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Abstract

A queueing network consists of several nodes where at each node there is a

server and a queue; jobs pass through the network receiving a random amount of

service at each node. In classical Jackson networks, a particular job’s random service

requirements at each node are independent of one another. This independence enables

the computation of various steady-state performance measures and scaling limits.

The independence assumption may not be very realistic, however. Consider in-

stead a queueing network where, although service times are random, any particular

job has identical service times at each server. In this situation much dependence is

introduced and many classical results break down. Even for the simplest example

of a two-node tandem queue, very little is known. In seminal work on this model,

Boxma [4] found the steady state distribution for the workload in the second queue

at special time-points, in the case arrivals are Poisson. The workload is the amount of

time a newly arriving job would need to wait for service to begin and represents one

of the most important measures of congestion in a queueing system. For the basic

two-node model, the complicated dependencies exist only in the second queue. To

expand on Boxma’s result, we study the entire workload process in the second queue

of the two-node tandem system. Unfortunately, this process does not converge under

the same scaling as the workload in the first queue. To handle this, we introduce

and study a related process M , called the plateau process, which encodes most of

the information in the workload process. We show that under appropriate scaling,
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workload in the first queue converges, and although the workload in the second queue

does not converge, the plateau process does converges to a limit M∗ that is a certain

function of two independent Lévy processes.

Although the aforementioned result gives a characterization of the long-term dy-

namics of workload in the second queue, it is difficult to compute distributional quan-

tities from this characterization explicitly. To this end, we find the one dimensional

distribution of the plateau process on a certain subsequence of special time points,

similar to Boxma’s approach. For this more detailed analysis we restrict to the case

of exponential interarrival times and regularly varying service times with infinite vari-

ance.
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Chapter 1

Introduction

Queueing theory is the study of waiting lines or queues. The general theory has

been used to model diverse systems extending from telecommunication networks to

the design of hospitals. A queueing network consists of several nodes where at each

node there is a server and a queue; jobs pass through the network receiving a random

amount of service at each node. Often, one is concerned with the amount of congestion

in the system resulting from the configuration of the nodes. Given the primitive data

for a queueing network one could compute the congestion in the system for the next

few arrivals, but these computations quickly become overwhelming. Over longer

periods of time it is reasonable to expect the distribution of the primitive elements

of the system to characterize the congestion. This suggests congestion may be well

approximated by simpler objects obtained via scaling limits, in much the same way

as a large sum may be approximated by a normal random variable.

In classical Jackson networks, a particular job’s random service requirements at

each node are independent of one another. This independence enables the compu-
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tation of various steady-state performance measures and scaling limits. For exam-

ple, Jackson [8] found steady state distributions for queue length and Harrison and

Williams [7] find necessary and sufficient conditions for the workload process in each

queue to converge to independent reflected Brownian motions.

The independence assumption may not be very realistic, however. Consider the

problem of moving files from point A to point B where at the midpoint an operation

takes place that requires the presence of the entire file and does not significantly

change the file’s size. The amount of time required to move the file to the midpoint

is about the same as the amount of time required to move the file from the midpoint

to point B. In this example we may consider the time it takes to transmit a file

as a service time and the two service times experienced by one file would not be

independent, but rather depend on the file size.

The above model is an example of a system in which a job’s service times are

correlated at different nodes in the system. Very little is known about such models,

even for the simplest case consisting of two queues in tandem with identical service

times at each server. In this situation much dependence is introduced and many

classical results break down.

This work concerns a tandem queueing model, consisting of two queues with a

single server at each queue that serves jobs according to the First In First Out (FIFO)

policy. Jobs arrive to the first queue according to an exogenous renewal process,

where they wait to be served by the server in the first queue. When a job’s service
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requirement is satisfied in the first queue it moves immediately to the second queue,

where it waits to be served by the second server. Jobs only enter the second queue

from the first queue, never from outside the system. When a job’s service requirement

is satisfied in the second queue it leaves the tandem queueing the system. Critical for

this model, is that a job’s service time at the second server is identical to it’s service

time at the first.

In seminal work, Boxma [4] found the steady state distribution for the workload

at special time-points in this model, in the case arrivals are Poisson. The workload is

the amount of time a newly arriving job would need to wait for service to begin and

represents an important measure of congestion in a queueing system.

For the basic two-node model, the complicated dependencies exist only in the

second queue. Expanding on Boxma’s result, we study the entire workload process

in the second queue of the two-node tandem system.

Our motivation is to obtain scaling limits for this process, under suitable asymp-

totic assumptions. Unfortunately, the workload process in the second queue does not

always converge in the same setting as the workload in the first queue. That setting

is known and we briefly outline the procedure for obtaining the scaling limit.

Consider a triangular array of stochastic primitives for the model: for a sequence

r →∞ in R+, {vri }∞i=1 and {uri}∞i=1 are iid sequences of service times and interarrival

times respectively to the first queue. Assume positive, finite means E [vri ] = νr and

E [uri ] = µr for each i = 1, 2, . . .. Let U r(t) =
∑btc

k=1 u
r
k, V

r(t) =
∑btc

k=1 v
r
k, Ǔ

r(t) =
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Figure 1.1: The workload in both queues with identical service times in each. 1000

Poisson arrivals with parameter 1/3.1 service times are Pareto(1,3/2).
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1
ar

(U r(rt)−µrr), and V̌ r(t) = 1
ar

(V r(rt)−νrr) for some sequence of positive constants

ar tending to infinity. Now, we make the asymptotic assumptions as r → ∞ that

r/ar →∞, µr → µ, νr → µ,

(νr − µr) r
ar

=µr(ρr − 1)
r

ar
→ µγ,

Ǔ r ⇒ U∗, and V̌ r ⇒ V ∗.

In this case U∗ and V ∗ must be independent centered Lévy processes. Note that

Ǔ r ⇒ U∗ if and only if Ǔ r(1) ⇒ U∗(1) since for each r, {uri} is iid (See Whitt [12]

supplement Theorem 2.4.1). Since (ρr − 1) r
ar
→ γ we have ρr → 1 at rate ar/r. For

example, if ar =
√
r, Ǔ r(1) ⇒ N(0, σ2

u) and V̌ r(1) ⇒ N(0, σ2
v) and the workload in

the first queue converges to

φ(V ∗ − U∗ + µγe)(t/µ),

where φ(x)(t) = x(t)− inf
0≤s≤t

x(s) is the reflection function and e(t) = t is the identity

function. Recall for a stable process B with parameter 2 we have, B(t/µ) ∼ 1√
µ
B(t).

In this case we recognize (V ∗ − U∗)/√µ+ γe as a brownian motion with drift γ and

variance (σ2
u + σ2

v)/µ, so the the workload is a reflected brownian motion with these

characteristics. In this example, we have γ ≤ 0 when ρ ↑ 1.

When V ∗ has continuous sample paths almost surely, our results show that the

workload in the second queue is zero almost surely. On the other hand, if V ∗ is a

Lévy process with parameter 1 < α < 2, then the workload in the second queue does

not converge. To see this, consider a first-queue busy period; then the time between
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departures is a service time. The effect on the workload process in the second queue

is the return to the height attained at the previous arrival unless the current job is

larger. The frequency of return to the same height can be seen in the figure 1 where

the workload in the second queue must hit zero before each increase. When compared

to the workload in the first queue it is clear the behavior is very different because the

workload in the second queue frequently has consecutive local maxima of the same

value. If the new job is larger, then the workload in the second queue may be zero for

a nonzero amount of time, but if a big job is not larger than the current workload in

the second queue then the workload process decreases at rate r/ar for a period long

enough for the workload to return to its previous height when the big job arrives.

Since r/ar →∞ the workload process will fail to have a left limit at such a point.

Notice that the silhouette of the workload in the second queue seems to converge

under the same scaling as the workload in the first queue. In contrast to the jagged

peaks of the workload in the first queue, the silhouette is characterized by rolling

hills. Much of the information about the workload is retained if we only keep track

of these recurring levels or plateaus. In doing so we eliminate the oscillating behavior

that prevents us from working directly with the workload in the second queue.

This is the strategy we follow. We introduce and study a process M , called the

plateau process, which encodes most of the information in the workload process. The

plateau process is defined to be the workload in the second queue at the time of the

most recent arrival. This definition eliminates the difficulty with scaling described
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above. We show that under the scaling described above the plateau process converges

to a limit M∗ that is a certain function of the two independent Lévy processes U∗

and V ∗. More explicitly, the Nth job waits in the second queue for a period of time

F (U, V, 1)(N), where for two functions x, y : [0,∞)→ R

F (x, y, c)(t) = sup
0≤s≤t

(
y(s)− y(s−) + sup

0≤r≤s

(
x(r)− y([r − c]+

))
− sup

0≤s≤t

(
x(s)− y([s− c]+)

)
.

At time t the number of jobs that have arrived to the second queue is R(t), and the

above functions are continuous on a relevant set in the Skorohod path space D. For a

sequence of models indexed by r, the plateau process in the rth model can be written

M r(t) = F (U r, V r, 1)(Rr(t)).

Letting M̌ r(t) = 1
ar
M r(rt), we show

M̌ r ⇒M∗,

where M∗(t) = F (U∗ + γµe, V ∗, 0)(t/µ), see Theorem 2.1.1. This is the subject of

Chapter 2.

Although the aforementioned result gives a characterization of the long-term dy-

namics of workload in the second queue, it is difficult to compute distributional quan-

tities from this characterization explicitly.

To this end, in chapter 3 we consider the sequence of times when the plateau

process is large. That is the sequence of times when the last job in a busy period
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in the first queue arrives to the second queue. After each such time the workload in

the second queue will be reduced by the duration of an idle period. We find the one

dimensional distribution of the plateau process restricted to this special sequence of

times in the case the exogenous arrival process is Poisson and the service times are

regularly varying with parameter 1 < α < 2. We also use a slightly different scaling

to compensate for the growing average length of a busy period as ρ ↑ 1.
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Chapter 2

The plateau process M(·)

In this chapter we find the functions that describe the waiting time in the second queue

in terms of the sums of interarrival times U and sums of service times V . We show

that these functions are continuous in the Skorohod J1 topology on relevant subset

of D the space of right continuous functions with finite left limits. The continuous

mapping theorem is used to show that the scaled waiting time function also converges

on D.

2.0.1 Notation

The following notation will be used throughout. Let N = {1, 2, . . .} and let R denote

the real numbers. Let R+ = [0,∞). For a, b ∈ R, write a ∨ b for the maximum, and

a ∧ b for the minimum, [a]+ = 0 ∨ a, [a]− = 0 ∨ −a , bac for the integer part of a.

For f : R+ → R let f ↑ = g where g(t) = sup0≤s≤t f(s).

The arrival time of the nth job to the first queue is denoted tn while the arrival

time of the nth job to the second queue is the transfer time of the nth job Dn. Dn is
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the departure time of the nth job from the first queue in the model.

Following Ethier and Kurtz [5] let Λ′ be the collection of strictly increasing func-

tions mapping R+ onto R+. Let D = D([0,∞),R) be the space of real valued,

right-continuous functions on [0,∞) with finite left limits. We endow D with the

skorohod J1-topology which makes D a Polish space [2]. For T ≥ 0, let ρT be such

that ρT (x, y) = sups∈[0,T ] |x(s) − y(s)|. Let e ∈ D be the identity function e(t) = t.

For x with finite left limits, in particular x ∈ D, let x(t−) = lims↑t x(s), and x− = y

where y(t) = x(t−) for t > 0 and y(0) = x(0).

Let Λ′ be the collection of increasing functions λ mapping R+ → R+. Let Λ ⊂ Λ′

be the set of Lipschitz continuous functions such that λ ∈ Λ implies sup
s>t≥0

∣∣∣∣log
λ(s)− λ(t)

s− t

∣∣∣∣ <
∞. We will often use [5] proposition 3.5.3: Let {xn} ⊂ D and x ∈ D. Then xn

J1−→ x

if and only if for each T > 0 there exists {λn} ⊂ Λ′ (possibly depending on T ) such

that limn→∞ sup0≤t≤T |λn(t)− t| = 0 and limn→∞ sup0≤t≤T |xn(t)− x(λn(t))| = 0.

Weak convergence of random elements will be denoted by ⇒. We adopt the

convention that a sum of the form
∑m

i=n with n > m, or a sum over an empty set of

indices equals zero.

2.1 Tandem queue model and main result

In this section we give a precise description of the tandem queue, specify our assump-

tions, and state our main result.
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2.1.1 Definition of the model

We formulate a model equivalent to the one in Boxma [4]. The tandem queueing

system consists of two queues Q1 and Q2 in series; both Q1 and Q2 are single-

server queues with an unlimited buffer. Jobs enter the tandem system at Q1. After

completion of service at Q1 a job immediately enters Q2, and when service at Q2,

which is the exact same length as previously experienced in Q1, is completed it leaves

the tandem system. Jobs are served individually and at both counters with the first

in first out discipline. We assume the system is empty at time zero.

More precisely, Q1, the exogenous arrival process E(·) is a renewal process. Jump

times of this process correspond to times at which jobs enter the system. This renewal

process is defined from a sequence of interarrival times {ui}∞i=1, where u1 denotes the

time at which the first job to arrive after time zero enters the system and ui, i ≥ 2,

denotes the time between the arrival of the (i − 1)st and the ith jobs to enter the

system after time zero. Thus, Ui =
∑i

j=1 uj is the time at which the ith arrival enters

the system, which is interpreted as zero if i = 0, and E(t) = sup{i ≥ 0 : Ui ≤ t} is

the number of exogenous arrivals by time t. We assume that the sequence {ui}∞i=1 is

an i.i.d. sequence of nonnegative random variables with E [u1] = µ <∞.

At Q1, the service process, {Vi, i = 1, 2, . . .}, is such that Vi records the total

amount of service required from the server by the first i arrivals. More precisely,

{vi}∞i=1 denotes an i.i.d. sequence of strictly positive random variables with common

distribution function F independent of the collection {ui}∞i=1. We interpret vi as the
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amount of processing time that the ith arrival requires from both servers. The vi’s

are known as the service times. Then, Vi =
∑i

j=1 vj, which is taken to be zero if

i = 0. It is assumed that E [v1] = ν <∞.

Note that E and V are assumed to be independent.

For t ≥ 0, let

I(t) = sup
s≤t

[
VE(s) − s

]−
.

We interpret I(t) as the cumulative amount of time that the first server has been idle

up to time t. For n ≥ 0, let

In = I(Un).

Then In is the cumulative amount of time that first server has be idle up to the arrival

of the nth job in the first queue.

Let Wi(t) denote the (immediate) workload at time t at Qi, i = 1, 2, which is

the total amount of time that the server must work in order to satisfy the remaining

service requirement of each job present in the system at time t, ignoring future arrivals.

For t ≥ 0 we define

W1(t) = VE(t) − t+ I(t).

Let Dn be the transfer time of the nth job. So, the nth job exits Q1 and enters

Q2 at time Dn. Let d1 = u1 + v1 and dn = Dn −Dn−1 for n ≥ 2 be the intertransfer

time between arrivals of n− 1st and nth job to the second queue. For n ≥ 0 we have

Dn = Vn + In.
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Let R(t) denote the number of transfers to Q2 by time t. For t ≥ 0 we have

R(t) = sup{n ≥ 0 : Dn ≤ t}. (2.1.1)

Let J(t) denote the cumulative amount of time that the second server has been

idle up to time t, and W2(t) as the workload in Q2 at time t. That is, for t ≥ 0 let

J(t) = sup
s≤t

[
VR(s) − s

]−
,

W2(t) = VR(t) − t+ J(t).

If k is the index of the first job in a busy period of the first queue then W1(tk) = vk.

Similarly, W2(Dk) = vk if the kth job arrives to the second queue at a time when the

second queue is empty.

Finally, let Mn denote the workload in the second queue at the time of the arrival

of the nth job to the second queue, which is just the sojourn time of the nth job

in the second queue. Let M(t) be the piecewise constant right continuous function

that agrees with the work load in the second queue at each transfer time and whose

discontinuities are contained in the transfer times. We call M(t) the plateau process.

For integers n ≥ 0 and real numbers t ≥ 0 we have

Mn = W2(Dn),

M(t) = MR(t).

(2.1.2)

The name plateau process comes from the tendency of Mn+1 to be equal to Mn,

although Mn may increase or decrease.
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Definition 1. For a real number t ≥ 0,

U(t) = Ubtc and V (t) = Vbtc.

2.1.2 Sequence of models, assumptions, and results

We now specify a sequence of tandem queueing models indexed by r ∈ R. Each model

in the sequence is defined on the same probability space (Ω,F ,P). The rth model

in the sequence is defined as in the previous section where we add a superscript r to

each symbol. In particular, for t ≥ 0 let M r(t) denote the plateau process in the rth

system.

That is, a sequence of tandem queueing models indexed by r, where r increases

to ∞ through a sequence in (0,∞), {vri }∞i=1 and {uri}∞i=1 are the service times and

interarrival times to the first queue with positive, finite means E [vri ] = νr and E [uri ] =

µr for each i = 1, 2, . . . independent of each other. Define the following scaled versions

of processes in the rth model for a sequence of positive reals ar →∞ and t ≥ 0,

Ū r(t) = r−1U r(rt) and V̄ r(t) = r−1V r(rt)

Ǔ r(t) = a−1
r (U r(rt)− rµrt) and V̌ (t) = a−1

r (V r(rt)− rνrt)

M̌ r(t) = a−1
r M r(rt)

(2.1.3)

Asymptotic assumptions We make the following asymptotic assumptions, as

r → ∞, about our sequence of models. Assume there is a sequence {ar} such that

r/ar → ∞, Ǔ r(1) ⇒ U∗, V̌ r(1) ⇒ V∗ in R. In this case U∗ and V∗ are centered
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infinitely divisible random variables see Feller [6] XII.7. In this case we have Ǔ r ⇒ U∗

and V̌ r ⇒ V ∗ in D, where U∗ and V ∗ are Lévy stable motions with U∗(1) ∼ U∗

and V ∗(1) ∼ V∗ by Whitt [12] supplement 2.4.1. We further assume limr→∞ µ
r =

limr→∞ ν
r = µ and the traffic intensity parameter for the rth system ρr = µr

νr
satisfies

r

ar
(1− ρr)→ γ ∈ R.

Definition 2. Define the mapping F : D× D× R→ D by

F (x, y, c)(t) = sup
0≤s≤t

(
y(s)− y(s−) + sup

0≤r≤s

(
x(r)− y([r − c]+

))
− sup

0≤s≤t

(
x(s)− y([s− c]+)

)
Theorem 2.1.1.

M̌ r ⇒M∗,

where M∗(t) = F (U∗ + γµe, V ∗, 0)(t/µ).

2.2 The plateau process as a function of U and V

In this section we derive various relationships namely the stochastic processes com-

prising the tandem queueing model. These relationships hold for any of the r indexed

models, so we suppress superscripts referring to a particular model in sequence.

2.2.1 The idleness process for the first queue

This section is a prerequisite for understanding the arrival process in the second

queue. If the cumulative idleness in the first queue is identically zero for all of time
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then the arrival process to the second queue is just a renewal process formed by the

service times. Here we consider the cumulative idleness process in the first queue as

a discrete time process. Consider the model defined in section 2.1.1

Lemma 2.2.1. For each n ≥ 1,

In = u1 +
n

max
k=1

(
k∑
j=2

(uj − vj−1)

)
, (2.2.1)

for n = 1, 2, . . ..

Proof. We proceed by induction. First observe that
∑1

j=2(uj − vj−1) = 0, by conven-

tion, so

n
max
k=1

(
k∑
j=2

(uj − vj−1)

)
≥ 0

for n ≥ 1. I1 = u1 +
1

max
k=1

k∑
j=1

(uj − vj−1) = u1. For n = 2,

I2 = u1 + [u2 − v1]+ = u1 +
2

max
k=1

(
k∑
j=2

(uj − vj−1)

)
,

since there is no additional idleness if the second job arrives while the first job is in

service. This is the base case for the induction.

For the inductive step, assume equation (2.2.1) holds for n ≥ 2. There are two

cases. In the first case the (n+ 1)st job arrives before the nth service is complete. In

this case the first job in the current busy period had index i ≤ n, arrived at time ti,

and the total amount of work that has arrived since ti,
∑n

k=i vk exceeds the amount

of time
∑n+1

k=i+1 uk since ti. That is,

n+1∑
k=i+1

uk − vk−1 < 0,
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for some i ≤ n. Thus

n+1
max
k=1

(
k∑
j=2

(uj − vj−1)

)
=

n
max
k=1

(
k∑
j=2

(uj − vj−1)

)
,

and the cumulative idle time has not increased

In = In+1 = u1 +
n+1
max
k=1

(
k∑
j=2

(uj − vj−1)

)
.

In the second case, the (n + 1)st job arrives after the nth service is complete, so

the total idle time just before the arrival of the n+ 1 job is u1 +
∑n+1

k=2 uk − vk−1. In

this case, for any job i ≤ n, the total amount of time
∑n+1

k=i+1 uk exceeds the total

amount of work
∑n

k=i vk since ti. That is,

n+1∑
k=i+1

uk − vk−1 ≥ 0.

Thus, (
k∑
j=2

(uj − vj−1)

)
≤

(
n+1∑
j=2

(uj − vj−1)

)

for each k = 2, . . . , n+ 1, and we have
n+1∑
j=2

uj − vj−1 =
n+1
max
k=1

(
k∑
j=2

(uj − vj−1)

)
. �

Note that the departure process of the first queue is equal to the arrival process

R(·) of the second queue. Since the queueing discipline is FIFO, the number of jobs

that have arrived to the second queue by time t is the greatest number N such that

the total amount of time needed to complete the first N jobs,
∑N

k=1 vk, is less than

the amount of time spent working, t minus the cumulative idle time in the first queue.
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2.2.2 Workload in the second queue

In this section we show how to write the plateau process M(·) as a function of the

primitive arrival and service processes. The following formula relates sojourn times

in the second queue to service times and idleness in the first queue. It comes from

Lindley recursion [1] for a FIFO queue W2(Dn+1) = vn+1 + [W2(Dn)− dn+1]+, where

no independence needs to be assumed about the intertransfer times dk and service

times vk.

Lemma 2.2.2. The sojourn time of the nth job in the second queue is

Mn =
n

max
k=1
{vk + Ik} − In.

Proof. Note that the sojourn time of the nth job includes its service time. The second

queue is initially empty and the service time of the nth job is the same in both queues.

Clearly I1 = u1, since the first queue is empty until the arrival of the first job. So,

M1 = v1 =
1

max
k=1
{vk + Ik} − I1.

The intertransfer time between the nth and (n+ 1)st job is dn+1 = vn+1 + (In+1− In).

Proceeding by induction, suppose Mn =
n

max
k=1
{vk + Ik}− In. Then, Lindley recursion
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gives

Mn+1 = vn+1 + [Mn − vn+1 − (In+1 − In)]+

= vn+1 ∨ (Mn − (In+1 − In))

= vn+1 ∨
(

n
max
k=1

(vk + Ik)− In − (In+1 − In)
)

=
[
(vn+1 + In+1) ∨ n

max
k=1

(vk + Ik)
]
− In+1

=
n+1
max
k=1

(vk + Ik)− In+1.

�

Definition 3. Define the translation function G : D× R→ D by

G(x, c)(t) = x([t− c]+),

and define H : D× D× R+ → D as the composition

H(x, y, c) = (x−G(y, c))↑ .

More explicitly,

H(x, y, c)(t) = sup
0≤s≤t

(
x(s)− y([s− c]+)

)
.

We can write In in terms of V and U from definition 1.

Lemma 2.2.3. For each n ≥ 1,

In = H(U, V, 1)(n),

Moreover H is constant on intervals of the form [n, n + 1) where n is an integer, so

for each integer n we have H(U, V, n)(btc) = H(U, V, n)(t) for all t ≥ 0.
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Proof. The processes V and U are constant between integers so H is constant on

intervals of the form [n, n+ 1), where n is an integer. For an integer k, vk = V (k)−

V (k−) and uk = U(k)− U(k−). By lemma 2.2.1,

In = u1 +
n

max
k=1

(
k∑
j=2

(uj − vj−1)

)

= u1 +
n

max
k=1

(
k∑
j=2

uj −
k−1∑
j=1

vj

)

=
n

max
k=1

(
k∑
j=1

uj −
k−1∑
j=1

vj

)

=
n

max
k=1

(U(k)− V (k − 1))

= sup
0≤s≤n

(
U(s)− V ([s− 1]+)

)
= sup

0≤s≤n
(U(s)−G(V, 1)(s))

= H(U, V, 1)(n).

�

Now we can write R in terms of U and V .

Corollary 2.2.4.

R(t) = max {m ≥ 0 : V (m) +H(U, V, 1)(m) ≤ t} .

Proof. From definition (2.1.1) we have R(t) = max{N ≥ 0 :
∑N

k=1 vk + IN ≤ t}. We

have
∑N

k=1 vk = V (N) by definition 1 and IN = H(U, V, 1)(N) by lemma 2.2.3 �

We can now write the plateau process in terms of the function F defined in section
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2.1.2. By definitions 2 and 3,

F (x, y, c) =
(
y − y− +H(x, y, c)

)↑ −H(x, y, c),

or more explicitly,

F (x, y, c)(t) = sup
0≤s≤t

(y(s)− y(s−) +H(x, y, c)(s))−H(x, y, c)(t).

Lemma 2.2.5. For all t ≥ 0,

Mbtc = F (U, V, 1)(t).

Proof. By lemma 2.2.2

Mbtc =
btc

max
k=1

(vk + Ik)− Ibtc

=
btc

max
k=1

(V (k)− V (k−) + Ik)− Ibtc

=
btc

max
k=1

(V (k)− V (k−) +H(U, V, 1)(k))−H(U, V, 1)(btc)

by lemma 2.2.3. For a positive integer k we have H(U, V, 1)(t) is constant for t in

[k, k+ 1) and V (k)−V (k−) ≥ V (t)−V (t−) for t in [k, k+ 1). Thus, V (t)−V (t−) +

H(U, V, 1)(t) is maximized when t is an integer. Thus,

Mbtc = sup
0≤s≤t

(V (s)− V (s−) +H(U, V, 1)(s))−H(U, V, 1)(t)

= F (U, V, 1)(t).

�

Finally we can express M(·) as function of U and V . By definition (2.1.2), M(t)
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is the composition M(·) with the arrival process to the second queue. That is,

M(t) = MR(t)

= F (U, V, 1)(max {m ≥ 0 : V (m) +H(U, V, 1)(m) ≤ t}).

Notice that the plateau process is greater than or equal to the workload in the second

queue at each time, that is M(t) ≥ W2(t) for each t ≥ 0.

2.3 Continuity properties of G,H, and F

In this section we identify a subset of the domain of F that contains the limits of

the processes we are interested and where F is continuous. This result is obtained by

treating F as a composition of continuous functions. The method of proof is similar

to how Whitt showed addition is continuous on a large set in [11].

Lemma 2.3.1. For any x ∈ D, G is continuous at (x, 0) in the product topology on

D× R.

Proof. Let cn be a sequence in R with cn → 0, and let xn → x in D. Then for each

T > 0 there exists {λn} ⊂ Λ such that sup0≤t≤T |λn(t) − t| → 0 as n → ∞ and

sup0≤t≤T |xn(t)− x(λn(t))| → 0 as n→∞.

For each n = 1, 2, . . . define

λ̃n(t) =


λn(t− cn), if t ≥ 2|cn|,

λn

((
1− sgn(cn)

2

)
t
)
, if t < 2|cn|,

where sgn(cn) = −1 if cn < 0, sgn(cn) = 1 if cn > 0, and sgn(cn) = 0 if cn = 0.
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We have {λ̃n} ⊂ Λ because each λ̃n is the composition of two functions in Λ. Now,

sup
0≤t≤T

∣∣∣λ̃n(t)− t
∣∣∣ =

(
sup

0≤t<2|cn|

∣∣∣λ̃n(t)− t
∣∣∣) ∨( sup

2|cn|≤t≤T

∣∣∣λ̃n(t)− t
∣∣∣)

=

(
sup

0≤t<2|cn|

∣∣∣∣λn((1− sgn(cn)

2

)
t

)
− t
∣∣∣∣
)
∨

(
sup

2|cn|≤t≤T
|λn(t− cn)− t|

)

≤

(
sup

0≤t<2|cn|

∣∣∣∣λn((1− sgn(cn)

2

)
t

)
−
(

1− sgn(cn)

2

)
t

∣∣∣∣
+ sup

0≤t≤2|cn|

∣∣∣∣(1− sgn(cn)

2

)
t− t

∣∣∣∣
)
∨

(
sup

2|cn|≤t≤T
|λn(t− cn)− (t− cn)|+ |cn|

)
.

When 0 ≤ t < 2|cn| we have 0 ≤
(

1− sgn(cn)
2

)
t ≤ 3|cn|, so

sup
0≤t≤T

∣∣∣λ̃n(t)− t
∣∣∣ ≤ ( sup

0≤t<3|cn|
|λn (t)− t|+ 3|cn|

)

∨

(
sup

2|cn|−cn≤t≤T−cn
|λn(t)− t|+ |cn|

)

≤ sup
0≤t≤T

|λn(t)− t|+ 3|cn|,

so sup0≤t≤T

∣∣∣λ̃n(t)− t
∣∣∣→ 0 as n→∞.

Now, it suffices to show sup
0≤t≤T

∣∣∣G(xn, cn)(t)−G(x, 0)(λ̃n(t))
∣∣∣ → 0 by [5] Proposi-

tion 3.5.3. We have
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sup
2|cn|≤t≤T

∣∣∣G(xn, cn)(t)−G(x, 0)(λ̃n(t))
∣∣∣

= sup
2|cn|≤t≤T

∣∣∣xn([t− cn]+)− x(λ̃n(t))
∣∣∣

= sup
2|cn|≤t≤T

|xn(t− cn)− x(λn(t− cn))|

= sup
2|cn|−cn≤t≤T−cn

|xn(t)− x(λn(t))| → 0 (2.3.1)

So it suffices to show sup0≤t<2|cn|

∣∣∣G(xn, cn)(t)−G(x, 0)(λ̃n(t))
∣∣∣→ 0.

Fix ε > 0 and let η > 0 such that sup0≤t≤η |x(0)−x(t)| < ε by right continuity of x

at zero. Now, for n so large that |cn| < min(T/3, η/6), sup0≤t≤T |λn(t)− t| < ε∧ η/2,

and sup0≤t≤T |xn(t)− x(λn(t))| < ε consider the cn < 0, cn > 0, and cn = 0 cases.

If cn < 0,

sup
0≤t<2|cn|

∣∣∣G(xn, cn)(t)−G(x, 0)(λ̃n(t))
∣∣∣

= sup
0≤t<2|cn|

∣∣∣xn([t− cn]+)− x(λ̃n(t))
∣∣∣

= sup
0≤t<−2cn

|xn(t− cn)− x(λn(3t/2))|

≤ sup
0≤t<−2cn

|xn(t− cn)− x(λn(t− cn))|+ |x(λn(t− cn))− x(λn(3t/2))|

≤ sup
0≤t≤T

|xn(t)− x(λn(t))|+ sup
0≤t<−2cn

|x(λn(t− cn))− x(λn(3t/2))|

≤ sup
0≤t≤T

|xn(t)− x(λn(t))|+ sup
0≤t<−2cn

|x(λn(t− cn))|+ sup
0≤t<−2cn

|x(λn(3t/2))| .

We have (t− cn) ∨ (3t/2) ≤ −3cn for 0 ≤ t < −2cn, and so

λn(t− cn) ∨ λn(3t/2) ≤ λn(−3cn) ≤ −3cn + η/2 ≤ η.
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Thus,

sup
0≤t<2|cn|

∣∣∣G(xn, cn)(t)−G(x, 0)(λ̃n(t))
∣∣∣

≤ ε+ sup
0≤t<−2cn

|x(λn(t− cn))|+ sup
0≤t<−2cn

|x(λn(3t/2))|

≤ ε+ sup
0≤t≤η

|x(t)|+ sup
0≤t≤η

|x(t)| ≤ 3ε

If cn > 0,

sup
0≤t<2|cn|

∣∣∣G(xn, cn)(t)−G(x, 0)(λ̃n(t))
∣∣∣

= sup
0≤t<2cn

∣∣∣xn([t− cn]+)− x(λ̃n(t))
∣∣∣

= sup
0≤t<2cn

∣∣xn([t− cn]+)− x(λn(t/2))
∣∣

≤ sup
0≤t<cn

|xn(0)− x(λn(t/2))| ∨ sup
cn≤t<2cn

|xn(t− cn)− x(λn(t/2))| . (2.3.2)

For the first term,

sup
0≤t≤cn

|xn(0)− x(λn(t/2))| ≤ sup
0≤t<cn

|xn(0)− x(0)|+ |x(0)− x(λn(t/2))|

= |xn(0)− x(λn(0))|+ sup
0≤t<cn

|x(0)− x(λn(t/2))|

≤ sup
0≤t≤T

|xn(t)− x(λn(t))|+ sup
0≤t≤η

|x(0)− x(t)| ≤ 2ε,
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since λn(t/2) ≤ λn(cn/2) ≤ cn/2 + η/2 ≤ η for 0 ≤ t ≤ cn. For the second term,

sup
cn≤t<2cn

|xn(t− cn)− x(λn(t/2))| = sup
0≤t<cn

∣∣∣∣xn(t)− x
(
λn

(
t+ cn

2

))∣∣∣∣
≤ sup

0≤t<cn
|xn(t)− x(λn(t))|+

∣∣∣∣x(λn(t))− x
(
λn

(
t+ cn

2

))∣∣∣∣
≤ ε+ sup

0≤t<cn

∣∣∣∣x(λn(t))− x(0) + x(0)− x
(
λn

(
t+ cn

2

))∣∣∣∣
≤ ε+ sup

0≤t<cn
|x(λn(t))− x(0)|+ sup

0≤t<cn

∣∣∣∣x(0)− x
(
λn

(
t+ cn

2

))∣∣∣∣
≤ ε+ 2 sup

0≤t<η
|x(0)− x(t)| ≤ 3ε,

since λn(t) ∨ λn( t+cn
2

) ≤ λn(cn) ≤ cn + η/2 ≤ η for 0 ≤ t ≤ cn.

If cn = 0 then λ̃n = λn so G(xn, cn)(t)−G(x, 0)(λ̃n(t)) = xn(t)− x(λn(t)), which

converges to zero uniformly by assumption.

So in all three cases we have

sup
0≤t<2|cn|

∣∣∣G(xn, cn)(t)−G(x, 0)(λ̃n(t))
∣∣∣ ≤ 3ε.

Together with (2.3.1) and since ε was arbitrary, we have

sup
0≤t≤T

∣∣∣G(xn, cn)(t)−G(x, 0)(λ̃n(t))
∣∣∣→ 0

as n→∞.

So we have G(xn, cn)→ G(x, 0) on D. �

For x ∈ D, let Disc(x) denote the set of discontinuities of x.
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Lemma 2.3.2. H is continuous at (x, y, 0) for all x, y ∈ D such that

Disc(x) ∩ Disc(y) = ∅.

Proof. Let cn ∈ R with cn → 0 and let xn and yn be in D such that xn → x and yn → y

and fix a time T > 0. Let zn = yn− xn and z = y− x. Since Disc(x)∩Disc(−y) = ∅,

[11] Theorem 4.1 tells us that there exists {λn} ⊂ Λ′ such that ρT (λn, e) → 0 and

ρT (zn, z◦λn)→ 0. Since G is continuous at (z, 0) by lemma 2.3.1, and (zn, cn)→ (z, 0)

we have {λ̃n} ⊂ Λ′ such that ρT (λ̃n, e) → 0 and ρT (G(zn, cn), z ◦ λ̃n) → 0. In fact,

we may construct λ̃n as in the proof of 2.3.1. Since x 7→ x↑ is continuous on D

and (x)↑ ◦ λ̃ = (x ◦ λ̃)↑, we have ρT (H(xn, yn, cn), H(x, y, 0) ◦ λ̃n) → 0. Since T was

arbitrary we have H is continuous (x, y, 0). �

Lemma 2.3.3. For all x, y ∈ D,

Disc(H(x, y, 0)) ⊂ {t : y(t)− y(t−) > 0} ∪ {t : x(t)− x(t−) < 0}.

In particular, if {t : x(t)− x(t−) < 0} = ∅, then

Disc(H(x, y, 0)) ⊂ Disc(y).

Proof. Disc(H(x, y, 0)) = {t : H(x, y, 0)(t)−H(x, y, 0)(t−) 6= 0} = {t : H(x, y, 0)(t)−

H(x, y, 0)(t−) > 0} since H(x, y, 0) is nondecreasing. Thus,

Disc(H(x, y, 0)) ⊂ {t : (y − x)(t)− (y − x)(t−) > 0}

⊂ {t : y(t)− y(t−) > 0} ∪ {t : x(t)− x(t−) < 0}.

�
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Lemma 2.3.4. Let λn and γn be strictly increasing homeomorphisms from [0, T ] onto

[0, T ] and xn, x ∈ D such that for some finite collection {tj}Nj=0 ⊂ [0, T ] with

(i) 0 = t0 < t1 < · · · < tN = T we have λ−1
n (tj) = γ−1

n (tj) for each j =

0, 1, 2, . . . , N ,

(ii) ρT (xn, x ◦ λn) < ε, and

(iii) w(x, [tj−1, tj)) = sup (|x(t)− x(s)| : t, s ∈ [tj−1, tj)) < ε for each j = 1, 2, . . . , N ,

then

ρT (xn, x ◦ γn) < 3ε.

Proof. Let rj = γ−1
n (tj) = λ−1

n (tj) for j = 0, 1, . . . , N , so that ∪Nj=1 [rj−1, rj) =
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∪Nj=1 [tj−1, tj) = [0, T ).

ρT (xn, x ◦ γn) = sup
0≤t≤T

|xn(t)− x(γn(t))|

=
N

max
k=1

sup
rj−1≤t<rj

|xn(t)− x(γn(t))| ∨ |xn(T )− x(T )|

=
N

max
k=1

sup
tj−1≤t<tj

∣∣xn(γ−1
n (t))− x(t)

∣∣ ∨ |xn(T )− x(T )|

=
N

max
k=1

sup
tj−1≤t<tj

∣∣xn(γ−1
n (t))− x(tj−1) + x(tj−1)− x(t)

∣∣
∨ |xn(T )− x(T )|

≤ N
max
k=1

(
sup

tj−1≤t<tj

∣∣xn(γ−1
n (t))− x(tj−1)

∣∣+ w(x, [tj−1, tj))

)

∨ |xn(T )− x(T )|

≤ N
max
k=1

(
sup

rj−1≤t<rj
|xn(t)− x(λn(rj−1))|+ ε

)

∨ |xn(T )− x(T )|

≤ N
max
k=1

(
sup

rj−1≤t<rj
|xn(t)− x(λn(t))|

+ |x(λn(t))− x(λn(rj−1))|+ ε

)
∨ |xn(T )− x(T )|

≤ N
max
k=1

(
sup

rj−1≤t<rj
|xn(t)− x(λn(t))|+ w(x, [tj−1, tj)) + ε

)

∨ |xn(T )− x(T )|

≤ N
max
k=1

(
sup

rj−1≤t<rj
|xn(t)− x(λn(t))|+ 2ε

)
∨ |xn(T )− x(T )|

≤ ρT (xn, x ◦ λn) + 2ε

≤ 3ε.
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�

Finally, we prove that F is continuous on a relevant set.

Lemma 2.3.5. F is continuous at (x, y, 0) in the product topology on D×D×R, for

all x and y ∈ D with Disc(x) ∩ Disc(y) = ∅ and

{t : y(t)− y(t−) < 0} = ∅.

Proof. Let T > 0, let ρT be the uniform metric on function from [0, T ] to R, and

fix ε > 0. Apply Lemma 1 on page 110 of [2] to construct finite subsets A1 = {t′j}

and A2 = {sj} of [0, T ] such that 0 = t′0 < · · · < t′k = T , 0 = s0 < · · · < sm = T ,

w(y; [t′j−1, t
′
j)) = sup{|y(s)− y(t)| : s, t ∈ [t′j−1, t

′
j)} < ε and w(H(x, y, 0); [sj−1, sj)) <

ε for all j. Since Disc(y)∩Disc(H(x, y, 0)) ⊂ Disc(x)∩Disc(y) = ∅, the two sets A1

and A2 can be chosen so that A1 ∩ A2 = {0, T}. Note that w(y; [tj−1, tj)) < ε and

w(H(x, y, 0); [tj−1, tj)) < ε for {tj} = A1 ∪ A2. Let 2δ be the distance between the

closest two points in A1 ∪ A2. Choose n0 and homeomorphisms λn and µn in Λ so

that

(i) ρT (yn, y ◦ λn) < (δ ∧ ε),

(ii) ρT (λn, e) < (δ ∧ ε),

(iii) ρT (H(xn, yn, cn), H(x, y, 0) ◦ µn) < (δ ∧ ε), and

(iv) ρT (µn, e) < (δ ∧ ε)
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for n ≥ n0. Thus for n ≥ n0

λ−1
n (A1) ∩ µ−1

n (A2) = {0, T}

and {rj} = λ−1
n (A1) ∪ µ−1

n (A2) has corresponding points in the same order as {tj} =

A1 ∪ A2. Let γn be homeomorphisms of [0, T ] defined by

γn(rj) = tj

for corresponding points rj ∈ λ−1
n (A1) ∪ µ−1

n (A2) and tj ∈ A1 ∪ A2 and by linear

interpolation elsewhere.

Note that for each rj ∈ λ−1
n (A1) ∪ µ−1

n (A2) either

λn(rj) = tj or µn(rj) = tj.

Since t 7→ |γn(t)− t| is continuous the maximum is attained at some critical point

(exposed point) rj, so ρT (γn, e) < ρT (λn, e) ∨ ρT (µn, e) < ε. Now,

ρT (F (xn, yn,cn), F (x, y, 0) ◦ γn)

≤ ρT

((
yn − y−n +H(xn, yn, cn)

)↑
,
((
y − y− +H(x, y, 0)

)↑) ◦ γn)
+ ρT (H(xn, yn, cn), (H(x, y, 0)) ◦ γn) .

For the first term we have

ρT

((
yn − y−n +H(xn, yn, cn)

)↑
,
((
y − y− +H(x, y, 0)

)↑) ◦ γn)
≤ ρT

(
yn − y−n +H(xn, yn, cn),

(
y − y− +H(x, y, 0)

)
◦ γn

)
,

(2.3.3)
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since (·)↑ is lipschitz, γn is increasing, and

ρT
(
yn − y−n +H(xn, yn, cn),

(
y − y− +H(x, y, 0)

)
◦ γn

)
≤ ρT (yn, y ◦ γn) + ρT

(
y−n , y

− ◦ γn
)

+ ρT (H(xn, yn, cn), H(x, y, 0) ◦ γn) . (2.3.4)

Since γn is strictly increasing,

ρT
(
y−n , y

− ◦ γn
)

= sup
0≤t≤T

∣∣∣∣lims↗t yn(s)− lim
r↗γn(t)

y(r)

∣∣∣∣
= sup

0≤t≤T

∣∣∣∣lims↗t yn(s)− lim
r↗t

y(γn(r))

∣∣∣∣ ,
and so

ρT
(
y−n , y

− ◦ γn
)
≤ sup

0≤t≤T
|yn(t)− y(γn(t))| ,

since the left limit of yn and y ◦ γn exist at each t. Therefore,

ρT
(
y−n , y

− ◦ γn
)
≤ ρT (yn, y ◦ γn) (2.3.5)

Combining (2.3, 2.3.3, 2.3.4, 2.3.5) we have,

ρT (F (xn, yn, cn), F (x, y, 0) ◦ γn)

≤ ρT

((
yn − y−n +H(xn, yn, cn)

)↑
,
((
y − y− +H(x, y, 0)

)↑) ◦ γn)
+ ρT (H(xn, yn, cn), H(x, y, 0) ◦ γn)

≤ 2ρT (yn, y ◦ γn) + 2ρT (H(xn, yn, cn), H(x, y, 0) ◦ γn)

≤ 12ε,

by lemma 2.3.4. �
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2.4 Scaling limit of the plateau process

In this section we prove several results concerning the sequence of models, and then

combine these to prove theorem 2.1.1. We begin by showing that the function H

scales nicely when no centering is required.

Lemma 2.4.1. For positive constants an and n,

a−1
n H(x, y, c)(nt) = H(xn, yn, c/n)(t),

for all t ≥ 0, where xn(t) = a−1
n x(nt) and yn(t) = a−1

n y(nt).

Proof. By definition,

a−1
n H(x, y, c)(nt) = a−1

n sup
0≤s≤nt

(
x(s)− y([s− c]+)

)
= sup

0≤s≤t

(
a−1
n x(ns)− a−1

n y([ns− c]+)
)

= sup
0≤s≤t

(
a−1
n x(ns)− a−1

n y(n [s− c/n]+)
)

= sup
0≤s≤t

(
xn(s)− yn([s− c/n]+)

)
= H(xn, yn, c/n)(t)

�

Lemma 2.4.2. The set K = {x ∈ D : x(t) − x(t−) ≥ 0 for each t ∈ (0,∞)} is

closed in D.

Proof. Let {xn} be a sequence in K such that xn → x. Fix t0 ∈ (0,∞) with

x(t0)− x(t0−) 6= 0. There exists tn → t0 with xn(tn)− xn(tn−)→ x(t0)− x(t0−) by
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[9] proposition VI.2.1. We have xn(tn) − xn(tn−) ≥ 0 for each n since xn ∈ K , so

x(t0)− x(t0−) ≥ 0 and we must have x ∈ K . �

The next Lemma establishes a joint convergence involving the primitive input

processes. Recall that Ǔ r ⇒ U∗ and V̌ r ⇒ V ∗ in D.

Lemma 2.4.3. For any sequence of real numbers cr → c,

(Ǔ r + cre, V̌
r, 1/r)⇒ (U∗ + ce, V ∗, 0),

in the product topology on D× D× R. Moreover,

Disc(U∗ + ce) ∩ Disc(V ∗) = ∅ a.s.

and {t : V ∗(t)− V ∗(t−) < 0} = ∅a.s.

Proof. Since ce is continuous, Ǔ r ⇒ U∗, and cre⇒ ce we have Ǔ r + cre⇒ U∗+ ce by

[11]. We have joint convergence (Ǔ r+cre, V̌
r)⇒ (U∗+ce, V ∗) since V̌ r is independent

of Ǔ r and therefore Ǔ r + cre is independent of V̌ r because cr is constant in ω, [12]

Theorem 11.4.4, moreover U∗ is independent of V ∗. Since 1/r is constant in ω we

have 1/r → 0 in probability so [2] Theorem 4.4 gives joint convergence

(V̌ r + cre, Ǔ
r, 1/n)⇒ (U∗ + ce, V ∗, 0).

V ∗ is a stable Lévy motion by 2.4.1 of the online supplement to [12]. So V ∗ has no

fixed discontinuities: P {U∗(t) = U∗(t−)} = 1 for all t ∈ (0,∞). By [11] Lemma 4.3,

gives P {Disc(U∗) ∩Disc(V ∗) = ∅} = 1 and since ce is continuous we have

P {Disc(U∗ + ce) ∩Disc(V ∗) = ∅} = 1.
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Finally, P
{
V̌ r ∈ K

}
= 1, V̌ r ⇒ V ∗, and K is closed by Lemma 2.4.2, so the

Portmanteau theorem gives

P {V ∗ ∈ K } ≥ lim sup
n→∞

P
{
V̌ r ∈ K

}
= 1.

�

For each r > 0 and t ≥ 0 define D̄r(t) = 1
r
Dr(rt). Using Corollary 2.2.4 under

this fluid scaling, we have for all t ≥ 0,

R̄r(t) =
1

r
Rr(rt).

We will need the fluid limit of D̄r(·).

Lemma 2.4.4. As r →∞,

R̄r ⇒ e/µ

Proof. Ǔ r(1) ⇒ U∗(1) implies r
ar

(
Ū r(1)− µr

)
⇒ U∗(1), but r/ar → ∞ implies

Ū r(1)−µr ⇒ 0. Since µr → µ we have Ū r(1)⇒ µ. By Theorem 2.4.1 of the internet

supplement to [12], we have Ū r ⇒ µe in D. Similarly, V̄ r ⇒ µe in D. Now compute

R̄r(t) =
1

r
sup {m ≥ 0 : V r(m) +H(U r, V r, 1)(m) ≤ rt}

= sup {x/r ≥ 0 : V r(x) +H(U r, V r, 1)(x) ≤ rt}

= sup

{
x/r ≥ 0 :

V r(x)

r
+

1

r
H(U r, V r, 1)(x) ≤ t

}
= sup

{
y ≥ 0 :

V r(ry)

r
+

1

r
H(U r, V r, 1)(ry) ≤ t

}
= sup

{
y ≥ 0 : V̄ r(y) +H(Ū r, V̄ r, 1/r)(y) ≤ t

}
,
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by lemma 2.4.1. We have (Ū r, V̄ r, 1/r) ⇒ (µe, µe, 0) in D since the processes are

independent. The function H is continuous at (µue, µve, 0), and addition is continuous

at continuous elements of D, so

V̄ r +H(Ū r, V̄ r, 1/r)⇒ µe

in D. The result follows because µe is in the set of continuity for the function x 7→

sup{y ≥ 0 : x(y) ≤ t} by Corollary 13.6.4 in [12]. �

We now prove the main result.

Proof of Theorem 2.1.1. By Lemma 2.2.5

M(t) = F (U r, V r, 1)(Rr(t)).

Under fluid scaling R̄r ⇒ e/µ by 2.4.4. We first consider the scaling limit for F ,

before composing with Rr.

a−1
r F (U r,V r, 1)(rt) = a−1

r sup
0≤s≤rt

(V r(s)− V r(s−) +H(U r, V r, 1)(s))

− a−1
r H(U r, V r, 1)(rt)

= sup
0≤s≤rt

(
a−1
r V r(s)− a−1

r V r(s−) + a−1
r H(U r, V r, 1)(s)

)
− a−1

r H(U r, V r, 1)(rt)

= sup
0≤s≤t

(
a−1
r V r(rs)− a−1

r V r(rs−) + a−1
r H(U r, V r, 1)(rs)

)
− a−1

r H(U r, V r, 1)(rt).
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t 7→ rνrt is continuous so rνr(rs)− rνr(rs−) = 0 and

a−1
r F (U r, V r, 1)(rt) = sup

0≤s≤t

(
V̌ r(s)− V̌ r(s−) + a−1

r H(U r, V r, 1)(rs)
)

− a−1
r H(U r, V r, 1)(rt).

(2.4.1)

Now, we address the idleness part of (2.4.1) that occurs twice.

a−1
r H(U r, V r, 1)(rt)

= a−1
r sup

0≤s≤rt

(
U r(s)− V r([s− 1]+)

)
= sup

0≤s≤t

(
a−1
r U r(rs)− a−1

r V r(r[s− 1/r]+)

)
= sup

0≤s≤t

(
a−1
r (U r(rs)− rµrs) + a−1

r rµrs

− a−1
r

(
V r(r[s− 1/r]+)− rνr[s− 1/r]+

)
− a−1

r rνr[s− 1/r]+
)

= sup
0≤s≤t

(
Ǔ r(s) + a−1

r rµrs− V̌ r([s− 1/r]+)− a−1
r rνr[s− 1/r]+

)
= sup

0≤s≤t

(
Ǔ r(s) + a−1

r r(µr − νr)s+ a−1
r rνr(s− [s− 1/r]+)

− V̌ r([s− 1/r]+)

)
.

Since

a−1
r rνr(s− [s− 1/r]+) = a−1

r rνr(1/r ∧ s) = a−1
r νr(1 ∧ rs),

we have

a−1
r H(U r, V r, 1)(rt)

= H(Ǔ r + a−1
r r(µr − νr)e+ a−1

r νr(1 ∧ re), V̌ r, 1/r)(t).
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Putting this expression back into (2.4.1),

a−1
r F (U r, V r, 1)(rt) = sup

0≤s≤t

[
V̌ r(s)− V̌ r(s−)

+H(Ǔ r + a−1
r r(µr − νr)e+ a−1

r νr(1 ∧ re), V̌ r, 1/r)(s)
]

−H(Ǔ r + a−1
r r(µr − νr)e+ a−1

r νr(1 ∧ re), V̌ r, 1/r)(t)

= F (Ǔ r + a−1
r r(µr − νr)e+ a−1

r νr(1 ∧ re), V̌ r, 1/r)(t).

By Lemma 2.4.3 we have (U∗+γµe, V ∗, 0) satisfies the continuity criterion of Lemma

2.3.5. By the continuous mapping theorem

F (Ǔ r + a−1
r r(µr − νr)e+ a−1

r νr(1 ∧ re), V̌ r, 1/r)⇒ F (U∗ + γµe, V ∗, 0).

Finally, the scaled plateau process is a composition of F with Rr,

a−1
r F (U r, V r, 1)(Rr(rt)) = a−1

r F (U r, V r, 1)(rR̄r(t)).

Composition is continuous on (D × C0) by [11] Theorem 3.1, where C0 ⊂ D denotes

the strictly increasing, continuous functions. So the continuous mapping theorem

yields

a−1
r M r(r·) = M̌ r ⇒M∗ = F (U∗ + γµe, V ∗, 0)(·/µ).

�
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Chapter 3

The distribution of successive
maxima of M(·)

The plateau process only decreases when the first job in a Q1 busy period arrives to

Q2. This suggests that studying the plateau process on this subsequence of points

will reduce the complexity of the model. In fact, the value of the process at these

points is closely related to the largest job in a busy period [4]. In this chapter we first

study some general properties of these special points, then restrict our attention to

Poisson arrivals and heavy tailed service times. Throughout this chapter we assume

that ρ ≤ 1 so that the largest job in a busy period is finite with probability 1. There

are two key advantages of working with Poisson arrivals exploited in what follows.

The first is that idle periods have the same distribution as interarrival times. The

second advantage is the expected number of jobs in a busy period
1

1− ρ
is given by

the traffic intensity ρ. In this setting we find the one dimensional distribution of the

workload in the second queue at these greatest values in terms of κ which is defined

implicitly as a function of the primitives of the tandem queueing system.
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3.1 Notation

In this chapter we return to the standard notation where capital letter are used for

random variables. Let {Vi}∞i=1 be a sequence of independent nonnegative random

variables with common distribution function F . We do not superscript Vi because we

choose the make Vi the same for each n. For n = 1, 2, . . . let {U (n)
i }∞i=1 be a sequence

of independent exponential random variables with parameter λ(n) independent of the

collection {Vi}∞i=1. For each n > 0 let M
(n)
i be the largest service time in the ith busy

period. For example M
(n)
1 = sup{Vj : 1 ≤ j ≤ N where N is the smallest integer ≥

1 such that
∑N

j=1

(
Vj − U (n)

j

)
≤ 0}. Let m(n) be the distribution function for M

(n)
1 .

For ρ(n) = λ(n)E [V1] ≤ 1, we have {M (n)
i }∞i=1 is a collection of proper random variables

with distribution function m. We say a nonnegative function f is regularly varying

with parameter ν if

lim
x→∞

f(λx)/f(x) = λν

for each λ > 0, and a random variable V is a regularly varying with parameter ν if

x 7→ P {V > x} is regularly varying with parameter −ν. Note that if a nonnegative

random variable V is regularly varying with parameter ν then E [|V |γ] <∞ if and only

if γ < ν. For a distribution function F (x) = P {V ≤ x} we write F̄ (x) = 1 − F (x).

Let t̃
(n)
n be the transfer time of the last customer from the nth busy period in the

first queue in the nth system.
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3.2 The largest job in a busy period

In this section we drop the superscript (n) because the results are true for each such

system. In this section we show how the tail behavior of M the largest job in a

busy period is related to the tail behavior of V the service times. First we state an

important representation theorem by Boxma.

The following is a summary of a description of m a the solution to an equation

found in [3].

Proposition 3.2.1. Let w > 0, then

m(w) =

∫ w

0

e−λt(1−m(w))dF (t).

Proof. The key step to the recursive formula is to write m(w) in terms of the size of

the first job to arrive V and an independent collection of maximum job sizes during

a busy period {M (i)}i∈N. For notation let M (0) = 0. If the size of the first job V

is t then there are N(t) interruptions to work on V , during each interruption the

probability that every job in the interruption is less than w is m(w), before the queue

begins to idle for the first time since V has arrived.

m(w) = P (V ≤ w;
N(V )
max
i=0

M (i) ≤ w).
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Then conditioning on the size of the first job we have

m(w) =

∫ w

0

∞∑
n=0

P (N(t) = n)P (
n

max
i=0

M (i) ≤ w)dF (t)

=

∫ w

0

e−λt
∞∑
n=0

(λt)n

n!
(m(w))ndF (t)

=

∫ w

0

e−λteλtm(w)dF (t)

=

∫ w

0

e−λt(1−m(w))dF (t)

�

Let τ = inf{N ≥ 1 :
∑N

n=1 Un+1 − Vn > 0} so that the event

{τ = N} =

{
N−1
max
j=1

j∑
k=1

Uk+1 − Vk ≤ 0 and
N∑
k=1

Uk+1 − Vk > 0

}
.

Since τ is the hitting time of an integer valued stochastic process we have τ is a proper

random variable if E [U − V ] ≥ 0, and E [τ ] <∞ if E [U − V ] > 0 by Theorem XII.2.2

in [6]. In fact logE [τ ] =
∑∞

n=1
1
n
P {
∑n

k=1 Uk − Vk ≤ 0} by [6] XII Theorem 3. When

working in M/G/1 this expectation simplifies to 1/(1− ρ).

Lemma 3.2.2. Suppose τ is a proper random variable and x < x∗ = sup{y : F (y) <

1}, then

m̄(x)

F̄ (x)
=
∞∑
k=1

P
{

k−1
max
j=1

Vj ≤ x and τ ≥ k

}
Proof. The event

{τ ≥ k} =

{
k−1
max
j=1

j∑
i=1

Ui+1 − Vi ≤ 0

}
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is independent of the event {Vk > x}. For each N = 1, . . . we may write {maxNk=1 Vk >

x} as a disjoint union,

{
N

max
k=1

Vk > x
}

=
N⊔
k=1

{
k−1
max
j=1

Vj ≤ x and Vk > x

}
,

where max0
j=1 Vj = −∞, so that

{
max0

j=1 Vj ≤ x and V1 > x
}

= {V1 > x}. For x

such that 0 < F (x) < 1.

m̄(x)

F̄ (x)
=

P {maxτk=1 Vk > x}
P {V1 > x}

=
∞∑
N=1

P
{

maxNk=1 Vk > x and τ = N
}

P {V1 > x}

=
∞∑
N=1

N∑
k=1

P
{

maxk−1
j=1 Vj ≤ x and Vk > x and τ = N

}
P {V1 > x}

=
∞∑
k=1

∞∑
N=k

P
{

maxk−1
j=1 Vj ≤ x and Vk > x and τ = N

}
P {V1 > x}

=
∞∑
k=1

P
{

maxk−1
j=1 Vj ≤ x and Vk > x and τ ≥ k

}
P {V1 > x}

=
∞∑
k=1

P
{

maxk−1
j=1 Vj ≤ x and τ ≥ k

}
P {Vk > x}

P {V1 > x}

=
∞∑
k=1

P
{

k−1
max
j=1

Vj ≤ x and τ ≥ k

}
.

�

Corollary 3.2.3. Under the conditions of lemma 3.2.2 and limx↑x∗ F (x) = 1.

lim
x↑x∗

m̄(x)

F̄ (x)
= E [τ ] .

Proof.

lim
x↑x∗

m̄(x)

F̄ (x)
= lim

x↑x∗

∞∑
k=1

P
{

k−1
max
j=1

Vj ≤ x and τ ≥ k

}
=
∞∑
k=1

P {τ ≥ k}
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by the monotone convergence theorem. The tail sum formula

∞∑
k=1

P {τ ≥ k} = E [τ ]

yields limx↑x∗
m̄(x)

F̄ (x)
= E [τ ] . �

Corollary 3.2.4. If E [τ ] <∞ and F̄ is regularly varying at infinity with parameter

−ν, then m̄ is regularly varying at infinity with parameter −ν.

Proof. By corollary 3.2.3

lim
x→∞

m̄(yx)

m̄(x)
= lim

x→∞

m̄(yx)

F̄ (yx)

F̄ (x)

m̄(x)

F̄ (yx)

F̄ (x)
=

E [τ ]

E [τ ]
y−ν ,

since F̄ is regularly varying with parameter −ν. �

Clearly, the maximum increases as the set that the maximum is taken over in-

creases. Indeed, as U (n) stochastically decreases, we have M (n) stochastically in-

creases, m(n) decreases, and m̄(n) increases.

Lemma 3.2.5. Suppose for each w ≥ 0, P
{
U (1) ≤ w

}
≤ P

{
U (2) ≤ w

}
,

P
{
U (1) ≤ 0

}
= P

{
U (2) ≤ 0

}
= 0, τ (n) are proper for n = 1, 2, and these distributions

are continuous then m̄(1)(w) ≤ m̄(2)(w).

Proof. By lemma 3.2.2 it suffices to show

P
{

k−1
max
j=1

Vj ≤ x and τ (1) ≥ k

}
≤ P

{
k−1
max
j=1

Vj ≤ x and τ (2) ≥ k

}
, (3.2.1)
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for each k ≥ 1. When k = 1, P
{

maxk−1
j=1 Vj ≤ x and τ (n) ≥ k

}
= 1 for n = 1, 2. Fix

y ≥ 0 we have

P
{
V1 ≤ x and U

(1)
2 − V1 ≤ y

}
=

∫ x

w=0

P
{
U

(1)
2 ≤ w + y

}
P {V ≤ dw}

≤
∫ x

w=0

P
{
U

(2)
2 ≤ w + y

}
P {V ≤ dw}

= P
{
V1 ≤ x and U

(2)
2 − V1 ≤ y

}
.

Note that when y = 0 this implies equation (3.2.1) holds for k = 2. Now suppose for

each y ≥ 0,

P

{
k−1
max
j=1

Vj ≤ x and
k−1
max
j=1

j∑
i=1

U
(1)
i+1 − Vi ≤ y

}

≤ P

{
k−1
max
j=1

Vj ≤ x and
k−1
max
j=1

j∑
i=1

U
(2)
i+1 − Vi ≤ y

}
. (3.2.2)

P

{
k

max
j=1

Vj ≤ x and
k

max
j=1

j∑
i=1

U
(1)
i+1 − Vi ≤ y

}

− P

{
k

max
j=1

Vj ≤ x and
k

max
j=1

j∑
i=1

U
(2)
i+1 − Vi ≤ y

}

=

∫ x

w=0

∫ w

z=0

P

{
k−1
max
j=1

Vj ≤ x and
k−1
max
j=1

j∑
i=1

U
(1)
i+1 − Vi ≤ y + w − z

}
P
{
U (1) ≤ dz

}
−
∫ w

z=0

P

{
k−1
max
j=1

Vj ≤ x and
k−1
max
j=1

j∑
i=1

U
(2)
i+1 − Vi ≤ y + w − z

}

P
{
U (2) ≤ dz

}
P {V ≤ dw}

≤
∫ x

w=0

∫ w

z=0

P

{
k−1
max
j=1

Vj ≤ x and
k−1
max
j=1

j∑
i=1

U
(2)
i+1 − Vi ≤ y + w − z

}
P
{
U (1) ≤ dz

}
−
∫ w

z=0

P

{
k−1
max
j=1

Vj ≤ x and
k−1
max
j=1

j∑
i=1

U
(2)
i+1 − Vi ≤ y + w − z

}
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P
{
U (2) ≤ dz

}
P {V ≤ dw}

=

∫ x

w=0

P
{
U (1) ≤ w

}
P

{
k−1
max
j=1

Vj ≤ x and
k−1
max
j=1

j∑
i=1

U
(2)
i+1 − Vi ≤ y

}

−
∫ w

z=0

P
{
U (1) ≤ z

}
P

{
k−1
max
j=1

Vj ≤ x and
k−1
max
j=1

j∑
i=1

U
(2)
i+1 − Vi ≤ y + w − dz

}

− P
{
U (2) ≤ w

}
P

{
k−1
max
j=1

Vj ≤ x and
k−1
max
j=1

j∑
i=1

U
(2)
i+1 − Vi ≤ y

}

+

∫ w

z=0

P
{
U (2) ≤ z

}
P

{
k−1
max
j=1

Vj ≤ x and
k−1
max
j=1

j∑
i=1

U
(2)
i+1 − Vi ≤ y + w − dz

}

P {V ≤ dw}

=

∫ x

w=0

(
P
{
U (1) ≤ w

}
− P

{
U (2) ≤ w

})
P

{
k−1
max
j=1

Vj ≤ x and
k−1
max
j=1

j∑
i=1

U
(2)
i+1 − Vi ≤ y

}

+

∫ w

z=0

(
P
{
U (2) ≤ z

}
− P

{
U (1) ≤ z

})
P

{
k−1
max
j=1

Vj ≤ x and
k−1
max
j=1

j∑
i=1

U
(2)
i+1 − Vi ≤ y + w − dz

}
P {V ≤ dw} ,

by integration by parts and P
{
U (1) ≤ 0

}
= P

{
U (2) ≤ 0

}
= 0.

(
P
{
U (1) ≤ w

}
− P

{
U (2) ≤ w

})
≤ 0

and

z 7→ P

{
k−1
max
j=1

Vj ≤ x and
k−1
max
j=1

j∑
i=1

U
(2)
i+1 − Vi ≤ y + w − z

}
is decreasing imply

∫ w

z=0

(
P
{
U (2) ≤ z

}
− P

{
U (1) ≤ z

})
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P

{
k−1
max
j=1

Vj ≤ x and
k−1
max
j=1

j∑
i=1

U
(2)
i+1 − Vi ≤ y + w − dz

}
≤ 0

for each w ≥ 0. Thus, equation (3.2.2) holds for k implies equation (3.2.2) holds

for k + 1. Since equation (3.2.2) reduces to equation (3.2.1) when y = 0, we have

equation (3.2.1) holds for all k ≥ 1 and we have

m̄(1)(x) = F̄ (x)
∞∑
k=1

P
{

k−1
max
j=1

Vj ≤ x and τ (1) ≥ k

}

≤ F̄ (x)
∞∑
k=1

P
{

k−1
max
j=1

Vj ≤ x and τ (2) ≥ k

}
= m̄(2)(x).

�

3.3 Triangular array and Poisson arrivals

Now we specialize to the M/G/1 queue. We will also need to generalize to the

triangular array setup in order to see nonzero idleness as in the notation section.

Recall, m(n)(x) = P
{

maxτ
(n)

i=1 Vi ≤ x
}

= P
{
M (n) ≤ x

}
.

The following lemma uses a Tauberian theorem.

Lemma 3.3.1. Let ρ(n) = λ(n)E [V ] for β ≥ 0. Assume nν−1
(

1−ρ(n)

l(n)

)
→ γ, and

1−F (t) =
(
−1

Γ(1−ν)

)
t−νl(t) for 1 < ν < 2 and l a slowly varying function. Fix y > 0.

Then,

lim
n→∞

(
−1

Γ(1−ν)

)
E
[
e−λ

(n)m̄(n)(ny)V
∣∣V > ny

]
− m̄(n)(ny)(1−ρ(n))(ny)ν

l(ny)

(λ(n)nym̄(n)(ny))
ν

(
l

(
1

λ(n)m̄(n)(ny)

)
l(ny)

) = 1.
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Proof. Since arrivals are Poisson we have m(n)(ny) =
∫ ny

0
e−λ

(n)tm̄(n)(ny)dF (t) when

ρ(n) ≤ 1 by [3].

m̄(n)(ny) = 1−
∫ ∞

0

e−λ
(n)tm̄(n)(ny)dF (t) +

∫ ∞
ny

e−λ
(n)tm̄(n)(ny)dF (t). (3.3.1)

Fix y > 0,

∫ ∞
ny

e−λ
(n)tm̄(n)(ny)dF (t) =

∫ ∞
0

e−λ
(n)tm̄(n)(ny)1(ny,∞)(t)dF (t)

= E
[
e−λ

(n)V m̄(n)(ny)1(ny,∞)(V )
]

= P {V > ny}E
[
e−λ

(n)m̄(n)(ny)V
∣∣∣V > ny

]
=

(
−1

Γ(1− ν)

)
(ny)−νl(ny)E

[
e−λ

(n)m̄(n)(ny)V
∣∣∣V > ny

]

Plug into equation (3.3.1),

m̄(n)(ny) = 1−
∫ ∞

0

e−λ
(n)tm̄(n)(ny)dF (t)

+

(
−1

Γ(1− ν)

)
(ny)−νl(ny)E

[
e−λ

(n)m̄(n)(ny)V
∣∣∣V > ny

]
.

Since λ(n)E [V ] = ρ(n) we have

∫ ∞
0

e−λ
(n)tm̄(n)(ny)dF (t)− 1 + λ(n)m̄(n)(ny)E [V ]

=

(
−1

Γ(1− ν)

)
(ny)−νl(ny)E

[
e−λ

(n)m̄(n)(ny)V
∣∣∣V > ny

]
− m̄(n)(ny)(1− ρ(n)). (3.3.2)
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Then dividing by
(
λ(n)m̄(n)(ny)

)ν
l( 1
λ(n)m̄(n)(ny)

) we have

∫∞
0
e−λ

(n)tm̄(n)(ny)dF (t)− 1 + λ(n)m̄(n)(ny)E [V ]

(λ(n)m̄(n)(ny))
ν
l( 1
λ(n)m̄(n)(ny)

)

=

(
−1

Γ(1−ν)

)
(ny)−νl(ny)E

[
e−λ

(n)m̄(n)(ny)V
∣∣∣V > ny

]
− m̄(n)(ny)(1− ρ(n))(ny)ν

(λ(n)nym̄(n)(ny))
ν
l( 1
λ(n)m̄(n)(ny)

)
.

(3.3.3)

The limit as n → ∞ on the left hand side is 1 by [10] Theorem 8.1.6. To justify

the use of theorem 8.1.6 we note the left hand side of equation (3.3.3) is, in the

notation of used in Theorem 8.1.6, (F̂ (s) − 1 + sE [V ])/(sνl(1/s)). So, we have

F̄ (x) ∼ −1/Γ(1−ν)x−αl(x) is equivalent to (F̂ (s)−1+sE [V ])/(sνl(1/s))→ 1 where

1 < ν < 2 and s = s(n) = λ(n)m̄(n)(ny). Since λ(n) ↑ λ <∞, m̄(n)(ny) ↑ m̄(∞)(ny) by

lemma 3.2.5, m(∞) is a proper probability distribution yields s ≤ λm̄(∞)(ny) ↓ 0 as

n→∞.

�

3.3.1 Bounds for nym̄(n)(ny)

For each y > 0, we need to show that nym̄(n)(ny) converges to something bounded

away from 0 and infinity. The following lemmas provide these bounds.

Lemma 3.3.2. Under the conditions of lemma 3.3.1,

lim sup
n→∞

(ny)m̄(n)(ny) ≤ max
[
22/νE [V ] , 1

]
.
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Proof. If λ(n)(ny)m̄(ny) ≥ 1, we take A = 2 and δ = ν/2 in Potter’s Theorem [10]

1.5.6 so that for n sufficiently large

(1/2)
(
λ(n)nym̄(n)(ny)

)−ν/2 ≤
 l
(

1
λ(n)m̄(n)(ny)

)
l(ny)

 .

m̄(n)(ny)(1 − ρ(n))(ny)ν and −1
Γ(1−ν)

are nonnegative and l(ny) is eventually positive,

so (
−1

Γ(1−ν)

)
E
[
e−λ

(n)m̄(n)(ny)V
∣∣V > ny

]
− m̄(n)(ny)(1−ρ(n))(ny)ν

l(ny)

(λ(n)nym̄(n)(ny))
ν

(
l

(
1

λ(n)m̄(n)(ny)

)
l(ny)

)

≤ 1

(λ(n)nym̄(n)(ny))
ν

(
l

(
1

λ(n)m̄(n)(ny)

)
l(ny)

)

≤ 1

(λ(n)nym̄(n)(ny))
ν
(

(1/2) (λ(n)nym̄(n)(ny))
−ν/2

)
=

2

(λ(n)nym̄(n)(ny))
ν/2
.

Lemma 3.3.1 gives

lim inf
n→∞

2

(λ(n)nym̄(n)(ny))
ν/2
≥ 1,

when lim supn→∞ λ
(n)(ny)m̄(ny) ≥ 1. Since λ(n) → 1/E [V ] we have

lim sup
n→∞

nym̄(n)(ny) ≤ max
[
22/νE [V ] , 1

]
.

�

To establish the lower bound, we first find the distribution that is the smallest

among m̄(n) is bounded above zero, that is the case E [U1] = E [V1].
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Lemma 3.3.3. Let {Ui} independent exponential with parameter λ independent of

{Vi} independent with distribution F , where 1−F is regularly varying with parameter

1 < ν < 2. Assume E [U1] ≥ E [V1], then

lim inf
w→∞

wm̄(w) ≥
√

4− 2ν

νλ2
.

Proof. From Boxma’s equation for exponential interarrival times (intensity λ = E [U ]−1)

we have the distribution of the largest job in a busy period is

m(w) =

∫ w

0

e−λtm̄(w)F (dt)

≤
∫ w

0

1 + λtm̄(w) + λ2t2(m̄(w))2F (dt)

= F (w) + λm̄(w)

∫ w

0

tF (dt) +
1

2
λ2(m̄(w))2

∫ w

0

t2F (dt),

because e−u ≤ 1− u+ 1
2
u2 when 0 ≤ u <∞. Recall m̄(w) = 1−m(w),

m̄(w) ≥ 1− F (w)− λm̄(w)

∫ w

0

tF (dt)− 1

2
λ2(m̄(w))2

∫ w

0

t2F (dt)

= F̄ (w)− λm̄(w)

∫ w

0

tF (dt)− λm̄(w)

∫ ∞
w

tF (dt)

+ λm̄(w)

∫ ∞
w

tF (dt)− 1

2
λ2(m̄(w))2

∫ w

0

t2F (dt)

= F̄ (w)− λm̄(w)µ+ λm̄(w)

∫ ∞
w

tF (dt)− 1

2
λ2(m̄(w))2

∫ w

0

t2F (dt)

≥ F̄ (w)− λm̄(w)µ− 1

2
λ2(m̄(w))2

∫ w

0

t2F (dt).

Thus,

m̄(w)

(
1 + ρ+

1

2
λ2m̄(w)

∫ w

0

t2F (dt)

)
≥ F̄ (w).
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Since 1 + ρ+ 1
2
λ2m̄(w)

∫ w
0
t2F (dt) > 0 we have

m̄(w) ≥ F̄ (w)

1 + ρ+ 1
2
λ2m̄(w)

∫ w
0
t2F (dt)

w2(m̄(w))2 ≥ w2m̄(w)F̄ (w)

1 + ρ+ 1
2
λ2m̄(w)

∫ w
0
t2F (dt)

≥ w2m̄(w)F̄ (w)
1
2
λ2m̄(w)

∫ w
0
t2F (dt)

≥ w2F̄ (w)
1
2
λ2
∫ w

0
t2F (dt)

.

(3.3.4)

Now assume F̄ is regularly varying with parameter−ν where 1 < ν < 2, then 2−ν > 0

so Theorem 1.6.4 in [10] gives

lim
w→∞

∫ w
0
t2F̄ (dt)

w2F̄ (w)
=
−ν

2− ν
.

So, the right hand side of (3.3.4) converges as w →∞ and we have

w2F̄ (w)

−1
2
λ2
∫ w

0
t2F̄ (dt)

→ 2− ν
ν 1

2
λ2
.

Thus,

lim inf
w→∞

wm̄(w) ≥
√

4− 2ν

νλ2
.

�

Corollary 3.3.4. Under the conditions of lemma 3.3.1 and 1 < ν < 2 we have

lim inf
n→∞

nym̄(n)(ny) ≥ E [V ]

√
4− 2ν

ν
.

Proof. This follows from the assumption λ(n) → 1/E [V ]. �
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3.4 Properties of κ

In this section we show that nym̄(n)(ny) converges to κ(y) and we describe several

properties of κ(y) for fixed 1 < ν < 2, λ > 0, and γ ≥ 0.

3.4.1 The equation that describes κ

In this section we reduce the limit in Lemma 3.3.1 using several technical lemmas.

Lemma 3.4.1. If limn→∞ m̄
(n)(ny)ny = κ for finite, and nν−1

(
1−ρ(n)

l(n)

)
→ γ we have

lim
n→∞

m̄(n)(ny)(1− ρ(n))(ny)ν

l(ny)
= κγyν−1.

Proof.

m̄(n)(ny)(1− ρ(n))(ny)ν

l(ny)
=
(
m̄(n)(ny)ny

)(nν−1(1− ρ(n))

l(n)

)(
l(n)

l(yn)

)(
yν−1

)
→ (κ) (γ) (1) yν−1.

�

We can use Potters bound in the following lemma because m̄(n)(ny)ny is nearly

constant for fixed y and large n.

Lemma 3.4.2. Fix y > 0. If limn→∞ λ
(n) = λ and limn→∞ m̄

(n)(ny)ny = κ for

0 < κ <∞ we have

lim
n→∞

 l
(

1
λ(n)m̄(n)(ny)

)
l(ny)

 = 1.
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Proof. By Potter’s Theorem [10] Theorem 1.5.6 for any A > 1 and any δ > 0 there

exists T such that ny > T and
(

1
λ(n)m̄(ny)

)
> T implies l

(
1

λ(n)m̄(n)(ny)

)
l(ny)

 ≤ Amax
{(
λ(n)nym̄(n)(ny)

)δ
,
(
λ(n)nym̄(n)(ny)

)−δ}
,

 l(ny)

l
(

1
λ(n)m̄(n)(ny)

)
 ≤ Amax

{(
λ(n)nym̄(n)(ny)

)δ
,
(
λ(n)nym̄(n)(ny)

)−δ}
.

The right hand side converges as n→∞ since m̄(n)(ny)ny → κ.

lim sup
n→∞

 l
(

1
λ(n)m̄(n)(ny)

)
l(ny)

 ≤ Amax
{

(λκ)δ, (λκ)−δ
}
,

lim sup
n→∞

 l(ny)

l
(

1
λ(n)m̄(n)(ny)

)
 ≤ Amax

{
(λκ)δ, (λκ)−δ

}
,

for each δ > 0 and A > 1. Since 0 < λκ <∞ we have

Amax
{

(λκ)δ, (λκ)−δ
}
→ 1,

as δ ↓ 0 and A ↓ 1. Thus, limn→∞

(
l

(
1

λ(n)m̄(n)(ny)

)
l(ny)

)
= 1. �

Definition 4. We say Tν is a Pareto ν random variable if

P {Tν > x} =


x−ν if x ≥ 1

1 if x < 1

.

Clearly, Tν is regularly varying with parameter ν.

Proposition 3.4.3. Let λ(n) → λ, fix y > 0 and suppose nym̄(n)(ny) → κ > 0, and

V is regularly varying with parameter ν then

lim
n→∞

E
[
e−λ

(n)m̄(n)(ny)V
∣∣∣V > ny

]
= E

[
e−λκTν

]
.



55

Proof.

E
[
e−λ

(n)m̄(n)(ny)V
∣∣∣V > ny

]
=

∫ ∞
0

e−λ
(n)m̄(n)(ny)t1(ny,∞)(t)

F (dt)

1− F (ny)

Substitute u = m̄(n)(ny)t,

E
[
e−λ

(n)m̄(n)(ny)V
∣∣∣V > ny

]
=

∫ ∞
0

e−λ
(n)u1(nym̄(n)(ny),∞)(u)

F (du/m̄(n)(ny))

1− F (ny)

We have

lim
n→∞

E
[
e−λ

(n)m̄(n)(ny)V
∣∣∣V > ny

]
= lim

n→∞

∫ ∞
0

e−λ
(n)u1(κ,∞)(u)

F (du/m̄(n)(ny))

1− F (ny)

because e−λ
(n)u ≤ 1 and

lim
n→∞

∫ ∞
0

∣∣1(κ,∞)(u)− 1(nym̄(n)(ny),∞)(u)
∣∣ F ( du

m̄(n)(ny)
)

1− F (ny)

= lim
n→∞

∣∣∣∣∣∣
1− F

(
κ

m̄(n)(ny)

)
1− F (ny)

−
1− F

(
nym̄(n)(ny)

m̄(n)(ny)

)
1− F (ny)

∣∣∣∣∣∣
= lim

n→∞

∣∣∣∣∣∣
1− F

(
κny

nym̄(n)(ny)

)
1− F (ny)

− 1− F (ny)

1− F (ny)

∣∣∣∣∣∣
=
(κ
κ

)−ν
− 1 = 0

since 1− F is regularly varying with parameter −ν.

The measure F (du/m̄(n)(ny))
1−F (ny)

converges weakly to the measure (du/κ)−ν as n→∞,

since

lim
n→∞

∫
1(a,b]

F (du/m̄(n)(ny))

1− F (ny)

= lim
n→∞

F (b/m̄(n)(ny))

1− F (ny)
− F (a/m̄(n)(ny))

1− F (ny)
=
(a
κ

)−ν
−
(
b

κ

)−ν
.
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For all ε > 0 there exists N such that r > N implies |e−λ(n)u − e−λu| < ε thus

limn→∞
∫∞

0

∣∣∣e−λ(n)u − e−λu
∣∣∣ 1(κ,∞)(u) F (du/m̄(n)(ny))

1−F (ny)
= 0. So,

lim
n→∞

E
[
e−λ

(n)m̄(n)(ny)V
∣∣∣V > ny

]
= lim

n→∞

∫ ∞
0

e−λu1(κ,∞)(u)
F (du/m̄(n)(ny))

1− F (ny)
.

Then weak convergence gives

lim
n→∞

E
[
e−λ

(n)m̄(n)(ny)V
∣∣∣V > ny

]
= κν

∫ ∞
κ

e−λt (dt)−ν .

Then substitute t = x/κ,

κν
∫ ∞
κ

e−λt (dt)−ν =

∫ ∞
1

e−λκx (dx)−ν = E
[
e−λκTν

]
.

�

The equation that describes κ(y) in contained in the following Lemma.

Lemma 3.4.4. Let Tν be Pareto ν, 1 < ν < 2, γ ≥ 0 and λ > 0. The equation in

the variable κ > 0 (
−1

Γ(1− ν)

)
E
[
e−λκTν

]
− κγyν−1 = (λκ)ν (3.4.1)

has exactly one solution.

Proof. The left hand side is a strictly decreasing continuous function in κ and the

right hand side is strictly increasing continuous function in κ. When κ = 0 the left

hand side is
(
−1

Γ(1−ν)

)
> 0 and the right hand side is 0. The left hand side goes to 0

if γ = 0 and −∞ if γ > 0 as κ → ∞ the right hand side goes to infinity as κ → ∞.

Thus (3.4.1) has exactly one solution. �
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Finally, we show that nym̄(n)(ny) converges to κ(y).

Proposition 3.4.5. Under the assumptions of lemma 3.3.1 we have

lim
n→∞

nm̄(n)(ny) = κ/y, (3.4.2)

where κ satisfies equation (3.4.1). κ is a function of y, λ, ν, and γ.

Proof. Let κ̃ be a limit point of nym̄(n)(ny). Then 0 < κ̃ < ∞ by corollary 3.3.4

and lemma 3.3.2. Let nr be a subsequence such that limr→∞ nrym̄
(nr)(nry) = κ̃. By

lemma 3.3.1 we have

lim
r→∞

(
−1

Γ(1−ν)

)
E
[
e−λ

(nr)m̄(nr)(nry)V
∣∣V > nry

]
− m̄(nr)(nry) β

nr
(nry)ν

l(nry)

(λ(nr)nrym̄(nr)(nry))
ν

(
l

(
1

λ(nr)m̄(nr)(nry)

)
l(nry)

) = 1. (3.4.3)

Lemmas 3.4.1, 3.4.3, and 3.4.2 reduce equation (3.4.3) to(
−1

Γ(1−ν)

)
E
[
e−λκ̃Tν

]
− κ̃γyν−1

(λκ̃)ν
= 1.

Thus, any limit point of nym̄(n)(ny) satisfies equation (3.4.1), so lemma 3.4.4 implies

the limit point is unique, so limn→∞ nym̄
(n)(ny)→ κ. �

3.4.2 Properties of κ(y)

In this section we describe several properties of κ. In particular κ(y) is uniformly

bounded above and regularly with parameter ν − 1. First we need the a left inverse

function.



58

Let (·)⇀ be the map on {f : [0,∞)→ [0,∞)} given by f⇀(y) = sup {s : f(s) > y}

with the convention that the supremum of an empty set is −∞. So, (·)⇀ maps

the set of positive valued Borel measurable nonincreasing functions on (0,∞) with

limt↓0 f(t) =∞ into the right continuous Borel measurable functions on (0,∞) with

f(∞) = 0 since ∪t>y{s : f(s) > t} = {s : f(s) > y}.

Proposition 3.4.6. Suppose G is nonincreasing, positive, limt↓0G(t) =∞, and G is

regularly varying at zero with parameter −α for 0 ≤ α ≤ ∞. Then G⇀ is regularly

varying at infinity with parameter −1/α.

Proof. Let h : R+ → R+ by h(t) = 1/t. We have G ◦ h is regularly varying at

infinity with parameter α, G ◦h(∞) =∞, and h ◦G is nondecreasing. Thus, Resnick

Proposition 0.8 gives h ◦G⇀ is regularly varying at infinity with parameter 1/α since

h ◦ G⇀ = h⇀ ◦ G⇀ = (G ◦ h)↼. f is regularly varying at infinity with parameter

α implies that h ◦ f is regularly varying at infinity with parameter −α, and h ◦ h

is the identity function thus, G⇀ = h ◦ h ◦ G⇀ is regularly varying at infinity with

parameter −1/α. �

Lemma 3.4.7. For fixed (λ, γ, ν), κ(y) defined implicitly by equation (3.4.1) is con-

tinuous and regularly varying with parameter −ν if γ > 0 and κ(y) is constant if

γ = 0. Moreover, κ(y) < 1
λ

(
−1

γ(1−ν)

)1/ν

.

Proof. If γ = 0, then κ satisfies
(
−1

Γ(1−ν)

)
E
[
e−λκTν

]
= (λκ)ν so it does not depend on
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y. If γ > 0, then κ satisfies
(
−1

Γ(1−ν)

)
E
[
e−λκTν

]
− (λκ)ν

κγ

1/(ν−1)

= y.

Since

κ 7→
(

−1

Γ(1− ν)

)
E
[
e−λκTν

]
is strictly decreasing,

κ 7→ −(λκ)ν is strictly decreasing and,

κ 7→ κγ is strictly increasing,

and each of these functions is continuous we have the κ 7→ y(κ) is strictly decreasing

and continuous. So, y 7→ κ(y) is continuous. Again thinking of the inverse function,

the inverse of κ(y) is regularly varying at zero with parameter −1/(ν − 1) since

lim
κ→0

κ1/(ν−1)


(
−1

Γ(1−ν)

)
E
[
e−λκTν

]
− (λκ)ν

κγ

1/(ν−1)

=

(
−1

Γ(1− ν)γ

)1/(ν−1)

.

So, by proposition 3.4.6 we have κ(y) is regularly varying with parameter 1− ν.

From equation (3.4.1) we have

κ =
1

λ

((
−1

γ(1− ν)

)
E
[
e−λκTν

]
− κγyν−1

)1/ν

≤ 1

λ

(
−1

γ(1− ν)

)1/ν

.

�

Note that although the limit points of nym̄(n)(ny) are uniformly bounded above

3.3.2 and below 3.3.4, this does not imply κ(y) is bounded uniformly when κ is defined

by (3.4.1)
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Corollary 3.4.8. Under the assumptions of lemma 3.3.1, let b be a real number then

lim
n→∞

nm̄(n)(ny + b) = κ/y.

Proof. Fix ε > 0. Let N = |b|
ε

then for n > N we have n(y − ε) ≤ ny + b ≤ n(y + ε).

For each n > 0, nm̄(n) is increasing so

nm̄(n)(n(y − ε)) ≤ nm̄(n)(ny + b) ≤ nm̄(n)(n(y + ε)).

Since y 7→ κ/y is continuous letting ε go to zero in (3.4.2) gives limn→∞ nm̄
(n)(ny+b) =

κ/y. �

3.5 Representation for W2(t̃k)

In this section we write the wait time in the second queue in terms of independent

random variables. Here we are using the fact that for the M/G/1 queue the length of

an idle period is independent of the service times in the preceding busy period. Let

t̃
(n)
n be the transfer time of the last customer from the nth busy period in the first

queue in the nth system. Let W n
2 be the workload in the second queue of the nth

system. Consider the actual waiting time of the a customer in the second of a tandem

queue with identical service times. At the epoch of the arrival of the last job in the

nth busy period to the second queue, the workload in the second queue is W2(t̃n).

For completeness we include a proof for why each idle period in a particular

M/G/1 queue is exponentially distributed.
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Proposition 3.5.1. Each idle period in the M/G/1 queue with ρ ≤ 1 is exponentially

distributed, moreover the sequence of idle periods is an independent collection.

Proof. The durations of the free periods are independent random variables with the

same distribution Feller 1 VI.9 [6].

Let I
(n)
1 = I1 be the duration of the first idle period in the nth system, assuming

the first job arrives at epoch 0. Then

P {I1 > x} = P

{
N∑
k=1

(Uk − Vk) > x where N = inf

{
n ≥ 1 :

n∑
k=1

(Uk − Vk) > 0

}}
.

For ρ ≤ 1, the number of service times in a busy period N is a proper random

variable taking values in {1, 2, . . .} since P {N > n} ≤ P
{

1
n

∑n
i=1(Ui − Vi) ≤ 0

}
→ 0

by dominated convergence since 1
n

∑n
i=1(Ui−Vi)→ E [V1] 1−ρ

ρ
> 0 by the law of large

numbers.

P {I1 > x} =
∞∑
n=1

P

{
n∑
k=1

(Uk − Vk) > x : n = inf

{
n ≥ 1 :

n∑
k=1

(Uk − Vk) > 0

}}
.

For a fixed n, let Yn = Vn −
∑n−1

k=1 (Uk − Vk)

P

{
n∑
k=1

(Uk − Vk) > x : n = inf

{
n ≥ 1 :

n∑
k=1

(Uk − Vk) > 0

}}

= P

{
Un > x+ Yn and Un > Yn > 0 and sup

j=1,...,n−1

{
j∑

k=1

Uk − Vk

}
≤ 0

}

= P {Un > x}P

{
Un > Yn > 0 and sup

j=1,...,n−1

{
j∑

k=1

Uk − Vk

}
≤ 0

}

= P {Un > x}P {N = n}

by the memorylessness of the exponential random variable Un since Yn is independent

of Un. Since Un are iid, P {I1 > x} = P {U1 > x} for each x > 0. �
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Proposition 3.5.2. For each n ≥ 1.

W2(t̃n) =
n

max
k=1

(
Mk −

n−1∑
j=k

Ij

)
,

where Mk is the largest service time the in the kth busy period in the first queue and

Ik is the length of the idle period in the first queue between the kth and k + 1th busy

period.

Proof. From the Lindley recursion see Asmussen III.7 [1] we have the actual waiting

time of the nth customer in a first in first out queue is

Wn = [Wn−1 − Un]+ + Vn,

for n = 1, 2, . . . where W0 is the initial workload, Un is the interarrival time between

service Vn−1 and Vn. For the second queue the period between the arrival of the j− 1

and jth customer is Uj = Vj + ξj, where ξj is the length of the idle period in the first

queue preceding the jth arrival to queue if Vj is the first customer in a busy period

in the first queue and ξj = 0 otherwise. The actual wait time of the n customer in

the second queue is

W2(t̃n) =
[
W2(t̃n−1)− (Vn + ξn)

]+
+ Vn

= max
{
W2(t̃n−1)− (Vn + ξn) + Vn, Vn

}
= max

{
W2(t̃n−1)− ξn, Vn

}
= max

{
W2(t̃n−2)− ξn−1 − ξn, Vn−1 − ξn, Vn

}
= max

{
W0 −

n∑
k=1

ξk,
n

max
i=1

{
Vi −

n∑
j=i+1

ξj

}}
.
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Let σ(0) = 0 and σ(k) be the index of the last arrival in the kth busy period in the

first queue for k in {1, 2, . . .}. By partitioning {1, 2, . . . , σ(n)} into busy periods we

have

σ(n)
max
i=1

Vi −
σ(n)∑
j=i+1

ξj

 =
n

max
k=1

 σ(k)
max

i=σ(k−1)+1

Vi −
σ(n)∑
j=i+1

ξj


 .

i 7→
∑σ(n)

j=i+1 ξj is constant for i ranging over a busy period and equal to total idleness

that has accrued in the first queue from the epoch of the arrival of the i customer to

the epoch of the arrival of the σ(n) which is
∑n−1

j=k Ij for i in the kth busy period.

σ(n)
max
i=1

Vi −
σ(n)∑
j=i+1

ξj

 =
n

max
k=1

{
σ(k)
max

i=σ(k−1)+1
{Vi} −

n−1∑
j=k

Ij

}

=
n

max
k=1

{
Mk −

n−1∑
j=k

Ij

}
.

�

3.6 Distribution of W
(n)
2 (t̃

(n)
[nt])

The main result in this section is that distribution of the workload at particular times

and appropriately scaled. The sequence of idle periods is iid exponential λ(n) in the

nth system. Since the largest job in a busy period is independent of the idle period

that follows, it is convenient to reindex the sequence of idle periods. This is why we

write
∑k−1

i=1 I
(n)
i instead of

∑n−1
i=k I

(n)
i in the following proposition.

Proposition 3.6.1. Suppose in the nth system the sequence of idle times {I(n)
i }∞i=1
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is iid with E
[
I

(n)
1

]
= 1/λ(n) and Var

(
I

(n)
1

)
= (λ(n))−2 such that λ(n) → λ > 0.

lim
n→∞

P

{
1

n

n
max
k=1

(
M

(n)
k −

k−1∑
i=1

I
(n)
i

)
≤ x

}

= lim
n→∞

P
{

1

n

n
max
k=1

(
M

(n)
k − (k − 1)/λ

)
≤ x

}
.

Proof. We have

n
max
k=1

(
M

(n)
k −

k − 1

λ

)
− (n− 1)|λ− λ(n)|

λλ(n)
− n

max
k=1

(
k − 1

λ(n)

−
k−1∑
i=1

I
(n)
i

)
≤ n

max
k=1

(
M

(n)
k −

k−1∑
i=1

I
(n)
i

)

and

n
max
k=1

(
M

(n)
k −

k−1∑
i=1

I
(n)
i

)
≤ n

max
k=1

(
M

(n)
k −

k − 1

λ(n)

)

+
(n− 1)|λ− λ(n)|

λλ(n)
+

n
max
k=1

(
k − 1

λ(n)
−

k−1∑
i=1

I
(n)
i

)
,

so it suffices to show

1

n

n
max
k=1

(∣∣∣∣∣
k−1∑
i=1

(
I

(n)
i −

1

λ(n)

)∣∣∣∣∣
)
→ 0 in probability as n→∞.

This follows from Kolmogorov’s maximal inequality, for each ε > 0,

P

{
1

n

n
max
k=1

(∣∣∣∣∣
k−1∑
i=1

(
I

(n)
i −

1

λ(n)

)∣∣∣∣∣
)
≥ ε

}
= P

{
1

n

n−1
max
k=1

(∣∣∣∣∣
k∑
i=1

(
I

(n)
i −

1

λ(n)

)∣∣∣∣∣
)
≥ ε

}

= P

{
n−1
max
k=1

(∣∣∣∣∣
k∑
i=1

(
I

(n)
i −

1

λ(n)

)∣∣∣∣∣
)
≥ nε

}

≤ 1

(nε)2

n− 1

(λ(n))2

→ 0,

as n→∞ because λ(n) → λ > 0. �
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Proposition 3.6.2. If nf(n, ny)→ g(y) uniformly on [0, t], and g is continuous on

[0, t] then

lim
n→∞

[nt]∑
k=1

f(n, k) =

∫ t

0

g(y) dy.

Proof. Define the measure µ =
∑∞

k=1 δ{k} where δ{k}(A) = 1 if k ∈ A and 0 otherwise.

[nt]∑
k=1

f(n, k) =

∫
k∈R

f(n, k)1[0,[nt]](k)µ(dk).

Substitute y = k/n.

[nt]∑
k=1

f(n, k) =

∫
y∈R

f(n, ny)1[0,t](y)µ(ndy)

=

∫
y∈R

nf(n, ny)1[0,t](y)µ(ndy)/n.

For n sufficiently large |nf(n, ny) − g(y)| ≤ ε and
∫
y∈R 1[0,t](y)µ(ndy)/n ≤ 1, so

µ(ndy)/n converges weakly to Lebesgue measure on (0,∞) implies

∫
y∈R

g(y)1[0,t](y)µ(ndy)/n→
∫ t

0

g(y) dy.

�

Proposition 3.6.3. Under the assumptions of lemma 3.3.1, for x > 0 we have

lim
n→∞

P
{

1

n

[nt]
max
k=1

(
M

(n)
k −

k − 1

λ

)
≤ x

}
=


(
1 + t

xλ

)−λκ
if γ = 0

exp
{
−λ
∫ x+t/λ

x
κ(y)/y dy

}
if γ > 0
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Proof.

P
{

1

n

[nt]
max
k=1

(
M

(n)
k −

k − 1

λ

)
≤ x

}
= P

{
[nt]

max
k=1

(
M

(n)
k −

k − 1

λ

)
≤ nx

}
=

[nt]∏
k=1

P
{
M

(n)
k −

k − 1

λ
≤ nx

}

=

[nt]∏
k=1

P
{
M

(n)
k ≤ nx+

k − 1

λ

}

=

[nt]∏
k=1

m(n)

(
nx+

k − 1

λ

)

= exp


[nt]∑
k=1

ln

(
m(n)

(
nx+

k − 1

λ

)) .

Let f(n, k) = ln
(
m(n)

(
nx+ k−1

λ

))
then

nf(n, ny) = n ln

(
m(n)

(
nx+

ny − 1

λ

))
= ln

((
1−

nm̄(n)
(
nx+ ny/λ− 1

λ

)
n

)n)
.

We have ln((1 − x/n)n) → −x as n → ∞ and nm̄(n)
(
n (x+ y/λ)− 1

λ

)
→ κ(x +

y/λ)/(x+y/λ) as n→∞ by corollary 3.4.8. Thus, nf(n, ny)→ −κ(x+y/λ)/(x+y/λ)

where the convergence is uniform for y ∈ [0, t] since for each n, m(n) is nondecreasing

and the limit is continuous. Now continuity of the exponential function and proposi-

tion 3.6.2 gives

lim
n→∞

P
{

1

n

[nt]
max
k=1

(
M

(n)
k −

k − 1

λ

)
≤ x

}
= exp

{
−
∫ t

0

κ(x+ y/λ)/(x+ y/λ) dy

}
= exp

{
−λ
∫ x+t/λ

x

κ(y)/y dy

}
.

�

Finally, we prove the main result for this chapter.
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Theorem 3.6.4. Let ρ(n) = λ(n)E [V ], and assume 1−ρ(n)

n(1−F (n))
→ γ ≥ 0 as n → ∞.

Assume 1 − F (t) =
(
−1

Γ(1−ν)

)
t−νl(t) for 1 < ν < 2 and l a slowly varying function.

Let κ(y) be such that the parameters (κ, λ = 1
E[V ]

, ν, γ, y) satisfies equation (3.4.1).

For x > 0 we have

lim
n→∞

P
{

1

n
W

(n)
2

(
t̃
(n)
[nt]

)
≤ x

}
=


(
1 + t

xλ

)−λκ
if γ = 0

exp
{
−λ
∫ x+t/λ

x
κ(y)/y dy

}
if γ > 0

Proof. By proposition 3.5.2

P
{

1

n
W

(n)
2

(
t̃
(n)
[nt]

)
≤ x

}
= P

 1

n

[nt]
max
k=1

M (n)
k −

[nt]−1∑
j=k

I
(n)
j

 ≤ x

 .

For each n, the iid collections {I(n)
k } and {M (n)

k } are independent so

[nt]
max
k=1

M (n)
k −

[nt]−1∑
j=k

I
(n)
j

 ∼ [nt]
max
k=1

(
M

(n)
k −

k−1∑
j=1

I
(n)
j

)
.

By proposition 3.6.1

lim
n→∞

P
{

1

n
W

(n)
2

(
t̃
(n)
[nt]

)
≤ x

}
= lim

n→∞
P
{

1

n

[nt]
max
k=1

(
M

(n)
k − (k − 1)/λ

)
≤ x

}
.

By proposition 3.6.3

lim
n→∞

P
{

1

n
W

(n)
2

(
t̃
(n)
[nt]

)
≤ x

}
=


(
1 + t

xλ

)−λκ
if γ = 0

exp
{
−λ
∫ x+t/λ

x
κ(y)/y dy

}
if γ > 0

�
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