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Abstract

An atom-wave interferometer using a Bose-Einstein condensate of 87Rb in the F = 2

hyperfine ground state was used to measure the wavelength of light at which the scalar

dynamic electric polarizability equals zero. Vector contributions to the polarizability are

minimized through the use of linearly polarized light. The polarization of the light is

measured at the atoms using the same atom-wave interferometer. A rotating magnetic

field further reduces the vector polarizability through temporal averaging. Tensor con-

tributions to the polarizability are measured, and removed from the value reported here.

The wavelength is measured using a wavemeter which was calibrated using known sat-

uration absorption lines in K, Rb, and Cs. The tune-out wavelength between the 5S

ground state and 5P excited states was found to be 790.032326(32) nm. This measure-

ment marks a 50-fold improvement over previous tune-out wavelength measurements.

The measured tune-out wavelength is used to determine the ratio of matrix elements

|〈5P3/2||d||5S〉|/|〈5P1/2||d||5S〉| = 1.99217(3), a 100-fold improvement over previous ex-

perimental values. A theoretical determination of the tune-out wavelength is found to be

consistent with the experiment, with uncertainty estimates for the theory about an order

of magnitude larger than the experimental precision.
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Chapter 1

Magic Wavelength

1.1 Motivation

When an external electric field is applied to an atom, the charge distribution of the atom is

disturbed. The atom’s response to an applied electric field is described by the polarizabil-

ity. Polarizability plays an important role in a variety of physical phenomena including

light scattering[1], light trapping[2, 3], van der Waals interactions[4], and the Casimir-

Polder effect[5]. Moreover, an atom’s polarizability is determined by various elements of

the dipole matrix of the atomic waveform. These matrix elements are also needed to

interpret important measurements such as parity nonconservation. These measurements

provide an important tool used to probe for the existence of new physics beyond the

standard electroweak model [6, 7, 8].

Polarizability is of practical importance in the development of more precise atomic

clocks. Atomic clocks require precise knowledge of the optical transition frequencies.

Shifts due to atom interactions with environmental blackbody radiation are one of the

largest sources of uncertainty in optical transition frequencies. Because it is impossible

to eliminate the blackbody radiation emitted by an experimental apparatus, these shifts

are unavoidable and must be corrected using theoretical calculations. At present, these
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theoretical calculations are limited by the uncertainty in the dynamic polarizability[9, 10,

11, 12].

Previous measurements of the dynamic polarizability have been limited to an uncer-

tainty of around 1%. These measurements are limited by the inability to precisely measure

the intensity of the applied field [13, 14]. With this limitation in mind, we seek a polar-

izability measurement which is independent of the intensity of the applied field. Towards

this end, we seek to measure a wavelength where the dynamic dipole polarizability is zero,

α(ω) = 0. The wavelengths where this occur are known as tune-out wavelengths [15]

or magic-zero wavelengths and will be denoted as λ0. As I will show in Section 1.2.3,

the tune-out wavelength will be independent of the intensity of the applied field for the

intensities used in this measurement.

A precision measurement of λ0 provides a useful accuracy check for ab initio calcula-

tions of α(ω), as well as an input parameter in semi-empirical calculations. As a result,

a precise measurement of λ0 will provide a tool for improving the theoretical accuracy

α(ω). As described above, the improved theoretical accuracy of α(ω) will reduce the un-

certainty in atomic clock measurements and improve the precision of theoretical models

which describe physical phenomena that arise from the polarizability. Moreover, a pre-

cision measurement of λ0 will also yield an accurate measure of the ratio of the dipole

matrix elements coupling the 5S1/2 ground state to the 5P1/2 and 5P3/2 excited states.

Knowledge of the dipole matrix elements is useful in the interpretation of the results of

parity nonconservation measurements.

In addition to providing a tool for improving the theoretical accuracy in α(ω), precise

knowledge of λ0 has a direct application in the creation of species specific optical lattices

and far-off-resonance traps (FORTs) [16, 15]. FORTs rely on the induced dipole-light

interaction to trap atoms. The resulting force is given by

F =
1

2 c ε0
α(ω)∇I(r) (1.1)
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where I is the intensity of the trapping light. At the tune-out wavelength, the dipole-light

force vanishes, as α = 0. As we will see in Section 1.2, the tune-out wavelength is species

specific. Thus, an optical trap tuned to the tune-out wavelength of one species, known as

the spectator species, will trap other species while leaving the spectator species unaffected.

1.2 Theory

When an external electric field E is applied to an atom, the charge distribution of the

atom is disturbed, inducing an electric dipole d. To first order d = αE, where α is the

dipole polarizability. The induced dipole interacts with the external electric field creating

an interaction energy [1] given by

∆E = −1

2
α E2 (1.2)

The polarizability of an atom in an alternating electric field is given by the dynamic dipole

polarizability α(ω). For the electric field created by a light source, we can use I = c ε〈E2〉

to rewrite Eq. (1.2) as

〈∆E〉 = − 1

2c ε
α(ω) I (1.3)

The energy shift described by Eq. (1.3) is known as the ac Stark shift.

1.2.1 Semi-Classical Calculation of the Dynamic Polarizability

Following [13, 17] we will derive a formula for the dynamic polarizability of an atom.

Starting with the Time-Dependent Schrödinger Equation

i ~
d|Ψ〉
dt

= H |Ψ〉 (1.4)
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consider an electron in an atom exposed to off-resonant light. For an intense field, we may

treat the field classically [18]. The Hamiltonian may be expressed as

H = Ha + V (t) (1.5)

where Ha is the unperturbed Hamiltonian of the atom and V (t) is the time-dependent

perturbation arising from the dipole-field interaction. Using the dipole approximation, we

may write V (t) as

V (t) = −d · E cos(ωL t)

= −E(d · ε̂(t)) cos(ωL t) (1.6)

where ε̂ is the polarization unit vector and ωL is the angular frequency of the light. For the

case of linearly polarized light, which we will consider here, the polarization unit vector ε̂

does not depend on time. In this case we may rewrite Eq. (1.6) as

V (t) = V+ e
−i ωL t + V− ei ωL t (1.7)

where V+ = V− = −(d · E)/2.

For linearly polarized light, the vector polarizability, which will be discussed in Section

1.2.2, vanishes. A derivation of the vector polarizability using the Floquet formalism is

found in Ref. [19].

Floquet Formalism

In cases involving a periodic time-dependent Hamiltonian, we may employ the Floquet

formalism to transform the problem into a set of time-independent equations. This process

is similar to the Bloch theorem approach which is used to solve problems involving a

spatially periodic Hamiltonian. Although the Hamiltonian in Eq. (1.5) explicitly depends
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on time, it is useful to compare this to the time-independent Hamiltonian. For a time-

independent Hamiltonian, the eigenstates of the Schrödinger Equation evolve in time

according to

|Ψn(t, r)〉 = e−i
En t
~ ψn(r) (1.8)

where En is the energy of the stationary state |Ψn〉. For a periodic Hamiltonian, like the

one shown in Eq. (1.5), the quasienergy ε is defined by [20]

|Ψn(t+ T, r)〉 = e−i
εn T
~ |Ψn(t, r)〉 (1.9)

where T is the period of the Hamiltonian. The quasi-energy used in the Floquet formalism

is analogous to the crystal wave vector of the Bloch theorem.

Comparing Eq. (1.8) and Eq. (1.9) we see that the quasienergy εn is analogous to

the energy En of a time-independent Hamiltonian. Factoring out the time dependence

associated with the quasienergy gives

|Ψn(t, r)〉 = e−i
εn t
~ |un(t, r)〉 (1.10)

where |un〉 is a Floquet state which is analogous to a stationary state in a time-independent

Hamiltonian. For the Hamiltonian in Eq. (1.5), the Floquet state |un(t)〉 has the same

periodicity as the perturbation V (t). Therefore we may expand |un(t)〉 as a Fourier Series

|un(t, r)〉 =
+∞∑

m=−∞
e−imωL t |ψn,m(r)〉 (1.11)

where |ψn,m〉 is referred to as the m-th mode of the Floquet state. Plugging Eq. (1.10)
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and (1.11) into the Time-Dependent Schrödinger Equation gives

εn
∑

m

e−imωL t |ψn,m〉+
∑

m

m ~ωL e−imωL t |ψn,m〉

= Ha

∑

m

e−imωL |ψn,m〉+ V+

∑

m

e−i (m+1)ωL t|ψn,m〉+ V−
∑

m

e−i (m−1)ωL t|ψn,m〉 (1.12)

Comparing terms with the same time dependence gives the following time-independent

equation

(εn +m ~ωL −Ha) |ψn,m〉 = V+ |ψn,(m−1)〉+ V− |ψn,(m+1)〉 (1.13)

As we can see from Eq. (1.13), the dipole interaction couples the m-th mode of the Floquet

state to the m±1 mode. The mode m can be interpreted as the number of photons involved

in a process, where the V+ term corresponds to the absorption of a photon and the V−

term corresponds to the emission of a photon [21].

Time-Independent Perturbation Theory

We proceed by applying Time-Independent Perturbation Theory to Eq. (1.13). Since Eq.

(1.13) relates different Floquet modes of the same quasienergy state, I will drop the index

n. We expand the quasienergy and Floquet state in a perturbation series

ε = ε(0) + ε(1) + ε(2) + · · · (1.14)

|ψm〉 = |ψ(0)
m 〉+ |ψ(1)

m 〉+ |ψ(2)
m 〉+ · · · (1.15)
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By definition the zeroth order results correspond to the solution of the unperturbed Hamil-

tonian, thus

ε = E(0) (1.16)

|ψm〉 = |ψ(0)
0 〉 (1.17)

where Ha |ψ(0)
0 〉 = E(0) |ψ(0)

0 〉. Note that in order to have the appropriate time dependence

in the unperturbed solution, |ψ(0)
m 〉 = 0 ∀m 6= 0.

Keeping only the first order terms in Eq. (1.13) gives

(ε(0) +m ~ωL −Ha) |ψ(1)
m 〉+ ε(1) |ψ(0)

m 〉 = V
(1)

+ |ψ(0)
m−1〉+ V

(1)
− |ψ

(0)
m+1〉 (1.18)

To find the first order correction to the quasienergy, we take the scalar product of above

equation with |ψ(0)
0 〉 for m = 0

(ε(0) − ε(0)) 〈ψ(0)
0 |ψ

(1)
0 〉+ ε(1) 〈ψ(0)

0 |ψ
(0)
0 〉 = 0

ε(1) = 0 (1.19)

To find the first order correction to Floquet modes, we plug ε(1) = 0 into Eq. (1.18) and

looking for values of m which give non-zero terms on the right hand side of the equation

(which only happens for m = ±1).

(ε(0) ± ~ωL −Ha) |ψ(1)
±1〉 = V

(1)
± |ψ

(0)
0 〉 (1.20)

The operator ε(0) ± ~ωL −Ha can be inverted to solve for |ψ(1)
±1〉 giving

|ψ(1)
±1〉 = G±V

(1)
± |ψ

(0)
0 〉 (1.21)



1.2. THEORY 11

where G± is the Green’s function

G± = (ε(0) ± ~ωL −Ha)
−1 (1.22)

I will return to this Green’s function further on this section, however, let’s proceed by

calculating the second-order perturbation in the quasienergy.

Keeping second order terms in Eq. (1.13) and using ε(1) = 0 gives

(ε(0) +m ~ωL −Ha) |ψ(2)
m 〉+ ε(2) |ψ(0)

m 〉 = V
(1)

+ |ψ(1)
m−1〉+ V

(1)
− |ψ

(1)
m+1〉 (1.23)

To find the second order correction to the quasienergy, we take the scalar product of above

equation with |ψ(0)
0 〉 when m = 0

ε(2) = 〈ψ(0)
0 |V

(1)
+ |ψ

(1)
−1〉+ 〈ψ(0)

0 |V
(1)
− |ψ

(1)
+1〉 (1.24)

Using Eq. (1.21), we may rewrite the equation above in terms of the Green’s function G±,

and the unperturbed wave function |ψ(0)
0 〉.

ε(2) = 〈ψ(0)
0 |V

(1)
+ G− V

(1)
− |ψ

(0)
0 〉+ 〈ψ(0)

0 |V
(1)
− G+ V

(1)
+ |ψ

(0)
0 〉 (1.25)

To evaluate Eq. (1.24) we need to rewrite the Green’s function in a more useful form.

Consider the Green’s Function G± acting on an arbitrary wave function |φ〉 to produce a

new function |φ̃〉.

|φ̃〉 = G± |φ〉 (1.26)

|φ̃〉 = (ε
(0)
i ± ~ωL −Ha)

−1 |φ〉

(ε
(0)
i ± ~ωL −Ha) |φ̃〉 = |φ〉

Using the projection operator to rewrite the equation above in terms of the eigenstates of
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Ha gives

∑

n

|ψn〉 〈ψn| (ε(0)
i ± ~ωL −Ha) |φ̃〉 = |φ〉

∑

n

(ε
(0)
i ± ~ωL − ε(0)

n ) |ψn〉 〈ψn|φ̃〉 = |φ〉

Taking the scalar product of the equation above with an arbitrary eigenstate of Ha, gives

∑

n

(ε
(0)
i ± ~ωL − ε(0)

n ) 〈ψf |ψn〉 〈ψn|φ̃〉 = 〈ψf |φ〉

(ε
(0)
i ± ~ωL − ε(0)

f ) 〈ψf |φ̃〉 = 〈ψf |φ〉

〈ψf |φ̃〉 =
〈ψf |φ〉

ε
(0)
i ± ~ωL − ε(0)

f

(1.27)

where we assumed that ~ωL 6= ε
(0)
f − ε

(0)
i . Plugging Eq. (1.27) into the identity |φ̃〉 =

∑
n |ψn〉〈ψn|φ̃〉 gives

|φ̃〉 =
∑

f

|ψf 〉〈ψf |φ̃〉

|φ̃〉 =


∑

f

|ψf 〉 〈ψf |
ε
(0)
i ± ~ωL − ε(0)

f


 |φ〉 (1.28)

Comparing Eq. (1.28) with Eq. (1.26) reveals that

G± =
∑

f

|ψf 〉 〈ψf |
ε
(0)
i ± ~ωL − ε(0)

f

(1.29)

Plugging the Green’s function into Eq. (1.24) and using V− = V+ = −d·E
2 we can finally
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calculate the second-order perturbation to εi

ε
(2)
i =

∑

f

|〈ψ(0)
0 |V

(1)
+ |ψ

(0)
f 〉|2


 1

ε
(0)
i − ε

(0)
f − ~ωL

+
1

ε
(0)
i − ε

(0)
f + ~ωL




=
1

~
∑

f

|〈ψ(0)
0 |d|ψ

(0)
f 〉|2 〈E2〉

(
ωf

ω2
f − ω2

L

)
(1.30)

where ~ωf = ε
(0)
i − ε

(0)
f .

Comparing Eq. (1.30) with Eq. (1.2) reveals

α(ω) =
2

~
∑

f

|〈ψ0|d|ψf 〉|2
(

ωf
ω2
f − ω2

L

)
(1.31)

where the sum is taken over all bound excited states as well as the continuum. For alkali

atoms, the polarizability is dominated by the coupling of the valence electron to the first

few excited states. As a result, it is convenient to separate the valence contributions to

the polarizability

α(ω) = αv(ω) + αother (1.32)

where αother includes contributions from core elections as well as corrections due to the

interaction between the core and valence electrons. For light that is far detuned from the

resonances of the core electrons, αother is approximately independent of the frequency.

Using Eq. (1.31), we can rewrite the valence contribution to the polarizability αv(ω) as

αv(ω) =
2

~
∑

n′,F ′,m′F

|〈n, F,m|d|n, F ′,m′F 〉|2
(

ωf
ω2
f − ω2

L

)
(1.33)

where the sum in Eq. (1.33) runs over the excited states of the valence electron.
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1.2.2 Tensor Polarizability

In general, the electric dipole d does not point in the same direction as the externally

applied field E. Furthermore, the electric field is not always linearly polarized. As a

result, the dipole-field interaction potential (Eq. (1.2)) must be expressed in terms of a

tensor as

∆E =
∑

i,j

1

2
αij Ei Ej (1.34)

It is convenient to decompose the polarizability into an irreducible representation of spher-

ical tensors so that the mF and orientation dependencies are explicitly shown. When

written in this way, the polarizability is given by [22, 23, 24, 25]

α(ω) = α(0)(ω) +A cos θk
mF

2F
α(1)(ω)

+

(
3 cos2 φ− 1

2

)
3m2

F − F (F + 1)

2F (2F − 1)
α(2)(ω) (1.35)

Here A is proportional to the Stokes parameter given by 〈E2
l 〉 − 〈E2

r 〉, where El and Er are

the components of the electric field written the circular basis defined by l̂ = (x̂+ i ŷ)/
√

2.

The Stokes parameter A is normalized so that A = +1 for left-hand circularly polarized

light. θk is the angle between the wave vector and the quantization axis (established by an

external magnetic field B). And φ is given by cosφ = 〈(E·B)2〉
〈B2〉 〈E2〉 . The mF and orientation

independent parameters α(0)(ω), α(1)(ω), and α(2)(ω) are the scalar, vector, and tensor
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polarizabilities, respectively, and are given by [23, 24, 25]

α(0) = α0
1√
3

(1.36)

α(1) = −α1

√
F

2(F + 1)
(1.37)

α(2) = −α2

√
2F (2F − 1)

3(F + 1)(2F + 3)
(1.38)

where αp is given by

αp =
1

~

√
2p+ 1

2F + 1

F+1∑

F ′=F−1

(−1)F+F ′





1 1 p

F F F ′





×
∑

n′

|〈nF ||d||n′F ′〉|2
[

1

ωf − ωL
+

(−1)p

ωf + ωL

]
(1.39)

The reduced electric dipole matrix elements 〈nF ||d||n′F ′〉 are defined in Appendix B.

For atoms uniformly distributed among themF states, 〈mF 〉 = 0 and 〈m2
F 〉 = 1

3F (F + 1).

Plugging these values into Eq. (1.35) gives 〈α(ω)〉 = α(0)(ω). Thus, the vector and tensor

terms only effect the polarizability when the atoms are in a specific mF state.

1.2.3 Tune-Out Wavelength

Between any two resonances there exists a frequency such that α(ω) = 0. The coorespond-

ing wavelength, λ = 2πc/ω is called a tune-out wavelength or magic-zero wavelength λ0.

As discussed in Section 1.1, previous dynamic polarizability measurements have been lim-

ited by the ability to calibrate the intensity of the applied field. Measurements of the λ0

are ideal due to their extremely weak intensity dependence.

The intensity dependence of the dynamic polarizability can be found by extending the

Time-Independent Perturbation expansion in Section 1.2.1 to fourth order. The fourth
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order correction to the quasienergy is given by [23]

ε(4)
n = − 1

4!
γn(ω)〈E4〉 (1.40)

where γn(ω), known as the hyperpolarizability, is given by [23]

γn(ω) ≈ 1

6~3

∑

f

|〈ψ0|d|ψf 〉|4
(ωf − ωL)3

(1.41)

The hyperpolarizability effectively shifts the polarizability by

∆α(ω) ≈ −1

8
γn(ω)

I

c ε0
(1.42)

where we used 〈E4〉 = 3/8 |E4| to write the hyperpolarizability in terms of I. To calculate

the measurement’s dependence on intensity, we calculate ∆α and compare this to the

polarizability’s sensitivity to wavelength, given by dα
dλ

. For the tune-out wavelength be-

tween the 5P1/2 and 5P3/2 manifolds, ∆α ≈ 1.0
(
10−10

) a.u.
W/m

2 . At this same wavelength,

dα
dλ
≈ 2.5 a.u.

pm . In our measurement of the tune-out wavelength, a 20 mW laser with a

30µm beam waist was used to provide the Stark shift. At the peak intensity, the hyperpo-

larizability is ∆α ≈ 1.4
(
10−3

)
a.u., resulting in a 0.5 fm shift to the tune-out wavelength.

Since our tune-out wavelength measurement has an uncertainty of approximately 30 fm,

the shift caused by the hyperpolarizability is negligible.
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Figure 1.1: Tune-out wavelength between the D1 and D2 lines of 87Rb .



Chapter 2

BEC Interferometer Apparatus

In this section, I will outline the procedure we use to make a BEC interferometer. A brief

overview: we start by creating a Bose-Einstein condensate (BEC) which is then transferred

to a magnetic trap, called a waveguide, in which our experiments are performed. A short

off-resonant laser pulse is used to split the BEC into two packets. The energy of one of the

packets is altered in a controlled way, inducing a phase shift in this packet. The packets

are recombined, and the phase difference between the two packets of atoms is measured.

2.1 BEC Creation

In this section I will briefly outline how BEC is created in the lab. A detailed discussion

of our BEC creation process can be found in the thesis of Jessica Reeves [26].

2.1.1 Laser Cooling & Magneto-Optical Trap

Our experiments are performed under vacuum. A thermal vapor of Rb atoms is maintained

through the use of a dispenser, while an ion pump keeps the pressure at approximately

10−9 torr. Atoms from this background vapor are trapped and cooled inside a Magneto-

Optical Trap (MOT). MOTs have been extensively studied and are widely used in cold
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atom experiments. Therefore I will only briefly discuss the mechanisms responsible for the

cooling and trapping of atoms inside a MOT, for additional details see Ref. [27]. In the

reference frame of a moving atom, the wavelength of light is shifted due to the Doppler

Effect. As a result, atoms moving towards light that is tuned red of an atomic resonance

see the light shifted closer to resonance. In this scenario, the momentum transferred to

the atom reduces the atom’s kinetic energy. This phenomenon is known as Doppler laser

cooling.

In a MOT, three pairs of red detuned counter propagating beams intersect over a region

of space. Atoms in this region experience Doppler laser cooling regardless of the direction

of the atom’s motion. Confinement is achieved through magnetic field and polarization

effects. A pair of coils in an anti-Helmholtz configuration create a magnetic field minimum

at the center of the MOT. When an atom moves away from the MOT center, it experiences

greater Zeeman splitting. For an appropriate choice of circularly polarized light, the atom

is Zeeman shifted closer to resonance for light that tends to push it back towards the

center of the trap.

In our experiment the cooling lasers are red detuned from the 5S1/2, F = 2 →

5P3/2, F
′ = 3 resonance for 87Rb by about 20 MHz. An additional beam locked to

the 5S1/2, F = 1 → 5P3/2, F
′ = 2 resonance “repumps” atoms that decay from the

5P3/2, F
′ = 3 state into the 5S1/2, F = 1 state.

2.1.2 Optical Pumping & Magnetic Trap

As atoms collect inside the MOT, the cloud of trapped atoms becomes optically thick,

limiting the temperatures that we can achieve. To overcome this limit, we increase the

detuning of our cooling laser by 24 MHz for 10 ms. Finally, the magnetic field is turned

off for 15 ms, allowing the atoms cool further through optical molasses. Through these

combined laser cooling techniques we cool billions of atoms to a temperature of around

250µK.
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Figure 2.1: The spatially dependent Zeeman effect brings light that pushes the atoms
towards the center of the trap closer to resonance. For consistency, mF describes the
projection of the angular momentum onto the quantization axis defined by B. Another
convention commonly used defines mF as the projection onto the positive z-axis. For the
convention used here, the spin of the photon with respect to the quantization axis of the
atom reverses when crossing through the center of the trap, because the direction of the
magnetic field reverses at this point. Because magnetic moment of the atom µ follows
B, the Zeeman shift depends only on the magnitude of the magnetic field, resulting in
the symmetric energy level diagram shown above. When using the other convention, the
spin of the photon is unchanged when passing through the MOT, as the quantization axis
always points in the same direction. However, because magnetic moment of the atom µ
follows B, the mF state of an atom changes sign when passing through the center of the
MOT. This results in an antisymmetric energy level diagram.

To cool the atoms further another cooling technique is required: evaporative cooling.

In our experiment the atoms are evaporated in a magnetic trap. A magnetic trap uses the

force associated with the Zeeman shift of the ground state valence electron to trap atoms

in a local magnetic field minimum. Inside a magnetic field, atoms experience a force of

F = gF mF µB∇|B| (2.1)

For atoms in 5S1/2, F = 2 state, the Landé gF -factor is approximately 1/2.

To maximize the strength of the magnetic force, our atoms are optically pumped into

the |F = 2,m = 2〉 state. To accomplish this, we first turn off the cooling light and
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Figure 2.2: Two vacuum chambers are connected by a thin tube. Rb atoms from a thermal
vapor in the MOT chamber are trapped and cooled in a MOT. These atoms are transferred
to a magnetic trap. The coils generating the trapping field physically move along a track,
carrying the atoms to the BEC chamber which has a pressure of around 10−11 torr.

magnetic field from the MOT. We then apply a bias magnetic field along with σ+ light

that is tuned to the 5S1/2, F = 2→ 5P3/2, F
′ = 2 transition. As the atoms cycle between

F = 2 and F ′ = 2, the m level of the atom gradually increases. Because the light is tuned

to the F ′ = 2 excited state, there is no m′ = 3 excited state. As a consequence, atoms in

the desired |F = 2,m = 2〉 state no longer interact with the σ+ light.

After optically pumping the atoms, we use the magnetic field generated by the same

coils used in the MOT to trap the atoms in a spherical quadrupole

Bsq = B′x(−x x̂− y ŷ + 2 z ẑ) (2.2)

A magnetic field gradient of B′x ≈ 190 G/cm is achieved by increasing the current to 700

A. Once the atoms are trapped, the coils generating the trapping field physically move

along the length of our apparatus carrying the atoms to a second vacuum chamber which

has a pressure of around 10−11 torr.
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Figure 2.3: (a) An rf field resonant with the mF = 2 → mF = 1 transition for atoms ex-
periencing a large Zeeman shift, selectively removes high-energy atoms from the magnetic
trap. (b) As the atoms rethermalize to lower temperatures, the rf frequency is reduced.

2.1.3 Forced RF Evaporation

After the atoms are transferred to the BEC chamber, we use forced rf evaporation to cool

the atoms further. This method takes advantage of the fact that high-energy atoms may

travel further from the magnetic trap center where they experience larger Zeeman shifts.

An rf field resonant to the mF = 2 → mF = 1 transition for atoms experiencing a large

Zeeman shift is applied. High energy atoms absorb multiple photons from the rf field,

transferring the atoms from mF = 2 to the mF = 1, 0,−1,−2 states. As a result, high

energy atoms are selectively removed from the trap. As the atomic cloud rethermalizes

to lower temperatures, the rf frequency is reduced. The process continues until a BEC is

formed.

2.1.4 Time-Orbiting Potential Trap

During the evaporation process, the atoms spend more time near the magnetic field zero.

Since the magnetic field defines the quantization axis of the atoms, atoms near the mag-

netic field zero lose their spin orientation, allowing an atom to transition from mF = 2 to

a non-trapping or anti-trapping state. This phenomenon, known as a Majorana flip, leads
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to atom lose in the magnetic trap. To avoid this lose, we use a time-orbiting potential

(TOP) trap. A TOP trap uses a time-dependent magnetic field such that the atoms ex-

perience a force that is related to the time-average of the magnetic field. This allows the

atoms to be trapped in the minimum of the time-averaged magnetic field, while moving

the instantaneous magnetic field zero along a path which avoids the trapped atoms.

The TOP trap is created by adding a spatially uniform rotating bias field to the static

quadrupole field of the magnetic trap.

B0 = B0 (x̂ cos(Ω t) + ẑ sin(Ω t)) (2.3)

where B0 = 20 Gauss and Ω = 2π · 12.82 kHz. The bias field frequency Ω is chosen to be

smaller than the Larmor frequency (≈ 10 MHz) so the atoms spins adiabatically follow

the field, while being larger than the frequency of the atomic motion (≈ 10 Hz) so the

atoms feel a time-averaged potential. The magnitude of the TOP trap field is given by

|B| =
[
B2

0 +B′x
(
x2 + y2 + 4z2

)
− 2B0B

′
x x cos(Ω t) + 4B0B

′
x z sin(Ω t)

]1/2
(2.4)

Expanding to second-order and taking the time-average gives

〈|B|〉 = B0 +
B′xx
B0

(
1

4
x2 +

1

2
y2 + z2

)
(2.5)

resulting in trap frequencies

ω2
x =

1

2

µB′2x
mB0

, ω2
y =

µB′2x
mB0

, ω2
z = 2

µB′2x
mB0

(2.6)

The last stages of evaporation are performed in the TOP trap.
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2.2 BEC Wave Guide

While the TOP trap holds the BEC against gravity and provides spatial confinement, it has

several limitations which make it unsuitable for our interferometry experiments. Firstly,

the static spherical quadrupole field of the TOP trap is susceptible to static environmental

fields, whereas potentials created by alternating fields are only susceptible to components

of the environmental field which are harmonics of the field frequency. Secondly, the tight

confinement of the TOP trap results in large atomic interactions which limit the coherence

time of our condensate.

With these limitations in mind, we load the BEC into a weakly confining time-averaged

potential created using ac magnetic fields. To support the BEC against gravity while

creating a weakly confining trap, we engineered a field which exerts an upward force on

the BEC. Since the atoms are in a low-field-seeking state, this force may be realized by

creating a field in which the magnetic field zero remains in a plane above the atoms. This

is accomplished by adding an oscillating linear quadrupole field to a rotating bias field.

The spatially uniform rotation bias field used in the TOP trap and given by Eq. (2.3)

is added to an oscillating linear quadrupole field given by

Blq = B′lq (x x̂− z ẑ) sin(Ωt) (2.7)

The linear quadrupole is phase-locked to, and oscillates at the same frequency as, the

Bias. A pair of coils oriented along the weakly confining y-axis of the guide were added to

provide additional confinement. These coils were driven at the incommensurate frequency

$ = 2π · 1.0 kHz. The field from these coils is written as

By = B′x (−x x̂+ 2 y ŷ − z ẑ) sin($t) (2.8)

where B′x ≈ 2.5G/cm. Expanding the time-average of the magnitude of the field to second
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order gives

|B| ≈ B0 −
B′lq
2
z +

1

16B0

(
2B′2x + 3B′2lq

)
x2 +

B′2x
B0

y2 +
1

16B0

(
2B′2x +B′2lq

)
z2 (2.9)

The linear quadrupole gradient is chosen to perfectly cancel the gravitational force. There-

fore we can show that

µB′lq
2

= mg

B′lq =
2mg

µ
(2.10)

which gives B′lq ≈ 30 G/cm. Solving for the resulting trap frequencies gives

ω2
x =

µ

8mB0
(2B′2x + 3B′2lq), ω2

y =
2µB′2x
mB0

, ω2
z =

µ

8mB0
(2B′2x +B′2lq) (2.11)

which gives ωx ≈ 2π · 4 Hz, ωy ≈ 2π · 1 Hz, ωz ≈ 2π · 3 Hz.

2.3 Bragg Splitting & Re
ecting

In the sections above, I describe the procedure used to create and hold a BEC. Because

the vast majority of atoms in a BEC occupy the ground state of the confining potential,

the BEC provides a coherent source of atom waves. To implement an interferometer, we

must split this wave into two independent waves which transverse different paths. Once

the waves are split, we must coherently recombine the waves so that they overlap and

interfere. In an optical interferometer, splitting and recombining can be accomplished via

a beam-splitter and mirrors. In our experiment, momentum transfer from an off-resonant

standing wave is used to split and recombine the atom waves. The timing and intensity of a

standing wave was chosen to optimize the fidelity of the splitting and reflecting operations.

Details of the optimization, which was calculated by Jeremy Hughes and John Burke, were
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Figure 2.4: The atom-field interaction responsible for the Bragg Splitting can be under-
stood as an absorption followed by stimulated emission.

published here [28]. As the theory and details of Bragg diffraction are discussed elsewhere

[13, 29, 30, 28], I will provide only a brief description of the process.

The interaction between the atoms and the laser field during the splitting pulse can be

understood as absorption from one beam followed by stimulated emission into the opposing

beam. Since each photon carries momentum ~ k, the atom receives a total momentum

transfer of 2~ k, corresponding to a velocity of 11.7 mm/s. A result of symmetry: the

atoms split into two packets of equal size traveling in opposite directions. Bragg reflection

occurs through two absorption-emission cycles, transferring a total momentum of 4~k and

changing the momentum of the atoms from ±2~ k to ∓2~ k.

The idealized split operation perfectly couples the state describing a packet of atoms

at rest |0〉 to a superposition of states describing atoms moving in opposite directions with

momentum ±2~ k. As a result, the split operation can be represented mathematically of

as a unitary operator with the following properties

USplit |0〉 = |Split〉def
=

1√
2

(|2~k〉+ |−2~k〉)

USplit|Split〉 = |0〉 (2.12)
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Similarly the reflect operation can be represented mathematically as

UReflect|±2~k〉 = |∓2~k〉 (2.13)

Over the course of an interferometer measurement, a phase difference ∆φ develops between

the two packets of atoms. The resulting state may be written as |φ〉 = 1/
√

2(|2~k〉+

ei∆φ|−2~k〉). The phase difference between the two packets is measured by applying a

split pulse when two packets are overlapping. Since USplit|Split〉 = |0〉, the fraction of

atoms that come to rest after the recombination pulse is applied is given by

N0

N
= |〈Split|φ〉|2

=
1

4
|1 + ei∆φ|2

= cos2

(
∆φ

2

)
(2.14)

Notice that the equation for N0/N is even. As a result, a measurement of N0/N is unable

to determine the sign of phase shift. We resolve this issue by introducing a π/2 phase

shift in the final recombination pulse. This phase shift is achieved by slightly shifting the

frequency of the recombination pulse.

2.4 Con�nement E�ects & Interferometer Symmetry

After we split the atoms, atoms in one of the packets are manipulated in a controlled

fashion while the atoms in the other packet are left undisturbed. Any shift in the energy

of the manipulated atoms will alter the phase development of this atom wave packet.

When the two packets are recombined, the phase difference between the two packets is

measured, revealing information about this energy shift.

Manipulating the phase of the atoms in one packet in a controlled way requires that

the atoms repeatably travel along the same trajectory following the split pulse. The
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Figure 2.5: The graph on the left shows how N0/N changes when atoms in one packet
experience a phase shift ∆φ and no additional phase shift is applied during the recombi-
nation pulse. Notice that N0/N decreases from a maximum value of 1.0 for both positive
and negative phase shifts, making it impossible to determine the sign of ∆φ. The graph
on the right shows the N0/N dependence on ∆φ when an additional phase shift of π/2 is
applied during the recombination pulse. Note that, for the graph on the right, the sign of
∆φ is easily determined through the measurement of N0/N .

repeatability of the trajectory can be improved by increasing the waveguide confinement

along the two directions perpendicular to the motion given to the atoms by the split

pulse. Moreover, to manipulate the phase of only one of the atom wave packets, the

packets must completely spatially separate before the reflect pulse is applied. To ensure

that the momentum provided by the split pulse is sufficient to spatially separate the two

packets, a weaker confinement is used along the direction that the atoms move. In an ideal

waveguide, there would be no confinement along the direction in which the atom waves are

being guided. However, three practical concerns prevent free motion along the waveguide

axis: Firstly, edge effects caused by the finite length of the waveguide generate some

confinement along the axis of the guide. Second and thirdly, increasing the confinement

along the axis of the waveguide spatially confines atoms to a manageable packet size, while

also improving the repeatability of the atoms’ initial position.

In an ideal atom wave interferometer, a uniform phase builds up across the length

of an individual atom wave packet so that, when the two packets overlap, the phase

difference between overlapping portions is the same throughout entire packet. However,
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Figure 2.6: Confinement along the axis of the waveguide causes the opposite ends of the
atom wave packet to experience different potential energies, thereby inducing a phase
gradient across the length of the atom wave packet.

confinement along the axis of the waveguide results in a phase gradient across the length of

the atom wave packet. As a result, different parts of the two atom wave packets interfere

differently. Because the phase difference is found by measuring the fraction of the atoms

that return to rest after the recombination split pulse, large phase gradients eventually

cause the interference pattern to “wash-out”, resulting in a N0/N fraction of 0.5 in every

interferometry measurement.

To minimize the effect of this phase gradient, a symmetric trajectory is employed

so that each individual atom wave packet experiences canceling positive and negative

gradients. The symmetric trajectory used in this experiment is achieved by performing

the split-reflect interferometer described in Section 2.3, however, after the reflect pulse,

the the atom wave packets are allowed to pass through each other (rather than being

recombined). As the atom wave packets pass through each other and move into the other

side of the waveguide, they experience a phase gradient which has the opposite sign as the

phase gradient felt by the atom wave packet immediately after the split pulse. A second

reflect pulse brings the two atom wave packets back together and ensures a symmetric

trajectory.
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Figure 2.7: Symmetric trajectories cause each atom wave packet to experience canceling
positive and negative phase gradients. Blue and red in the figure above indicate positive
and negative phase gradients respectively.

2.5 Absorption Imaging

The fraction of atoms that come to rest is determined through absorption imaging. In

absorption imaging, atoms absorb light from a short pulse of resonant light, thereby casting

a shadow in the imaging beam. The plane that the atoms are in is imaged onto a CCD.

Thus, the CCD captures an image of the spatial intensity profile of the beam in the

plane of the atoms. Absorption from the atoms is identified by comparing images of

beam’s intensity profile with and without the atoms in the waveguide. In our experiment,

absorption imaging was setup along both the x and z axes of the waveguide.

Three raw images are used to create a composite image which shows the fraction of the

imaging light absorbed by the atoms. A “Background” image, taken in the absence of

the imaging light pulse, is used to compensate for leakage light and CCD offset. An

“Atoms” image is created by imaging the intensity profile of the resonant imaging light

when atoms are present in the imaging beam’s path. And a “No atoms” image shows the

spatial intensity profile of probe light in the absence of atoms. The final composite image

is created according to the following formula

final image =
Atoms− Background

No Atoms− Background
(2.15)

A fitting routine uses this composite image to determine fraction of the atoms that return

to rest.
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Figure 2.8: Schematic showing the lens configuration used in the vertical and side ab-
sorption imaging. Infinity-corrected achromatic lenses are used throughout both imaging
setups. In the vertical setup the atoms are imaged onto an Apogee AP47P camera, which
has a resolution of 1024 x 1024 and a pixel size of 13 µm. The optics provide a 4x mag-
nification resulting in imaging resolution of approximately 307 px/mm. In the horizontal
setup the atoms are imaged onto a Pixis 1024 camera, which also has a resolution of 1024 x
1024 and a pixel size of 13 µm. The optics provide a 2x magnification resulting in imaging
resolution of approximately 154 px/mm. The red shaded region shows the ray diagram of
the absorption laser, while the solid black lines show the ray diagrams of the absorption
image of the atoms.



Chapter 3

Tune-Out Wavelength Experiment

In this chapter, I will outline the procedure we used to measure the tune-out wavelength.

3.1 Overview

Our tune-out wavelength measurements essentially consist of a series dynamic polariz-

ability measurements made over a range of wavelengths close to, and on both sides of,

the tune-out wavelength. The tune-out wavelength is determined by interpolating this

data to find the wavelength at which the dynamic polarizability is zero. Each dynamic

polarizability measurement was made by measuring the phase difference that developed

between two atom packets when one of the atom packets passes through an applied laser

field. The phase difference that develops between the two atom packets is related to the

applied field intensity by

∆φ =

∫
− ~

2c ε
α(ω) I dt (3.1)

To avoid errors which arise from the uncertainty in the intensity of the applied field, the

measurement was repeated for a range of field intensities while keeping the wavelength

fixed. Because the applied field intensity is difficult to measure, we measured the total

power of the applied field for each phase measurement. The total power of the applied
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Figure 3.1: Phase shift at λ = 790.03170 nm and 790.03251 nm. The intercept Phase = 0
rad. represents the phase shift at which N0/N = 0.5. Due to the phase encoded onto the
atoms by the recombination Bragg pulse (see Sec. 2.3), the point at which Phase = 0
rad. is somewhat arbitrary.

field was varied from zero to 18 mW using an AOM. Since the intensity of the applied

field is proportional to its total power, the phase difference given by Eq. (3.1) may be

rewritten in terms of our measured quantities as a simple proportionality relation

∆φ = κP (3.2)

where κ is proportional to the dynamic polarizability. The measured phase differences

and laser powers were fit to a straight line using the least squares method. The one sigma

uncertainty in the fit parameter is treated as our uncertainty in κ. The wavelength of the

applied field was measured periodically during the data collection; the standard deviation

of the measured wavelengths is treated as the random uncertainty in the wavelength for the

κ measurement. The entire process of measuring κ was repeated for a range of wavelengths

close to, and on both sides of, the tune-out wavelength. From this data we plot κ versus

λ. Using a linear fit, we determine the wavelength λ0 where κ, and thus α, equals zero.

We use the fit uncertainty in λ0 as the random uncertainty in the measured value of the

tune-out wavelength.
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Figure 3.2: Tune-out wavelength data for light linearly polarized along the x-axis.

3.2 Detailed Experimental Procedure

The atoms are loaded into a waveguide with a harmonic trapping potential with frequencies

ωx ≈ 2π · 5.1 Hz, ωy ≈ 2π · 1.1 Hz, and ωz ≈ 2π · 3.2 Hz. The atoms are split, via

Bragg scattering, into two equal packets which travel in opposite directions along the

weakly confining y-axis of the waveguide. After the split pulse, the atoms are moving

at a speed of 11.7 mm/s. Immediately following the split pulse, a laser field is applied

along the trajectory of one of the two atom packets. One of the atom packets passes

through the applied laser field, accumulating a phase shift as a result of the ac Stark shift.

Ten milliseconds after the split pulse, the motion of both atom packets is reversed via

a reflection pulse. When the atom packets return to their initial position, 20 ms after

the initial split pulse, the applied laser field is removed. As described in Section 2.4, we

minimize spatial phase gradients, which form across the length of the atom packets, by

allowing the atoms to pass through each other and trace out symmetric trajectories. When

the atom packets return to their initial position, a second split pulse is applied. A fraction

of the atoms return to rest, while the remaining atoms continue their trajectories. The

atom packets which remain in motion continue to separate until they become spatially



3.2. DETAILED EXPERIMENTAL PROCEDURE 35

A
to
m

P
os
it
io
n

Time

Figure 3.3: Atom-wave packet trajectories during a typical polarizability measurements.
The timing and position of the applied field is denoted by the shaded region within the
graph.

distinct from the atoms at rest. The three distinct atoms packets are then imaged via

absorption imaging. The fraction of the atoms which return to rest is then determined by

a program which analyzes the absorption image. As described in Section 2.3, the fraction

of atoms which return to rest is related to the phase difference between the two packets

according to Eq. (2.14).

3.2.1 Stark Beam Alignment

Recall that the atom-light interaction energy is proportional to the intensity of the applied

light

∆E = − 1

2c ε
α(ω) I (1.3)

To increase the sensitivity of our interferometer, we focused the applied beam onto the

plane of the atom’s motion, thereby maximizing its intensity for a given power. In our

experiment we engineered the beam to have a waist of approximately 30µm. This was

chosen as the smallest feasible waist size, as the atom packets have a width of 13µm in the

direction perpendicular to their motion. The small beam waist presented two challenges

for our experimental design: Firstly, the small beam size requires a method for precisely

aligning the applied beam onto the trajectory of the atom packet. Secondly, the atom

trajectory must be repeatable to better than 30µm.

To align the Stark beam along the trajectory of the atom packet, the vertical imaging
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Figure 3.4: Schematic of Atom & Stark Beam Imaging.

system was used to image both the atoms as well as the Stark beam. Using the imaging

scheme illustrated in Figure 3.2.1, we imaged the position of the atoms as well as the

position of the Stark beam using the same camera and imaging optics. Because absorption

imaging requires a collimated resonant beam, while the tune-out wavelength measurement

requires a focused off-resonant beam, the two beams follow separate paths before being

combined via a polarizing beam splitting cube and directed into the imaging optics. Due

to thermal drift, the Stark beam was realigned at the start of each day, before the tune-out

wavelength measurements.

In section 3.1, I explain that the tune-out wavelength is found by measuring an atom-

wave packet’s phase sensitivity to the intensity of an applied Stark beam. This phase

sensitivity is found my measuring the slope of the accumulated phase versus the total
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power of the applied Stark beam, which is controlled via an AOM. Because we are unable

to image the Stark beam and atoms simultaneously during the experiment, we are unable

to correct for variations in the applied intensity due to shifts in the relative positions of

the Stark beam and the atom-wave packet. As a result, these variations constitute an

uncontrolled source of uncertainty in the intensity of the Stark beam. These intensity

variations result in noise in the phase versus power data, and result in larger uncertainties

in the measured values of κ.

One major source of fluctuations in the trajectories experienced by the atom-wave

packets arise from the motion given to the atoms when being transferred into the wave-

guide. To minimize this motion, the position and tilt of the waveguide, as well as the

rate at which the various fields ramp on and off, were carefully adjusted so that the time-

averaged magnetic field minimum did not move during the transfer from the TOP trap

into the waveguide. To further improve the repeatability of the atom-wave trajectories,

additional confinement was provided along the weakly confining y axis of the waveguide

using a pair of coils. These coils provided an AC magnetic field to minimize the effect

of environmental fields. After optimization, the position of the split atom-wave packets

were found to be repeatable to within 6µm in the direction perpendicular to the axis of

the waveguide and 20µm in the along the weakly confining direction of the waveguide.

Fluctuations in the position of the Stark beam were also measured, however these were

found to be negligible.

3.2.2 Broadband Light

Another major concern is broadband light in the Stark beam. The Stark beam was pro-

duced by a home-built grating stabilized external-cavity diode laser. The diode, Thorlabs

L785P090, was free-running near 783 nm. An external cavity pulled the laser to 790 nm.

The scattering rate of the Stark beam near 790 nm was observed to be much higher than

expected. The observation was consistent with the presence of broadband light over the
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atomic resonances near 780 nm.

For light composed of a single wavelength, the scattering rate may be calculated as

Rs =
Γ

2




I
Isat

1 + I
Isat

+ 4
(

2π∆
Γ

)2


 (3.3)

where ∆ = f−f0 is the detuning from resonance, Γ the natural linewidth of the transition,

and ISat is the saturation intensity. For the 5P3/2 transition, the linewidth is 2π · 5.75

MHz, the saturation intensity is approximately 36 W/m2, and the resonance is at 780.241

nm.

Observations of the Stark beam scattering rate were achieved by splitting atoms via

Bragg scattering into two moving packets, such that one of the atom packets traveled

through the Stark beam, while the other packet traveled away. The fraction of the atoms

scattered by the Stark beam was determined by comparing the number of atoms in the two

packets after one packet traveled completely through the Stark beam. This measurement

was repeated for different Stark beam intensities. We expect 0.3% of the atoms to be

scattered by a 7.6 mW Stark beam at 790 nm with a waist of 30µm; the measured

fraction of the atoms scattered was 80%.

The increased scattering rate was found to be the result of broadband light near the

5P3/2 resonance. We came to this conclusion by comparing the scattering rates of the

Stark beam with and without a band-pass filter, which transmitted light near the 5P3/2

resonance, while filtering light at 790 nm. While the band-pass filter transmitted ap-

proximately 3% of the overall Stark beam power, the scattering rate with the filter was

approximately one-third of the unfiltered Stark beam scattering rate. The spectral trans-

mission of the band-pass filter, along with the results of our scattering rate measurements

are shown in Figure 3.5.

The scattering rate of a spectrum may be calculated by integrating over Eq. (5.1).
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Figure 3.5: The graph on the left shows the spectral transmission of the band-pass filter
used to investigate the unexpectedly high Stark beam scattering rate. The plots on the
right show the fraction of atoms that remain after traveling through the Stark beam with
(square) and without (circle) the band-pass filter.

For a low-intensity spectrum, we may ignore the I/ISat in the denominator.

Rs =

∫
Γ

2




S(ν)
ISat

1 + 4
(

2π∆
Γ

)2


 dν (3.4)

where S is the spectral intensity. If we model the broadband portion of the Stark beam

as a uniform spectral intensity extending over the 5P3/2 resonance, we may approximate

Eq. (3.4) by treating S as a constant and taking the integral from −∞ to +∞. In this

case, Eq. (3.4) reduces to

Rs ≈
1

2

(
Γ

2

)2 ( S

ISat

)
(3.5)

Using Eq. (3.5), we find that the power spectral density of the Stark beam near the 5P3/2

resonance is approximately PSD ≈ 4 · 10−17 Hz−1 × P , where P is the total power of the

Stark beam.

Broadband light from the Stark beam is a major concern for two reasons: As described

above, broadband light near the 5P3/2 resonance removes atoms from one arm of the

interferometer, limiting our ability to perform interferometry measurements. Far more
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serious, however, is the effect that broadband light has on our measured value of the

tune-out wavelength. Recall that the interferometer measures a phase difference which

is proportional to the time-averaged Stark shift given by Eq. (1.3). For broadband light

with spectral intensity S(ν), the Stark shift may be calculated by integrating Eq. (1.3)

〈∆E〉 =

∫
− 1

2c ε
α(ν) 〈S(ν)〉 dν (3.6)

where the brackets indicate time-averaging over the atomic trajectory. To determine

the effect that broadband light has on our measurement of the tune-out wavelength, we

compare the Stark shift caused by the broadband light ∆Ebb to the derivative of the

Stark shift caused by the main Stark beam light with respect to the frequency of the light

d(∆E)/dν.

∆ν =
∆Ebb

d(∆E)/dν
(3.7)

For a non-uniform spectral intensity distribution near the 5P3/2 resonance, this shift is on

the picometer scale.

To address this issue, the Stark beam was spectrally filtered by reflecting the light off

a blazed grating with 1200 lines/mm, then focusing it through a lens with a 75 mm focal

length, and finally directing this light through a 50µm diameter pinhole placed at the

focus of the lens. Because the angle of the reflection off of the grating reflects depends

on the wavelength of the light, only light with the desired wavelength will pass through

the pinhole. To find the range of wavelengths accepted by the pinhole we relate the dθ

caused by the grating to the displacement dy at the pinhole. This may be calculated via

ray transform matrix analysis starting from the grating. The ray transform matrix for the
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light at the pinhole is given by
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Thus the beam displacement at the pinhole is given by dy = f dθ. For light reflected from

a grating, dθ can be related to dλ by

dθ =
dλ

d cos θ
(3.9)

where θ is given by sin θ = λ
d .

For a 50 mm pinhole, dλ = 176 pm. In the worst-case scenario, the pinhole transmits

light starting −176 pm from the tune-out wavelength and extending to the tune-out wave-

length. For a uniform power spectral density given by PSD ≈ 4 · 10−17 × P , this would

shift the measured value of the tune-out wavelength +0.57 fm.

Due to our uncertainty in the power spectral density near the tune-out wavelength,

several tune-out wavelength measurements were also made using a 100µm diameter pin-

hole. No shift in the measured values of the tune-out wavelength were observed for the

measurements made using the larger pinhole.

3.2.3 Wavelength Measurement

Wavelength measurements were made using a Bristol Instruments model 621A wavemeter,

which displays digits to 1 fm. The wavemeter is a source of both systematic and random
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Figure 3.6: Schematic of spectral filtering optics.

errors in our measurement of the tune-out wavelength. We investigated the uncertainty

of the wavemeter measurements by measuring four known alkali transitions in a saturated

absorption experiment. The transitions used for this purpose include: 39K D1 F = 1−F =

2 (crossover) → F ′ = 1 − F ′ = 2 (crossover), 87Rb D1 F = 2 → F ′ = 3, 85Rb D2

F = 3 → F ′ = 2, and 133Cs D2 F = 3 → F ′ = 4. The result of the saturated absorption

measurements are summarized in Table 3.1.

Transition Known Wavelength (nm) Measurement Error (fm)
39K 770.108216 -32, -33

87Rb 780.245945 -38, -44
85Rb 794.982062 -25, -38
133Cs 852.334606 -63, -78

Table 3.1: Result of saturation absorption measurements of known transitions in alkali
atoms. Each transition was measured twice: once before our measurements of the tune-out
wavelength, and a second time after the last tune-out wavelength measurement.

Using these results, we recalibrated the wavemeter readings near 790 nm. The differ-

ence between the wavemeter reading and the actual wavelength near 790 nm was found

by fitting Error = C (λ − 790 nm) + ∆ to the error in the measured wavelengths versus

the wavelength. Using a least-squares fit, we found that ∆ = −39.7 fm ± 3.5 fm. This

calibration offset was recalculated using various subsets of the four absorptions measure-

ments. The average calibration offset was found to be ∆ = −40 fm ± 5 fm. We treat

∆ as a offset in our wavemeter calibration; we correct for this offset when recording our
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measured wavelengths. The uncertainty in this offset represents systematic source of error

in our wavelength measurements.

3.2.4 Vector Polarizability

In Section 1.2.2 it was shown that the polarizability may be decomposed into an irreducible

representation of spherical tensors as

α(ω) = α(0)(ω) +A cos θk
mF

F
α(1)(ω) +

(
3 cos2 φ− 1

2

)
3m2

F − F (F + 1)

F (2F − 1)
α(2)(ω) (1.35)

where α(0)(ω), α(1)(ω), and α(2)(ω) are the scalar, vector, and tensor polarizabilities,

respectively. For atoms uniformly distributed among the mF states, 〈α(ω)〉 = 〈α(0)(ω)〉.

For this reason we’ve chosen to measure the scalar polarizability.

Recall that the atoms in our experiment are pumped into the |F = 2, m = 2〉 state.

As a result, the vector and tensor terms contribute to our measured polarizability in a

way that depends on the polarization of the light as well as the orientation of the atomic

quantization axis. In our experiment, we minimize the vector contribution, while the

tensor component is measured and accounted for.

Vector contributions to the polarizability can be extremely large. For example, the

vector contribution to the polarizability for σ+ light (A = +1 and θk = 0) is large enough

in |F = 2,m = 2〉 state to eliminate the tune-out wavelength between the 5P1/2 and 5P3/2

manifolds. This is easily understood as there are no m = 3 states in the 5P1/2 manifold.

For small vector contributions, the shift to the tune-out wavelength that arises as

a result of the vector contribution may be approximated by linearizing α(ω) about the

tune-out wavelength of the scalar polarizability. Because the tensor polarizability is much

smaller than the scalar polarizability, and because we are trying to minimize the vector
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polarizability, we may approximate dα/dλ as dα(0)/dλ.

α(ω) ≈ dα(0)

dλ

∣∣∣
λ0

(λ− λ0) +A cos θk
mF

F
α(1)

∣∣∣
λ0

λ− λ0 ≈ −A cos θk
mF

F

α(1)
∣∣∣
λ0

dα(0)

dλ

∣∣∣
λ0

(3.10)

Because the polarizability is dominated by the coupling between our initial state |F =

2,m = 2〉 and the 5P manifold, we can estimate the values of dα(0)/dλ and α(1) by taking

the sum only over the excited states in the 5P manifold in Eq. (1.39). For light near the

tune-out wavelength of the scalar polarizability, we find that dα(0)/dλ ≈ 2517 a.u./nm, and

α(1) ≈ 12400 a.u., resulting in α(1)

dα(0)/dλ
≈ 4.93 nm. To measure the tune-out wavelength of

the scalar polarizability to a precision of 10 fm, we must reduce A cos θk < 2(10−6). Two

methods are used to minimize the vector contribution: linearly polarized light minimizes

A, while a rotating bias field reduces the time-average of cos θk.

Time-Average of The Vector Polarizability

Recall that atoms in the waveguide are held in place by a time-averaged potential created

by three fields: a rotating bias field, given by Eq. (2.3); a linear quadrupole field which

is phase locked to the rotation bias, given by Eq. (2.7); and a spherical quadrupole field

which is generated by a pair of coils at opposite ends of the waveguide, given by Eq. (2.8).

B0 = B0 (x̂ cos(Ω t) + ẑ sin(Ω t)) (2.3)

Blq = B′lq (x x̂− z ẑ) sin(Ωt) (2.7)

By = B′x (−x x̂+ 2 y ŷ − z ẑ) sin(ωt) (2.8)
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Figure 3.7: The figure above illustrates the orientation of the rotating bias field relative to
the Stark beam in our experimental apparatus. The dotted line indicates the path traced
out by the rotating bias. The block structure is the atom waveguide.

For a properly chosen linear quadrupole gradient (see Eq. (2.10)), the atoms are held in

equilibrium at r = 〈0, 0, 0〉, where the magnetic fields from both the linear quadrupole

and the spherical quadrupole are zero.

Recall that, for atoms in the |F = 2,m = 2〉 state, the vector polarizability term is

given by α(ω)vec = A cos θk α
(1)(ω), where θk is the angle between the wave vector and

the magnetic field. For atoms held in equilibrium, the rotating bias is the only magnetic

field present. Because the light which imposes the Stark shift travels along the z-axis,

while the rotating bias field rotates in the x-z plane, the angle θk rotates with the same

frequency as the rotating bias, Ω = 2π · 12.82 kHz.

The atoms experience the Stark shift by traveling through a focused laser beam with

a beam waist of 30µm. The atoms start 58.5µm from center of the beam and travel for

10 ms at a speed of v = 11.7 mm/s to a point equidistant from, and on the opposite

side of, the Stark beam. The atoms are then reflected, and travel for 10 ms back to their

initial position. The rotating bias undergoes 256.4 rotations during this time. Because

the intensity of the light seen by the atoms changes as the atoms move through the Stark
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Figure 3.8: The vector polarizability time average dependence on the initial phase ξ0.

beam, we look at the time-average of cos θk weighted by I(t).

〈cos θk〉 =

∫ tf
0 cos(Ω t+ ξ0) I(t) dt

∫ tf
0 I(t) dt

(3.11)

where ξ0 describes the initial orientation of the rotating bias field.

For the tune-out wavelength measurement discussed here I(t) is given by

I(t) = I0 e
−2(|v t−2 x0|−x0)

2

w2 (3.12)

where I0 = 12.7 W/mm2; x0, v, and w are the initial position of the atoms, their velocity,

and the beam waist respectively.

Plugging Eq. (3.12) into Eq. (3.11) and factoring out the ξ0 dependence gives

〈cos θk〉 = cos

(
2Ωx0

v
+ ξ0

) ∫ tf
0 cos

(
Ωx0
v + t

)
I(t)dt

∫ tf
0 I(t) dt

(3.13)

Numerically integrating Eq. (3.13) reveals that 〈cos θk〉 achieves a maximum value of

1.7 (10−6) when ξ0 = −2Ωx0
v .

Field imperfections, such as a dc background field or the atoms being displaced from
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the quadrupole zero, will increase the value of 〈cos θk〉. For the tune-out wavelength

measurements discussed here, the phase of the rotating bias was synced to the experiment.

To verify that the time-averaging adequately reduced vector polarizability contribution,

several measurements were made using different values of ξ0. No shift in our measured

values of the tune-out wavelength were observed for these measurements.

Linearizing Polarization of the Stark Beam

The vector polarizability is further reduced through the use of a linearly polarized Stark

beam. A calcite polarizer is used to establish the initial polarization of the light. How-

ever, before reaching the atoms, the Stark beam interacts with various optics which alter

the light’s polarization. A zeroth-order quarter-wave plate is placed between the calcite

polarizer and the atoms to correct for the ellipticity caused by the optics.

One major challenge with linearizing the polarization of the light, is accounting for

the birefringence of the vacuum chamber in which the experiment was conducted. To

address this issue, an interferometry measurement was designed to be sensitive to the

vector polarizability, while minimizing our sensitivity to the scalar polarizability. The

vector polarizability interferometer is essentially the same as the interferometer used to

measure the scalar polarizability. Because α(ω)vec is proportional to A, measuring the

vector polarizability effectively measures the polarization of the light that interacts with

the atoms.

To maximize the interferometer’s sensitivity to the vector polarizability, the Stark

beam was pulsed in sync with the rotating bias field, so that the Stark beam is only

applied when cos θk is positive. As a result, the time-average of cos θk was increased from

1.7(10−6) to 2/π. To minimize the interferometer’s sensitivity to the scalar polarizability,

the wavelength of the Stark beam was set close to the tune-out wavelength for the scalar

polarizability. For light that is 1 pm detuned from the tune-out wavelength of the scalar

polarizability, α(1) is nearly 50,000 times larger than α(0). Due to the relative strengths
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Figure 3.9: Stark beam timing for the vector polarizability measurement.

of the scalar and vector polarizabilities, we did not need to know the exact value of the

tune-out wavelength for the vector polarizability measurements.

To verify the interferometer measurements were sensitive to the vector polarizability,

two separate measurements were made: one measurement was made by applying the

Stark beam only when cos θk was positive, a second measurement was made by applying

the Stark beam only when cos θk was negative. Because α(ω)vec is proportional to cos θk,

changing the timing of the Stark beam pulses in this way should change the sign of the

phase shift caused by the vector polarizability. The scalar polarizability is not affected

by the direction of the magnetic field. As a result, the phase shift caused by the scalar

polarizability should have the same sign for both types of measurements. Both types of

measurements were used when linearizing the polarization of the Stark beam.

Our tune-out wavelength measurement’s sensitivity to the polarization of the Stark

beam was empirically measured. We found that a 1◦ rotation of the quarter-wave plate

in the Stark beam’s path shifted the measured tune-out wavelength by about 360 fm.

This suggests our time-average of cos θk is 4 (10−3), more than 2000 times larger than the

idealized time-average calculated from Eq. (3.13). This discrepancy is likely the result of

an environmental magnetic field, which biases the time-averaging.

The initial linearization of the Stark beam’s polarization was limited by our ability to

adjust the quarter-wave plate. For each tune-out wavelength measurement, the quarter-

wave plate was adjusted to within 0.1◦ of the desired orientation, resulting in A ≈ 2 (10−3).

However, each tune-out wavelength measurement took several hours to complete and,
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during this time, the polarization of Stark beam drifted. We account for this drift by

measuring the polarization of the Stark beam at the end of each tune-out wavelength

measurement. We used our empirically measured polarization sensitivity to estimate the

error that resulted from this polarization.

3.2.5 Tensor Polarizability

While significantly smaller, the tensor polarizability also contributes to the measured

tune-out wavelength. We determine the tune-out wavelength of the scalar polarizability

by measuring and accounting for the shifts in the tune-out wavelength caused by contri-

butions from the tensor polarizability. We identify the tensor contributions through their

dependence on the angle between the polarization of the linearly polarized Stark shift-

ing light and the rotating bias field, θp. To measure these tensor contributions, tune-out

wavelength measurements were made for several values of θp. A half-wave plate was used

to adjust the polarization of the Stark shifting light.

For linearly polarized light incident on atoms in the |F = 2,mF = 2〉 state, the vector

contribution vanishes and Eq. (1.35) reduces to [23, 24, 25]

α(ω) = α(0)(ω) +

(
3

4
cos2 θp −

1

2

)
3m2

F − F (F + 1)

F (2F − 1)
α(2)(ω)

α(ω) = α(0)(ω) +

(
3

4
cos2 θp −

1

2

)
α(2)(ω) (3.14)

Where θp is the angle between the polarization of the light and external magnetic field.

Note that, due to time-averaging of the rotating bias field, an additional factor of 1/2

appears in front of the cos2 θp term.

The shift to the tune-out wavelength that arises as a result of the tensor contribution

may be approximated by linearizing α(ω) about the tune-out wavelength of the scalar

polarizability. Because α(2)(ω) is much smaller than α(0)(ω), we may approximate dα/dλ
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as dα(0)/dλ.

α(ω) ≈ dα(0)

dλ

∣∣∣
λ0

(λ− λ0) +

(
3

4
cos2 θp −

1

2

)
α(2)

∣∣∣
λ0

λ− λ0 ≈ −
(

3

4
cos2 θp −

1

2

) α(2)
∣∣∣
λ0

dα(0)

dλ

∣∣∣
λ0

(3.15)

Once again we may estimate the values of dα(0)

dλ
and α(2) by using Eq. (1.39) and taking

the sum over the excited states in the 5P manifold. For light near the tune-out wavelength

α(2) = 2.010 (10−25) cm3, and dα(0)

dλ
≈ 3.735 (10−22) cm3/nm. This results in α(2)

dα(0)/dλ
=

538.2(4) fm. Looking at Eq. (3.15) we see that the tensor contribution both shifts the

tune-out wavelength by +270 fm and adds a measurable oscillation with an amplitude

of 202 fm. Note that, because the tensor contribution shifts the tune-out wavelength by

1
2

(
α(2)

dα(0)/dλ

)
regardless of the orientation of the Stark light polarization, our measurement

of the tune-out wavelength for the scalar polarizability is sensitive to the value of α(2)

dα(0)/dλ
.



Chapter 4

Results

4.1 Results of The Tune-out Wavelength Measurement

Our reported value of the tune-out wavelength was determined through 21 tune-out wave-

length measurements. Measurements were made at five polarization angles θp. As outlined

in Section 3.2.5, we used the tensor polarizability’s dependence on the polarization angle

θp to account for the shifts in the tune-out wavelength caused by tensor contributions. We

determined the tune-out wavelength of the scalar polarizability by plotting our tune-out

wavelength measurements against the polarization angle θp and fitting the data to Eq.

(3.15). Because multiple tune-out wavelength measurements were made at each angle

θp, these measurements were combined through an average which was weighted by the

uncertainty in each measurement. The uncertainty in each tune-out wavelength measure-

ment was found by combining the statistical uncertainty in the linear fit, described in

Section 3.1, with the estimated error caused by polarization drift, described in Section

3.2.4. The uncertainty of the weighted average was calculated according to the formula

σ2 = 1/
∑

i σ
−2
i .

Fitting the averaged tune-out wavelength measurements to Eq. (3.15), while using

both α(2)

dα(0)/dλ
and λ0 as fitting parameters, gives α(2)

dα(0)/dλ
= 390(120) fm and λ0 =
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Figure 4.1: Tune-out wavelength measurements for light linearly polarized an angle θ from
the x-axis.

790.032377(35) nm. The fit, which has a χ2/d.o.f. of 0.5, is shown as the solid curve

in Fig. 4.1. In Section 3.2.5, the value of α(2)

dα(0)/dλ
was calculated using Eq. (1.39). From

this calculation we found α(2)

dα(0)/dλ
= 538.2(4) fm, which is about 1.3σ larger than the

value obtained from the fit. Performing a fit in which the value of α(2)

dα(0)/dλ
is constrained

to the calculated value of 538.2 fm, we find that λ0 = 790.032326(29) nm, which is about

1σ smaller than the value obtained from the unconstrained fit. The constrained fit has a

χ2/d.o.f. of 1.2, and is shown as the dashed curve in Fig. 4.1. Because the calculated value

of α(2)

dα(0)/dλ
is expected to be accurate, we report the value obtained using the constrained

fit.

4.2 Error Analysis

As outlined in Section 3.1, each tune-out wavelength measurement was made by inter-

polating a set of dynamic polarizability measurements made at various wavelengths to

find the wavelength at which α(ω) = 0. This interpolation was accomplished through a

linear fit of the polarizability measurements versus the wavelength. Estimated errors in

the polarizability measurements and the wavelengths at which these measurements were
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made were included in the linear fit. The statistical error in the tune-out wavelength

measurement is derived from the uncertainty in this fit. The average statistical error in

the tune-out wavelength measurement was 60 fm.

The statistical error in each tune-out wavelength measurement incorporates estimated

errors in the polarizability measurements. The polarizability was determined by measuring

the slope of the phase that accumulates when an atom packet passes through the Stark

beam versus the overall power in the beam. The linear fit used to determine this slope

provides a statistical error, which is used as the estimated error for the polarizability

measurement. The wavelength of the Stark beam was measured periodically during the

polarizability measurement; the standard deviation of the measured wavelengths was used

to estimate the error in the wavelength at which the polarizability was measured.

Because we seek to measure the tune-out wavelength of the scalar polarizability, contri-

butions from the vector polarizability constitute a significant source of error. As outlined

in Section 3.2.4, vector polarizability contributions were minimized by using a linearly

polarized Stark beam. However, polarization drifts, which occur over the course of each

tune-out wavelength measurement, result in slight deviations from linear polarization. To

estimate the error arising from these polarization drifts, measurements of the polariza-

tion were made at the start and end of each tune-out wavelength measurement. Because

each tune-out wavelength measurement occurs over the course of several hours, we are

not confident that the polarization drift is linear, or even monotonic. As a result, we

use the full value of the polarization drift to estimate the error. The resulting error in

the tune-out wavelength measurement was determined through an empirical calibration,

which determined the sensitivity of our tune-out wavelength measurement to the polar-

ization of the Stark beam. The average error in the tune-out wavelength measurements

caused by polarization drift is 126 fm.

Averaging the 21 tune-out wavelength measurements reduces the estimated error in the

tune-out wavelength by a factor of
√

20, resulting in statistical and polarization drift er-
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rors of 13 fm and 28 fm, respectively. Statistical and polarization errors vary considerably

between tune-out wavelength measurements. As noted in Section 3.2.5, when calculating

the tensor contribution to the tune-out wavelength, the measurements from each polar-

ization angle were combined using a weighted average given by
∑

iwi xi/wi where the

weight wi is given by wi = 1/σ2
i and σi is the combined statistical and polarization error.

The uncertainty in the weighted average is given by σ2 = 1/
∑

i σ
−2
i . The tensor polar-

izability fit, described in Section 3.2.5, was used to determine the tune-out wavelength

of the scalar polarizability. The fit provided an error for the tune-out wavelength which

effectively combines the statistical and polarization drift errors of all the measurements.

This combined error is 32 fm.

The wavelength measurements also contributed to the error in the tune-out wavelength.

As outlined in Section 3.2.3, we used a Bristol Instruments model 621A wavemeter which

was calibrated using known saturation absorption lines in K, Rb, and Cs. The calibration

indicated that a correction of ∆ = −40 fm ± 5 fm should be applied to the measured wave-

length. The uncertainty in the calibration presents a systematic error in our wavelength

measurements. The wavemeter was calibrated before and after the full run of tune-out

wavelength measurements.

As discussed in Section 3.2.2, another significant source of error comes from the broad-

band light in the Stark beam. To reduce this effect, the Stark beam was spectrally filtered

through a 0.34 nm band-pass filter using a diffraction grating and pinhole. While the power

spectral density near 780 nm was determined via scattering rate measurements, the power

spectral density may vary significantly between 780 and 790 nm. Because of the difficulty

in measuring low spectral power levels near the lasing wavelength of 790 nm, we quantified

the effect of broadband light on our tune-out wavelength measurements by comparing the

measurements made using 0.17 nm and 0.34 nm band-pass filters. Approximately half of

the measurements were made using each filter. No measurable difference was observed,

within our 30 fm precision. Since the error resulting broadband light is expected to scale
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with the bandwidth squared, the agreement between our two sets of measurements sug-

gests an error of less than 10 fm for the smaller bandwidth configuration. We report the

estimated error from broadband light as 10 fm.

Uncertainty in the waveguide magnetic field introduces an additional source of error

through its effect on the 〈cos2 θp〉 term, which factors into the tensor polarizability as

shown in Eq. (3.2.5). This has the potential to shift the measured tune-out wavelength by

altering the value of the fitting parameter λ0 in Eq. (3.15). The effect of a particular defect

may be found by calculating the change to Eq. (3.15) caused by a non-ideal magnetic field

in which 〈cos2 θp〉 6= 1/2 cos2 θp.

∆λ0 ≈ −
(

3

4
cos2 θp −

3

2
〈cos2 θp〉

) α(2)
∣∣∣
λ0

dα(0)

dλ

∣∣∣
λ0

(4.1)

Note that the equation above gives the shift in the tune-out wavelength at a particu-

lar polarization angle θp. Of particular importance are effects which shift the tune-out

wavelength when averaged over all polarization angles θp, as this will shift the value of

the fitting parameter λ0. As a result, the shift in the fitting parameter λ0 is found by

averaging Eq. (4.1) over all possible angles θp.

The most significant shift to the tune-out wavelength appears to occur when a time-

dependent bias field is applied along the z direction. We are able to place a limit on

the strength of such a field by measuring the Zeeman linewidth of trapped atoms using

rf spectroscopy. These measurements suggest that the magnitude of the Bias varies by

less than 2%, which, in the worst case, would result in a 1.0 fm shift to the tune-out

wavelength. Other effects are smaller. For example, a 1 G dc background field pointing

perpendicular to the plane of the rotating bias, would shift in the tune-out wavelength

approximately 0.5 fm. We estimate the error arising from all field defects to be 2 fm.

Hyperpolarizability creates an additional source of error. As outlined in Section

1.2.3, at peak intensity and at 790 nm, the hyperpolarizability contributes approximately
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Source Error (fm)

Statistical 13
Polarization drift 28

Stat. and polz. combined 29
Broadband spectrum 10
Wavemeter calibration 5
Field defects 2
Hyperpolarizability 1

Total 31

Table 4.1: Tune-out wavelength error estimates. The entries for statistical error and
polarization drift report the average errors for each type divided by the square root of the
number of measurements. In the analysis, both errors were combined at each data point
to give the reported combined error in the result.

9.6
(
10−4

)
a.u. to the polarizability, shifting the tune-out wavelength by 0.3 fm. We

approximate the error to the tune-out wavelength from hyperpolarizability to be 1 fm.

As outlined in Section 3.2.4, atoms held in the equilibrium of the magnetic waveguide

potential experience a rotating bias field. This magnetic field results in Zeeman shifts,

which alter the measured value of the tune-out wavelength. Using rf spectroscopy, the

magnitude of the rotating bias field was measured to be 20.0(2) G. We estimate the

change in the tune-out wavelength caused by the Zeeman shifts by calculating the tune-out

wavelength with and without adjusting the resonances to account for the Zeeman shifts.

From these calculations we found that the Zeeman shift moves the tune-out wavelength

by +26 fm. The value of the tune-out wavelength reported here and in Section 4.1 was

corrected to give the value of the tune-out wavelength in the absence of magnetic fields.

We estimate the error in this correction to be less than 1 fm.

4.3 Comparison to Theory

No other experimental measurements exist for Rb in the F = 2 hyperfine ground state.

However, we can make a useful comparison to theory.
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For alkali atoms, the polarizability is dominated by the coupling of the valence electron

to the first few excited states. Because of this, it is convenient to separate contributions

from the valence electron from the contributions of core electrons and core-valence interac-

tions. In Eq. (1.32) we denote these core and core-valence contributions as αother. αother is

approximately static and may be calculated in the random phase approximation [31]. The

value of αother used here was calculated by M. S. Safronova. The valence contributions to

the polarizability, given by Eq. (1.33), may be rewritten in terms of atomic units as

αv(ω) =
1

3

∑

k

〈k||d||5S〉2(Ek − E5S)

(Ek − E5S)2 − E2
L

(4.2)

where k = nP1/2 and nP3/2, and EL is the energy carried by a photon measured in atomic

units.

Each term in the sum is evaluated up to n = 12 using the experimental values for

the transition energies Ek − E5S . Experimental values from [32] are used for the 5S −

6P transitions while all other matrix elements use the all-order calculations found in

[31]. The details of the methods are discussed in [33]. While experimental values are

available for the 5S − 5P matrix elements [34], the theoretical values are estimated to

have a more accurate ratio, which is more important for tune-out wavelength calculations.

Contributions for n > 12 are calculated by M. S. Safronova in Ref. [35] using the Dirac-

Hartee-Fock approximation.

Because the tune-out wavelength was measured for Rb atoms in a particular hyperfine

state, hyperfine structure must be included in the theoretical determination of the tune-

out wavelength. Due to the larger dipole matrix elements and smaller detuning for the 5P

transitions, the effect of hyperfine structure is negligible for all but the 5P transitions. The

hyperfine dependence of the dipole matrix elements may be written in terms the reduced
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matrix elements 〈J ||d||J ′〉 as

〈5S1/2, F = 2||d||5PJ ′ , F ′〉 = −1F
′+J+I+1

√
(2F + 1)(2F ′ + 1)





1/2 J ′ 1

F ′ 2 3/2





(4.3)

The hyperfine dipole matrix elements for 5P hyperfine transitions are calculated using

the theoretically calculated values of 〈5S||d||5P1/2〉 = 4.2199 ea0 and 〈5S||d||5P3/2〉 =

5.9550 ea0 as described above.

Using these values, the tune-out wavelength is calculated to be λ0 = 790.03108 nm.

The individual contributions to the polarizability at λ = 790.03108 nm are shown in Table

4.2 along with the transition energies ∆E = Ek − E5S and dipole matrix elements.

4.3.1 Uncertainty in Theoretical Tune-Out Wavelength Prediction

Uncertainty in the theoretically calculated tune-out wavelength is dominated by our un-

certainty in the 5P dipole matrix elements. We estimate the uncertainty in the calculated

tune-out wavelength by comparing the results of tune-out wavelength calculations per-

formed using various values of the 5P dipole matrix elements. The values of the 5S − 5P

matrix elements were calculated in [31] using the following theoretical methods: lowest-

order Dirac-Hartree-Fock (DF), second and third-order many-body perturbation theory

(II and III), ab initio all-order calculations in the single-double approximation (SD) with

inclusion of the partial triple contributions (SDpT), as well as scaled all-order calculations

(SDSc, SDpTsc). The values of the 5P dipole matrix elements, along with the values of

the tune-out wavelength calculated using the dipole values are shown in Table 4.3. The

tune-out wavelengths calculated in Table 4.3 differ only in the values of the two 5P matrix

elements, with all other values taken from Table 4.2.

The most accurate methods are expected to be the four all-order calculations: SD,

SDpT, SDsc, and the SDpTsc. We take the average of these four values as the final
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Contribution ∆E d α0

5P1/2, F
′ = 1 0.57313455 4.7180 −4115.986

5P1/2, F
′ = 2 0.57313579 4.7180 −4117.408

5P1/2 −8233.394

6P1/2 0.1080539 0.3235(9) 0.452(2)

7P1/2 0.126826 0.115(3) 0.044(2)

8P1/2 0.135938 0.060(2) 0.011(1)

9P1/2 0.141059 0.037(3) 0.004(1)

10P1/2 0.144226 0.026(2) 0.002

11P1/2 0.14632 0.20(1) 0.001

12P1/2 0.147778 0.016(1) 0.001

(n > 12)P1/2 0.022(22)

5P3/2, F
′ = 1 0.58396076 2.1054 411.164

5P3/2, F
′ = 2 0.58396099 4.7078 2055.752

5P3/2, F
′ = 3 0.58396140 7.8777 5755.784

5P3/2 8222.7

6P3/2 0.108407 0.5230(8) 1.173(4)

7P3/2 0.126986 0.202(4) 0.135(6)

8P3/2 0.136024 0.111(3) 0.037(2)

9P3/2 0.141111 0.073(5) 0.015(2)

10P3/2 0.144259 0.053(4) 0.008(1)

11P3/2 0.146343 0.040(3) 0.004(1)

12P3/2 0.147794 0.033(2) 0.003

(n > 12)P3/2 0.075(75)

Other 8.709(93)
Total 0.002

Table 4.2: Breakdown of the contributions to the 5S polarizability in Rb at λ0 = 790.03108
nm. The transition energies ∆E, reduced matrix elements d, and polarizability contribu-
tions are given in atomic units. Experimental matrix elements from Ref. [32] are used for
the 5S − 5P transitions; remaining matrix elements are from all-order calculations [31].
Uncertainties are given in parenthesis.
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theoretical prediction for the tune-out wavelength and use the full spread of these values

to estimate the error resulting from our uncertainty in values of the 5S−5P dipole matrix

elements. This gives a final theoretical value of λ0 = 790.0315(7) nm. This differs from

the measured value by 1.2σ, with the theoretical uncertainty about twenty times larger

than the experimental uncertainty.

We may estimate the non-5P contributions to the uncertainty in the theoretical value

of the tune-out wavelength by calculating the uncertainty in the α contributions from

all other sources at the tune-out wavelength, we then relate this to the derivative dα
dλ

to

determine the resulting uncertainty in λ0. The uncertainties in the α contributions listed

in Table 4.2 arise from uncertainties in the dipole matrix elements, and may be calculated

using propagation the errors. The combined the uncertainty in α from all non-5P contri-

butions at the tune-out wavelength is 0.009 a.u. The derivative dα
dλ
≈ 2.5 a.u.

pm near the

tune-out wavelength, suggesting a 3.6 fm wavelength error arising from uncertainties in

all non-5P contributions.

While the uncertainties from non-5P sources contribute negligibly to the uncertainty

in theoretical value of the tune-out wavelength, non-5P contributions do contribute signif-

icantly to the theoretical value of the tune-out wavelength. From Table 4.2 we see that at

the theoretically calculated tune-out wavelength non-5P contributions to α total to 10.67

a.u., shifting the theoretical value of the tune-out wavelength by −4.27 pm.

As noted above contributions from the 5P transitions dominate theoretical calculations

of the tune-out wavelength. Because the two 5P transitions contribute to the polarizability

with opposite sign, the theoretical calculation is particularly sensitive to the ratio of the

two 5P dipole matrix elements.

R =
|〈5P3/2||d||5S〉|2
|〈5P1/2||d||5S〉|2

(4.4)

This is convenient, because the theoretical accuracy of the ratio is better than the the-
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DF II III SD SDsc SDpT SDpTsc

5S − 5P1/2 4.8189 4.5981 4.1855 4.2199 4.2535 4.2652 4.2498

5S − 5P3/2 6.8017 6.4952 5.9047 5.9550 6.0031 6.0196 5.9976

λ0 (nm) 790.03145 790.03698 790.02920 790.03108 790.03177 790.03173 790.03147
R 1.9922 1.9954 1.9902 1.9914 1.9919 1.9918 1.9917

Table 4.3: Values of the reduced dipole matrix elements for the 5S − 5P transitions
calculated using various theoretical methods, along with the dipole ratio R and the re-
sulting theoretical value of the tune-out wavelength λ0. The values of the 5S− 5P matrix
elements were calculated in [31] using the following theoretical methods: lowest-order
Dirac-Hartree-Fock (DF), second and third-order many-body perturbation theory (II and
III), ab initio all-order calculations in the single-double approximation (SD) with inclusion
of the partial triple contributions (SDpT), as well as scaled all-order calculations (SDSc,
SDpTsc).

oretical accuracy of the individual matrix elements as a large fraction of the correlation

corrections cancel. This can be seen in Table 4.3, where the value of 〈5P3/2||d||5S〉,

〈5P1/2||d||5S〉, and R are calculated using various theoretical methods. Using the mea-

sured tune-out wavelength as an input, we can use the equations we used to calculate the

theoretical value of the tune-out wavelength (Eqs. 1.32 and 4.2) to make an experimental

determination of the dipole ratio R. For this calculation we use the average of several

experimental measurements of 〈5S||d||5P1/2〉 = 4.233(2) ea0 [34, 36, 37], while using Eq.

4.3.1 to express 〈5S||d||5P3/2〉 in terms of the dipole ratio R. Setting the wavelength equal

to the experimentally determined tune-out wavelength λ = 790.032326 nm, and solving

for the value of R at which α = 0, gives R = 1.99217(3), where the uncertainty in R is

calculated by propagation of errors.



Chapter 5

Outlook

5.1 Future Tune-out Wavelength Measurements

Using the same technique outlined in this thesis, further tune-out wavelength measure-

ments may be performed in 87Rb. Of particular interest is the tune-out wavelength be-

tween the 5P and 6P manifolds, as well as the tune-out wavelength between the 6P1/2

and 6P3/2 states. The individual contributions to the polarizability at both tune-out

wavelengths are shown in Table 5.1.

As shown in Table 5.1, the tune-out wavelengths near 421 nm and 423 nm are de-

termined largely through the contributions of the 5P1/2, 5P3/2, 6P1/2, and 6P3/2 states.

Moreover, the contributions to the polarizability from these states are comparable in mag-

nitude. In comparison, the tune-out wavelength near 790 nm is determined almost entirely

by the cancellation of contributions from the 5P1/2 and 5P3/2 states. In Section 4.3.1, this

was used to determine the dipole ratio R = |〈5P3/2||d||5S〉|2/|〈5P1/2||d||5S〉|2. In a simi-

lar manner, measurements of the tune-out wavelength at both 421 nm and 423 nm may

be combined with the measured dipole ratio R to determine the electric dipole matrix

elements 〈6P1/2||d||5S〉 and 〈6P3/2||d||5S〉.

The largest sources of error in the 790 nm tune-out wavelength measurement were
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Figure 5.1: Tune-out wavelengths near 420 nm in Rb.

Contribution α0(421.08 nm) α0(423.03 nm)

5P1/2 −40.386 −40.910

6P1/2 −113.875 50.423

7P1/2 0.128 0.125

8P1/2 0.024 0.024

9P1/2 0.008 0.008

10P1/2 0.004 0.004

11P1/2 0.002 0.002

12P1/2 0.001 0.001

5P3/2 −83.181 −84.276

6P3/2 228.035 65.371

7P3/2 0.391 0.382

8P3/2 0.082 0.081

9P3/2 0.031 0.030

10P3/2 0.015 0.015

11P3/2 0.008 0.008

12P3/2 0.005 0.005

Other 8.709(93) 8.709(93)
Total 0.001 0.002

Table 5.1
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statistical errors and contributions from the vector polarizability. As detailed in Section

3.2.4, vector polarizability contributions shift the tune-out wavelength by an amount that

depends on the vector polarizability term α(1) and the slope dα/dλ.

λ− λ0 ≈ −A cos θk
mF

F

α(1)
∣∣∣
λ0

dα(0)

dλ

∣∣∣
λ0

(3.10)

At both of the 420 nm tune-out wavelengths, the vector polarizability terms α(1) are

significantly smaller: −227 a.u. and +18 a.u. at 421 nm and 423 nm, respectively,

compared to α(1) = 1200 a.u. at 790 nm. However, the value of the slope dα/dλ is also

smaller: −0.51 a.u./pm and 0.90 a.u./pm at 421 nm and 423 nm, respectively, compared

to 2.5 a.u./pm at 790 nm. Taken together, the tune-out wavelength measurements near

420 nm will be significantly less sensitive to contributions from the vector polarizability,

with the ratio α(1)

dα/dλ
equal to 446 pm and 20.1 pm at 421 nm and 423 nm, compared to

4942 pm at 790 nm.

However, due to the smaller value of dα/dλ, the interferometer will be less sensitive to

wavelength near the two 420 nm tune-out wavelengths. This loss of sensitivity will likely

result in a larger statistical error. The sensitivity of the interferometer may be recovered

through the use of higher intensity Stark light. The intensity of the Stark beam is limited

by two factors: scattering rate and hyperpolarizability. The scattering rate is given by

Rs =
Γ

2




I
Isat

1 + I
Isat

+ 4
(

2π∆
Γ

)2


 (5.1)

The linewidths for the 6P1/2 and 6P3/2 states are 2π · 1.27 MHz and 2π · 1.42 MHz[31],

respectively. While the saturation intensities may be calculated using[38]

Isat =
cε0Γ2~2

4|ε̂ · d|2 (5.1)
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where ε̂ is the normalized polarization vector. The saturation intensities for the 6P1/2

and 6P3/2 states are 6.28 mW/cm2 and 2.99 mW/cm2, respectively. The scattering rate is

largest at the 421 nm tune-out wavelength. For light at 421 nm with a beam waist of 30µm,

the scattering rate is related to the total power in the Stark beam by Rs ≈ P (mW)× 0.05

Hz, at peak intensity. From these numbers we find that approximately 10% of the atoms

will be scattered when exposed to a 110 mW Stark beam for 20 ms.

In Section 1.2.3 we found that the hyperpolarizability contribution to the polarizability

is given by

∆α(ω) ≈ −1

8
γn(ω)

I

c ε0
(1.42)

Summing over the 6P1/2 and 6P3/2 states in Eq. 1.42 gives ∆α ≈ 1.8(10−13) a.u.
W/m2

and

∆α ≈ 1.4(10−14) a.u.
W/m2

at 421 nm and 423 nm, respectively. We can relate the shift

to the polarizability to a shift in the tune-out wavelength through the derivative dα/dλ.

The shift to the tune-out wavelength caused by hyperpolarizability contributions is largest

for the 421 nm tune-out wavelength. For light at 421 nm with a beam waist of 30µm,

the hyperpolarizability shifts the tune-out wavelength by ∆λ ≈ P (mW) × 2.5(10−4) fm,

suggesting that hyperpolarizability will not play a role in limiting the power of the Stark

beam.
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Appendix A

AOM Configuration

Light used in the saturated absorption measurements, which were used to calibrate the

wavemeter, passes through several acousto-optical modulators (AOM). As a result, the

wavelength of the light sent to the atoms is shifted −18.6 MHz relative to the wavelength

measured by the wavemeter. Values reported in Section 3.2.3 account for this shift.

Similarly, the light sent to the atoms for the tune-out wavelength measurement passes

through an AOM, which shifts the wavelength relative to the wavelength sent to the

wavemeter. The tune-out wavelengths reported in this thesis account for this shift as well.

Ti:Sapph

To Wavemeter
(λ)

λ

AOM (−37.5MHz)× 2

λ− 75.0 MHz

To Saturated Absorption

AOM +88.4 MHz

λ+ 13.4 MHz

Figure A.1: AOM layout for the saturated absorption measurements.
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Stark Laser To Wavemeter

To Atoms

A
O
M

λ− 84.92 MHz

λ

Figure A.2: AOM layout for the tune-out wavelength measurements.



Appendix B

Reduced Electric Dipole Matrix

Elements

The electric dipole matrix elements 〈ψ0|d|ψf 〉 depend on the quantum numbers n, J ,

F , and mF for both the initial and final states, as well as the polarization of the light.

Following [38] we factor out the angular dependence of the dipole operator. Using the

Wigner-Eckart Theorem, we rewrite the dipole matrix elements in terms of the Clebsch-

Gordon coefficients and the reduced matrix elements

〈F mF |dq|F ′m′F 〉 = 〈F ||d||F ′〉 〈F mF |F ′m′F ; 1 q〉 (B.1)

Eq. (B.1) can be written in terms of the Wigner 3-j symbol as

〈F mF |dq|F ′m′F 〉 = 〈F ||d||F ′〉(−1)F
′+mF−1



F ′ 1 F

m′F q −mF


 (B.2)
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q = −1 q = 0 q = +1

F ′ = 2 −
√

1
12

√
1
6

F ′ = 1 1
2

Table B.1: Dipole Matrix Elements for D1 line transitions F = 2,mF = 2 −→ F ′,m′F =
mF + q expressed as multiples of 〈J = 1/2||d||J ′ = 1/2〉

q = −1 q = 0 q = +1

F ′ = 3
√

1
60 −

√
1
12

1
2

F ′ = 2 −
√

1
24

√
1
12

F ′ = 1
√

1
40

Table B.2: Dipole Matrix Elements for D2 line transitions F = 2,mF = 2 −→ F ′,m′F =
mF + q expressed as multiples of 〈J = 1/2||d||J ′ = 3/2〉.

The F and F ′ dependence can be factored from the reduced matrix element in Eq. (B.2)

to give

〈F ||d||F ′〉 = 〈J ||d||J ′〉(−1)F
′+J+I+1

√
(2F ′ + 1)(2F + 1)




J J ′ 1

F ′ F I





(B.3)

Where 〈J ||d||J ′〉 is defined in terms of the resonant wavelength λ and lifetime Γ as

〈J ||d||J ′〉2 =
3

2
(2J ′ + 1)

(
λ

2π

)3

ε0 ~Γ (B.4)

For transitions in theD1 line [38] 〈J = 1/2||d||J ′ = 1/2〉 = 4.231 (4)ea0 = 3.588 (4) 10−29 C·

m, while transitions in the D2 line have 〈J = 1/2||d||J ′ = 3/2〉 = 5.978 (7)ea0 =

5.069 (6) 10−29 C · m. Note, the that Steck [38] defines the reduced dipole matrix ele-

ment 〈J ||d||J ′〉Steck as 〈J ||d||J ′〉Steck = 〈J ||d||J ′〉√
2J+1

.



Appendix C

Kinetic Imaging

C.1 Overview

The composite absorption images used in our analysis show the fraction of the probe light

absorbed by the atoms. These images are created by dividing an image of the probe beam

in the presence of the atoms, by an image of the probe beam without atoms. We refer to

these images as the “atom” and “no atom” images, respectively.

Diffraction from dust and scratched as well as etaloning, result in an imaging beam

which has a non-uniform intensity profile. The slight motion of optical surfaces as well

as thermal effects cause shifts in the intensity profile. These shifts contribute to a noisy

composite image.

Imaging noise of this type can be reduced by illuminating the atoms with a uniform

intensity profile. However, such a profile is difficult maintain in practice. A more robust

method of reducing imaging noise can be achieved by reducing the time delay between the

“atoms” and “no atoms” images. When using a standard readout method, the repetition

rate of a camera is limited by the CCD readout time. In the lab we use a Pixis 1024

camera which is connected to a PC running WinView. The readout time of the full CCD

on a Pixis 1024 camera is approximately 580 ms [39].
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a)

b)

Figure C.1: a) An image formed using the normal readout method, where the “atoms”
image is transferred to a computer before the “no atoms” image is taken. Changes in the
probe beam’s profile, arising from slight shifts in diffraction patterns, result in a noisy,
uneven, background. b) An image taken using kinetic imaging avoids background noise
by significantly reducing the time delay between the “atoms” and “no atoms” images.

The time delay between two sequential images can be significantly reduced by post-

poning the image readout. This requires the camera to “hold” the first image while a

second image is being acquired. In kinetics mode, this is achieved by exposing only the

top portion of the CCD, then shifting the first image to the unused bottom portion of the

CCD. To create a “blank” region in the CCD, suitable for storing an image, the bottom

portion of the CCD must be optically masked. This is accomplished by positioning a razor

blade in an image plane between the atoms and the CCD such that the shadow cast by the

razor is imaged on to the bottom portion of the CCD. When using a camera in kinetics

mode, the image repetition rate is limited by the time it takes to shift an image into the

masked portion of the CCD. For the Pixis 1024 camera, it takes 1.6 ms to shift an image

512 lines down, into the masked region.

Once both images are acquired, the camera reads out a single composite image. The

top and bottom halves of the this image contain the first and second images, respectively.

A home-built C++ code separates and divides the two images.
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mask

atomsa) b) c)

d) e) f)

atoms

blank

no atoms

atoms
divided

Figure C.2: Moving from left to right & from top to bottom: (a) An absorption image
of the atoms is obtained in the top portion of the CCD, while a razor blade masks the
bottom portion. (b) Charge that accumulated on the top portion of the CCD during
“atoms” imaging is moved to the bottom half of the CCD. (c) This leaves the top portion
of the CCD blank. (d) The top portion of the CCD is again exposed; creating an image
of the “probe” beam in the absence of atoms. (e) The resulting image is transferred to
a computer where a home-built C++ code splits and divides the two images. (f) The
resulting divided image has little background noise.

C.2 Implementation

Our camera is set to kinetics readout mode using the WinView GUI, by navigating to

Setup > Hardware and selecting the Controller/Camera tab. In this menu there are

options to change the readout mode, vertical shift rate, and window size. The vertical

shift rate describes the speed that an image is shifted into the masked region of the

CCD, which, in turn, specifies the time delay between two sequential exposures. In our

experiment, we chose the fastest vertical shift rate available: 3200 ns/row. In general, a

camera may be used to take N sequential images using kinetics mode. The window size

specifies the number of rows used for each exposure, which, in turn, specifies the number

of sequential images taken. This occurs because, in kinetics mode, a camera continues to
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acquire images until the CCD is unable to hold an additional image. When acquiring N

images, the top 1/N portion of the CCD is used for image acquisition, while the bottom

(N−1)/N portion of the CCD is used for image storage. As usual, the bottom (N−1)/N

portion of the CCD must be masked. Thus, a camera with 1024 vertical lines may be used

to capture two images with 512 vertical pixels, or three images with 341 vertical pixels.

In general, a CCD with V vertical lines may be used to capture N sequential images in

kinetics mode, by choosing a window size between
⌊

V
N−1

⌋
+ 1 and

⌊
V
N

⌋
.

Because kinetics readout mode is designed for rapid image acquisition, the camera

shutter is opened before the “trigger” pulse is received. As a result, the CCD is exposed

to ambient light. To clear the charge that accumulates on the CCD, the camera must

be set to “continuous cleaning” mode. This is accomplished using the WinView GUI by

selecting Experiment Setup from the toolbar, navigating to the Timing Mode tab,

and checking the Continuous Cleans box. In “continuous cleaning” mode, the camera

delays the image exposure until the current cleaning cycle is complete. This introduces an

unknown time delay between the “trigger” pulse and the actual image exposure. To limit

the uncertainty in this time delay, we redefine the cleaning cycle, so that an image may be

acquired after each strip of pixels is cleared. This is accomplished through the WinView

GUI by navigating to the Cleans/Skips tab under the Hardware Setup menu and

setting Number of Cleans: 1 and Number of Strips per Clean: 1. For the Pixis

1024 camera, these settings result in a time delay bound by: 0µs < ∆t < 540µs. An

important note regarding the “continuous cleans” time delay: although the time delay

effects the timing of the CCD exposure, it in no way effects the timing of the absorption

imaging pulse. Thus, for every experiment run, the image produced by the imaging pulse

occurs at the same time relative to other aspects of the experiment.

Because the the “continuous cleaning” time delay varies with each experiment run, it

may be difficult to time the absorption imaging pulses. The Logic Output on the Pixis

1024 camera provides a useful diagnostic for this problem. The Logic Output produces
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∆t
shift

exposure

image

Figure C.3: The figure above shows the timing of the camera “trigger” in blue, alongside a
digital signal controlling the imaging AOM in red. The green lines show the Shutter Logic
Output of a Pixis 1024 camera. In Kinetic Mode, the Shutter Logic Output produces a
high voltage when the CCD is acquiring an image. A time-delay ∆t arises from the CCD
“cleaning” cycle described in this section. The solid and dotted green lines represent the
exposure times for the time-delay extrema, ∆t = 0µs and ∆t = 540µs. The imaging
AOM pulses must fall in the range of image exposure times common to all time-delays. A
1.6 ms delay between the two images occurs as the image from the top half of the CCD is
transferred to the bottom half of the CCD.

a digital signal describing the internal state of the camera. The information carried by

the Logic Output may be changed in WinView by navigating to the Hardware Setup

menu and choosing the Controller/Camera tab. Selecting the Shutter Logic Output in

kinetic mode tells the camera to produce a high voltage when the CCD is acquiring an

image. In this mode the Logic Output produces a low voltage during the CCD cleaning

cycle as well as during the image shift. When the cleaning cycle is finished the camera

produces a high voltage for the duration of the exposure time, 2.0 ms in our experiment.

The Logic output then produces a low voltage while the image is shifted under the masked

portion of the CCD (1.6 ms), before switching back to a high voltage for the duration of

the second exposure. For a successful imaging setup, the absorption imaging pulses must

fall in the range of image acquisition times common to all time-delays. An image similar

to the one shown in Figure C.3 may be obtained by connecting the camera “trigger’, the

imaging AOM, and the Logic Output to an oscilloscope. The Logic Outputs for the full

range of possible time-delays may be found by setting the display on the oscilloscope to
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infinite persist, and then looping over the imaging routine.

C.3 Image Processing

Kinetic imaging produces a single composite image, with the top half containing the first

image and bottom half containing the second. A home-built code uses the tiffio library

to read and separate the two images. The code then generates and saves a divided image

along with the separated Atom and No Atom images.

Image Process.cpp

1 //#inc lude ” s tda fx . h” Breaks code ; only use with MS VC compi ler
2

3 #inc lude <iostream>
4 #inc lude <s t r i ng>
5 #inc lude <f stream>
6 #inc lude <windows . h> // System command
7 #inc lude < t i f f i o . h> // Read t i f f f i l e s
8 #inc lude <con io . h> // ge tch ( wait s f o r key s t r oke )
9 #inc lude <proce s s . h> // multi−thread ing

10

11 us ing namespace std ;
12

13 i n t SearchDirectory ( s t r i n g &LastF i l e ,
14 uint32 &lowFileTime ,
15 uint32 &highFileTime ,
16 const std : : s t r i n g &re f c s t rRoo tD i r e c to ry ,
17 const std : : s t r i n g &r e f c s t rEx t en s i on ) ;
18

19 i n t main ( ) {
20 s t r i n g NewestFi le ;
21 s t r i n g DividedImage ;
22 uint32 CompFileTimeLow ;
23 uint32 CompFileTimeHigh ;
24

25 // Find newest f i l e with ’ . t i f ’ ex t ens i on
26

27 SearchDirectory ( NewestFile , CompFileTimeLow , CompFileTimeHigh ,
28 ”c :\\ da t a l o c a l \\ today \\ images \\PI” , ” t i f ” ) ;
29

30 // Open newest k i n e t i c s mode p i c tu r e
31

32 DividedImage = NewestFi le ;
33 DividedImage . r ep l a c e (35 ,1 , ”d” ) ; // Generate d iv ided p i c tu r e f i l e name
34 TIFF* Kt i f = TIFFOpen( NewestFi le . c s t r ( ) , ” r ” ) ;
35

36 i f ( Kt i f ) {
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37 uint32 imagelength ;
38 t s i z e t s c an l i n e ;
39 tda ta t Abuf , NAbuf ;
40 uint32 row ;
41 uint32 c o l ;
42 uint16 Divbps , Divspp ;
43 uint16 Abps , Aspp ;
44 uint16 NAbps , NAspp ;
45 uint16 bps , spp ;
46 i n t nrows , ncolumns , o r i en t a t i on , p l anarcon f i g , photometr ic ;
47 i n t i ;
48

49 // Retr i eve in fo rmat ion from T i f f f i l e header
50

51 TIFFGetField ( Kti f , TIFFTAG IMAGELENGTH, &imagelength ) ;
52 TIFFGetField ( Kti f , TIFFTAG BITSPERSAMPLE, &bps ) ;
53 TIFFGetField ( Kti f , TIFFTAG SAMPLESPERPIXEL, &spp ) ;
54 TIFFGetField ( Kti f , TIFFTAG IMAGELENGTH, &nrows ) ;
55 TIFFGetField ( Kti f , TIFFTAG IMAGEWIDTH, &ncolumns ) ;
56 TIFFGetField ( Kti f , TIFFTAG ORIENTATION, &o r i e n t a t i o n ) ;
57 TIFFGetField ( Kti f , TIFFTAG PHOTOMETRIC, &photometr ic ) ;
58

59 p l ana r con f i g = 1 ;
60 s c an l i n e = TIFFScanl ineSize ( Kt i f ) ;
61 uint16 *AtomPixleValue ;
62 uint16 *NoAtomPixleValue ;
63 f l o a t *DividedPixleValue ;
64

65 // Use in fo rmat ion from T i f f f i l e header to a l l o c a t e memory f o r Atom, No
Atom, and Divided T i f f f i l e s

66

67 DividedPixleValue = ( f l o a t *) mal loc ( nrows*ncolumns* s i z e o f ( f l o a t ) ) ;
68 AtomPixleValue = ( uint16 *) mal loc ( nrows*ncolumns* s i z e o f ( u int16 ) ) ;
69 NoAtomPixleValue = ( uint16 *) mal loc ( nrows*ncolumns* s i z e o f ( u int16 ) ) ;
70

71 // Al l o ca t e memory f o r T i f f f i l e s c a n l i n e s ( T i f f f i l e i s read one row at
a time )

72

73 Abuf = ( char *) TIFFmalloc ( s c an l i n e ) ;
74 NAbuf = ( char *) TIFFmalloc ( s c an l i n e ) ;
75

76 // Loop through each row in T i f f f i l e . Reads Atom image from top o f
T i f f image , and No Atom from bottom of the image .

77

78 f o r ( i =0; i< ( nrows /2) ; i++){
79 TIFFReadScanline ( Kti f , Abuf , i ) ; // Read row o f Atoms image
80 TIFFReadScanline ( Kti f , NAbuf , i+nrows /2) ; // Read row o f No

Atoms image
81 f o r ( c o l = 0 ; c o l < ncolumns ; c o l++){
82 DividedPixleValue [ c o l+i *ncolumns ] = f l o a t ( ( ( u int16 *)Abuf ) [

c o l ] ) / f l o a t ( ( ( ( u int16 *)NAbuf) [ c o l ]+1) ) ; // Ca lcu la te d iv ided image
83 AtomPixleValue [ c o l+i *ncolumns ] = ( ( ( u int16 *)Abuf ) [ c o l ] ) ;
84 NoAtomPixleValue [ c o l+i *ncolumns ] = ( ( ( ( u int16 *)NAbuf) [ c o l ] )

) ;
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85

86 }
87 }
88

89 TIFFfree (Abuf ) ;
90 TIFFfree (NAbuf) ;
91 TIFFClose ( Kt i f ) ;
92

93 // Write Divided Image T i f f f i l e
94

95 TIFF *DividedOut= TIFFOpen( DividedImage . c s t r ( ) , ”w” ) ;
96

97 // Set T i f f Tags ( header va lue s ) f o r Divided Image
98

99 Divspp = 1 ; // normally the re are 3 va lue s per p i x e l f o r Red Green
Blue

100 // becuase the image i s b lack and white the re i s only one
sample per p i x e l

101

102 Divbps = 32 ; //32 b i t s f o r f l o a t
103

104 TIFFSetField ( DividedOut , TIFFTAG IMAGEWIDTH, ncolumns ) ; // s e t the
width o f the image

105 TIFFSetField ( DividedOut , TIFFTAG IMAGELENGTH, ( nrows /2) ) ; // s e t
the he ight o f the image

106 TIFFSetField ( DividedOut , TIFFTAG SAMPLESPERPIXEL, Divspp ) ; // s e t
number o f channe l s per p i x e l

107 TIFFSetField ( DividedOut , TIFFTAG BITSPERSAMPLE, Divbps ) ; // s e t
the s i z e o f the channe l s

108 TIFFSetField ( DividedOut , TIFFTAG PLANARCONFIG, p l ana r con f i g ) ;
109 TIFFSetField ( DividedOut , TIFFTAG PHOTOMETRIC, photometr ic ) ;
110 TIFFSetField ( DividedOut , TIFFTAG SAMPLEFORMAT, 3) ; // 1 = uint16 3

= f l o a t
111

112 t s i z e t D iv l i n ebyt e s = Divspp * ncolumns ; // l ength in memory o f
one row o f p i x e l in the image .

113

114 f l o a t *buf = NULL; // bu f f e r used to s t o r e the row o f p i x e l
in fo rmat ion f o r wr i t i ng to f i l e

115

116 // A l l o ca t i ng memory to s t o r e the p i x e l s o f cur rent row
117

118 i f ( TIFFScanl ineSize ( DividedOut ) == Div l i n ebyt e s )
119 buf =( f l o a t *) TIFFmalloc ( D iv l i n ebyt e s ) ;
120 e l s e
121 buf = ( f l o a t *) TIFFmalloc ( TIFFScanl ineSize ( DividedOut ) ) ;
122

123 // We s e t the s t r i p s i z e o f the f i l e to be s i z e o f one row o f p i x e l s
124 TIFFSetField ( DividedOut , TIFFTAG ROWSPERSTRIP, TIFFDefaul tStr ipS ize (

DividedOut , ncolumns*Divspp ) ) ;
125

126 //Now wr i t i ng image to the f i l e one s t r i p at a time
127

128 f o r ( u int32 row = 0 ; row < ( nrows /2) ; row++){
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129 f o r ( i=ncolumns−1; i>=0; i−−){
130 ( ( f l o a t *) buf ) [ i ] = DividedPix leValue [ ( ( nrows /2)−row−1)*

ncolumns+i ] ;
131 }
132 i f ( TIFFWriteScanline ( DividedOut , buf , row , 0) < 0)
133 break ;
134 }
135 TIFFClose ( DividedOut ) ;
136

137 DividedImage . r ep l a c e (35 ,1 , ”n” ) ;
138 TIFF *NoAtomOut= TIFFOpen( DividedImage . c s t r ( ) , ”w” ) ;
139

140 // Set T i f f Tags f o r No Atoms
141

142 NAspp = 1 ; // normally the re are 3 va lue s per p i x e l f o r Red Green
Blue

143 // becuase the image i s b lack and white the re i s only one
sample per p i x e l

144

145 NAbps = 16 ; //16 b i t s f o r u int16
146

147 TIFFSetField (NoAtomOut , TIFFTAG IMAGEWIDTH, ncolumns ) ; // s e t the
width o f the image

148 TIFFSetField (NoAtomOut , TIFFTAG IMAGELENGTH, ( nrows /2) ) ; // s e t
the he ight o f the image

149 TIFFSetField (NoAtomOut , TIFFTAG SAMPLESPERPIXEL, NAspp) ; // s e t
number o f channe l s per p i x e l

150 TIFFSetField (NoAtomOut , TIFFTAG BITSPERSAMPLE, NAbps) ; // s e t the
s i z e o f the channe l s

151 TIFFSetField (NoAtomOut , TIFFTAG PLANARCONFIG, p l ana r c on f i g ) ;
152 TIFFSetField (NoAtomOut , TIFFTAG PHOTOMETRIC, photometr ic ) ;
153 TIFFSetField (NoAtomOut , TIFFTAG SAMPLEFORMAT, 1) ; // 1 = uint16 3

= f l o a t
154

155 t s i z e t NAlinebytes = NAspp * ncolumns ; // l ength in memory o f
one row o f p i x e l in the image .

156

157 i f ( TIFFScanl ineSize (NoAtomOut) == NAlinebytes )
158 buf =( f l o a t *) TIFFmalloc ( NAlinebytes ) ;
159 e l s e
160 buf = ( f l o a t *) TIFFmalloc ( TIFFScanl ineSize (NoAtomOut) ) ;
161

162 // We s e t the s t r i p s i z e o f the f i l e to be s i z e o f one row o f p i x e l s
163 TIFFSetField (NoAtomOut , TIFFTAG ROWSPERSTRIP, TIFFDefaul tStr ipS ize (

NoAtomOut , ncolumns*NAspp) ) ;
164

165 //Now wr i t i ng image to the f i l e one s t r i p at a time
166

167 f o r ( u int32 row = 0 ; row < ( nrows /2) ; row++){
168 f o r ( i=ncolumns−1; i>=0; i−−){
169 ( ( u int16 *) buf ) [ i ] = NoAtomPixleValue [ ( ( nrows /2)−row−1)*

ncolumns+i ] ;
170 }
171 i f ( TIFFWriteScanline (NoAtomOut , buf , row , 0) < 0)
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172 break ;
173 }
174

175 TIFFClose (NoAtomOut) ;
176

177 DividedImage . r ep l a c e (35 ,1 , ”a” ) ;
178 TIFF *AtomOut= TIFFOpen( DividedImage . c s t r ( ) , ”w” ) ;
179

180 // Set T i f f Tags f o r Atoms
181

182 Aspp = 1 ; // normally the re are 3 va lue s per p i x e l f o r Red Green Blue
183 // becuase the image i s b lack and white the re i s only one

sample per p i x e l
184

185 Abps = 16 ; //16 b i t s f o r u int16
186

187 TIFFSetField (AtomOut , TIFFTAG IMAGEWIDTH, ncolumns ) ; // s e t the
width o f the image

188 TIFFSetField (AtomOut , TIFFTAG IMAGELENGTH, ( nrows /2) ) ; // s e t the
he ight o f the image

189 TIFFSetField (AtomOut , TIFFTAG SAMPLESPERPIXEL, Aspp) ; // s e t
number o f channe l s per p i x e l

190 TIFFSetField (AtomOut , TIFFTAG BITSPERSAMPLE, Abps ) ; // s e t the
s i z e o f the channe l s

191 TIFFSetField (AtomOut , TIFFTAG PLANARCONFIG, p l ana r con f i g ) ;
192 TIFFSetField (AtomOut , TIFFTAG PHOTOMETRIC, photometr ic ) ;
193 TIFFSetField (AtomOut , TIFFTAG SAMPLEFORMAT, 1) ; // 1 = uint16 3 =

f l o a t
194

195 t s i z e t Al inebytes = Aspp * ncolumns ; // l ength in memory o f one
row o f p i x e l in the image .

196

197 i f ( TIFFScanl ineSize (AtomOut) == Al inebytes )
198 buf =( f l o a t *) TIFFmalloc ( Al inebytes ) ;
199 e l s e
200 buf = ( f l o a t *) TIFFmalloc ( TIFFScanl ineSize (AtomOut) ) ;
201

202 // We s e t the s t r i p s i z e o f the f i l e to be s i z e o f one row o f p i x e l s
203 TIFFSetField (AtomOut , TIFFTAG ROWSPERSTRIP, TIFFDefaul tStr ipS ize (

AtomOut , ncolumns*Aspp) ) ;
204

205 //Now wr i t i ng image to the f i l e one s t r i p at a time
206

207 f o r ( u int32 row = 0 ; row < ( nrows /2) ; row++){
208

209 f o r ( i=ncolumns−1; i>=0; i−−){
210 ( ( u int16 *) buf ) [ i ] = AtomPixleValue [ ( ( nrows /2)−row−1)*

ncolumns+i ] ;
211 }
212

213 i f ( TIFFWriteScanline (AtomOut , buf , row , 0) < 0)
214 break ;
215 }
216 TIFFfree ( buf ) ;
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217 TIFFClose (AtomOut) ;
218 }
219 }
220

221 i n t SearchDirectory ( s t r i n g &LastF i l e ,
222 uint32 &lowFileTime ,
223 uint32 &highFileTime ,
224 const std : : s t r i n g &re f c s t rRoo tD i r e c to ry ,
225 const std : : s t r i n g &r e f c s t rEx t en s i on )
226 {
227

228 /* SearchDirectory r e tu rn s the name and time stamp o f the newest
229 f i l e with a given f i l e ex tens i on found in a s p e c i f i c d i r e c t o r y .
230

231 Returns 1 i f a f i l e was found , 0 otherw i s e .
232

233 Las tF i l e
234 Name o f the newest f i l e found
235

236 lowFileTime
237 Time stamp o f newest f i l e ( low means i t l ook s at sma l l e r
238 time incerments [ f o r example seconds ] )
239

240 highFi leTime
241 Time stamp o f newest f i l e ( high means i t l ook s at l a r g e r
242 time incerments [ f o r example days ] )
243

244 r e f c s t rRoo tD i r e c t o r y
245 Recur s iv ly s ea r che s f o r newest f i l e in t h i s d i r e c t o r y
246

247 r e f c s t rEx t en s i on
248 Look only f o r f i l e s ending with cha ra t e r s matching t h i s s t r i n g
249 */
250

251 std : : s t r i n g s t rF i l ePa th ; // F i l epath
252 std : : s t r i n g s t rPat t e rn ; // Pattern
253 std : : s t r i n g s t rExtens i on ; // Extension
254 HANDLE hFi l e ; // Handle to f i l e
255 WIN32 FIND DATA Fi l e In f o rmat i on ; // F i l e in fo rmat ion
256

257 FILETIME f i l e t im e ;
258 uint32 minLowFileTime ;
259 uint32 minHighFileTime ;
260 s t r i n g minFileTime ;
261

262 minLowFileTime = 0 ;
263 minHighFileTime = 0 ;
264

265 s t rPat t e rn = re f c s t rRoo tD i r e c t o ry + ” \\* .* ” ;
266

267 // Search f o r f i l e s & f o l d e r s in the s p e c i f i e d d i r e c t o r y
268 hFi l e = : : F i ndF i r s tF i l e ( s t rPat t e rn . c s t r ( ) , &F i l e In f o rmat i on ) ;
269

270 i f ( hF i l e != INVALID HANDLE VALUE )
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271 {
272 // Loop over a l l f i l e s
273 do
274 {
275 i f ( F i l e In f o rmat i on . cFileName [ 0 ] != ’ . ’ ) {
276

277 // I f a f i l e i s found record i t s path & f i l ename
278 f i l e t im e = Fi l e In f o rmat i on . ftCreat ionTime ;
279 s t rF i l ePa th = re f c s t rRoo tD i r e c t o ry + ”\\” + Fi l e In f o rmat i on .

cFileName ;
280

281 // Check extens i on
282 s t rExtens i on = Fi l e In f o rmat i on . cFileName ;
283 s t rExtens i on = st rExtens i on . subs t r ( s t rExtens i on . r f i n d ( ”k . ” ) + 2) ;
284

285 i f ( s t rExtens i on == re f c s t rEx t en s i on ) {
286

287 // I f the extens i on matches t e s t the time stamp
288 f i l e t im e = Fi l e In f o rmat i on . ftCreat ionTime ;
289

290 // F i r s t t e s t high time
291 i f ( f i l e t im e . dwHighDateTime > minHighFileTime ) {
292 minHighFileTime = f i l e t im e . dwHighDateTime ; // Record

newest f i l e time stamp
293 minLowFileTime = f i l e t im e . dwLowDateTime ;
294 minFileTime = s t rF i l ePa th ; // Record newest f i l e name
295 }
296 // I f high t imes equal check low times
297 e l s e i f ( f i l e t im e . dwHighDateTime == minHighFileTime ) {
298

299 i f ( f i l e t im e . dwLowDateTime > minLowFileTime ) {
300 minLowFileTime = f i l e t im e . dwLowDateTime ;
301 minFileTime = s t rF i l ePa th ;
302 }
303

304 }
305 }
306 }
307 } whi le ( : : FindNextFi le ( hFi le , &F i l e In f o rmat i on ) == TRUE ) ;
308

309 // Record name & time stamp o f newest f i l e
310 Las tF i l e = minFileTime ;
311 highFi leTime = minHighFileTime ;
312 lowFileTime = minLowFileTime ;
313

314 // Close handle
315 : : FindClose ( hF i l e ) ;
316

317 DWORD dwError = : : GetLastError ( ) ;
318 i f ( dwError != ERROR NO MORE FILES )
319 re turn dwError ;
320 }
321 re turn 0 ;
322 }
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