
Automating Contract Reports with Power Apps

CS4991 Capstone Report, 2024

Kyle Pecos

Computer Science

The University of Virginia

School of Engineering and Applied Science

Charlottesville, Virginia USA

xxn3ap@virginia.edu

ABSTRACT

The process for creating a contract report at

SimVentions had not been the most efficient,

with communication issues arising among

team members in the past. A proposed solution

was to develop a Microsoft Power App system

to store and fill out information. Users could

enter their entries for projects which would be

stored using a Microsoft Sharepoint database.

The entries could then be viewed, edited,

copied, and filtered if desired. After

development was finished, these entries would

automatically populate a provided Microsoft

Word template, eliminating the need for them

to be manually gathered and entered.

Currently, the system is undergoing further

development with the addition of an archiving

system for older entries.

1. INTRODUCTION

Companies are always looking for new ways

to improve their internal systems and increase

efficiency in the workplace, lest they fall

behind their competitors. This past summer I

interned at SimVentions, a government

contracting company located in

Fredericksburg, with the intention of

modernizing one of the company’s internal

processes. Specifically, I was tasked with

working on the government contract reporting

process as some inefficiencies with the

previous system were very apparent.

Generally, the company was given a Microsoft

Word Document template and employees were

to fill out and report entries detailing the work

they accomplished for a particular project.

After all entries were entered, the document

would undergo tech-editing by a manager

before being formally delivered.

This process was not without its issues as

employees were often not entering their tasks

on time or in the correct format. This would

add extra work for the manager, delaying

intended schedules. As the company was

already integrated with many Microsoft-

related products, my supervisor tasked me

with creating a Power-Apps based solution.

Power-Apps is a development tool for custom

applications simplifying UI design and more

intricate coding details. The tool has

integrations with many other Microsoft-

related tools such as Sharepoint, a

management service tool for data.

2. RELATED WORKS

When researching ways to develop the Power

apps system, two possibilities presented

themselves, one being a Canvas App, and the

other being a Model-Driven App (Yoshida, et.

al., 2023). Canvas Apps allow for full

customization of the user interface with some

pre-made components that can be utilized if

desired. It has connectors with a variety of

other Microsoft services and data storage.

Model-Driven apps lack flexibility in the user

interface options as they only allow for preset

user interface components to be utilized.

Additionally, Model-Driven Apps only allow

Microsoft Dataverse databases to be used to

store information. However, these apps are

better for more complicated tasks that require

in-depth business logic. Ultimately, it was

decided to use a Canvas App due to its most

robust user interface features and flexibility

for database options. Additionally, the

company at the time did not have a Dataverse

subscription, and approval would have taken

additional time and resources.

After deciding to use a Canvas App, the next

step was to check whether one of the system’s

main intended features would be viable. As the

given Microsoft Word Templates could

change from contract to contract, my advisor

hoped that the system would be able to

accommodate a dynamic template. However,

the Power Automate feature that allows for a

Word Template to be populated natively

expects a static template with no official

documentation on how to utilize a dynamic

one. After doing some additional research, I

came to a blog post detailing a potential

workaround to the issue I was facing (Strube,

2023). The post detailed how to parse a

Microsoft Word Document’s XML file and

obtain tag identifiers for each field of a

template. These identifiers could then be

entered into the dynamic schema of the

populate feature which could allow for the

population of dynamic templates as long as the

field names were standardized among all

templates. These fields need to be manually

created for each new template provided so this

limitation would not be an issue.

3. PROJECT DESIGN

Before I started adding to the project, my

advisor partially worked on some of the user

interface components. He decided to use a

color palette of different shades of blue for

many of the components to match the

company logo’s colors. Though I was given

creative control over how to design the rest of

the system, I decided to continue the style that

had already been set up. Copying these

existing components and slightly modifying

them saved me time during development so I

could focus on the internal business logic of

the system.

To store information about the system, we

utilized SharePoint databases which could be

directly connected to Power Apps. The first

database created managed info on different

projects from which the other tables would

reference. Three tables storing entry data,

meeting data, and travel data, respectively,

used a foreign key to reference their associated

project. In addition, another table stored the

Microsoft Word Templates for the system to

fill. SharePoint natively only allows 2,000

entries at once to be loaded which was an

initial concern, but I successfully implemented

a workaround involving iteration.

The title screen initially began with two main

buttons. One would allow the user to add a new

entry for a project, whereas the other one

would allow the user to review existing

entries. Later in development, I added a third

button that allowed the user to view old,

archived entries. Next to each button was a

more thorough description detailing the

functionality of the system.

Initially, the add entry screen was solely for

adding a project entry. The user could select

from a drop-down of projects they had been

assigned to and create an entry detailing what

they had accomplished for a particular day.

After a round of beta testing, managers

requested the ability to add information on

meetings, travel, and future plans, which was

subsequently implemented.

In the guidelines set by my advisor, the review

entries screen was expected to have two modes

of view, one being that of a normal user and

the other that of a manager. Once all entries

were entered for a project, managers could go

through entries make additional edits and add

information if needed. In the case that some

employees had not made any entries for a

particular time period, a button could be

pressed sending an automated email reminding

them to do so. Once an entry had been

reviewed it was marked as “tech-edited” and

additionally important entries could be marked

as “notable.” A normal user would only be

able to edit their own entries, whereas a

manager would have full access to all entries

for all projects they were assigned to.

Regardless of the user, all entries have the

option of being filtered multiple ways

including by specified project, date range, and

person. Managers had additional filtering

entries for non-tech-edited entries or those

marked as notable. If selected, an entry can

either be edited, copied, or deleted.

Additionally, once the meetings, travel, and

future plans request from beta testing was

implemented, a separate viewing page was

added to the review entry screen detailing the

respective info for a particular project. As it

was not anticipated for these sections to have

too many entries, only an edit and delete

feature was added for each.

From the filter entries screen, users also have

the ability to automatically fill out a Microsoft

template with the filtered entries. First, the

user can hit a preview button which displays

all the data to be included in the final report. If

the user finds no issues with the data, they can

then select a desired template to build their

report with. Once the report is complete, it will

send an automated email to them with the

filled Microsoft Word template attached.

As the business logic for this template feature

was too complicated to implement solely in

PowerApps a connecting Power Automate

flow had to be developed. Based on the

filtering information passed in, the flow filled

the template with entries, meetings, and travel

data using a premium Populate a Word

Document feature. However, the feature being

premium initially presented an issue as only

developers possessed a license to use them.

Purchasing a license for every user would be

much too costly for the organization.

Fortunately, I was able to find a workaround

by invoking the flow on my account from any

user to bypass the restriction.

4. RESULTS

By the end of my internship experience, the

main features of the application had largely

been completed. All components of the user

interface were functional with different

display modes depending on the user.

Database info could be accessed and edited

through just the application without the need

to open SharePoint directly. Entries can be

filtered and automatically populated in a

chosen Microsoft Word Template.

Based on feedback from project managers,

additional requested features and quality-of-

life improvements were successfully

implemented. As some templates had sections

for meetings, travel and future plans, the

application had the option of filling out these

sections in addition to the normal entries.

Certain parts of the system were unclear to the

managers at first, so I added extra clarification

and directions in the app itself for future users.

Last, I wrote a guide documenting how to set

up a Microsoft Word Template that the system

could recognize and use.

5. CONCLUSION

The application once properly rolled out to

managers and teams should help expedite the

contract reporting process. The Power Apps

interface with the connecting SharePoint

databases will allow teams to easily enter and

retrieve information on their projects.

Additionally, the implemented Power

Automate flow to populate templates removes

the need for managers to manually compile

user entries as they had to do before. Through

this internship, I gained familiarity with

various Microsoft services and experience

developing a system primarily on my own.

6. FUTURE WORK

The next main anticipated step of the

Contracting Reporting Application is the

development of an archiving feature. Once a

project is finished and a set amount of time has

elapsed since completion, a project and all of

its associated entries and data should be

archived into a separate gallery screen and

database. Doing this will remove unnecessary

clutter in the dropdown project list and reduce

database lookup times. I am currently working

part-time for SimVentions and hope to have

this feature fully implemented soon.

REFERENCES

Strube, S. (2023). Populate a dynamic

Microsoft Word template in Power

Automate flow. There’s Something About

Dynamics 365.

https://2die4it.com/2023/03/27/populate-

a-dynamic-microsoft-word-template-in-

power-automate-flow/

Yoshida, T., Dias, S., Vivek, K., & Osborne,

K. (2023). Determining which type of app

to make. Microsoft.

https://learn.microsoft.com/en-us/power-

apps/guidance/planning/app-type/

