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Analog Dawgs: Pothole Detector 

Statement of work: 

 

Dalton Applegate 

My contributions were strictly on hardware development. Most of my labor hours included 

research and pouring through the datasheets of our desired components. Some decisions I have 

made pertaining to this include which specific chips for each component and how to interface each 

chip. I interfaced these on a bus system to make the project scalable and have picked components 

to match. I produced a sensor packet that will be able to be loaded with code (MSP) and match the 

Bluetooth profile of an iPhone to integrate with the app and successfully transferred accelerometer 

data to the phone.  

Steve Phan 

The contributions I performed was designing the algorithm for the pothole detection. I also 

conducted research for the mobile application in order to receive Bluetooth information from the 

accelerometer. Additionally, I coded and conducted research on how to program in Swift, learning 

how to add the Apple Maps API to our mobile application. I also learned how to track the user’s 

location on Apple maps, displaying their current location.  

Liam Robb 

I helped design the algorithm for pothole detection. I have extensively researched how to 

use the Swift programming language in XCode by watching several over 7 hours of tutorials online 

on how to use Swift, how to create interfaces with storyboard, how to use XCode, and how to use 

its library of functions including the Core Bluetooth documentation.  

I also implemented code that allows us to detect all Bluetooth devices in our vicinity, 

allowing us to connect to the Bluetooth chip on our PCB. Additionally, I programmed the mobile 

application to add a pin whenever a specific acceleration threshold is met, marking the location of 

the pothole detected.  
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Abstract  

 Nothing beats the feeling of driving through your hometown or driving on a road trip, 

playing sounds that remind you of your childhood and chatting with friends. Suddenly, all of that 

is interrupted when you run over a pothole. You want to complain to the local government, but 

you keep driving and you’ve forgotten where it was in the first place. Our solution is a pothole 

detector that stores critical information, such as location and severity, and makes a map of 

previously detected potholes from other users. This device incorporates accelerometers and is 

connected via Bluetooth to an MSP microcontroller to process the continuous stream of data. 

Simultaneously, when triggered by passing an acceleration threshold, a GPS request will be 

made from the user’s smartphone to track the location of the pothole in the same moment.  

Background  

 Potholes plague the life of the daily commuter. Some cities make an effort to fill them, 

but given the ecological situation of most roads, potholes will continue to pop up or remain 

unfilled due to apathy or a lack of resources from the city. Even in larger cities, potholes take 

between two to three days to get fixed after they are reported [1]. Two solutions that may 

mitigate this problem are improving the pothole filling effort and driver awareness to keep the 

potholes from worsening due to increasing impacts. We chose this project as a means to provide 

drivers and local governments with a passive way to collect information about potholes to 

positively impact these two solution paths.  

 There have been several prototypes that detect and record potholes on the open roads. For 

instance, Google has been granted a patent that uses two sensors - a GPS and a vertical 

accelerometer - to automatically document nasty bumps in the road and upload the location 

where the pothole was detected to the cloud [2]. There has also been an invention by Ford Motor 

Company, where the technology can reduce the impact of striking potholes as part of Ford’s 

controlled damping functionality [3].  

 In the area of pothole detection, there have been many companies and enthusiasts that 

have worked on this problem. Our project is different from the ones we found online because we 

are creating a sensor that attaches to the car itself with an accompanying app. Both would be sold 

together as a standalone consumer product. Our goal is to create a public map that could help 

local governments detect potholes faster than the current self-reporting method. Our end 

customer would be citizens who feel their community isn’t efficient about fixing potholes and 

municipalities who want to more efficiently deal with the issue. As far as we can tell, the only 

similarity between our project and what has been done before is the detection of potholes. The 

crowdsourcing of information for pothole detection and standalone product are new.  

 This project incorporates background knowledge from several prior courses: embedded 

computer design, radio and signal processing and analysis, PCB design, analog to digital 

conversion, digital data processing, network communication, program and data representation. 

advanced software development, linear control systems and design, and mobile application 

development. Overall, the group will be able to use previous coursework to successfully 

implement this project in a timely manner.  



 

6 

 

Constraints 

Design Constraints 

In regards to the hardware, the toughest constraints we faced were in regards to layout 

and part sizing. Ultiboard has inherit design rules that limit the spacing between things like 

whole parts as well as individual pins on a given part. All accelerometers available on Digikey 

are cell phone grade, meaning among other things that they are very small (on the scale of 2-

5mm). This not only caused many problems with spacing in Ultiboard that had to be resolved, 

but also proved difficult for the professionals at WWW Electronics to solder it on our board. 

Initially, that was the only constraint but we later ran into self-designated constraints based on 

design choices made earlier in the design process. For example, we initially thought that 

Bluetooth profile selection and cross chip communication were going to be two large constraints 

and we therefore selected a Bluetooth device and other chips accordingly. The Bluetooth device 

was robust enough to handle any profile but that robustness came with the cost of being 

complicated to understand and required code to be written to the device through a proprietary, 

non-GUI based IDE. This constrained our ability to use the device to only what we could come 

to understand through researching its use cases. The last constraint faced was the communication 

between our three chips (Bluetooth, MSP430, and accelerometer). It was initially suggested that 

an inter integrated circuit (I2C) would be best given its ability to host multiple master and 

servant devices on the same bus. This ease of communication came with a cost of complicated 

code on the back end to support swapping between devices. In the end, we did not need to put 

everything on one bus and we would have preferred to switch to a communication protocol that 

was easier to debug such as Serial Peripheral Interface (SPI) or Universal Asynchronous 

Receiver Transmitter (UART), however, with no board send outs left, our hardware was already 

hardwired for I2C. We had to spend days debugging this communication rather than switching 

styles due to this self-imposed constraint.  

With respect to designing and building our mobile application, we decided to program 

using Swift for an iOS device. We decided this was the best choice given that we had iOS 

devices, which made testing and developing easier and more streamlined. We were also able to 

use Apple’s Maps functionality, which made developing in Swift undemanding with the amount 

of documentation Apple has provided [4]. Once we started developing on Swift and iOS, there 

was no way for us to convert to another development environment or platform. If we had chosen 

any other development platform, such as Android Studio or React Native, then it would have 

been more costly or more challenging to learn given the amount of time we had. Therefore, 

choosing to develop in an iOS setting gave us more flexibility to debug and test our application. 

Economic and Cost Constraints 

 The goal of our project was to create a device that would cost less than the average cost 

of maintenance on a car from pothole damage, which is around $306 [5]. The cost of parts for the 

final device were $31.48. However, in the research and development portion of this project, we 

spent nearly $300 in order to experiment with different devices and buy other expensive supplies 

that did not go into the device such as a ground mat to protect our device during development. 

Regardless, we were within the spending budget that we gave ourselves and were able to create a 
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device that would have a reasonable market price. Details on what the excess money went into 

and how costs could be further reduced will be discussed in the costs portion of this technical 

report below.  

 Additionally, we wanted the development of our application to be practically free. Apple 

allows this opportunity by allowing us to develop apps for free, however, without the ability to 

publish it to the App Store for iOS devices. If we were to further develop our application, we 

would need to pay a $99 annual fee to publish our application, as well as meeting Apple’s 

guidelines for mobile applications.  

External Standards 

 The only other standard we had to adhere to was the IPC standard for PCBs [6]. These 

standards for the basis for the Design Rule Check (DRC) inside of the Multisim and Ultiboard 

tools we used to design the board. These standards also display how to solder and clean the board 

once printed which was important to follow to ensure the longevity of the chip. 

 Bluetooth was originally standardized by IEEE 802.15. However, this standard is no 

longer maintained. Bluetooth technology is now overseen by the Bluetooth SIG (Special Interest 

Group) which maintains the technology standard of Bluetooth device production. There is a list 

of core specifications to be followed but since we will be using prefabricated Bluetooth devices, 

these standards will be maintained by the producer before reaching us [7]. 

 

Tools Employed 

 In the creation of the sensor component of this project, we employed the use of Ultiboard 

and Multisim to design and fabricate our chip. We used the design check rules in Multisim and 

Ultiboard to make sure our board would meet manufacturability guidelines. After we checked 

that we passed those guidelines, we used FreeDFM for final manufacturability checks on our 

printed circuit board.  

We developed our code for the MSP430 in Code Composer IDE, which is based on the 

Eclipse IDE. We programmed our MSP in embedded C code with aide from online resources and 

from resources from the Introduction to Embedded Computer Systems course.  Additionally, we 

programmed our MSP chip to communicate in I2C, which is different from the SPI protocol that 

we learned in our introductory course in embedded. We used a variety of resources, including 

online resources and guidance from Professor Delong, to accomplish a successful I2C 

communication protocol.  

 During the development of the mobile application, we used Swift as the programming 

language with XCode as the integrated development environment. We decided to program in 

Swift because it allowed us to create an iOS application more easily than other tools. However, 

Swift was a new language to us, so we had to learn everything, including syntax and how certain 

software components were integrated. We learned how to program in Swift from YouTube and 

other online tutorials. Overall, we abstracted what we learned in developing a web application 
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from CS 3240, which includes debugging and finding resources, to develop a successful working 

mobile application.  

Ethical, Social, and Economic Concerns 

 An ethical and social concern for our project is the use of location data. Our project relies 

heavily on the user sharing their location whenever a pothole is ran over. Some users might feel 

that sharing their location data in this manner might be an invasion of privacy, or it could be 

somehow used for malicious purposes. To mitigate this problem, we cannot relate the data 

collected to any specific user. Therefore, each pothole found cannot be traced to any specific 

individual, and we would not be collecting information on their current location or anything 

similar. The application would simply be used to show where potential potholes are without 

attaching that information to any specific user. 

 Overall, our hope with the outcome of this project is to allow local governments and 

companies to repair roadways that are badly damaged and need repaving. In turn, this would 

save drivers time and money from maintenance related to pothole damage, and increasing the 

longevity of tires and vehicles.  

Environmental Impact 

 Our device in itself poses no real impacts on the environment. Bluetooth devices are so 

common place that their environmental impact is already minimal and decreasing as their 

demand increases. However, one point of concern is the roads. Obviously, paved surfaces 

already pose significant impacts to the environment and ecosystems they’re placed into or on top 

of. The goal of this device is not to increase or necessarily mitigate this problem. It is simply to 

make it so that if these roads are going to create environmental risk, at least they are still used for 

their intended purpose and not abandoned, where they would pose no only environmental risk 

but societal risk.  

 With this product, there may be a slight increase in a commuter’s roadway due to the 

repaving of potholes but again, this is something that is already happening. The hope of this 

project is to maintain our current roads so that new ones do not need to be created which would 

pose a greater risk than just fixing the potholes directly. 

Sustainability 

 Our device is not formally related to sustainability. The function of our project is to give 

other users information about the location of potholes, therefore reducing maintenance costs 

related to pothole and other road-related damages.  

Health and Safety 

 Our device is not formally related to health or safety. However, we can argue that our 

device can be used to make roadways safer because we are giving information to people who can 

alleviate problems with road conditions. Therefore, reducing the number of potholes and 

potentially reducing traffic problems and improving driver safety.  
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Manufacturability 

 Currently, the price to manufacture is reasonable, however, the biggest drawback to our 

current design is the Bluetooth transceiver. Given that it is prefabricated, it sticks off from the 

board in an unideal way and has far more components to it than is necessary for our use case. To 

improve the design, it would make sense to integrate everything onto a single small, flat chip and 

eliminate the unnecessary test points. This was not done initially because the scope of the project 

was to create a working sensor, and not to deal with the intricacies of developing a Bluetooth 

chip. Additionally, at scale with manufacturing, it would be more feasible and make more sense 

to use all surface mount components, unlike the through hole components we used for testing 

and developing.  

 With any mobile application, the ability to expand and build on the application is crucial. 

If this project were to go into full production, the mobile application would need to be more 

refined. This requires having a larger development team with specialized skills to perfect the 

application from bugs and usability. We would also need a team of developers to maintain our 

application after it is published to address environment changes to hardware and bugs in the 

software.  

Ethical Issues 

The goal of this device is to create a robust database of potholes in a given area to aid in 

the repair of these potholes or integrate into a mapping algorithm as an early detection and 

avoidance device. The current system in place involves individuals self-reporting the potholes 

direct to companies. In order to unload this burden from the consumer, our sensor and 

application aims to do this passively. There is an ethical issue when we track the user’s location. 

Even though we would not be providing the location to anyone, some users might feel unsafe to 

learn that a device could pinpoint their location. As LaFrance wrote in The Atlantic, “Sometimes 

it’s just that the people who are designing the gizmo don’t even think in terms of privacy,” he 

told me. “They just think: More data is always better. In their minds, it’s just, ‘We may not know 

what we’re going to do with that data.’” [8]. Therefore, we would have to make the location data 

anonymous to prevent anyone from using it for any other purpose. The current app does not have 

a persistent database, as it is just a proof of concept, and as a result, does not associate any data 

between the phone running the application and the stored locations. The individual potholes are 

also not linked so with fully populated database, individual routes would not be traceable. The 

only discernible information would be increased intensity of detections around heavy pothole 

areas which is exactly the information we wish to provide. Ultimately, we believe that it is in the 

automotive industry’s best interest to keep cars well maintained, and local cities to keep their 

roads safe and drivable.  

Intellectual Property Issues 

 The first patent we examined is titled ‘Road health (pothole) detection over wireless 

infrastructure’. Looking at the patent’s claims, ones that stand out are the following: ‘1. a motor 

vehicle, comprising: a road condition sensor configured to detect a hazardous condition of a road 

on which the motor vehicle is traveling; a global positioning system configured to detect a global 
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position of the motor vehicle; and an electronic processor communicatively coupled to the road 

condition sensor and to the global positioning sensor” [9]. Based on the language of the patent, 

an example of which is “the motor vehicle of claim 1 wherein the road condition sensor 

comprises an accelerometer,” the claims are dependent on other claims [9].  The patent discussed 

here is similar to our project, where an accelerometer is used and an electronic processor is able 

to send a receive information from the sensor.  

 The second patent we examined is titled ‘Pothole detection in the vehicle’. Looking at the 

patent’s claim, it claims that “Method for creating a digital map as a basis for a driver assistance 

system, which is set up to assist a driver in dealing with road damage ( 60 ), comprising: - 

detecting road damage ( 60 ) on a street ( 13 ) with a vehicle ( 2 ); - Capture a position ( 22 ) of 

the vehicle ( 2 ), if the road damage ( 60 ) is detected; and - entering a card information ( 58 ) 

into the digital map in which the detected road damage ( 60 ) of the recorded position ( 22 ) 

assigned” [10]. Based on the language of the patent, an example of which is “the method of 

claim 2, wherein sending the card information ( 58 ) takes place wirelessly, the claims are 

dependent claims [10], the claim in question is dependent. The patent discussed here is similar to 

our project, where a digital map is created when road damage is detected.  

The third patent we examined is titled “Mobile pothole detection system and method.” 

Looking at some of the patent’s claims, it claims the following: “A system for analyzing a 

surface subject to degradation, comprising: a sensor configured to acquire at least one image of a 

surface” [11]. Based on the language of the patent, an example of which is “the system of claim 

1, wherein the sensor comprises: at least one of a camera or an accelerometer,” the claim is 

dependent [11]. The patent discussed here is similar to our project, where accelerometer data is 

collected and sent wirelessly, getting the coordinates of the surface abnormality.  

Based on our findings of these three patents, our project is not patentable. There are too 

many claims associated with different patents to make our project unique enough to be 

patentable.  

 

Detailed Technical Description of Project 

Our capstone project consists of a Bluetooth Low Energy (BLE) enabled sensor 

component and a companion iOS application with integrated Apple Maps features. The sensor is 

made up of a Texas Instruments MSP430G2553 microprocessor, an ESP32 BLE dual core 

microprocessor, and an AIS328DQ three axis accelerometer communicating through an Inter 

Integrated Circuit (I2C) communication protocol. The remaining components on the board 

pertain to operating the MSP430, power bypassing each chip, and distributing power. As for the 

power distribution, an LT1121 Low Drop Out (LDO) regulator is used to step the 5V USB 

supply to the 3.3V required by each chip. A full list of components is located in the appendix. 

The three chips on our board are hardwired on the Printed Circuit Board (PCB) for the 

I2C interface. The MSP430 is responsible for running the C code, which is the foundation for the 

I2C protocol, and transferring the data from the accelerometer to the phone. The MSP430 

initializes by writing to registers within the BLE chip and the accelerometer, setting them to on 
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and operate as servants to the MSP430 master’s instruction. The MSP430 then sends alternate 

pulls and pushes to the two servant chips. Before each interaction, the MSP430 sends a START 

signal which consists of a LOW digital signal on the SDA line (data) of the I2C interface while 

the SCL line (clock) remains HIGH. Each servant device then ‘listens for its own unique, factory 

defined I2C address. If a device receives its own address, it sends an acknowledge signal (ACK) 

and awaits further data or begins to transmit data to the master. For each pull, the MSP430 sends 

an address followed by a sub address to the accelerometer which requests the X axis acceleration 

data from the corresponding register inside the accelerometer. Once the master receives the 

contents of this register, it sends a negative acknowledgement (NACK) followed by a STOP 

signal (LOW to HIGH on SDA while SCL is held HIGH) to end the communication. The 

MSP430 then writes this data to one of its own registers as RAM as it only needs to store it long 

enough to pass it to the BLE chip before pulling new data from the accelerometer. On the other 

side, similar commands push the data from the register on the MSP430 and write it to the BLE 

chip. The BLE chip then pipes this data directly to the mobile application in real time as to not 

miss a potential detection. The mobile application waits for a certain acceleration threshold to be 

met, placing a pin when a vertical acceleration passes that threshold. 

The components we used to build the sensor are as follows: 

● ESP32 Dual Core Bluetooth and Wi-Fi enabled microprocessor (1) 

● MSP430G2553 microprocessor (1) 

● AIS328DQTR 3 axis accelerometer (1) 

● LT1121 8 in DIP LDO voltage regulator (1) 

● Micro USB connector (1) 

● Printed Circuit Board (1) 

● Plastic Case (1) 

● Test pins (8) 

● Resistors 

○ 300Ω (1) 

○ 47kΩ (1) 

● Headers 

○ 14 pin JTAG (1) 

○ 20 pin DIP (1) 

○ 19 pin in-line (2) 

● Capacitors 

○ 22μF (2) 

○ 10μF (1) 

○ 1nF (1) 

○ 1μF (4) 

 The next section outlines substantial design decisions and tradeoffs that were made 

through the design process of this project. Our major design decisions include the choice of our 

microprocessor, the Bluetooth device, the accelerometer, the chip communication protocol, and 

the power supply for the hardware. For software, we chose to implement on Apple devices given 
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that we all prefer those devices over Android. Therefore, we also chose to use Swift and the 

Apple maps API to design our app given that we were working with iOS enabled devices.  

 The choice of chips provided the biggest tradeoffs. For example, we chose the 20 pin DIP 

package MSP430G2553. We were very familiar with the use of this chip from the Intro to 

Embedded Computing course and the DIP package made it easy to solder in or replace on the 

board. However, this limited the number of ports we had access to and did not allow us to utilize 

features that come with other processors such as the newer MSP432 or myRIO. This package 

also did not have the flat form factor that would be ideal for a final project, though it was ideal 

for testing. The most impactful results of this trade off was our choice of communication 

protocol. The lack of ports led us to heed the recommendation of utilizing the I2C protocol over 

the Serial Peripheral Interface (SPI) due to the ability to communicate with multiple masters and 

servants all on one bus or port. With this choice, we traded simplicity of hardware for complexity 

of software. We achieved 2-line communication but spent likely up to 100 man hours coding and 

debugging in a complex manner that we had no prior experience with. This was an unnecessary 

trade off however and probably would not be repeated if this device was designed again. The 

accelerometer we chose was initially too small to be soldered on by hand correctly, even by the 

professionals at WWW electronics. We opted for a larger accelerometer for a better package. 

Finally, in terms of hardware, we selected a very complex Bluetooth transceiver. This choice was 

driven by the initial thought that we would need to have a variety of Bluetooth profiles to choose 

from. We eventually discovered that any chip that supported BLE would be viable but it was too 

late to switch to a chip that did not require programming like the ESP32 did. In the end, it 

worked out fine as we were able to utilize the USB port on this device for power.  
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Figure 1. System Block Diagram 

 Figure 1 shows the final block diagram for our system, with only some last-minute 

changes in the way of the battery, database, and mapping API. The four lines on the chip 

represent the 2 lines required for I2C (SDA and SCL) as well as power and grounding nodes 

shared by the 3 chips.  

 

Figure 2. Power Distribution and Accelerometer Schematic 

 

Figure 3. MSP430 Pinout Schematic 
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Figure 4. Test Point and Bypass Schematic 

 

Figure 5. Bluetooth Pinout Schematic 

The schematic choices were fairly simple. Each chip needed grounding, power from a 

3.3V line, an SDA data line, and an SCL clock line. Additionally, bypass capacitors or resistors 

were added as specified in the recommendations of the manufacturer of each chip. The BLE chip 

itself had many more black-boxed components within it that performed any functions it needed. 

The MSP430 and the accelerometer both had all of their spare pins pull out for testing or adding 

extra functionality later if we discovered a feature we wanted after the last board send out such 

as using the accelerometer’s interrupt generators or the MSP430’s GPIO pins. Finally, the 

accelerometer’s CS pin was tied high to lock it into I2C mode (additionally, it had internal pull 

up resistors on the SDA and SCL lines which is why they are not present in the schematic) and 

the SA0 pin was tied low externally to set the last address bit to 0 (this feature allows two of the 

same accelerometer on the same I2C bus but we did not need to utilize this feature). 
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Figure 6. Test Point and Bypass Schematic 

 The most important decision of the layout was how to wire the accelerometer. We 

received consistent Design Rule Check (DRC) errors due to the proximity of the pins on the chip 

to themselves and therefore saw these errors when wiring as well. Power was also a concern as 

10mil power lines were the largest size that could be used on the accelerometer. As is likely 

apparent, the only way for power to get from the source in the bottom left to the rest of the chip 

is through those 10 mil lines which is likely what lead to our power distribution problem at the 

last minute that was fixed by placing the 3.3V source elsewhere. Using surface mount parts for 

the regulator and accelerometer also proved challenging for wiring due to the fact that the ground 

plane was on the copper bottom. The orientation of the MSP430 and the accelerometer was only 

important as to have as few lines crossed as possible because they were packed so tightly. The 

BLE chip however had to be placed in the upper part of the board as it took up a lot of space and 

needed an exclusion zone so that the board would not affect the antenna. In an attempt to keep 

size low, the edges of the board were brought in, meaning that some wires had to cut across the 

board through the middle. One of these ended up cutting the ground plane but this was 

minimized as much as possible while avoiding the other traces. 

 Our major issues center around the I2C code and the power distribution. The power was 

switched to 5V USB instead of a 9V battery to bypass the 10 mil traces near the accelerometer. 

The second issue was ensuring that I2C communication was being performed correctly. This 

could not be fixed with a design change since the hardware was set in stone. We eventually 

overcame this after several hours of debugging. 

 Our next subsystem is the mobile application. We programmed our mobile application in 

Swift for an iOS device. We chose Swift because it quickly allowed us to debug and program to 

an iOS device. If we had chosen any other programming interface, including React Native or 
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Android Studio, we would have needed to overcome a steeper learning curve with respect to 

React Native, or buy a new mobile device, which could have been at least a couple hundred 

dollars.  

 We decided to use Apple Maps over an alternative, such as Google Maps, because Apple 

Maps is more widely supported in Swift than Google Maps. It was easier to find documentation 

that helped with our functionality. This includes Bluetooth connectivity to the Bluetooth chip on 

our PCB, placing pins on the map whenever a pothole was detected, and showing the user’s 

current location.  

 We used a variety of software libraries that were essential for the complete functionality 

of the mobile application, as shown in Figure 7. The Mapkit library was needed for the usage of 

Apple Maps. We used the CoreLocation library to show and access the user’s location on the 

map. Additionally, we used the CoreBluetooth library to be able to connect to the Bluetooth chip 

in the direct area of the mobile device. Finally, we used the CoreMotion library to get 

acceleration data from the accelerometer and process it with our algorithm. 

 

Figure 7. List of Libraries Needed for Complete Functionality 

 To connect the phone to the Bluetooth chip, we had to figure out the UUIDs of the 

Bluetooth chip. We found the device UUID and the characteristic UUID, as shown in Figure 8 

below.  

 

Figure 8. UUIDs Needed in Order to Pair 

 We used the following snippet of code, as shown in Figure 9, to convert the 

accelerometer data from bytes to floats. This allowed us to interpret the raw data from the 

accelerometer into a readable format for both the user and for our understanding of different 

vertical acceleration thresholds.  
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Figure 9. Code to Convert Accelerometer Data from Bytes to Floats 

 Next, Figure 10 shows the overall flow of our algorithm, and Figure 11 shows our 

algorithm in code that places a pin when a pothole is detected. Logically, if we have a vertical 

acceleration that is greater than 10 meters per second squared, we technically have some sort of 

substantial road condition. Once this threshold is met, we place a pin directly over the user’s 

current location, and having it persist on the map after the user moves away. We also gather the 

location data, including longitude and latitude, to accurately give us the address of that pothole.  

 
Figure 10. Algorithm for Pothole Detection 

 

Figure 11. Our Pothole Detection Algorithm 
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 Since not every individual would like to have their location data used, we added a manual 

button that would allow users to pinpoint the location of a pothole, as shown in Figure 12. In 

theory, this would allow us to reach a wider range of users, so we can gather as much data as we 

can. 

 

Figure 12. Button to Manually Add Location Pin 

The results of our final mobile application are displayed in Figure 13 below. The red pins 

show the approximate geo-location of each pothole we found. 

 

Figure 13. Mobile Application Displaying the Location of Potholes We Detected 
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Project Time Line 

 

Figure 14. Gantt Chart from Initial Proposal 
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Figure 15. Finalized Gantt Chart 
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 The main difference between the two Gantt charts presented above is that the integration 

portion was extended and pushed back to allow for delays in receiving parts and boards. All of 

the tasks except for the final integration were easily parallelized as Steve worked on the mapping 

portion of the app, Liam researched and developed the BLE communication, and Dalton 

completed the sensor hardware. Once each of these were completed, they could also be tested 

individually so that they were not delayed by the other tasks. Each task was also designed to be 

integrated slowly. For example, sample data could be read over Bluetooth before the C code was 

finished as junk data and the map and Bluetooth apps could be integrated whenever given they 

were developed on the same platform. This flexibility allowed us to put extra time towards parts 

of the design process that took longer than expected. This also allowed us to perform our 

secondary rolls as Steve took charge of integrating the application and managing the 

documentation and organization of the team, Liam used his knowledge of Bluetooth to debug the 

hardware and C code, and Dalton gathered appropriate data to ensure correct functioning after 

integration. 

 In terms of long-term dates, our goals were to have software finished at the same points 

as board submissions and part orders to ensure that both sides were progressing along with the 

hardware. To keep up with the hardware deadlines, we were sure to send something out with 

each deadline to be on the safe side. The midterm design review and Thanksgiving break were 

also used as major progress goals. We set all initial layouts and code to be done by the design 

review with the final project finished around Thanksgiving to leave time for testing. This was 

important to have this extra time as some steps got delayed and this time was used to course 

correct. 

 

Test Plan 

 Our test plan consisted of three main sections: testing the hardware, testing the Bluetooth 

capabilities, and testing the data tracking. We were able to do most of these in parallel as they 

neared completion to ensure that our integration testing portion would go more smoothly, as we 

would know that each subsystem is functioning properly. To test the hardware, we employed the 

use of the Virtual Bench and Code Composer Studio’s debug mode. After checking our 

individual parts for any visible damage and soldering all the components onto the board, we 

tested our node voltages and current draw to ensure that each chip would be drawing the 

necessary power. We first did this with the chips removed from their headers to make sure that 

the chips would not be damaged by unexpected high voltage. We tested node voltages with 

different input voltages from the virtual bench to decide what final power supply would be best 

before switching to testing with a 9V battery to ensure that the regulator was supplying the 

expected 3.3V. We reperformed this test after switching to the BLE power as the main driver. 

Once everything received power and the embedded code was written, we began to check the 

signals that were on the SDA and SCL lines at certain times to check if the START, STOP, and 

address signals were being sent appropriately. This confirmed that what we were seeing on Code 

Composer matched what was occurring on the board. From here, we were able to test the I2C 

code in Code Composer to verify whether the accelerometer and BLE chip were receiving our 
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communication. This was done by checking what happened as the C code entered either the 

transmit or receive interrupt that was generated when data was placed onto the receive or 

transmit buffer in the MSP430’s hardware. Once it was verified that the signals were being 

acknowledged, we could check the registers on the MSP430 to see what data had been received 

and stored. The hardware was then ready for integration testing. 

 Once the application was complete, we began to test the connection between the 

hardware and software. To beta test the BLE connection, we downloaded a simple third-party 

application that could create BLE connections and show the data as a hex number that was being 

received. This allowed us to ensure that something was being sent out of the sensor. Once this 

was confirmed and we matched the UUID of our device to the code, we began to search for our 

BLE signal within our own app. As shown in the test plan, we had to tweak things on both the 

application side and embedded side until we were receiving data on the app. We first tested this 

by pairing with a Bluetooth scale to see we could receive data. When we verified, we were 

receiving data from the scale, we tweaked how the data was being received until it appeared 

reasonable.  

 Once we established a Bluetooth connection, we got to work on the map functionality. To 

test that the pins were being placed on the correct location, we placed a pin at our current 

location hoping to see if it was accurately placed when a button was pressed. Next, we traveled 

to a different location, placing a pin to mark our location. When we saw that this functionality 

was working, we developed an algorithm to place pins when a pothole was detected. We tested 

this feature by shaking the accelerometer, expecting that a pin would be placed at our current 

location. When we proved this algorithm and functionality was complete, we did a field test with 

our entire system. 

 Finally, we were able to take the sensor on test rides in a vehicle. We selected a few deep 

potholes that we knew of in Charlottesville to see how our sensor would react to them. Initially, 

we drove over these potholes using a third-party application to get a sense of what the 

acceleration response would be. This is how we set our initial threshold values for what a pothole 

may look like. We also performed calculations on expected acceleration of a car hitting a pothole 

at 35mph to get a general idea of other potholes that we didn’t test but that we wanted the sensor 

to be able to detect anyway. Next, we drove over the same potholes to have the sensor detect 

them. We compared the response of a pothole to normal driving acceleration such as driving up 

or down hill as well as taking sharp turns that may affect detection. We then tweaked the 

thresholds and drove through the course a few more times until we were happy with the detection 

rate.  
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Figure 16. Test Plan Flow Chart 

 

Final Results 

 In our proposal, we define success as achieving all of the following: 1) Device is 

triggered when it hits a pothole 2) Device records pothole severity 3) Device records GPS 

location of pothole 4) Device communicates over Bluetooth to a smart device. We achieved all 

of our metrics for success based on the results we were able to achieve.  

Above all else, our device is able to detect potholes in normal driving conditions. The 

success of this device includes a baseline working mobile application and a fully functioning and 

communicating BLE enabled motion sensor. This device was intended to be a proof of concept 

given the time constraints and therefore functions as such. As a result of this, there is no data 

persist present in the application and little to no user interface.  

That being said, there is a very useful GUI derived from the Apple Maps API that forms 

the backbone of the application which still provides useful information (location and intensity of 

the potholes) that we originally intended for the app. Our app was successful in pinpointing the 

location of potholes and other major road conditions, but would sometimes pin locations that had 

no visible potholes because the threshold for acceleration was surpassed. Further testing and 

categorization would be effective in minimizing future false positives. Otherwise, our application 

was successful in connecting to the Bluetooth to receive information, and displaying the user’s 

location. 

In regards to the hardware, the sensor was successful in terms of the on-board 

communication protocol but, in our opinion, fell short in terms of power consumption and form 
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factor. By the time of the final board send out, all of the necessary components were on the board 

and set up properly, however many unnecessary pins and extra space were left on the board. 

Given an opportunity of one or two more board iterations, the form factor could have been 

greatly improved in terms of shape, size, and to eliminate capacitances and poor grounding 

created by some wire placements. This also meant that we had to use a bulky casing to protect 

the chip as opposed to using a sleek and small case that could be placed more discreetly in the 

vehicle. As for the power, there was a last-minute issue in which the battery was unable to power 

the BLE chip. the power indicator showed that the BLE chip as well as the rest of the board were 

receiving the expected power, yet no signals could be found coming from the accelerometer. To 

solve this, we used the built in USB power on the BLE chip to power the board. The 3.3V pin of 

the BLE chip was attached the main power distribution network of the chip so by powering the 

BLE chip from the USB, we could in turn power the whole board without a battery. However, 

this limited the versatility of the sensor overall as it now needs to be plugged into a 5V USB plug 

in the interior of the vehicle rather than near the wheel as was the original intention. 

 

Costs 

 Our total costs were around $300.00 which included all parts required to build a sensor as 

well as tools for research and development. The actual price point of the sensor was $30.00. We 

have found that one sensor is sufficient to detect potholes, also making it much easier to install 

device. The most expensive piece of this sensor is the BLE chip. Ideally, if the chip were 

manufactured on the scale of 10000, this chip would be best integrated onto the rest of the board 

which could reduce costs significantly. Additionally, soldering all components at scale as surface 

mounts could be done very cost effectively, however this would not impact the cost as much as 

integrating the BLE chip. However, on the application side, money would need to be invested to 

maintain an app developer status to keep the permanence of the application. Still, at scale, this 

cost would not affect the overall pricing and could be maintained for free to download on the app 

store. 

 The cost to develop our mobile application is nothing. However, if we wanted to ever 

publish our application, we would need to pay a $99 developer fee, as well as adhering to safety, 

performance, business, design, and legal guidelines set by Apple [12]. 

Future Work 

 There are several facets we would like to build upon in the case of any future work. First, 

as stated in other places in this report, the board could be stripped of all extra test points and have 

all components integrated into one board as opposed to the separate board that the BLE chip 

resides on currently. Additionally, we would like to experiment with other board designs 

including different hardware communication protocols such as SPI and UART to see if there is a 

more efficient method.  

 In future iterations of the mobile application, we could make it so that it could be 

compatible with other devices, including Android and Windows. This could mean developing 

another version of the application in Android Studio, React Native, or a similar programming 
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language and integrated development environment. We could also look into using Google Maps, 

which is more widely used than Apple Maps on many devices around the world, while 

considering the tradeoffs these two APIs have in terms of usability and ease of development [13]. 
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Appendix 

Manufacturer 

Part 

Number Description 

Parts 

Received 

Parts 

per 

Sensor Price 

Total 

Spent 

Total 

Sensor 

Cost 

Espressif 

Systems 

ESP32-

DEVKITC-

32D-F Bluetooth Transceiver 4 1 $ 10.00 293.17 31.48 

Broadcom 

Limited 

HLMP-

3519-F0002 LED 10 0 $ 0.50   

Stackpole 

Electronics 

Inc 

CF14JT300

R Resistor 10 1 $ 0.10   

On Shore 

Technology 

Inc. 302-S141 JTAG 6 1 $ 0.32   

ACL Staticide 

Inc 6672436 Ground Mat 1 0 $ 35.00   

Adam Tech 

HPH1-A-19-

UA Header Pins 10 0 $ 1.03   

SCS 

ECWS61M-

1 Ground Strap 5 0 $ 5.85   

Pimoroni Ltd PIM456 Accelerometer Breakout 5 0 $ 5.03   

Texas 

Instruments 

LM1117MP

X-1.8/NOPB Regulator 5 1 $ 1.10   

TDK 

Corporation 

FG11X7R1

C226MRT0

6 Capacitor 10 2 $ 0.86   
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TDK 

Corporation 

FG28X5R1

E106MRT0

6 Capacitor 10 1 $ 0.46   

AVX 

Corporation 

SR211A101

JARTR1 Capacitor 45 0 $ 0.33   

Murata 

Electronics 

RDER73A1

02K2M1H03

A Capacitor 10 1 $ 0.65   

KEMET 

C330C105K

5R5TA7301 Capacitor 10 4 $ 0.55   

Stackpole 

Electronics 

Inc 

CF14JT47K

0 Resistor 10 2 $ 0.10   

Vishay BC 

Components 

K120J15C0

GF5TL2 Capacitor 10 0 $ 0.26   

TDK 

Corporation 

FG18X7R1

H474KRT06 Capacitor 10 0 $ 0.36   

Vishay BC 

Components 

K220J15C0

GF5TL2 Capacitor 10 0 $ 0.26   

On Shore 

Technology 

Inc. ED20DT MSP Header 7 1 $ 0.26   

Texas 

Instruments 

MSP430G2

553IN20 MSP 7 1 $ 2.69   

Sullins 

Connector 

Solutions 

PREC019S

AAN-RC Header Pins 8 2 $ 0.42   

STMicroelectr

onics 

AIS328DQT

R Accelerometer 4 1 $ 10.46   
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Keystone 

Electronics 1025-7 Battery Connector 4 0 $ 1.93   

Keystone 

Electronics 232 Battery Connector 4 1 $ 0.48   

Keystone 

Electronics 2480 Battery Connector 4 0 $ 1.61   

MPD (Memory 

Protection 

Devices) BC3AAW Battery Connector 4 0 $ 1.77   

NDK America, 

Inc. 

NX2016SA-

24M-

EXS00A-

CS08891 Oscillator 1 0 $ 0.64   

Abracon LLC 

AMCA31-

2R450G-

S1F-T3 Anntena 1 0 $ 0.55   

 

 


