
Developing an Internal Notification Feature

CS4991 Capstone Report, 2024

Sofia Yang
Computer Science

The University of Virginia
School of Engineering and Applied Science

Charlottesville, Virginia USA
syy6zn@virginia.edu

ABSTRACT
A major application hosting platform
company needed a method for service teams
to be able to receive notifications when a
feature was failing. To address this problem,
my team used AWS services, Java and
React.js to develop a feature notifying
customers when a given service is in a failing
state. Implementing this solution will improve
notification automation, because customers
will no longer need to manually check for
service statuses. This solution will also help
to improve the detection and response times,
because with the notification customers will
be able to reduce their mean time to detect
(MTTD). In the future, there will be other
features, such as improving the scalability of
the notification feature to allow multiple
customers to receive notifications and
allowing the notification to receive follow ups
upon the recovery of the service.

1. INTRODUCTION
This summer I worked on an internal team
responsible for ensuring that on launch day
services will be ready for customers to use.
In order to achieve this goal, the team has a
service that aggregates test cases into test
suites, that can be customized by the
customer, defining requirements that a given

service must satisfy to be considered ready
for launch.

Currently, customers can only manually
check the front end console to identify the
status of a service. This is a problem because
it could lead to delays in launching the
servers to customers and longer mean time to
detect (MTTD), the metric that measures the
amount of time it takes to be aware of a
problem with the service.

2. RELATED WORKS
In order to implement the notification feature,
I read through the existing codebase for both
the backend and frontend, to determine how
to integrate my feature into the existing
service. The implementation of this feature
involved the integration of an internal API, in
order to understand the process of integration
this API, I read through the onboarding
instructions provided by the internal team that
owned this API. In addition, I read through
the implementation examples provided by the
API owner team and examples of API
integration done by other teams.

The new-integrated feature will send
notifications that will be easily viewable by
the company set up on-call queues. The
decision to send notifications to on-call
queues was influenced by the benefits of

1

reducing detection time by sending the
notification through the on-call queue, as
outlined by Augustian (2022).

In addi t ion, I read the ar t ic les ,
documentations and developer guides on the
AWS Documentation (AWS, 2019) for the
AWS tools used for the project to understand
how they can be applied to the project
implementation

3. PROJECT DESIGN
This project consisted of three main
components. 1) allowing the database to store
whether or not the test suite has enabled the
notification feature and where the notification
should be sent. 2) enabling the backend to
determine when the notification should be
sent and sending the notification to the
customer and 3) developing the frontend so
customers will be able to enable the
notification feature.

3.1 Database and Backend Implementation
The first component was to update the
existing database with the new information to
support the notification feature. The second,
the backend Java codebase was updated to
send the customer the notification when the
test suite changed from a pass to fail status.
Once checked and after making sure the test
suite has not been notified of a status change
in the past, the backend will trigger a Lambda
(AWS Service) using the internal API to send
the notification to the customer chosen on call
queue.

3.2 Frontend Implementation
The third component is to update the front
end console so customers can enable the
notification feature on their desired test suite

and choose the on-call queue they want the
notification to be sent to. To implement this, I
updated the frontend React.js codebase to
create a dropdown allowing customers to
enable the notification feature, update the on
call queue they want the notification to be
sent or disable the notification feature for the
test suite (Figure 1).

Figure 1: Dropdown for customers to enable,

update or disable the notification feature

Once the customer chooses to enable the
notification feature, they will be able to select
their desired on call queue to send the
notification to. When selecting update, the
customer will be able to change the on call
queue they would like future notifications
sent to. When selecting disable, the customer
will no longer receive any notifications about
status changes for the test suite.

3.3 Testing and Code Review
For both the backend and frontend
development, there were smaller milestones
for the task. Each milestone has exhaustive
unit tests to ensure the functionalities. To
check the end-to-end function, both the
backend and frontend had their own set of
integration tests. For the backend, the
integration tests ensure notifications would be
sent under the right conditions. For the
frontend, the integration tests ensure the
customers will view the correct information
when trying to enable, update or disable the
notification feature.

2

To ensure the quality and functionality of the
code and test cases, every milestone has its
own code review, reviewed and revised until
at least two software engineers have approved
it. Once approved, the code will be published
to the codebase and moved through the
different stage (beta, gamma and production)
in the pipeline.

4. EXPECTED OUTCOMES
This project had not been officially
announced to customers at the end of my
internship. However, with the notification
feature implemented, it is expected that
service teams will be able to reduce the
amount of time it takes to be aware of a
problem in their service. In addition, this will
also reduce the frequency of customers
noticing the failures of the service.
With the notification feature implemented, it
is anticipated that customers will enable
notifications for their test suites. Once
enabled, customers will be able to receive the
notification in their on-call queue and respond
to the failure as needed.
In addition, in the implementation of this
project, the internal API that was integrated
has other endpoints that can be used by the
team for other planned projects.

5. CONCLUSION
In conclusion, in the process of this working
on this project, I learned how to use various
AWS tools and how to work with frontend
tools. I was also able to improve my skills in
writing more reusable and maintainable code.

6. FUTURE WORK
Going forward, the team would like to add
direct access to on-call notification, so

customers can easily view and check the
status of the problem resolving. Another
feature the team would like to add is allowing
multiple on-call queues to receive the
notification about the failing status of a test
suite. Currently, the only way for multiple
customers to be aware of a fail status is
through creating a separate copy of the test
suite and enabling their on-call queue to
receive the notification, which is not as
customer-friendly as we would like.

REFERENCES
Augustian, T. (2022, January 25). Embracing

on-call system in software development
process . Medium. Ret r ieved 28 ,
N o v e m b e r 2 0 2 3 f r o m h t t p s : / /
medium.com/tokopedia-engineering/
embracing-on-call-system-in-software-
development-process-c74b030e6565

Amazon Web Services (2019). Amazon.com.
Retrieved 28, November 2023 from
https://docs.aws.amazon.com/

3

