

EMBRACING THE POWER OF THE WEB: TRANSFORMING A LOCAL BUSINESS

IN THE DIGITAL AGE

A Research Paper submitted to the Department of Computer Science

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science in Computer Science

By

William Helmrath

November 23, 2021

On my honor as a University student, I have neither given nor received unauthorized aid on this

assignment as defined by the Honor Guidelines for Thesis-Related Assignments.

ADVISOR

Daniel Graham, Department of Computer Science

EMBRACING THE POWER OF THE WEB: TRANSFORMING A

LOCAL BUSINESS IN THE DIGITAL AGE

CS4991 Capstone Report, 2021

William Helmrath

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

wph2tu@virginia.edu

ABSTRACT

Forge, a Charlottesville-based non-profit that

provides professional development services

to students, needed a system for automating

many of the menial tasks that team members

of Launch, its internship matching program,

have to perform daily. To solve this problem,

I built out and hosted a web application to

automatically construct student resumes from

information submitted through an interactive

form. This application leveraged the power of

React, a front-end JavaScript library, in order

to create fast and responsive dynamic

webpages. Since then, the application has

evolved into a marketing tool that also helps

to generate revenue. During the 2020-2021

school year, effective use of the web portal

resulted in increased revenue and client

satisfaction for Forge and the Launch

program. As the Launch team currently

prepares for the summer of 2022, my team

and I continue to maintain and update the

project.

1 INTRODUCTION

In the summer of 2020 I interned for a

Charlottesville-based non-profit, Forge, as a

software engineer. The company, which runs

an internship matching program of their own

called Launch, was in the middle of a rapid

expansion, looking to double the number of

interns enrolled in the program. With this

expansion came several issues that are

common with increasing the scale of a

program. Many of the tasks typically

performed by hand, such as creating Forge-

branded intern resumes and reviewing these

resumes, were becoming increasingly time-

consuming, taking the team away from

performing their more crucial duties

associated with outreach and finding

company partners.

As an intern, I was tasked with designing a

web app to streamline these manual

processes. In the end, I developed a web

portal with three main purposes:

• To allow students the ability to create

their own personalized Forge-

branded resumes

• To display student resumes to

company partners as marketing

material, and

• To facilitate the company matching

process through an interactive

dashboard

This paper will focus on the first purpose:

building an interactive resume editor.

There are three main components to a web

app: the front-end UI, the backend logic, and

the database. I chose to develop the front-end

with React, a JavaScript web library designed

to help build dynamic webpages and forms.

The backend, also written in JavaScript, was

deployed using Firebase Cloud Functions.

The database proved to be the most difficult

component to work with, as I was constrained

to using Airtable – a user-friendly and web-

accessible method of storing information – as

it was already being used by the Launch team

to manage their data. The project, which was

completed by the end of the summer, is

something that I am still actively maintaining

as the needs of the Launch team evolve.

2 RELATED WORK

In order to complete the project as quickly as

possible, I took advantage of many resources.

These mainly came in the form of online

documentation for various libraries and some

web tutorials.

The most helpful of these resources was the

documentation for React itself [1]. Not only

does it provide a step-by-step guide for

building a web app with React, but it also

contains detailed descriptions and use cases

for its tooling. I always made sure to

reference this documentation when faced

with problems that I could not solve given the

knowledge I already had at my disposal.

The way in which I consulted and used the

React documentation was fairly consistent

with my use of other library documentation,

such as those of React Router and Airtable [2,

3].

3 PROJECT DESIGN

The requirements for the project were almost

entirely defined by the desired functions of

the project, as the Launch team is comprised

of mostly non-technical people. From these

soft requirements, I was able to work

backwards in order to determine and define

the technical specifications.

3.1 Front-end UI

The desire for a program that could be

accessed by anyone from anywhere naturally

lent itself to a webpage, due to the ubiquity of

web browsers. The resume builder and the

need for an interactive form further narrowed

the project down into a “dynamic” or

interactive web app, for which there are many

different programming libraries and

frameworks publicly available.

The decision to use React over other

commonly used front-end web libraries was

simple: it was the only library I was familiar

with. I had previously taken a class on React

through Forge, and had gotten additional

training on it at the beginning of the summer

through their internship program.

3.2 Database

While users may only interact with a

webpage while browsing the internet, there

are actually several other aspects to

traditional web apps that facilitate the

handling of data and web requests. This is

referred to as the “back-end” of a web app (as

opposed to the “front-end,” or the end user

interface). Specifically in terms of managing

and saving user data, the Launch team had a

hard requirement of using an Airtable

database. Airtable was already being used by

the Launch team to manage much of the data

that they had previously been compiling on

their interns, and they had grown accustomed

to using it as opposed to more traditional

databases due to its user-friendly nature.

Unlike other databases that typically require

the use of a coding language called SQL to

interact with data, Airtable provides an online

interface (a web app of their own) that

customers can use to enter and edit data. This

made it accessible to non-technical members

of the Launch team.

3.3 Back-end Server

It is possible for this system to work with just

a front-end and a database, however I decided

against this system design because of two

main concerns: responsiveness and security.

Responsiveness is a measure of how quickly

a web page responds to user interaction, such

as clicking on a button or typing in

information. The React library prioritizes

responsive by design, however it can get

slowed down when running time-intensive

operations. In order to reduce this delay in

responsiveness as much as possible, I decided

to additionally implement a dedicated back-

end. This structure allowed me to offload

many complicated algorithms onto a server

as opposed to running them directly on the

users’ computers. For instance, Airtable

requires data to be submitted in very specific

format that differs from the format that the

data is managed inside of React. Instead of

performing this data conversion on the front-

end, I send the data (formatted in the React

way) directly to the back-end, which then

manages the conversion to the Airtable

format.

Security is the other main concern that kept

me from allowing the front-end to interact

directly with the database. In order to gain

access to Airtable, they provide users with a

unique “key” which they need to attach to

every web request sent to the Airtable

application programming interface (API).

This key is meant to be kept secret, as if you

allow someone to view your key they can

then use it to impersonate you and modify

your database without consent. If I were to

allow the front-end to use this key when

sending data to the Airtable API, I would

need to expose Forge’s secret key to

potentially malicious users. Therefore, every

web request sent from the front-end was

designed to go through the back-end,

obfuscating the Airtable key and ensuring its

security.

4 RESULTS & OUTCOMES

4.1 Resume Builder

This system, dubbed the “Launch Resumes

Portal”, was used by the Launch team in the

Summer 2021 and is currently being used as

the team onboards new students for Summer

2022. During training, students are

introduced to the web app and given

instructions on how to log in and modify their

information.

Utilization of the Launch Resumes Portal

reduced the time spent micro-managing

student resumes by a significant margin for

the Launch team. This is mainly due to the

system giving agency over a student’s

resume directly to the students themselves, as

opposed to the Launch team. With students

able to edit their information at-will and able

to read team feedback from within the app,

the number of emails manually sent between

Launch team members and students fell to

near zero. Instead, emails are automatically

sent after a team member indicates whether

or not a resume has been approved for

publication to Launch company partners.

4.2 Additional features

While the major details are beyond the scope

of this paper, I think it is important to also

mention the end results of the two additional

goals mentioned in the Introduction.

Initially, the Launch team limited the scope

of their marketing to mass emails sent out to

potential company partners. However, there

was no easy way for Forge to generate

company interest in actual candidates until

they had responded to an email or two. The

candidates portal which I developed,

however, flipped this dynamic. By displaying

live candidate resumes on an easily

accessible website, the Launch team could

direct potential partners directly to a link,

allowing them to gain a better understanding

of the interns they could potentially be hiring.

This lead to a notable increase in the reply

rate of emails that the Launch team sent out

during the marketing in their Fall 2020 and

Spring 2021 campaigns.

The third and final additional feature of the

web app was a “matching portal,” a webpage

for current company partners to view the

resumes of potential candidates and indicate

which ones they would like to interview.

Previously, this had been an entirely manual

process, facilitated through countless emails

between Forge and company contacts. The

portal, however, reduced the email load per

company to only one or two. This resulted in

a marked increase in satisfaction from all

parties: the Launch team, company partners,

and students. The portal, in addition to

simplifying the interview matching process,

also sent out automatic emails and text

messages using SendGrid and Twilio, two

messaging APIs. The emails connected

students with their interviewers immediately

after decisions were made, and the texts

informed the students to check their inboxes

in order to ensure a timely response to the

emails.

5 FUTURE WORK

Throughout the 2021-2022 academic year, I

took on an active maintenance role with the

project, solving problems and patching bugs

as users came across them. Currently, there

are no known issues with the software that

have not already been addressed. However,

there are many improvements I would like to

make to the code in order to make future

development easier.

Currently, the most pressing of these matters

is migrating the project from JavaScript to

TypeScript. JavaScript, the project’s initial

coding language, is “weakly typed.” This

means that any variable can be interpreted as,

or “coerced into” any type. For example, the

string “1,” when added to the number 1 using

the plus operator, returns a value of the string

“11” (“1” + 1 evaluates to “11”). Because of

this weak typing, it is very easy for bugs to

crop up without realizing it, as code editors

like Visual Studio Code will allow your code

to “just work” without checking if the

operations you are attempting to perform are

even valid. This is where TypeScript comes

in.

In essence, TypeScript is JavaScript with

strictly enforced typing. If you attempt to

evaluate “1” + 1, your IDE will display an

error, informing you that you are attempting

to evaluate different types. While it may seem

minor, this can save a lot of time in the

development process. Problems that may

have taken several minutes of debugging will

now be displayed almost immediately. In

addition to saving time when writing future

code, converting current JavaScript files to

TypeScript will allow me to retroactively

identify errors that I may have never noticed.

It is my hope that with these changes in place,

the project will be used by the Launch team

for years to come. With my graduation this

upcoming Spring, it is crucial that the project

is in a manageable enough state to be taken

over by other students in future years.

REFERENCES

[1] React. 2021. Getting Started. Retrieved

from https://reactjs.org/docs/getting-

started.html.

[2] React Router. 2021. Documentation.

Retrieved from

https://reactrouter.com/docs/en/v6.

[3] Airtable. 2021. REST API. Retrieved

from https://airtable.com/api.

https://reactjs.org/docs/getting-started.html
https://reactjs.org/docs/getting-started.html
https://reactrouter.com/docs/en/v6
https://airtable.com/api

