
IMPE: Intelligence Malware Processing Engine

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Dennis Tian

Spring, 2024

Technical Project Team Members

None

On my honor as a University Student, I have neither given nor received unauthorized aid on this
assignment as defined by the Honor Guidelines for Thesis-Related Assignments

Briana Morrison, Department of Computer Science

1

IMPE: Intelligence Malware Processing Engine

CS4991 Capstone Report, 2023

Dennis Tian
Computer Science

The University of Virginia
School of Engineering and Applied Science

Charlottesville, Virginia USA
dt7bbu@virginia.edu

ABSTRACT
Security analyst and incident response (IR)
teams play a key role in preventing, detecting,
and mitigating cybersecurity attacks;
however, many of the necessary steps are
repetitive and time consuming. The team I
worked with for the past two summers was in
charge of the development of a web
application (IMPE) that enables submission
of a piece of suspected malware and returns
valuable metadata and behavioral information
obtained from various static and dynamic
analysis tools. The project was divided into
two main teams: those in charge of the web
application itself and those overseeing the
reverse engineering (RE) tools that the
application uses to process samples. It was
written using mostly Python 3 and JavaScript
and had extended support for API integrators.
We implemented IMPE’s backend using a
combination of Celery, RabbitMQ, and Redis
for parallelized worker/queue management,
and we wrote the frontend using the React
framework. The frontend and API are
currently undergoing a major facelift that will
allow integration into a larger “Analyst
Tools” portal that contains a suite of other
tools. The end goal of this portal is to have
everything polished and tested to be ready for
commercial distribution.

1. INTRODUCTION

In the realm of cybersecurity, speed and
efficiency are key, whether it be when
responding to a live incident or when
researching signatures of newly-found

malware. It is relatively obvious why it is
critical during incident response: data,
money, and perhaps even lives are in danger,
so teams need to be able to quickly figure out
what kind of malware they are dealing with.

For everyday operations, efficiency is also
crucial – new, potent malware is developed
every single day. Normally, after obtaining a
novel malicious sample, analysts write
signatures to help detect other samples in the
same family. However, the process of
recognizing previously-recorded signatures in
new samples is very time consuming and
error prone. Here, automation helps
tremendously because it allows analysts to
focus on new classes of malware rather than
having to spend time determining whether
something has been seen before.

Additionally, in the case of a previously-
unseen malware, analysts need to decipher
what it does and how it does it. This process
takes significantly more time than signature
matching, and automation is effective here as
well. For example, extracting metadata often
takes unexpectedly long to do manually due
to analysts having to delve into the bytes of
the file, but a program can be written to do all
of it automatically. Moreover, numerous
third-party software exist to help deduce what
a sample does, and they can be leveraged in
an application to further aid analysts.

2. RELATED WORKS

In their paper, Islam, et al. (2010)
investigated ways to optimize static analysis
by integrating pattern recognition algorithms.

2

These algorithms replaced the manual process
of writing signatures for each new piece of
malware, resulting in faster and more
accurate detection. This relates to IMPE in
that the goal was also to extend and improve
from basic pattern identification and
matching. However, IMPE took a different
route: instead of equipping the static analysis
programs with pattern recognition, it
incorporated a suite of dynamic analysis
sandboxes (allowing the code to actually run,
rather than simply looking at the file) for
more accurate classification.

Botacin, et al. (2022) developed a real-
time malware identification engine based on
existing antiviruses. It used hardware-assisted
pattern matching to increase efficiency and
was able to accurately classify thousands of
samples. The application was designed to be
both memory and storage efficient to reduce
performance overhead. This ties into IMPE,
as IMPE also uses signatures from antivirus
databases as part of one of its tools. However,
the target audience is different – instead of
end users, the user base is more geared
toward security analysts and incident
responders, so there is more functionality
beyond simply classification. Additionally,
local hardware acceleration is not needed
because most of the processing is done
remotely on cloud servers.

3. PROJECT DESIGN
IMPE is a web application that centers on the
automation of static and dynamic analysis to
expedite the malware analysis process.
Several user and design requirements to be
followed are detailed in the following
subsection. The rest of this section focuses on
the design and implementation of the project
and related projects that we also worked on.

3.1. Requirements

To determine the requirements for the
application, we consulted with our end users,
the security analysts and incident in adjacent

teams. One of the main points brought up was
speed. If the application takes too long to
process a sample, it defeats the primary goal,
as they will simply do it by hand.
Furthermore, the system had to be able to
scale seamlessly with larger amounts of users,
because usage would not be limited to one
person at a time. This requirement is
especially critical given the end goal of
commercial distribution. Additionally, the
system would have to be developed in a
modular fashion, since some tools would
inevitably become deprecated and in need of
replacement; new tools also should be able to
be developed without affecting the rest of the
application. Finally, the results produced
would naturally need to be accurate and
relevant, so they should be of the same or
higher quality and scope of a manual analysis.

3.2. Design & Implementation

The main user base consisted of typical
analysts, who mainly use the application’s
web page (UI) to submit samples, and API
integrators, people who interact with the
application through the REST API rather than
the UI. We designed the web application with
this in mind, providing both a frontend and
backend interfaces.

The typical sample submission process
started in the UI, where a user submits a file,
hash, or URL to be analyzed. We wrote this
frontend using the React JavaScript
framework and integrated it with the
company’s existing authentication system to
support user logins. Users were also able to
view a history of their past submissions, so
they would not have to go back and find the
files to view the generated results again.

After the sample was submitted through
the web page form, it was sent to the main
IMPE worker through the REST API
designed in Node.js; this worker was where
we spent most of our time. We needed to
design this backend component, which we
called the “core,” very carefully, since the

3

speed and scalability of the entire application
hinged on its performance. I will first discuss
the overall pipeline, ignoring scaling
solutions.

First, the core sent each submitted sample
in its queue to all of the analysis tools, and
those tools relayed the results. Next, the core
aggregated those results to produce a report
easily digested by analysts. Finally, the
results and report were sent back to the UI,
where the user was notified that their
submission had finished processing and the
results were formatted in tables.

Clearly, though, sending samples one by
one to all of the tools was not conducive to
scalability. We used three technologies to
help us process multiple submissions at once:
RabbitMQ, Redis, and Celery. Using Celery,
we created multiple workers, units capable of
processing one submission, for each separate
analysis tool. Now, instead of sending a
submission to the singular worker for each
tool, we sent it to the least busy ones. We
utilized RabbitMQ and Redis in conjunction
to manage the queues for each one of these
workers: they handled the logic of
determining which worker was the least busy
(had the shortest queue) so we could focus on
the actual data being sent back and forth.

3.3. Related Projects

To further aid our end users in their work,
we developed two related projects that both
leverage the capabilities of IMPE.

First, we developed a tool called
CronIngest. The basis of this tool is that new,
unseen malware is distributed every day, and
a critical part of a security analyst’s job is to
find and deconstruct these new threats. One
of the most time-consuming tasks of this
process is actually finding these novel
samples in the midst of thousands, if not
millions, of other files. CronIngest offloads
this responsibility from the analysts; it is a
program that automatically ingests new
samples from VirusTotal’s database using
their Retrohunt feature. This feature allows

CronIngest to query for samples in a time
range that match on a provided set of rules,
written in YARA. After the samples are
obtained, they are then relayed over to IMPE
for processing. This information is crucial to
analysts because it allows them to keep an
eye on new and upcoming vulnerabilities
without having to dedicate the time for
manual research.

The other project we worked on was a
slackbot for IMPE. The primary form of
communication at the company is Slack, so
having the ability to use IMPE directly from
Slack was an oft-requested feature. We were
able to integrate the IMPE and Slack APIs to
create an app that could respond to slash
commands like /impe search <hash>. This
bot aimed to increase the productivity of
analysts, as switching back and forth between
Slack and a web browser to access IMPE was
both tedious and prone to errors when
copying information.

4. RESULTS

From its first release, IMPE has gradually
become the go-to resource for analysts
whenever they need information about a
sample that would otherwise take hours or
days to compile by hand. It has actually
changed what analysts do on a daily basis,
since much more time can be dedicated to
areas where human examination is required.
IMPE has been able to support heavy usage
without problems, which has peaked at tens
of thousands of submissions per day. It is
now a core component of numerous adjacent
projects, providing accurate results in a
timely fashion that are accessible both by
humans and by other applications connecting
to it.

Furthermore, CronIngest has helped
analysts find a multitude of novel and
dangerous malwares, some of which may not
have been found at all by hand. These results
were crucial, as they provided the necessary
information to produce reports about these
widely-unknown threats.

4

5. CONCLUSION
The day-to-day work of a security

analysts often involve repetition to some
degree, whether it is deconstructing files to
find keywords or determining the filetype of a
sample. What they are most valuable for,
however, is human analysis. Everything
mentioned previously is able to be automated,
allowing analysts to focus on where their
expertise is actually needed. IMPE integrates
a wide variety of tools into one user-friendly
web application that accomplishes this. What
differentiates this from existing tools is the
wide scope; it provides automatic static and
dynamic analysis from numerous sources and
combines all of the results into a concise,
coherent report.

6. FUTURE WORK

IMPE is already a full-fledged,
independent application capable of providing
analysts with a wealth of information.
However, there are many other resources and
tools they need to consult in the process. So,
IMPE is currently being refactored to fit into
an existing analyst tools portal. With the
addition of IMPE, we hope the portal’s suite
of tools will be the central hub that analysts
use, eliminating the need to pivot back and
forth between various sites.

A more long-term and overarching goal is
to have IMPE evolve into a commercial
product. Currently, it is an internal tool used
by one team of analysts, but it can feasibly
expand to support much greater demand. As
an effective tool to improve the efficiency of
security analysts, it would likely prove
valuable to many clients when it reaches that
stage of maturity.

REFERENCES
[1] Marcus Botacin, Marco Zanata Alves,
Daniela Oliveira, and André Grégio. 2022.
Heaven: A hardware-enhanced antivirus
engine to accelerate real-time, signature-
based malware detection. Expert Systems with

Applications 201 (2022), 117083.
DOI:http://dx.doi.org/10.1016/j.eswa.2022.11
7083
[2] Rafiqul Islam, Ronghua Tian, Lynn
Batten, and Steve Versteeg. 2010.
Classification of malware based on string and
function feature selection. 2010 Second
Cybercrime and Trustworthy Computing
Workshop (2010), 9-17.
DOI:http://dx.doi.org/10.1109/ctc.2010.11

