

Analog Dawgs: Pothole Detector

A Technical Report submitted to the Department of Electrical and Computer Engineering

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Dalton Applegate

Fall, 2019

Technical Project Team Members

Dalton Applegate

Steve Phan

Liam Robb

On my honor as a University Student, I have neither given nor received

unauthorized aid on this assignment as defined by the Honor Guidelines

for Thesis-Related Assignments

1

Analog Dawgs: Pothole Detector

Statement of work:

Dalton Applegate

My contributions were strictly on hardware development. Most of my labor hours included

research and pouring through the datasheets of our desired components. Some decisions I have

made pertaining to this include which specific chips for each component and how to interface each

chip. I interfaced these on a bus system to make the project scalable and have picked components

to match. I produced a sensor packet that will be able to be loaded with code (MSP) and match the

Bluetooth profile of an iPhone to integrate with the app and successfully transferred accelerometer

data to the phone.

Steve Phan

The contributions I performed was designing the algorithm for the pothole detection. I also

conducted research for the mobile application in order to receive Bluetooth information from the

accelerometer. Additionally, I coded and conducted research on how to program in Swift, learning

how to add the Apple Maps API to our mobile application. I also learned how to track the user’s

location on Apple maps, displaying their current location.

Liam Robb

I helped design the algorithm for pothole detection. I have extensively researched how to

use the Swift programming language in XCode by watching several over 7 hours of tutorials online

on how to use Swift, how to create interfaces with storyboard, how to use XCode, and how to use

its library of functions including the Core Bluetooth documentation.

I also implemented code that allows us to detect all Bluetooth devices in our vicinity,

allowing us to connect to the Bluetooth chip on our PCB. Additionally, I programmed the mobile

application to add a pin whenever a specific acceleration threshold is met, marking the location of

the pothole detected.

2

Table of Contents

Contents

Capstone Design ECE 4440 / ECE4991 Error! Bookmark not defined.

Signatures Error! Bookmark not defined.

Statement of work: 2

 Dalton Applegate Error! Bookmark not defined.

Steve Phan 1

Liam Robb 1

Table of Contents 2

Table of Figures 4

Background 5

Constraints 6

Design Constraints 6

Economic and Cost Constraints 6

External Standards 7

Tools Employed 7

Ethical, Social, and Economic Concerns 8

Environmental Impact 8

Sustainability 8

Health and Safety 8

Manufacturability 9

Ethical Issues 9

Intellectual Property Issues 9

Detailed Technical Description of Project 10

Project Time Line 19

Test Plan 20

Final Results 22

3

Costs 23

Future Work 23

References 24

Appendix 25

4

Table of Figures

Figure 1 System Block Diagram………………………………………………………………....14

Figure 2. Power Distribution and Accelerometer Schematic…………………………………….14

Figure 3. MSP430 Pinout Schematic…………………………………………………………….15

Figure 4. Test Point and Bypass Schematic……………………………………………………...15

Figure 5. Bluetooth Pinout Schematic…………………………………………………………...15

Figure 6. Test Point and Bypass Schematic……………………………………………………...16

Figure 7. List of Libraries Needed for Complete Functionality………………………………....17

Figure 8. UUIDs Needed In Order to Pair…………………………………………………….....18

Figure 9. Code to Convert Accelerometer Data from Bytes to Floats…………………………...18

Figure 10. Algorithm for Pothole Detection……………………………………………………..19

Figure 11. Our Pothole Detection

Algorithm…………………………………………………….19

Figure 12. Button to Manually Add Location Pin……………………………………………… 20

Figure 13. Mobile Application Displaying the Location of Potholes We Detected……………..20

Figure 14. Gantt Chart from Initial Proposal…………………………………………………….21

Figure 15. Finalized Gantt Chart………………………………………………………………...21

Figure 16. Test Plan Flow Chart…………………………………………………………………24

5

Abstract

 Nothing beats the feeling of driving through your hometown or driving on a road trip,

playing sounds that remind you of your childhood and chatting with friends. Suddenly, all of that

is interrupted when you run over a pothole. You want to complain to the local government, but

you keep driving and you’ve forgotten where it was in the first place. Our solution is a pothole

detector that stores critical information, such as location and severity, and makes a map of

previously detected potholes from other users. This device incorporates accelerometers and is

connected via Bluetooth to an MSP microcontroller to process the continuous stream of data.

Simultaneously, when triggered by passing an acceleration threshold, a GPS request will be

made from the user’s smartphone to track the location of the pothole in the same moment.

Background

 Potholes plague the life of the daily commuter. Some cities make an effort to fill them,

but given the ecological situation of most roads, potholes will continue to pop up or remain

unfilled due to apathy or a lack of resources from the city. Even in larger cities, potholes take

between two to three days to get fixed after they are reported [1]. Two solutions that may

mitigate this problem are improving the pothole filling effort and driver awareness to keep the

potholes from worsening due to increasing impacts. We chose this project as a means to provide

drivers and local governments with a passive way to collect information about potholes to

positively impact these two solution paths.

 There have been several prototypes that detect and record potholes on the open roads. For

instance, Google has been granted a patent that uses two sensors - a GPS and a vertical

accelerometer - to automatically document nasty bumps in the road and upload the location

where the pothole was detected to the cloud [2]. There has also been an invention by Ford Motor

Company, where the technology can reduce the impact of striking potholes as part of Ford’s

controlled damping functionality [3].

 In the area of pothole detection, there have been many companies and enthusiasts that

have worked on this problem. Our project is different from the ones we found online because we

are creating a sensor that attaches to the car itself with an accompanying app. Both would be sold

together as a standalone consumer product. Our goal is to create a public map that could help

local governments detect potholes faster than the current self-reporting method. Our end

customer would be citizens who feel their community isn’t efficient about fixing potholes and

municipalities who want to more efficiently deal with the issue. As far as we can tell, the only

similarity between our project and what has been done before is the detection of potholes. The

crowdsourcing of information for pothole detection and standalone product are new.

 This project incorporates background knowledge from several prior courses: embedded

computer design, radio and signal processing and analysis, PCB design, analog to digital

conversion, digital data processing, network communication, program and data representation.

advanced software development, linear control systems and design, and mobile application

development. Overall, the group will be able to use previous coursework to successfully

implement this project in a timely manner.

6

Constraints

Design Constraints

In regards to the hardware, the toughest constraints we faced were in regards to layout

and part sizing. Ultiboard has inherit design rules that limit the spacing between things like

whole parts as well as individual pins on a given part. All accelerometers available on Digikey

are cell phone grade, meaning among other things that they are very small (on the scale of 2-

5mm). This not only caused many problems with spacing in Ultiboard that had to be resolved,

but also proved difficult for the professionals at WWW Electronics to solder it on our board.

Initially, that was the only constraint but we later ran into self-designated constraints based on

design choices made earlier in the design process. For example, we initially thought that

Bluetooth profile selection and cross chip communication were going to be two large constraints

and we therefore selected a Bluetooth device and other chips accordingly. The Bluetooth device

was robust enough to handle any profile but that robustness came with the cost of being

complicated to understand and required code to be written to the device through a proprietary,

non-GUI based IDE. This constrained our ability to use the device to only what we could come

to understand through researching its use cases. The last constraint faced was the communication

between our three chips (Bluetooth, MSP430, and accelerometer). It was initially suggested that

an inter integrated circuit (I2C) would be best given its ability to host multiple master and

servant devices on the same bus. This ease of communication came with a cost of complicated

code on the back end to support swapping between devices. In the end, we did not need to put

everything on one bus and we would have preferred to switch to a communication protocol that

was easier to debug such as Serial Peripheral Interface (SPI) or Universal Asynchronous

Receiver Transmitter (UART), however, with no board send outs left, our hardware was already

hardwired for I2C. We had to spend days debugging this communication rather than switching

styles due to this self-imposed constraint.

With respect to designing and building our mobile application, we decided to program

using Swift for an iOS device. We decided this was the best choice given that we had iOS

devices, which made testing and developing easier and more streamlined. We were also able to

use Apple’s Maps functionality, which made developing in Swift undemanding with the amount

of documentation Apple has provided [4]. Once we started developing on Swift and iOS, there

was no way for us to convert to another development environment or platform. If we had chosen

any other development platform, such as Android Studio or React Native, then it would have

been more costly or more challenging to learn given the amount of time we had. Therefore,

choosing to develop in an iOS setting gave us more flexibility to debug and test our application.

Economic and Cost Constraints

 The goal of our project was to create a device that would cost less than the average cost

of maintenance on a car from pothole damage, which is around $306 [5]. The cost of parts for the

final device were $31.48. However, in the research and development portion of this project, we

spent nearly $300 in order to experiment with different devices and buy other expensive supplies

that did not go into the device such as a ground mat to protect our device during development.

Regardless, we were within the spending budget that we gave ourselves and were able to create a

7

device that would have a reasonable market price. Details on what the excess money went into

and how costs could be further reduced will be discussed in the costs portion of this technical

report below.

 Additionally, we wanted the development of our application to be practically free. Apple

allows this opportunity by allowing us to develop apps for free, however, without the ability to

publish it to the App Store for iOS devices. If we were to further develop our application, we

would need to pay a $99 annual fee to publish our application, as well as meeting Apple’s

guidelines for mobile applications.

External Standards

 The only other standard we had to adhere to was the IPC standard for PCBs [6]. These

standards for the basis for the Design Rule Check (DRC) inside of the Multisim and Ultiboard

tools we used to design the board. These standards also display how to solder and clean the board

once printed which was important to follow to ensure the longevity of the chip.

 Bluetooth was originally standardized by IEEE 802.15. However, this standard is no

longer maintained. Bluetooth technology is now overseen by the Bluetooth SIG (Special Interest

Group) which maintains the technology standard of Bluetooth device production. There is a list

of core specifications to be followed but since we will be using prefabricated Bluetooth devices,

these standards will be maintained by the producer before reaching us [7].

Tools Employed

 In the creation of the sensor component of this project, we employed the use of Ultiboard

and Multisim to design and fabricate our chip. We used the design check rules in Multisim and

Ultiboard to make sure our board would meet manufacturability guidelines. After we checked

that we passed those guidelines, we used FreeDFM for final manufacturability checks on our

printed circuit board.

We developed our code for the MSP430 in Code Composer IDE, which is based on the

Eclipse IDE. We programmed our MSP in embedded C code with aide from online resources and

from resources from the Introduction to Embedded Computer Systems course. Additionally, we

programmed our MSP chip to communicate in I2C, which is different from the SPI protocol that

we learned in our introductory course in embedded. We used a variety of resources, including

online resources and guidance from Professor Delong, to accomplish a successful I2C

communication protocol.

 During the development of the mobile application, we used Swift as the programming

language with XCode as the integrated development environment. We decided to program in

Swift because it allowed us to create an iOS application more easily than other tools. However,

Swift was a new language to us, so we had to learn everything, including syntax and how certain

software components were integrated. We learned how to program in Swift from YouTube and

other online tutorials. Overall, we abstracted what we learned in developing a web application

8

from CS 3240, which includes debugging and finding resources, to develop a successful working

mobile application.

Ethical, Social, and Economic Concerns

 An ethical and social concern for our project is the use of location data. Our project relies

heavily on the user sharing their location whenever a pothole is ran over. Some users might feel

that sharing their location data in this manner might be an invasion of privacy, or it could be

somehow used for malicious purposes. To mitigate this problem, we cannot relate the data

collected to any specific user. Therefore, each pothole found cannot be traced to any specific

individual, and we would not be collecting information on their current location or anything

similar. The application would simply be used to show where potential potholes are without

attaching that information to any specific user.

 Overall, our hope with the outcome of this project is to allow local governments and

companies to repair roadways that are badly damaged and need repaving. In turn, this would

save drivers time and money from maintenance related to pothole damage, and increasing the

longevity of tires and vehicles.

Environmental Impact

 Our device in itself poses no real impacts on the environment. Bluetooth devices are so

common place that their environmental impact is already minimal and decreasing as their

demand increases. However, one point of concern is the roads. Obviously, paved surfaces

already pose significant impacts to the environment and ecosystems they’re placed into or on top

of. The goal of this device is not to increase or necessarily mitigate this problem. It is simply to

make it so that if these roads are going to create environmental risk, at least they are still used for

their intended purpose and not abandoned, where they would pose no only environmental risk

but societal risk.

 With this product, there may be a slight increase in a commuter’s roadway due to the

repaving of potholes but again, this is something that is already happening. The hope of this

project is to maintain our current roads so that new ones do not need to be created which would

pose a greater risk than just fixing the potholes directly.

Sustainability

 Our device is not formally related to sustainability. The function of our project is to give

other users information about the location of potholes, therefore reducing maintenance costs

related to pothole and other road-related damages.

Health and Safety

 Our device is not formally related to health or safety. However, we can argue that our

device can be used to make roadways safer because we are giving information to people who can

alleviate problems with road conditions. Therefore, reducing the number of potholes and

potentially reducing traffic problems and improving driver safety.

9

Manufacturability

 Currently, the price to manufacture is reasonable, however, the biggest drawback to our

current design is the Bluetooth transceiver. Given that it is prefabricated, it sticks off from the

board in an unideal way and has far more components to it than is necessary for our use case. To

improve the design, it would make sense to integrate everything onto a single small, flat chip and

eliminate the unnecessary test points. This was not done initially because the scope of the project

was to create a working sensor, and not to deal with the intricacies of developing a Bluetooth

chip. Additionally, at scale with manufacturing, it would be more feasible and make more sense

to use all surface mount components, unlike the through hole components we used for testing

and developing.

 With any mobile application, the ability to expand and build on the application is crucial.

If this project were to go into full production, the mobile application would need to be more

refined. This requires having a larger development team with specialized skills to perfect the

application from bugs and usability. We would also need a team of developers to maintain our

application after it is published to address environment changes to hardware and bugs in the

software.

Ethical Issues

The goal of this device is to create a robust database of potholes in a given area to aid in

the repair of these potholes or integrate into a mapping algorithm as an early detection and

avoidance device. The current system in place involves individuals self-reporting the potholes

direct to companies. In order to unload this burden from the consumer, our sensor and

application aims to do this passively. There is an ethical issue when we track the user’s location.

Even though we would not be providing the location to anyone, some users might feel unsafe to

learn that a device could pinpoint their location. As LaFrance wrote in The Atlantic, “Sometimes

it’s just that the people who are designing the gizmo don’t even think in terms of privacy,” he

told me. “They just think: More data is always better. In their minds, it’s just, ‘We may not know

what we’re going to do with that data.’” [8]. Therefore, we would have to make the location data

anonymous to prevent anyone from using it for any other purpose. The current app does not have

a persistent database, as it is just a proof of concept, and as a result, does not associate any data

between the phone running the application and the stored locations. The individual potholes are

also not linked so with fully populated database, individual routes would not be traceable. The

only discernible information would be increased intensity of detections around heavy pothole

areas which is exactly the information we wish to provide. Ultimately, we believe that it is in the

automotive industry’s best interest to keep cars well maintained, and local cities to keep their

roads safe and drivable.

Intellectual Property Issues

 The first patent we examined is titled ‘Road health (pothole) detection over wireless

infrastructure’. Looking at the patent’s claims, ones that stand out are the following: ‘1. a motor

vehicle, comprising: a road condition sensor configured to detect a hazardous condition of a road

on which the motor vehicle is traveling; a global positioning system configured to detect a global

10

position of the motor vehicle; and an electronic processor communicatively coupled to the road

condition sensor and to the global positioning sensor” [9]. Based on the language of the patent,

an example of which is “the motor vehicle of claim 1 wherein the road condition sensor

comprises an accelerometer,” the claims are dependent on other claims [9]. The patent discussed

here is similar to our project, where an accelerometer is used and an electronic processor is able

to send a receive information from the sensor.

 The second patent we examined is titled ‘Pothole detection in the vehicle’. Looking at the

patent’s claim, it claims that “Method for creating a digital map as a basis for a driver assistance

system, which is set up to assist a driver in dealing with road damage (60), comprising: -

detecting road damage (60) on a street (13) with a vehicle (2); - Capture a position (22) of

the vehicle (2), if the road damage (60) is detected; and - entering a card information (58)

into the digital map in which the detected road damage (60) of the recorded position (22)

assigned” [10]. Based on the language of the patent, an example of which is “the method of

claim 2, wherein sending the card information (58) takes place wirelessly, the claims are

dependent claims [10], the claim in question is dependent. The patent discussed here is similar to

our project, where a digital map is created when road damage is detected.

The third patent we examined is titled “Mobile pothole detection system and method.”

Looking at some of the patent’s claims, it claims the following: “A system for analyzing a

surface subject to degradation, comprising: a sensor configured to acquire at least one image of a

surface” [11]. Based on the language of the patent, an example of which is “the system of claim

1, wherein the sensor comprises: at least one of a camera or an accelerometer,” the claim is

dependent [11]. The patent discussed here is similar to our project, where accelerometer data is

collected and sent wirelessly, getting the coordinates of the surface abnormality.

Based on our findings of these three patents, our project is not patentable. There are too

many claims associated with different patents to make our project unique enough to be

patentable.

Detailed Technical Description of Project

Our capstone project consists of a Bluetooth Low Energy (BLE) enabled sensor

component and a companion iOS application with integrated Apple Maps features. The sensor is

made up of a Texas Instruments MSP430G2553 microprocessor, an ESP32 BLE dual core

microprocessor, and an AIS328DQ three axis accelerometer communicating through an Inter

Integrated Circuit (I2C) communication protocol. The remaining components on the board

pertain to operating the MSP430, power bypassing each chip, and distributing power. As for the

power distribution, an LT1121 Low Drop Out (LDO) regulator is used to step the 5V USB

supply to the 3.3V required by each chip. A full list of components is located in the appendix.

The three chips on our board are hardwired on the Printed Circuit Board (PCB) for the

I2C interface. The MSP430 is responsible for running the C code, which is the foundation for the

I2C protocol, and transferring the data from the accelerometer to the phone. The MSP430

initializes by writing to registers within the BLE chip and the accelerometer, setting them to on

11

and operate as servants to the MSP430 master’s instruction. The MSP430 then sends alternate

pulls and pushes to the two servant chips. Before each interaction, the MSP430 sends a START

signal which consists of a LOW digital signal on the SDA line (data) of the I2C interface while

the SCL line (clock) remains HIGH. Each servant device then ‘listens for its own unique, factory

defined I2C address. If a device receives its own address, it sends an acknowledge signal (ACK)

and awaits further data or begins to transmit data to the master. For each pull, the MSP430 sends

an address followed by a sub address to the accelerometer which requests the X axis acceleration

data from the corresponding register inside the accelerometer. Once the master receives the

contents of this register, it sends a negative acknowledgement (NACK) followed by a STOP

signal (LOW to HIGH on SDA while SCL is held HIGH) to end the communication. The

MSP430 then writes this data to one of its own registers as RAM as it only needs to store it long

enough to pass it to the BLE chip before pulling new data from the accelerometer. On the other

side, similar commands push the data from the register on the MSP430 and write it to the BLE

chip. The BLE chip then pipes this data directly to the mobile application in real time as to not

miss a potential detection. The mobile application waits for a certain acceleration threshold to be

met, placing a pin when a vertical acceleration passes that threshold.

The components we used to build the sensor are as follows:

● ESP32 Dual Core Bluetooth and Wi-Fi enabled microprocessor (1)

● MSP430G2553 microprocessor (1)

● AIS328DQTR 3 axis accelerometer (1)

● LT1121 8 in DIP LDO voltage regulator (1)

● Micro USB connector (1)

● Printed Circuit Board (1)

● Plastic Case (1)

● Test pins (8)

● Resistors

○ 300Ω (1)

○ 47kΩ (1)

● Headers

○ 14 pin JTAG (1)

○ 20 pin DIP (1)

○ 19 pin in-line (2)

● Capacitors

○ 22μF (2)

○ 10μF (1)

○ 1nF (1)

○ 1μF (4)

 The next section outlines substantial design decisions and tradeoffs that were made

through the design process of this project. Our major design decisions include the choice of our

microprocessor, the Bluetooth device, the accelerometer, the chip communication protocol, and

the power supply for the hardware. For software, we chose to implement on Apple devices given

12

that we all prefer those devices over Android. Therefore, we also chose to use Swift and the

Apple maps API to design our app given that we were working with iOS enabled devices.

 The choice of chips provided the biggest tradeoffs. For example, we chose the 20 pin DIP

package MSP430G2553. We were very familiar with the use of this chip from the Intro to

Embedded Computing course and the DIP package made it easy to solder in or replace on the

board. However, this limited the number of ports we had access to and did not allow us to utilize

features that come with other processors such as the newer MSP432 or myRIO. This package

also did not have the flat form factor that would be ideal for a final project, though it was ideal

for testing. The most impactful results of this trade off was our choice of communication

protocol. The lack of ports led us to heed the recommendation of utilizing the I2C protocol over

the Serial Peripheral Interface (SPI) due to the ability to communicate with multiple masters and

servants all on one bus or port. With this choice, we traded simplicity of hardware for complexity

of software. We achieved 2-line communication but spent likely up to 100 man hours coding and

debugging in a complex manner that we had no prior experience with. This was an unnecessary

trade off however and probably would not be repeated if this device was designed again. The

accelerometer we chose was initially too small to be soldered on by hand correctly, even by the

professionals at WWW electronics. We opted for a larger accelerometer for a better package.

Finally, in terms of hardware, we selected a very complex Bluetooth transceiver. This choice was

driven by the initial thought that we would need to have a variety of Bluetooth profiles to choose

from. We eventually discovered that any chip that supported BLE would be viable but it was too

late to switch to a chip that did not require programming like the ESP32 did. In the end, it

worked out fine as we were able to utilize the USB port on this device for power.

13

Figure 1. System Block Diagram

 Figure 1 shows the final block diagram for our system, with only some last-minute

changes in the way of the battery, database, and mapping API. The four lines on the chip

represent the 2 lines required for I2C (SDA and SCL) as well as power and grounding nodes

shared by the 3 chips.

Figure 2. Power Distribution and Accelerometer Schematic

Figure 3. MSP430 Pinout Schematic

14

Figure 4. Test Point and Bypass Schematic

Figure 5. Bluetooth Pinout Schematic

The schematic choices were fairly simple. Each chip needed grounding, power from a

3.3V line, an SDA data line, and an SCL clock line. Additionally, bypass capacitors or resistors

were added as specified in the recommendations of the manufacturer of each chip. The BLE chip

itself had many more black-boxed components within it that performed any functions it needed.

The MSP430 and the accelerometer both had all of their spare pins pull out for testing or adding

extra functionality later if we discovered a feature we wanted after the last board send out such

as using the accelerometer’s interrupt generators or the MSP430’s GPIO pins. Finally, the

accelerometer’s CS pin was tied high to lock it into I2C mode (additionally, it had internal pull

up resistors on the SDA and SCL lines which is why they are not present in the schematic) and

the SA0 pin was tied low externally to set the last address bit to 0 (this feature allows two of the

same accelerometer on the same I2C bus but we did not need to utilize this feature).

15

Figure 6. Test Point and Bypass Schematic

 The most important decision of the layout was how to wire the accelerometer. We

received consistent Design Rule Check (DRC) errors due to the proximity of the pins on the chip

to themselves and therefore saw these errors when wiring as well. Power was also a concern as

10mil power lines were the largest size that could be used on the accelerometer. As is likely

apparent, the only way for power to get from the source in the bottom left to the rest of the chip

is through those 10 mil lines which is likely what lead to our power distribution problem at the

last minute that was fixed by placing the 3.3V source elsewhere. Using surface mount parts for

the regulator and accelerometer also proved challenging for wiring due to the fact that the ground

plane was on the copper bottom. The orientation of the MSP430 and the accelerometer was only

important as to have as few lines crossed as possible because they were packed so tightly. The

BLE chip however had to be placed in the upper part of the board as it took up a lot of space and

needed an exclusion zone so that the board would not affect the antenna. In an attempt to keep

size low, the edges of the board were brought in, meaning that some wires had to cut across the

board through the middle. One of these ended up cutting the ground plane but this was

minimized as much as possible while avoiding the other traces.

 Our major issues center around the I2C code and the power distribution. The power was

switched to 5V USB instead of a 9V battery to bypass the 10 mil traces near the accelerometer.

The second issue was ensuring that I2C communication was being performed correctly. This

could not be fixed with a design change since the hardware was set in stone. We eventually

overcame this after several hours of debugging.

 Our next subsystem is the mobile application. We programmed our mobile application in

Swift for an iOS device. We chose Swift because it quickly allowed us to debug and program to

an iOS device. If we had chosen any other programming interface, including React Native or

16

Android Studio, we would have needed to overcome a steeper learning curve with respect to

React Native, or buy a new mobile device, which could have been at least a couple hundred

dollars.

 We decided to use Apple Maps over an alternative, such as Google Maps, because Apple

Maps is more widely supported in Swift than Google Maps. It was easier to find documentation

that helped with our functionality. This includes Bluetooth connectivity to the Bluetooth chip on

our PCB, placing pins on the map whenever a pothole was detected, and showing the user’s

current location.

 We used a variety of software libraries that were essential for the complete functionality

of the mobile application, as shown in Figure 7. The Mapkit library was needed for the usage of

Apple Maps. We used the CoreLocation library to show and access the user’s location on the

map. Additionally, we used the CoreBluetooth library to be able to connect to the Bluetooth chip

in the direct area of the mobile device. Finally, we used the CoreMotion library to get

acceleration data from the accelerometer and process it with our algorithm.

Figure 7. List of Libraries Needed for Complete Functionality

 To connect the phone to the Bluetooth chip, we had to figure out the UUIDs of the

Bluetooth chip. We found the device UUID and the characteristic UUID, as shown in Figure 8

below.

Figure 8. UUIDs Needed in Order to Pair

 We used the following snippet of code, as shown in Figure 9, to convert the

accelerometer data from bytes to floats. This allowed us to interpret the raw data from the

accelerometer into a readable format for both the user and for our understanding of different

vertical acceleration thresholds.

17

Figure 9. Code to Convert Accelerometer Data from Bytes to Floats

 Next, Figure 10 shows the overall flow of our algorithm, and Figure 11 shows our

algorithm in code that places a pin when a pothole is detected. Logically, if we have a vertical

acceleration that is greater than 10 meters per second squared, we technically have some sort of

substantial road condition. Once this threshold is met, we place a pin directly over the user’s

current location, and having it persist on the map after the user moves away. We also gather the

location data, including longitude and latitude, to accurately give us the address of that pothole.

Figure 10. Algorithm for Pothole Detection

Figure 11. Our Pothole Detection Algorithm

18

 Since not every individual would like to have their location data used, we added a manual

button that would allow users to pinpoint the location of a pothole, as shown in Figure 12. In

theory, this would allow us to reach a wider range of users, so we can gather as much data as we

can.

Figure 12. Button to Manually Add Location Pin

The results of our final mobile application are displayed in Figure 13 below. The red pins

show the approximate geo-location of each pothole we found.

Figure 13. Mobile Application Displaying the Location of Potholes We Detected

19

Project Time Line

Figure 14. Gantt Chart from Initial Proposal

KEY

_________ _________ _________ _________ _________ _________ _________

Design

Time

Testing

Time

Time for

Each Part

Implement-

ation Time

School

Breaks

Project

Deadlines

Date of

Today

Figure 15. Finalized Gantt Chart

20

 The main difference between the two Gantt charts presented above is that the integration

portion was extended and pushed back to allow for delays in receiving parts and boards. All of

the tasks except for the final integration were easily parallelized as Steve worked on the mapping

portion of the app, Liam researched and developed the BLE communication, and Dalton

completed the sensor hardware. Once each of these were completed, they could also be tested

individually so that they were not delayed by the other tasks. Each task was also designed to be

integrated slowly. For example, sample data could be read over Bluetooth before the C code was

finished as junk data and the map and Bluetooth apps could be integrated whenever given they

were developed on the same platform. This flexibility allowed us to put extra time towards parts

of the design process that took longer than expected. This also allowed us to perform our

secondary rolls as Steve took charge of integrating the application and managing the

documentation and organization of the team, Liam used his knowledge of Bluetooth to debug the

hardware and C code, and Dalton gathered appropriate data to ensure correct functioning after

integration.

 In terms of long-term dates, our goals were to have software finished at the same points

as board submissions and part orders to ensure that both sides were progressing along with the

hardware. To keep up with the hardware deadlines, we were sure to send something out with

each deadline to be on the safe side. The midterm design review and Thanksgiving break were

also used as major progress goals. We set all initial layouts and code to be done by the design

review with the final project finished around Thanksgiving to leave time for testing. This was

important to have this extra time as some steps got delayed and this time was used to course

correct.

Test Plan

 Our test plan consisted of three main sections: testing the hardware, testing the Bluetooth

capabilities, and testing the data tracking. We were able to do most of these in parallel as they

neared completion to ensure that our integration testing portion would go more smoothly, as we

would know that each subsystem is functioning properly. To test the hardware, we employed the

use of the Virtual Bench and Code Composer Studio’s debug mode. After checking our

individual parts for any visible damage and soldering all the components onto the board, we

tested our node voltages and current draw to ensure that each chip would be drawing the

necessary power. We first did this with the chips removed from their headers to make sure that

the chips would not be damaged by unexpected high voltage. We tested node voltages with

different input voltages from the virtual bench to decide what final power supply would be best

before switching to testing with a 9V battery to ensure that the regulator was supplying the

expected 3.3V. We reperformed this test after switching to the BLE power as the main driver.

Once everything received power and the embedded code was written, we began to check the

signals that were on the SDA and SCL lines at certain times to check if the START, STOP, and

address signals were being sent appropriately. This confirmed that what we were seeing on Code

Composer matched what was occurring on the board. From here, we were able to test the I2C

code in Code Composer to verify whether the accelerometer and BLE chip were receiving our

21

communication. This was done by checking what happened as the C code entered either the

transmit or receive interrupt that was generated when data was placed onto the receive or

transmit buffer in the MSP430’s hardware. Once it was verified that the signals were being

acknowledged, we could check the registers on the MSP430 to see what data had been received

and stored. The hardware was then ready for integration testing.

 Once the application was complete, we began to test the connection between the

hardware and software. To beta test the BLE connection, we downloaded a simple third-party

application that could create BLE connections and show the data as a hex number that was being

received. This allowed us to ensure that something was being sent out of the sensor. Once this

was confirmed and we matched the UUID of our device to the code, we began to search for our

BLE signal within our own app. As shown in the test plan, we had to tweak things on both the

application side and embedded side until we were receiving data on the app. We first tested this

by pairing with a Bluetooth scale to see we could receive data. When we verified, we were

receiving data from the scale, we tweaked how the data was being received until it appeared

reasonable.

 Once we established a Bluetooth connection, we got to work on the map functionality. To

test that the pins were being placed on the correct location, we placed a pin at our current

location hoping to see if it was accurately placed when a button was pressed. Next, we traveled

to a different location, placing a pin to mark our location. When we saw that this functionality

was working, we developed an algorithm to place pins when a pothole was detected. We tested

this feature by shaking the accelerometer, expecting that a pin would be placed at our current

location. When we proved this algorithm and functionality was complete, we did a field test with

our entire system.

 Finally, we were able to take the sensor on test rides in a vehicle. We selected a few deep

potholes that we knew of in Charlottesville to see how our sensor would react to them. Initially,

we drove over these potholes using a third-party application to get a sense of what the

acceleration response would be. This is how we set our initial threshold values for what a pothole

may look like. We also performed calculations on expected acceleration of a car hitting a pothole

at 35mph to get a general idea of other potholes that we didn’t test but that we wanted the sensor

to be able to detect anyway. Next, we drove over the same potholes to have the sensor detect

them. We compared the response of a pothole to normal driving acceleration such as driving up

or down hill as well as taking sharp turns that may affect detection. We then tweaked the

thresholds and drove through the course a few more times until we were happy with the detection

rate.

22

Figure 16. Test Plan Flow Chart

Final Results

 In our proposal, we define success as achieving all of the following: 1) Device is

triggered when it hits a pothole 2) Device records pothole severity 3) Device records GPS

location of pothole 4) Device communicates over Bluetooth to a smart device. We achieved all

of our metrics for success based on the results we were able to achieve.

Above all else, our device is able to detect potholes in normal driving conditions. The

success of this device includes a baseline working mobile application and a fully functioning and

communicating BLE enabled motion sensor. This device was intended to be a proof of concept

given the time constraints and therefore functions as such. As a result of this, there is no data

persist present in the application and little to no user interface.

That being said, there is a very useful GUI derived from the Apple Maps API that forms

the backbone of the application which still provides useful information (location and intensity of

the potholes) that we originally intended for the app. Our app was successful in pinpointing the

location of potholes and other major road conditions, but would sometimes pin locations that had

no visible potholes because the threshold for acceleration was surpassed. Further testing and

categorization would be effective in minimizing future false positives. Otherwise, our application

was successful in connecting to the Bluetooth to receive information, and displaying the user’s

location.

In regards to the hardware, the sensor was successful in terms of the on-board

communication protocol but, in our opinion, fell short in terms of power consumption and form

23

factor. By the time of the final board send out, all of the necessary components were on the board

and set up properly, however many unnecessary pins and extra space were left on the board.

Given an opportunity of one or two more board iterations, the form factor could have been

greatly improved in terms of shape, size, and to eliminate capacitances and poor grounding

created by some wire placements. This also meant that we had to use a bulky casing to protect

the chip as opposed to using a sleek and small case that could be placed more discreetly in the

vehicle. As for the power, there was a last-minute issue in which the battery was unable to power

the BLE chip. the power indicator showed that the BLE chip as well as the rest of the board were

receiving the expected power, yet no signals could be found coming from the accelerometer. To

solve this, we used the built in USB power on the BLE chip to power the board. The 3.3V pin of

the BLE chip was attached the main power distribution network of the chip so by powering the

BLE chip from the USB, we could in turn power the whole board without a battery. However,

this limited the versatility of the sensor overall as it now needs to be plugged into a 5V USB plug

in the interior of the vehicle rather than near the wheel as was the original intention.

Costs

 Our total costs were around $300.00 which included all parts required to build a sensor as

well as tools for research and development. The actual price point of the sensor was $30.00. We

have found that one sensor is sufficient to detect potholes, also making it much easier to install

device. The most expensive piece of this sensor is the BLE chip. Ideally, if the chip were

manufactured on the scale of 10000, this chip would be best integrated onto the rest of the board

which could reduce costs significantly. Additionally, soldering all components at scale as surface

mounts could be done very cost effectively, however this would not impact the cost as much as

integrating the BLE chip. However, on the application side, money would need to be invested to

maintain an app developer status to keep the permanence of the application. Still, at scale, this

cost would not affect the overall pricing and could be maintained for free to download on the app

store.

 The cost to develop our mobile application is nothing. However, if we wanted to ever

publish our application, we would need to pay a $99 developer fee, as well as adhering to safety,

performance, business, design, and legal guidelines set by Apple [12].

Future Work

 There are several facets we would like to build upon in the case of any future work. First,

as stated in other places in this report, the board could be stripped of all extra test points and have

all components integrated into one board as opposed to the separate board that the BLE chip

resides on currently. Additionally, we would like to experiment with other board designs

including different hardware communication protocols such as SPI and UART to see if there is a

more efficient method.

 In future iterations of the mobile application, we could make it so that it could be

compatible with other devices, including Android and Windows. This could mean developing

another version of the application in Android Studio, React Native, or a similar programming

24

language and integrated development environment. We could also look into using Google Maps,

which is more widely used than Apple Maps on many devices around the world, while

considering the tradeoffs these two APIs have in terms of usability and ease of development [13].

References

[1] “Pothole Repair,” Virginia Department of Transportation, [Online], Available:

https://ddot.dc.gov/potholes. [Accessed: 14-Sep-2019].

[2] Thing and Person, “Google Patents System That Detects Potholes,” Digital Trends, 26-Aug-

2015. [Online]. Available: https://www.digitaltrends.com/android/google-pothole-detection/.

[Accessed: 14-Sep-2019].

[3] Innovative Pothole Detection System Irons Out the Bumps for All-New Ford Focus Drivers |

Ford of Europe | Ford Media Center, 28-Jun-2018. [Online]. Available:

https://media.ford.com/content/fordmedia/feu/en/news/2018/06/28/innovative-pothole-detection-

system-irons-out-the-bumps-for-all-.html. [Accessed: 14-Sep-2019].

[4] Apple Inc, “Integrating with Apple Maps,” Maps - Apple Developer. [Online]. Available:

https://developer.apple.com/maps/. [Accessed: 12-Dec-2019].

[5] “Potholes and Vehicle Damage,” AAA Exchange. [Online]. Available:

https://exchange.aaa.com/automotive/automotive-trends/potholes-vehicle-damage/. [Accessed:

13-Dec-2019].

[6] “IPC Checklist for Producing Rigid Printed Board Assemblies,” Association Connecting

Electronic Industries [Online]. Available: http://www.ipc.org/4.0_Knowledge/4.1_Standards/

PCBA-Checklist.pdf. [Accessed: 14-Dec-2019]

[7] “Core Specifications,” Bluetooth Technology Website. [Online]. Available:

https://www.bluetooth.com/specifications/bluetooth-core-specification/. [Accessed: 25-Sep-

2019].

[8] LaFrance, A. (2019). The Creepy Thing About Self-Driving Cars. [online] The Atlantic.

Available at: https://www.theatlantic.com/technology/archive/2016/03/self-driving-cars-and-the-

looming-privacy-apocalypse/474600/ [Accessed 22 Sep. 2019]

[9] H. A. Troemel Jr, M. R. Stelts, “Road health (pothole) detection over wireless infrastructure,”

United States Patent 20180040090A1, July 8, 2017.

[10] B. Uhrmeister, “Pothole detection in the vehicle,” German Patent DE102014214729A1,

July 25, 2014.

[11] J. Bridgers, T. Chiang, “Mobile pothole detection system and method,” WIPO

WO2014197448A1, June 03, 2013.

[12] Apple Inc, “App Submissions - App Store,” Apple Developer. [Online]. Available:

https://developer.apple.com/app-store/submissions/. [Accessed: 14-Dec-2019].

25

[13] J. Dove, “Apple Maps vs. Google Maps: Which One Is Best for You?,” Digital Trends, 09-

Dec-2019. [Online]. Available: https://www.digitaltrends.com/mobile/apple-maps-vs-google-

maps/. [Accessed: 15-Dec-2019].

Appendix

Manufacturer

Part

Number Description

Parts

Received

Parts

per

Sensor Price

Total

Spent

Total

Sensor

Cost

Espressif

Systems

ESP32-

DEVKITC-

32D-F Bluetooth Transceiver 4 1 $ 10.00 293.17 31.48

Broadcom

Limited

HLMP-

3519-F0002 LED 10 0 $ 0.50

Stackpole

Electronics

Inc

CF14JT300

R Resistor 10 1 $ 0.10

On Shore

Technology

Inc. 302-S141 JTAG 6 1 $ 0.32

ACL Staticide

Inc 6672436 Ground Mat 1 0 $ 35.00

Adam Tech

HPH1-A-19-

UA Header Pins 10 0 $ 1.03

SCS

ECWS61M-

1 Ground Strap 5 0 $ 5.85

Pimoroni Ltd PIM456 Accelerometer Breakout 5 0 $ 5.03

Texas

Instruments

LM1117MP

X-1.8/NOPB Regulator 5 1 $ 1.10

TDK

Corporation

FG11X7R1

C226MRT0

6 Capacitor 10 2 $ 0.86

26

TDK

Corporation

FG28X5R1

E106MRT0

6 Capacitor 10 1 $ 0.46

AVX

Corporation

SR211A101

JARTR1 Capacitor 45 0 $ 0.33

Murata

Electronics

RDER73A1

02K2M1H03

A Capacitor 10 1 $ 0.65

KEMET

C330C105K

5R5TA7301 Capacitor 10 4 $ 0.55

Stackpole

Electronics

Inc

CF14JT47K

0 Resistor 10 2 $ 0.10

Vishay BC

Components

K120J15C0

GF5TL2 Capacitor 10 0 $ 0.26

TDK

Corporation

FG18X7R1

H474KRT06 Capacitor 10 0 $ 0.36

Vishay BC

Components

K220J15C0

GF5TL2 Capacitor 10 0 $ 0.26

On Shore

Technology

Inc. ED20DT MSP Header 7 1 $ 0.26

Texas

Instruments

MSP430G2

553IN20 MSP 7 1 $ 2.69

Sullins

Connector

Solutions

PREC019S

AAN-RC Header Pins 8 2 $ 0.42

STMicroelectr

onics

AIS328DQT

R Accelerometer 4 1 $ 10.46

27

Keystone

Electronics 1025-7 Battery Connector 4 0 $ 1.93

Keystone

Electronics 232 Battery Connector 4 1 $ 0.48

Keystone

Electronics 2480 Battery Connector 4 0 $ 1.61

MPD (Memory

Protection

Devices) BC3AAW Battery Connector 4 0 $ 1.77

NDK America,

Inc.

NX2016SA-

24M-

EXS00A-

CS08891 Oscillator 1 0 $ 0.64

Abracon LLC

AMCA31-

2R450G-

S1F-T3 Anntena 1 0 $ 0.55

