
Participatory Design: Data Model Management Application

CS4991 Capstone Report, 2023

Tillman Dean

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

gtd8fp@virginia.edu

ABSTRACT

A large McLean, Virginia-based financial

company decided to streamline the

complicated, manual process of adding new

data models that wasted tons of man-hours.

My team was tasked with creating an

enterprise application to onboard new data

models and view existing models. To

accomplish this goal, we built a full-stack

application using a combination of Python

and Vue.js, that would be deployed on AWS

and connected to a DynamoDB database.

We spent an extensive time designing the

application, involving all affected teams in

the process. At the end of the summer, our

application was deployed to a development

environment and was able to perform the

basic features we outlined. To bring the

application into use, the database needs to be

fully populated with the necessary data, and

the application needs to be deployed through

the pipeline into a production environment.

1. INTRODUCTION

When I was presented with the project last

June, it seemed daunting – my team was

tasked with reducing a several weeklong,

man-hour intensive process into a five-

minute self-service web application that any

company employee would be able to use.

We worked within the larger group that

oversaw the company’s enterprise document

management platform. Every customer file

or document was stored in this database. The

process my team was tasked with

streamlining dealt with the templates (types

of documents) that the software stored.

Often, when a certain area of the business

was expanded, new types of documents with

different types of data needed to be

onboarded to the system.

The existing system involved the employee

who needed the new template reaching out

directly to a software team to manually

create the data model and hammer out

specifics, before uploading it to the

database. To further complicate, the matter,

there was no way to view the existing

templates, so employees were less likely to

suggest building off an existing template

that could be similar to the new one that

they needed, resulting in lost efficiency.

Additionally, the existing system used an

outdated, relational RDS database, and the

company had decided to switch to the

NoSQL DynamoDB database. Our team

stepped in to make an application that would

allow employees to view existing templates

and easily create and upload new templates

to the DynamoDB database. Over the course

of the summer, we used an agile process

with a focus on participatory design to

ensure our finished product best fit our

stakeholders needs.

2. RELATED WORKS

Kautz (2011) explored an example of

participatory design being used as a

framework within the agile software

development process. He found that

engaging customers and users of the

application early on and throughout the

process led to significantly greater

satisfaction with the product. My project

made use of participatory design in a very

similar manner, engaging with the teams

involved in the current process to find

common frustrations and issues before even

beginning to code.

Hassan (2021) explores the advantages and

disadvantages of relational and NoSQL

databases, explaining why many, in the age

of more and more diverse types of data, are

making the transition away from relational

databases. My project was a manifestation

of some of Hassan’s arguments about the

disadvantages of relational databases, as the

company had made the decision to migrate

its data into a NoSQL database to improve

scalability. When coding our new

application we used a DynamoDB database

hosted on AWS instead of the old RDS

database.

3. PROCESS DESIGN

Our team was faced with a problem of

making an application that was both

intuitive to use and powerful enough to

manage a very large and complex set of

data. The only existing solution to view the

data required was a simplistic and

incomplete front-end application hooked up

to the old RDS database. As a result, we had

to scrap most of the backend code to connect

to the new DynamoDB database and had to

come up with the front-end for most of the

application on our own.

We created a series of wireframe mockups

on Figma for every page of our application

before we coded anything. However, as

interns, my team was unfamiliar with what a

lot of the data meant and how the

application was going to be used by

company employees. To overcome this

obstacle, we set up meetings with two

different teams that would be using the

software, speaking with both fellow

software engineers and product managers.

After showing them our mockups, we made

several changes to the UI, including splitting

the process of adding a new data model

between multiple pages to make it feel more

like a guided progression.

We coded up a new backend using Python

and connected it to a new database

temporarily populated only with dummy

data. We then split up the pages for the

front-end amongst our team and got to work

making our application using the JavaScript

framework Vue.js. In addition to adding the

functionality to view, filter, and add data

models to the database, we focused on

making the application as usable as possible.

One of the features I added to help

accomplish this goal was a new drop down

navbar that let the user easily navigate the

application.

Another feature we added to make the

process much easier for users was the ability

to build from an existing model. Often

models would be extremely similar but with

a few key tweaks, or a model would need to

be updated to a newer version or year.

Building off an existing feature shaved the

time required to input all of the data fields

significantly, making the user much happier.

4. RESULTS

When completed, our application

dramatically reduced the number of man-

hours required to upload a new document

data model to our database. The old process

would often drag on for weeks, as it required

several hours’ worth of meetings between

different teams and required one team to

hardcode the solution and manually add it to

the database. Our new solution eliminated

the need for these meetings and hours of

hard coding, allowing the user to create a

new model as quickly as ten minutes.

Our application also enabled the user to

view the existing data models, a feature that

did not exist before our application. This

made using the models much easier and the

entire system more transparent to everyone

in the company who interacted with it.

5. CONCLUSION

This project proved to be incredibly valuable

to the company, who were aiming to move

as many applications to be self-service as

possible. Our application removed the need

for software teams to hand-make every new

data model, replacing several hours of

meetings and coding with only a few

minutes that could be done by the employee

who needed the model.

Our application also provided the first

coherent way of viewing all of the existing

models which allowed for greater

understanding of the way in which they

were used. By meticulously involving all of

the stakeholders in the design process, we

were able to create a product that was useful

and intuitive. Over the course of the project,

I gained valuable professional experience of

both technical skills and soft skills like how

the agile development process runs on a

team. I also learned to greatly appreciate the

design process and not rush into coding a

solution right away.

6. FUTURE WORK

Our application was deployed into a

development environment, but it still needed

some work to be deployed into production.

First, the database needs to be populated

with the actual data models from the old

RDS database, as we were still using

dummy data in our DynamoDB database.

Second, the deployment files for the

company’s internal pipeline need to be

configured further to allow it to deploy

further. Once these two steps are completed,

the application will be able to be used by

actual employees.

REFERENCES

Hassan, M. A. (2021). Relational and

NoSQL Databases: The Appropriate

Database Model Choice. 2021 22nd

International Arab Conference on

Information Technology (Acit), 705–

710.

https://doi.org/10.1109/ACIT53391.20

21.9677042

Kautz, K. (2011). Investigating the design

process: Participatory design in agile

software development. Information

Technology & People, 24(3), 217–235.

https://doi.org/10.1108/0959384111115

8356

https://doi.org/10.1109/ACIT53391.2021.9677042
https://doi.org/10.1109/ACIT53391.2021.9677042
https://doi.org/10.1108/09593841111158356
https://doi.org/10.1108/09593841111158356

