving trajectory and follows the expert

driving state distribution pπE
during the training process. For the ith driving tra-

jectory, πθ,μ(s
j) indicates driving action determined by πθ,μ(s

j) at driving state sj;

R
πθ,μ(s

j)
i represents expected cumulative reward MADM receive will when selecting

driving action πθ,μ(s
j) at driving state sj in reinforcement learning and equals to

E
∑∞

m=0 γ
mri(s

t+m, at+m);
∑Ti

j=1 Li(πθ,μ(s
j), aj) indicates the sum of loss function val-

ues in imitation learning. Here, we use the parameter β to balance imitation learning

and reinforcement learning during the policy formalization process.

Solving Equation (5.2) can be interpreted as combining reinforcement learning

and imitation learning together and then running them simultaneously. During the

policy formation process, R
πθ,μ(s

j)
i helps to converge the policy to achieve as many

rewards as possible. Besides,
∑Ti

j=1 Li(πθ,μ(s
j), aj) encourages the policy to make

control decisions, which are the same as driving behaviors of the expert. π∗
θ,μ indicates

the optimal policy in Equation (5.2) when MADM is trained with total N driving

trajectories. MADM forms policies based on expert driving data and considers loss

functions during the policy formation process, which ensures π∗
θ,μ performs as good

driving behaviors of the expert at different driving situations and can be formed

efficiently.

5.1.2 Multi-AV Optimal Policy Adjustment

For the multi-AV coexistence situation, these individual AVs belong to a compet-

itive and cooperative relationship. Here, the competitive relationship means that

each individual AV tries to finish its own driving trip successfully and safely, which

is considered as a local task in MADM. Similarly, the cooperative relationship indi-
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cates that these individual AVs on the same road need to avoid unexpected driving

behaviors (e.g., sudden stop, hard brake and sharp turn) during the driving process

to provide a safe driving environment so that there exist no collisions between AVs,

which forms a global task in MADM. Therefore, MADM needs to adjust the learned

policies of each individual AV so that these adjusted policies consider both local and

global tasks during the decision making process.

5.1.2.1 System modeling in multiple-AV coexistence situations

For an AV, its policy πθ,μ can be obtained through imitation and reinforcement learn-

ing based policy formation method in Section 5.1.1. For the multiple AV coexistence

situation, MADM considers multiple AVs as a dynamic system and models such a

dynamic system as {N ′;Si;Ai; πθi,μi
; ri; γi} with i ∈ [1, N ′], where N ′ indicates the

total number of multiple AVs; Si, Ai, πθi,μi
and ri represent driving state space, driv-

ing action space, policy and reward of the ith AV. Here, MADM uses the multi-agent

reinforcement learning method to update the learned policy of each individual AV for

making multi-AV control decisions. In the multi-agent reinforcement learning method,

the learned policies of multiple AVs are indicated as {πθ1,μ1 ; πθ2,,μ2 ; ...; πθN′ ,μN′} with

parameters {< θ1, μ1 >;< θ2, μ2 >; ...;< θN ′ , μN ′ >}.

5.1.2.2 Centralized Multi-AV Control Decision Learning with Decentral-

ized Execution

For the multi-AV coexistence situation, MADM is considered as a centralized con-

troller and takes the joint states of multiple AVs as its inputs to output a multi-AV

control decision (i.e., control decision for each individual AV) at each time-stamp.

And then, the multi-AV control decision will be executed on individual AVs in a de-

centralized way and each AV will execute its corresponding control decision individu-

ally. By this way, MADM belongs to a centralized decision learning but decentralized
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Figure 5.3: Policy adjustment process for multiple AVs in MADM.

execution system. Such a centralized decision learning with decentralized execution

function is important since it not only allows MADM to make multi-AV control deci-

sions for multiple AVs but also avoids large computing burdens on an individual AV

because of decision making processes.

Figure 5.3 shows how MADM adjusts the policy of each AV in a centralized

decision making learning with decentralized execution way. MADM uses πθi,μi
with

i ∈ [1, N ] to indicate policies of N AVs. Driving states and driving actions of these N

AVs are indicated as < s1, s2, ..., sN > and < a1, a2, ..., aN >, respectively. For each

AV, MADM adjusts its policy (containing an actor network with parameter θi and a

critic network with parameter μi) to account for the presence of other AVs. Each AV

is rewarded based on its local task and global task. Specifically, it will be assigned

a large reward if it drives safely and has no unexpected behaviors after following its

control decision. Otherwise, it will be punished and assigned with a small reward.

Here, MADM adjust the original reward rexi (st, at) as r
′
i(s

t, at) to indicate the final

reward the ith AV receives when the AV executes driving action at at driving state st

and an extrinsic reward rexi (st, at) to indicate the effect of the presence of other AVs.

Therefore, r
′
i(s

t, at) should have a high relationship with extrinsic reward rexi (st, at)
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and initial reward ri(s
t, at). MADM calculates r

′
i(s

t, at) of the ith AV as follows:

r
′
i(s

t, at) = λri(s
t, at) + (1− λ)rexi (st, at) (5.3)

here, parameter λ is used to balance the effect of ri(s
t, at) and rexi (st, at). Based

on r
′
i(s

t, at) at time stamp t, MADM calculates the expected cumulative rewards

J ind
i (θi, μi) of the ith AV as E

∑∞
m=0 γ

mr
′
i(s

t+m, at+m), where st+m and at+m form a

state-action pair of the ith AV at the time-stamp t+m.

As shown in Figure 5.3, MADM uses rexi (st, at) to update parameter μi in the actor

network of the ith AV during the policy adjustment process. Besides, MADM applies

J ind
i (θi, μi) to update parameter θi in the actor network of the ith AV for its local task.

MADM also calculates the total expected cumulative rewards Jmul(θ,μ) of total N

AVs as
∑N

i=1 J
ind
i (θi, μi) and uses it to update θ = {θ1, ..., θN} in all actor networks

for considering the global task. Here, θ indicates the actor network parameter set

and μ represents the critic network parameter set. Since Jmul(θ, μ) highly depends

on θ and μ, MADM forms the following parameter optimization problem to adjust

the policy of each AV:

argmax
θ,μ

Jmul(θ,μ)

s.t. θi = argmax
θi

J ind
i (θi, μi), i ∈ {1, 2, ..., N}

(5.4)

optimal parameters in Equation (5.4) should not only maximize the expected cumu-

lative rewards of each AV but also maximize Jmul(θ,μ) of N AVs. To satisfy the

above requirements, MADM firstly maximizes J ind
i (θi, μi) by optimizing the parame-

ter set θ and then determines the optimal parameter μ by maximizing the expected

cumulative rewards Jmul(θ,μ) based on the optimal parameter set θ. Based on E-

quation (5.4), the optimal policy π̃θ,μ can consider both total expected cumulative
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rewards of multiple AVs and the expected cumulative rewards of each individual AV

simultaneously.

Here, we apply a policy gradient method [65] to determine optimal parameter sets

θ and μ in Equation (5.4). Algorithm 5 shows how to determine optimal parame-

ters with the policy gradient method in MADM. MADM inputs the learned policies

πθ,μ of N AVs in Section 5.1.1 to update parameter sets θ and μ with adjustmen-

t rates α1 and α2 until optimal parameter sets are obtained. Specifically, MADM

firstly obtains driving state of each AV and makes a multi-AV control decision for

N AVs based on their policies (Line 2). And then, MADM obtains driving states

of N AVs to form state-action pairs {s1, a1, ..., sN , aN} after the multi-AV control

decision is executed on each AV (Line 3). Lastly, MADM will adjust two param-

eter sets with adjustment rates α1 and α2. Specifically, for the ith AV, its param-

eter θi is updated as θ
′
i = θi + αΔθiJ

ex
i (θ, μ). Similarly, the parameter μ

′
i will be

updated as μi + α2Δμi
θ
′
iΔθ

′
i
Jex(θ

′
, μ). MADM will keep repeating this parameter

adjustment process until the termination condition is satisfied. Here, we the define

a termination condition as follows: Euclidean distance dθ between {θ1, ..., θN} and

{θ′
1, ..., θ

′
N} should be less than Γθ and Euclidean distance dμ between {μ1, ..., μN} and

{μ′
1, ..., μ

′
N} should be less than Γμ. More details of the parameter gradient method

can be found in reference [65].

Algorithm 5: The optimal parameter determination process with the policy
gradient method in MADM
Input: The learned policies πθ,μ of N AVs with parameter sets θ and μ.
Output: Optimal parameter sets {θ1, ..., θN} and {μ1, ..., μN}.

1 while Termination condition is not satisfied do
2 Make multi-AV control decisions for multiple AVs based on their driving states;
3 Execute multi-AV control decisions on N AVs and generate a set of state-action pairs

{s1, a1, ..., sN , aN};
4 Update parameter set {θ1, ..., θN} with α1 as {θ′

1, ..., θ
′
N};

5 Update parameter set {μ1, ..., μN} with α2 as {μ′
1, ..., μ

′
N};

6 Calculate dθ and dμ and compare them with Γθ and Γμ to check whether the
termination condition is satisfied;

7 end
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5.1.3 Multi-AV Control Decision Making with Safety Guar-

antee

In this section, we will discuss how MADM makes multi-AV control decisions with

providing a safety guarantee function for multiple AVs based on the adjusted policies.

Here, N AVs are considered as a whole system and we use st+1 = g(st, πθ1,μ1 , πθ2,μ2 , ...,

πθN ,μN
) to denote its dynamics process, where st = [st1, ..., s

t
N ] represents driving

states of N AVs at time-stamp t. For the ith AV, its driving state si is described

as (xi, yi, vi, ϕi) and its driving action ai is indicated with (acci, steeri). Here, xi

and yi indicate latitude position and longitude position, vi and ϕi represent driving

speed and heading direction, acci and steeri represent acceleration value and steering

angle. For such a system running for total T time-stamps, its driving trajectory with

an initial driving state s1 can be described as (s1, s2, ..., sT ).

5.1.3.1 Safe Driving State Definition

In MADM, an AV is considered to be in a safe driving state if it has no collisions

with other AVs when driving on the same road. Specifically, safe driving state of the

ith AV should satisfy the following constraint: f(si, sj) > 0 for j ∈ [1, N ] and j �= i,

where f(si, sj) indicates the safety index of the ith AV relevant to the jth AV. The

safety index f(si, sj) should consider both driving position and driving speed aspects

and we define f(si, sj) as follows:

f(si, sj) = d(si, sj)− κḋ(si, sj)−D (5.5)

where κ is a positive constant factor; D represents safe vehicle distance between two

AVs and equals to a constant value; d(si, sj) indicates vehicle distance between the

ith AV and the jth AV and can be calculated as
√

(xi − xj)2 + (yi − yj)2). ḋ(si, sj)
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indicates driving speed difference between the ith AV and the jth AV and equals to

vi−vj. Based on Equation (5.5), we see that both vehicle distance and speed difference

affect f(si, sj). If vehicle distance decreases or speed difference increases, f(si, sj) will

become smaller, which means that the ith AV will have a less possibility of being in

a safe driving state. Therefore, the safety index f(si, sj) should be positive if the ith

AV is in a safe state. For the ith AV, all driving states with positive safety index

values are considered as safe driving states and these safe driving states are combined

together to form a safe driving state space indicated as χi. Similarly, the system is

considered as safe if N AVs are all in their safe driving states and driving state of each

AV should be always in its own safe driving state space in T time stamps. Therefore,

the safe driving state space of N AVs can be described as χ = χ1

⋂
χ2

⋂
...
⋂
χN .

For N AVs with a driving trajectory (s1, s2, ..., sT ), its driving state is considered as

in a safe driving state if st ∈ χ when t changes from 1 to N .

5.1.3.2 Safety Guarantee

Based on Section 5.1.2, MADM adjusts the learned policy into the optimal policy π̃θ,μ

so that π̃θ,μ can be used to make decisions for multiple AVs. However, π̃θ,μ is formed

based on the simulation and cannot fully guarantee driving safety of multiple AVs by

considering that the driving environment in the simulation is not always the same as

the real situation. To provide safety guarantee for total N AVs, we need to figure out

a backup policy πback for MADM, which can help each AV reach into a safe driving

state. Suppose a system with total N AVs starts with initial driving state s1 ∈ χ,

MADM needs to decide whether the system should make a multi-AV control decision

with πback. If s
i+1 = g(si, π̃θ,μ) ∈ χ, it is safe to continue making a multi-AV control

decision with π̃θ,μ. Otherwise, MADM will switch to πback for making a decision.

Backup policy. Backup policy πback can transmit the system with N AVs from any
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1st AV

2nd AV

Figure 5.4: Repulsive potential forces of nearby AVs on the ego AV.

driving state st to a safe driving state st+1 ∈ χ. One direct way is to manually design

a backup policy for an AV, which adjusts its driving speed and steering angle until its

all safety index values become positive. Specifically, for the ith AV, its backup policy

πi
back adjusts its driving speed and steering angle until all safety index values between

the ith AV and other N − 1 AVs are positive.

Here, we use the repulsive potential field method [43] to form a backup policy for

an AV. The repulsive potential field method is a popular method used for planning

robotic paths and its goal is to control a robot to reach a destination without colli-

sions with other obstacles. When the repulsive potential field method is applied into

MADM, MADM considers other AVs as obstacles and calculates repulsive potential

fields between the ego AV and other AVs for driving speed and steering angle adjust-

ments. Figure 5.4 shows repulsive potential fields existing between the ego AV and

its two nearby AVs. We see that the repulsive potential filed has a high relationship

between AV positions. Here, the repulsive potential field U i
si→sj

of the jth AV on the

ith AV can be calculated as:

U i
si→sj

=

⎧⎪⎪⎨
⎪⎪⎩
ε( 1

D
− 1

d(si,sj)
), if d(si, sj) ≤ D

0, otherwise

(5.6)

where ε is a positive constant factor showing the effect of AV position on repulsive

potential field. d(si, sj) indicates AV distance between the ith AV and the jth AV. D

indicates the safety vehicle distance between two AVs. Based on Equation (5.6), we
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see that U i
si→sj

is positive as d(si, sj) is larger than D. Otherwise, U i
si→sj

becomes

zero. Based on the repulsive potential field U i
si→sj

, we calculate its derivative value to

obtain repulsive potential force as U̇ j
si→sj

. As shown in Figure 5.4, MADM calculates

total repulsive potential forces from all other AVs on the ith AV and divides them

into longitudinal and lateral directions:

Flong =
N∑

j=1 and j �=i

|U̇ i
si→sj

| sin(ψj) (5.7a)

Flat =
N∑

j=1 and j �=i

|U̇ i
si→sj

| cos(ψj) (5.7b)

where Flong and Flat indicate total repulsive potential forces in longitudinal and lateral

directions, respectively. ψ1 or ψ2 represents repulsive potential force direction from

the 1st AV or the 2nd AV relevant to longitudinal direction. Based on Flong and Flat of

the ith AV, MADM adjusts its driving speed and steering angle to ensure the ith AV

drive in a safe driving state. The ith AV is expected to accelerate or decelerate if Flong

is a positive or negative value. Otherwise, the ith AV is expected to keep driving with a

constant speed. Similarly, The ith AV is expected to make a left lane change or a right

lane change if Flat is a positive or negative value. Otherwise, the ith AV is expected

to stay on the same lane. By calculating the repulsive potential force, MADM forms

the backup policy πi
back for the i

th AV and applies πi
back to adjust its driving speed and

steering angle to ensure that its safety index values are positive, which means that

the ith AV stays in a safe driving state. Similarly, MADM does the same repulsive

potential force calculation processes on other N−1 AVs to form their backup policies.

By this way, we can form backup policies πback = (π1
back, π

2
back, ..., π

N
back) for total N

AVs.
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5.1.3.3 Decision Making with Safety Guarantee

To make multi-AV control decisions for total N AVs with safety guarantee, MADM

selects optimal policy or backup policy so that each AV after executing the multi-

AV control decision will still stay in a safe driving state. Here, MADM does not

keep using backup policy to make multi-AV control decisions mainly because backup

policy can only ensure each AV stay in a safe driving safety without maximizing

their expected accumulative rewards. Instead of keeping using N backup policies for

N AVs, MADM considers all possible combinations of optimal policies and backup

policies. Here, we use a set of policy indexes b = {b1, b2, ..., bN} to indicate the final

selected policy type. Specifically, bi indicates the selected policy type for the ith AV.

bi = 1 means that optimal policy π̃θi,μi
is selected to make a control decision while

bi = 0 represents that MADM selects backup policy πi
back. The goal of MADM is

to maximize the number of the selected optimal policies so that MADM can obtain

higher expected cumulative rewards with providing safety guarantee. Here, we form

the following equation for MADM to determine optimal policy indexes:

b∗ = argmax
b

N∑
i=1

|bi|�(si, χi) (5.8)

where |bi| indicates the absolute value of policy index bi and �(si, χi) indicates

whether driving state si of the i
th AV stays in the safe driving state space χi. �(si, χi)

equals to 1 if si ∈ χi. Otherwise, �(si, χi) equals to 0.

For total N AVs, iterating over all possible different combinations of optimal poli-

cies and backup policies to determine optimal policy indexes can be computation

consuming by considering that the total number of different combinations changes

in an exponential growth b ∈ 2N . Here, we propose a local searching method to

determine the optimal policy indexes b∗. Algorithm 6 shows how to determine opti-

mal policy indexes through a local searching method in MADM. The local searching
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Algorithm 6: The optimal policy index determination process in MADM
Input: Safe driving state spaces {χ1, χ2, ..., χN} of N AVs are known.
Output: Optimal policy indexes b∗ = {b∗1, ..., b∗N}.

1 Initialize optimal policy indexes as b∗ = {1, ..., 1} and hence the number k of zero policy
indexes in b∗ equals to 0;

2 weight index number=
∑N

i=1 |b∗i |�(si, χi);
3 while Termination criterion is not reached do
4 k=k+1;

5 while m ≤ (
k
N

)
do

6 Rebuild a new policy index sequence bm with m zero policy indexes;

7 if weight index number≤ ∑N
i=1 |bmi |�(si, χi) then

8 weight index number=
∑N

i=1 |bmi |�(si, χi);
9 end

10 Update optimal policy index sequence b∗ as bm;
11 m=m+1;

12 end
13 Calculate Euclidean distance db and compare it with Γb to check whether the

termination condition is satisfied;
14 end
15 Output b∗ to MADM to make a multiple-AV control decision;

method begins from an initial policy index sequence {1, 1, ..., 1} and calculates the

value in Equation (5.8) as weight index number (Lines 1 − 2). And then, the local

searching method goes through a sequence reconstruction loop to determine optimal

policy indexes (Lines 3 − 13). Specifically, for situations with k zero policy indexes

in the sequence, the local searching method firstly forms different new sequences and

calculates its corresponding weight index numbers to choose the sequence bm with

the maximum value of weight index number. And then the local searching method

will updates b∗ as bm (Lines 5− 12). The local searching method will keep repeating

the above process on situations with different zero policy indexes until the termina-

tion condition is satisfied. Here, we the define the termination condition as follows:

Euclidean distance db between b∗ and bm should be less than Γb. By this way, MADM

can find the optimal policy index sequence to determine whether a learned policy or

a backup policy should be selected for each AV to make a decision.
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5.2 Performance Evaluation

We implemented MADM by running MatLab on one laptop (Intel i5 CPU and 16

gigabyte memory) and used the real-world traffic dataset [50] as the expert driving

data to train MADM and test its performance in learning expert control behaviors

and making multi-AV control decisions.

5.2.1 Experiment Settings

Expert Driving Dataset: The expert driving dataset [50] contains total 1, 048, 575

vehicle trajectory samples from 3, 366 vehicles. These vehicle trajectories are collect-

ed with a sampling frequency of 10 times/second on the Hollywood Freeway in Los

Angeles at three time periods (7:50-8:05 a.m., 8:05-8:20 a.m. and 8:20-8:35 a.m.) at

different days. Specifically, the driving road is approximately around 640m long and

has total five mainline lanes throughout this road section. The vehicle trajectory sam-

ple of each vehicle includes trajectory information (vehicle latitude, vehicle longitude,

specific lane ID where a vehicle drives, driving speed, acceleration or deceleration val-

ue). Based on trajectory information, we can easily figure out the total number of

vehicles in a road section and their relevant positions. Here, we clustered vehicle

trajectories with similar driving behaviors by considering driving speed, maximum

acceleration/deceleration values and lane change frequency and selected the cluster

with the maximum number of vehicle trajectories as the expert driving data so that

the expert driving data has enough vehicle trajectories for modeling training.

Comparison Methods: We implemented total four different optimal control deci-

sion methods for optimal control decision making performance comparisons. These

four methods include a reinforcement learning based control decision system (RL-

S) [15], an imitation learning based control decision system (ILS) [30], a multi-agent

RL based control decision system (MRLS) [56] and MADM without considering safety
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guarantee (MADM-NSG). RLS makes optimal control decisions for an AV by forming

a value network and a policy network with deep neural networks and using the formed

networks to select optimal control decisions with the maximum cumulative expected

rewards. ILS learns control behaviors of an expert based on its driving data and

makes control decisions by imitating the learned control behaviors. Since RLS and

ILS focus on making optimal control decision for an individual AV, more RLS or ILS

are needed in multiple AV situations so that each AV will receive its control decision

from its corresponding RLS or ILS simultaneously. MRLS develops a multi-agent

connected autonomous driving platform to simulate multi-AV coexistence driving

environments and then trains a multi-agent reinforcement learning model based on

the driving platform to form control policies through reinforcement learning so that

the trained multi-agent reinforcement learning model can make control decisions for

multiple AVs simultaneously. Here, both MRLS and MADM-NSG do not consider

safety guarantee during their control decision making processes. Compared with M-

RLS, MADM-NSG combines imitation learning and reinforcement learning together

to form policies to learn driving behaviors of an expert based on the expert driving

data.

Evaluation Aspects: In this experiment section, for the control behavior learning

part, we used MADM, RLS and ILS to learn control behaviors of an expert based on

the expert driving data under different traffic volume levels and showed their control

behavior learning performances in terms of the normalized reward value. Here, the

expert driving data is divided into three different levels (low, medium and high) based

on traffic volume (vehicles/hour) and their corresponding traffic volume ranges equal

to [0, 840], [841, 1080] and [1081,+∞], respectively. The normalized reward value

indicates the rate of the expected cumulative rewards received by MADM, RLS or

ILS over the maximum value of their expected cumulative rewards during their whole
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model training processes. For the optimal control decision making part, we used

MADM, RLS, ILS, MRLS and MADM-NSG to make optimal control decisions for

multiple AVs under driving situations with a high traffic volume level and introduced

emergency rate and average trip speed to evaluate their optimal control decision

making performance. Here, emergency rate is used as a driving safety criterion and

indicates the percentage of simulations, where one or more AVs have an offroad driving

behavior, a collision or a hard brake event, over total 1000 simulations. Here, an

offroad driving behavior means that an AV drives off the road shoulder during the

driving process. A collision means that the AV has a collision with its nearby AVs. A

hard brake event indicates that an AV brakes with more than a certain deceleration

value (3 m/s2) during its driving process. Average trip speed is used as a driving

efficiency criterion and represents average driving speed of multiple AVs during the

whole trip when they follow multi-AV control decisions. For an AV with an offroad

driving behavior, a collision or a hard brake event, its driving speed is considered to

be zero during its remaining trip. Lastly, we introduced average computation time

per each update (TPU) to indicate computation load of a control decision making

process and calculated it as average computation time of all control decision making

processes in the whole trip.

5.2.2 Evaluation Results

We firstly used MADM, ILS and RLS to learn control behaviors of an expert to eval-

uate control behavior learning performance. Then, we applied the trained MADM,

ILS, RLS, MARS and MADM-NSG to make multi-AV control decisions and calculat-

ed their emergency rates, average trip speeds, and TPU for optimal control decision

making performance evaluation.
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5.2.2.1 Control behavior learning performance

Based on the expert driving data, we trained MADM, ILS and RLS and calculated

their normalized reward values during their training processes for control behavior

learning performance evaluation. Figure 5.5(a) compares the normalized reward val-

ues between MADM, ILS and RLS as the number of training iterations increases from

1 to 1e6. Compared with ILS, the maximum normalized reward values of MADM

and RLS are higher mainly because they used the reinforcement learning technology

to form control policies and have no sub-optimal policy formation problem during the

training process. We also see that the normalized reward values of MADM and ILS

increase much faster than RLS when the number of training iterations is less than

1e6. This is because imitation learning in MADM and ILS forms control policies by

imitating driving behaviors of an expert based on the expert driving data so that it

can quickly achieve good driving performance as the expert, which helps to increase

control behavior learning speed.

Vehicle trajectories in the expert driving data also contain nearby vehicle informa-

tion, vehicle trajectories collected under different traffic volumes may affect control

behavior learning performance. Here, we also used vehicle trajectories under differ-

ent traffic volume levels to train MADM, ILS and RLS and compared their control

behavior learning performance in Figure 5.5(b). We see that MADM has higher nor-

malized reward values than ILS and RLS for all three situations, which demonstrates

that MADM has better control behavior learning performance. Besides, the normal-

ized reward values of MADM, ILS and RLS will become smaller as the number of

traffic volume becomes larger. This is reasonable because more nearby vehicles will

stay around an AV and there exist more possible different driving situations during

the model training process, which causes low control behavior learning performance.

Based on the above analysis, we can conclude that MADM can learn control behaviors
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more accurately and efficiently.

0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10

N
o
rm

al
iz

ed
 r

ew
ar

d
 

Iteration numbers (10e5)

MADM

RLS

ILS

(a) Normalized reward value compar-
isons as the number of training itera-
tions increases.

0.7

0.8

0.9

1

Low Medium High

N
o
rm

a
li

z
e
d
 r

e
w

a
rd

Traffic volume level

MADM RLS ILS

(b) Normalized reward value compar-
isons when trained with vehicle trajec-
tories under different traffic volume lev-
els.

Figure 5.5: Control behavior learning performance comparisons between MADS, RLS
and ILS as the number of training iterations increases or traffic volume changes with
different levels.

5.2.2.2 Control decision making performance

We trained MADM, MRLS, RLS, ILS and MADM-NSG based on the expert driving

data for total 1e6 iterations so that they can achieve their best performance for

making control decision processes. And then, we used the above trained methods

to make control decisions for one or more AVs with a high traffic volume level and

calculated their emergency rates and average trip speeds for control decisions making

performance evaluation.

Under different numbers of AVs: Figure 5.6(a) compares emergency rates be-

tween MADM, MRLS, RLS, ILS and MADM-NSG as different numbers of AVs finish

a trip with 10 km trip distance. Compared with other methods, MADM has smaller

emergency rates and the maximum value of its emergency rates reaches around 97%

when the number of AVs equals to 11, which means that MADM can help 11 AVs

finish the whole trip successfully in 97% of total 1000 simulations. Besides, for MAD-

M, MRLS, RLS, ILS and MADM-NSG, their emergency rates become larger as the
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number of AVs increases. This is because each multi-AV control decision contains a

set of control decisions corresponding to multiple AVs and it will cause an offroad

driving behavior, a collision or a hard brake event if the multi-AV control decision fail

to ensure one or more of multiple AVs driving safety. Here, emergency rates of MAD-

M, MRLS and MADM increase slower than RLS or ILS mainly because they consider

joint states of multiple AVs as inputs to making control decisions for multiple AVs

simultaneously to ensure driving safety. Compared with MRLS and MADM-NSG,

MADM also considers safety guarantee during its control decision making process

and its control decisions can help to ensure each AV always drive in a safe driving

state, which explains why MADM has the smallest emergency rates.

Figure 5.6(b) shows average trip speed comparisons between MADM, MRLS, RLS,

ILS and MADM-NSG as the number of AVs increases from 1 to 11. We see that

their average trip speeds become smaller as more AVs share the same road. This

is reasonable since their emergency rates becomes larger with AV number increase

and an AV with high emergency rates usually has a lower average trip speed. Since

MADM has the smallest emergency rates for all situations with different AV numbers,

it average trip speed is always larger compared with values of MRLS, RLS, ILS

and MADM-NSG and its minimum value reaches around 72 km/h, which is still

much larger than values of MRLS, RLS, ILS and MADM-NSG (66 km/h, 62 km/h,

61 km/h, 69 km/h). Therefore, we conclude that MADM can make control decisions

for multiple AVs with smaller emergency rates and larger average trip speeds even

when the number of AVs increases to 11.

Under different trip distances: Here, we also explored the effect of trip distances

on control decision making performance and analyzed how emergency rate and aver-

age trip speed change as total 11 AVs finish different trip distances in the simulation.

Figure 5.7(a) shows emergency rate comparisons between MADM, MRLS, RLS, ILS

and MADM-NSG as the trip distance increases from 10 km to 60 km. We see that
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Figure 5.6: Emergency rate and average trip speed comparisons between MADM and
existing methods as the number of AVs increases from 1 to 11.

MADM has the smallest emergency rate than other methods and its maximum e-

mergency rate becomes 3.6%, which is smaller than values of MRLS, RLS, ILS and

MADM-NSG (4.6%, 7.0%, 7.2% and 4.4%). Besides, emergency rates of MADM,

MRLS, RLS, ILS and MADM-NSG keep increasing slowly as trip distance changes

from 10 km to 60 km, which demonstrates that trip distance has a small effect on

emergency rates.
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Figure 5.7: Emergency rate and average trip speed comparisons between MADM and
existing methods as the trip distance increases from 10 km to 60 km.

Figure 5.7(a) compares average trip speeds between MADM, MRLS, RLS, ILS and

MADM-NSG as trip distance increases from 10 km to 60 km. Similarly, average trip

speeds of MADM, MRLS, RLS, ILS and MADM-NSG decrease with a small change

as trip distance increases. For MADM, its average trip speed is larger than average
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Figure 5.8: TPU comparisons between MADM and other methods as the number of
AVs or trip distance increases.

trip speeds of other methods and its range equals to 2.7 km/h, which is smaller

than ranges of MRLS, RLS, ILS and MADM-NSG (3.6 km/h, 5.6 km/h, 4.1 km/h

and 3.8 km/h). Based on emergency rate and average trip speeds in Figure 5.7,

we conclude that MADM keeps stable control decision making performance and trip

difference has little effects on it.

5.2.2.3 Computation cost analysis

We implemented MADM, MRLS, RLS, ILS and MADM-NSG by running MATLAB

on one laptop mentioned above and compared their TPUs during their control decision

making processes for computation load evaluation. Figure 5.8 shows how their TPUs

change as the number of AVs or trip distance increases. Based on Figure 5.8(a), we

see that TPUs of MADM, MRLS, RLS, ILS and MADM-NSG keep increasing as more

AVs need to be considered during the control decision making process. Specifically,

their GPUs reaches the maximum value as the number of AVs increases to 11 and

their maximum values equal to 19.4 ms, 15.5 ms, 18.1 ms, 20.0 ms and 14.8 ms,

respectively. Figure 5.8(b) shows TPUs of MADM, MRLS, RLS, ILS and MADM-

NSG as trip distance increases. Overall, GPUs of all methods become larger but

increase in a small range. In other words, computation load during a control decision
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making process keeps almost constant for even when trip distance changes and their

maximum TPUs equal to 20.8 ms, 16.8 ms, 18.4 ms, 21.5 ms and 17.0 ms, which

are acceptable for AVs in practice.
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Chapter 6

Summary and Future Work

In this chapter, we first summarize battery authentication, control policy based driv-

ing safety system and multi-AV control decision making system presented in this

dissertation. Next, we discuss the possible impacts of such methodologies on improv-

ing driving safety. We also present the limitations of our methodologies. We conclude

this dissertation by outlining the future research directions we would like to focus on

in the near future.

6.1 Summary

6.1.1 Battery Authentication System

• We analyze the feasibility of launching the two EV battery attacks through a

smartphone and how to implement the two attacks in practice, which has not

been studied in previous works.

• We firstly propose a data-driven behavior model to learn a user’s habits of

turning on AC and stopping battery charging process based on vehicle usage

data. We apply the random forest to identify users based on battery state to

improve the behavior model’s learning accuracy. Then, we use the behavior
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model to train a reinforcement learning model, which decides the action that

mostly conform to the user’s actual action and thus can detect the battery

attacks from a smartphone.

• We conducted the first battery attack experiment to show the feasibility of

such attacks on EVs. To verify the attack detection performance of Bauth,

we conducted real-world experiments using total 7 EVs in daily driving and

compared attack detection results between Bauth and the statistical method.

The experimental results demonstrate that the accuracy of the random forest

based user identification method is around 95.7% and Bauth authorizes action

requests from a smartphone with accuracy as high as 95.6%.

6.1.2 Control Policy based Driving Safety System

• We propose a control policy extraction method to extract control policies of a

target AV based on its historical driving data. Specifically, the method first-

ly uses dynamic time warping and k-means clustering technologies to cluster

historical driving data with the same control behavior type together and then

analyzes positions and driving speeds in each cluster to extract control policies

of a target AV.

• We propose an optimal control policy determination method to determine an

optimal control behavior for a given trigger condition for a target AV consider-

ing time-varying driving state of its nearby vehicle. This method firstly predicts

the driving state of its nearby vehicle and then applies its driving state predic-

tion result into the proposed optimal control policy determination method to

determine an optimal control policy which maximizes the sum of relative dis-

tances between the target AV and its nearby vehicle in the subsequent time

stamps.
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• We used an industry-standard AV platform (Baidu Apollo) to evaluate the

control policy extraction and optimal control policy determination performance

of Polsa in comparison with with other two state-of-the-art methods[28, 40].

The comparison results show that Polsa can extract control policies with 83%

accuracy, and improve optimal control policy success rate by 28% compared

with existing methods.

6.1.3 Multi-AV Control Decision Making System

• We propose a policy formation method to form policies for an individual AV.

By taking the advantage of expert’s driving data, the policy formation method

in MADM combines imitation learning and reinforcement learning together to

specify state and action spaces which are worth exploring by reinforcement

learning so that MADM can learn policies efficiently and achieve good control

performance as the expert.

• We develop a multi-agent reinforcement learning method to make control de-

cisions with safety guarantee for multiple AVs in multi-AV coexistence driving

situations. Specifically, MADM uses a multi-agent reinforcement learning mod-

el to adjust the learned policy of each individual AV so that these policies

can work together to make control decisions. Lastly, MADM develops a safety

guarantee method to form backup policies and apply them during the decision

making process to guarantee driving safety of each AV.

• We use a real-world traffic dataset from the United States Department of Trans-

portation Federal Highway Administration [50] to evaluate optimal control de-

cision making performance of MADM in comparison with the state-of-the-art

methods [15, 30, 56]. The experimental results demonstrate that MADM reduces

its emergency rate by as high as 51% compared with existing methods.
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6.1.4 Limitations

One obvious limitation of our proposed methodologies is that we verified the optimal

control decision making performance of the control policy based driving safety system

and the multi-AV control decision making system based on Baidu Apollo simulation

platform. Though the Baidu Apollo simulation platform can simulate vehicle driving

environments based on real-world traffic driving data, responses of nearby vehicles do

not always match the real situations because of different users’ driving habits, which

makes the performance evaluation results less convincing.

Another limitation of our proposed methodologies is that we used machine learning

technologies (e.g., neural network, random forest and reinforcement learning) into the

proposed methodologies to predict vehicle state of nearby vehicle, identify EV users,

and make control decision, which results in computational overhead problems.

6.2 Future Work

Research is a continuous process, and there is always room for improvement in terms

of theories and experimental evaluations. In this dissertation, we have presented

three data-driven driving safety approaches that are more effective compared with

the other existing approaches. However, there are certain limitations in our proposed

methodologies, as we discussed in Section 6.1.4. Therefore, these limitations can lead

us to future research directions.

Here, we list some directions for future research works.

• In the future, we will consider other user information (e.g., the number of pas-

sengers) during the action request authorization process of the battery authen-

tication system presented in this dissertation. Different numbers of passengers

usually have different total vehicle weights and hence affect battery energy con-
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sumption greatly. We can consider this kind of factor to improve the authenti-

cation performance of the proposed methodology presented in this dissertation.

• In this proposed control policy based driving safety system, we only consider

the vehicle, which stays nearest to the target AV, during the control policy

selection process and other vehicles driving in the same road may have effects

on the target AV in practice. We can consider situations with more than one

nearby vehicles to make control policy selection outputs from the proposed

system more reasonable.

• The proposed multi-AV control decision making system considers multi-AV sit-

uations by assuming that the number of multiple AVs keep constant during

its whole control decision making process. However, vehicles may drive on or

off the road randomly in practice and our method will focus on this kind of

situations to make its control decision making results convincing.
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