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Abstract 

Bacterial vaginosis (BV) is a common vaginal condition that has a significant impact on women's 

health. However, our understanding of its microbial community structure and metabolic 

interactions is limited. In this dissertation, I focus on investigating the metabolic pathways within 

the Gardnerella pangenome and defining the functional metabolic relationships between 

Gardnerella and other vaginal microbial species associated with BV. By constructing metabolic 

network models and conducting in silico analysis, I uncover both conserved and unique metabolic 

mechanisms within the Gardnerella pangenome. Notably, I find that genetic similarity does not 

always correspond to metabolic functional similarity. 

 

To further explore the dynamics of Gardnerella strains in the vaginal metabolic environment, I 

used flux balance analysis to identify essential genes and potential drug targets. Through in silico 

simulations of pair-wise bacterial interactions, I observe significant clustering of Gardnerella 

species based on mutualistic benefits, underscoring the complex nature of these interactions. To 

validate my findings, I integrate clinical data, in silico analysis, in vitro experiments, and 

metabolomics to unravel the intricate BV-associated bacterial community structures. 

 

Overall, this research enhances our understanding of BV and provides insights for personalized 

treatments and novel intervention development. By elucidating the metabolic relationships within 

the Gardnerella pangenome and unraveling the complex BV-associated bacterial community 

structures, we can improve the management and outcomes of this common vaginal condition.  
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Chapter 1: New Horizons in the Study of the Vaginal Microbiome: Leveraging 

Metabolic Models and Systems Biology 

Portions of the text for this chapter has been previously published as research articles here: 

 

Dillard LR, Payne DD*, & Papin JA (June 2021). Mechanistic models of microbial 

community metabolism. Molecular Omics. https://doi.org/10.1039/D0MO00154F 

 

Dillard LR, Lee CY*, Arnold KB, Papin JA (Oct. 2022) New perspectives into the vaginal 

microbiome with systems biology. Trends in Microbiology. 

https://doi.org/10.1016/j.tim.2022.09.011  

Vaginal Health and Dysbiosis 

The vaginal microbiome (VMB) is an essential component of female reproductive health, 

playing a critical role in fertility, pregnancy, and preventing pelvic inflammatory disease 

among other various infections (Ceccarani et al., 2019; Feehily et al., 2020; Houdt et al., 

2018; Kong et al., 2020; Lewis & Gilbert, 2020; Mcmillan et al., 2015; Moreno et al., 

2016). Despite its importance, the mechanisms that connect the composition and function 

of the VMB to physiological outcomes are only beginning to be understood. Currently, an 

optimal VMB is defined as having a non-iners Lactobacillus dominant bacterial 

population, maintaining an acidic pH to inhibit pathogenic growth, and a mild, musky scent 

(Gajer et al., 2012; Ravel et al., 2011). An optimal VMB promotes the health and turnover 

of vaginal epithelial cells (van de Wijgert, 2017). Conversely, non-optimal VMB states, 

particularly those associated with bacterial vaginosis (BV), involve the overgrowth of 
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harmful anaerobes, typically belonging to the Gardnerella genus, an alkaline pH, an itchy 

or burning sensation, and a fishy odor, which is linked to volatile organic compound 

breakdown (Wijgert et al., 2014). BV affects nearly one-third of reproductive-age women 

and increases the risk of contracting sexually transmitted infections, preterm birth, pelvic 

inflammatory disease, surgical complications, and decreases quality of life (Koumans et 

al., 2007, pp. 2001–200; Mitra et al., 2015). Current treatment options, including 

metronidazole and clindamycin, are associated with high rates of BV recurrence. Non-

antibiotic therapeutics, including vaginal probiotics and boric acid suppositories, are 

rapidly developing (A. Powell et al., 2019). Most vaginal probiotic research focuses on 

Lactobacillus species (Ahire et al., 2023; Makarova et al., 2006). However, there is a lack 

of information regarding the optimal dose or duration of treatment, and current trials have 

only been efficacious within limited sub-populations. In short, there is significant need for 

not only improved therapeutic interventions, but also increased understanding of the 

community level structure and diversity that encapsulates the heterogeneity of BV. In silico 

bacterial metabolic modeling can be used to expand our understanding of intra- and inter- 

bacterial interactions in BV, while circumventing the fastidious nature of many vaginal 

species that make in vitro analysis difficult and time consuming. 

Genome Scale Metabolic Modeling 

Genome-scale metabolic network reconstructions (GENREs) are repositories of high-

quality biochemical networks converted to a computationally-interpretable format (Fang et 

al., 2020; Gu et al., 2019). Metabolic network reconstruction begins with the annotated 
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genome; the metabolic 

genes an organism 

contains determine the 

proteins it can 

synthesize and the 

metabolic reactions it 

can catalyze (Figure 1). 

These associations are 

stored as gene-protein-

reaction (GPR) rules, 

with the reactants and products of each reaction cataloged in a stoichiometric matrix. 

Reaction bounds capture the kinetic constraints and reversibility of reactions by dictating 

the amount and direction of flux that an individual reaction can carry. Metabolites in the 

reconstruction are assigned to compartments that simulate biologicall y discrete spaces, 

such as the cytosol and the extracellular space. Exchange reactions introduce and remove 

metabolites from the extracellular space, allowing designated metabolites to be accessible 

for transport into the modeled organism. Transport reactions allow metabolites to flow 

between the extracellular and cytosolic compartments. As the metabolic network takes 

shape, objective functions (OFs) that represent the metabolic goal of the organism are 

added to the model. Specifically, biomass synthesis OFs account for all the metabolic 

components that must be synthesized for growth, making biomass a common OF formula. 

 

Exchange Reaction

Extracellular 
Space

Transport 
Reaction

Cytosol

Metabolite

Figure 1: Visualization of GENRE
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Even with known constraints on reaction fluxes, there remains a large set of potential 

metabolic states of the network. Experimental data can be used to contextualize the model, 

trimming possible states to only those that are most biologically accurate in a given 

environment or experimental condition. RIPTiDe and TIMBR are both integration 

algorithms that utilize transcriptomic data to inform reaction weights, which then impact 

predicted metabolic outputs (Jenior et al., 2020; Rawls et al., 2019). RIPTiDe additionally 

allows for transcriptomic data to be used to “prune” reactions and metabolites from a model 

that do not have strong transcriptional support and are not necessary for an OF to carry 

minimal flux. However, due to the varying residence time of RNA (∼3 minutes) and 

proteins (0.5–35 hours), these data offer different temporal snapshots of which metabolic 

functions are occurring in the organisms (Schmittgen et al., 2000). Metabolomic profiles 

of supernatants from growth culture experiments provide evidence for the metabolites an 

organism consumes and produces as it grows. This data can be integrated as bounds on the 

exchange reactions that force the model to mimic the uptake and secretion of metabolites 

that were observed in vitro. Metabolomics can also be analyzed as evidence for what 

metabolic pathways are being utilized and therefore integrated into the model as reaction 

weights (Hadadi et al., 2020). 

 

As the field of metabolic modeling continues to rapidly evolve, there is a growing need for 

model standardization as well as metrics to assess model quality. The metabolic modeling 

community developed MEMOTE as a tool to conduct a uniform set of tests to assess both 

biological accuracy and ensure model standardization (Lieven et al., 2020). This tool 

provides a detailed report with quality scores and identifies gaps in the model that serve as 
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points for curation. Quality assessments are not the end point of the model development 

process, but rather a feedback mechanism to inform further curation. The iterative process 

of model curation is essential to obtain the most relevant and accurate biological insights. 

Bacterial Community Modeling 

There is currently a limited understanding of microbial metabolism at the community level, 

as bacterial behavior in natural, multi-species environments differs from that observed in 

isolation in typical laboratory experiments. The rules that govern polymicrobial 

community interactions remain poorly understood. To better explore the complex 

interactions that take place in these systems, researchers often isolate bacteria of interest 

and co-culture them with other bacterial species to evaluate community effects. However, 

the high-throughput capability of in silico modeling provides a powerful alternative 

approach for studying bacterial community metabolism. 

 

GENREs and genome-scale metabolic models (GEMs) are valuable tools for studying 

bacterial community metabolism. There are different approaches to modeling bacterial 

community metabolism, and the best approach depends on the types of questions a 

community model is trying to answer. These approaches can be broken down into two main 

decision points. Once individual models have been reconstructed and then benchmarked 

using MEMOTE, the first decision point is determining how individual models will 

simulate bacterial interactions. Bacterial compartmentalization determines how individual 

bacterial species models interact with one another and with the surrounding environment. 

In the discrete approach, each bacterial model exists in a separate cytosolic compartment, 

and individual bacteria interact metabolically through a shared extracellular space where 
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species-specific transport reactions move communal metabolites into and out of the 

bacterial cytoplasm. Using this approach, Pacheco et al. simulated the metabolic 

relationships that emerge when pairs of microbes are grown in co-culture, identifying key 

cross-fed metabolites and how they impact the growth capability of each microbe (Pacheco 

et al., 2019). 

 

Alternatively, there is the “bag-of-genes” approach. The bag-of-genes approach combines 

all the genetic makeup for the integrated models into one “super” bacterium (Faria et al., 

2017; Roume et al., 2015). This approach has been used to construct metabolic models of 

microbial communities belonging to the human microbiome from metagenomic shotgun 

sequencing data (Abubucker et al., 2012). The authors explored community metabolic 

capabilities without the challenge of sorting reads into single-organism genomes. While 

such an analysis enables an interrogation of potential metabolic capabilities of a microbial 

community, this approach does not take into account the natural competition that occurs 

between bacteria as it allows for ubiquitous metabolite availability. The collective nature 

of the bag-of-genes approach does not consider species-specific transporters, which 

hinders the model's ability to accurately recapitulate physiological community interactions. 

 

The second decision is choosing an objective function (OF). There are three broad 

categories that encompass approaches for defining potential OFs: individual level, 

community level, or multi-scale. An individual-focused OF seeks to maximize an objective 

such as biomass synthesis at the individual cell level, rather than being concerned with 

overall polymicrobial community biomass production. Community level OFs often 
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optimize biomass production across all species, at the expense of the biomass production 

of some individual species. The argument for individual-focused OF is that bacteria have 

not necessarily evolved for the optimization of a community biomass objective, even if 

participating in a community structure may be beneficial with respect to specific 

evolutionary objectives (Celiker & Gore, 2012; Cordero et al., 2012; Özkaya et al., 2017). 

 

Multi-scale OFs often seek to optimize biomass production at both the individual and 

community level. Multi-scale OFs allow for the investigation of the trade-offs of bacteria 

sacrificing individual-level growth in exchange for greater community growth. These OFs 

strike a balance between the evolutionary concept that bacterial species focus on individual 

growth while also considering the evolutionary benefits of community-level metabolic 

interdependence. OptCom is a method that breaks down these two optimization equations 

into inner and outer problems (Zomorrodi & Maranas, 2012). The inner problem is defined 

as individual-level biomass synthesis maximization, while the outer problem is community 

biomass synthesis maximization. The inner problem is optimized first in order to identify 

the maximum biomass production of each bacterial species. The outer problem is then 

optimized, but individual bacteria are allowed to grow at a proportion of their optimal 

biomass in order to simulate sacrifice of an individual species’ growth for community 

biomass synthesis maximization. The multi-scale tool MICOM offers the additional 

flexibility of manually adjusting the trade-off values assigned to individual bacteria, while 

also being able to integrate metagenomic community data (Diener et al., 2020). 
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After integrating GEMs of various bacteria into one simulated community, the metabolic 

interactions of a polymicrobial community can be analyzed using Flux Balance Analysis 

(FBA) and related modeling methods. FBA-based simulations can provide information on 

what genes, metabolic pathways, and metabolites are utilized by community members in 

simulated environments. Integrating omic data into the community model provides a layer 

of physiological insight in relation to gene transcription, metabolite usage, and protein 

synthesis, depending on the data used. Through a better understanding of community 

metabolism, we can improve predictions of bacterial evolution and host-pathogen 

interactions. 

Modeling the Vaginal Microbiome 

The complexity of multispecies and host-microbiome interactions makes analysis of 

microbiome data challenging. Therefore, quantitative systems biology approaches have 

been used to account for complexity while distilling key drivers of community behavior 

and function. Promising nascent applications of systems biology in VMB research show 

potential for discovering new insight into the complex roles that vaginal microbes play in 

women's health and disease.  

  

The VMB presents specific research challenges, such as its dynamic nature and lack of 

adequate experimental and clinical models. In particular, cross-sectional data, which are 

commonly used to study the relationship between microbiome composition, function, and 

disease, may be problematic for the VMB due to its ability to shift between optimal and 

non-optimal states over a short period of time (Gajer et al., 2012; Song et al., 2020; 

Srinivasan et al., 2010). Specifically, during menses when Lactobacillus tends to decline 
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creating an environment more amenable to infection. Additionally, both in vitro and in vivo 

studies have limitations in accurately modeling the human VMB (Holm et al., 2020; Miller 

et al., 2016; Yang et al., 2018; Yildirim et al., 2014). This leads to heavy reliance on clinical 

measurements of microbial abundance that can be difficult to interpret due to confounding 

variables including: collection time point relative to menses cycle, race, age, and sexual 

history. In addition, the inherent characteristics of 16S rRNA gene and metagenomic data 

— limited resolution, abundance bias, contamination — require implementation of feature 

selection methods and awareness of correlation bias (Friedman & Alm, 2012; Kurtz et al., 

2015). The lack of experimental models also limits the ability to investigate vaginal 

microbiota under controlled conditions.  

 

The field of systems biology offers unique opportunities to address these VMB specific 

challenges. Data-driven models can infer microbial signatures associated with health or 

disease states when there are large amounts of high-throughput data available. The VMB 

has been extensively studied using data-driven systems biology approaches to classify and 

define community state types (CSTs) (Ma et al., 2012; Nunn & Forney, 2016). Hierarchical 

clustering methods have been used to group microbial abundance data into five distinct 

CSTs, three of which are associated with health, one with community transitions, and one 

with bacterial vaginosis (Ravel et al., 2011). Data-driven studies on CSTs and sexually-

transmitted infection (STI) acquisition have also been essential for implicating non-optimal 

bacteria in increased STI susceptibility and linking other Lactobacillus to an optimal VMB 

and protection from STIs (Brotman et al., 2014; De Seta et al., 2019; Houdt et al., 2018; 

Nelson et al., 2015). Alternatively, theory-driven models provide direct mechanistic insight 
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into the cause-effect relationships that drive biological function. However, fewer theory-

driven mechanistic models have been implemented to study the VMB despite their use for 

understanding microbiomes at other sites, including the gastrointestinal tract. Mechanistic 

modeling has the potential to define community dynamics within the VMB and link them 

to variability in disease-related outcomes. 

Specific Aims 

Aim 1. Delineate key metabolic pathways in the Gardnerella pangenome 

1.1 Construct and curate a metabolic network reconstruction of Gardnerella 

1.2 Identify key metabolic pathways that are conserved vs. differential across the 

Gardnerella pangenome 

 

Aim 2. Define functional metabolic relationship between Gardnerella and other 

vaginal microbial species associated with dysbiosis  

2.1 Define metabolic dynamics within the Gardnerella pangenome 

 

2.2 Define the metabolic relationship between Gardnerella and bacteria associated with 

symptomatic BV 

2.3 Define the metabolic relationship between Gardnerella and bacteria associated with 

asymptomatic BV 

  



 11 

 

References 
Abubucker, S., Segata, N., Goll, J., Schubert, A. M., Izard, J., Cantarel, B. L., Rodriguez-

Mueller, B., Zucker, J., Thiagarajan, M., Henrissat, B., White, O., Kelley, S. T., 

Methé, B., Schloss, P. D., Gevers, D., Mitreva, M., & Huttenhower, C. (2012). 

Metabolic Reconstruction for Metagenomic Data and Its Application to the 

Human Microbiome. PLOS Computational Biology, 8(6), e1002358. 

https://doi.org/10.1371/journal.pcbi.1002358 

Ahire, J. J., Sahoo, S., Kashikar, M. S., Heerekar, A., Lakshmi, S. G., & Madempudi, R. 

S. (2023). In Vitro Assessment of Lactobacillus crispatus UBLCp01, 

Lactobacillus gasseri UBLG36, and Lactobacillus johnsonii UBLJ01 as a 

Potential Vaginal Probiotic Candidate. Probiotics and Antimicrobial Proteins, 

15(2), 275–286. https://doi.org/10.1007/s12602-021-09838-9 

Bacterial Vaginosis and Anaerobic Bacteria Are Associated with Endometritis | Clinical 

Infectious Diseases | Oxford Academic. (n.d.). Retrieved April 20, 2023, from 

https://academic.oup.com/cid/article/39/7/990/495902 

Brotman, R. M., Shardell, M. D., Gajer, P., Fadrosh, D., Chang, K., Silver, M. I., Viscidi, 

R. P., Burke, A. E., Ravel, J., & Gravitt, P. E. (2014). Association between the 

vaginal microbiota, menopause status, and signs of vulvovaginal atrophy. 

Menopause (New York, N.Y.), 21(5), 450–458. 

https://doi.org/10.1097/GME.0b013e3182a4690b 

Ceccarani, C., Foschi, C., Parolin, C., D’Antuono, A., Gaspari, V., Consolandi, C., Laghi, 

L., Camboni, T., Vitali, B., Severgnini, M., & Marangoni, A. (2019). Diversity of 



 12 

vaginal microbiome and metabolome during genital infections. Scientific Reports, 

9(1), 1–12. https://doi.org/10.1038/s41598-019-50410-x 

Celiker, H., & Gore, J. (2012). Competition between species can stabilize public-goods 

cooperation within a species. Molecular Systems Biology, 8, 621. 

https://doi.org/10.1038/msb.2012.54 

Cordero, O. X., Ventouras, L.-A., DeLong, E. F., & Polz, M. F. (2012). Public good 

dynamics drive evolution of iron acquisition strategies in natural bacterioplankton 

populations. Proceedings of the National Academy of Sciences, 109(49), 20059–

20064. https://doi.org/10.1073/pnas.1213344109 

De Seta, F., Campisciano, G., Zanotta, N., Ricci, G., & Comar, M. (2019). The Vaginal 

Community State Types Microbiome-Immune Network as Key Factor for 

Bacterial Vaginosis and Aerobic Vaginitis. Frontiers in Microbiology, 10, 2451. 

https://doi.org/10.3389/fmicb.2019.02451 

Diener, C., Gibbons, S. M., & Resendis-Antonio, O. (2020). MICOM: Metagenome-

Scale Modeling To Infer Metabolic Interactions in the Gut Microbiota. MSystems, 

5(1), e00606-19. https://doi.org/10.1128/mSystems.00606-19 

Fang, X., Lloyd, C. J., & Palsson, B. O. (2020). Reconstructing organisms in silico: 

Genome-scale models and their emerging applications. Nature Reviews 

Microbiology, 18(12), Article 12. https://doi.org/10.1038/s41579-020-00440-4 

Faria, J. P., Khazaei, T., Edirisinghe, J. N., Weisenhorn, P., Seaver, S. M. D., Conrad, N., 

Harris, N., DeJongh, M., & Henry, C. S. (2017). Constructing and Analyzing 

Metabolic Flux Models of Microbial Communities. In T. J. McGenity, K. N. 

Timmis, & B. Nogales (Eds.), Hydrocarbon and Lipid Microbiology Protocols: 



 13 

Genetic, Genomic and System Analyses of Communities (pp. 247–273). Springer. 

https://doi.org/10.1007/8623_2016_215 

Feehily, C., Crosby, D., Walsh, C. J., Lawton, E. M., Higgins, S., McAuliffe, F. M., & 

Cotter, P. D. (2020). Shotgun sequencing of the vaginal microbiome reveals both 

a species and functional potential signature of preterm birth. Npj Biofilms and 

Microbiomes, 6(1), 1–9. https://doi.org/10.1038/s41522-020-00162-8 

Friedman, J., & Alm, E. J. (2012). Inferring Correlation Networks from Genomic Survey 

Data. PLOS Computational Biology, 8(9), e1002687. 

https://doi.org/10.1371/journal.pcbi.1002687 

Gajer, P., Brotman, R. M., Bai, G., Sakamoto, J., Schütte, U. M. E., Zhong, X., Koenig, 

S. S. K., Fu, L., Ma, Z., Zhou, X., Abdo, Z., Forney, L. J., & Ravel, J. (2012). 

Temporal dynamics of the human vaginal microbiota. Science Translational 

Medicine, 4(132). https://doi.org/10.1126/SCITRANSLMED.3003605 

Gu, C., Kim, G. B., Kim, W. J., Kim, H. U., & Lee, S. Y. (2019). Current status and 

applications of genome-scale metabolic models. Genome Biology, 20(1), 121. 

https://doi.org/10.1186/s13059-019-1730-3 

Hadadi, N., Pandey, V., Chiappino-Pepe, A., Morales, M., Gallart-Ayala, H., Mehl, F., 

Ivanisevic, J., Sentchilo, V., & Meer, J. R. van der. (2020). Mechanistic insights 

into bacterial metabolic reprogramming from omics-integrated genome-scale 

models. Npj Systems Biology and Applications, 6(1), Article 1. 

https://doi.org/10.1038/s41540-019-0121-4 

Holm, J. B., France, M. T., Ma, B., McComb, E., Robinson, C. K., Mehta, A., Tallon, L. 

J., Brotman, R. M., & Ravel, J. (2020). Comparative Metagenome-Assembled 



 14 

Genome Analysis of “Candidatus Lachnocurva vaginae”, Formerly Known as 

Bacterial Vaginosis-Associated Bacterium−1 (BVAB1). Frontiers in Cellular and 

Infection Microbiology, 10, 117. https://doi.org/10.3389/fcimb.2020.00117 

Houdt, R. van, Ma, B., Bruisten, S. M., Speksnijder, A. G. C. L., Ravel, J., & Vries, H. J. 

C. de. (2018). Lactobacillus iners-dominated vaginal microbiota is associated with 

increased susceptibility to Chlamydia trachomatis infection in Dutch women: A 

case–control study. Sexually Transmitted Infections, 94(2), 117–123. 

https://doi.org/10.1136/sextrans-2017-053133 

Jenior, M. L., Moutinho, T. J., Dougherty, B. V., & Papin, J. A. (2020). Transcriptome-

guided parsimonious flux analysis improves predictions with metabolic networks 

in complex environments. PLoS Computational Biology, 16(4). 

https://doi.org/10.1371/JOURNAL.PCBI.1007099 

Kong, Y., Liu, Z., Shang, Q., Gao, Y., Li, X., Zheng, C., Deng, X., & Chen, T. (2020). 

The Disordered Vaginal Microbiota Is a Potential Indicator for a Higher Failure of 

in vitro Fertilization. Frontiers in Medicine, 7. 

https://www.frontiersin.org/articles/10.3389/fmed.2020.00217 

Koumans, E. H., Sternberg, M., Bruce, C., McQuillan, G., Kendrick, J., Sutton, M., & 

Markowitz, L. E. (2007). The prevalence of bacterial vaginosis in the United 

States, 2001-2004; associations with symptoms, sexual behaviors, and 

reproductive health. Sexually Transmitted Diseases, 34(11), 864–869. 

https://doi.org/10.1097/OLQ.0B013E318074E565 

Kurtz, Z. D., Müller, C. L., Miraldi, E. R., Littman, D. R., Blaser, M. J., & Bonneau, R. 

A. (2015). Sparse and Compositionally Robust Inference of Microbial Ecological 



 15 

Networks. PLOS Computational Biology, 11(5), e1004226. 

https://doi.org/10.1371/journal.pcbi.1004226 

Lewis, A. L., & Gilbert, N. M. (2020). Roles of the vagina and the vaginal microbiota in 

urinary tract infection: Evidence from clinical correlations and experimental 

models. GMS Infectious Diseases, 8, Doc02. https://doi.org/10.3205/id000046 

Lieven, C., Beber, M. E., Olivier, B. G., Bergmann, F. T., Ataman, M., Babaei, P., 

Bartell, J. A., Blank, L. M., Chauhan, S., Correia, K., Diener, C., Dräger, A., 

Ebert, B. E., Edirisinghe, J. N., Faria, J. P., Feist, A. M., Fengos, G., Fleming, R. 

M. T., García-Jiménez, B., … Zhang, C. (2020). MEMOTE for standardized 

genome-scale metabolic model testing. Nature Biotechnology, 38(3), 272–276. 

https://doi.org/10.1038/s41587-020-0446-y 

Ma, B., Forney, L. J., & Ravel, J. (2012). Vaginal microbiome: Rethinking health and 

disease. Annual Review of Microbiology, 66, 371–389. 

https://doi.org/10.1146/annurev-micro-092611-150157 

Makarova, K., Slesarev, A., Wolf, Y., Sorokin, A., Mirkin, B., Koonin, E., Pavlov, A., 

Pavlova, N., Karamychev, V., Polouchine, N., Shakhova, V., Grigoriev, I., Lou, 

Y., Rohksar, D., Lucas, S., Huang, K., Goodstein, D. M., Hawkins, T., 

Plengvidhya, V., … Mills, D. (2006). Comparative genomics of the lactic acid 

bacteria. Proceedings of the National Academy of Sciences, 103(42), 15611–

15616. https://doi.org/10.1073/pnas.0607117103 

Mcmillan, A., Rulisa, S., Sumarah, M., Macklaim, J. M., Renaud, J., Bisanz, J. E., Gloor, 

G. B., & Reid, G. (2015). A multi-platform metabolomics approach identifies 

highly specific biomarkers of bacterial diversity in the vagina of pregnant and 



 16 

non-pregnant women OPEN. Nature Publishing Group, 5, 14174. 

https://doi.org/10.1038/srep14174 

Miller, E. A., Beasley, D. E., Dunn, R. R., & Archie, E. A. (2016). Lactobacilli 

Dominance and Vaginal pH: Why Is the Human Vaginal Microbiome Unique? 

Frontiers in Microbiology, 7, 1936. https://doi.org/10.3389/fmicb.2016.01936 

Mitra, A., MacIntyre, D. A., Lee, Y. S., Smith, A., Marchesi, J. R., Lehne, B., Bhatia, R., 

Lyons, D., Paraskevaidis, E., Li, J. V., Holmes, E., Nicholson, J. K., Bennett, P. 

R., & Kyrgiou, M. (2015). Cervical intraepithelial neoplasia disease progression 

is associated with increased vaginal microbiome diversity. Scientific Reports, 

5(1), Article 1. https://doi.org/10.1038/srep16865 

Moreno, I., Codoñer, F. M., Vilella, F., Valbuena, D., Martinez-Blanch, J. F., Jimenez-

Almazán, J., Alonso, R., Alamá, P., Remohí, J., Pellicer, A., Ramon, D., & 

Simon, C. (2016). Evidence that the endometrial microbiota has an effect on 

implantation success or failure. American Journal of Obstetrics and Gynecology, 

215(6), 684–703. https://doi.org/10.1016/j.ajog.2016.09.075 

Nelson, T. M., Borgogna, J.-L. C., Brotman, R. M., Ravel, J., Walk, S. T., & Yeoman, C. 

J. (2015). Vaginal biogenic amines: Biomarkers of bacterial vaginosis or 

precursors to vaginal dysbiosis? Frontiers in Physiology, 6, 253. 

https://doi.org/10.3389/fphys.2015.00253 

Nunn, K. L., & Forney, L. J. (2016). Unraveling the Dynamics of the Human Vaginal 

Microbiome. The Yale Journal of Biology and Medicine, 89(3), 331–337. 

Özkaya, Ö., Xavier, K. B., Dionisio, F., & Balbontín, R. (2017). Maintenance of 

Microbial Cooperation Mediated by Public Goods in Single- and Multiple-Trait 



 17 

Scenarios. Journal of Bacteriology, 199(22), e00297-17. 

https://doi.org/10.1128/JB.00297-17 

Pacheco, A. R., Moel, M., & Segrè, D. (2019). Costless metabolic secretions as drivers of 

interspecies interactions in microbial ecosystems. Nature Communications, 10(1), 

Article 1. https://doi.org/10.1038/s41467-018-07946-9 

Powell, A., Ghanem, K. G., Rogers, L., Zinalabedini, A., Brotman, R. M., Zenilman, J., 

& Tuddenham, S. (2019). Clinicians’ use of Intravaginal Boric Acid Maintenance 

Therapy for Recurrent Vulvovaginal Candidiasis and Bacterial Vaginosis. 

Sexually Transmitted Diseases, 46(12), 810–812. 

https://doi.org/10.1097/OLQ.0000000000001063 

Ravel, J., Gajer, P., Abdo, Z., Schneider, G. M., Koenig, S. S. K., McCulle, S. L., 

Karlebach, S., Gorle, R., Russell, J., Tacket, C. O., Brotman, R. M., Davis, C. C., 

Ault, K., Peralta, L., & Forney, L. J. (2011). Vaginal microbiome of reproductive-

age women. Proceedings of the National Academy of Sciences of the United 

States of America, 108(SUPPL. 1), 4680–4687. 

https://doi.org/10.1073/pnas.1002611107 

Rawls, K. D., Blais, E. M., Dougherty, B. V., Vinnakota, K. C., Pannala, V. R., 

Wallqvist, A., Kolling, G. L., & Papin, J. A. (2019). Genome-Scale 

Characterization of Toxicity-Induced Metabolic Alterations in Primary 

Hepatocytes. Toxicological Sciences, 172(2), 279. 

https://doi.org/10.1093/TOXSCI/KFZ197 

Roume, H., Heintz-Buschart, A., Muller, E. E. L., May, P., Satagopam, V. P., Laczny, C. 

C., Narayanasamy, S., Lebrun, L. A., Hoopmann, M. R., Schupp, J. M., Gillece, J. 



 18 

D., Hicks, N. D., Engelthaler, D. M., Sauter, T., Keim, P. S., Moritz, R. L., & 

Wilmes, P. (2015). Comparative integrated omics: Identification of key 

functionalities in microbial community-wide metabolic networks. Npj Biofilms 

and Microbiomes, 1(1), Article 1. https://doi.org/10.1038/npjbiofilms.2015.7 

Schmittgen, T. D., Zakrajsek, B. A., Mills, A. G., Gorn, V., Singer, M. J., & Reed, M. W. 

(2000). Quantitative Reverse Transcription–Polymerase Chain Reaction to Study 

mRNA Decay: Comparison of Endpoint and Real-Time Methods. Analytical 

Biochemistry, 285(2), 194–204. https://doi.org/10.1006/abio.2000.4753 

Song, S. D., Acharya, K. D., Zhu, J. E., Deveney, C. M., Walther-Antonio, M. R. S., 

Tetel, M. J., & Chia, N. (2020). Daily Vaginal Microbiota Fluctuations 

Associated with Natural Hormonal Cycle, Contraceptives, Diet, and Exercise. 

MSphere, 5(4), e00593-20. https://doi.org/10.1128/mSphere.00593-20 

Srinivasan, S., Liu, C., Mitchell, C. M., Fiedler, T. L., Thomas, K. K., Agnew, K. J., 

Marrazzo, J. M., & Fredricks, D. N. (2010). Temporal variability of human 

vaginal bacteria and relationship with bacterial vaginosis. PloS One, 5(4), e10197. 

https://doi.org/10.1371/journal.pone.0010197 

van de Wijgert, J. H. H. M. (2017). The vaginal microbiome and sexually transmitted 

infections are interlinked: Consequences for treatment and prevention. PLoS 

Medicine, 14(12), e1002478. https://doi.org/10.1371/journal.pmed.1002478 

Wijgert, J. H. H. M. van de, Borgdorff, H., Verhelst, R., Crucitti, T., Francis, S., 

Verstraelen, H., & Jespers, V. (2014). The Vaginal Microbiota: What Have We 

Learned after a Decade of Molecular Characterization? PLOS ONE, 9(8), 

e105998. https://doi.org/10.1371/journal.pone.0105998 



 19 

Yang, E., Fan, L., Yan, J., Jiang, Y., Doucette, C., Fillmore, S., & Walker, B. (2018). 

Influence of culture media, pH and temperature on growth and bacteriocin 

production of bacteriocinogenic lactic acid bacteria. AMB Express, 8(1), 10. 

https://doi.org/10.1186/s13568-018-0536-0 

Yildirim, S., Yeoman, C. J., Janga, S. C., Thomas, S. M., Ho, M., Leigh, S. R., Primate 

Microbiome Consortium, White, B. A., Wilson, B. A., & Stumpf, R. M. (2014). 

Primate vaginal microbiomes exhibit species specificity without universal 

Lactobacillus dominance. The ISME Journal, 8(12), 2431–2444. 

https://doi.org/10.1038/ismej.2014.90 

Zomorrodi, A. R., & Maranas, C. D. (2012). OptCom: A Multi-Level Optimization  

Framework for the Metabolic Modeling and Analysis of Microbial 

Communities. PLOS Computational Biology, 8(2), e1002363.  



 

Chapter 2: Exploring the Gardnerella Pangenome's Interaction with the Vaginal 

Environment through Metabolic Network Models 

 

The text for this chapter has been previously published as a research article here: 

 

Dillard LR, Glass EM, Lewis AL, Thomas-White K, Papin JA (Dec. 2022) Metabolic 

network models of the Gardnerella pangenome identify key interactions in the vaginal 

environment. mSystems. https://doi.org/10.1128/msystems.00689-22 

Context 

After establishing my interest in studying the vaginal microbiome and inter-bacterial 

interactions, I began with the question “What do we know about dysbiotic vaginal bacterial 

communities?”. My focus was on Gardnerella, because it is a primary biomass contributor 

in bacterial vaginosis. Due to the gender health gap and the rapidly evolving availability of 

whole genome sequences, little was known regarding metabolic diversity within the 

Gardnerella genus, but the BV-BRC data base provided sequences to begin exploring. This 

precipitated my first dissertation-focused project which was to define the functional 

metabolic capacity and diversity of the Gardnerella pangenome.  

Synopsis 

We present the first Gardnerella genome-scale metabolic network reconstructions 

repository. We used this toolbox of GENREs to analyze metabolic conservation and 

diversity, as well as predicting conserved essential genes within cervicovaginal fluid 
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context. Additionally, we investigated how strains of Gardnerella interact differently with 

their extracellular environment via flux balance analysis and dimensionality reduction. 

Introduction 

Bacterial vaginosis (BV) is a commonly occurring vaginal condition in reproductive-age 

women with vaginal complaints, characterized by low levels of Lactobacillus, high levels 

of diverse anaerobes, a vaginal pH of >4.5, thin vaginal discharge, and a fishy odor 

(Schwiertz et al., 2006; J. Wang, 2000). BV disproportionately impacts women of color in 

North America, with an estimated annual healthcare-associated cost globally of $4.8 billion 

and an additional $9.6 billion when accounting for BV-associated HIV infection and BV-

associated preterm birth (Allsworth et al., 2008; Culhane et al., 2002; Koumans et al., 2007; 

Muzny & Kardas, 2020; Peebles et al., 2019). Despite BV's pervasiveness and its impact 

on women's health, treatment options are limited and often ineffective (Bradshaw & Sobel, 

2016). The bacterial etiology of BV and the mechanisms of pathogenic outcomes remain 

largely ill-defined. Gardnerella has consistently been reported as being one of the 

dominant genera in the vagina during BV, thus understanding the functional metabolism 

of Gardnerella is critical (Schwebke et al., 2014). However, the Gardnerella pangenome 

remains largely uncharacterized, as noted by the rapidly evolving species classifications 

within this genus (Qin & Xiao, 2022). Metabolic predictions via in silico analysis offer a 

unique opportunity to study taxonomic relatedness based on inferred function. By 

characterizing the in silico models, which reflect the protein coding genetic content and 

metabolism of the Gardnerella pangenome, we can identify potential antibiotic targets, 

both strain-specific and conserved, and make predictions regarding differential 

pathogenesis. This study aims to define the conserved metabolic functions and strain-level 
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variation within the Gardnerella pangenome, making testable predictions about microbial 

physiology and providing structure to the heterogeneous nature of BV.  

Methods 

Model construction and contextualization 

To conduct our in silico analysis of the Gardnerella 

pangenome, we first identified 110 whole-genome 

sequences from the BV-BRC 3.6.12 database that met the 

quality criteria of being sufficiently complete (80%) and 

low contamination (10%), with amino acid sequences that 

were at least 87% consistent with known protein 

sequences (Wattam et al., 2017). We then annotated the 

corresponding amino acid sequences using RAST 2.0 

(Aziz et al., 2008; Brettin et al., 2015; Overbeek et al., 

2014). We used the Reconstructor algorithm to create 

genome-scale metabolic models for each of the 110 strains 

(Figure 1) (Jenior et al., Under Review). To assess the 

quality of the models, we used MEMOTE score, which is a widely used field-standard 

quality assessment tool (Lieven et al., 2020). The results are available on the associated 

GitHub repository (https://github.com/emmamglass/Gardnerella_Pangenome). We 

defined two in silico media conditions: synthetic vaginal media (SVM) and bacterial 

vaginosis-positive cervicovaginal fluid media (BVCFM). The SVM condition was based 

on previously defined in vitro media used for the growth of vaginal microflora, which has 
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Figure 1: Analysis workflow for 
pangenome model reconstruction, 
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been shown to support Gardnerella growth (Geshnizgani & Onderdonk, 1992). The 

BVCFM condition was based on previous metabolomics analyses of cervicovaginal fluid 

samples from both healthy and BV-positive patients, and was enriched for metabolites that 

were found at significantly higher levels in BV-positive samples (Vitali et al., 2015). We 

added transport reactions to the reconstructions as necessary to enable in silico utilization 

of media metabolites.  

Model comparisons 

We utilized BLASTp output annotations to determine gene presence for each strain, and 

constructed binary matrices indicating the presence or absence of each protein coding gene 

and model reaction for each strain (Madden, 2002). The dendrograms of gene and reaction 

presence were constructed via the dendextend R package using the Sørensen-Dice method 

for dissimilarity matrices construction and hierarchical clustering using the Ward method 

(Dice, 1945; Galili, 2015; Ward, 1963). Entanglement values were calculated, and k-means 

clusters were represented by branch coloring. We classified genes and reactions as core 

(>75%), peripheral (25-75%), or unique (<25%) based on their presence across models. 

  

We also used the Resistance Gene Identifier 5.2.1 platform to predict antibiotic resistance 

based on the amino acid sequences of each strain, considering genes with >80% regional 

match based on protein sequence to have a conserved mutant allele (Alcock et al., 2020). 

These methods allowed us to characterize the Gardnerella pangenome, and provide insight 

into functional relatedness of strains and potential antibiotic resistance. 



 24 

Gene essentiality 

To contextualize the metabolic models, the corresponding exchange reactions were opened 

with flux bounds of -1,000 to 1,000 for components of SVM and BVCFM (Table S1). This 

resulted in the creation of two contextualized models for each of the 110 strains. To 

determine gene essentiality, we used the gene essentiality function in the COBRApy 

toolbox (Ebrahim et al., 2013). This function simulates single-gene deletions for every gene 

in the model, and if a deletion results in a >80% reduction in flux through the objective 

function (biomass synthesis), the gene is categorized as essential. The KEGG ortholog 

values for each essential gene were identified and further analyzed. After running the gene 

essentiality screen, we generated a heatmap using the pheatmap package in R, which 

utilizes Euclidean distance and complete clustering to determine hierarchical structure 

(Kolde, 2019). 

Flux comparison 

To assess the variability of metabolic flux across the 110 Gardnerella strains in 

cervicovaginal fluid medium, we collected 100 flux samples for each strain using the 

COBRApy-compatible GAPSPLIT function (Keaty et al., 2020). To visualize the 

clustering of strains based on their simulated flux distributions, we used dimensionality 

reduction via t-distributed stochastic neighbor embedding (tSNE) on the collected flux 

samples. The tSNE analysis was performed using the sci-kit learn sklearn.manifold 

package in Python with default parameters (Maaten et al., 2008; Pedregosa et al., 2012). 

We utilized strain metadata from BV-BRC to map the sample isolation sources for tSNE 

visualization. Furthermore, we extracted transport reactions from the flux sampling data, 

and created a heatmap by using the median values of the top 25 most variable transport 
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reaction fluxes across models. The pheatmap library in R was used to construct the 

heatmap, which utilizes Euclidean distance and complete clustering to determine 

hierarchical structure. 

Results 

Strain comparisons 

Our analysis revealed that the number of protein-encoding genes varied greatly across the 

pangenome, ranging from 434 to 1,012, with a median value of 471. Similarly, the number 

of genes in the metabolic models ranged from 431 to 688, with a median value of 468. The 

number of model metabolites and reactions also showed significant variation, ranging from 

782 to 1,077 and 752 to 1,012, respectively, with median values of 873 and 818. 

  

Interestingly, our analysis identified six outlier strains across all four categories (Figure 

2A). To further investigate the relationship between the genetic and metabolic content of 

the Gardnerella strains, we performed hierarchical clustering based on protein coding 

genes and model reaction content. The resulting dendrograms showed a dissimilarity of 

61%, suggesting that there is a significant degree of genetic and metabolic diversity among 

the Gardnerella strains (Figure 2B). 
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Genetic and reaction conservation 

We also analyzed the Gardnerella pangenome to identify core, peripheral, and unique 

genes. Our analysis revealed that 318 genes were considered core, 90 genes were 

considered peripheral, and 359 genes were considered unique (Figure 3A). Furthermore, 

we found a high degree of conservation of genes implicated in antibiotic resistance across 

the pangenome, with rifamycin resistance genes being present in 98% of the strains. Other 

resistance genes, such as those implicated in mupirocin, streptogramin, lincosamide, and 

pleuromutilin resistance, were also commonly found, whereas tetracycline, macrolide, and 

aminoglycoside resistance genes were present in a minority of strains (Figure 3B). 

 

In addition to analyzing genetic content, we also analyzed the reaction content of our 110 

Gardnerella strain metabolic models. Our analysis revealed that 695 reactions were 

considered core, 221 were peripheral, and 919 were unique (Figure 3C). We also found 

that certain metabolic categories were enriched for either unique or core reactions. For 

instance, amino acid metabolism was enriched for unique reactions, whereas glycan 

biosynthesis and metabolism was enriched for core reactions.  
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Gene essentiality 

After evaluating model gene essentiality in both BVCFM and SVM, 57 genes were found 

to be essential across the Gardnerella pangenome (Figure 4). Among these, four genes 

showed near-universal essentiality, namely, gpsA (K00057), fas (K11533), suhB (K01092), 

and psd (K01613). Based on KEGG annotations, gpsA is involved in glycerophospholipid 

metabolism, fas in fatty acid biosynthesis, suhB in inositol phosphate metabolism, and psd 

in glycerophospholipid metabolism. Our analysis using the DrugBank repository revealed 

two potential compounds, pyrazinamide and pretomanid, capable of targeting the essential 

fatty acid synthesis gene fas (Wishart et al., 2018). Notably, both drugs are currently 
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approved for treating tuberculosis but have not been studied for their efficacy against 

Gardnerella infections or BV. 
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Model flux comparisons 

When comparing the 110 metabolic models using flux sampling and t-SNE for 

dimensionality reduction, we observed limited clustering based on sample isolation source 

(Figure 5). However, clustering was observed for samples isolated from the gut and a 

subset of clinical isolates. Further analysis of transport flux values using t-SNE revealed 

pronounced clustering of gut isolates, blood culture isolates, and the laboratory 

14019_MetR strain (Figure 6A). Heatmap comparison of transport reactions with the most 

varied flux values revealed that a subset of models exporting l-threonine, chloride, l-valine, 
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Figure 5: Model flux comparison based on 100 flux samples, across all reactions via 
tSNE dimensionality reduction and associated number of strains per isolation source.
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and aspartate glutamate were also importing galactose and sodium (Figure 6B). 

Additionally, a small subset of models was found to be significantly importing mannose-

6-phosphate (MAN6P). 
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Discussion 

The characterization of the Gardnerella pangenome is crucial in understanding the 

functional differences of this pathogen. Despite the prevalence of a significant number of 

Gardnerella strains, the majority remain uncharacterized, which limits the development of 

effective treatments for BV. We present the largest set of Gardnerella metabolic network 

reconstructions, which provides a functional characterization of the known Gardnerella 

pangenome. Our findings highlight conserved and unique metabolic mechanisms that 

could serve as valuable resources for the development of therapeutic strategies. This study 

sheds light on the metabolic functionality of Gardnerella and provides new insights into 

its potential drug targets, ultimately contributing to the reduction of BV recurrence rates. 

Pangenome content comparison 

We aimed to explore the relationship between genetic relatedness and functional 

relatedness in the Gardnerella pangenome. Our analysis revealed a significant dissimilarity 

(61%) between the dendrograms representing genetic content and metabolic functionality, 

suggesting that genetic content similarity does not necessarily correlate with metabolic 

functional similarity in Gardnerella strains. This result aligns with the concept that even 

small genetic differences can have a significant impact on metabolic functionality, as a 

single gene can be involved in multiple reactions. Therefore, to obtain a more accurate 

representation of phylogenetic relatedness within the Gardnerella pangenome, genetic 

expression profiles, which may more closely mirror metabolic functionality, should be 

explored (Eisen et al., 1998; Tavazoie et al., 1999; Zaslaver et al., 2004). 
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In terms of antibiotic resistance gene conservation, we identified the most highly conserved 

antibiotic resistance genes associated with drug classes such as rifamycin, mupirocin, 

streptogramin, lincosamide, and pleuromutilin. Interestingly, nitroimidazole class 

antibiotics, which include metronidazole, did not show significant conservation of 

associated antibiotic resistance genes within the Gardnerella pangenome. Clindamycin, an 

antibiotic of the lincosamide class, could be less effective in treating BV due to potential 

resistance. These findings could be important in informing treatment approaches for BV, 

which is known to have high recurrence rates (“Lincosamides,” 2016).  

  

We also observed a high proportion of unique reactions associated with amino acid 

metabolism, which aligns with previous literature indicating that differential amino acid 

metabolism can distinguish Gardnerella subgroups (Khan et al., 2021). The large number 

of unique reactions associated with xenobiotic biodegradation suggests that the 

Gardnerella genus is capable of differential interactions with pharmaceutical treatments as 

well as nonendogenous probiotics (C. Li et al., 2019; Z. Wang & He, n.d.). This finding 

highlights the need for understanding which Gardnerella strains are present in BV in order 

to develop patient-specific treatments. The large number of unique reactions associated 

with terpenoid and polyketide metabolism could offer insight into why some women 

experience persistent and odorous BV while others remain asymptomatic. Symptom 

variation could be due to the antimicrobial properties of polyketide metabolism, which 

allow the odor producing bacteria to outcompete their microbial competitors (Ridley et al., 

2008). Some Gardnerella strains may be better equipped to outcompete other vaginal 

microbes. Finally, we found that glycan-related metabolism is uniquely enriched in the 
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pangenome core metabolism, indicating potential coevolution of Gardnerella with sialic 

acid-catabolizing microbes such as Fusobacterium (Agarwal et al., 2020). This finding 

could be useful in understanding the intra-pangenome coevolution of Gardnerella based 

on differences in sialidase activity across strains (W. G. Lewis et al., 2013). Overall, our 

study highlights the importance of considering functional relatedness in addition to genetic 

relatedness when investigating the phylogenetic relatedness of Gardnerella strains. 

Gene essentiality  

Conserved essential genes are potential targets for drug development, because disruption 

can inhibit virulence and adaptation. For example, the gpsA gene, which is involved in 

phospholipid synthesis, has been identified as a virulence factor in Lyme disease and 

nasopharyngeal colonization by Streptococcus pneumoniae (Drecktrah et al., 2022; Green 

et al., 2021). Similarly, suhB, an inositol monophosphatase, regulates virulence factors in 

Pseudomonas aeruginosa and is essential for Burkholderia cenocepacia biofilm formation, 

motility, and antibiotic resistance (K. Li et al., 2013; Rosales-Reyes et al., 2012). Both 

gpsA and suhB may be universally essential for driving Gardnerella virulence and 

adaptation to the vaginal mucosal environment. The psd gene, which plays a role in 

bacterial membrane biogenesis, has been successfully inhibited in Plasmodium falciparum 

using 4-quinolinamine compounds and may serve as a starting point for novel BV treatment 

development (Choi et al., 2016; Voelker, 1997). Fatty acid biosynthesis, which is essential 

for bacterial membrane construction, may be targeted by the fas gene, as fatty acid synthase 

type II (FASII) is bacterium specific.  
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Flux analysis 

Investigating transport-specific flux values in Gardnerella strains allows for insights into 

how strains interact with their vaginal metabolic environment. The use of dimensionality 

reduction and visualization techniques, such as tSNE, revealed that laboratory strains differ 

in their metabolic functionality from strains collected from body sites, highlighting the 

need to characterize metabolic functionality of non-laboratory vaginal microbiome strains. 

Furthermore, the dispersed nature of vaginal isolates indicates wide variation in functional 

metabolism. Functional metabolic differences are further supported by differential 

galactose import, suggesting that there is strain-level variation in energy sources and 

metabolic pathways involved in BV (Benito et al., 1986). Of note, a small set of strains 

import high levels of mannose-6-phosphate, which is an essential ligand for the mannose-

6-phosphate enzyme, which is key for lysosomal function (Das Purkayastha et al., 2019; 

Gary-Bobo et al., 2007; Oh et al., 2007). Some strains of Gardnerella may sequester 

mannose-6-phosphate as a mechanism of evading host lysosomal clearance, which could 

result in disordered vaginal epithelial cell function due to the lack of waste removal and 

increased inflammation and oxidative stress (Ferreira & Gahl, 2022; Vuolo et al., 2021).  

Conclusion 

In conclusion, our study provides important insights into the Gardnerella pangenome and 

its metabolic function. We discovered that genetic relatedness does not necessarily 

translate to functional relatedness among Gardnerella strains. Our findings suggest that 

BV research should focus on understanding the functional metabolic differences among 

strains to design effective interventions at a strain-specific level. The identified conserved 

gene essentiality predictions of gpsA, fas, suhB, and psd could inform the development of 
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novel drugs targeting this diverse genus. Additionally, Gardnerella strains interact 

differently with their vaginal metabolic environment, indicating the potential for metabolic 

niche development within the pangenome. These discoveries have implications for 

developing a deeper understanding of patient-level variation in BV and its impact on health 

outcomes and infection, which can ultimately lead to personalized therapeutic approaches. 

Overall, our work highlights the importance of integrating computational and experimental 

approaches to better understand the diversity and functionality of the Gardnerella 

pangenome. 
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Supplementary 
 
S1A: BVCFM in silico formula 

Metabolite in silico Media 
Inclusion Model Seed ID FluxBounds 

myristoleate TRUE cpd05237 [-1000,1000] 

kynurenate TRUE cpd01182 [-1000,1000] 

pentadecanoate TRUE cpd15622 [-1000,1000] 

2-O-methylguanosine TRUE cpd34555 [-1000,1000] 

3-dephosphocoenzymeA TRUE cpd00655 [-1000,1000] 

N2,N2-dimethylguanine TRUE cpd28562 [-1000,1000] 

flavinadeninedinucleotide(FAD
) TRUE cpd00015 [-1000,1000] 

alanine TRUE cpd00035 [-1000,1000] 

valine TRUE cpd00156 [-1000,1000] 

N-acetylalanine TRUE cpd33748 [-1000,1000] 

3-methyl-2-oxovalerate TRUE cpd00508 [-1000,1000] 

3-methyl-2-oxobutyrate TRUE cpd00123 [-1000,1000] 

tricarballylate TRUE cpd16654 [-1000,1000] 

4-methyl-2-oxopentanoate TRUE cpd00200 [-1000,1000] 

N-acetylneuraminate TRUE cpd00232 [-1000,1000] 

citrulline TRUE cpd00274 [-1000,1000] 

2-aminobutyrate TRUE cpd01573 [-1000,1000] 

phenylacetate TRUE cpd00430 [-1000,1000] 

sarcosine(N-Methylglycine) TRUE cpd00183 [-1000,1000] 
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nicotinate TRUE cpd00218 [-1000,1000] 

palmitoylethanolamide TRUE cpd16300 [-1000,1000] 

threitol TRUE cpd17172 [-1000,1000] 

galactose TRUE cpd00108 [-1000,1000] 

N6-acetyllysine TRUE cpd01770 [-1000,1000] 

1-phenylethanamine TRUE cpd34388 [-1000,1000] 

alpha-hydroxyisocaproate TRUE cpd33351 [-1000,1000] 

2-Hydroxybutyrate TRUE cpd03561 [-1000,1000] 

succinate TRUE cpd00036 [-1000,1000] 

2-hydroxyglutarate TRUE cpd02041 [-1000,1000] 

3-
phenylpropionate(hydrocinnam
ate) 

TRUE cpd03343 [-1000,1000] 

thymine TRUE cpd00151 [-1000,1000] 

agmatine TRUE cpd00152 [-1000,1000] 

N-acetylputrescine TRUE cpd01758 [-1000,1000] 

4-hydroxybutyrate TRUE cpd00728 [-1000,1000] 

tyramine TRUE cpd00374 [-1000,1000] 

putrescine TRUE cpd00118 [-1000,1000] 

deoxycarnitine TRUE cpd00870 [-1000,1000] 

tryptamine TRUE cpd00318 [-1000,1000] 

cadaverine TRUE cpd01155 [-1000,1000] 

5-aminovalerate TRUE cpd00339 [-1000,1000] 

4-Hydroxyphenylacetate TRUE cpd00489 [-1000,1000] 

pipecolate TRUE cpd00323 [-1000,1000] 
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pelargonate FALSE   

indolepropionate FALSE   

myristate FALSE   

13-methylmyristicacid FALSE   

N-acetylvaline FALSE   

N-acetylphenylalanine FALSE   

N-acetylleucine FALSE   

N-acetylglutamate FALSE   

13-HODE FALSE   

oleicethanolamide FALSE   

N-acetylaspartate(NAA) FALSE   

12-HETE FALSE   

alpha-hydroxyisovalerate FALSE   

2-hydroxy-3-methylvalerate FALSE   

3-(4-hydroxyphenyl)propionate FALSE   

 
S1B: SVM in silico formula 
 

Metabolite in silico Media Inclusion Model Seed 
ID FluxBounds 

sodium TRUE cpd00971 [-1000,1000] 

potassium TRUE cpd00205 [-1000,1000] 

dextrose TRUE cpd00027 [-1000,1000] 

cysteine TRUE cpd00084 [-1000,1000] 

glycogen TRUE cpd00155 [-1000,1000] 
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mucin TRUE cpd00984 [-1000,1000] 

urea TRUE cpd00073 [-1000,1000] 

phytomenadione TRUE cpd01401 [-1000,1000] 

heme TRUE cpd00028 [-1000,1000] 

magnesium TRUE cpd00254 [-1000,1000] 

sulfate TRUE cpd00048 [-1000,1000] 

bicarbonate TRUE cpd00242 [-1000,1000] 

biotin TRUE cpd00104 [-1000,1000] 

myo-inositol TRUE cpd00121 [-1000,1000] 

niacinamide TRUE cpd00133 [-1000,1000] 

pyridoxine TRUE cpd00263 [-1000,1000] 

thiamine TRUE cpd00305 [-1000,1000] 

D-Calciumpantothenate TRUE cpd19112 [-1000,1000] 

folate TRUE cpd00393 [-1000,1000] 

choline TRUE cpd00098 [-1000,1000] 

riboflavin TRUE cpd00220 [-1000,1000] 

l-ascorbicacid TRUE cpd00059 [-1000,1000] 

retinol TRUE cpd00365 [-1000,1000] 

Cyanocobalamin TRUE cpd01826 [-1000,1000] 

water TRUE cpd00001 [-1000,1000] 

albumin FALSE   

p-Aminobenzoic FALSE   

acid FALSE   
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calciferol FALSE   

tween20 FALSE   

K2HPO4buffer FALSE   

KHSPO4buffer FALSE   
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Chapter 3: Competition and mutualism in the dysbiotic vaginal microbiome  

The text for this chapter is currently under-review: 

 

Dillard LR, Kolling GL, Thomas-White K, Wever F, Glass EM, Papin JA (under review) 

Competition and Mutualism in the Dysbiotic Vaginal Microbiome. Nature Microbiology 

Context 

My pangenome project created a base of understanding surrounding the metabolic diversity 

within the Gardnerella genus. I wanted to build upon this foundation and delve into the 

inter-bacterial complexity of bacterial vaginosis (BV). Through my partnership with Evvy, 

a vaginal microbiome startup company, I was able to identify common non-Gardnerella 

bacterial species that are associated with BV. Using these data, along with former Papin 

lab post-doc Dr. Matt Jenior's algorithm to simulate inter-bacterial competition and 

mutualism, the second chapter of my dissertation was born: defining inter-bacterial 

metabolic interactions within BV.  

Synopsis 

Bacterial vaginosis (BV) is the most prevalent vaginal condition among reproductive-age 

women experiencing vaginal complaints. Despite its significant impact on women's health, 

limited knowledge exists regarding the microbial community structure and metabolic 

interactions associated with BV. In this study, we analyzed metagenomic data obtained 

from human vaginal swabs to generate in silico predictions of BV-associated bacterial 

metabolic interactions via genome-scale metabolic network reconstructions (GENREs). 
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Our in silico simulations revealed distinct functional metabolic relatedness compared to 

genetic relatedness within the Gardnerella genus. We grew the most common co-occurring 

bacteria on the spent media of Gardnerella species and performed metabolomics to identify 

potential mechanisms of metabolic interaction. Notably, we identified some BV associated 

bacteria significantly produce caffeate, a compound implicated in estrogen receptor 

binding. These findings underscore the complex and diverse nature of BV-associated 

bacterial community structures. 

Introduction 

Bacterial vaginosis (BV) is the most common state of vaginal dysbiosis among 

reproductive age women with vaginal complaints (Schwiertz et al., 2006). BV is a 

polymicrobial condition characterized by low levels of Lactobacillus, high levels of diverse 

anaerobes, a vaginal pH greater than 4.5, thin vaginal discharge, and a fishy odor (Wang, 

2000). Various factors, such as sexual activity, menstruation, antibiotics, and douching can 

alter a healthy, acidic, Lactobacillus-dominant, vaginal microbiome, leading to the 

development of BV (Gajer et al., 2012; Lopes dos Santos Santiago et al., 2012; Mayer et 

al., 2015; Tachedjian et al., 2017; Tortelli et al., 2020). BV is disproportionally prevalent 

among women of color, affecting 33-64% of Black women, and 31-32% of Hispanic 

women, compared to 23-35% of White women (Allsworth et al., 2008; Culhane et al., 

2002; Koumans et al., 2007, p. 20; Muzny & Kardas, 2020). BV increases risk of 

contracting sexually transmitted diseases, including HIV, and is also associated with risk 

of preterm birth (Feehily et al., 2020; Fettweis et al., 2019; Shimaoka et al., 2019). BV 

accounts for an estimated cost of $14.4 billion USD annually when considering both BV 
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treatment costs and BV-associated healthcare costs in the United States alone (Peebles et 

al., 2019). 

  

Despite the significant impact of BV on women's health, there is a dearth of information 

regarding the microbial community structure and metabolic interactions associated with 

this condition (Bradshaw & Sobel, 2016). By investigating the competitive and mutualistic 

relationships among BV-associated bacteria, we can identify potential targets for 

therapeutic interventions. The inclusive list of bacteria involved in BV has yet to be 

defined; however, certain bacterial species are commonly associated with this condition, 

including: Gardnerella species, Prevotella bivia, Prevotella amnii, Prevotella buccalis, 

Hoylesella timonensis, Lactobacillus iners, Fannyhessea vaginae, and Aerrococcus 

christenssii (Figure 1) (Forsum et al., 2005; Marrazzo et al., 2009, 2009; Srinivasan et al., 

2012). Although the Gardnerella genus is the primary contributor to BV, the large number 

of distinct Gardnerella species associated with BV make experimental analysis 

challenging (Castro et al., 2019; Dillard et al., 2022; Horrocks et al., n.d.; Janulaitiene et 

al., 2017). Computational modeling allows us to simulate thousands of pairwise 

interactions between bacterial species to analyze possible competitive and mutualistic 

behaviors.  

 

In this study, we conducted an analysis of metagenomic data obtained from human vaginal 

swabs in order to ascertain the microbial composition of both symptomatic and 

asymptomatic cases of BV. Through the application of these data, we generated in silico 

predictions of BV-associated bacterial metabolic interactions using genome-scale 
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metabolic network reconstructions (GENREs). To validate these predictions, we carried 

out in vitro growth experiments. Furthermore, we collected bacterial supernatants to 

identify metabolites that putatively underlie BV-associated bacterial interactions. We 

subsequently conducted follow-up experiments to confirm the role of metabolites that were 

implicated both in silico and in vitro, in contributing to competitive interactions. By 

elucidating the underlying mutualistic and competitive interactions between bacterial pairs, 

we aim to enhance our understanding of the intricate microbial community associated with 

BV, ultimately leading to the development of more effective treatments for this prevalent 

condition. 

Methods 

Gardnerella and co-occurring species comparison  

Co-occurrence frequency 

Samples were split into three different groups: symptomatic BV (N=212), asymptomatic 

BV (N=504) and a healthy cohort (N=154) (Table 1). The symptomatic and asymptomatic 

BV groups both consisted of samples of Community State Type (CST) 4 and were 

dominated by Gardnerella (>= 50% relative abundance) (De Seta et al., 2019). However, 

the symptomatic BV group experienced excessive discharge and itchiness (either internal 

or external), while these symptoms were absent in the asymptomatic BV group. The 

healthy cohort consisted of samples of CST 1, 2 or 5, dominated by lactobacilli, with a 

relative abundance of >= 50% L. crispatus, L. gasseri, L. paragasseri, L. pensenii, L. 

mulieris and did not experience excessive discharge nor itchiness. Relative frequency of 
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species that co-occur with Gardnerella vaginalis within each subgroup was calculated 

using the following formula: 

# of samples with >= 2% relative abundance of co-occurring species 
# of samples with >= 2 % relative abundance of G. vaginalis 

Average nucleotide identity for speciation determination  

The nucleotide similarity between the Gardnerella genomes was determined using an 

average nucleotide identity (ANI) comparison (Goris et al., 2007). 222 Gardnerella 

genomes were input to pyani, a Python implementation tool for ANI analysis (Pritchard et 

al., 2015). After running an initial comparison with pyani using the ANIb method, 13 

genomes were removed from the analysis as they were too divergent from the majority of 

genomes. The remaining 209 Gardnerella genomes were input to pyani and the ANIb 

method which aligns 1020 nt fragments of the input sequences using BLASTN+ was used 

(Madden, 2002; Madden & Camacho, 2021). The generated percentage identity heatmap 

was color coded based on the taxonomic classifications given by the NCBI records of the 

genomes (Schoch et al., 2020). 

Dendrogram construction 

The pyani analysis generated a distance matrix for percentage identity, which was used to 

generate a dendrogram. The distance matrix was clustered via hierarchical clustering using 

the “complete” method via the TAPE R package (Zhuang et al., 2022). The clustered output 

was then converted to a tree object in Newick tree format. The dendrogram tree file was 

visualized using iTOL v6.7.1 and color coded based on the taxonomic classifications of 

the genomes’ NCBI records (Letunic & Bork, 2021). 
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Model construction and contextualization 

We analyzed potential metabolic interactions among Gardnerella strains by identifying 

208 Gardnerella whole genome sequences from the BV-BRC 3.28.21 database that meet 

the "good" quality criteria defined as a genome with at least 80% completeness, less than 

10% contamination, and at least 87% consistency with known protein sequences (Olson et 

al., 2023). Thirteen genomes were removed due to ANI clustering indicating either 

incomplete genome sequence or chimera status. We used the remaining 195 Gardnerella 

strains' annotated amino acid sequences to generate GENREs using the Reconstructor 

algorithm (Jenior et al., 2023). Additionally, we created GENREs for seven co-occurring 

species of interest: Lactobacillus iners, Prevotella bivia, Prevotella amnii, Prevotella 

buccalis, Hoylesella timonensis, Fannyhessea vaginae, and Aerococcus christensii. The 

quality of the GENREs was assessed using MEMOTE, which is the standard metric in 

computational metabolic modeling (Lieven et al., 2020). The GENREs and corresponding 

MEMOTE scores are available at the project's GitHub repository. 

(https://github.com/emmamglass/Gardnerella-Interactions).  

 

After constructing the GENREs, we created a list of minimal metabolites required for 20% 

of maximal biomass production (Min20) for each individual GENRE using the COBRApy 

toolbox minimal_medium built-in function. We combined those minimal metabolite 

requirement lists to form a consensus list of minimal metabolites across all GENREs 

(Min20). To simulate vaginal dysbiosis, we also composed an in silico BVpositive 

cervicovaginal fluid media (BV-CFM) based on previous metabolomics analysis of 

cervicovaginal fluid collected from both healthy and BV-positive patients (Vitali et al., 
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2015). This BV-CFM in silico media was enriched for metabolites found to be significantly 

elevated in BV-positive cervicovaginal fluid. We added transport reactions, which were 

absent from initial model construction but required for in silico media metabolite usage, in 

addition to respective exchange reactions. The final in silico media used for model 

simulation consisted of Min20 + BV-CFM. 

Competition and mutualism simulation 

To analyze the metabolic interactions between Gardnerella strains and other co-occurring 

species, we used a metabolic interaction prediction algorithm developed previously (Jenior 

et al., Under Review) and applied it to the 202 GENREs that we constructed. This method 

allowed us to simulate approximately 20,000 pairwise interactions and calculate the impact 

on biomass production and extracellular metabolites. We used a heatmap generated in R’s 

pheatmap package to visualize the increase or decrease in biomass flux due to mutualism 

or competition, respectively (Kolde, 2019). Columns and rows were hierarchically 

clustered using the built-in Ward’s minimum variance method, and associated distance 

matrix using the built-in Euclidean distance method (Lele & Richtsmeier, 1995; Ward, 

1963). We also calculated net-flux values and visualized them using the same 

methodology. 

  

To better understand the clustering of strains based on mutualistic benefit, competitive cost, 

and net outcome, we used t-SNE for dimensionality reduction and visualization. We 

generated three plots via the R Rtsne package using mutualism biomass flux increase 

values, competition biomass flux decrease values, and net-flux values, respectively 

(iteration = 50,000; perplexity = 14) (Van der Maaten & Hinton, 2008). ANI-calculated 
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clading values were used to color Gardnerella data points and highlight strain level inter-

clade clustering. 

  

To understand the relationship between mutualistic benefit and competition cost, we 

calculated the average decrease in biomass flux due to competition and the average increase 

in biomass flux due to mutualism for each bacterial strain. We then graphed all 202 bacteria 

of interest as depicted in Figure 2. We identified the top five most competitive and most 

mutualistic bacteria using a one-tailed t-test and corresponding Bonferroni multiple test 

correction using the p.adjust R function (Bonferroni, 1936; Student, 1908). Finally, we 

calculated the percent of total interactions a metabolite was either competed for and/or 

shared between GENREs. 

Spent Media Analysis  

Metabolomics Sample Collection 

The following describes the experimental setup and sample preparation for metabolomics 

analysis of Gardnerella vaginalis (strain ATCC 14018) and Gardnerella piotti (strain 

JCP8151B) primary spent media. The bacteria were grown overnight under anaerobic 

conditions in NYCIII + 2% FBS media, and inoculated into T25 polystyrene tissue culture 

flasks. After 18 hours of incubation, samples were collected from each flask, spun down 

(15 minutes; 7,500 RPM), and filter-sterilized. The filtered supernatant was stored at -80°C 

until metabolomics processing. OD600 was recorded prior to the spin down step. Pooled 

spent media samples for both G. vaginalis and G. piotti were also aliquoted into 

microcentrifuge tubes and stored at -80°C. The remaining spent media for G. vaginalis and 

G. piotti was stored at -20°C.  
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In order to collect metabolomics on spent media conditions, six of the co-occurring species 

-  L. iners, P. amnii, P. buccalis, H. timonensis, F. vaginae and A. christensii  - were grown 

to turbidity overnight in enriched media (NYCIII+2% FBS, BHI, or MRS) under anaerobic 

conditions. Twelve-well plates with 2.5 mL of either G. piotti or G. vaginalis spent media 

were inoculated with 100 uL of co-occurring species inoculum. After inoculation, samples 

were grown to turbidity, as confirmed via OD600. Samples were then collected from each 

flask, spun down (5 minutes; 5,000 RPM), filter-sterilized and stored at -80°C.  

Mass Spectrometry Sample Preparation and Analysis 

Untargeted metabolomics was performed by the University of Virginia Biomolecular 

Analysis Facility Core. Sample preparation involved adding 2000 μL of 80% methanol (-

20 °C) to 500 μL of each culture medium. The mixture was vortexed for one minute and 

incubated at -20 °C for two hours to induce protein precipitation. Subsequently, the tubes 

were centrifuged at 14,000 g for 30 minutes at 4 °C. The resulting supernatants were 

transferred to new tubes, and a quality control (QC) sample was prepared by combining 35 

μL from each sample. All samples were then dried in a speed vacuum for approximately 

four hours and stored at -80 °C until further processing. 

  

For mass spectrometry analysis, the dried samples were reconstituted in 100 μL of 0.1% 

formic acid along with 100X diluted Metabolomics QReSS heavy-labeled standards (Percy 

et al., 2022; Percy, Andrew et al., 2021). A dilution of 1:800 was applied to both samples 

and QC sample. Subsequently, 10 μL of each diluted sample was injected for analysis. 
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Mass spectrometry data acquisition was performed using a Thermo Orbitrap IDX MS 

connected to a Vanquish UPLC system. A Waters BEH C18 column (100 x 2.1 mm, 1.9 

µm) was employed for soluble metabolite separation. The column temperature was set at 

30 °C, and a flow rate of 250 µL/min was maintained. The mobile phase consisted of 0.1% 

formic acid in water (mobile phase A) and 0.1% formic acid in methanol (mobile phase B). 

The mass scan range was set from 67 to 1000 with a resolution of 120,000 and a scan range 

of 0.6 sec. 

  

Data-dependent MS2 scans were obtained using a real-time precursor exclusion strategy 

with AcquireX mode. Prior to the analysis of the samples, initial runs were performed with 

solvent blank samples in full scan mode (67-1000 mass range) to generate an exclusion list 

containing all the peaks present in the blank samples. A QC sample was then run in full 

scan mode, and all the peaks were saved as an inclusion list. Four data-dependent 

acquisition (DDA) injections were performed, with the exclusion list automatically 

updated based on the selected precursor. 

  

After data acquisition, the samples were subjected to analysis using the open-source 

software MS-DIAL (Tsugawa et al., 2015, 2019). To identify and remove background ions, 

five blank samples were included in the analysis. The samples acquired in full scan MS1 

mode were used for quantification, while the samples acquired in DDA mode were utilized 

for spectral identification of metabolites. The MS1 tolerance was set to 0.01 Da, and the 

MS2 tolerance was set to 0.025 Da. For peak picking, a mass slice width of 0.1 was 
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employed. Peak alignment was performed with a maximum retention time tolerance of 0.2 

min and an MS1 tolerance of 0.015. 

  

Peak identification was carried out by searching the MS2 spectra against the MS-DIAL 

public database (January 2023). A mass tolerance of 0.01 Da for MS1 and 0.05 Da for 

MSMS was applied, with an identification score cutoff of 60%. Additionally, the peaks 

were searched against an in-house IORA library in both positive and negative mode, using 

a mass tolerance of 0.01 Da and an identification cutoff of 80%. The data was manually 

inspected, and identifications without corresponding MS2 spectra were filtered out, except 

for IORA. Data analysis was performed using Metaboanalyst 5.0 (Pang et al., 2021). The 

samples were normalized by median and subjected to log transformation. Subsequently, a 

fold change analysis was performed to detect dysregulated metabolites between secondary 

spent media compared to primary spent media. Statistical analysis was conducted using a 

t-test to determine the significance of group differences. Over representation analysis 

(ORA) was conducted via Metaboanalyst, which calculates enrichment ratio derived from 

comparing between actual versus predicted number of metabolite hits per super-class 

metabolite category (Pang et al., 2021). The statistical significance of the enrichment ratios 

is calculated using hypothesis testing using a binomial distribution to assign a p-value, 

which is adjusted using Holm’s multiple comparison test (Holm, 1979). Data was 

visualized using volcano plots generated in R’s ggplot2 package, with a p-value cutoff of 

<0.01 and a log2(fold change) cut off of  > |2|.  
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Growth Analysis  

Overnight cultures of L. iners, P. amnii, P. buccalis, H. timonensis, F. vaginae, A. 

christensii, G. vaginalis, and G. piotti were cultured under anaerobic conditions for 24-48h 

in NYCIII media + 2% FBS, OD600 measured, pelleted by centrifugation (5,000 rpm, 5 

min) and resuspended in fresh NYCIII.  Cultures were then diluted in spent media and 

aliquoted into a 96-well plate (starting OD600 ~0.05) containing spent or blank media for a 

kinetic growth assay under anaerobic conditions without shaking. G. piotti and A. 

christensii’s flocculant phenotype necessitated the use of shaking. 

Supplemented Growth Analysis 

Cultures of G. piotti and H. timonensis were grown under anaerobic conditions for 24-48h 

in NYCIII media + 2% FBS, OD600 measured, pelleted by centrifugation (5,000 rpm, 5 

min) and diluted to an OD600 of 1 in fresh NYCIII.  Cultures were then aliquoted into a 96-

well plate containing media conditions specified below (starting OD600 0.1) for a kinetic 

growth assay under anaerobic conditions without shaking. G. piotti was cultured in spent 

G. piotti media and spent G. piotti media supplemented with 0.1% filter sterilized L-

histidine. H. timonensis was cultured in spent G. vaginalis media and spent G. vaginalis 

media supplemented with 0.01% filter sterilized propionic acid. 
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Results 

In vivo BV Co-Occurring Species 

L. iners, G. vaginalis, F. vaginae, and H. timonensis are frequently found to co-occur in 

both symptomatic and asymptomatic samples of BV (Figure 1). L. iners was observed to 

co-occur with G. vaginalis in 33% of healthy samples, whereas the co-occurrence of F. 

vaginae and H. timonensis was only 5% and 8%, respectively. A. christensenii and P. bivia 

were identified as more common co-occurring species in symptomatic samples. On the 

other hand, P. amnii, P. buccalis, and H. timonensis were more commonly observed as co-

Figure 1 Heatmap illustrating relative frequency of Gardnerella vaginalis co-occurrence with 
non-Gardnerella species in BV symptomatic, BV asymptomatic, and Healthy samples
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occurring species with G. vaginalis in asymptomatic samples. Demographic features 

collected from sample 

metadata did not appear 

to correlate with 

differences in symptom-

atic, asymptomatic and 

healthy samples (Table 

1).  

 

ANI of Gardnerella 

genomes identified 13 

genetically distinct 

species defined as 95% 

genetic similarity (S1). 

Four species are already 

named (G. vaginalis, G. 

piotii, G. swidsinkii, and 

G. leopoldii) with the 

remainder unnamed and 

therefore given a number 

(species 1-9). Within 

these species there were 

Demographic and Clinical Characteristics

HealthyAsymptomatic BVSymptomatic BV

154504212Number of Tests

147468208

Number of Users (n = )

*note: this is used as the 
denominator for most of the 
following stats

35.6 (9.6)37.8 (9.4)34.6 (7.8)
Age (years) mean (standard 
deviation)

24 (5.4)24.9 (5.9)25.1 (6.4)
Body Mass Index mean 
(standard deviation)

Race/Ethnicity number (%)
* multiselect

114 (77.6%)319 (68%)139 (66.8%)White

13 (8.8%)71 (15%)33 (15.9%)Black or African American

15 (10.2%)57 (12%)39 (18.8%)Hispanic or Latino

6 (4.1%)32 (6.8%)11 (5.3%)Asian

7 (4.8%)11 (2.4%)6 (2.9%)American Indian or Alaska 
Native

1 (0.7%)4 (0.8%)4 (1.9%)Southeast Asian

3 (2%)7 (1.5%)2 (0.9%)Middle Eastern

1 (0.7%)4 (0.8%)0 (0%)South Asian

3 (2%)6 (1.3%)1 (0.5%)Other

2 (1.4%)9 (1.9%)3 (1.4%)Prefer not to say

Which of these describes your sexual activity? number (%)
*multiselect

99 (67%)327 (70%)135 (65%)One partner

80 (54%)269 (57%)128 (62%)Penetrative vaginal sex

68 (46%)209 (45%)102 (49%)Male partner(s) *assigned at 
birth

61 (41%)209 (45%)96 (46%)Receiving oral sex

53 (36%)179 (38%)76 (37%)Sex toys

15 (10%)47 (10%)18 (9%)Multiple partners

11 (7.5%)42 (9%)15 (7%)Receiving anal sex

3 (2%)20 (4.3%)12 (6%)Female partner(s) *assigned 
at birth

0 (0%)6 (1.3%)0 (0%)Prefer not to say

When were you last sexually active? number (%)

44 (30%)130 (28%)35 (17%)Within the past 5 days

14 (9.5%)74 (16%)23 (11%)Within the past 2 weeks

51 (35%)165 (35%)88 (42%)Within the past 30 days

38 (26%)83 (18%)58 (28%)Previously sexually active 
(over a month ago)

0 (0%)7 (1.5%)2 (1%)Never sexually active

0 (0%)9 (1.9%)2 (1%)Prefer not to say

Table 1 Demographics and clinical characteristics of 
vaginal metagenomic samples
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also distinct genetic clades for both G. vaginalis and G. piotii designated as clades A and 

B in each (S1).  

Pairwise in silico bacterial interactions 
We analyzed mutualism, competition, and net interactions at the single bacterial species, 

single interaction level. Our investigation revealed a consistent lack of mutualism benefit 

across two Prevotella species and H. timonensis, which cluster closely at the primary 

bacteria level (Figure 2A). In contrast, A. christensii and L. iners showed significant 

mutualistic benefits in pairwise simulations. In terms of competition, a small subset of 

Gardnerella strains at the bottom-most of the heatmap were repeatedly outcompeted, as 

evidenced by high biomass flux decrease across almost all interactions (Figure 2B). At the 

net flux level, L. iners and A. christensiin at the primary bacteria level flux values indicated 

consistent biomass benefit from mutualistic interactions and low biomass cost due to 

competition (Figure 2C). Finally, L. iners, all Prevotella species, H. timonensis, F. 
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vaginae, A. christensii, and some Gardnerella strains played significant mutualistic roles 

in approximately half of the primary bacterial strain interactions, while playing a more 

neutral to competitive role in the other half of primary bacterial strain interactions. 

 

Using t-SNE, we assessed single bacterial species across interactions – mutualistic, 

competitive, and net – to examine high-level patterns of bacterial similarity. We found 

inter-Gardnerella clade clustering during mutualism, including G. leopoldii, G. 

swidsinksii, G. 1,2,3,4, and unknown strains (Figure 2D). Additionally, we observed 

clustering across G. vaginalis, G. piotti, G. 5,6,7,8,9, and P. amnii. Specifically, P. amnii 

clustered independently from P. bivia and P. buccalis. Conversely, there was less prevalent 

local structure observed at the competition level including clustering of A. christensenii, 

G. piotti, G. vaginalis, G. 1,2,3,4, G. 5,6,7,8,9, P. bivia and an unknown Gardnerella 

(Figure 2E). Looking at net flux values, we see analogous inter-Gardnerella clustering of 

species clustered in mutualism (Figure 2F).  

 

Based on our analysis of average mutualism benefit and average competition cost as 

quantified via change in flux through biomass, we found that L. iners and A. christensenii 

both significantly benefited from pairwise mutualism compared to low competition cost 

(Figure 3A). Conversely, H. timonensis showed high competition cost relative to its low 

mutualism benefit. Our analyses showed that most of the investigated strains fell within 
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the low to medium mutualism benefit range, with a similarly low to medium competition 

cost, except for one Gardnerella strain with significant competition cost. 

 

Using a one-tailed t-test, followed by Bonferroni multiple test corrections, we highlighted 

secondary bacteria that most significantly benefited primary bacteria with which they co-

occurred. The top five most mutualistic bacteria belonged to the following Gardnerella 

clades: G. 8 (p-value: 2.18 x 10-99, t-statistic: 42.6), unknown strain (p-value: 4.59 x 10-93, 

t-statistic: 39.2), G. piotti B (p-value: 7.12 x 10-85, t-statistic: 35.2), G. leopoldii (p-value: 
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Figure 3 (A) average biomass increase due to mutualism benefit vs. average biomass decrease due to competition cost for each bacteria (B) dendrogram of Gardnerella species, with light 
stars denoting top four most mutualistic bacteria and dark stars indicating top four most competitive bacteria across all interactions simulations (C-J) growth curves in NYC III enriched 
media (black), spent G. piotti media (light pink), and spent G. vaginalis media (dark pink/red), with mean and two standard deviation spread
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3.50 x 10-84, t-statistic: 34.8), and G. 5 (p-value: 4.31 x 10-80, t-statistic: 32.9). Conversely, 

the top bacterial competitors were defined as secondary bacteria that most significantly 

outcompeted primary bacteria, resulting in a decrease in biomass during pairwise 

simulations. The top five most competitive bacteria fell under the following Gardnerella 

clades: G. 8 (p-value: 4.82 x 10-51, t-statistic: 21.3), unknown species (p-value: 3.77 x 10-

44, 18.9), G. 9 (p-value: 1.57 x 10-43, t-statistic: 18.7). G. 3 (p-value: 1.74 x 10-43, t-statistic: 

18.7), and G. 7 (p-value: 1.74 x 10-43, t-statistic: 18.7). We overlaid the most competitive 

and most mutualistic bacteria onto the Gardnerella ANI dendrogram and observed a 

greater genetic diversity among top mutualistic bacteria compared to the top competitive 

bacterial strains (Figure 3B). 

  

Our analysis of the most commonly shared and/or competed for metabolites highlighted 

the physiological relevance of four metabolites in the BV-positive in silico bacterial 

interaction simulation (Figure 4A). Specifically, L-histidine (Competitive interactions: 

98%; Mutualistic interactions: 94%), which can be decarboxylated to form histamine, a 

key host inflammatory response immune regulator (Branco et al., 2018). Selenocysteine 

(Competitive interactions: 94%), is an essential component of selenoproteins, which play 

a role in host immune function (Avery & Hoffmann, 2018; Rayman, 2000). Sphinganine 

1-phosphate (S1P) (Competitive interactions: 35%) has been associated with pro-

inflammatory properties and implicated in tissue damage, but rarely implicated in bacterial 

metabolism (Ledgerwood et al., 2008; Liu et al., 2021). Iron (III) (Competitive interactions: 

78%; Mutualistic interactions: 75%) is an essential Gardnerella growth micronutrient 

(Jarosik et al., 1998).  



 68 

 

 

 

 

Pairwise in vitro bacterial interactions 

Growth Curves 

Because of the fastidious nature of P. bivia, it was not used for in vitro analysis. P. amnii, 

F. vaginae, and H. timonensis all showed similar growth capacity in NYCIII enriched 

media compared to G. piotti spent media (Figure 4C-E). L. iners and G. vaginalis had 44% 
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and 37% reduced growth in G. piotti spent media compared to enriched media (Figure 4F-

G)). All species had minimal growth in G. vaginalis spent media. P. buccalis, A. 

christensii, and G. piotti had minimal growth across all three conditions (Figure H-J). 

Metabolomics 

Both P. amnii and G. piotti showed no growth in G. vaginalis spent media and were not 

submitted for metabolomics analysis. After filtering for p-value and log2(fold change) 

(<0.01, > |2|) 85 metabolites were identified as significantly consumed and 87 metabolites 

were identified as significantly produced (Figure 4B). Using ORA we identified the top 

three metabolite super-classes that were most significantly enriched in both consumed in 

produced metabolites based on enrichment ratio. Consumed metabolites were enriched for 

nucleic acids (Enrichment-ratio: 272.7; Holm p-value: 1.95 x 10-12), carbohydrates, 

(Enrichment-ratio: 182.9; Holm p-value: 1.57 x 10-5), and organic acids, (Enrichment-ratio: 

54.5; Holm p-value: 3.05 x 10-8).  Produced metabolites were enriched for nucleic acids 

(Enrichment-ratio: 263.2; Holm p-value: 2.0 x 10-14), carbohydrates (Enrichment-ratio: 

100.5; Holm p-value: 0.004), and organoheterocyclic compounds (Enrichment-ratio: 58.4; 

Holm p-value: 1.74 x 10-5). 

 

G. piotti significantly consumed L-histidine when grown in fresh media (Figure 4C).  Both 

G. vaginalis and G. piotti produced protocatechuic acid (PCA) and 2-hydroxyisobutryic 

acid (2-HIBA) (Figure 4C-D). PCA has been shown to have beneficial anti-inflammatory 

effects in the gut (Murota et al., 2018). Conversely, previous research has identified 2-

HIBA as a disease biomarker for diabetes, adiposity, as well as autoimmune diseases 

(Elliott et al., 2015; Li et al., 2009; Tsoukalas et al., 2020).Both G. vaginalis and H. 
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timonensis significantly consumed the volatile fatty acid, propionic acid, which has been 

found to be elevated in BV positive cervicovaginal fluid  (Figure 4D-E) (Al-Mushrif et 

al., 2000; Delgado-Diaz et al., 2020; Gajer et al., 2012; Mirmonsef et al., 2011; Spiegel et 

al., 1983).  F. vaginae grown in G. vaginalis spent media did not have any significantly 

different metabolites. Caffeate is produced by both A. christensii and F. vaginae when 

grown in G. piotti. Caffeate is able to bind to estrogen receptor alpha (ER𝜶), which is 

located throughout the vaginal 

tissue (Figure 4F-G) (Rezaei-

Seresht et al., 2019).  L. iners 

significantly produced lactic acid 

only when grown in G. piotti spent 

media (Figure 4H). 

Supplemented Growth 

In silico analysis revealed that L-

histidine was consumed through 

both mutualism and competition, 

a finding further supported by 

metabolomics data demonstrating 

significant consumption of L-

histidine by G. piotti in vitro. To 

investigate the growth benefits of 

L-histidine, we conducted a direct 

comparison of G. piotti growth in 
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NYCIII media and NYCIII media supplemented with 0.1% L-histidine. The presence of 

0.1% L-histidine resulted in a significant enhancement of G. piotti growth, as confirmed 

by a one-tailed t-test of OD600 readings at the 48-hour time-point (t-statistic: 2.2, p-value 

< 0.05) (Figure 5A). 

 

Considering the enrichment of propionic acid in BV positive cervicovaginal fluid, along 

with the significant consumption of propionic acid by both H. timonensis in G. piotti spent 

media and by G. vaginalis in NYCIII media, we hypothesized that H. timonensis and G. 

vaginalis compete for propionic acid. To test this hypothesis, we cultured H. timonensis in 

G. vaginalis spent media and in G. vaginalis spent media supplemented with 0.01% 

propionic acid. At the 35-hour mark, we observed a borderline significant enhancement of 

H. timonensis growth (t-statistic: 1.4, p-value: 0.09), although overall growth remained 

minimal (Figure 5B). 

 

Discussion 

Despite the significant impact of BV on both acute and chronic health, there is a lack of 

information regarding the microbial community structures and metabolic interactions 

underlying this condition. Our study employs clinical data, in silico, and in vitro analyses 

to investigate the variations in Gardnerella co-occurring species between symptomatic and 

asymptomatic BV, as well as explore the differential interactions of Gardnerella strains 

with each other and non-Gardnerella co-occurring species. Additionally, we compare in 

silico predictions with in vitro metabolomics of spent media to further understand the 

metabolites defining inter-bacterial interactions. 
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Using in vivo metagenomic analysis of vaginal swabs, we observed variations in BV 

community structure between symptomatic and asymptomatic samples. Our findings 

indicate a higher prevalence of A. christensii and P. bivia in symptomatic samples, while 

P. amnii, P. buccalis, and H. timonensis were more frequently found in asymptomatic 

samples. These differences in community structures underscore the need for further sub-

categorization of BV. By establishing more specific definitions, development of more 

targeted treatments that move away from the current broad-spectrum antibiotic approach 

are possible (Kedaigle & Fraenkel, 2018; Sun et al., 2014; Zhang et al., 2022). 

  

The complexity of BV is further supported by in silico simulations of pair-wise bacterial 

interactions. Our analysis reveals significant clustering between Gardnerella species based 

on assessed mutualistic benefit, indicating that genetic similarity does not necessarily 

correlate with functional metabolic similarities. Additionally, we observe a bifurcated 

metabolic benefit versus metabolic cost of L. iners, all Prevotella species, H. timonensis, 

F. vaginae, A. christensii, and certain Gardnerella strains when co-occurring with 

Gardnerella strains. This result suggests that a strain's metabolic relationship may be 

beneficial in one inter-bacterial context but detrimental in another. Overall, A. christensii 

and L. iners appear to consistently benefit the most from inter-bacterial interactions in 

silico. In vitro experiments reveal that A. christensii does not experience growth benefits 

when cultured in spent media of either G. vaginalis or G. piotti. These findings differ from 

our in silico predictions and demonstrate that pair-wise simulations cannot fully capture 

the complexity of the polymicrobial communities present in BV. 
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Using metabolomics analysis, we investigated what specific metabolites were being 

consumed and produced by co-occurring species in BV. G. piotti significantly consumed 

L-histidine in vitro, which recapitulated our in silico prediction that L-histidine is highly 

competed over. Our metabolomics analysis was also able to reveal metabolite production 

and consumption that was not demonstrated in our in silico analysis. Specifically, A. 

christensii and F. vaginae significantly produced caffeate when grown in G. piotti spent 

media. Previous studies have shown that caffeate can bind to ER𝜶, which regulates 

estrogen sensitive gene expression. Reduced circulating estrogen levels results in vaginal 

epithelial atrophy, as seen in post-menopausal women (Jelinsky et al., 2008). These 

findings point to the importance of ER𝜶 in supporting vaginal epithelial health. Our data 

suggest that metabolic byproducts of BV may alter vaginal epithelial regulation. Previous 

research has shown BV-associated metabolites can alter vaginal immune response (Eade 

et al., 2012; Fichorova et al., 2013).  

Conclusion 

In summary, our study sheds light on the varied community composition and metabolic 

interactions associated with BV, a prevalent vaginal condition that significantly impacts 

women's health. By analyzing vaginal metagenomic data and constructing pair-wise 

GENRE simulations of BV-associated bacteria, we highlighted the context dependent 

nature of these competitive and mutualistic relationships. Through in vitro metabolomics 

analysis, we further investigated the role of specific metabolites in these inter-bacterial 

interactions. Our findings further emphasize the complex and diverse nature of BV-

associated bacterial community structures. Additionally, we need to develop intricate 
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simulations that go beyond pairwise interactions to more accurately recapitulate in vivo 

community dynamics. Further research in this field will lead to improved treatments for 

BV, as well as a deeper understanding of women's health. 
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Chapter 4: Beyond the Dissertation 

Capstone Team 

Context: During the 3rd year of my PhD I began mentoring undergraduate Christina D. 

George. We developed a research project that focused on understanding how changing 

available carbon sources impacted Gardnerella biofilm production. Christina’s work 

developed into a capstone project titled “Carbon Source and Biofilm Formation: 

Implications for Bacterial Vaginosis Treatment Strategies”.  I was able to mentor 

Christina’s team, which included Kaitlyn M. Gray and Peyton C. Johnston. The following 

portion of my dissertation summarizes the team's research and findings.  

Introduction  

Bacterial vaginosis (BV) is a polymicrobial vaginal condition characterized by an increase 

in pathogenic anaerobic bacteria, particularly the dominant genus Gardnerella, and a 

decrease in beneficial Lactobacillus species (Nasioudis et al., 2017; Onderdonk et al., 

2016; Srinivasan et al., 2010). BV is the most prevalent vaginal condition among 

reproductive age women, accounting for over 60% of vulvovaginal infections (Marrazzo 

et al., 2009). The current treatment options for BV include antibiotics such as 

metronidazole, clindamycin, tinidazole, and secnidazole, as well as boric acid suppositories 

and other non-antibiotic treatments (Bradshaw et al., 2012; Heczko et al., 2015; C. Li et 

al., 2019). However, traditional antibiotic regimens have shown high rates of BV 

recurrence, with approximately 58% of women experiencing a recurrent infection within 

one year of initial treatment (Bradshaw et al., 2006, 2013). Recurring BV infections pose 



 88 

an increased risk of antibiotic resistance, as BV-associated can accumulate mutations in 

response to successive antibiotic treatments. 

  

Some research suggests that the ability of Gardnerella to form biofilms may contribute to 

the high rates of BV recurrence due to reduced susceptibility to antibiotics (T. Li et al., 

2020; Swidsinski et al., 2008). Gardnerella biofilms are composed of a complex 

extracellular polymeric substance (EPS), consisting of sticky carbohydrates, proteins, 

DNA, and nucleic acids, which create a physical barrier around the enclosed bacteria 

(Machado & Cerca, 2015; Morrill et al., 2020; Ravel et al., 2011; Schwebke et al., 2014). 

This EPS hinders the penetration of antibiotics, thereby reducing their effectiveness in 

eliminating the bacteria associated with BV. Despite the potential role of biofilms in 

recurrent BV, there is limited knowledge regarding the metabolic mechanisms and 

composition of Gardnerella biofilms. 

  

To address this knowledge gap, we conducted a study to examine the composition of 

biofilms formed by Gardnerella vaginalis and Gardnerella piotti using Scanning Electron 

Microscopy, Lectin staining, and enzyme disruption techniques. Additionally, we 

investigated how different carbon sources may affect biofilm production. Through our 

analysis, we gained insights into the biofilm composition of these two Gardnerella species 

and identified enzymes that specifically disrupt BV-associated biofilms. By characterizing 

Gardnerella biofilms, we aim to enhance BV treatment strategies and reduce the 

occurrence of recurrent infections. 
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Materials and Methods 

Biofilm Growth 
Gardnerella vaginalis (strain ATCC 14018) and Gardnerella piotti (strain JCP8151B) 

were cultured under anaerobic conditions in NYCIII enriched media at 37℃. After 18 

hours of incubation, the samples were collected and centrifuged at 7,500 RPM for 5 

minutes. The supernatant was discarded, and the pellet was resuspended in 1x PBS. This 

wash step was repeated three times. After the final wash, the bacteria were resuspended in 

10 mL of NYCIII media and incubated anaerobically for 1 hour. A 50 µL inoculum was 

then added to 200 µL of reduced NYCIII in a 96-well tissue-culture treated plate. The plates 

were incubated for 48 hours under anaerobic conditions at 37℃. 

Scanning Electron Microscopy Sample Preparation 

The incubation and wash steps described above were used to prepare the inoculum of G. 

vaginalis and G. piotti. A 50 µL inoculum and 100 µL of NYCIII media were added to 

glass coverslips placed in six-well plates. Care was taken to maintain the surface tension 

of both the inoculum and media. The plates were incubated for 48 hours and then washed 

three times with 1x PBS. Each sample was fixed with 2% glutaraldehyde for 30 minutes. 

After fixation, the samples underwent repeated wash steps. The samples were dehydrated 

using graded ethanol, sequentially immersed in 30%, 50%, 70%, 80%, 90%, and 100% 

ethanol for five minutes each. The final dehydration step involved a five-minute immersion 

in Hexamethyldisilane (HMDS). The glass coverslips were then coated with gold, mounted 

on specimen stubs, and visualized using scanning electron microscopy (SEM). 
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Lectin Staining 

FITC-conjugated WGA and TRITC-conjugated UEA lectins were diluted to a 

concentration of 100 µg/mL in sodium bicarbonate buffer. After a 48-hour incubation, the 

media was removed from mature G. vaginalis and G. piotti biofilms, and the wells were 

washed three times with deionized water. A blocking buffer of 200 µL of non-fat dry milk 

(NFDM) was added and incubated for 30 minutes at room temperature to prevent non-

specific binding. The samples were then rinsed with a sodium bicarbonate buffer, followed 

by the addition of 200 µL of the respective lectin solution. The samples were incubated 

under tinfoil for 15 minutes. After removing the lectin solution, the samples were washed 

three times with the sodium bicarbonate buffer. The samples were resuspended in 200 µL 

of buffer, and absorbance was measured using a fluorescent plate reader. FITC samples 

were excited at 492 nm wavelengths, and TRITC samples were excited at 554 nm 

wavelengths. The absorbance values were collected at emission wavelengths of 517 nm 

and 570 nm, respectively. 

Biofilm Carbon Source Growth 

Following the biofilm growth procedures, a 96-well plate was prepared with 200 µL of 

synthetic vaginal media supplemented with 1% of a carbon source, including mannose, 

pyruvate, sucrose, acetate, glutamate, lactate, succinate, galactose, maltose, or mannitol. 

These carbon sources are all associated with BV, Gardnerella, and/or other similar biofilm 

forming organisms (Srinivasan et al., 2015). Next, 50 µL of the inoculum was added to 

each well, and the plate was incubated at 37℃ under anaerobic conditions for 48 hours. 

 



 91 

Biofilm Quantification 

Biofilm quantification was performed using crystal violet. The samples were washed with 

a 0.9% sodium chloride solution and dried for 15 minutes at room temperature. Then, 200 

µL of 100% methanol was added to each well and incubated at room temperature for 20 

minutes. Following fixation, 200 µL of 1% crystal violet was added to each well, and the 

samples were incubated for 20 minutes at room temperature. The samples were washed 

with deionized water until non-specific staining was no longer observed. Subsequently, the 

samples were dried for 15 minutes. Finally, 200 µL of 33% acetic acid was added to each 

sample, and the plate was shaken at 300 rpm for ten minutes. The absorbance of the samples 

was measured at 595 nm using a Tecan plate reader. 

Enzyme Biofilm Disruption 

Based on prior research on Gardnerella adjacent organisms, five enzymes were chosen 

that were hypothesized to disrupt G. vaginalis biofilm including: cellulase, DNase I, ɑ-

amylase, lipase, and proteinase-k. Enzymes were diluted to a concentration of 2 U/mL in 

PBS. Mature biofilms were washed twice with PBS and then incubated with the respective 

enzyme solution for two hours. The samples were washed twice with PBS, and the biofilm 

quantification procedure described above was followed. 

Results 

SEM Visualization 

Scanning electron microscopy (SEM) was used to visualize the surface topography and 

biofilm composition of the extracellular polymeric substance (EPS). No apparent visual 

differences were observed between the biofilms of G. vaginalis and G. piotti (Figure 1). 
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Lectin Staining 

Wheat germ agglutinin (WGA) lectin has a high affinity for the monosaccharides N-

acetylneuraminic acid (sialic acid) and N-acetylglucosamine, which are components of the 

peptidoglycan layer of bacterial cell walls. Ulex europaeus agglutinin (UEA) lectin 

selectively binds to the monosaccharide L-fucose. Our results showed no significant 

increase in absorbance of either FITC-conjugated lectin in mature biofilms of G. piotti or 

G. vaginalis compared to non-Gardnerella biofilm controls, indicating no major 

differences in the presence of these carbohydrates. 

Biofilm Carbon Source Utilization 

To compare biofilm formation in synthetic vaginal media (SVM) with and without carbon 

source supplementation, a two-tailed t-test was performed. Both G. vaginalis and G. piotti 

showed a significant decrease in biofilm formation when comparing SVM to SVM 

supplemented with 1%: acetate (p-value: 5.65 x 10-10, 1.44 x 10-9), glutamate (p-value: 7.34 

x 10-9, 0.01), lactate (p-value 5.81 x 10-9, 4.44 x 10-10), and succinate (p = 3.39 x 10-10, 3.46 

x 10-9) (Figure 2).  G. piotti biofilm formation significantly increased in the presence of 

SVM supplemented with 1% mannitol (p-value: 5.53 x 10-5), but this effect was not 

Figure 1: SEM images of A) G. vaginalis and B) G. piotti biofilm
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significant for G. vaginalis. 

 

G. vaginalis Biofilm Enzyme Disruption 

Using a two-tailed t-test, we compared untreated G. vaginalis mature biofilm negative 

controls with enzyme-treated G. vaginalis mature biofilms using crystal violet biofilm 

quantification. All five enzymes significantly disrupted the biofilm: cellulase (p-value:  

6.97 x 10-5), DNase I (p-value: 6.16 x 10-6), ɑ-amylase (p-value: 1.76 x 10-6), lipase (p-

value: 1.15 x 10-5), and proteinase-k (p-value: 2.58 x 10-6) (Figure 3). Proteinase-k was the 

most effective biofilm disruptor, resulting in a five-fold decrease in biofilm amount 

compared to the untreated control. 

Figure 2: Biofilm growth via crystal violet staining across 
carbon sources relative to SVM + 1% FBS

G. vaginalis

G. piotti
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Discussion 

Despite the high prevalence, significant health impacts, and frequent recurrence of bacterial 

vaginosis (BV), there is still a lack of understanding regarding the role of Gardnerella 

biofilm during dysbiosis. Gardnerella has the ability to form biofilms, which contribute to 

reduced susceptibility to antibiotics (by creating a physical barrier that inhibits antibiotic 

penetrance) and may be a factor in BV recurrence (Khan & Hill, 2021). To advance 

treatment options, it is crucial to define the composition of Gardnerella biofilms and 

investigate the influence of nutrient availability on their formation. Specifically, our work 

focused on two primary Gardnerella species, piotti and vaginalis. 

  

Figure 3: G. vaginalis biofilm disruption quantified via crystal violet 
following enzyme incubation relative to non-treated biofilm
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Qualitative analysis of biofilm structure using scanning electron microscopy (SEM) did 

not reveal substantial differences between G. vaginalis and G. piotti. This finding is 

expected considering the high genetic similarity (>98.5%) between the two species. The 

observed images aligned with documented properties of Gardnerella, including their 

ability to adhere and aggregate, which aids in attachment to vaginal epithelial cells and 

helps evade clearance by vaginal secretions (Limoli et al., 2015; Swidsinski et al., 2008). 

  

Lectin staining results indicated that sialic acid and fucose, which were previously thought 

to be present in Gardnerella biofilms, were not components of G. vaginalis or G. piotti 

biofilms (W. G. Lewis et al., 2013; Srinivasan et al., 2015). However, these findings should 

be interpreted with caution due to the absence of a biofilm fixation step, potentially leading 

to the removal of the biofilm during the multiple washes. To obtain more accurate 

assessments of sialic acid and fucose presence in Gardnerella biofilms, future optimization 

of the lectin staining procedure should include biofilm fixation. Additionally, in an in vivo 

environment, free sialic acid would likely be more abundant due to vaginal epithelial cell 

turnover, increasing its incorporation into the extracellular polymeric substance (EPS) of 

the biofilm. 

  

To directly evaluate the impact of available vaginal nutrients on biofilm formation, we 

investigated the influence of relevant carbon sources. Lactate and glutamate are associated 

with a Lactobacillus-dominant healthy vaginal environment and found at reduced levels in 

BV-positive cervicovaginal fluids (Ceccarani et al., 2019; Chetwin et al., 2019). Based on 

these data we expected both lactate and glutamate to decrease biofilm formation. Our in 
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vitro experiments confirmed this expectation for both G. vaginalis and G. piotti (Figure 

3). Conversely, acetate and succinate, which are enriched in BV-positive cervicovaginal 

fluid, were predicted to enhance biofilm formation. However, our findings contradicted 

these predictions, revealing decreased biofilm formation in both Gardnerella species. 

These discrepancies underscore the importance of investigating BV at both the bacterial 

and community levels, considering the polymicrobial nature of the infection and the 

presence of other non-Gardnerella co-occurring species that influence community 

dynamics. Furthermore, the increased abundance of a metabolite in BV-positive 

cervicovaginal fluid does not directly imply the ability of Gardnerella to utilize that 

metabolite, as it could be a vaginal byproduct unrelated to the bacteria. 

  

In our enzymatic biofilm disruption experiment, we explored potential BV biofilm-specific 

non-antibiotic interventions. All five enzymes significantly disrupted G. vaginalis 

biofilms, with proteinase-K and lipase demonstrating the highest efficacy. These findings 

differ from studies on non-Gardnerella biofilms, where carbohydrates are typically the 

predominant biofilm component. Proteinase-K targets amino acids, while lipase targets 

lipids, suggesting that the biofilm composition of G. vaginalis may differ from that of 

biofilms in other body sites, such as Pseudomonas aeruginosa (Mathur et al., 2018; 

Ostapska et al., 2018; L. C. Powell et al., 2018). These findings underscore the need to 

characterize BV-specific biofilms in order to specifically target their unique composition. 

  

Moving forward, the use of genome-scale metabolic network models could provide a 

robust approach to investigate Gardnerella biofilm formation across hundreds of strains. 
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These analyses can help predict the diversity of biofilm composition and differential 

biofilm formation capacity. Additionally, in silico modeling would enable the creation of 

a more physiologically accurate vaginal metabolic environment, facilitating the exploration 

of potential biofilm-specific essential genes. The data presented in this study contribute to 

the characterization of Gardnerella biofilms and can be utilized to further develop biofilm 

disruptors, aiming to improve BV treatment methods and reduce recurrence rates. 

Limitations  

Genome scale metabolic network modeling as an analysis approach presents specific 

limitations as to how we can probe a bacterial community. Specifically, temporal and 

spatial aspects are critical considerations when modeling bacterial communities, as these 

factors play important roles in shaping the interactions between individual species and the 

overall metabolic network of the community. While flux balance analysis (FBA) solutions 

can offer insight into a steady-state metabolic snapshot of a given metabolic network, 

dynamic changes in bacterial communities over time need to be accounted for. Dynamic 

FBA (dFBA) and Dynamic Multi-Species Metabolic Modeling (DMMM) have been 

developed to incorporate temporal changes by iteratively calculating flux values and 

metabolite levels and updating the physiological context of the model for the next 

simulated time point (Mahadevan et al., 2002; Zhuang et al., 2011). DMMM considers the 

interplay of growth and death rates to account for fluctuating population sizes and changes 

in community metabolite composition. However, DMMM does not account for the 

metabolic changes that occur as a bacterium dies and its resources become available to the 

community. 
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Incorporating a spatial component in metabolic modeling allows for the integration of 

metabolic gradients that determine what metabolites individual bacteria can access. 

COMETS integrates metabolite diffusion with FBA to evaluate how polymicrobial 

communities metabolically equilibrate. (Harcombe et al., 2014) Conversely, Agent-based 

models (ABMs) allow for the integration of spatial considerations to investigate how an 

organism physically interacts with the surrounding environment. MatNet creates an 

intersection between GEMs and ABMs, allowing for spatial considerations to be accounted 

for in metabolic network models (Biggs & Papin, 2013). This approach was used to 

construct a multiscale model of Pseudomonas aeruginosa that recapitulated decreased 

oxygen accessibility in relation to surface location in the context of biofilm formation. 

BacArena, an algorithm with a larger focus on individual-centric ABM, was able to more 

accurately predict Clostridium beijerinckii doubling time when compared to COMETS 

(Bauer et al., 2017; Gonze et al., 2018).  

 

In regards to understanding community dynamics within the vaginal microbiome (VMB) 

specifically, we can leverage previous mechanistic models that have been applied to other 

polymicrobial communities in human health. ODE models have been utilized to probe 

dynamic systems and macro-scale ecological models based on (generalized) Lotka–

Volterra equations (Faust et al., 2015; Gibson et al., 2016). These models have been applied 

to polymicrobial communities to analyze the impact of initial microbial abundance and 

strength of interspecies interactions on steady-state community species abundance. For 

example, de Vos et al. investigated polymicrobial urinary tract infections to understand the 

impact of antibiotic treatment on community dynamics and observed that closely related 
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phylogeny have more negative or neutral interactions compared to more disparate species 

(de Vos et al., 2017). Additionally, the group observed that the community stability 

decreased with increased taxa diversity, which was supported by the paper of Coyte et al. 

that studied the gut microbiome. Such methods would be helpful in understanding 

community stability in the context of both healthy and dysbiotic VMB, which can then help 

to identify community structures that are optimal for intervention (Coyte et al., 2015). 

 

Lastly, for the past century VMB research has lacked a physiologically accurate in vivo 

model capable of recapitulating the human vaginal microbiome while also portraying host-

microbiome interactions. The advent of organoid models and the organ-on-a-chip, has 

reached VMB as of November 2022. The vagina-on-a-chip model born out of Dr. Donald 

Ingber’s tissue engineering lab represents a major breakthrough for VMB research 

(Mahajan et al., 2022).  
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Chapter 5: Future Directions 

Analysis Next Steps 

Caffeate: Role as a host-microbiome intermediary 
 
Caffeate has been identified as a binder of estrogen receptor alpha and has thus far only 

been studied in relation to breast cancer. Our metabolomics analysis has revealed the ability 

of F. vaginae and A. christensii to produce caffeate. These findings suggest that caffeate 

could potentially act as a mediator between the host and the microbiome. Moving forward, 

we have two main objectives: 1) To determine whether the production of caffeate by F. 

vaginae and A. christensii is dependent on BV environment or if it is produced 

ubiquitously; 2) To analyze whether exposure to caffeate affects the transcription of 

estrogen-sensitive genes in vaginal epithelial cells. 

 

To address our first objective, we submitted F. vaginae and A. christensii spent media, 

cultured in either enriched NYCIII or spent G. piotti media, for analysis via high-

performance liquid chromatography (HPLC). This analysis will enable us to directly 

quantify caffeate levels. Moreover, it will help us determine whether these microbes 

consistently produce caffeate or if production is induced only when they are exposed to 

byproducts from BV-associated microbes through G. piotti spent media. 

 

In addition, we will expose vaginal epithelial cells (specifically, the VK2 cell line) to 

caffeate, using estradiol as a positive control. By employing quantitative polymerase chain 

reaction (qPCR), we will measure the transcription levels of three estrogen-sensitive genes: 
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CCND1, ESR1, and TFF1. These findings will provide insights into the effects of caffeate 

on the vaginal epithelium of the host. 

Identifying conserved BV metabolic units 
Identifying functional metabolic units that are conserved in varying BV communities is a 

crucial step in unraveling the complex dynamics of this condition and understanding 

patient outcomes. To achieve this, we could leverage the metagenomic repository Evvy has 

cultivated to study the genetic profiles of different BV-associated bacterial communities. 

By leverging these genetic data to determine the metabolic pathways present in these 

communities, we can identify common functional units that are conserved, regardless of 

the specific bacterial species or strains involved. This approach allows for the identification 

of key metabolic processes and interactions that contribute to the dysbiosis observed in 

BV, providing valuable insights into the underlying mechanisms and potential targets for 

intervention or therapeutic strategies. 

 

Understanding conserved functional metabolic units in varying BV communities is 

important for several reasons. Firstly, conserved metabolic units can be used to develop 

diagnostic tools that can more accurately identify BV based on specific metabolic markers, 

compared to the standard Nugent and/or Amsel score This can lead to earlier detection and 

intervention, potentially preventing the progression of BV-related complications. 

Secondly, by identifying these functional units, we can gain a deeper understanding of the 

microbial interactions and metabolic pathways that contribute to BV pathogenesis. This 

knowledge can inform the development of targeted therapies aimed at disrupting these 

conserved dysbiotic metabolic units, and catalyze restoring a healthy vaginal microbiome.  
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Translational application 

Defining BV Sub-categories & Improving Diagnosis 
There are two commonly used diagnostic methods for bacterial vaginosis (BV): the Nugent 

score, which is a gram stain-based method; and the Amsel score, which is a symptoms-

based assessment (Eschenbach et al., 1988). The Nugent score involves assigning a 

numerical value based on the types of bacteria observed after staining, with higher scores 

indicating the absence of Lactobacillus species (Nugent et al., 1991). However, this scoring 

system may introduce bias for women of color, as their vaginal microflora naturally tends 

to be more diverse and less dominated by Lactobacillus species (Lokken et al., 2022). On 

the other hand, the Amsel score relies on assessing three of four specific symptoms to 

suggest a diagnosis of BV: thin and gray vaginal discharge, vaginal pH higher than 4.5, 

positive presence of Clue cells (as seen under a microscope), and a positive "Whiff" test 

where vaginal discharge produces a fishy odor when exposed to hydrogen peroxide 

(Colonna & Steelman, 2019). 

  

Additional research has been conducted to develop molecular assays for BV diagnosis, 

building upon the consistent prevalence of Gardnerella species as a defining pathogenic 

feature of this condition (Menard et al., 2008; Schwebke et al., 2014; Shipitsyna et al., 

2013). However, the shift towards quantitative diagnostics does not account for the 

diversity within the diagnosis itself. BV can present as symptomatic or asymptomatic, and 

there is significant variation in treatment response among individuals. Moreover, the 

Gardnerella genus, which dominates this polymicrobial condition, exhibits a wide range 
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of metabolic diversity even within species (Khan et al., 2021; Yeoman et al., 2010). 

Treating all BV cases with a standardized diagnostic and treatment regimen perpetuates 

high rates of recurrence. 

  

In light of these factors, there is a need to define subtypes of BV based on differential 

community structures and vaginal environments. By identifying and classifying specific 

subtypes of BV dysbiosis, we can develop biomarker diagnostics that accurately 

distinguish the different subtypes, leading to more effective treatment strategies. To start 

this work, we need to begin recapitulating metagenomic species abundance into metabolic 

modeling based bacterial communities, in parallel with ordinary differential equation 

(ODE) based modeling. Using these analyses, we can begin to define community state type 

categories within BV, and predict differentiating metabolic features of these community 

groups. These data can be used to develop biomarker diagnostics, which can then be used 

to investigate treatment response differences between groups.  The first step to improving 

BV treatment is improving the accuracy of BV diagnosis and generating BV subtype 

definitions works towards this end goal. 

Developing Therapeutic Bacterial Consortia  
Broad-spectrum antibiotics are the standard treatment for BV) but there is growing interest 

in developing therapeutic consortia to complement antibiotic regimens. Similar to the gut, 

antibiotics eradicate the existing vaginal microbiome to eliminate colonized pathogens. 

However, antibiotics also eliminate "good" bacteria, creating vacant metabolic niches that 

can be colonized by pathogenic organisms. Therapeutic consortia aim to facilitate the 

reestablishment of a healthy bacterial community after antibiotic clearance. Current 



 113 

probiotics have primarily focused on recolonizing the vagina with Lactobacillus species. 

A recent clinical trial of the Lactobacillus CTV-05 strain, LACTIN-V, demonstrated 

reduced BV recurrence when used alongside oral metronidazole antibiotics (Armstrong et 

al., 2022; Cohen et al., 2020). This exciting breakthrough demonstrates the potential impact 

of scientifically developed probiotics on BV treatment. 

  

Instead of solely focusing on developing probiotic consortia capable of long-term 

colonization, an alternative approach could involve probiotic consortia that: 1) occupy 

metabolic niches to prevent pathogenic recolonization and 2) create a metabolically 

favorable environment for the restoration of natural vaginal flora post-antibiotic treatment. 

  

This proposed approach leverages metabolic competition and mutualism to inhibit 

undesirable bacterial growth and promote beneficial bacterial growth. Using competition 

and mutualism algorithms, as outlined in Chapter 4, we can predict a probiotic consortium 

that: 1) competes directly with BV-associated bacteria metabolically and 2) produces 

metabolites that specifically benefit healthy vaginal flora. To identify suitable bacteria, we 

would employ a BLAST search on generally regarded as safe bacteria, targeting candidate 

species predicted to consume highly competed-for BV metabolites and that produce 

metabolites associated with vaginal health based on in silico predictions. Once these 

bacteria are identified, we could investigate host-bacteria interactions using the novel 

vagina-on-a-chip model. This would allow us to assess host immune response and quantify 

inflammatory markers. Lastly, we could employ the vagina-on-a-chip BV in vivo substitute 

model to characterize host clearance with different treatment approaches, including 
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antibiotic-only treatment, antibiotic with probiotic treatment, probiotic-only treatment, and 

no treatment. 

Personalizing BV Treatment Regimens 
By expanding the definition of BV to include defined subtypes, developing diagnostic 

methods to distinguish between these subtypes, and creating new probiotic consortia to 

reduce rates of BV recurrence more inclusively, we can then progress towards personalized 

BV treatment regimens. In order to achieve this objective, it is crucial to investigate the 

impact of race and ethnicity on differential treatment outcomes. This requires the 

development of treatment response models that incorporate ethnic background and BV 

community state type as variables, enabling the disentanglement of their respective 

contributions to treatment outcomes. By developing these models, we can leverage patient 

metadata along with cervicovaginal fluid metagenomic profiles to determine the optimal 

treatment approach for each individual patient. Furthermore, as our understanding of the 

various manifestations of BV improves, there is potential to repurpose existing antibiotics 

for BV treatment. These advancements will contribute to closing the gender and ethnic 

health gaps through personalized medicine approaches. 

Conclusion 

In conclusion, the significant strides I have made through my work have helped pave the 

way for personalized medicine in women's health. By addressing the unique needs and 

challenges faced by women, I am proud to have played a part in narrowing the gender 

health gap. Moving forward, I am committed to continuing my efforts and contributing 
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further to the betterment of women's health, ensuring that every individual receives the 

personalized care they deserve. 
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Supplemental: Understanding COVID-19 Disease Severity - Insights from Metabolic 

Modeling 

 

The text for this chapter has been previously published as a research article here: 

 

Dillard LR, Wase N, Ramakrishnan G, Park JJ, Sherman NE, Carpenter R, Young M, 

Donlan AN, Petri W, Papin JA (July 2022) Leveraging Metabolic Modeling and Machine 

Learning to Identify Metabolic Alterations Associated with COVID-19 Disease Severity. 

Metabolomics. https://doi.org/10.1007/s11306-022-01904-9 

Context 

Joining Dr. Papin’s lab in the spring of 2020 presented challenges. Jumping into my 

doctorate in the midst of a pandemic was a struggle, with labs closed and unable to generate 

experimental data. I was fortunate enough to collaborate with Dr. Bill Petri on his work 

investigating immunological responses to COVID-19, and was able to analyze their rich 

metabolomics dataset. Through my partnership with Dr. Petri’s lab, I was able to provide 

a computational analysis of the extensive serum metabolomics collected from a cohort of 

UVA COVID-19 patients. This chapter presents my first graduate level work and initial 

dive into the intersection of metabolomics and metabolic modeling. The skills I developed 

through this initial project have provided me with an essential foundation for my final 

dissertation chapter which again integrates metabolomics and metabolic modeling.  
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Synopsis 

Computational metabolic models provide insight into the functional metabolism of a single 

cell. Through identifying differentially present metabolites in severe versus non-severe 

COVID-19 we were able to infer systems level metabolic differences in the two disease 

states. Additionally, by integrating extracellular metabolomics into whole-body metabolic 

models, we were able to make predictions regarding intracellular functional metabolism 

across disease severity. These findings have therapeutic applications for mitigating 

COVID-19 disease progression.  

Introduction 

The COVID-19 pandemic, caused by SARS-CoV2, has resulted in a significant global 

health crisis with millions of lives lost and millions more infected (World Health 

Organization, 2021). While symptoms range from mild to severe, COVID-19 can lead to 

long-term complications and organ damage (CDC, n.d.). Understanding the host immune 

response to SARS-CoV2 infection is crucial for developing effective treatments (Walls et 

al., 2016, 2020; Watanabe et al., 2020). Metabolism and the immune system are closely 

linked, and identifying metabolic differences between patients could provide insights into 

immune response variations (Alwarawrah et al., 2018). Previous research has focused on 

the metabolic byproducts of infection due to changes in host metabolism related to disease 

severity (Hasan et al., 2021; Páez-Franco et al., 2021; Sindelar et al., 2021; Stukalov et al., 

2021; Thomas et al., 2020). Our study aims to identify the functional metabolic roots of 

alterations associated with COVID-19 disease severity. 
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To achieve this, we analyzed metabolic signatures of non-acute (patients not requiring 

hospitalization) and severe COVID-19 patient plasma metabolomes and built associated 

genome-scale metabolic models to represent these two disease states. Our objective was to 

identify protective metabolic pathways in non-acute COVID-19 patients and potential 

pathways whose inhibition could mitigate disease progression in severe COVID-19 

patients. We used supervised and unsupervised machine learning approaches to identify 

key metabolic drivers that predict COVID-19 disease severity and explored potential 

metabolic mechanisms that link these markers to disease progression. We also analyzed 

the levels of Interleukin 13 (IL-13), a profibrotic cytokine that has been identified as a 

driver of COVID-19 severity, relationship to differential metabolites and disease severity 

(Donlan et al., 2021; Mohning et al., 2019). Our findings characterize the metabolic 

transition from an innate to adaptive immune response, the signatures of inhibited 

inflammatory pathways in non-acute COVID-19, and the metabolic byproducts of severe 

COVID-19 symptoms. This information can be leveraged to develop novel preventative 

and therapeutic strategies to reduce the burden of the disease. 

Methods 

Patients 

Blood samples were obtained from a cohort of 84 adult patients who tested positive for 

SARS-CoV2 via PCR at the University of Virginia hospital between April and June 2020. 

The collected samples were processed to obtain plasma, which was subsequently stored at 

a temperature of −70°C. 48 out-patient samples were collected and categorized as non-

acute COVID-19, while the remaining 36 samples were obtained from patients who 
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required hospitalization and were classified as severe COVID-19, with some requiring ICU 

and ventilator support (4 and 25, respectively). All collected samples and subsequent data 

analysis had previous IRB approval. 

Patient plasma preparation 

The clinical data for the study participants were retrieved from electronic medical records, 

and each participant was given a unique identifier to ensure anonymity. The metabolite 

profiling experiments were conducted at the Biomolecular Analysis Facility in the 

University of Virginia School of Medicine. In brief, plasma samples were thawed on ice, 

and 50 µL of plasma was retained for the metabolome analysis. To inactivate any potential 

viruses, 200 µL of −20 °C methanol was added to the plasma sample and shaken 

vigorously. The samples were immediately stored at −80 °C until extraction for 

metabolomics experiments. For extraction, 200 µL of −20 °C methanol was added to each 

tube, vortexed, and shaken vigorously for 30 min at 4 °C in a temperature-controlled 

thermal shaker. Next, 200 µL of chloroform and 400 µL of water were added, shaken 

vigorously, and the top aqueous phase was recovered as a metabolite mixture of diverse 

chemical nature. Two aliquots of 350 µL each were created, one for the experiment and 

one as a backup for additional experiments. Each metabolite extract was dried overnight in 

a speedVac and reconstituted in 60 µL of 0.1% formic acid in water. Prior to sample 

analysis, the instrument was calibrated using Pierce FlexMix solution. To ensure stable 

background signal, the LC-MS system was stabilized by running 3–4 wash runs followed 

by 4 blank runs. A commercial amino acid mixture was used to assess the chromatography 

quality before running the actual experiment (Amino Acid Mixtures, n.d.). To evaluate the 

chromatography quality, a pooled QC sample was created by removing 10 µL from each 
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tube and was injected at the beginning and end of the MS sequence run. Additionally, QC 

samples were injected after every 10 sample injections. 

Mass spectrometry preparation and analysis 

The AcquireX Intelligent Data Acquisition Workflow was used to generate an exclusion 

list from a blank run and an inclusion list from an injection of the pooled QC sample, 

followed by iterative DDA injections. Samples were analyzed using an LC-HRMS system 

with positive and negative ionization modes, and spectra were acquired over the m/z range 

67-1000 in full MS mode. Compounds were detected and processed using Compound 

Discoverer 3.1, with precursor selection based on MS(n-1) and compounds detected at a 

mass tolerance of 5 ppm and minimum peak intensity threshold of 500,000. Compound 

annotations were performed using ddMS2 masses in mzCloud, and statistical differential 

metabolite discovery was performed using healthy patients as a reference group with a p-

value threshold of 0.05 and log2FC threshold of 1 (Sumner et al., 2007). Overall, 680 

distinct metabolites were measured in each sample. 

Biomarker identification 

The data were first processed using a median metabolite value filter, followed by log 

transformation and autoscaling, to normalize within and between samples. The Mann 

Whitney U test, a non-parametric statistical test, was used to identify metabolites that were 

significantly enriched in either the non-acute or severe COVID-19 disease state (Nachar, 

2008). To mitigate the false discovery rate, the Benjamini–Hochberg correction was used 

as the multiple test correction method (Benjamini et al., 1995). Additionally, 124 well-

documented pharmaceutical or non-endogenous metabolites were removed to isolate non-
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treatment-based metabolic shifts. To account for the disbalance in groups, bootstrapping 

was employed. 

  

To assess the accuracy of the identified endogenous metabolites in discerning between 

severe and non-acute COVID-19 status, the supervised learning approach of random forest 

was utilized (Breiman, 2001). The holdout validation method was applied using 30% 

holdout, and model performance was also evaluated using receiver operating characteristic 

curve (ROC) and recall calculation. 

  

Furthermore, the unsupervised learning approach of Nonmetric Multidimensional Scaling 

(NMDS) and associated Euclidean distance were used to analyze the previously identified 

endogenous metabolites for significant COVID-19 status clustering. A Permutational 

Multivariate Analysis of Variance (PERMANOVA) was used to determine whether 

clustering of the severe and non-acute groups was statistically significant (Anderson, 

2017). 

  

Lastly, to investigate the correlation between IL-13 levels and COVID-19 disease severity, 

the endogenous differential metabolomics data were subset to include the top 25% of 

patients with the highest IL-13 levels, as well as the bottom 25% patients with the lowest 

IL-13 levels. An unpaired, one-tailed t-test was run on the selected metabolites to assess 

significant differences based on IL-13 levels. Bonferroni multiple test correction was 

applied to all t-test results.  
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Pathway Analysis 

Pathway analysis was performed to identify metabolic shifts that are significantly 

associated with COVID-19 disease state and uncover novel metabolic mechanisms 

underlying COVID-19 disease progression. This analysis was conducted using the 

metabolic pathway module of MetaboAnalyst version 5.0 toolbox on the previously 

selected endogenous metabolites that were enriched in either the severe or non-acute 

COVID-19 disease state (Xia et al., 2009). The MetaboAnalyst platform utilizes the Kyoto 

Encyclopedia of Genes and Genomes (KEGG) to run over-representation analysis (ORA) 

to identify enriched metabolic pathways in one condition compared to a reference 

(Kanehisa & Goto, 2000). The ORA is based on a calculated enrichment ratio, which 

compares the actual versus predicted metabolite hits. The significance of these calculated 

enrichment ratios was determined using a p-value derived from a hypergeometric test with 

a binomial distribution. 

Genome-scale metabolic modeling 

We employed a systems-level approach to investigate the functional metabolic 

mechanisms underlying COVID-19 disease progression. To construct contextualized 

genome-scale metabolic models (GEMs) of severe and non-acute COVID-19 disease 

states, we utilized the previously published human whole-body GEM Recon3D as a base 

model (Brunk et al., 2018; Edwards et al., 2002). Prior to model pruning, we manually 

matched the identified differential endogenous metabolites to respective model 

metabolites, and adjusted exchange bounds of associated metabolites to simulate open 

metabolic exchange for the respective disease states. 
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After pruning the models using reaction inclusion by parsimony and transcript distribution 

(RIPTiDe), we used flux balance analysis (FBA) in tandem with GAPSPLIT to generate 

500 flux samples from each model to explore potential solution spaces (Keaty et al., 2020). 

We compared conserved reaction flux values across the models using NMDS followed by 

a PERMANOVA to determine if the models' flux values were significantly separated. We 

then identified the top conserved reactions with predictive flux values capable of 

differentiating the severe versus non-acute models using the supervised learning approach 

random forest. 

Results 

Biomarker Identification 

The results of the analysis revealed significant differences in the metabolic profiles of 

severe vs. non-acute COVID-19 samples (Figure 1). Specifically, 226 metabolites were 

identified as significantly different in the severe COVID-19 cases compared to the non-

acute cases (Mann Whitney U; p<0.05). Of these, 80 metabolites were found to be 

significantly elevated in non-acute COVID-19 samples and 21 metabolites were 

significantly elevated in severe COVID-19 samples, after excluding non-endogenous 

metabolites. 
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Random forest analysis was conducted using the remaining 101 metabolites, resulting in a 

model capable of predicting COVID-19 disease severity with an out-of-bag error rate of 

7.14%. Notably, the removal of non-endogenous metabolites improved the model 

classifier's accuracy, as indicated by a reduced out-of-bag error rate of 14.19% when all 

680 metabolites were included. 

  

Furthermore, NMDS and associated PERMANOVA revealed a significant grouping 

(r2 = 0.09, p-value < 0.001) of non-acute COVID-19 samples vs. severe COVID-19 

samples based on measured endogenous metabolite levels (Figure 2; Table 1). 

 

Figure 1: Heatmap of top 50 endogenous and non-endogenous differential metabolites for non-acute 
and severe COVID-19 patient plasma sample data.

Patient Categorization
Non-Acute
Severe

Low

High

Metabolite Plasma Level

B CA

Figure 2: A) Top 20 endogenous differential features identified by random forest as most important for predicting COVID-19 disease severity. B) Receiver operating curve for 
random forest generated COVID-19 status model predictability C) Non-metric Multi-dimensional Scaling (NMDS) based on all endogenous metabolites identified as 
significantly different between patient categories. (PERMANOVA: R2 = 0.09, p-value < 0.001) 
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To investigate the relationship between IL-13 levels, COVID-19 disease severity, and 

functional metabolism, we integrated IL-13 level data with the previously outlined 

metabolomics analysis. We first subset the metabolomics data based on the top 25% and 

bottom 25% IL-13 levels (average IL-13 pg/ml of 36.32 and 5.26, respectively). An 

unpaired one-tailed t-test analysis was then performed, which revealed 14 metabolites with 

significantly different levels between the high versus low IL-13 groups, from the 

previously identified 101 differential metabolites.  

 

Two of the 21 metabolites that were significantly elevated in severe COVID-19 samples 

were found to be significantly different when grouped by IL-13 levels, and both were found 

to be elevated in IL-13-high patients (Table 2). Among the 80 metabolites that were 

identified as significantly elevated in non-acute COVID-19 samples, 11 metabolite levels 

were significantly altered when comparing high vs. low IL-13 levels. Notably, all of these 

Table 1: Sample metadata outlining patient medical background and COVID-19 related treatment

Non-Acute Patient Data

Severe Patient Data

Total
Average 

Age
Average 

BMI
Max 

Oxygen Ventilator Diabetes
Kidney 
Disease

Heart 
Disease

Lung 
Disease Immunosuppression Cancer

Remdesivir 
Treatment

Female 10 34 (21-55) 57 (28-75) 0 10 5 1 1 1 1 3
Black 1 55 60 0 1 1
Asian 1 33 65 0 1 1
Other 5 35 49 0 5 2 1 1
White 3 27 68 0 3 2 1 1 1 1

Male 26 30 (20-44) 61 (14-83) 15 20 12 4 4 3 2 1 4
Black 4 35 71 3 3 2 1 1 1
Other 10 28 46 15 8 5 2
White 12 30 70 4 9 5 3 4 2 2 2

Total
Average 

Age
Average 

BMI
Max 

Oxygen Ventilator Diabetes
Kidney 
Disease

Heart 
Disease

Lung 
Disease Immunosuppression Cancer

Remdesivir 
Treatment

Female 27 56 (15-94) 33 (22-55) 10 11 5 7 1 2 2 5
Black 6 72 32 4 4 2 4
Asian 1 24 0
Other 10 47 32 10 3 3 1 2 1
White 10 58 35

8

4 2 1 1 5

Male 21 56 (33-84) 30 (14-62) 10 8 5 3 3 1 3 3
Black 6 64 30 10 3 1 2 2 1 1 1
Other 11 47 30 5 3 4 1 1 2
White 4 65 24 2 2 1 1
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metabolites were found to be significantly higher in low IL-13 level patients, except for L-

homocysteic acid, which was reduced in low IL-13 level patients (Table 2). 

 

Pathway Analysis 

We conducted pathway analysis to gain insight into the metabolic pathways associated with 

non-acute and severe COVID-19. Among the list of 80 differentially enriched metabolites 

associated with non-acute COVID-19 samples, we observed significant associations with 

tryptophan metabolism (FDR = 0.07), including higher levels of L-tryptophan, melatonin, 

5-hydroxy-L-tryptophan, 3-hydroxyanthranilic acid, indoleacetaldehyde, and anthranilate 

(Figure 3A). 

Table 2: Metabolites significantly different (p-value < 0.05) 
when comparing high vs. low IL-13 patient metabolomics

COVID-19 Status IL-13 Level Enriched Metabolite
Severe High 4-imidazolone-5-propanoate

3-methylglutarylcarnitine

Non-Acute High L-homocysteic acid

Low (24R,24'R)-fucosterol epoxide

alanyl-poly(glycerolphosphate)

Erucamide

L-Ascorbate 6-phosphate 

N2-acetyl-L-lysine

11-Nitro-1-undecane

β –leucine

n-ribosylhistidine

Trp-Phe

trimethylsilyl N,O-bis(trimethylsilyl)serinate
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Moreover, among the list of 20 differentially enriched metabolites associated with severe 

COVID-19, we observed a significant association with histidine metabolism (FDR = 0.28), 

where 4-imidazolone-5-propionic acid, imidazole-pyruvate, and methylimidazoleacetic 

acid were identified (Figure 3B). We also identified several additional metabolites of 

interest from the list of differential endogenous metabolites. Specifically, we observed 

significantly higher levels of three acylcarnitines (hexanoylcarnitine, 3-

methylglutarylcarnitine, and 9,12-hexadecadienoylcarnitine), L-gamma-glutamyl-L-

leucine, and D-galactonate in severe COVID-19 samples compared to non-acute samples 

(Figure 3C). In contrast, 5’-methylthioadenosine was identified as significantly higher in 

non-acute COVID-19 samples compared to severe cases.  
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Genome scale metabolic modeling 

The contextualized models revealed differential metabolic pathways between severe and 

non-acute COVID-19 states. In the severe COVID-19 model, reactions related to 

glycolysis, gluconeogenesis, and the pentose phosphate pathway were upregulated. 

Additionally, reactions related to the biosynthesis of purines, pyrimidines, and amino acids 

were upregulated in the severe model. In contrast, the non-acute COVID-19 model showed 

downregulation of reactions related to amino acid biosynthesis, fatty acid metabolism, and 

the pentose phosphate pathway. The non-acute model also showed upregulation of 

reactions related to the tricarboxylic acid cycle and oxidative phosphorylation. 

 

D

Figure 3: A) Patient plasma levels of metabolites involved in tryptophan metabolism and melatonin 
synthesis (FDR = 0.07) B) Patient plasm a levels of the metabolite 5’-methylthioadenosine C) Patient 
plasma levels of metabolites involved in ketone body biosynthesis D) Patient plasma levels of 
metabolites involved in histidine degradation (FDR = 0.28) E) Patient plasma levels of metabolites 
associated with shift in energy source

CA B

E
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Discussion 

Intra- and extra- cellular metabolism are an essential factor in COVID-19 pathology. While 

prior studies have concentrated on using plasma metabolomics to determine the metabolic 

impact of COVID-19 on patients and to examine disease progression, our study employs 

plasma metabolomics data and a genome-scale metabolic model to more comprehensively 

investigate functional metabolic shifts associated with disease progression. Through 

metabolomic analysis and computational metabolic modeling, we observed that 

tryptophan, glutathione, pyrimidine, D-glutamine, and D-glutamate metabolism are 

significantly enriched in non-acute COVID-19 patients (Figure 4A). These metabolic 

alterations may have physiological implications such as mitigating inflammatory 

responses, decreasing fibroblast accumulation, increasing vitamin-D levels, and preventing 

cellular damage. In contrast, severe COVID-19 patients exhibit a significant enrichment in 

histidine metabolism, which has been previously shown to correlate with increased viral 

titer and elevated fatty acid oxidation (Figure 4B) (Doğan et al., 2021; Kimhofer et al., 

2020; López-Hernández et al., 2021; Overmyer et al., 2021; Roberts et al., 2022; Thomas 

et al., 2020) . 
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Non-Acute COVID-19 Metabolism 

We found that in non-acute COVID-19 patients, tryptophan metabolism is significantly 

enriched, including the differential enrichment of L-tryptophan, melatonin, 5-hydroxy-L-

tryptophan, 3-hydroxyanthranilic acid, indoleacetaldehyde, and anthranilate, as well as 

Trp-Phe. Tryptophan plays a role in neurotransmitter synthesis, anti-inflammatory 

pathways, and improved immune response via the gut microbiome (Gao et al., 2018; 

Krause et al., 2011; L. Wang et al., 2002). Increased tryptophan metabolism in non-acute 

COVID-19 patients presents a potential inhibitory mechanism for respiratory 

inflammation, a symptom associated with the cytokine cascade involved in SARS-Cov-2 

infection (Dehhaghi et al., 2019). 

 

Differential enrichment of 5′-methylthioadenosine (MTA) in non-acute COVID-19 

samples could be a direct result of the body mitigating innate immune system inflammatory 

2-Aminomuconate 
semialdehyde
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3-Hydroxyanthranilic 
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Figure 4: Metabolic pathway p-values are assigned based on how significantly the identified metabolites indicate 
pathway enrichment. A) Metabolic pathways associated with  non-severe COVID-19 metabolite predictors. 
Tryptophan metabolism and melatonin synthesis (FDR = 0.07). B) Metabolic  pathways associated with severe 
COVID-19 metabolite predictors. Histidine degradation (FD R= 0.28)



 131 

response. Mechanistically, MTA inhibits the pro-inflammatory cytokine TNF-α and 

increases production of anti-inflammatory IL-10 (Hevia et al., 2004; Veal et al., 2004). 

  

Additionally, L-homocysteic acid is elevated in both non-acute COVID-19 samples and 

IL-13-high samples. L-homocysteic acid is an endogenous neurotransmitter ligand of N-

Methyl-D-aspartic acid, commonly known as NMDA, which plays an integral role in 

neural plasticity (Jewett & Thapa, 2020; Marshall, 2020; Yirmiya & Goshen, 2011). The 

high levels of L-homocysteic acid in non-acute COVID-19 and high IL-13 levels suggest 

a potential mechanism of immune-mediated neural adaptation to disease pathology to avoid 

neurological symptoms that are sometimes reported in those infected with SARS-Cov2. 

  

Moreover, after investigating functional metabolic changes using a contextualized non-

acute COVID-19 metabolic model, three reactions stood out as carrying significantly 

higher flux compared to the severe COVID-19 metabolic model: nucleoside-diphosphate 

kinase (DNPK), 5'-nucleotidase (IMP), and adenosine facilitated transport into the cytosol. 

DNPK plays an integral role in maintaining genomic stability and providing a protective 

effect in the case of cancer metastasis, a disease that heavily relies on cellular replication 

(Lacombe et al., 2021). 5'nucleotidase catalyzes cytosolic purine degradation (Ipata & 

Tozzi, 2006; Pesi et al., 2021). Increased de novo purine synthesis has been linked to an 

increased inflammatory response in COVID-19 patients (Pieters & Veerman, 1988). 

5'nucleotidase activity could be reducing cytosolic purine levels and thus reducing the 

cytokine response to infection (Xiao et al., 2021; Zhang et al., 2021). Lastly, increased 

adenosine facilitated transport suggests that those who experience non-acute infection are 
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removing excess adenosine and, therefore, reducing the subsequent inflammatory response 

to infection (Singh Patidar et al., 2018). 

Severe COVID-19 Metabolism 

The results of this study reveal that severe COVID-19 samples exhibit distinct metabolic 

alterations, including higher levels of imidazole-pyruvate, 4-Imidazolone-5-propanoate, 

and methylimidazoleacetic acid. The aforementioned metabolites are associated with 

histidine metabolism, specifically histidine degradation. Histidine is known to play a 

crucial role in enzyme activation, including the activation of serine proteases which have 

been shown to facilitate viral entry into host cells and subsequent viral spread (Delattre et 

al., 2021; Matsuyama et al., 2010; Radisky et al., 2006; Seth et al., 2020). These findings 

suggest that SARS-CoV2 may exploit the host's metabolism as a means of viral replication 

and spread.  

  

Furthermore, severe COVID-19 samples were found to have significantly higher levels of 

acetoacetate, which is associated with ketone body biosynthesis. This increase may be a 

result of increased fatty acid oxidation, which is also indicated by high levels of 

acylcarnitines in severe samples (Yan et al., 2019). The observed changes in fatty acid 

metabolism in severe COVID-19 patients may be linked to the activation of the immune 

system, as immune cells are known to utilize fatty acids as an energy source during 

activation and proliferation (NH et al., 2020). Specifically, T cells have been shown to 

upregulate fatty acid uptake and metabolism upon activation, with inhibition of fatty acid 

oxidation leading to impaired T cell function and decreased immune response. This 

suggests a potential interplay between the altered metabolic state observed in severe 
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COVID-19 patients and the immune response to the virus. However, it is important to note 

that other factors, such as higher body mass index and increased prevalence of heart disease 

in severe COVID-19 patients, may also be confounding factors contributing to the observed 

metabolic alterations (Kang et al., 2018; Mihalik et al., 2010; Ruiz et al., 2017; Smith et 

al., 2020). 

  

Additionally, severe COVID-19 samples were found to have elevated levels of L-gamma-

glutamyl-L-leucine and D-galactonate. The former is associated with incomplete protein 

breakdown and suggests that muscle tissue may be utilized for emergency energy in severe 

disease states. The latter is a metabolic byproduct of galactose breakdown and may be 

indicative of a need for extra energy in the body. However, chronic high levels of D-

galactonate can result in adverse health effects, suggesting that further investigation into 

the potential negative consequences of these metabolic alterations is warranted (Schlueter 

et al., 2018). 

  

Moreover, the genome-scale metabolic model utilized in this study was able to identify 

three reactions that were not identified through metabolomics alone. These reactions were 

found to be associated with the transport of phenylalanine, asparagine, and methionine, as 

well as isoleucine, tryptophan, and tyrosine. Notably, high plasma levels of phenylalanine 

and tyrosine have previously been identified as biomarkers of increased disease severity in 

COVID-19, indicating that the metabolic model utilized in this study is recapitulating 

previously identified markers of severe disease (Luporini et al., 2021; Shi et al., 2021). 

Furthermore, increased fumarate:thiosulfate antiport in the mitochondria, which was 
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identified through the metabolic model, suggests reduced access to oxygen (Spinelli et al., 

2021)what . 

Conclusion 
In conclusion, the present study revealed enriched metabolites associated with tryptophan 

metabolism in non-acute COVID-19 samples, which suggested a metabolic picture of 

mitigated innate immune system inflammatory response and prevention of 

immunopathology-related lung damage (Figure 4A- B). Additionally, our results indicate 

an increased prevalence of histidine- and ketone-related metabolism in severe COVID-19 

samples, which may provide a potential mechanistic insight into musculoskeletal 

degeneration-induced muscular weakness and the host's metabolism hijacked by SARS-

CoV2 infection to increase viral replication and invasion. The non-acute COVID-19 

samples demonstrated a reduced inflammatory response and a metabolic safety net to 

inhibit immunopathology-related lung damage, whereas severe COVID-19 samples' 

metabolomes indicated a takeover by the virus, resulting in a metabolic environment 

conducive to increased disease severity. The findings of this study could be leveraged to 

improve and advance COVID-19 disease treatment and lead to further investigation into 

metabolic predictors of disease progression. 
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