
Building a Chess Engine: An AI, Problem Solving, and Software Development Journey

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Angelo Bechtold

Spring, 2022

On my honor as a University Student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Briana Morrison, Department of Computer Science

Building a Chess Engine: An AI, Problem Solving, and Software Development

Journey

CS4991 Capstone Report, 2023

Angelo Bechtold

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

angelo@virginia.edu

ABSTRACT

The development of a custom chess engine

using artificial intelligence was motivated

by curiosity about innovation and efficiency

in the field of AI. My team and I used

minimax and pruning methods along with

Git for the project, which involved a hands-

on approach and utilized problem-solving

skills and collaboration. The major outcome

of the project was a functioning custom

chess engine with potential for further

development. Future work includes

additional testing and evaluation of the

efficiency and performance of the engine.

1. INTRODUCTION

Chess is a classic board game that has been

played for centuries, with roots dating back

to India in the 6th century. In the modern

era, the game has been studied extensively,

leading to the development of various chess

engines and computer programs that can be

played at a high level. My colleague and I

were interested in exploring the field of

artificial intelligence and wanted to take on

the challenge of building a custom chess

engine.

The project required a hands-on approach

and utilized problem-solving skills and

collaboration. By implementing minimax

and pruning methods, we were able to create

a functioning custom chess engine that has

the potential for further development.

The development of custom chess engines

can have practical applications in areas such

as game theory and strategic decision-

making. The significance of this project lies

in the potential for future work to be done,

including additional testing and evaluation

of the efficiency and performance of the

engine.

2. RELATED WORKS

In developing our custom chess engine, we

drew inspiration from several related works

that have contributed to the development of

similar engines. One key reference that

informed our work was by Silver, et al.

(2017). They present AlphaZero, an

algorithm that uses deep reinforcement

learning to achieve superhuman

performance in the games of chess, shogi,

and Go. While our engine does not use

reinforcement learning, we found this work

valuable for its insights into the strategic

choices made by strong chess engines.

Coulom (2006) introduced the Monte Carlo

Tree Search (MCTS) algorithm, another

influential contribution to the field. While

we did not implement MCTS in our engine,

we found the principles of efficient

selectivity and backup operators to be

applicable to our use of the minimax

algorithm. By focusing on the most

promising branches of the search tree and

using a heuristic evaluation function to

estimate the value of positions, we were able

to significantly reduce the search space and

achieve strong performance.

Additionally, we consulted several open-

source chess engines, such as Stockfish and

Leela Chess Zero, to gain insights into best

practices and techniques for optimizing

engine performance. Finally, we drew from

our own experiences and knowledge of

programming languages and tools such as

Python and GitHub to develop and test our

custom engine. Overall, the combination of

these works and our own experiences

allowed us to develop a custom chess engine

that uses the minimax algorithm with alpha-

beta pruning to achieve strong performance

and potential for further development.

3. PROCESS DESIGN

When designing a custom chess engine, it is

essential to have a clear process in place.

Our process involved reviewing existing

chess engines, analyzing their strengths and

weaknesses and deciding on an architecture

that combined the minimax algorithm with

alpha-beta pruning and a heuristic

evaluation function. This approach allowed

us to create a robust and efficient engine

capable of playing at a high level.

3.1 Review of System Architecture

The architecture of our custom chess engine

is based on a combination of the minimax

algorithm with alpha-beta pruning and a

heuristic evaluation function. The minimax

algorithm is used to traverse the game tree

and evaluate the positions, while the alpha-

beta pruning is implemented to optimize the

search and prune branches that are not

promising. The heuristic evaluation function

estimates the value of a given position,

taking into account factors such as material

balance and piece mobility.

3.2 Requirements

Our main requirement considerations were

client needs and system limitations.

3.2.1 Client Needs

Our primary goal was to create a custom

chess engine that could compete with other

engines and human players at a high level.

The client required an engine that was

efficient, scalable and user-friendly.

3.2.2 System Limitations

The main limitation of our system was the

computational complexity of the minimax

algorithm. As the depth of the search

increases, the number of positions to

evaluate grows exponentially. To overcome

this limitation, we implemented alpha-beta

pruning and a heuristic evaluation function.

3.3 Key Components

We discuss here the essential elements that

make up our custom chess engine, including

the challenges we faced during

development, and the solutions we

employed to create a robust system.

3.3.1 Specifications

Our custom chess engine was developed in

Python and utilized Git for version control.

We chose Python due to its readability,

versatility, and extensive libraries available

for artificial intelligence and game

development. Key libraries used in our

project include NumPy for efficient

mathematical operations, and the Python

chess library for managing chess board

representation and game rules. We adopted a

modular design approach, separating the

engine into components such as the board

representation, move generator, search

algorithm, and evaluation function.

3.3.2 Challenges

The main challenges during the

development of our custom chess engine

were:

Optimizing the search algorithm: Efficiently

exploring the vast search space of possible

moves and positions was critical to the

engine's performance. Achieving a balance

between search depth and computational

resources proved challenging.

Designing an effective heuristic evaluation

function: The evaluation function needed to

accurately assess the strength and weakness

of a given position, taking into account

various chess principles such as piece

mobility, king safety, and pawn structure.

There is a large amount of existing

information that gave sufficient insight into

how optimizations and heuristic evaluations

could be applied to chess (Chess

Programming Wiki, n.d.).

Handling complex endgames: Endgames

often involve intricate tactics and require

precise calculations, posing a challenge to

our engine's ability to identify winning

moves and strategies.

Adapting to different playstyles: The engine

needed to be able to adapt to various

playstyles, both for itself and its opponents,

to remain competitive in diverse game

situations.

3.3.3 Solutions

To address these challenges, we

implemented the following solutions:

Alpha-beta pruning: By employing alpha-

beta pruning in our search algorithm, we

significantly reduced the number of nodes

examined, allowing for deeper searches

within a reasonable timeframe.

Heuristic evaluation function: We developed

a sophisticated evaluation function that

considered multiple factors, such as material

balance, piece positioning, and king safety,

to provide accurate position assessments.

Endgame tablebases: To enhance our

engine's endgame performance, we

integrated endgame tablebases containing

precomputed optimal moves for various

endgame scenarios.

Adaptive playstyle: Our engine dynamically

adjusts its playstyle based on the evaluation

of its own position and its opponent's

moves. This allows it to effectively respond

to different strategies and maintain a

competitive edge.

4. RESULTS

Our custom chess engine successfully

demonstrated its ability to play chess at a

high level, competing with both other

engines and human players. The

implementation of the minimax algorithm

with alpha-beta pruning and a heuristic

evaluation function resulted in an efficient

and scalable engine.

Relative to evaluating the performance of

our custom chess engine, we can confidently

say that it performs at a level upwards of a

1500-rated chess player. This means that it

can outperform any average chess player,

making it a valuable tool for players of all

skill levels. While we do not have specific

numerical results in terms of time or money

saved, the engine's ability to compete with

other engines and human players highlights

its success and potential for future

applications in game theory and strategic

decision-making. We look forward to further

testing and evaluation to explore its full

potential.

5. CONCLUSION

The development of our custom chess

engine as a project has been a valuable and

rewarding learning experience. This project

provided us with the opportunity to explore

the intricacies of artificial intelligence and

game development, while also allowing us

to apply our theoretical knowledge to a

practical application. Through the creation

of our chess engine, we have gained a better

understanding of the challenges involved in

optimizing search algorithms and designing

effective evaluation functions. This report

serves as a valuable resource for those

interested in chess or computer science and

provides a brief overview of the process and

impact of building a custom chess engine.

Throughout the project, we developed

essential skills in problem-solving and

software development. Our hands-on

experience with the chess engine has

broadened our perspectives on AI and game

development, as well as providing us with

valuable insights into the complex balance

between search depth/accuracy and the need

of computational resources to generate

position evaluations.

Our custom chess engine serves as a

testament to the power of combining

theoretical knowledge with practical

applications, driving personal growth and

fostering a deeper understanding of the

complexities of artificial intelligence. Our

work on this project has provided us with a

solid foundation upon which we can build

our future endeavors in the field.

6. FUTURE WORK

Future work includes additional testing and

evaluation of the efficiency and performance

of the engine, as well as exploring other

algorithms and techniques for further

optimization.

REFERENCES

Mastering Chess and Shogi by Self-Play

with a General Reinforcement Learning

Algorithm by Silver (2017).

[Looked it up and this source has an

astounding 13 authors! You will find an

alternative full citation reference at

https://arxiv.org/abs/1712.01815. Doesn’t fit

the usual format but apparently they have

provided an alternative citation, which is

fine.]

Coulom, R. (2006). Efficient Selectivity and

Backup Operators in Monte-Carlo Tree

Search. 5th International Conference on

Computer and Games, May 2006, Turin,

Italy. ffinria-00116992f

Chess Programming Wiki (n.d.)

Evaluation—Chessprogramming wiki.

Retrieved April 21, 2023 from

https://www.chessprogramming.org/Evaluati

on

Akdemir, A. (2016). Tuning of chess

evaluation function by using genetic

algorithms. Retrieved April 22, 2023, from

https://www.cmpe.boun.edu.tr/~gungort/und

ergraduateprojects/Tuning%20of%20Chess

%20Evaluation%20Function%20by%20Usi

ng%20Genetic%20Algorithms.pdf

https://arxiv.org/abs/1712.01815
https://www.cmpe.boun.edu.tr/~gungort/undergraduateprojects/Tuning%20of%20Chess%20Evaluation%20Function%20by%20Using%20Genetic%20Algorithms.pdf
https://www.cmpe.boun.edu.tr/~gungort/undergraduateprojects/Tuning%20of%20Chess%20Evaluation%20Function%20by%20Using%20Genetic%20Algorithms.pdf
https://www.cmpe.boun.edu.tr/~gungort/undergraduateprojects/Tuning%20of%20Chess%20Evaluation%20Function%20by%20Using%20Genetic%20Algorithms.pdf
https://www.cmpe.boun.edu.tr/~gungort/undergraduateprojects/Tuning%20of%20Chess%20Evaluation%20Function%20by%20Using%20Genetic%20Algorithms.pdf

