The Role of Software in Providing Funding for After-School Programs

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science
University of Virginia * Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree
Bachelor of Science, School of Engineering

Tae Whoan Lim
Spring, 2020.

Technical Project Team Members
Victor Cruz
Jack Durning
Nadia Hassan
Siddharth Ghatti

On my honor as a University Student, I have neither given nor received
unauthorized aid on this assignment as defined by the Honor Guidelines
for Thesis-Related Assignments

Table of Content

List of Figures
Abstract

1. Introduction
1.1 Problem Statement
1.2 Contributions

2. Related Work

3. System Design
3.1 System Requirements
3.2 Wireframes
3.3 Sample Code
3.4 Sample Tests
3.5 Code Coverage
3.6 Installation Instructions

4. Results
5. Conclusions
6. Future Work

7. References

o OO oo A~ W

11

12
12
14
15
21
22
22

27
28
30
31

List of Figures

Figure 1: Admin Perspective - Application
Figure 2: Admin Perspective - Approval
Figure 3: Admin Perspective- Dashboard
Figure 4: Homepage

Figure 5 : Login

Figure 6: Sign up

Figure 7: User Perspective - Application
Figure 8: User perspective - Dashboard

14
14
14
14
15
15
15
15

Abstract

The After-School Association of America (ASAA) is a national organization that sets
out to increase the number of schoolchildren who participate in after school activities and
handles funding requests for after-school activities from students, parents, and teachers and other
school officials. The founder of ASAA, Michelle Busby, created the organization with the
intention of deterring youth gang involvement.

Initially, the software system used to manage the organization did not have the full
capabilities of managing user accounts, funds, and data to combat the problem of having
insufficient funding to support after school programs. Working alongside Michelle Busby, we
created the funding application processing system for ASAA. We created this system to
streamline the process associated with processing funding applications through implementing
new functionality as specified by our client. In our implementation of the system according to a
set of specifications Michelle provided, we used Django, a Python-based web framework, and a
Scrum methodology to develop the software system over the course of various sprints, time
periods allotted to work on given features. We designated various issues to team members and
managed the project using Github, a version control system. The project enabled us to learn the
web framework and agile software development based on a set of base requirements that change
over the course of presenting the software product to the client, Michelle, and using her feedback
to enhance the application tailored to what she needs.

Additionally, we learned how to deliver a finished product to an external client as well as
management and completion of different requirements based on what is feasible for both the
developers and the client. Through conducting regular meetings with the client to update her on

progress, we learned about professionalism and interacting with a non-technical client about the

project to relay significant changes such that the client understands and is satisfied with the
product at the end of each sprint.

Ultimately, we finished every requirement that Michelle had initially wanted. This
opportunity to develop this technical solution for our client is significant because not only does it
solve a critical technical problem for our client and the efforts of her organization but it also
explores the role of the software in deterring youth gang membership and harmful activities
students would otherwise be engaged in during after-school hours by providing a means for

students across the country to receive better access to after-school activities.

1. Introduction

According to the Juvenile Justice bulletin published by the U.S. Department of Justice,
youth participation in gangs primarily occurs due to a need for protection, enjoyment, respect,
money, or influence from family and peers (Howell, 2010, p. 1-3). The Department of Justice
also published an overview of risk factors of delinquency that include difficulty concentrating,
low socioeconomic status, poor academic performance, and the presence of antisocial delinquent
peers. As a result, protective factors include commitment to school, recognition for involvement
in conventional activities, and friends who engage in conventional behavior as well (Shader,
2004, p.1-11). Rather than fostering school policies such as suspension, expulsion, and grade
retention that lead to more incidents of student misconduct and that disproportionately affect
minorities, the introduction of afterschool programs reduces crime by offering constructive

alternatives to youth involved in gangs (National Gang Center).

1.1 Problem Statement

In order to prevent youth gang affiliation in Virginia, the After-School Association of
America (ASAA) set out to increase the number of youth supported during out-of-school
programs and activities. ASAA believes that the involvement of both youth and adults after
school will lessen the chance that students will take part in gangs and violence (After-School
Association of America). In the United States, for every student currently enrolled in an
after-school program, there are two more students who would participate if programs were
available at their institutions that fail to offer them (Afterschool Alliance). To address this issue

and to reduce the overall youth involvement in gangs, ASAA’s mission involves providing

qualifying schools with funding and access to after-school opportunities to secure bright futures
for the students in the schools they work with. Despite the organization’s strenuous efforts to
provide funding towards after-school program administration, student fees, transportation costs,
and additional resources, the nationwide level of interest for creating after-school programs is
increasing at a rapid pace, and there is a need to keep up with the funding for these growing
programs in a greater number of schools (Spielberger, Axelrod, Dasgupta, Cerven, Spain, Kohm,
Mader, 2016, p.1-9). Since the ability to manage allocated after school program funds becomes
difficult without a proper technological system, our team has developed a technical solution that
involves the construction of a software system over the course of one academic year using
development intervals of roughly two weeks to manage ASAA funding and additional
information for after-school programs.

As the After-School Association of America makes an active effort to secure funding for
after-school programs, the current system for ASAA developed by software engineers features a
website which contains links to the organization information, program details, social
information, contact information, and a standard base-level donation page. However, the current
system for the organization has no structured way of allowing those who seek funding, the
primary users, nor organization administrators to register an account and manage their side of the
funding process directly through an interface. Given that there is no way for the users who
provide funding donations to register into a user database to continue to provide funds,
participating schools cannot submit detailed applications and information for funding sources
offered by ASAA. Furthermore, leaders of ASAA cannot manage user accounts created nor
process applications with all the necessary materials needed to affirm funding eligibility in an

effective and timely manner. If ASAA does not provide the means to support the growth of

after-school programs in the United States through software designed to manage data and
funding, a decrease in the number of programs due to insufficient funding will be detrimental to
students who benefitted from those programs and to those who did not have the opportunity to

experience the programs, only to turn to crime and violence as a result (Tanner, 2015, 1-2).

Therefore, our team has set out to implement a technical solution through the creation of
a web application constructed using the Django-Python programming framework with several
key features for the After-School Association of America to assist in funding and oversight of
programs. We took the concerns outlined above into consideration in our implementation of the
new system where the new system will offer user accounts, condensation, and quick lookup of
information for organization leaders within ASAA such that they can utilize the data efficiently
to grow the company and continue to combat issues with having insufficient funding for
afterschool programs to prevent youth from engaging in nonproductive and harmful activities
after school. In what follows, we outline our contributions and how our system is beneficial for

our client’s efforts to address the limitations of the previous system used by the organization.

1.2 Contributions

A key concern from ASAA noted above was the inability of participating schools being
able to submit detailed applications for funding. We have implemented a system with a detailed
application that features filterable applications organized on user type for a normal user
(applicant) or a higher user class (an administrator who should be able to review applications).
The system now has several different user classes for the purposes of providing funds, receiving

funds through an application creation portal that allows users (schools and students) to create

applications in a simplified manner, and for administrators to approve, deny, or request further
action when reviewing applications and managing funds allocated to users who receive funding.

Through these features, the application can be approved or rejected, and administrators
can request further information. Users can also leave comments under the application as well as
message each other through a direct messaging system within the application. Additionally, the
application allows every user class to see the status of submission (saved vs. submitted) as well
as the ability to delete applications. Another key concern that our system addresses is the need
for higher user classes (i.e. admins, superusers, and owners) to have a user management portal
that allows them to add new user accounts (and personnel within the organization into the system
as admins, superusers, and owners), delete user accounts of classes at the same level or lower
than them, and the ability to view all user accounts to look up information on users and their user
types in a facilitated manner.

Our applications also allow users with access to the application to edit the application
upon saving it and even after submission so that the most recently modified version is viewable
and available for approval. This addressed a previous issue that the organization had when they
were strictly using surveys as applications. Users previously could not modify a Google Form or
alternative survey form once submitted. Through our system, users are able to promptly provide
more information without needing to wait for the organization official’s response or revisions.
The system integrates a central database with encrypted information for security purposes to
easily monitor school and funding data for all parties who use the new user interface.

In an effort to facilitate communication between applications and members of the
organization, each user account comes with the ability to message anyone in the system such that

they can send messages and view their inboxes. Users can also leave reviews once applications

are submitted for approval, and these reviews are available for the administrators to evaluate and
make changes to the organization accordingly. As mentioned previously, the team used Github,
a version control system for software code, to continuously work on various feature versions of
the code and merge them all together to our final product once the team evaluated the code and
tested its functionality. Our team also used continuous integration testing using Travis CI
through unit tests, testing specific portions of code to test features as we develop. Every time we
attempted to incorporate a new feature branch into the main product, Travis CI would run all of
our tests to ensure the validity of the code.

Through our software implementation, we set out to research the use of software systems
to facilitate the creation and technological advancement of funding processes for after-school
programs because we wanted to determine how to manage different components involved using
a web interface so that more schools have access to funding and opportunities. Ultimately, our
goal was to design a system that would allow different user classes involved in these programs to
work together to encourage educational interests towards academic success and for prevention of
an otherwise insecure future.

The rest of this thesis is organized in four sections. In Section 2, related work is
presented. Section 3 illustrates the team’s approach to address the problem our software solution
aims to solve, details into our web-based application, system design. Finally, the results of our

work are discussed in Section 4, and Section 6 concludes this thesis.

10

2. Related Work

ASAA’s application funding system is quite unique as it is a software used to manage
applications and funding for afterschool programs within the organization. Therefore, the most
significant example of another system that managed funding for after school programs is the
previous system our client utilized and why the shortcomings of the old system highlight the
need for us to develop a more effective one. Previously, our client had used an online survey that
she created and would give out for users to fill out. It asked users to fill out their information.
They were not able to save or edit the application once it was submitted without having to
directly contact the owner. Our client would then manually process each application and email
each user individually on whether or not they were approved. Issues arose when users would
miss updates on their applications or typed in the wrong information on their application.
Overall, the process would take much longer to complete as emailing was the main way of
communicating to get notified or fix any errors. In this way, the previous ASAA funding system
is the most relevant example of related work that was developed for after-school program

management and funding.

11

3. System Design

Our system aims to manage funding applications that are sent in from users to the After
School Association of America. The workflow of the application is started by a user first
submitting a funding application to ASAA. These applications are then reviewed by the After
School Association of America to be either approved or denied. The application also keeps track
of information such as the amount of money that has been donated as well as demographics of
the schools that are funded. We developed the system using Django, a web development
framework in Python. We used Django due to the fact that it allows for easy integration between
the backend and frontend layers of the application. In addition, all members of the group had
some experience with Django. We have licensed the code under the Apache License Version 2.0,

a software license that ensures that the team satisfies the terms and conditions for use, reproduction,

and distribution of the software (Apache, n.d.).

3.1 System Requirements

System Requirements are extremely important to have in software projects as they dictate what
features need to be developed and be functioning in order to consider an application complete. In
addition, System Requirements allow for developers and clients to come to a common

understanding of what the application is. Below are our requirements:

Requirements for After-School Association of America

1. AsaUSER, I should be able to subscribe by providing the following information:
a. Email
b. First and Last Name
c. Phone Number

2. As a USER, I should be able to create a new application.

3. AsaUSER, I should be able to upload documents to the application.

12

b

10.
11.
12.
13.
14.

15.
16.

17.
18.
19.
20.
21.
22.
23.
24,
25.
26.
27.

28.
29.
30.
31.
32.
33.
34.
35.
36.
37.
38.

As a USER, I should be able to check the application status.
As a USER, I should be able to receive application status updates.
As a USER, I should be able to send emails to the admin.

a.

o a0 o

As a USER, I should be able to notice that the application has started with a link to return
to complete the application.

As a USER, I should be able to notice that the application was received.

As a USER, I should be able to notice that more documents are needed.

As a USER, I should be able to receive a notice of an approval.

As a USER, I should be able to receive a notice of a denial.

Asa USER I should be able to return to an application.

As a USER, I should be able to cancel an application.

As a USER, I should be able to edit an application after submission.
As a USER, I should be able to leave comments.

As an ADMIN, I should be able to review applications.

As an ADMIN, I should be able to cancel applications.

As an ADMIN, I should be able to manually add users.

As an ADMIN, I should be able to remove users.

As an ADMIN, I should be able to grant user access manually.

As an ADMIN, I should be able to send requests to users for additional information.

As a SUPER USER, I should be able to review applications.

As a SUPER USER, I should be able to cancel applications.

As a SUPER USER, I should be able to manually add users.

As a SUPER USER, I should be able to remove users.

As a SUPER USER, I should be able to grant user access manually.

As a SUPER USER, I should be able to send requests to users for additional information.
As a SUPER USER, I should be able to add admins.

As a SUPER USER, I should be able to deny applications.

As a SUPER USER, I should be able to move application to the next step.
As a SUPER USER, I should be able to approve an application.

As a SUPER USER, I should be able to deny an application.

As an OWNER, I should be able to review applications.

As an OWNER, I should be able to cancel applications.

As an OWNER, I should be able to manually add users.

As an OWNER, I should be able to remove users.

As an OWNER, I should be able to grant user access manually.

As an OWNER, I should be able to send requests to users for additional information.
As an OWNER, I should be able to add admins.

As an OWNER, I should be able to deny applications.

As an OWNER, I should be able to move application to the next step.
As an OWNER, I should be able to approve an application.

As an OWNER, I should be able to deny an application.

13

3.2 Wireframes

Like requirements, wireframes are also an integral part of software development. Wireframes
allow for an easy and visual method of communicating key aspects of an application including
functionality, layout, and content without delving into the means of implementation. This allows
for an easier understanding of expectations from the client. Below are the wireframes that we

used during the development process.

Submit

Figure 1: Admin Perspective - Application

Figure 2: Admin Perspective-Approval

Figure 4: Homepage
Figure 3: Admin Perspective -Dashboard

Figure 5 : Login Figure 6: Sign Up

Praviaus Haxt

Figure 7: User Perspective- Application Figure 8: User Perspective -Dashboard

3.3 Sample Code

The following sample code shows an example of a model data structure within our Django
application, a comment. These comments were featured underneath the applications such that
members of all user classes could leave comments (which have the fields author, application the
comment is associated with, text, and the data of the comment). The most significant model of
our system featured was the Application model (shown below); the fields of the application
model were all of the information our client requested (name, age, demographic information,

school, reasons for funding, dates for funding requests, etc.). We used these models in

15

conjunction with forms in order to create instances of the models saved in the central database of
our application such that they will be accessible later on. Lastly, functions defined in the
views.py files that begin with the keyword “def” can be used to control function and
programmatic behavior of our application by processing requests and handling manipulation of

the information displayed to the user and manipulation of information with the model instances.

Comment (mo
author = models.ForeignKey ("aa app er",on delete=models.CASCADE,related name

)
application =

models.ForeignKey ("funding appli on.Application",on delete=models.CASCADE, related n

text = models.TextField()

created date = models.DateTimeField(default=timezone.now)

on (models.Model) :

amount = models.DecimalField(max digits=6, null= , blank= ,decimal places=2)

school name = models.CharField(max length=50, blank= , null=)

Review Model to Hold Instances of Reviews

class Review (models.Model) :
review = models.CharField (blank=True, null=True, max length=500)
def str (self):
return self.review
__unicode (self):
return self.review

def get absolute url (self):

return '/aa_ app/dashboard/’'

This is the application model! It is our most important model that uses several
choices and various fields of different types along with accompanying questions on the

form. We use this model primarily in manipulations to funding applications and status

Role Choicesl = (
("Choicel', 'School Official of
qualified school'),
('"Choice2', 'Parent of student attending qualified school'),

('"Choice3', 'Student attending qualified School'),

Role Choices2 = (
("Principal', 'Principal/Assistant Principal'),
('Counselor', 'Counselor'),

('Teacher', 'Teacher'),

School Choices = (
("Private', 'Private'),
("Public', 'Public'),

)

State Choices = (

("In', 'In-state'),

('"Out', 'Out of State'),

Status_ Choice = (
('"Reject', 'Reject'),
("Approved', 'Approved'),
("Additional Info', 'Additional Info'),
('Pending', 'Pending'),

)

application id = models.AutoField(primary key= , editable=

application first name = models.CharField(max length=30, blank=True, null=True,
verbose name='First Name')

application last name = models.CharField(max length=30, blank=True, null=True,
verbose name='Last Name')

application email = models.CharField(max length=40, blank=False, null=True,

verboseiname:'ﬁmaiW Address')

phone regex = RegexValidator (regex=r'"[1{3}-1 1{3}

message="Invalid phone number format :XXX-XXX-XXXX")

zipcode regex = RegexValidator (regex=r {5} (?:]] {4})2$', message="Invalid

Zip Code Format")
application phone = models.CharField(validators = [phone regex],max length=12,
blank=True, null=True, verbose name='Phone Number')
application fund = models.CharField(max length=6, blank=True, choices=Fund Choices,
default=None, null = True,
verbose name='Are you applying for funds?')
application rolel = models.CharField(max length=60, blank=
choices=Role Choicesl, default=None, null = True,
verbose name='Which best describes your role?')
application role2 = models.CharField(max length=30, blank=True,
choices=Role Choices2, default=None, null = True,
verbose_name:'Whici best describes you?')
application school type = models.CharField(max length=30, blank=True,
choices=School Choices, default=None, null = True,
verbose name='Is your school public or private?')
application school name = models.CharField(max length=50, blank=True, null=True,
verbose name='What is the name of the school you represent?')
application school street = models.CharField(max length=50, blank=True, null=True,
verbose name='What is the school street number?')
application school zipcode = models.CharField(validators =
[zipcode regex],max length=50, blank=True, null=True,
verbose name='What is the zip code?')
application fund childcare = models.CharField(max length=30, blank=True,
choices=Fund Choices, default=None, null = True,
verbose name='Will any portion of the funds be used towards childcare?')
application fund received = models.CharField(max length=30, blank=True,
choices=Fund Choices, default=None, null =
verbose name='Have you received funds in the past 6 months from ASAA?')
fund regex = RegexValidator (regex=r ([1)* (. 1{1,2})?$', message="Invalid

Number")

application fund received amount = models.CharField(validators =
[fund regex],max length=20, blank=True,
verbose name='What is the total amount of funding you have received?')
application fund food = models.BooleanField(default=False,verbose name='Food")
application fund transportation =

models.BooleanField (default=False,verbose name='Transportation')

application fund travel = models.BooleanField(default=False,verbose name='Travel

expenses')
application fund registration =
models.BooleanField (default=False,verbose name='Registration fees')
application fund other = models.CharField(max length=100, blank=True, null=True,
verbose name='If the funds will be used for something other than the items
listed above please describe below.')
application fund support = models.CharField(max length=100, blank=True, null=True,
verbose name='What out of school activity will the funds you request support?')
documents = models.ImageField(upload to="documents/", blank=True,
null=True,verbose name='Please upload proof of the activity')
application state = models.CharField(max length=50, blank=True,
choices=State Choices, default=None, null = True,
verbose name='Is the activity in-state or out
of state?')
application student count = models.DecimalField(max digits=6, null=True,
blank=True,decimal places=0,
verbose name='How many students will the funds benefit if your application is
approved?',
validators=[MinValueValidator (Decimal ('0")) 1)
application student percent = models.DecimalField(max digits=6, null=True,
blank=True,decimal places=2,
verbose name='What percentage of students receive free or reduced lunch?',
validators=[MinValueValidator (Decimal ('0.00")) 1)
application fund request = models.DecimalField (max digits=6, null=True,
blank=True,decimal places=2,
verbose name='What is the amount of your funding request?',
validators=[MinValueValidator (Decimal ('0.00")) 1)
application date request = models.CharField(max length=30, blank=True, null=True,

verbose name='When do you need the funds by? Please allow 3 weeks for processing.')

application submit models.BooleanField (default=False)

application status =

models.CharField(max length=30,blank=True,choices=Status Choice, default="Pending")

graph view (request) :
queryset = out donation.objects.all ()

data source = ModelDataSource (queryset, fields = ['school name', 'amount'])

chart = BarChart (data source)

pie chart = PieChart (data source)

context = {'donations': queryset, 'chart':chart, 'piechart':pie chart}

return render (request, 'graph viewer.html', context)

export (request) :

data resource = DonationResource ()
dataset = data resource.export ()
response = HttpResponse (dataset.csv, content type='text/csv')

response['Content-Disposition'] = 'attachment; filename="donations.csv"'

redirect ('/aa app/data app/graph viewer')

return response

delete comment from application(request,comment pk) :
comment to delete = get object or 404 (Comment, pk=comment pk)
comment to delete.delete ()

return redirect('/aa app/dashboard/")

ApplicationModelForm (forms.ModelForm) :
Meta:
model = Application

exclude = ["application submit","application status"]

SignUpForm (UserCreationForm) :
Meta: # The Meta data is the User Class itself
model = User

fields = ('email', 'first name', 'last name', 'phone number')

Meta: # This also uses Meta data of User Class to create new user instances

3.4 Sample Tests

Testing is a vital part of software development. Testing allows for developers to ensure that any
functionality that is implemented is in fact “correct” and functioning. In addition, testing from
the beginning of the development process allows for verification that the addition of new features

has no impact on previous functionality. Below are some tests that we have for our application:

test comment text (self):
user = User.objects.create ()
application = Application.objects.create (application email="'t
comment =
Comment.objects.create (author=user,application=application,text="Hello")
.assertTrue (comment.text=="'Hello"')

.assertFalse (comment.text=="HI"'")

The above tests ensure that the content of comments is being saved correctly in the database.

test export function (self):
response = .client.get ("/aa

.assertNotContains (response, 404)

test export function attachment (self):

response = .client.get ("/aa app/da

.assertContains (response, "dona

21

The above two tests ensure that the data export functionality is working as expected by checking

that the response does not error and contains the csv file that contains the exported data.

3.5 Code Coverage

For code coverage testing we decided to use python-coverage. Python-coverage was set up
according to the online specifications of installing a coverage package using the command “pip
install coverage”. From there, we are able to build up coverage reports and detailed html
breakdowns of which statements (lines in the code) were covered and which lines were missed in
our implementation. The team used these reports to target statements that still needed to be ran
and tested within tests.py. The code automatically generated by Django is not able to be tested
and is not necessary, therefore code written by the team members and code that impacts the code
written by the team members was tested such that every model instance, form processing, and
view generated (HTML web accesses) were functional. At the time of writing, with certain
exceptions accounted for we are sitting at about 93% code coverage with 1373 out of 1478 lines
covered. However, we aim to get to and maintain 100% code coverage for the application as

required.

3.6 Installation Instructions

Here are the installation instructions for the After School Association of America. Here, you will
find detailed instructions and steps as to how to deploy the system on our customer's hosting

choice, Heroku.

DEPLOYED PRODUCT

22

https://after-school-association-of-am.herokuapp.com/
These instructions will cover the following:

How to Create the Account that will host the system
How to install dependent packages

How to upload all files from the system

How to configure those files

How to initialize the database

I e

How to load default values into the database

When it comes to creating the account that will host the system, our team used the following
credentials, a Gmail account used throughout the continuation of this project and a Heroku
account with access/ownership to the specific application within Heroku.

LOG IN

Email Credentials: Username: afterschool4970@gmail.com Password: Project123
Heroku Credentials: Username: afterschool4970(@gmail.com Password: AATeam!234

Using these credentials, we can navigate to https://id.heroku.com/login. Enter the credentials for
the Heroku login as indicated above using Heroku Credentials, and you will be redirected to the
dashboard with the list of applications.

The only application visible under this account should be after-school-association-of-am. APP
NAME: after-school-association-of-am

APPLICATION DETAILS PAGE

On the application details page, click on the "Deploy" tab in the small navigation bar. You will
now be directed to the deployment page.

DEPLOYMENT

23

https://after-school-association-of-am.herokuapp.com/
https://id.heroku.com/login

Once we are on the deployment page, we can scroll down to the middle section where it says
"App connected to Github". You should see that I (Nadia Hassan) have connected our Github
repository containing the code
(https://github.com/uva-cp-1920/After-School-Association-of-America) to Heroku. In order to
select and connect the right repository, I had to have had Heroku Dashboard Access on Github
for this organization (you can view this in Github) and be a member, NOT JUST AN OUTSIDE
COLLABORATOR, of the organization (uva-cp-1970) to connect the repository (this is
configured by the owner of the Github Repo and organization - in this case Professor Ibrahim).

GITHUB ORGANIZATION MEMBERSHIP

To see if you are a member of the organization, go to Github.com. On your dashboard once
you're authenticated, you will see your name on the left-hand side as a dropdown. Click on
"Manage Organizations" in the dropdown to view your permissions/membership in the
organization.

For more on Github Integration using Heroku, go here:
https://devcenter.heroku.com/articles/github-integration.

GITHUB MANUAL DEPLOY (MAIN PART)

Since we already have it connected, we can simply go down to the Manual Deploy section and
choose the branch we wish to deploy (we normally deploy the Master branch), and hit the button
"Deploy Branch". Once the build passes assuming all packages are installed (which they should
be), the build will say that it was successful and you can open the app when the button/link
appears at the bottom of the screen or you can simply scroll all the way up and hit the white
button "Open App" to view the application itself. Assuming you deployed the right branch,
you're good to go! Otherwise you can simply go back to the Deploy page, run a different branch
and run it again.

ADDITIONAL DATABASE AND POSTGRES/PACKAGE INFORMATION

All packages used in this application can be found in the file requirements.txt outside of the src
folder. That file contains all packages and dependencies our application uses to run. A quick way

24

https://github.com/uva-cp-1920/After-School-Association-of-America
https://devcenter.heroku.com/articles/github-integration

to install all packages on requirements.txt would be to use a Command Prompt (terminal) to cd
(go into) the folder where requirements.txt is located and then run the following command:

pip install -r requirements.txt

POSTGRES/DATABASE

Click on the app name and you will be directed to the application page/details. We can notice
that one of the Installed Add-Ons at the top is Heroku Postgres, the database necessary to run our
application on Heroku. If you were to click on "Heroku Postgres", you would see four links at
the top: Overview, Durability, Settings, and Dataclips. If we were to click on "Settings", we can
view the Database Credentials (the database we have where the information from that database is
located in our settings.py to connect the correct database using postgresql). We can also reset the
database and destroy the database if we choose to, which would erase all the data on the central
database for the application. Postgresql (the type of database) runs using psycopg2. The easiest
way to ensure your computer has psycopg?2 is to run the following command:

pip install psycopg?2

If an issue persists, the following is the simplified documentation for the psycopg2 package:
https://pypi.org/project/psycopg2/

When it comes to the Heroku database, it should be using Postgresql. In our settings.py, we have
configured it in the database portion of settings.py to connect to the database credentials as
indicated above with the Heroku Postgres. The database should be central with the same
information for every user/person who deploys it. Any issues with the database as far as columns
of information go can likely be solved from a code level by deleting all migrations from the
migrations folders in each folder within the src folder and running:

python manage.py makemigrations python manage.py migrate

DJANGO-HEROKU/CONFIGURATION

Additionally, it is necessary to have Django-Heroku and gunicorn in your system as additional
packages necessary to have Heroku operate. For gunicorn and django-heroku respectively, run
the following commands:

pip install gunicorn pip install django-heroku

25

https://pypi.org/project/psycopg2/

We also need to ensure that we have a Procfile, a file that explicitly declares the app's process
types and entry points.

The Procfile should contain the following:
web: gunicorn afterschool.wsgi

In this way, we define that the application/project name afterschool within our Django files can
be deployed/viewed on Heroku.

The full documentation for Django-Heroku and configuring your application can be found here:
https://devcenter.heroku.com/articles/django-app-configuration.

ACCESS

To allow other users to manage deployment and the application on Heroku, go to "Access" in the
small navigation bar, click the button "Add collaborator" on the right side, and enter the email
address of the Heroku user you wish to give access to. Once a user gains access, the application
will be viewable in their dashboard and they may deploy it, manage the database, etc.

SUMMARY

In this way, these instructions allow you to successfully deploy the application to Heroku and see
it operating on the Heroku link. A condensation of the steps are as follows:

Login

Click on application after-school-association-of-am

Ensure that Heroku Postgres is the database

Install all necessary packages in requirements.txt as described above
Go to "Deploy" in small navigation bar

I e

Make sure Github Integration is selected and that we are connected to the right repository
(only members of the organization can make the connection)

~

Deploy Branch at the button once you select a branch to deploy.
8. Once build passes, open the application.

The link for the deployed product is: https://after-school-association-of-am.herokuapp.com/

26

https://devcenter.heroku.com/articles/django-app-configuration
https://after-school-association-of-am.herokuapp.com/

4. Results

Before this application, our client was using a Qualtrics survey as an application for other
schools to apply for donations. This provided several limitations to the organization's workflow
as well as its ability to scale up. The most important of these limitations were having to manually
manage applications, having to manually send out approval and denial notifications, and
manually manage the organization's funding bookkeeping. However with the new application
much of these issues have been solved as discussed in the previous Contributions section. The
website itself manages the applications for the organization and all an admin has to do now is
simply review the application. Once an admin is done reviewing the application all they have to
do is click on a button to either approve or deny the application. This simple click will
automatically send a notification to the applicant about the status of their application, manage
any funding values that have been impacted by this decision, and automatically update the
database with the pertinent data needed for data analysis. This data analysis is in fact a brand
new tool that the web application provides for the After School Association of America,
allowing them to quantify the impact that they make and therefore allowing them to argue for
more national funding towards after school programs.

We are unfortunately unable to provide many numbers for comparison between the new
and old systems as the old system had very limited usage. We are however able to provide some
data on the current system. Currently it takes about 2 minutes for a user to fill out an application,
about 30 seconds to send a message, and about 30 seconds to create an account. These times are
of course variable due to errors and the length of input. The rest of the functionality including

application notifications, bookkeeping, and data analysis is literally done at the click of a button.

27

5. Conclusions

In an attempt to establish the significance of after-school program funding, the team has
worked with the After-School Association of America to create our technical solution of
implementing an application user interface with a complete database to manage all funding,
applications, communication between account holders, and additional queries for after-school
programs. The system was developed as a response to the technological limitations of ASAA’s
current system which lacked the ability to manage funds, have online applications with all
specified fields and ability to edit past submission, and facilitation of communication between
applicants and members of the organization. Additionally, the use of hierarchical user classes
within the system allow for different users to have different accesses and capabilities to manage
the applications and funds so that the organization’s consolidation of its data can be more easily
managed and so that they can provide funding to a greater number of schools and communities
across the US. Over the course of a single academic year, we were able to successfully
implement all requirements provided by our client, Michelle Busby, such that the software would
be able to be used more efficiently by the organization in hopes that contributing to the
organization via donations and allocation of funds will appeal to more and more schools to
expand their existing after school programs or create new compelling ones. Upon evaluation of
our product, our client requested to be able to digitally see applicant demographics information
and funds available to present to stakeholders and donors to show that her initiative affected a
diverse range of students and the tremendous amount of funds necessary to sustain an
overwhelming number of programs that need these funds. Ultimately, the goal is to encourage

more schools and student participants to reach out for assistance in funding as not everyone has

28

the ability to enroll in these programs and benefit from the academically enriching opportunities
provided by the programs and safety component when it comes to deterring students from
pursuing alternative harmful after school activities.

The system as a whole was developed as a solution to the issue of ensuring the safety of
students after school by providing funding to create constructive after school programs which are
academically and socially beneficial for the youth. By failing to consider the role technical
solutions play in the maintenance and creation of after-school programs when new technologies
are introduced into after-school program settings, researchers neglect the underlying communal
concerns revolving around youth safety and the various unproductive, harmful activities that
drive the community to build and improve their programs in the first place. In this way,
organizations that manage after school programs will benefit significantly through the
digitization of applications and consolidation of data through software that they can then use to
shape their efforts to ensure more schoolchildren have the same opportunities as their peers

across the nation.

29

6. Future Work

The most pertinent limitation with the current structure of the application is its inability to
be scaled up in response to a rising number of users. As a result, future work could work on
fixing this limitation by using tools such as Docker to separate out each layer of the application
as its own application. This would allow these layers to be independently scaled up based on user
demand. Other avenues of future work include UI fixes, the implementation of email

functionality, and the addition of nested comment threads.

30

7. References

Afterschool Alliance. (14AD). (2014) America after 3PM: Afterschool programs in demand.
Retrieved from:

https://www.afterschoolalliance.org/documents/AA3PM-2014/AA3PM_Key Findings.pdf

After-School Association of America. (2019). Retrieved October 31st, 2019 from
http://www.after-school.org/.

Apache (n.d.).APACHE LICENSE, VERSION 2.0. Retrieved from
https://www.apache.org/licenses/LICENSE-2.0

Howell, J.C. (2010) Gang prevention: An overview of research and programs. P. 1-3. Retrieved
October 31st, 2019 from
https://www.ncjrs.gov/pdffiles1/o0jjdp/231116.pdf

National Youth Gang (2019) National youth gang survey analysis. Retrieved October 31st, 2019
from
https://www.nationalgangcenter.gov/survey-analysis/demographics.

Shader, M., & Shader, O. of J. J. and D. P. (2004). Risk factors for delinquency: An overview,
1-11. Retrieved October 31st, 2019 from
https://www.ncjrs.gov/pdftiles1/0jjdp/frd030127.pdf

Spielberger, J., Axelrod, J., Dasgupta, D., Cerven, C., Spain, A., Kohm, A., Mader, N. (2016).
Connecting the dots: Data use in afterschool systems. University of Chicago: Chapin
Hall

Tanner, C. (2015) Reducing youth violence: The role of afterschool programs. Retrieved October
31, 2019 from:
https://scholarworks.gsu.edu/cgi/viewcontent.cgi?article=1013&context=iph_capstone

31

https://www.afterschoolalliance.org/documents/AA3PM-2014/AA3PM_Key_Findings.pdf
http://www.after-school.org/
https://www.ncjrs.gov/pdffiles1/ojjdp/231116.pdf
https://www.nationalgangcenter.gov/survey-analysis/demographics

