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Abstract— The increasing frequency and severity of storms 

due to climate change is magnifying flooding impacts. The 

Internet of Things (IoT) revolution promises more ubiquitous 

sensing capabilities. When applied to water systems, IoT has the 

potential to increase insights into how hydrologic systems 

respond to extreme rainfall events, aiding in emergency 

management efforts before and during extreme weather events. 

In this paper, we provide a way to translate forecasted extreme 

rainfall events into flood impacts and optimize an IoT sensor 

network for real-time flood monitoring. First, we created a 

hydrologic model for a study area: the Dell Pond watershed in 

Charlottesville, Virginia. We used ArcGIS to obtain parameters 

for the model from geospatial datasets such as elevation, soils, 

land use, and land cover. The parameters obtained from 

ArcGIS, alongside the National Oceanic and Atmospheric 

Administration (NOAA) rainfall precipitation data, and 

readings from the IoT water sensors were combined to create a 

hydrologic model in HEC-HMS. To optimize the IoT sensor 

monitoring network and explore systems integration of the 

model and sensors, we first created models to determine the 

battery life of a sensor in the network, since the IoT sensors are 

battery powered with no additional power harvesting capability. 

We also deployed a new water level and a soil moisture sensor 

using the IoT network for the study watershed. The methods for 

estimating the battery life of the IoT sensor and the prototype 

deployment can be built on in future research to advance next-

generation flood management systems that integrate 

computational models and IoT monitoring networks.  

I. INTRODUCTION 

Climate change is projected to cause temperature and 
rainfall changes in coming years. The frequency and severity 
of storms is already showing evidence of increasing trends, 
magnifying flooding risk. From 1995 to 2015, Charlottesville 
and Albemarle County, the study area for this research, 
experienced around one hundred floods that created more than 
a million dollars in damage [1]. Even minor flooding can lead 
to devasting results for the community, such as school and 
road closures. More significant flooding can create safety 
hazards, as floods can cause power outages and damage 
infrastructure and assets which halts economic activity. Floods 
can also be lethal to the lives of every person living in damp 
building conditions, due to the development of mold, 
diminishing indoor air quality, which could lead to respiratory 
tract irritation and infections, including pneumonia.  

 Climate change effects, including flooding impacts, are a 
worldwide concern. According to data from the World 
Resources Institute, by 2030, the number of people affected by 
floods in the world will double and triple by 2050. In the 
United States, climate change will cause flooding losses to 
jump more than 26 percent over the next three decades, with 
disadvantaged communities shouldering an outsize share of 

the economic burden [2]. Steps need to be taken to prevent 
disastrous losses from further escalating.  

Without proper monitoring systems, flooding will cause 
economic loss, social disruptions, and damage to the urban 
environment. In response to flooding, cities and towns around 
the world are currently looking for a precautionary measure to 
minimize the adverse effects. In view of the frequency and 
severity of floods, many technological companies are using the 
Internet of Things (IoT) and flood forecasting models to 
propose flood monitoring and early detection systems that 
allow administrations to prepare for floods in advance. IoT is 
a crucial part in the development of smart cities because it 
promises improved environmental sensing capabilities. 
Among them flood monitoring systems with sensors are 
widely used.  

Although IoT solutions and advanced modeling cannot 
prevent flooding, real-time monitoring and modeling can help 
minimize potential damage by building initiative-taking 
solutions for the community. When applied to water systems, 
IoT coupled with models has the potential to increase insights 
into how hydrologic systems respond to extreme rainfall 
events, aiding in emergency management efforts before and 
during extreme weather events. 

II. METHODS 

A. System Architecture 

The flood monitoring system uses an IoT network which 
includes water level, soil moisture, and weather sensors from 
Decentlab. They communicate via LoRaWAN, a Low Power, 
Wide Area networking protocol. LoRaWAN Cisco gateways 
are used to connect the sensors to a LoRaWAN network 
server, The Things Network (TTN). The data generated from 
the sensors is stored in Google BigQuery, a data warehouse 
and finally, it is visualized using Grafana, an open-source data 
visualization platform. The sensor data will be used along with 
a hydrologic model to forecast water levels for flood 
management decision-makers. The envisioned flood warning 
system is depicted in the following block diagram (Fig. 1). 
Green blocks represent the real-time IoT network, data storage 
and visualization. Blue blocks represent the hydrologic system 
model and forecast. Red block represents the alerting tools 
integration with stakeholders. 

 

Fig. 1. The envisioned flood warning system block diagram. 
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B. Hydrologic Model Development  

We used ArcGIS to replicate the Dell Pond watershed 

(referred to as the Dell watershed henceforth) and obtain 

parameters needed for the hydrological model in HEC-HMS. 

First, a digital elevation model was obtained from the United 

States Geological Survey [3] and used to create the stream 

network of the watershed, utilizing tools such as Flow 

Direction and Flow Accumulation, then translating the 

resultant raster into a network of polylines. The watershed, as 

seen in Fig. 2, was created through snapping a pour point onto 

the streamline near the outlet. 

 

 
Fig. 2. Watershed of the Dell in ArcGIS 

 

The parameters needed for the hydrological model in HEC-

HMS included curve number, longest stream length, and 

average slope. Land cover data was obtained from the 

Chesapeake Bay Program Land Use/Land Cover Data Project 

[4]. Soil data was obtained from the Soil Survey Geographic 

Database [5]. To create the most accurate model, the 

watershed was split into five subwatersheds based on similar 

land cover, as seen in Fig. 3.  

 

Fig. 3. Land Cover of the Dell Watershed 
 

Curve numbers for each subwatershed were calculated by 

combining land cover and soil data through the Union tool, 

exporting the resultant table to Excel, sorting areas by land 

cover, and summing land cover areas based on hydrologic soil 

group. The HEC-HMS Technical Reference Manual [6] was 

used to assign curve numbers based on hydrologic soil group. 

The following equation was used to calculate the composite 

curve number of each subwatershed, 

 𝐶𝑁𝐶𝑜𝑚𝑝𝑜𝑠𝑖𝑡𝑒 =
∑ 𝐴𝑖𝐶𝑁𝑖

∑ 𝐴𝑖

 (1) 

          

where Ai represents the individual areas and CNi refers to the 

individual curve number associated with the area. The longest 

stream length for each subwatershed was found by using the 

measure tool in ArcGIS. The average slope for each 

subwatershed was calculated using the Slope tool. The Dell 

watershed was then modeled in HEC-HMS with the pre-

existing parameters found in ArcGIS, as seen in Fig. 4. The 

five subbasins were inputted into the model and connected by 

a singular junction. To account for an overflow structure 

located in the stream network, a diversion was placed in the 

model, which diverts 10 cfs of water to the sink. This number 

can be changed based on the storm, but we did not change it 

for these simulations. For the model, the runoff from Subbasin 

5 and Reach 5 are directed towards the diversion which then 

releases a small amount to the sink, so that it does not 

overflow. This was based on information given by the 

University’s Facilities Management. The frequency storm 

simulated was a 10 year, 24-hour storm with a 15-minute 

intensity, and the data points were collected using local data 

provided by NOAA.  

 

Fig. 4. HEC-HMS Model of the Dell Watershed 

C. IoT Device Management 

To explore IoT and systems integration, we determine the 
battery life of the IoT sensor devices by analyzing the battery 
voltage over time. The batteries studied are from the weather 
station (Model DL-ATM41) because it had a complete battery 
drawdown record. Two alkaline type C batteries are used in 
the sensor (Model LR14). An important variable to consider 
that affects the battery life is the spreading factor, which is the 
speed at which the signal frequency changes across the 
bandwidth of a channel. The estimation for the weather station 
battery life given from Dencentlab for a spreading factor of 
seven with a 10-minute interval between messages is 10.2 
months. [7] Our weather station’s spreading factor is 
automatically set by TTN using the Adaptive Data Rate 
(ADR), which is a mechanism that controls the data rate. Since 
our sensor is close to the gateway (~15 meters away), 95.4 % 
of the recorded messages had a spreading factor of 7, except 
for short periods where it was 8 (4.1%) and 9 (0.5%) due to 
atypical events such as intense rain. We used two methods to 
evaluate battery life using models with varying levels of 
complexity. Starting with the simpler approach, we fitted the 
data using linear and polynomial regression models using 
Python, then we created a time series model using RStudio.  

The regression model is based on a first and third order 
polynomial fit. The data of the weather station was aggregated 
and downloaded from Grafana, then imported to Python as a 
CSV file. Since we did not have a continuous battery voltage 
record from full to depleted battery, we combined the readings 
of the end part of a previous discharge curve with more recent 
battery voltage readings in such a way that we could emulate 
a full discharge cycle. The date format was normalized and 
converted from DD/MM/YYYY HH:MM to hours using 



Excel by taking the difference between the current time and 
the first reading and multiplying by twenty-four. The 
following libraries were imported: Matplotlib was used to 
graph the data and predict the values, NumPy was used to 
convert the CSV data to arrays, and Scikit-learn was used to 
generate the regression models. Several polynomial models 
were created using the “LinearRegression” function and the 
curve fit was evaluated using the Mean Absolute Error (MAE). 
To get the equation for predicting the battery voltage at any 
given time, we printed the model coefficients of the best order 
polynomial fit and filled it manually in a cubic function of 
time.  

To better model variation in the battery data over shorter 
time periods, time series analysis was used. The time series 
analysis used data collected starting when the battery was at 
full charge and contained 674 data points across 170 days. The 
time series data points were obtained by averaging battery 
voltage readings from the weather station, resulting in a rate of 
four data points per day. The battery voltage readings were 
aggregated, downloaded from Grafana, and then imported into 
RStudio. The data across each day was averaged to create a 
resampled time series object with consistent intervals. From 
the full data, 160 days' worth of data were used to build the 
model, with the remaining 10 days of data being used to 
compare to the model’s forecasted values. Using the “forecast” 
package in RStudio, an ARIMA (0,2,1) model was created 
with the objective of minimizing the Akaike Information 
Criterion (AIC). This model uses the second difference of the 
non-stationary time series data, to create a stationary time 
series. This was necessary due to the downward trend inherent 
in the battery data. The model yielded by our time series 
analysis contains one moving average component. Then, the 
model was used to predict the next 10 days of voltage values, 
and then compared to the actual data for assessment, and the 
mean squared error (MSE) was calculated.  

D. IoT Device Deployment 

To prototype an IoT sensor deployment, we deployed a 
pressure sensor (model DL-PR26) and soil moisture sensor 
(model DL-SMTP). We also installed a LoRa gateway within 
range of the Dell Pond in Charlottesville and connected the 
sensors to TTN and Grafana. The unit of the pressure sensor is 
Bar. The unit of the soil moisture data is Scaled Frequency 
Units (SFu). Its subsurface probe measures soil moisture and 
temperature at eight distinct levels of depth.  

III. RESULTS 

A.  Hydrologic Model Simulations 

As mentioned, the HEC-HMS model has five subbasins 
and five reaches with a junction point and a diversion to 
represent the overflow structure. The parameters for each 
subbasin are area, curve number, imperviousness, and lag time 
(Table I).  

TABLE I.  SUBBASIN PARAMETER INPUTS  

Subbasi

n 

Area 

(mi2) 

Curve 

number 

% 

impervious 

Lag time 

(min) 

1 0.0514 53 6.49 22.3 

2 0.0595 52 11.1 29.4 

3 0.0283 72 14.7 37.8 

4 0.0438 70 47.8 24.6 

5 0.0870 78 42.0 21.6 

 

The five reaches represent the longest time traveled within 
the Dell watershed, and the lag time for each are listed in Table 
II below.  

TABLE II.  REACH LAG TIMES 

Reaches  Lag time (min) 

1 27.1 

2 29.4 

3 53.1 

4 30.7 

5 31.9 

 
A simulation of the model was produced with a five year 

24-hour storm with 15-minute intensity, and overall, there 
were 69.2 cubic feet per second (cfs) diverted from the 
watershed into the outlet structure leaving 10 cfs to flow into 
Dell Pond, the sink. Runoff from the subbasins 1-3 were all 
similar being 9.1, 12.0, and 13.3 cfs, respectively. The peak 
discharge from subbasins 4 and 5 were 29.1 and 63.1 cfs 
respectively (Table III). The increase of runoff in subbasins 3 
and 5 may be due to several factors including the increased 
curve number and % impervious. The volume of the runoff 
seems to correspond with the peak discharge except for 
subbasin 3. This may be due to the basin’s curve number and 
lag time.  

TABLE III.  FIVE YEARS STORM SUBBASIN RESULTS  

Subbasins Peak Discharge 

(CFS) 

Volume (in) 

1 9.1 0.98 

2 12.0 1.11 

3 13.3 2.36 

4 29.1 3.19 

5 63.1 3.39 

Diversion 69.2 1.23 

 
A simulation of the model was produced with a 10-year 24-

hour storm with 15-minute intensity, and overall, there were 
78 cfs diverted from the watershed into the outlet structure 
leaving 10 cfs to flow into Dell Pond, the sink. Runoff from 
the subbasins 1-3 were all similar being 14.3, 17.9, and 17.2 
cfs, respectively. The peak discharge from subbasins 4 and 5 
were 35.7 and 77.0 cfs respectively (Table IV).  

TABLE IV.  TEN YEARS STORM SUBBASIN RESULTS  

Subbasins Peak Discharge 

(CFS) 

Volume (in) 

1 14.3 1.41 



2 17.9 1.55 

3 17.2 3.04 

4 35.7 3.92 

5 77.0 4.16 

Diversion  88.1 1.77 

 
A simulation of the model was produced with a 25-yearr 

24-hour storm with 15-minute intensity, and overall, there 
were 114.3 cfs diverted from the watershed into the outlet 
structure leaving 10 cfs to flow into Dell Pond, the sink. 
Runoff from the subbasins 1-3 were all similar being 22.6, 
27.3, and 22.6 cfs, respectively. The peak discharge from 
subbasins 4 and 5 were 44.7 and 95.2 cfs respectively (Table 
V).  

TABLE V.  25 YEAR STORM SUBBASIN RESULTS  

Subbasins Peak Discharge 

(CFS) 

Volume (in) 

1 22.6 2.11 

2 27.3 2.26 

3 22.6 4.07 

4 44.7 5.01 

5 95.2 5.30 

Diversion  114.3 2.65 

 

Looking across all three storms, the peak discharge 
increased 27.3% from the 5-year to the 10-year storm, 29.7% 
from the 10-year to the 25-year storm, and 65.2% from the 5-
year to the 25-year storm. While all the diversions only 
allowed 10 cfs to go to the sink, they all occurred at different 
times. In Fig. 5, the peak diversion occurred at the 11th hour of 
the storm. In Fig. 6, the peak diversion occurred at the 10th hour 
of the storm, and in Fig. 7, it is shown that the peak diversion 
occurred at the ninth hour of the storm. Because of this outlet 
structure, the Dell Pond should not overflow, and this is what 
these simulations illustrated.  

 

Fig. 5. Five Years Storm Diversion Hydrograph 

 

Fig. 6. Ten Years Storm Diversion Hydrograph 

 

Fig. 7. Twenty-Five Years Storm Diversion Hydrograph 

B. IoT Energy Model  

After acquiring voltage data from the weather sensor via 

Grafana, two models were created to predict the voltage as a 

function of time to better estimate when a given sensor’s 

battery would need to be replaced. This would allow better 

understanding of how the battery discharges and the behavior 

of the battery when it discharges. Although, the recommended 

time to replace the battery is 2.0V, the last message sent from 

the weather station was at 2.1V, thus we assume the battery 

should be replaced at the latest at 2.1V. 

In Python, regression models of first and third orders (Fig. 

8) were applied to the voltage data to foresee when the voltage 

reaches 2.1V and the best time to replace the battery. It was 

more appropriate to use the third order because it has the 

lowest MAE value of 0.0126 compared to the MAE of the 

first order which has a value of 0.0313. We did not choose to 

keep increasing the order of regression because after the third 

order, the MAE does not substantially decrease, for example, 

the MAE of the fourth order is 0.0115. Thus, we adopt a third 

order polynomial model as a reasonable tradeoff between 

complexity and precision. 



 
 

Fig. 8. Battery Voltage as a Function of Time with a 1st and 3 rd. Order 
Regression 

                        𝑦 = −6.43 × 10(−5)𝑥 + 3.05                       (2) 

𝑦 = −1.58 × 10(−4)𝑥(3) + 2.57 × 10(−8)𝑥(2)  

            −1.77 × 10(−4)𝑥  + 3.16    (3) 

  

It was determined that the third order equation was the best 

fit of the voltage. Based off this model, we calculate the 

amount of time taken for the battery to deplete using (3). 

Expected Battery Depletion Time = Y(T) = 2.1V is subtracted 

from Current Time of the New Battey = Y(T) = 2.9 V. The 

estimate of the time it takes to reach 2.1V from a new battery 

is 15.9 months. 

The time series analysis resulted in the following ARIMA 

(p=0, d= 2, q= 1) model (4), which can also be described as a 

MA (1) model on the second differences. As mentioned in the 

methods section, this model uses the second difference of the 

time series data to transform it into a stationary time series. It 

contains one moving average component. ∇2xt refers to the 

second difference, wt refers to an independent, identically 

distributed normal random variable with parameters N (0, 

4.26×10-5). 

 

                    ∇2𝑥𝑡 = 2.89 + 𝑤𝑡 − 0.9712𝑤𝑡−1                    (4) 

 

Assessing the time series model, we find its AIC value to 

be –1136.08. Fig. 9 shows that the QQ plot of the fitted values 

against the residuals is Gaussian for our model, making it 

valid to use for forecasting. 

 

 
Fig. 9. Diagnostic plot of the “Voltage.auto” ARIMA model 

 

 
Fig. 10. Plot of Ljung-box Test 

 

The plot of the Ljung-box test in Fig. 10 shows that the 

model is adequate for more than twenty lags, which also 

increased our confidence in the model.  

Using our time series model, we forecasted the values for 

the next 10 days, and compared them to actual data. 

 
Fig. 11. Predicted vs Actual Voltage 

 

The predicted voltage trend shown in red in Fig. 11 closely 

follows the actual values shown in black. The MSE of the set 

of predicted and actual values was extremely low, at 1.29×10-

5. This, along with the diagnostics performed indicate that the 

model we created can give reliable predictions of future 

battery data.  

C. Deployment of IoT Sensors 

Our team deployed near the Dell Pond in Charlottesville one 
pressure sensor (model DL-PR26) and one soil moisture 
sensor (model DL-SMTP) on March 21, 2023. The levels of 
soils moistures represented in Fig.12 are: 100, 200, 300, 400, 
500 mm which respectively correspond to levels 0,1,2,3,4,5. 

 

Fig. 12. Moisture Levels from Five Depths at the Dell Pond 

As seen in Fig. 13, we have an average of 55mBar. The spike 
shows an increase in water pressure, evidence of a storm. It 
infers how pressure is related to how deep the water is. As the 
pressure increases, the water depth also increases; this can be 
used for notifications for flood alerts. 



 
 Fig. 13. Water Pressure Levels at the Dell Pond 

IV. DISCUSSION 

A. Limitations of the Hydrologic Model 

Our model is now only considering subbasins around the 

Dell watershed. There are some flood control structures 

along the pond that have not yet been added to the model. 

There are also some limitations to the HEC-HMS software. 

The simplified HEC-HMS model cannot model loop stream 

networks or backwater. The model can be improved by 

adding more parameters such as soil moisture. Since the 

sensor is deployed, we can add the soil moisture and 

precipitation data derived from sensor. However, the time 

required to run the model is also worth considering. If there 

is an excessive number of parameters presence in the model, 

the software will take a longer time to simulate. 

B. Limitations of the IoT energy model 

The analysis of the battery level was based on only one 
sensor, the weather station sensor, which is the only one for 
which we have a full battery discharge cycle. For future 
studies, more data used from the other sensors as well as more 
iterations of the same sensor going through multiple discharge 
cycles would more accurately depict the lifespan of a given 
sensor. Although preliminary results of individual models 
were acceptable, more investigation is needed on how to 
achieve an integrated approach to battery voltage modeling 
using principles from both methods demonstrated in this paper 
to capitalize on the different strengths that each can offer and 
provide a real-time display of remaining battery time. 
Additionally, to improve the battery prediction models, 
regression models should include other additional variables 
such as spreading factor, which can provide insights on their 
significance to battery life. 

V. CONCLUSION 

Charlottesville, like many cities and communities 
worldwide, is expected to experience a greater frequency and 
intensity of storms due to changing weather patterns resulting 
from climate change. This paper holistically incorporates 
components important to IoT functionality to create a basic 
understanding of one of many watersheds in the 
Charlottesville area. It provides a step towards accurately 
predicting and warning the local community about floods in 
real-time. 

This work contributes a simple model of applying IoT in 
flood management. It delivers general guidance on how to 
create flood modeling using geographic data in ArcGIS and 

precipitation data added in HEC-HMS. Then, simulation 
hydrographs for 5-, 10- and 25-years storm can be generated. 
Our preliminary investigation of battery life contributes to the 
ongoing discussion of IoT system management, as it can 
support managers in efficiently allocating resources for IoT 
battery replacement tasks, especially when dealing with many 
IoT devices and hard-to-reach deployment locations. 
Furthermore, the sensors deployed near the Dell Pond will help 
to create a small-scale testbed which can be scaled up for 
creeks, rivers, and ponds in Charlottesville going forward. 
With more IoT deployments, more battery discharge data will 
be collected, allowing for more complex battery life estimation 
models. 

To further develop this flood management system, the next 
steps would involve creating code to automate the process of 
incorporating precipitation data into the HMS model and the 
predicted water levels into the database. The precipitation data 
would come from the sensors. Ideally, a complete dashboard 
would consist of an interface which displays the current water 
levels as well as simulated water levels and alerts when the 
actual water levels are reaching a threshold point. The 
interface would allow flood response teams to compare the 
actual water levels to the potential flooding water levels and 
enact their flood warning response sooner and more 
accurately. It would also include the ability to predict the 
battery level to enable proactive maintenance of the IoT 
system. 
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