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Abstract

Recent advances in deep learning approaches have transformed fields such

as natural language and image processing. In particular, these new advances

have the potential to transform dialogue systems which are traditionally im-

plemented using language model based or boosting approaches. In this work,

we have proposed a deep learning framework to perform semantic utterance

classification (SUC) for use in domain-specific dialogue systems. Deep learning

has only recently been used for SUC but has not been used with domain-specific

word embeddings or dialogue systems. Semantic classifiers need to account for

a variety of instances where the utterance for the semantic domain class varies.

In order to capture the candidate relationships between the semantic class and

the word sequence in an utterance, we have proposed a shallow convolutional

neural network (CNN) that uses domain-specific word embeddings, that has

been initialized using word2vec for determining semantic similarity of words.

These embeddings can remain static, be updated during training or can even

be created from scratch for the particular intent determination task at hand.

ii



ABSTRACT

Finally, these methodologies have been integrated into a library for easy de-

ployment into existing platforms with dialogue systems. Experimental results

obtained on two different use cases demonstrate the effectiveness of shallow

neural networks for SUC. The methods produce superior classification accu-

racy comparable to existing benchmarks. We also demonstrate our framework

in a real-world medical training system.
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Chapter 1

Introduction

Intelligent Virtual Agents (IVA) or Embodied Conversational Agents have

gained popularity since enabling human like conversation in a variety of sce-

narios like virtual patients [3] [4], pedagogical agents [5] [6] and military train-

ing [7] [8] have shown effectiveness in training, development of interpersonal

skills, medical education and entertainment.

One of the key components of a system using automated virtual agents is

the dialogue system. The purpose of the dialogue systems is to automatically

identify the domain and intent of the user as expressed in natural language

and to extract associated arguments and slots to achieve a specific goal that

is generally task specific. The semantic parsing of input utterances in spo-

ken language understanding (SLU) typically consists of three tasks: Domain

Detection, Intent Determination and Slot filling.
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CHAPTER 1. INTRODUCTION

For a ticket booking system, Domain detection part would be airline-ticket,

the intent determination part could be book-ticket or cancel-ticket and the slot

filling sections would be to-place, from-place,date,time and so on.

In this work, a novel architecture for intent determination in the context of

dialogue systems is presented. For example, in the context of dialogue systems

for medical training for a particular chronic disease, the most important aspect

is intent determination. So in the context of Chronic Obstructive Pulmonary

Disorder (COPD), the dialogue system should be accurately able to classify the

intent of the conversation. So for the specific scenario COPD, when the nurse

asked “Do you want me to increase the Oxygen?”, can we accurately classify

the intent, i.e intent:improve-condition. This task is essentially a fine-grained

multi-class classification problem in the specific domain of the training envi-

ronment.

In this work, we have proposed novel deep learning architectures that im-

prove upon existing state-of-the art methods for question classification. These

architectures can easily be integrated and used to improve context-specific dia-

logue systems since most of these architectures do not require any task specific

feature engineering unlike existing approaches [9].

2



CHAPTER 1. INTRODUCTION

1.1 Motivation

A key component of the embodied conversational agent is to enable human

like conversations of the virtual agents. However, in various scenarios like

health care [3] [4], the effectiveness of a training simulation through the us-

age of a conversational agent is natural language understanding component.

For instance, in a virtual medical scenario the most common form of train-

ing method for training of nurses and doctors is using a standardized pa-

tient [10–14]. The problem with this approach is that training using stan-

dardized patients is generally very costly, requires a very high level of human

involvement and it lacks standardization.

One alternative to using a standardized patient is to use a virtual patient

with support for various conversational elements and interactive on screen el-

ements to make the training procedure robust and effective [3] [4]. However

despite key improvements in various areas of virtual patient provider plat-

forms in graphics, animations and sounds, they are still unable to be used

without significant involvement. A dialogue system [15] is a natural language

understanding component that gives realistic response to questions specific to

a training environment. Since the effectiveness of the training system com-

pletely depends on the accuracy of the dialogue system, the dialogue system is

a critical component of virtual training environments. One of the key compo-

3



CHAPTER 1. INTRODUCTION

nents of the dialogue system is the Semantic Utterance Classification part that

aims to categorize to various intents within a conversation [16] which has been

the focus of this work.

1.2 Problem Definition

The deep learning approaches highlighted in this work propose a variety of

architectures that can make the process of intent determination in a dialogue

system robust and task specific. For example, in the case of a patient suffering

from Chronic Obstructive Pulmonary Disorder, who is struggling to breathe

and having severe chest pains, the two sentences, “How are you doing?” and

“How are you feeling?” mean the same thing.

The proposed methods have been validated using the popular TREC dataset

[17] where the new methods produce superior classification accuracy compara-

ble to existing benchmarks that were obtained through Deep Learning. Previ-

ous approaches using the TREC dataset [17], used numerous hand-coded fea-

tures to achieve the state-of-the-art accuracy [9]. The approaches highlighted

in this work essentially involve training the word embeddings for task-specific

dialogue systems and then having a combination of neural network architec-

tures that use the word embeddings as input for the task of intent determina-

tion and classification. This work can also be used for domain identification

4



CHAPTER 1. INTRODUCTION

(not the focus of this work) of the dialogue along with intent determination.

Future extensions of this work will include various slot filling techniques.

1.3 Contributions

We explore various deep learning models to solve the proposed semantic ut-

terance classification problem also known as the intent determination problem.

The proposed models for intent determination using deep learning architec-

tures without any feature engineering have three key components which can

be broadly divided as the initial word embeddings (the vector representation

of words), the network architectures that exploit these embeddings and finally

an approach to building an end-to-end semantic utterance classification unit.

The developed network architectures give comparable results to the existing

state-of-the-art results in the TREC question answer [17] database using deep

learning approaches. Further, we demonstrate the utility of the proposed meth-

ods by integrating the dialogue system into a virtual human medical training

simulation for interprofessional education (IPE). In the domain specific con-

text of medical interprofessional education, our models achieve an accuracy of

98.33% in semantic utterance classification. The contribution of this thesis is

both the method for intent determination for domain-specific dialogue systems

as well as the extensible library for integration into domain-specific virtual

5



CHAPTER 1. INTRODUCTION

human training systems.

1.4 Thesis Organization

Section 2 introduces the recent research in NLP and dialogue systems.

Section 3 introduces the proposed word embedding approaches and the deep

learning architectures as well as a modified architecture for semantic utter-

ance classification. Section 4 presents the validation of our methods using the

TREC [17] benchmark dataset and in a domain specific medical dataset for

IPE. Section 5 presents the conclusions, limitations, and future work.

6



Chapter 2

Natural Language Processing

and Dialogue Systems

Neural Networks are powerful learning models. Broadly they can be di-

vided into two categories: feedforward and recurrent neural networks. There

are various types of feedforward neural networks such as Convolutional Neural

Networks (CNNs) with pooling layers [1]. Recurrent Neural Networks (RNNs)

also have variations such as Long Short-Term Memory (LSTM) [18] and Gated

Recurrent Units (GRU) [19] to name a few. These neural network models are

broadly part of an area of machine learning known as deep learning. Deep

learning is the stacking of multiple hidden layers or even multiple neural net-

works to accomplish the task of learning complex features. These network

architectures thus vary based on complexity of the tasks. Deep Learning has

7
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been used for tasks such as modeling sentences [20] and sentiment analysis [1].

2.1 Dialogue Systems

Dialogue systems aim automatically identify the intent of the user as ex-

pressed in natural language and then perform the corresponding task specific

to the domain. Historically the task of intent determination has emerged from

the call classification systems at AT&T [21] after the success of early com-

mercial interactive voice response applications. Another key component of dia-

logue systems is the slot filling which originated from non-commercial research

projects from DARPA (Defense Advanced Research Program Agency) for the

airline travel information systems, ATIS [22].

Majority of the work in dialogue systems rely on semantic utterance classi-

fication for the evaluation of natural language query into a particular category

and then extract related parameters from that [23]. Typically, these systems

use supervised classification methods like boosting [16], support vector ma-

chine approaches [9] or maximum entropy models [24]. In this work, we pro-

pose techniques for automated feature engineering using deep learning and

task specific word embeddings. Feature engineering is often task specific and

not generalizable to different dialogue systems and conversational agents, thus

limiting the reuse of existing systems.

8
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2.2 Deep Learning in NLP

Fully connected feedforward neural networks can be used in classification

problems, or even in more complex prediction problems. Superior accuracy can

be achieved given the non-linearity of the network and the ability to easily in-

tegrate pre-trained word embeddings. Using a fully connected feedforward net-

work instead of a linear network, in addition to using pre-trained word vectors,

has resulted in drastic improvements in syntactic parsing. Multilayer feedfor-

ward networks provide superior results on sentiment classification and factoid

question answering, evident from their performance in language modeling [25].

Convolutional and pooling architectures [1,20] allow the model to learn to find

local indicators, regardless of their position, and hence networks using such

architectures are good at complex tasks like sentiment classification, short-

text categorization, relation type classification between entities, event detec-

tion, paraphrase identification semantic role labeling and question answering.

While convolutional and pooling architectures allow us to encode arbitrarily

large items as fixed size vectors capturing their most salient features, they fail

to preserve most of the structural information present in natural language.

This drawback is not seen in recurrent neural networks which are designed to

model sequences and recursive networks which handle trees [25].

9
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2.3 Feature Representation in NLP

In deep learning, there are two key approaches for representing input fea-

tures. The first and the most frequently used approach is dense vectors [26,27],

and the second is one-hot representations. The length of one-hot representa-

tions or one-hot vectors [28] is equal to the number of distinct features and even

though there is no evidence as to which is a better approach, the performance

of sparse or dense vectors.

One-hot representations are generally memory consuming, and unless there

are very few unique possibilities of the predictor variables, one-hot encoding is

not frequently used in natural language processing since the input vector grows

exponentially with respect to the number of unique categories per variable [29].

The second approach and more common approach is dense representations. In

a dense representation, each feature in a d-dimensional space will be a vector

of size d. Similar features will have similar vectors and thus these low dimen-

sional dense vectors are better than high dimensional sparse one-hot encoded

vectors [26,27].

10
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2.4 Common Non-Linearities in Neural

Networks

Non-linearities (denoted as g) take a single input and perform a fixed math-

ematical operation on it based on the definition of the activation function. A

particular non-linearity can be more appropriate for a certain NLP task than

another non-linearity [29]. Some common non-linearities are shown in equa-

tions 2.1, 2.2, 2.3 and 2.4:

Sigmoid Transformation : The Sigmoid function transforms each input

into a range of [0, 1]. This function is defined as:

� =
1

1 + e

�x

(2.1)

Hyperbolic Tangent : The hyperbolic tangent transforms each input into

the range [�1, 1]. This function is defined as:

tanh(x) =
e

2x � 1

e

2x + 1
(2.2)

Hard Hyperbolic Tangent : The hard hyperbolic tangent function is faster

11
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to computer than the standard hyperbolic tangent and takes derivatives of:

hardtanh(x) =

8
>>>>>>>><

>>>>>>>>:

�1 when x < 1

1 when x > 1

x otherwise

(2.3)

Rectifier Linear Unit : This transformation clips negative inputs to 0. Re-

LUs do not saturate gradients and instead act to diminish and eliminate them.

This behavior is fundamentally different from sigmoid and tanh functions and

is thus more suitable for Deep Neural Networks. ReLU is defined as:

ReLU(x) =

8
>>><

>>>:

0 when x < 0

x otherwise

(2.4)

Generally, ReLU performs better than tanh functions because ReLU sys-

tems do not saturate the gradient. However tanh functions perform better

than sigmoid functions because their outputs focus around zero.

12
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2.5 Output Transformations in Neural

Networks

The output layer vector can also be transformed, most commonly using the

Softmax function, producing a vector of non-negative real numbers that sum

to one, i.e., a discrete probability distribution over k possible outcomes. This

transformation however is used only when modeling a probability distribution

over the possible output class. For this method to be effective, it is used in

conjunction with a probabilistic training objective like cross-entropy [29] .

2.6 Loss Functions in Neural Networks

While training a neural network, the objective is to maximize the agree-

ment between the predicted output y

0 and the true output y. A loss function

L(y0, y) is defined to quantify this agreement, in the form of a numerical score.

The parameters of the network, including matrices, biases and embeddings

are, hence, modified so as to minimize the loss across the training examples.

Common forms of loss functions that have been studied in the deep learning

literature by LeCun et al [30,31]

Hinge Losses : Hinge losses, also known as margin losses, are used with

a linear output layer. They are most useful when a hard decision rule is re-

13
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quired and class membership probabilities are not needed. These functions are

described as:

Lhinge(binary)(y
0
, y) = max(0, 1� y ⇤ y0) (2.5)

Binary hinge loss ensures that the binary classification is correct, by a mini-

mum margin of 1. As per hinge loss, the loss is 0 when the predicted and true

output vectors share the same sign and |y| >= 1. Otherwise, the loss is linear.

In the case of multi-class scenarios the loss function is expressed as:

Lhinge(binary)(y
0
, y) = max(0, 1� (y0

t

� y

0
k

)) (2.6)

Let y = y1, ....yn be the output vector, and y be the one-hot vector for the correct

output class. Let t = argmax

i

y

i

be the correct class, and k = argmax

i 6=t

y

i

be the

highest scoring class such that k 6= t. Since the classification rule is defined as

selecting the class with the highest score, multi-class hinge loss tries to score

the correct class above all other classes with a minimum margin of 1.

Log Loss : The log loss variation of hinge loss has an infinte margin and

is defined as:

L

log

(y0, y) = log(1 + exp(�(y0
t

� y

0
k

)) (2.7)

Categorical Cross-Entropy Loss : Categorical cross-entropy loss, also

14
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known as negative log likelihood, is defined as

L

cross�entropy

(y0, y) = �
X

i

y

i

log(y0
i

) (2.8)

This loss function measures the dissimilarity between y(true label distribution)

and y

0(predicted label distribution, usually assumed to have been transformed

by the Softmax activation function), and is useful when we want a probabilis-

tic interpretation of the scores. Class membership conditional distribution is

defined as: y
i

= P (y = i|x).

Ranking Loss : The margin-based ranking loss is defined for a pair of

correct and incorrect examples. It attempts to score (rank) correct inputs over

incorrect ones with a minimum margin of 1. This loss function is defined as:

L

ranking(margin)(x, x
0) = max(0, 1� (NN(x)�NN(x0))) (2.9)

Here, NN(x) is the score assigned by the network for input vector x.

2.7 Neural Network Training

Neural network training is done by primarily minimizing a loss function

over a training set. A gradient-based method is used for training the weights

of the neural network. The various training models differ in method of compu-

15
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tation of error estimate, and in setting the parameters in the direction of the

gradient.

The most common Neural Network training procedure is Stochastic Gra-

dient Training or SGD [32]. SGD is a general optimization algorithm which

attempts to set the parameters ✓ of the loss function f(✓), such that total loss

of f is minimum over the training examples while training a neural network.

SGD broadly samples a training example, computes the gradient of error on the

example with respect to ✓ (assuming input and expected output as constants),

and finally updates ✓ in the direction of the gradient, scaled by a learning rate

⌘

k

.

One of the methods to compute the gradients of the network’s error with re-

spect to the parameters is the backpropagation algorithm, which is essentially

computing the derivatives of a complex function using the chain rule.

16
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Proposed Approach

3.1 Word Embeddings Approach

3.1.1 Word Embedding Initialization

Word Embeddings are a key component in neural networks in natural lan-

guage processing. Essentially, in word embeddings, each feature is represented

as a vector in low dimensional space. Currently for pre-initialization GloVe [33]

and Word2Vec [34] approaches are used for word embeddings.

Word2Vec: Word2Vec [34] is one of the most commonly used word em-

bedding technique for treating words as a feature vector for the neural net-

work. The word2vec method essentially treats words as atomic units where

they train on extremely large datasets, such as the google news dataset, which

17
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has billions of words. This method produces effective high dimensional word

vectors and eventually associates words with points in space. The spatial dis-

tances show syntactic similarities (tall: taller::short: shorter), as well as they

show interesting relationships ( vector(King) - vector(Man) + vector(Woman) =

vector(Queen)).

The fundamental idea behind word2vec is the distributional hypothesis, i.e

words are characterized by the company that they keep. CBOW and Skip-

gram [34] are the approaches for the learning the word embeddings. CBOW

or Continuous Bag of Words predict the current word w given only the context

C. Skipgram on the other hand predicts words from context C given word w.

Skipgram produces better word vectors for infrequent words. CBOW is faster

by a factor of window size, and generally finds better word vectors for large

corpuses.

GloVe : [33] The statistics of word occurrences in a corpus is key to any

unsupervised methods for learning word representations. The two classes of

methods for learning distributional word representations: count-based and

prediction-based, both explore the word-word co-occurrence statistics of the

corpus. Count-based method, however, captures the global statistics more ef-

ficiently. GloVe [33], for Global Vectors, utilizes the advantage of count data

while simultaneously capturing the meaningful linear substructures prevalent

in recent log-bilinear prediction-based methods.

18
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This global log-bilinear regression model combines the advantages of the

two major model families in the literature: global matrix factorization similar

to latent semantic analysis (LSA) and local context window similar to skip-

gram [34] model. Methods like LSA efficiently leverage statistical information

but do not perform well on the word analogy task, indicating a sub-optimal

vector space structure. On the other hand, methods like skip-gram may do

better on the analogy task, but they are unable to utilize the statistics of the

corpus well since they train on separate local context windows instead of on

global co-occurrence counts. GloVe efficiently leverages statistical information

by training only on the non-zero elements in a word-word co-occurrence matrix,

rather than on the entire sparse matrix or on individual context windows in a

large corpus.

3.1.2 Word Embedding Training

The pre-trained vectors can either be treated like a static fixed vectors that

are not updated during training or can also be updated along with the entire

network in which case the vectors will get reoriented based upon the task at

hand even with some form of pre-initialization. In the current implementation

of the code, we have three possibilities as has been described below.

Random Initialization Model : In this method the embedding vectors

are initialized in a random fashion and like other parameters of the neural net-

19
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works, such as the weight and learning parameters, the word embeddings are

learned during training. The approach that followed was to initialize between

[�1
2d ,

1
2d ], where d is the number of dimensions.This process enables having task

specific initializations but does not necessarily perform optimally. Further this

approach can not generalize well for new words that have not been seen in the

training example.

Static Word Vectors : In this method the word vectors are static from the

pre-trained word embedding models word2vec or glove. In the case of static

embeddings, all the words including the unknown ones were initialized and

are not updated during training.

Non-Static Word Vectors : In this method the word vectors are updated

after the initialization with the pre-trained word embeddings from word2vec or

glove. In this case, the embeddings of all the words including the unknown ones

were initialized with the pre-trained word vectors, and they get updated during

the training. This is especially well suited for task specific word embeddings.

20
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3.2 Traditional Deep Learning Architec-

tures

3.2.1 Convolutional Neural Networks

Single Layer CNN Implementation: One of the most common require-

ments in deep learning in Natural Language processing is to make predictions

on ordered sets of items, which can involve words in a sentence or sentences in

a document. From sentences one may need to predict the sentiment (positive,

negative or neutral) of a sentence, where some words convey more meaning

than the others where not only the order of words is important but so is the

position. For example the two sentences, “It was not good, it was actually quite

bad” and “It was not bad, it was actually quite good”, have the same words,

but different ordering and completely opposite intents. In cases like this, bag

of words, or n-grams will not work very effectively or will result in huge and

sparse embedding matrices. In this case where convolutional neural network

architectures work particularly well and are a robust and elegant solution to

the problem. Convolutional Neural Networks utilize layers with convolving

filters that are applied to local features. This technique was popularized by

LeCun [35] and have since then been used in a wide variety of NLP tasks like

semantic parsing [36], search query retrieval [37], sentence modeling [20], and
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other traditional NLP tasks in this paper by Collobert [26].

The proposed implementation of CNN, there is one layer of convolution ap-

plied on top of the word vectors as shown in Figure 3.1 . There are three

possible word vectors that can be applied. The first is a randomly initialized

word vector which then trains as the network updates along with the weights.

The second is a pre-trained word vector (like the word2vec model trained via

word2vec approach or the Glove vector trained on the twitter corpus) where

the word vector does not update, that is remains static. In the third and the

final implementation, the pre-trained vectors described above update and the

word embeddings are oriented in the d-dimensional vector space that are task-

specific. This implementation also allows for the possibility of having both

pre-trained and task-specific vectors by having multiple channels [1] for clas-

sification tasks. This is similar to Razavian’s approach [38] that used feature

extractors from a different model; it performed quite well on an image clas-

sification task even when the classification task was very different from the

original task for which the feature extractors were trained.

The convolution operation involves multiple filters which is applied to a

window of words which produces a new feature. Each filter is applied to each

possible window of words in the sentence to produce a feature map and then

max pooling over time operation is applied over the feature map to take the

maximum value as the feature, which essentially corresponds to capturing the
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Figure 3.1: Convolutional Neural Network, Source: Yoon Kim [1]

most important feature of the sentence. Thus, because of padding and then

taking the max pool operation, it can very easily deal with sentences of any

length. In the given library the filter lengths can be varied along with dropout

probabilities, and the training is done with stochastic gradient descent over

shuffled mini batches with the adadelta update rule.

3.2.2 Recurrent Networks

In natural language it is quite common to deal with sequences of units like

words in case of sentences, sentences in case of documents and so on. The

previous network architectures, feed-forward architectures and convolutional

neural networks suffer from fixed-length inputs and despite padding sentences

and documents perform and give sub-optimal results. RNNs or Recurrent Neu-
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ral Networks [25] allow representing arbitrarily sized structured inputs in a

fixed-size vector, while paying some attention to the sequence in which the in-

put was observed.

RNN Architecture : RNNs are good with sequences as was shown by Ling

et al [39]. For instance, if one wants to predict the next word in the sequence

xi,....,xj, a RNN will take an ordered list of inputs, that is the words that just

came before it and try to predict the next word. Essentially RNNs as shown

in Figure 3.2 are recurrent in the sense that they perform the same task for

every element of the sequence. An alternative way to think about this is that

RNNs have memory which captures information about the calculation from

the previous stages. Thus in theory RNNs can model long sequences, but in

practice simple RNNs do not perform well beyond a few steps.

Figure 3.2: RNN sequence folded and unfolded, Source: Nature

RNN Training : The training is slightly different from training feedfor-
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ward networks and convolutional neural networks in that, the same parame-

ters are shared across many parts of the computation. To train an RNN, thus

one needs to unroll the sequence, that is in order to calculate the gradient at

t=3, one would need to backpropagate 2 steps and sum up the gradients. This is

known as the BPTT or Back Propagation Through Time [40]. Now despite the

RNN theory, RNN training does not work well beyond a few steps because of

two key problems known as vanishing and exploding gradient problems. Now

modifications of RNN, specifically LSTM [41] (Long Short Term Memory) and

GRU [42] (Gated Recurrent Units) were designed to mitigate the vanishing

gradient problem.

Bidirectional RNNs or Deep Bidirectional RNNs : This type of net-

work is equivalent to an RNN but in this case the output at time t, may not

only depend on the previous elements in the sequence but also on the future

time steps. One particular example of the bidirectional RNN [43] would be to

predict the missing intent in an intent classification task, or a missing word in

a sequence by looking at either side of the word. So even though the two RNNs,

which is the forward computation and the backward computation flow indepen-

dently of each other, the error gradient at position i will flow both forward and

backward through the two RNNs as shown in Figure 3.3

Long Short Term Memory Networks : LSTMs (Long short term mem-

ories) [41] are a special kind of RNN that is capable of learning long term de-

25



CHAPTER 3. WORD EMBEDDINGS

Figure 3.3: Deep bidirectional RNN, source: Wildml.com

pendencies without suffering from the vanishing gradient problem. The main

idea behind LSTM networks is that they have a vector, also known as memory

cells that can preserve gradients across time. Access to the memory cell is con-

trolled by Gates that are a way of optimally letting information through. They

are composed out of sigmoid neural net layer and a pointwise multiplication

operation. Thus, the sigmoid layer outputs a number between zero and one to

control the amount of information that should flow through the gate. There
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are three gates, the input, forget and the output gate. The gate values are com-

puted based on linear combinations of the current input x

j

and the previous

state h

j1, passed through a sigmoid activation function. An update candidate

g is computed as a linear combination of x

j

and h

j1, passed through a tanh

activation function. The memory c

j

is then updated: the forget gate controls

how much of the previous memory to keep (c
j1, f), and the input gate controls

how much of the proposed update to keep (g
i

). Finally, the value of h
j

(which

is also the output y

j

) is determined based on the content of the memory c

j

,

passed through a tanh non-linearity and controlled by the output gate. The

gating mechanisms allow for gradients related to the memory part, c
j

to stay

high across very long time ranges.

Gated Recurrent Unit : A slight variant of the LSTM is the gated recur-

rent unit or GRU [42]. The GRU combines the forget and the input gates into

a single update gate. The resulting model looks like Figure 3.4 and has been

growing increasingly popular. There are other variations of LSTMs but they

are quite similar [44].

3.2.3 Recurrent Convolutional Neural Networks

Recurrent networks have the ability to capture contextual information. Pre-

viously mentioned, RNNs capture later words better than words that appear

earlier. Now this reduces the effectiveness of modeling the semantics of the
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Figure 3.4: Gated recurrent unit

entire sentences since the key components could technically appear anywhere

in the sentence instead of appearing towards the end of the sentence. C on-

volutional neural networks are more easily able to determine discriminative

phrases in a text with the max pooling layer. The issue with convolutional neu-

ral networks is that it is difficult to determine the window size, and that may

result in the loss of critical information if the window size is small, and alter-

natively having excessive information if the window size is large. Thus, to ad-

dress the aforementioned limitation Recurrent Convolutional Networks were

created [2]. Essentially a recurrent convolutional network is a bi-directional

RNN, that introduces considerably less noise compared to a traditional win-

dow based network to capture the contextual information. A max pooling layer

that automatically judges which features play a key role in the classification

task is then applied to capture the key component of the text. This approach

outperforms previous state-of-the-art in 3 text classification tasks, the 20News

group dataset, the ACL anthology network dataset and the Stanford Senti-
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ment treebank dataset [2]. The structure of a recurrent convolutional network

as was shown in the paper [2] has been shown in Figure 3.5 This figure is a

partial example of the sentence A sunset stroll along the South Bank affords

an array of stunning vantage points, and the subscript denotes the position of

the corresponding word in the original sentence.

Figure 3.5: Fig Source: Bengio et al. [2] The structure of the recurrent convo-
lutional neural network

3.3 Proposed Architectures

The proposed architectures thus have three key components a word embed-

ding initialization layer, a recurrent neural network layer and a convolutional

neural network layer. The embedding layer can have task specific embeddings

trained through word2vec or glove. The recurrent layer, which can be a simple

recurrent neural network, a long short term memory network or a gated recur-
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rent unit. This is followed by multi-filter convolutional neural networks. The

entire architecture has been shown in Figure 3.6
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Figure 3.6: Final proposed architecture
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Chapter 4

System Evaluation and

Validation

4.1 Evaluation on TREC Dataset

The TREC dataset has 5500 questions in 6 categories. The categories are

shown Table 4.1. The TREC test set has 500 questions. A multi-channel

version of a CNN along with an RNN (Simple RNN, GRU or LSTM) has been

implemented for evaluation.
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Coarse Fine
ABBREVIATION Abbreviation, expansion
DESCRIPTION Definition, description, manner, reason

ENTITY

Animal, body, color, creative, currency,
medical disease, event, food, instrument,
language, letter, other, plant, product,
religion, sport, substance, symbol, technique,
term, vehicle, word

HUMAN Description, group, individual, title
LOCATION City, country, mountain, other, state

NUMERIC
Code, count, date, distance, money, order,
other, percent, period, speed, temperature,
size, weight

Table 4.1: TREC QA data variable descriptions

WEI Method CNN CNN + SimpleRNN CNN+ GRU CNN+ LSTM
Random 0.8927 0.2416 0.9138 0.9134
Word2vec Static 0.5361 0.2395 0.4138 0.3909
Word2vec Non-Static 0.7097 0.2295 0.9128 0.9156

Table 4.2: TREC Dataset results using the proposed architectures

RNNs capture temporal dependencies, and CNNs capture the most impor-

tant part of the sentence through max pooling. Even though RNNs can capture

local dependencies, in practice, they don’t generalize well for earlier time steps

because of the vanishing gradient problem. The TREC dataset [17] involves

classifying a question into 6 question types, whether the question is about a

person, location, numeric information, etc. as shown in 4.1. In our example

cases we found that static word embeddings performed the worst irrespective

of the network architecture which essentially shows how the word embeddings

are critical to the performance of the overall architecture. Simple RNNs did

not perform well primarily because of the vanishing gradient problem. Long
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Short Term Memory Architectures and Gated Recurrent Units performed com-

parable to existing state-of-the-art approaches. This architecture also did not

use any hand coded feature as in previous SVM approaches [9].

4.2 Use Case: Virtual Human Medical

Training System for Interprofessional

Education

4.2.1 Background and Summary of Problem

In the realm of health care practices, inter-professional education (IPE) has

been identified as a key mechanism to prepare students to function effectively

in health care teams. IPE has been shown to improve knowledge and attitudes

about collaboration and team functionality; however, studies using simulated

IPE experiences have revealed only short-term associations between simula-

tion and inter-professional collaborative behaviors [45]. According to the Joint

Commission [46] , communication failure within health-care teams is the lead-

ing cause of medical errors. Inter-professional education (IPE) aimed at im-

proving communication among members of the health care team plays an es-

sential role in preparing students and clinicians to deliver safe high-quality
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team-based collaborative patient care.

Growing evidence supports the position that IPE and collaborative care are

essential elements of health care education and practice [47, 48]. Nonethe-

less, there remains significant scheduling, resource, and faculty development

barriers to integrating IPE experiences in meaningful and measurable ways

[49–51]. Furthermore, there is not a standard mechanism for IPE training and

assessment in health professions education making IPE challenging to evalu-

ate.

A few institutions are developing and testing Inter-professional Teamwork

Objective Structured Clinical Examinations (ITOSCEs) for the assessment of

teamwork competencies using standardized patients [10–14]. Students who

participate in one of these IPE training programs are assessed using a Col-

laborative Behaviors Observational Assessment Tool (CBOAT), which mea-

sures the specific inter-professional teamwork behaviors associated with the

IPE competency goals for that IPE experience [11,13].

We have developed a reusable architecture that addresses the issue of Vir-

tual OSCEs (Objective Structured Clinical Examinations) in IPE scenarios.

The primary purpose of the design of the architecture was not to have a Virtual

Human System that is general purpose and used in a wide range of scenarios

like VHToolkit [52], but instead focused entirely on the specific needs of Inter-

professional Teamwork Objective Structured Clinical Examinations education
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for health profession students and clinicians. This system is also designed to

be lightweight enough to be deployed over the web to have the widest poten-

tial use to participants. Additionally, the architecture of the system itself is

designed to allow for rapid development of new training scenarios.

We have developed a virtual human training tool called the Virtual Patient

Provider Platform for Inter-professional Teamwork Objective Structured Clin-

ical Examinations (VPP ITOSCE) that integrates virtual human technology

with evaluated, structured methods of IPE education. In the VPP ITOSCE, a

nursing or medical student performs an assessment of a virtual patient and

must engage in teamwork communication with a virtual provider while con-

tinuing to provide care to the virtual patient. The student is scored on inter-

view and assessment skills, sequenced steps in patient management, and col-

laboration with the virtual provider using the validated checklist of behaviors

described in an associated Collaborative Behaviors Observational Assessment

Tool (CBOAT). As an initial prototype, we have integrated a scenario that al-

lows a nursing student to interact with a virtual patient in a Rapid Response

ITOSCE. To demonstrate the entire architecture this VPP ITOSCE focuses on

a patient suffering from an acute case of Chronic Obstructive Pulmonary Dis-

order (COPD) that is refusing treatment. The user’s goal is to interact with the

virtual patient and provider and the virtual environment in general in order to

successfully address the patient’s concerns and resolve the situation. We have
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also prototyped the intelligent response system utilizing retrospective data ob-

tained from videotaped interactions of students with standardized patients and

providers in the Rapid Response ITOSCE and associated CBOAT implemented

for all nursing and medical students at the University of Virginia in 2013 and

2014.

4.2.1.1 Clinical Training with Simulations

There is evidence that experiential learning, which is defined as learning

that takes place as a result of an encounter with an experience that is planned

by teachers within a course or curriculum, [53] is an effective approach to learn

IPE concepts [54]. Students participating in high-fidelity and standardized pa-

tient IPE simulated scenarios are provided experiential, reflective and contex-

tual educational experiences in which to learn the skills required to practice

collaboratively. Through simulated IPE scenarios, students are fully engaged

in the educational experience, and must integrate the required IPE knowledge,

behaviors, and competencies in order to respond effectively in a collaborative

team practice setting. Following the simulation, they also have the opportunity

to observe the outcomes of their actions and clinical decisions through debrief-

ing, videotapes, and observer feedback. Thus, simulation provides a realistic

practice setting in which to learn the concepts, behaviors, and competencies of

collaborative practice without the possibility of placing a live patient at risk. In
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one study, it was demonstrated that simulated operating room (OR) team train-

ing increased self-efficacy related to interdisciplinary team work [55]. Further-

more, there is accumulating evidence that competencies learned through sim-

ulation are transferred to the practice setting [56].

4.2.2 System Architecture

The VPP ITOSCE tool is designed to address the needs of interprofessional

education among clinicians. We first demonstrate the feasibility of the VPP

ITOSCE to a Rapid Response scenario which requires medical or nursing stu-

dents to interact with a virtual patient as well as collaborate with a virtual

provider in treating the patient. Based on these specific needs of IPE the sys-

tem uses state-of-the-art techniques in the development of virtual humans and

is portable and lightweight for web-deployment. The Rapid Response Scenario

was chosen because students must engage in patient communication and com-

plete an assessment of the patient’s condition while under stress and then uti-

lize interprofessional team collaboration competencies with other health-care

providers to resolve the patients concerns promptly.

The system architecture as in Figure 4.1 is broadly divided into the follow-

ing categories:

1. Scenario

38



CHAPTER 4. SYSTEM EVALUATION AND VALIDATION

Figure 4.1: Architecture of the COPD IPE system

2. Dialogue Classification

3. Animation Module and Behavior Generation

4. Evaluation Tool or Grading Unit

The scenario introduction is the first stage which is animation and video

combined to introduce the present condition of the patient. This involves a

brief medical history of the patient and what is expected of the nurse in the
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Figure 4.2: Virtual Patient Provider ITOSCE Platform

training session.

The conversation manager and the knowledge base concentrates on not only

two way conversation but extends to multiparty conversations. The team build-

ing aspect of IPEs is repeatedly highlighted in the various training modules.

The animation module controls activating the correct animation given infor-

mation regarding user actions in the environment and statements addressed

towards the virtual patient or the virtual provider.

The grading unit controls the automated evaluation of the nurse. The be-

havior of this unit is closely integrated with the functions of the conversation

manager and also communicates with the state of the virtual environment re-

garding patient condition and actions taken to examine the patient.
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4.2.3 Scenario

The scenario developed into the VPP ITOSCE portrays a virtual patient

with COPD exhibiting shortness of breath. The motivation behind developing

this rapid response scenario is that COPD affects more than 24 million Amer-

icans and claims over 120,000 lives each year [57]. The student and a virtual

clinician must work together to convince the virtual patient to take his/her

breathing treatment as shown in the Figure 4.2. Another Critical Care/Rapid

Response scenario under development involves sepsis care which is the cause

of approximately 570,000 emergency department visits annually and results

in approximately 200,000 deaths [58]. In this scenario, the student must as-

sess a virtual patient for sepsis, and work with a virtual clinician to provide

effective sepsis care treatment. Using the Collaborative Care Best Practice

Models approach to design IPE experiences, other scenarios beyond the Criti-

cal Care/Rapid Response scenarios can be developed which pertain to different

practice settings and the specific variables unique to the interaction and struc-

ture of the collaborative team in those settings. Two examples are Chronic

Progressive Illness scenarios such as a pediatric patient with Duchenne mus-

cular dystrophy and Transitions for the Cognitively Impaired scenarios such

as an elderly patient with Alzheimer’s Disease, who is making the transition

from the hospital to home.
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4.2.4 IPE Dialogue System and Data

Currently, the majority of virtual human interactions involve only a single

user and one or two virtual human conversation partners. The user is predom-

inantly the lead of the conversation with scenario scripts using a natural lan-

guage processing approach or a speech-trigger matching approach that links

leader utterances (typed, spoken, or selected from a multiple choice list) to a

particular virtual human and the appropriate response [59]. These approaches

work well for information-gathering interactions (e.g. doctors speaking with

patients [60]). However, team-training and other multiparty interactions are

usually goal-oriented interactions centered on the patient. In such interac-

tions, each individual has goals for the information and actions they are striv-

ing to achieve. Prior work into multiparty dialogue systems has generated sys-

tems capable of multiparty conversations focused on open-ended conversations.

However, since the rapid response CBOAT is structure and primarily driven by

the user interactions, we will extend conversational modeling infrastructures

described in [59,61,62].

The proposed dialogue management framework thus needed to do fine-grained

dialogue classification and intent recognition for the specific domain of Chronic

Obstructive Pulmonary Disorder or COPD. The dialogue system should be ca-

pable of fine-grained analysis and distinction of the various components of the

evaluation of the nursing student in training as shown in Figure 4.3.
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The COPD IPE dataset was transcribed from 54 videos of nursing students

with standardized patients. Each of these videos had roughly 20 interactions

with a total of 2300 sentences.

The COPD IPE data has conversations that can be broadly divided into

categories like introduction, patient condition inquiry, reassurance and so on

as shown in Figure 4.3. Some sample questions and the corresponding answers

to each of the categories is shown in Figure 4.3.

4.2.5 Evaluation on the COPD IPE Data

The COPD IPE data was split into a training set with 2000 sentences and

a test set with 300 sentences with an approximately equal number of each

available category in the test set, i.e from each possible category for SUC in

the IPE dataset- Figure 4.3.

For the IPE COPD Scenario, since the number of sentences in the training

example was much lower than the TREC dataset, CNN non-static performed

equally well compared to CNN-LSTM non-static and CNN-GRU non-static.

This was because the number of unique words in the vocabulary was very low.

Since there is no existing benchmarks to compare this result, we performed

a test set evaluation on the COPD dataset and achieved an accuracy of 0.9833.

These results demonstrate the effectiveness in the proposed approach for

semantic utterance classification in context-specific dialogue systems. This

43



CHAPTER 4. SYSTEM EVALUATION AND VALIDATION

Figure 4.3: COPD IPE sample conversation and SUC categories
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Architecture Type 3,4 filters 2,3,4 filters 2,3,4,5 filters
CNN Static 0.4315 0.4254 0.3824
CNN Rand 0.7035 0.8139 0.7751
CNN Non-Static 0.6585 0.6912 0.7239

Table 4.3: Final Results on the optimal number of filters in the COPD IPE
dataset

CNN CNN + SimpleRNN CNN + GRU CNN + LSTM
Random 0.9506 0.9684 0.9560 0.9431
Word2vec Static 0.4872 0.5762 0.5814 0.5612
Word2vec Non-Static 0.9666 0.9833 0.9640 0.9586

Table 4.4: Results on the COPD IPE dataset

dataset is more representative than the TREC data for intent determination

since the questions are all from the same domain.
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Conclusions and Future Work

5.1 Summary

This thesis defines the multi-label classification problem for intent deter-

mination or semantic utterance classification. We proposed a deep learning

methodology specifically targeted at SUC. In the proposed method, the random

or pre-trained word embedding is fed into a type of Recurrent Neural Net-

work (LSTM, GRU or a Simple RNN) to capture dependencies among words

in the sentences. The output from the RNN is then fed into multi-channel

convolutional layers to capture local semantics. The max over time pooling lay-

ers capture global semantic features followed by a fully connected layer with

dropout to summarize the features. Our experiments show that this approach

outperformed traditional feature engineered approaches for intent determina-
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tion tasks. Shallow CNNs captured semantic similarities better than Deep

CNNs because in intent determination sentences are generally short with 6-8

words per sentence. For longer sentences, deep CNN’s performed better as in

sentence classification tasks [1]. These methods lay the foundation for imple-

menting high performance, context-specific dialogue systems.

5.2 Limitations

One of the key limitation of the work proposed in this thesis is that the

TREC dataset and COPD IPE dataset are much smaller than those tradition-

ally used in deep learning architectures. Even though we used shallow net-

works in this thesis, and the methods performed comparable to existing bench-

marks, the methodology needs to be validated with larger, more heterogeneous

datasets. Since the improvements in performance were minimal from CNN

to CNN with RNN, it would be interesting to see if stacked CNNs with pre-

training of each layer can perform comparable to the results that have been

obtained in this thesis.

Another limitation of this work is that SUC is domain specific. Open-domain

systems do not have a robust approach to question answering, and it is ex-

tremely difficult to model such large vocabulary. The work presented here fo-

cuses on datasets with a small number of categories, and it is unclear how
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robust this approach will be with increasing numbers of categories. Hierarchi-

cal CNNs along with the network architectures that have been mentioned in

this thesis are one potential approach.

5.3 Future Work

The proposed deep learning library implements many architectures for in-

tent determination. Even though these perform optimally for the TREC dataset

[17] and the COPD IPE dataset, these methods need to be validated with more

data to determine optimal network architectures for intent determination. In

future work, methods for domain detection and slot filling will also be inte-

grated into the deep learning library.
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CBoat Grading Criteria
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Figure A.1: CBOAT grading scale: Part 1
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Figure A.2: CBOAT grading scale: Part 2
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