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Abstract

Rank gradient and p-gradient are group invariants that assign some real number
greater than or equal to -1 to a finitely generated group. Though the invariants
originated in the study of topology (3-manifold groups), there is growing interest
among group theorists. For most classes of groups for which rank gradient and p-
gradient have been computed, the value is zero. The research presented consists of
two main parts. First, for any prime number p and any positive real number α, we
construct a finitely generated group Γ with p-gradient equal to α. This construction is
used to show that there exist uncountably many pairwise non-commensurable groups
that are finitely generated, infinite, torsion, non-amenable, and residually-p. Second,
rank gradient and p-gradient are calculated for free products, free products with
amalgamation over an amenable subgroup, and HNN extensions with an amenable
associated subgroup using various methods. The notion of cost of a group is used to
obtain lower bounds for the rank gradient of amalgamated free products and HNN
extensions. For p-gradient, the Kurosh subgroup theorems for amalgamated free
products and HNN extensions are used.
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Chapter 1

Introduction

The research covered consists of two independent sets of results. The first is showing
that any non-negative real number is the p-gradient of some finitely generated group.
The second is showing how to compute rank gradient and p-gradient of free products,
free products with amalgamation over an amenable subgroup, and HNN extensions
with an amenable associated subgroup. We begin by giving some background on rank
gradient and p-gradient followed by a summary of the new results.

1.1 Definitions and Overview

Let Γ be a finitely generated group and let d(Γ) denote the minimal number of
generators of Γ. In combinatorial group theory one often wants to know, or at least
bound, d(Γ). For most groups this is a hard question to answer and few tools are
presently known to help answer this question. However, for a finite index subgroup H
of Γ an upper bound for d(H) is known. The Schreier index formula states that if H is
a finite index subgroup of a finitely generated group Γ, then d(H)−1 ≤ (d(Γ)−1)[Γ :
H] and if Γ is free of finite rank, then H is free and d(H)−1 = (d(Γ)−1)[Γ : H]. The
Schreier index formula can be proved using the Reidemeister-Schreier method: Given
the presentation Γ = 〈X | R〉 one uses a special set of coset representatives of H in Γ
called a Schreier transversal to construct a presentation for H. Let T be a Schreier
transversal for H in Γ, then H is generated by Y = {tx(tx)−1 6= 1 | t ∈ T, x ∈ X},
where tx is the element in T representing the coset containing tx. The cardinality of
Y is |Y | = [Γ : H](|X| − 1|) + 1.

The absolute rank gradient of a finitely generated group is, in a sense, a measure of
how far the Schreier index formula is from being an equality rather than an inequality.
If the absolute rank gradient of Γ is significantly smaller than d(Γ)−1 then there must
exist some finite index subgroup H of Γ that has many fewer generators than provided
by the Reidemeister-Schreier method. Said differently, absolute rank gradient can
help answer the question: How optimal is the presentation given by the Reidemeister-
Schreier method?
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The absolute rank gradient of Γ is defined by

RG(Γ) = inf
H

d(H)− 1

[Γ : H]

where the infimum is taken over all finite index subgroups H of Γ.
By the definition of rank gradient it is clear that −1 ≤ RG(Γ) ≤ d(Γ)− 1. Rank

gradient can easily be calculated for the class of free groups. If Fn is a non-abelian
free group on n generators, then RG(Fn) = n− 1. This follows by the Schreier index
formula for free groups discussed above. There is a variation of rank gradient called
p-gradient, where p is a prime number. The definition of p-gradient is given below,
but first some history on rank gradient and p-gradient is given.

In 2004, Mark Lackenby first introduced rank gradient [20] and p-gradient [21]
of finitely generated groups as means to study 3-manifold groups. Lackenby was
attempting to form a program to study the Virtually Haken Conjecture, which was
a major open problem in 3-manifold theory. The Virtually Haken Conjecture asserts
that a compact orientable irreducible 3-manifold with infinite fundamental group is
virtually Haken. There is a stronger conjecture than the Virtually Haken Conjecture,
called the Largeness Conjecture, that is essentially group theoretic. The Largeness
Conjecture asserts that the fundamental group of a compact orientable hyperbolic
3-manifold is large. A group Γ is said to be large if it contains a subgroup of finite
index that maps onto a non-abelian free group. There is a related notion of a group
being p-large for a prime number p if it contains a normal subgroup of p-power index
that maps onto a non-abelian free group. It is clear that if a group is p-large then it is
large. Lackenby [22] proved that if Γ is finitely presented and has positive p-gradient
for some prime p, then Γ is p-large. In this way, one can see how p-gradient and rank
gradient were used by Lackenby to try and solve the Virtually Haken Conjecture
through the Largeness Conjecture.

Lackenby was ultimately unsuccessful in solving the Virtually Haken Conjecture
(Ian Agol [3] recently solved the conjecture in 2012 using geometric arguments);
however, Lackenby used rank gradient and p-gradient to get some nice group theoretic
results, some of which have yet to be improved upon using other methods. For
example, he related rank gradient and property (τ). Lackenby’s work has led to rank
gradient and p-gradient gaining interest among group theorists. Miklos Abert, Andrei
Jaikin-Zapirain, and Nikolay Nikolov [1] were among the first to study rank gradient
in the context of group theory. One of main results of [1] is that finitely generated
infinite discrete amenable groups have rank gradient equal to zero with respect to any
normal chain with trivial intersection. Lackenby [20] first proved the result for finitely
presented groups. As a simple corollary, there is a corresponding result concerning
p-gradient. Namely, if Γ has positive p-gradient for some prime p, then Γ is not
amenable. The fact that rank gradient and p-gradient are zero for amenable groups
will play an important role in some of the new results presented in this dissertation.
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Denis Osin [32] and Jan-Christoph Schlage-Puchta [36] constructed residually fi-
nite torsion groups with positive rank gradient. An immediate consequence is that
these groups are infinite and non-amenable. Both constructions are among the sim-
plest discovered for groups that are infinite, residually finite, non-amenable, and tor-
sion, which shows the effectiveness of rank gradient as a tool in group theory. Many
of the arguments used to prove arbitrary p-gradient values (to be discussed later) are
similar to those used by Osin and Schlage-Puchta.

Abert and Nikolov also showed that rank gradient has connections with an invari-
ant called cost, which is used in the area of analysis called orbit equivalence theory.
Damien Gaboriau [11] proved a connection between cost and another invariant, called
L2-Betti numbers, which primarily arise in topology. In particular, if Γ is a finitely
generated residually finite group, then

RG(Γ) ≥ cost(Γ)− 1 ≥ β
(2)
1 (Γ)− 1

|Γ|
.

Abert and Nikolov [2] proved the first part of the inequality and the second part was
proved by Gaboriau [11]. The relationship between rank gradient and cost is not
limited to the above inequality. Abert and Nikolov [2] related two open problems
about cost to rank gradient as well: the fixed price problem and the multiplicativity
of cost-1 problem. This inequality will be discussed in more detail in Section 3.1.

Rank gradient is often difficult to work with and to calculate. It is often more
convenient to compute the rank gradient of the pro-p completion, Γp̂, of the group
Γ for some fixed prime p. Profinite and pro-p groups are defined and discussed in
Section 3.3. When dealing with profinite groups the notion of topologically finitely
generated is used instead of (abstractly) finitely generated. The p-gradient of the
group Γ, denoted RGp(Γ), can be defined as the rank gradient of Γp̂. The notion
of p-gradient of a group for a prime number p is also referred to in the literature as
mod-p rank gradient or mod-p homology gradient. The reader should be careful as
some authors define p-gradient differently [23]. The fact that RGp(Γ) = RG(Γp̂) is
proved in Section 3.3. A more explicit definition of p-gradient is provided below:

Let p be a prime. The absolute p-gradient of Γ is defined by

RGp(Γ) = inf
HEΓ

[Γ:H]=pk

dp(H)− 1

[Γ : H]

where dp(H) = d (H/[H,H]Hp) and the infimum is taken over all normal subgroups
of p-power index in Γ.

One can also define rank gradient and p-gradient relative to a lattice of subgroups.
A set of subgroups {Hn} of Γ is called a lattice if it is closed under finite intersections.
In particular any descending chain of subgroups is a lattice. Rank gradient (resp. p-
gradient) relative to a lattice {Hn} of finite index (resp. p-power index) subgroups is
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denoted RG(Γ, {Hn}) (resp. RGp(Γ, {Hn})). Usually it is assumed that the lattice is
a strictly descending chain of finite index normal subgroups with trivial intersection.

To prove results about rank gradient (analogously p-gradient) with respect to a
lattice {Hn} of normal subgroups of finite index in Γ, it is enough to prove the result
for a descending chain of subgroups from the lattice. The argument for this is shown in
Lemma 3.1.3. Specifically, one can use the chain: H1 ≥ H1∩H2 ≥ H1∩H2∩H3 ≥ . . .
One of the fundamental open questions in the theory of rank gradient and p-gradient is
whether rank gradient or p-gradient depends on the chain if the chain is a descending
chain of normal subgroups with trivial intersection. If rank gradient and p-gradient
do not depend on the choice of the chain, then the theory will be greatly simplified
as one will not need to distinguish between absolute rank gradient (resp. absolute
p-gradient) and rank gradient (resp. p-gradient) with respect to a given chain.

Since rank gradient and p-gradient are difficult to compute in general, there are
not many classes of groups for which these invariants have been computed. For
the majority of classes of groups where rank gradient has been calculated the rank
gradient is zero. This research adds to the few computations that exist for rank
gradient and p-gradient by showing that any non-negative real number is the p-
gradient of some finitely generated group and by giving formulas for rank gradient
and p-gradient of free products with amalgamation over an amenable subgroup and
HNN extensions with an amenable associated subgroup.

1.2 Summary of New Results

Since Lackenby first defined rank gradient of a finitely generated group [20], the
following conjecture has remained open:

Conjecture. For every real number α > 0 there exists a finitely generated group Γ
such that RG(Γ) = α.

Although this question is still open, we were able to answer the analogous question
for p-gradient. A group is called residually-p if the intersection of all normal subgroups
of p-power index is trivial.

Theorem 1.2.1 (Main Result). For every real number α > 0 and any prime p,
there exists a finitely generated residually-p group Γ (which can be made torsion) such
that RGp(Γ) = α.

Section 4.3 contains the complete proof, but the following is an outline: Given a
prime p and an α > 0 ∈ R, consider a free group F of finite rank greater than α+ 1.
Let Λ be the set of all residually-p groups that are homomorphic images of F that
have p-gradient greater than or equal to α. Partially order this set by Γ1 < Γ2 if
Γ1 surjects onto Γ2. To prove that every chain has a minimal element, we use direct
limits of groups. The following lemma was inspired by Pichot’s similar result for
L2-Betti numbers [33].
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Lemma 1.2.2. Let Γ∞ = lim−→Γi be a direct limit of finitely generated groups and let
p be a prime. Then, lim supRGp(Γi) ≤ RGp(Γ∞).

By a Zorn’s Lemma argument the set Λ has a minimal element, call it Γ. We show
RGp(Γ) = α by contradiction by constructing an element which is less than Γ with
respect to the partial order. To construct this smaller element the following theorem
is used, which was proved using slightly different language and a different method by
Barnea and Schlage-Puchta [5], but was formulated and proved independently by the
author as well.

Theorem 1.2.3. Let Γ be a finitely generated group, p some fixed prime, and x ∈ Γ.
Then RGp(Γ/〈〈xp

k〉〉) ≥ RGp(Γ)− 1
pk
.

The notation 〈〈X〉〉 means the normal subgroup generated by the set X in the
group Γ. The methods used to prove this result are similar to those used by Schlage-
Puchta in his work on p-deficiency and p-gradient [36] and Osin in his work on rank
gradient [32].

Using the same argument outlined above but starting with a torsion group with
positive p-gradient instead of a free group allows us to make Γ torsion. One of the
primary goals of Osin’s [32] and Schlage-Puchta’s [36] papers was to provide a simple
construction of non-amenable, torsion, residually finite groups. Theorem 1.2.1 shows
that there exist such groups with arbitrary p-gradient.

The construction given in Theorem 1.2.1 has a few immediate applications. First,
when Γ is torsion, Theorem 1.2.1 provides another way to construct a counter example
to the General Burnside Problem. The second concerns commensurable groups. Two
groups are called commensurable if they have isomorphic subgroups of finite index.
A simple consequence of Theorem 1.2.1 is the following.

Theorem 1.2.4. There exist uncountably many pairwise non-commensurable groups
that are finitely generated, infinite, torsion, non-amenable, and residually-p.

Showing two groups are non-commensurable is usually harder than showing two
groups are non-isomorphic. However, in this case rank gradient and p-gradient can
distinguish non-commensurable groups and non-isomorphic groups with the same
amount of work. This shows another way in which rank gradient and p-gradient are
useful invariants.

The second half of the research presented here concerns computing rank gradient
and p-gradient of free products, free products with amalgamation over an amenable
subgroup, and HNN extensions with an amenable associated subgroup. Abert, Jaikin-
Zapirain, and Nikolov [1] computed rank gradient of a free product of finitely gen-
erated residually finite groups relative to a descending chain of finite index normal
subgroups:

RG(Γ1 ∗ Γ2, {Hn}) = RG(Γ1, {Γ1 ∩Hn}) +RG(Γ2, {Γ2 ∩Hn}) + 1.
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By using a similar method, we compute the analogous result for absolute rank gradient
(RG(Γ1 ∗ Γ2) = RG(Γ1) +RG(Γ2) + 1) and absolute p-gradient (analogous) without
requiring the groups be residually finite.

The difficulty with extending this result to free products with amalgamation or
HNN extensions is getting a lower bound on the minimal number of generators of
a finite index subgroup. Abert and Nikolov [2] proved a connection between rank
gradient and cost that will be used to help get around this issue. Their actual result
is more general than the one given below, but the following is all that was needed.
Let Γ be a finitely generated group and {Hn} a lattice of normal subgroups of finite

index in Γ such that
⋂
Hn = 1. Let Γ̂(Hn) be the profinite completion of Γ with

respect to {Hn}. Then

RG(Γ, {Hn}) = Cost(Γ, Γ̂(Hn))− 1.

Using this relationship between rank gradient and cost and the work of Gaboriau
[10], we establish a lower bound for the rank gradient of amalgamated free products
and HNN extensions over amenable subgroups. To prove a lower bound for rank
gradient, we prove and use the following lower bound for cost:

Proposition 1.2.5. Let Γ be a finitely generated group and L be a subgroup of Γ. Let
{Hn} be a set of finite index normal subgroups of Γ such that

⋂
Hn = 1. Let Γ̂(Hn) be

the profinite completion of Γ with respect to {Hn} and define L̂(L∩Hn) similarly. Then

Cost(L, Γ̂(Hn)) ≥ Cost(L, L̂(L∩Hn)).

An upper bound for the rank gradient of amalgamated free products had already
been proved in [1]. Combining the upper bound and lower bound for the rank gradient
of amalgamated free products over an amenable subgroup leads to the following result:

Theorem 1.2.6. Let Γ = Γ1 ∗A Γ2 be finitely generated and residually finite with A
amenable. Let {Hn} be a lattice of normal subgroups of finite index in Γ such that⋂
Hn = 1. Then

RG(Γ, {Hn}) = RG(Γ1, {Γ1 ∩Hn}) +RG(Γ2, {Γ2 ∩Hn}) +
1

|A|
.

In particular, RG(Γ) ≥ RG(Γ1) +RG(Γ2) + 1
|A| .

Let K be a finitely generated group with isomorphic subgroups A ' ϕ(A). We
denote the corresponding HNN extension of K by K∗A = 〈K, t | t−1At = ϕ(A)〉. To
compute the rank gradient for HNN extensions with amenable associated subgroup
a similar method was used. We show a lower bound using cost and an upper bound
using the Kurosh subgroup theorem for HNN extensions.
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Theorem 1.2.7. Let Γ = K∗A = 〈K, t | t−1At = B〉 be a finitely generated and
residually finite HNN extension with A amenable. Let {Hn} be a lattice of finite
index normal subgroups with

⋂
Hn = 1. Then

RG(Γ, {Hn}) = RG(K, {K ∩Hn}) +
1

|A|
.

In particular, RG(Γ) ≥ RG(K) + 1
|A| .

The analogous results for p-gradient of amalgamated free products and HNN ex-
tensions are so similar to the rank gradient results that we omit the statements of the
results at this time. The theorems are stated and proved in Chapter 6.

Since there is no corresponding relationship between p-gradient and cost, the
analogous results for the p-gradient of amalgamated free products and HNN exten-
sions are proved differently. In fact, p-gradient is much easier to compute since
dp(Γ) = d(Γ/[Γ,Γ]Γp) is easier to bound than d(Γ). To compute p-gradient for amal-
gamated free products and HNN extensions we use the Kurosh subgroup theorems
for amalgamated free products and HNN extensions [8]. If Γ is an amalgamated free
product or HNN extension, the Kurosh subgroup theorem states that a subgroup H
of Γ is an HNN group with base subgroup a “tree product” (iterated amalgamated
free product).

Gaboriau [10] proved a lower bound for the cost of amalgamated free products
and HNN extensions of groups over amenable subgroups. The results given here are
similar to the analogous results for cost. Lück [27] proved the corresponding equality
of Theorem 1.2.6 for the first L2-Betti number of amalgamated free products and his
result only requires that the first L2-Betti number of the amalgamated subgroup is
zero.
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Chapter 2

Group Theory Background

2.1 Finitely Generated Groups

Combinatorial group theory is the study of groups using presentations by generators
and relations. Geometric group theory is more broad and connects algebraic proper-
ties of groups and geometric properties of spaces. This arises naturally in two ways:
studying the Cayley graph of the group, or letting the group act on a certain space
(topological space, probability space, geometric objects by symmetries, etc.). Com-
binatorial group theory is older than geometric group theory and today geometric
group theory is getting more attention than combinatorial group theory. Both areas
are important, not entirely disjoint, and in certain ways very complementary. Both
combinatorial and geometric group theory are used in this research in critical ways.

In combinatorial and geometric group theory a common restriction on the group
is that it is finitely generated. In combinatorial group theory this allows the use of
the fact that the group is the quotient of a free group of finite rank. In geometric
group theory, this assumption is even more natural as finitely generated groups act
naturally on graphs and other spaces.

We introduce finitely generated groups by giving the definition, some examples,
and fundamental properties. In particular we present the Schreier index formula and
a method of proof called the Reidemeister-Schreier method, as this will be used often
in our study of rank gradient and p-gradient.

Definition. A group Γ is called finitely generated if there exists a finite set S such
that Γ = 〈S〉. That is, every element of Γ can be written as a word in the elements
of S ∪ S−1.

Example 2.1.1. • A free group of finite rank and any quotient is finitely gener-
ated

• SL2(Z) =

{(
a b
c d

)
| a, b, c, d,∈ Z, ad− bc = 1

}
is generated by two ele-

ments:

(
1 1
0 1

)
and

(
1 0
1 1

)
.
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• Q is not finitely generated as a group under addition.

• A free group on two generators F2 = 〈x, y〉 has the subgroup generated by
〈ynxy−n | n ∈ N〉, which is a free group on infinitely many generators.

The above example shows that in general a subgroup of a finitely generated group
need not be finitely generated. However, every finite index subgroup of a finitely gen-
erated group is finitely generated. The following theorem is fundamental in studying
rank gradient and p-gradient since it gives a bound on the minimal number of gen-
erators for any finite index subgroup. For any finitely generated group Γ, let d(Γ) =
minimal number of generators of Γ.

Theorem 2.1.2 (Schreier Index Formula). Let Γ be a finitely generated group and
let H be a finite index subgroup of Γ. Then

d(H)− 1 ≤ (d(Γ)− 1)[Γ : H].

In particular, if Γ is free of finite rank, then H is free and

d(H)− 1 = (d(Γ)− 1)[Γ : H].

Proof. Because of its importance in the study of rank gradient, we outline two proofs
of this result. The first proof is topological in nature and uses fundamental groups.
The second proof uses the Reidemeister-Schreier method for obtaining a presentation
of H from the presentation for Γ. The reader is referred to [28, Proposition 12.1]
or [35, Theorem 12.25] for the complete topological proof and [28, Proposition 4.1]
for the Reidemeister-Schreier method proof. We will often reference the Reidemeister-
Schreier method while proving other results later in the dissertation.

• Fundamental Groups: Let S be a finite generating set of Γ, with |S| = n.
Let λ be a graph with vertex set the set of cosets Hg for g ∈ Γ with edges given
by (Hg,Hgs) for each s ∈ S ∪ S−1. Let w be a word in S. From the vertex H
there is a unique path p in the edges of λ such that p ends at Hw. Note that p is
a loop if and only if w ∈ H. Since H is finite index, there are only [Γ : H] <∞
many vertices and so there is a finite set of loops {p1, . . . pm} such that any
other loop at H can be generated by this set. The fundamental group π(Γ, H)
is thus a free group on m generators (free group on elements given by the paths
p1, . . . pm). It follows that H is generated by the image of these elements in Γ (if
h cannot be written in these elements, then h would define an additional loop
in λ). Therefore H is generated by no more than m elements.

Recall that for a finite graph X, the Euler characteristic is defined to be χ(X) =
|vertices| − |undirected edges|. It is well known that if X is connected, then
1 − χ(X) gives the rank of π(X). Since λ is finite and connected and π(Γ, H)
is free on m generators, then m = |undirected edges| − |vertices|+ 1, but there
are at most n undirected edges per vertex and [Γ : H] vertices. Therefore
m ≤ [Γ : H]n− [Γ : H] + 1. It follows that d(H)− 1 ≤ [Γ : H](d(Γ)− 1).
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• Reidemeister-Schreier Method: Let Γ be finitely generated and H a sub-
group of finite index. Given the presentation Γ = 〈X | R〉 one uses a special
set of coset representatives of H in Γ called a Schreier transversal to construct
a presentation for H. A Schreier transversal for H in Γ is a set T of coset
representatives of H in Γ such that every initial segment of an element of T
is in T and 1 ∈ T . That is, if t = z1 · · · zn ∈ T then z1 · · · zi ∈ T for any
1 ≤ i ≤ n. Let T be a Schreier transversal for H in Γ, then H has a presentation
H = 〈Y | trt−1 for every t ∈ T, r ∈ R〉 with Y = {tx(tx)−1 6= 1 | t ∈ T, x ∈ X},
where tx is the element in T representing the coset containing tx. By a slight
(but standard) abuse of notation, we use Y in two different ways. First, Y is a
subset of H and second, Y is a generating set for the free group that surjects
onto H to give this presentation.

Since T is a Schreier transversal, every nontrivial t ∈ T can be uniquely written
as t = t′x′ for some t′ ∈ T and x′ ∈ X∪X−1 and thus t′x′(t′x′)−1 = 1. Therefore
the cardinality of Y is |Y | = |T ||X| − (|T | − 1) = [Γ : H](|X| − 1|) + 1. We also
note that H has [Γ : H]|R| many relations.

Finitely generated groups are countable but not all countable groups are finitely
generated as seen in the example of a non-finitely generated subgroup of the free
group on two generators. G. Higman, B.H. Neumann, and H. Neumann [14] proved
that every countable group can be embedded in a 2-generated group. Moreover,
B.H. Neumann proved that there are uncountably many 2-generated groups (this is
actually true for any n ≥ 2). Thus, the class of finitely generated groups is large and
contains groups of differing complexity.

2.2 Profinite and Pro-p Groups

Let Γ be a finitely generated group. The pro-p completion of Γ for some prime p will be
denoted by Γp̂. Let d(Γ) denote the minimal number of abstract generators of a group
Γ if the group is not profinite and the minimal number of topological generators if the
group is profinite. If a group is profinite, the term “finitely generated” will be used to
mean “topologically finitely generated”. The reader is referred to any standard text
on profinite groups for more details about the results in this section [9, 39].

Definition. The following are all equivalent definitions of profinite groups:

1. A profinite group is a compact Hausdorff totally disconnected topological group.

2. A profinite group G is (topologically) isomorphic to lim←−G/H, where the inverse
limit is taken over all open normal subgroups of G. Moreover, the inverse limit
of every inverse system of finite groups is profinite.
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3. A compact Hausdorff topological group is profinite if the neighborhoods of the
identity are normal subgroups and form a basis for the topology.

4. For any group Γ one can define the profinite topology on Γ by taking all normal
subgroups of finite index as a basis for the neighborhoods of the identity.

Example 2.2.1. There are a few easily stated examples of profinite groups:

1. Finite groups with the discrete topology.

2. Galois groups of finite or infinite field extensions.

3. The profinite completion of Γ, that is, the (standard topological) completion in
the profinite topology defined above.

An assumption we will often make about the groups throughout this dissertation
is that they are residually finite or residually-p.

Definition. A group Γ is called residually finite if the intersection of all (normal)
subgroups of finite index is trivial. A group Γ is called residually-p if the intersection
of all normal subgroups of p-power index is trivial.

Residually finite and residually-p groups are natural classes of groups to study
because they are the groups that embed into their profinite and pro-p completions
respectively.

Definition. For any group Γ one can define the profinite completion, Γ̂ ' lim←−Γ/H,
where the inverse limit is taken over all finite index normal subgroups of Γ. The group
Γ̂ is profinite (the inverse limit of compact Hausdorff totally disconnected spaces is
again compact Hausdorff and totally disconnected).

There is a natural map ϕ : Γ → Γ̂ and ϕ(Γ) is dense in Γ̂. The kernel of ϕ is
the intersection of all finite index normal subgroups of Γ. Hence, ϕ is injective if and
only if Γ is residually finite.

Profinite completions satisfy the following universal property: Given a profinite
group G and any homomorphism ψ : Γ→ G there exists a continuous homomorphism
ψ̂ : Γ̂→ G such that ψ̂ ◦ ϕ = ψ.

The following is given as a proposition in [9]. This proposition contains many of
the basic properties of profinite groups.

Proposition 2.2.2. Let G be a profinite group.

1. Every open subgroup of G is closed, has finite index in G, and contains an open
normal subgroup of G. The intersection of all open subgroup of G is trivial.

2. A closed subgroup of G is open if and only if it has finite index.
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3. A subset of G is open if and only if it is the union of cosets of open normal
subgroups.

4. Let H be a closed subgroup of G. Then H, given the subspace topology, is a
profinite group. Every open subgroup of H is of the form H ∩ K with K an
open subgroup of G.

5. Let N be a closed normal subgroup of G. Then G/N , given the quotient topology,
is a profinite group. The natural homomorphism ϕ : G→ G/N is an open and
closed continuous homomorphism.

Remark 2.2.3. One of the most important and fundamental results concerning profi-
nite group was proved recently by Nikolay Nikolov and Dan Segal [30]. The result,
called Serre’s Conjecture, states that in a finitely generated profinite group all finite
index subgroups are open. None of the work given in this dissertation depends on this
fact since we are defining rank gradient of a profinite group to be over open normal
subgroups, but it should be noted that this result does allow the standard definition
of rank gradient (over finite index subgroups) to carry over to profinite groups with-
out any alteration. The reason we alter the definition of rank gradient when moving
to the profinite case is because open normal subgroups in a profinite group play the
same role that finite index subgroups do in a discrete group.

Definition. Let G be a profinite group. The Frattini subgroup of G is

Φ(G) =
⋂
{M |M is a maximal proper open subgroup of G}.

The following proposition is taken from [9].

Proposition 2.2.4. Let G be a profinite group. For a subset X of G, we say that X
generates G topologically if G = 〈X〉, where 〈X〉 means the topological closure of the
subgroup generated by X in G. The following are equivalent:

1. X generates G topologically.

2. X ∪ Φ(G) generates G topologically.

3. XΦ(G)/Φ(G) generates G/Φ(G) topologically.

We now turn our attention to a specific class of profinite groups called pro-p
groups. Pro-p groups will be our focus for the results using topological groups in this
dissertation.

Definition. A pro-p group is a profinite group in which every open normal subgroup
has p-power index.
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Definition. Let Γ be a group. The pro-p completion of Γ can be defined as Γp̂ =
lim←−Γ/H where the inverse limit is taken over normal subgroups of p-power index.
The topological group Γp̂ is a pro-p group.

There is a natural map ϕ : Γ → Γp̂ and ϕ(Γ) is dense in Γp̂. The kernel of ϕ is
the intersection of all normal subgroups of p-power index in Γ. Hence, ϕ is injective
if and only if Γ is residually-p.

Pro-p completions satisfy the following universal property: Given a pro-p group
G and any homomorphism ψ : Γ → G there exists a continuous homomorphism
ψ̂ : Γp̂ → G such that ψ̂ ◦ ϕ = ψ.

Example 2.2.5. A classic example of a pro-p group (also a pro-p completion) is the
group of p-adic integers. The p-adic integers are defined by Zp = lim←−Z/pkZ where
the inverse limit runs over all natural numbers k.

A subgroup H of Γ is called subnormal of length n if there exists a chain of
subgroups H = H0 ≤ · · · ≤ Hn = Γ such that Hi is normal in Hi+1 for each i. It is
a well-known fact that subnormal subgroups of p-power index in a group Γ form a
base for the pro-p topology, but the author is unaware of any reference so we provide
a proof here.

Lemma 2.2.6. Let Γ be a group and p a prime. Let H be a subnormal subgroup of
p-power index in Γ. There exists a normal subgroup N of p-power index in Γ such
that N ≤ H.

Proof. We will prove this by induction on the subnormal length of H. Assume that
H is 2-subnormal. Then H ≤ K ≤ Γ with each group normal and of p-power index
in the next group. Let T be a transversal for H in Γ such that 1 ∈ T . Consider
N =

⋂
t∈T tHt

−1.
Let g ∈ Γ. Then, gt = skt with s ∈ T and kt ∈ K and as t runs over T so does s.

Thus, gNg−1 ⊆
⋂
t∈T gtH(gt)−1 =

⋂
t∈T (skt)H(skt)

−1. Since H is normal in K, we
have that

⋂
t∈T (skt)H(skt)

−1 ⊆
⋂
t∈T sHs

−1 = N . Therefore N is normal in Γ.
Since H ≤ K and K is normal in Γ, it implies that tHt−1 ⊆ tKt−1 ⊆ K. Thus for

every t ∈ T we have that tHt−1 ⊆ K. Let k ∈ K, then since H is normal in K and
K is normal in Γ we have that ktHt−1k−1 = t(t−1kt)H(t−1k−1t)t−1 = tk0Hk

−1
0 t−1 ⊆

tHt−1. Thus for each t ∈ T , we know tHt−1 is normal in K. Therefore, there is an

injection K/N →
∏
t∈T

K/tHt−1, which implies that |K/N | divides |
∏

t∈T K/tHt
−1|.

Thus [K : N ] divides [Γ : K][K : H] = [Γ : H]. Therefore, [K : N ] is a p-power,
which implies that [Γ : N ] is a p-power.

Now assume that H is subnormal of length n. Then there exist subgroups H =
H0, H1, H2, . . . , Hn = Γ such that Hi ≤ Hi+1 is normal and [Hi+1 : Hi] is a p-power.
In particular H ≤ H1 ≤ H2 and therefore there exists an M ≤ H which is normal in
H2 and has p-power index in H2. Now, M ≤ H2 ≤ · · · ≤ Hn−1 ≤ Γ with each group
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normal in the next group and so M has subnormal length < n. Thus by induction,
there exists an N ≤ M , which is normal in Γ and has p-power index in Γ. Since
N ≤M , then in particular N ≤ H.

Proposition 2.2.7. Let Γ be a group and p a prime number. The set of subnormal
subgroups of p-power index form a base of neighborhoods of the identity for the pro-p
topology on Γ.

Proof. By definition of pro-p completion, we know that the collection of normal sub-
groups of p-power index in Γ is a base for neighborhoods of the identity in the pro-p
topology on Γ. Call this set K and the corresponding topology τp. Consider now the
collection of all subnormal subgroups of p-power index in Γ. Call this set H. Then
H forms a base for neighborhoods of the identity for some other topology τ ∗p on Γ.
Since multiplication is a homeomorphism in profinite groups, to compare topologies
we only need to compare the bases for neighborhoods of the identity.

First, we note that K ⊆ H, which implies that τp ⊆ τ ∗p . Let H ∈ H. By
Lemma 2.2.6 there exists an K ∈ K such that K ⊆ H. This shows us that τ ∗p ⊆ τp.

2.3 Free Products, Amalgams, and HNN Exten-

sions

As will be evident later, we will need to know the structure of subgroups of free
products, amalgamated free products, and HNN extensions. In this section we discuss
these types of groups as well as the structure of their subgroups of finite index.
The structure theorems for these groups are usually referred to as Kurosh subgroup
theorems. We will begin with free products.

Definition. Let Γ1 and Γ2 be two groups. Consider the set of words x1 · · ·xn in the
elements of Γ1 and Γ2. A word is reduced if:

• Any instance of the identity element of Γ1 or Γ2 is removed from the word.

• If xi and xi+1 are in Γj, then replace it with its product from Γj.

The free product of Γ1 and Γ2 is the group of all reduced words in Γ1 and Γ2 with the
group operation being word concatenation. Said differently, if Γ1 = 〈X1 | R1〉 and
Γ2 = 〈X2 | R2〉 then the free product of Γ1 and Γ2 is the group with presentation
Γ1 ∗ Γ2 = 〈X1, X2 | R1, R2〉.

The following theorem is well known. The reader is referred to any standard text
in group theory for a proof [7, 28, 35,37].
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Theorem 2.3.1 (Kurosh Subgroup Theorem For Free Products). Let Γ =
Γ1 ∗ Γ2 be the free product of Γ1 and Γ2. Let H ≤ Γ be a subgroup. Then there exists
a set Xi of double coset representatives of H\Γ/Γi such that

H = F ∗
(
∗x∈X1H ∩ xΓ1x

−1
)
∗
(
∗y∈X2H ∩ yΓ2y

−1
)

where F is a free group. Moreover, if H is finite index in Γ then |Xi| = |H\Γ/Γi| for
i = 1, 2 and F is a free group of rank [Γ : H]− |H\Γ/Γ1| − |H\Γ/Γ2|+ 1.

Amalgamated free products and HNN extensions are certain quotients of free
products and are closely related concepts. Amalgamated free products, sometimes
referred to as amalgams, and HNN extensions are important constructions in combi-
natorial group theory. It should be noted that amalgams and HNN extensions also
arise in other areas of mathematics. For example, in topology both constructions arise
naturally as fundamental groups of certain spaces. As will be seen in the Kurosh sub-
group theorem for amalgamated free products, every subgroup of an amalgamated
free product has the structure of an HNN extension. Because of this we will define
both amalgamated free products and HNN extensions now.

Definition. Let Γ1 and Γ2 be two groups and ϕ : A→ B be an isomorphism between
the subgroups A ≤ Γ1 and B ≤ Γ2. The amalgamated free product of Γ1 and Γ2 over
A ' B is the group Γ1 ∗A Γ2 ' (Γ1 ∗ Γ2)/〈〈aϕ(a)−1 for every a ∈ A〉〉. The subgroup
A ' B is usually referred to as the amalgamated subgroup of Γ.

HNN extensions are named after G. Higman, B.H. Neumann, and H. Neumann
who constructed the groups in 1949. The construction of HNN extensions answered
some important embedding questions for groups. The original paper [14] proved that
any countable group G can be embedded in a countable group Γ in which all elements
of the same order in G are conjugate in Γ. The construction of HNN extensions can
also be used to show that every countable group can be embedded in a 2-generated
group.

Definition. Let K be a group with isomorphic subgroups A ' ϕ(A). The HNN
extension of K over A is the group with presentation K∗A = (K∗〈t〉)/〈〈tat−1ϕ(a)−1〉〉.
The group K is referred to as the base group, the element t is referred to as the stable
letter, and the subgroup A ' B is referred to as the associated subgroup. This group
is typically written as K∗A = 〈K, t | t−1At = ϕ(A)〉.

The subgroup structure theorems for amalgamated free products and HNN exten-
sions were first proved by Karrass and Solitar [18,19]. Karrass, Pietrowski, and Soli-
tar improved the result for HNN groups using the Reidemeister-Schreier method [17].
D.E. Cohen [8] proved the same results for amalgamated free products and HNN
groups independently from Karrass and Solitar using Bass-Serre theory.

The double coset representatives given in the following theorems are constructed
in a specific way. The reader is referred to [8, 17–19] for the constructions. These
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double coset representatives are called a cress (compatible regular extended Schreier
system) in [18], and a semi-cress in [8]. For our purposes it will not matter what
form the representatives take.

In the theorems below the term “tree product” is used. The following description
of a tree product follows that of Karrass and Solitar [18]. Let {Γi} be a collection
of groups and suppose that for certain pairs of indices i 6= j there exist isomorphic
subgroups Aij and Aji of Γi and Γj respectively. Then the partial generalized free
product is the group Γ which has as a presentation the union of the presentations of
the amalgamated free products 〈Γi,Γj | Aij = Aji〉. It is known that Γ is independent
of the presentation used for the Γi. We associate to Γ a graph which has as vertices
the groups Γi and an edge joins Γi and Γj if there exist isomorphic subgroups Aij
and Aji (given above) of Γi and Γj respectively. The group Γ is called a tree product
of the Γi with the subgroups Aij and Aji amalgamated if this graph is a tree. Tree
products are usually denoted

∏∗(Γi | Aij = Aji).

Theorem 2.3.2 (Kurosh Subgroup Theorem For Amalgamated Free Prod-
ucts - Cohen, Karrass and Solitar). Let Γ = Γ1 ∗AΓ2. Let H be a subgroup of Γ. One
can choose the following:

1. {dα}, a double coset representative system for H\Γ/Γ1,

2. {eu}, a double coset representative system for (dαΓ1d
−1
α ∩H)\Γ1/A for each dα,

3. {dβ}, a double coset representative system for H\Γ/Γ2,

4. {ev}, a double coset representative system for (dβΓ2d
−1
β ∩H)\Γ2/A for every dβ,

such that {dβev} and {dαeu} are double coset representative systems for H\Γ/A.
Given dβ and ev there exists a unique dα, corresponding eu, and element x ∈ A such
that dβev ∈ Hdαeux. Let tβv = dβev(dαeux)−1 ∈ H.

Then H is the HNN group

H = 〈L, tβv | tβv(dαeuA(dαeu)
−1 ∩H)t−1

βv = dβevA(dβev)
−1 ∩H〉.

In this expression we take all non trivial tβv with corresponding dα and eu.
The group L is the tree product of the groups dαΓ1d

−1
α ∩H and dβΓ2d

−1
β ∩H with

two such groups being adjacent if dα = dβ = 1 or dα = dβb or dβ = dαa with a ∈ Γ1

and b ∈ Γ2. The subgroup amalgamated between these two adjacent groups is A ∩H
(in Γ1 ∩ H) or dαAd

−1
α ∩ H (in dαΓ1d

−1
α ∩ H) or dβAd

−1
β ∩ H (in dβΓ2d

−1
β ∩ H)

respectively.
Moreover, if H has finite index in Γ, then the number of nontrivial tβv is equal to

|H\Γ/A| − |H\Γ/Γ1| − |H\Γ/Γ2|+ 1.
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Remark 2.3.3. For our purposes we are only interested in applying this theorem to
normal subgroups of finite index. In this case we can restate the theorem as follows:
Every normal subgroup H of finite index in the amalgamated free product Γ = Γ1∗AΓ2

is an HNN group with base subgroup L and n = |H\Γ/A|− |H\Γ/Γ1|− |H\Γ/Γ2|+1
free generators with each associated subgroup being isomorphic to A∩H. Specifically,

H = 〈L, t1, . . . , tn | ti(A ∩H)t−1
i = ϕi(A) ∩H〉

where the ϕi are appropriate embeddings from A to L.
Further, L is an amalgamated free product of |H\Γ/Γ1| groups that are isomorphic

to Γ1∩H and |H\Γ/Γ2| groups that are isomorphic to Γ2∩H with at most |H\Γ/Γ1|+
|H\Γ/Γ2| − 1 amalgamations each of which is isomorphic to A ∩H.

Theorem 2.3.4 (Kurosh Subgroup Theorem For HNN Groups - Cohen, Kar-
rass, Pietrowski, and Solitar). Let Γ = 〈K, t | t−1At = B〉. Let H be a subgroup of Γ.
One can choose the following:

1. {dκ}, a double coset representative system for H\Γ/K,

2. {eα}, a double coset representative system for (dκKd
−1
κ ∩H)\K/A for each dκ,

3. {eβ}, another double coset representative system for (dκKd
−1
κ ∩ H)\K/B for

every dκ,

such that {dκeα} and {dκeβ} are double coset representative systems for H\Γ/A.
Given dκ and eα there exists a unique dγ ∈ {dκ}, corresponding eβ, and element
x ∈ A such that dκeαt ∈ Hdγeβx. Let tκα = dκeαt(dγeβx)−1 ∈ H.

Then H is the HNN group

H = 〈L, tκα | tκα(dγeβA(dγeβ)−1 ∩H)t−1
κα = dκeαB(dκeα)−1 ∩H〉.

In this expression we take all non trivial tκα with corresponding dγ and eβ.
The group L is the tree product of the groups dκKd

−1
κ ∩ H, where dκKd

−1
κ ∩ H

and dγKd
−1
γ ∩ H (dγ shorter than dκ) are adjacent if dκ = dγeαt or dκ = dγeβt

−1.
The amalgamated subgroup between these two adjacent subgroups is dκAd

−1
κ ∩ H or

dκBd
−1
κ ∩H respectively.

Moreover, if H has finite index in Γ, then the number of nontrivial tκα is equal to
|H\Γ/A| − |H\Γ/K|+ 1.

Remark 2.3.5. As in the case of amalgamated free products, for our purposes we
are only interested in applying this theorem to normal subgroups of finite index. In
this case we can restate the theorem as follows: Every normal subgroup H of finite
index in the HNN extension Γ = 〈K, t | tAt−1 = ϕ(A)〉 is an HNN group with base
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subgroup L and n = |H\Γ/A| − |H\Γ/K| + 1 free generators with each associated
subgroup being isomorphic to A ∩H. Specifically,

H = 〈L, t1, . . . , tn | ti(A ∩H)t−1
i = ϕi(A) ∩H〉

where the ϕi are appropriate embeddings from A to L.
Further, L is an amalgamated free product of |H\Γ/K| groups that are isomorphic

to K ∩H with at most |H\Γ/K| − 1 amalgamations each of which is isomorphic to
A ∩H.

2.4 Amenable Groups

There are numerous definitions of amenable groups depending on what context one
is considering and what property of amenable groups is needed. In this section, two
definitions of amenable groups will be given as well as some examples.

Definition (invariant measure definition). A discrete group Γ is amenable if there
exists a finitely-additive left-invariant probability measure on Γ. That is, there exists
a measure µ on Γ such that:

1. Finitely-additive: Let A1, . . . , An be disjoint subsets of Γ. Then µ(A1 ∪ · · · ∪
An) = µ(A1) + · · ·+ µ(An).

2. Left-invariant: µ(gA) = µ(A) for any g ∈ Γ and any subset A.

3. Probability measure: µ(Γ) = 1.

Example 2.4.1. Using the invariant measure definition it is easy to see that any
finite group Γ is amenable. Let A be any subset of Γ and let µ(A) = |A|

|Γ| (normalized

counting measure).

If the discrete group Γ is finitely generated we can give a different definition
of amenability. The following definition is slightly different from what is normally
considered as a Følner sequence, but it is equivalent. This particular version is found
in [1]. First some notation. Let Γ be generated by a finite set S and let A be a finite
subset of Γ. The boundary of A with respect to S is defined as

∂S(A) = {(a, sa) | a ∈ A, s ∈ S, sa /∈ A}.

The set A is called ε-invariant with respect to S if |∂S(A)| ≤ ε|S||A|.

Definition (Følner sequence definition). A finitely generated discrete group Γ is
amenable if there exists a sequence of finite subsets {An} of Γ and a sequence of real
numbers an such that An is an-invariant for each n and lim

n→∞
an = 0.
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Example 2.4.2. Using the Følner sequence definition one can easily show that the
group of integers is amenable. Let S = {−1, 1} and let An = {−n, . . . , n} for every
n ∈ N. Then ∂S(An) = {−n, n} and thus |∂S(An)| = 2. Since |S||A| = 4n it follows
that An is 1

2n
-invariant for every n.

A summary of some of the important facts about amenable groups is given in the
following theorem.

Theorem 2.4.3. The following groups are amenable:

1. Finite groups,

2. Solvable (hence nilpotent, abelian) groups,

3. Subgroups of amenable groups,

4. Quotients of amenable groups,

5. Direct products of amenable groups,

6. Direct limits of amenable groups,

7. Virtually amenable groups, that is, a group containing a finite index subgroup
that is amenable.

Amenable groups should be thought of as “small” in some sense as non-amenable
groups are paradoxical.

Definition. Let Γ be a discrete group. Γ is said to have a paradoxical decomposition if
there exist disjoint subsets A1, . . . , An, B1, . . . Bm and elements g1, . . . , gn, h1, . . . hm ∈
Γ such that

Γ =
n⋃
i=1

giAi =
m⋃
j=1

hjBj.

Proposition 2.4.4. A discrete amenable group is not paradoxical.

Proof. Let Γ be a discrete amenable group and let µ be a finitely-additive left-
invariant probability measure on Γ. Assume that Γ has paradoxical decomposition
Γ =

⋃n
i=1 giAi =

⋃m
j=1 hjBj. Since µ is finitely-additive and left-invariant,

1 = µ(Γ) = µ

(
n⋃
i=1

giAi

)
=

n∑
i=1

µ(giAi) =
n∑
i=1

µ(Ai) = µ

(
n⋃
i=1

Ai

)
and

1 = µ(Γ) = µ

(
m⋃
j=1

hjBj

)
=

m∑
j=1

µ(hjBj) =
m∑
j=1

µ(Bj) = µ

(
m⋃
j=1

Bj

)
.
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Therefore,

µ

(
n⋃
i=1

Ai ∪
m⋃
j=1

Bj

)
= µ

(
n⋃
i=1

Ai

)
+ µ

(
m⋃
j=1

Bj

)
= 1 + 1 = 2

which is clearly a contradiction since µ is a probability measure.

Example 2.4.5. Any discrete group containing the free group on two generators F2

is not amenable. Since amenability is closed under subgroups, we only need to show
that F2 is not amenable. Let F2 = 〈a, b〉. Denote by W (a) the set of all words in F2

that are reduced and start with the letter a and define W (a−1),W (b), and W (b−1)
similarly. These subsets are all disjoint. The set aW (a−1) contains all words that
do not start with a since each word in W (a−1) must be reduced. Similarly, bW (b−1)
contains all words that do not start with b. It follows that

F2 = aW (a−1) ∪W (a) = bW (b−1) ∪W (b).

Thus F2 has a paradoxical decomposition and therefore is not amenable.
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Chapter 3

Rank Gradient and p-Gradient

3.1 Relationship Between Rank Gradient and p-

Gradient With Other Group Invariants

Rank gradient is closely related to two other group invariants: L2-Betti numbers and
cost. If Γ is a finitely generated residually finite group, it is known that

RG(Γ) ≥ cost(Γ)− 1 ≥ β
(2)
1 (Γ)− 1

|Γ|
(3.1.1)

where we use the standard convention that 1
|Γ| = 0 if Γ is infinite. The notation

β
(2)
1 (Γ) stands for the first L2-Betti number of Γ. Abert and Nikolov [2] proved the

first part of the inequality and the second part was proved by Gaboriau [11]. It is not
known whether or not the inequalities can be strict. Rank gradient, cost, and first
L2-Betti number are all equal in every case in which they have been computed. The
relationship between rank gradient and cost is not limited to the above inequality.
Abert and Nikolov related two open problems about cost to rank gradient as well:
the fixed price problem and the multiplicativity of cost-1 problem [2]. This inequality
relates the three main branches of mathematics: algebra (asymptotic group theory),
analysis (orbit equivalence theory), and topology (homology) and emphasizes the
importance of rank gradient to other areas of mathematics.

Lück proved [25] that one can compute the first L2-Betti number of a finitely
presented residually finite group Γ as follows:

Theorem 3.1.1 (Lück). Let Γ be a finitely presented residually finite group. Let
{Ni} be a descending chain of finite index normal subgroups of Γ such that

⋂
Ni = 1.

Then the first L2-Betti number of Γ is

β
(2)
1 (Γ) = lim

i→∞

rk(Nab
i )

[Γ : Ni]
,

where rk(Nab
i ) is the torsion free rank of the abelianization of Ni.
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The value rk(Nab
i ) is called the ordinary first Betti number of Ni and is typically

denoted b1(Ni). It is important to note that by definition, L2-Betti numbers are

independent of the choice of chain. However, Lück’s calculation of β
(2)
1 (Γ) given above

shows that for finitely presented residually finite groups, the quantity limi→∞
rk(Nab

i )

[Γ:Ni]

is also independent of the choice of chain. This fact is very non-trivial and interesting
in its own right.

Remark 3.1.2. There are two notions of L2-Betti numbers for a group Γ: L2-Betti
numbers of Γ and L2-Betti numbers of matrices over the rational group ring of Γ (L2-
Betti numbers arising from Γ). The L2-Betti numbers referred to in this dissertation
are of the first type. In general, Betti numbers are topological invariants and more
information on Betti numbers can be found in [26].

As will be covered later, cost is used to help compute rank gradient of free products
amalgamated over an amenable subgroup and HNN extensions with an amenable
associated subgroup. Let Γ be a group acting on a Borel probability space X, and
consider the equivalence relation defined on X by x ∼ y if x and y are in the same
orbit. The cost of the action of Γ on X, denoted Cost(Γ, X), is a number that
represents the amount of information needed to build this equivalence relation. Cost
is often studied in the context of orbit equivalence theory and as far as the author
is aware the use of cost given in this dissertation is one of the first applications of
cost to prove a result in group theory. The notion of cost was first introduced by
Levitt [24] and more information on cost can be found in [10,12].

We can easily prove that RG(Γ, {Hi}) ≥ RGp(Γ) ≥ β
(2)
1 (Γ) if {Hi} is a normal

chain of p-power index subgroups, which is a special case of Inequality 3.1.1. Before
proving the inequality we define explicitly rank gradient and p-gradient relative to a
lattice of subgroups.

Definition. 1. The rank gradient relative to a lattice {Hi} of finite index sub-
groups is defined as

RG(Γ, {Hi}) = inf
i

d(Hi)− 1

[Γ : Hi]
.

2. The p-gradient relative to a lattice {Hi} of normal subgroups of p-power index
is defined as

RGp(Γ, {Hi}) = inf
i

dp(Hi)− 1

[Γ : Hi]
.

Often, the lattice is a descending chain of subgroups. In this case, we have the
following useful lemma.

Lemma 3.1.3. Let Γ be a finitely generated group. If {Hi}∞1 is a descending chain
of finite index subgroups and {Ki}∞1 is a descending chain of normal subgroups of
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p-power index, then {
d(Hi)− 1

[Γ : Hi]

}∞
1

and

{
dp(Ki)− 1

[Γ : Ki]

}∞
1

are non-increasing sequences and

RG(Γ, {Hi}) = lim
i→∞

d(Hi)− 1

[Γ : Hi]
and RGp(Γ, {Ki}) = lim

i→∞

dp(Ki)− 1

[Γ : Ki]
.

Proof. Since Γ is finitely generated and Hi is of finite index, then by the Schreier
index formula Hi is finitely generated and d(Hi+1) − 1 ≤ (d(Hi) − 1)[Hi : Hi+1] for
each i. This implies that for each i,

d(Hi+1)− 1

[Γ : Hi+1]
≤ (d(Hi)− 1)[Hi : Hi+1]

[Γ : Hi+1]
=
d(Hi − 1)

[Γ : Hi]
.

Therefore,

RG(Γ, {Hi}) = inf
i

d(Hi)− 1

[Γ : Hi]
= lim

i→∞

d(Hi)− 1

[Γ : Hi]
.

The corresponding result for p-gradient is proved similarly using the fact that for a
finitely generated group Γ and a normal subgroup of p-power index K, the inequality
dp(K)− 1 ≤ (dp(Γ)− 1)[Γ : K] holds. This Schreier index formula for dp is proved in
Lemma 6.1.3 using the Schreier index formula for finitely generated pro-p groups.

Remark 3.1.4. To prove results about rank gradient (analogously p-gradient) with
respect to a lattice {Hn} of normal subgroups of finite index in Γ, it is enough to
prove the result for a descending chain of subgroups from the lattice. The argument
for this is shown in Lemma 3.1.3. Specifically, one can use the chain: H1 ≥ H1∩H2 ≥
H1 ∩H2 ∩H3 ≥ . . .

Proposition 3.1.5. Let Γ be an infinite finitely presented residually-p group. Let
{Hi} be an infinite lattice of normal subgroups of p-power index. Then RG(Γ, {Hi}) ≥
RGp(Γ) ≥ β

(2)
1 (Γ).

Proof. Since Γ is residually-p, it follows that for every infinite lattice of normal sub-
groups of p-power index, {Hi}, there exists a descending chain {H ′i} with trivial
intersection such that H ′i is contained in Hi for all i. By the proof of Lemma 3.1.3

we have that d(Hi)−1
[Γ:Hi]

≥ d(H′i)−1

[Γ:H′i]
for each i. Therefore, RG(Γ, {Hi}) ≥ RG(Γ, {H ′i}).

Thus, it suffices to prove the result in the case when {Hi} is a descending chain
with trivial intersection. For every i we have d(Hi) ≥ dp(Hi) ≥ rk(Hab

i ), which
implies

d(Hi)

[Γ : Hi]
≥ dp(Hi)

[Γ : Hi]
≥ rk((Hab

i )

[Γ : Hi]
.

By Theorem 3.1.1, taking the limit of the above inequality yields RG(Γ, {Hi}) ≥
RGp(Γ, {Hi}) ≥ β

(2)
1 (Γ). By definitionRGp(Γ, {Hi}) ≥ RGp(Γ) and thusRG(Γ, {Hi}) ≥

RGp(Γ) ≥ β
(2)
1 (Γ).
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3.2 Some Properties of Rank Gradient and p-Gradient

In this section useful results concerning rank gradient and p-gradient are collected.

Theorem 3.2.1. Let Γ be a finitely generated group and let H be a finite index
subgroup. Then RG(Γ) = RG(H)

[Γ:H]
. If Γ is finite, then RG(Γ) = − 1

|Γ| .

Proof. Let K ≤ H ≤ Γ. Then [Γ : K] is finite if and only if [H : K] is finite. Since
d(K)−1

[Γ:K]
= 1

[Γ:H]
d(K)−1
[H:K]

it follows that

inf
[Γ:K]<∞

d(K)− 1

[Γ : K]
≤ inf

[Γ:K]<∞
K≤H

d(K)− 1

[Γ : K]
=

1

[Γ : H]
inf

[H:K]<∞

d(K)− 1

[H : K]
.

Therefore, RG(Γ) ≤ RG(H)
[Γ:H]

.

It is clear that {K ≤ H | [H : K] < ∞} = {H ∩ K | [Γ : K] < ∞}. Note that
[K : H ∩K] is finite and so [Γ : H ∩K] = [Γ : K][K : H ∩K] and by the Schreier
index formula d(H ∩K)− 1 ≤ (d(K)− 1)[K : H ∩K]. Therefore,

d(H ∩K)− 1

[Γ : H ∩K]
≤ (d(K)− 1)[K : H ∩K]

[Γ : H ∩K]
=
d(K)− 1

[Γ : K]
.

It follows that

inf
[Γ:K]<∞

d(K)− 1

[Γ : K]
≥ inf

[Γ:H∩K]<∞

d(H ∩K)− 1

[Γ : H ∩K]

= inf
[H:H∩K]<∞

d(H ∩K)− 1

[Γ : H ∩K]
=

1

[Γ : H]
inf

[H:H∩K]<∞

d(H ∩K)− 1

[H : H ∩K]
.

Therefore, RG(Γ) ≥ RG(H)
[Γ:H]

.

If Γ is finite, then using H = {1}, it follows that RG(Γ) = −1
|Γ| .

Computing rank gradient for a free group of finite rank is easy by the Schreier
index formula.

Lemma 3.2.2. Let F be a non-abelian free group of finite rank and let p be a prime
number. Then RG(F ) = RGp(F ) = rank(F )− 1.

Proof. For any free group F and any prime p, we know dp(F ) = d(F ). Let H be
a finite index (resp. p-power index and normal) subgroup of F . Since H is free,
dp(H) = d(H) and by the Schreier index formula, d(H) − 1 = (d(F ) − 1)[F : H],
which implies in this case dp(H)− 1 = (dp(F )− 1)[F : H]. Therefore,

RG(F ) = inf
[F :H]<∞

d(H)− 1

[F : H]
= inf

[F :H]<∞
(d(F )− 1) = rank(F )− 1,



25

RGp(F ) = inf
H normal,
p-power

dp(H)− 1

[F : H]
= inf

H normal,
p-power

(dp(F )− 1) = rank(F )− 1.

The difficulty of computing the rank gradient in general is due to the fact that
d(Γ) is hard to estimate from below. However, there is one very natural lower bound
for RG(Γ) if the group is finitely presented.

Proposition 3.2.3. Suppose Γ = 〈X | R〉 is finitely presented. If m = |X|− |R| > 0,
then RG(Γ) ≥ m− 1.

Proof. Let n = |X| and r = |R|. If Fn is a free group of rank n, then Γ = Fn/〈〈R〉〉.
Now, d(Γ) ≥ d(Γab) and Γab = Zn/〈〈R〉〉. By the Fundamental Theorem of Finitely
Generated Abelian Groups, it follows that the free rank of Γab is ≥ n − r, which
implies that d(Γ) ≥ n− r.

Let H be a finite index subgroup of Γ. By the Reidemeister-Schreier method (see
the proof of Theorem 2.1.2), H has a presentation with [Γ : H](n− 1) + 1 generators
and [Γ : H]r relations. Therefore,

d(H) ≥ [Γ : H](n− 1) + 1− [Γ : H]r = [Γ : H](n− r − 1) + 1.

Thus, for every finite index subgroup H of Γ, we have d(H)−1
[Γ:H]

≥ n − r − 1, which

implies inf
[Γ:H]<∞

d(H)− 1

[Γ : H]
≥ n− r − 1. Thus, RG(Γ) ≥ n− r − 1 = m− 1.

As the following proposition shows, it is not difficult to produce groups with
rational rank gradient. Whether an irrational number can be the rank gradient of
some finitely generated group remains an open question. We will show later that for
every prime p, every positive real number is the p-gradient for some finitely generated
group.

Proposition 3.2.4. Let m
n
> 0 ∈ Q. There exists a finitely presented group Γ such

that RG(Γ) = m
n

.

Proof. Let Fm+1 be a non-abelian free group of rank m + 1 and let A be any group
of order n. Consider Γ = Fm+1 × A. Since Fm+1 has index n in Γ, then RG(Γ) =
RG(H)
[Γ:H]

= m
n

by Theorem 3.2.1.

Using the theory of groups acting on trees, Abert and Nikolov [2] proved the
following proposition, which can be used to show that absolute rank gradient and
rank gradient relative to a lattice are not always equal.

Proposition 3.2.5 (Abert and Nikolov). There exists a virtually free group Γ and
an interval [x, y) ⊂ R such that for every α ∈ [x, y), there exists a subnormal
chain of subgroups Γ = H0 > H1 > H2 > · · · with trivial intersection, such that
RG(Γ, {Hi}) = α.
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Since Γ is virtually free it contains a free subgroup of finite rank that is finite
index in Γ, call it F . By Theorem 3.2.1 we know RG(Γ) = RG(F )

[Γ:F ]
which is clearly

rational. What is important here is that the groups in the chain are not normal. The
fact the the chain must intersect in the identity is also vital to determining whether
rank gradient depends on the chain.

Lemma 3.2.6. Let A×B be the direct product of two finitely generated groups. Then
d(A) ≤ d(A×B) ≤ d(A) + d(B).

Proof. Since A× B = (A ∗ B)/N , then d(A× B) ≤ d(A ∗ B) ≤ d(A) + d(B). Since,
A = (A×B)/({1} ×B) it implies that d(A) ≤ d(A×B).

Example 3.2.7. Consider the group Γ = Fm×Fn with m 6= n. Let {Ai} be an infinite
descending chain of normal subgroups of finite index in Fm. Then {Ai × Fn} is an
infinite descending chain of normal subgroups of finite index in Γ. By Lemma 3.2.6,

inf
i

d(Ai)− 1

[Fm : Ai]
≤ inf

i

d(Ai × Fn)− 1

[Γ : Ai × Fn]
≤ inf

i

d(Ai) + d(Fn)− 1

[Fm : Ai]
= inf

i

d(Ai)− 1

[Fm : Ai]

Therefore, using the Schreier index formula for free groups

RG(Γ, {Ai × Fn}) = inf
i

d(Ai × Fn)− 1

[Γ : Ai × Fn]
= inf

i

d(Ai)− 1

[Fm : Ai]
= d(Fm)− 1.

Similarly, let {Bi} be an infinite descending chain of normal subgroups of finite
index in Fn. Then

RG(Γ, {Fm ×Bi}) = inf
i

d(Fm ×Bi)− 1

[Γ : Fm ×Bi]
= inf

i

d(Bi)− 1

[Fn : Bi]
= d(Fn)− 1.

Since m 6= n, then d(Fm) − 1 6= d(Fn) − 1. Thus in this case the rank gradient of Γ
does depend on the chain.

Open Question. Let Γ be a finitely generated group. Does the rank gradient of Γ
depend on the chain of subgroups if the chain consists of finite index normal subgroups
with trivial intersection?

3.3 Rank Gradient and p-Gradient of Profinite Groups

We will prove that a group and its pro-p completion have the same p-gradient and
that the p-gradient of a group equals the rank gradient of its pro-p completion. When
dealing with pro-p completions of a group, it is often convenient to assume that the
group is residually-p since in this case the group will embed in its pro-p completion. To
show why this type of assumption will not influence any result about the p-gradient,
the following lemma is given.
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Definition. Let Γ be a group and p a prime. Let N , the p-residual of Γ, be the
intersection of all normal subgroups of p-power index in Γ. The p-residualization of Γ
is the quotient Γ/N . Note that the p-residualization of Γ is isomorphic to the image
of Γ in its pro-p completion, Γp̂, and is residually-p.

Lemma 3.3.1. Let Γ be a group and p a prime number. Let Γ̃ be the p-residualization
of Γ. Then

1. RGp(Γ) = RGp(Γ̃).

2. Γp̂ ' Γ̃p̂.

Proof. 1. Note that every normal subgroup of p-power index in Γ contains N .
Therefore, there is a bijective correspondence between normal subgroups of
p-power index in Γ̃ and normal subgroups of p-power index in Γ. Let the
correspondence be H̃ ↔ H with H̃ ≤ Γ̃ and H ≤ Γ. Then [Γ̃ : H̃] = [Γ : H]

and H̃ ' H/N . Therefore, H̃/[H̃, H̃]H̃p ' H/([H,H]HpN ) ' H/[H,H]Hp

since [H,H]Hp is a p-power index normal subgroup of Γ and thus contains N .

Therefore, dp(H̃) = dp(H).

Since there is a bijection H̃ ↔ H between all normal subgroups of p-power index
in Γ̃ and Γ with [Γ̃ : H̃] = [Γ : H] and dp(H̃) = dp(H), then RGp(Γ̃) = RGp(Γ).

2. By the proof of (1) above there is a bijective correspondence, H̃ ↔ H, between

normal subgroups of p-power index in Γ̃ and normal subgroups of p-power in-
dex in Γ. By the inverse limit definition of pro-p completions, Γp̂ ' lim←−Γ/H

and Γ̃p̂ ' lim←− Γ̃/H̃, are inverse limits over the same indexing set {H ≤ Γ |
H normal, [Γ, H] = p-power}. However, for every such H in Γ it follows that

Γ̃/H̃ ' (Γ/N )/(H/N ) ' Γ/H and therefore Γp̂ ' Γ̃p̂.

With the following proposition, we will be able to prove that a group and its pro-p
completion have the same p-gradient. The notation X will mean the closure of the
set X in the given topological space.

Proposition 3.3.2. Let Γ be a finitely generated group and p a prime. Let ϕ : Γ→ Γp̂
be the natural map from Γ to its pro-p completion. Let H be a normal subgroup of
p-power index of Γ. The following hold:

1. ϕ(H) = ϕ(Γ) ∩ ϕ(H).

2. ϕ : Γ/H → Γp̂/ϕ(H) given by ϕ(xH) = ϕ(x)ϕ(H) is an isomorphism.

3. There exists an index preserving bijection between normal subgroups of p-power
index in Γ and open normal subgroups of Γp̂.



28

4. ϕ(H) ' Hp̂ as pro-p groups.

5. RG(Γp̂) =
RG(Hp̂)

[Γ : H]
.

Proof. Parts (1)-(3) are proved in [34, Proposition 3.2.2], but we provide proofs here
as well. For notational simplicity, assume Γ is residually-p and thus ϕ is injective.
The case of Γ not residually-p is proved similarly.

1. Clearly H ⊆ Γ ∩ H. Now, Γp̂ ' lim←−Γ/K, where the inverse limit is taken
over all normal subgroups of p-power index of Γ. Thus Γp̂ ' {

∏
Γ/K | gL =

πLK(gK), K ⊆ L} where πLK : Γ/K → Γ/L. Let x ∈ Γ − H. Consider
U =

∏
U with U = {xK} when H = K and U = Γ/K otherwise. Then U is

open in the product topology, which implies that V = U ∩ Γp̂ is open in Γp̂.
Clearly x = (xK) ∈ V . If h ∈ H, then h /∈ V since hK = K, when K = H.
Therefore x /∈ H. Therefore, Γ−H ⊆ Γ− (Γ ∩H). Thus Γ ∩H ⊆ H.

2. Since Γ is dense in Γp̂ it follows that ϕ(Γ/H) is dense in Γp̂/H, but Γp̂/H
is finite, which implies the map is surjective. Now, ϕ(xH) = ϕ(yH) implies
xH = yH and thus y−1x ∈ H. But Γ ∩H = H by (1) and therefore y−1x ∈ H.
Thus xH = yH and the map is injective.

3. The bijection is as follows: If H is a normal subgroup of p-power index in Γ.
then send H → H. This is index preserving by (2).

Injective: If H = K, then H ⊆ K and K ⊆ H. Thus, Γ ∩ H ⊆ Γ ∩ K and

Γ ∩K ⊆ Γ ∩H, which implies H ⊆ K and K ⊆ H. Therefore, H = K.

Surjective: Let L be an open normal subgroup of Γp̂. Since Γp̂ is a finitely
generated pro-p group, all open normal subgroups have p-power index. Consider
H = Γ∩L. Since H ⊆ L then H ⊆ L, which implies H ⊆ L since L is open and
thus closed. Let ` ∈ L. Since Γ is dense in Γp̂, it follows that ` ∈ Γ. Thus for
every open neighborhood U of ` the intersection U ∩ Γ is nonempty. Since L is
open, U ∩L is an open neighborhood of ` and thus U ∩L∩Γ 6= ∅, which implies
U ∩H 6= ∅. Therefore ` ∈ H and thus L ⊆ H. Therefore, H = L. It remains
to show H = Γ ∩ L is normal of p-power index. Clearly H ≤ Γ is normal since
L ≤ Γp̂ is normal. By (2) we know [Γ : H] = [Γp̂ : H] = [Γp̂ : L] = p-power.

4. We only need to show that the pro-p topology on Γ induces the pro-p topology
on the subspace H of Γ. By Proposition 2.2.7, subnormal subgroups of p-power
index in Γ form a base for the pro-p topology. If K is subnormal of p-power index
in H it implies that K is subnormal of p-power index in Γ. Thus the subspace
topology on H and the pro-p topology are the same. Therefore, ϕ(H) ' Hp̂ as
pro-p groups.
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5. By (2) and (4) it follows that Γ/H ' Γp̂/Hp̂ and therefore [Γ : H] = [Γp̂ : Hp̂].

Thus, by Theorem 3.2.1 we have RG(Γp̂) =
RG(Hp̂)

[Γp̂ : Hp̂]
=
RG(Hp̂)

[Γ : H]
.

Theorem 3.3.3. If G is a (topologically) finitely generated pro-p group, then RGp(G) =
RG(G).

Proof. In a finitely generated pro-p group all finite index normal subgroups are open
normal subgroups and have index a power of p [9]. Moreover, if H is a finite index
subgroup of G, then H is also a finitely generated pro-p group. The Frattini subgroup
of a finitely generated pro-p group H is Φ(H) = [H,H]Hp and by Theorem 2.2.4,
dp(H) = d(H/Φ(H)) = d(H). Therefore,

RGp(G) = inf
HEG

[G:H]=pk

dp(H)− 1

[G : H]
= inf

HEG
[G:H]<∞

d(H)− 1

[G : H]
= RG(G).

It is now possible to prove the relationship between the p-gradient of a group and
its pro-p completion.

Theorem 3.3.4. Let Γ be a finitely generated group and p a fixed prime. Let Γp̂ be
the pro-p completion of Γ. Then RGp(Γ) = RGp(Γp̂) = RG(Γp̂).

Proof. We start by assuming the case that Γ is residually-p. Then there is an injective
map ϕ : Γ→ Γp̂ such that ϕ(Γ) = Γ is dense in Γp̂. Therefore, if Γ is finitely generated
then Γp̂ is finitely generated as a pro-p group. In a finitely generated pro-p group
all finite index subgroups are open normal subgroups and have index a power of
p [9]. Throughout this proof, the notation X will mean the closure of X in Γp̂. By
Proposition 3.3.2.3 we know that H → H is an index preserving bijection between
the normal subgroups of p-power index in Γ and the normal subgroups of p-power
index in Γp̂.

SinceRGp(Γ) = RGp(Γp̂) if dp(H) = dp(H) for all p-power index normal subgroups
H ≤ Γ, it suffices to show

H/[H,H]Hp ' H/
[
H,H

]
H
p
.

By Proposition 3.3.2.4, H ' Hp̂ as pro-p groups. Also, H is residually-p and
thus the natural map ψ : H → Hp̂ is injective. Therefore, by Proposition 3.3.2.2
we have H/[H,H]Hp ' Hp̂/ closureHp̂

([H,H]Hp). Since [H,H]Hp ⊆ H it implies

[H,H]Hp ⊆ H. Therefore,

Hp̂/ closureHp̂
([H,H]Hp) ' H/ (H ∩ [H,H]Hp) ' H/ [H,H]Hp.
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Thus, H/[H,H]Hp ' H/ [H,H]Hp and so its remains to show

[H,H]H
p

= [H,H]Hp.

“⊇” Clearly, Φ(H) = [H,H]H
p ⊇ [H,H]Hp with Φ(H) the Frattini subgroup of

H. We note that Φ(H) is open and thus closed. Thus, [H,H]H
p ⊇ [H,H]Hp.

“⊆” For ease of notation let B = [H,H]Hp. We know H/B ' H/B. Thus,

[H,H]H
p

B
'
[
H

B
,
H

B

](
H

B

)p
'
[
H

B
,
H

B

](
H

B

)p
' [H,H]Hp

B
= 1.

Therefore, we have [H,H]H
p ⊆ [H,H]Hp.

For a residually-p group RGp(Γ) = RGp(Γp̂). However, if Γ is not residually-p, let

Γ̃ be the p-residualization of Γ. Then by Lemma 3.3.1 we know RGp(Γ) = RGp(Γ̃)

and Γ̃p̂ ' Γp̂. Therefore, RGp(Γ) = RGp(Γ̃) = RGp(Γ̃p̂) = RGp(Γp̂).
The fact that RGp(Γ) = RG(Γp̂), where Γp̂ is the pro-p completion of Γ, follows

by the above remarks and Theorem 3.3.3.

The above two theorems provide some useful corollaries.

Corollary 3.3.5. If Γ is a finite group, then RGp(Γ) = − 1

|Γp̂|
.

Proof. If Γ is finite, then so is Γp̂ and thus RGp(Γ) = RG(Γp̂) = − 1
|Γp̂|

by Theo-

rem 3.2.1.

Theorem 3.3.6. Fix a prime p and let Γ be a finitely generated group. Assume

H ≤ Γ is a p-power index subnormal subgroup. Then RGp(Γ) =
RGp(H)

[Γ : H]
.

Proof. Since H is subnormal of p-power index, then there exist subgroups H =
H0, H1, H2, . . . , Hn = Γ such that Hi ≤ Hi+1 is normal and [Hi+1 : Hi] is a p-power.
We will induct on the subnormal length of H. Assume H is 1-subnormal and thus H
is normal in Γ. By Proposition 3.3.2.5 and Corollary 3.3.3 it follows that

RGp(Γ) = RG(Γp̂) =
RG(Hp̂)

[Γ : H]
=
RGp(H)

[Γ : H]
.

Now, assume H is n-subnormal. Then Hn−1 is normal in Γ and therefore, RGp(Γ) =
RGp(Hn−1)

[Γ : Hn−1]
. Also, H is (n-1)-subnormal in Hn−1 and thus by induction RGp(Hn−1) =

RGp(H)

[Hn−1 : H]
. Therefore, RGp(Γ) =

1

[Γ : Hn−1]

RGp(H)

[Hn−1 : H]
=
RGp(H)

[Γ : H]
.
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3.4 Groups With Zero Rank Gradient

There are large classes of groups that have zero rank gradient: infinite discrete
amenable groups [1,2], ascending HNN extensions [2], direct products of infinite resid-
ually finite groups, mapping class groups of genus bigger than 1 [16], Aut(Fn) for all
n [16], Out(Fn) for n ≥ 3 [16], and any Artin group whose underlying graph is
connected [16].

It is easy to show why the direct product of infinite residually finite groups has zero
rank gradient. Let Γ = G×H where G and H are infinite residually finite groups. Let
{Ai} and {Bi} be infinite descending chains of normal subgroups of finite index in G
and H respectively with trivial intersection. Then {Ai×Bi} is an infinite descending
chain of normal subgroups of finite index in Γ with trivial intersection. Now,

RG(Γ, {Ai ×Bi}) = lim
i→∞

d(Ai ×Bi)− 1

[Γ : Ai ×Bi]
≤ lim

i→∞

d(Ai) + d(Bi)− 1

[G : Ai][H : Bi]

= lim
i→∞

(
1

[H : Bi]

d(Ai)− 1

[G : Ai]
+

1

[G : Ai]

d(Bi)− 1

[H : Bi]
+

1

[G : Ai][H : Bi]

)
= lim

i→∞

1

[H : Bi]
lim
i→∞

d(Ai)− 1

[G : Ai]
+ lim

i→∞

1

[G : Ai]
lim
i→∞

d(Bi)− 1

[H : Bi]
+ lim

i→∞

1

[G : Ai][H : Bi]

= 0 ·RG(G, {Ai}) + 0 ·RG(H, {Bj}) + 0.

Therefore RG(Γ) ≤ 0, which implies RG(Γ) = 0.
Another class of groups with zero rank gradient is the class of polycyclic groups. A

group is called polycyclic if it contains a finite subnormal series with cyclic quotients.
By definition, it is easy to see that polycyclic groups are finitely generated. Let Γ be
polycyclic, then there exists k ∈ N such that d(H) ≤ k for every finite index subgroup
H ≤ Γ. K. Hirsch [15, Theorem 3.25] proved that polycyclic groups are residually
finite and therefore Γ is residually finite. Thus Γ contains a lattice of subgroups of
arbitrarily large index. Therefore,

0 ≤ RG(Γ) ≤ RG(Γ, {Hn}) = lim
n→∞

d(Hn)− 1

[Γ : Hn]
≤ lim

n→∞

k − 1

[Γ : Hn]
= 0.

An infinite finitely generated nilpotent group is polycyclic [13, Theorem 10.2.4]. It
should be noted that finitely generated is essential for an infinite finitely generated
nilpotent group to be polycyclic: since every quotient in the lower central series is
finitely generated abelian, one can “fill in” the lower central series with additional
subgroups so that every quotient is cyclic.

This result can be generalized to the class of amenable groups. However, the
proof is more complex than the proof for polycyclic groups. Abert, Jaikin-Zapirain,
and Nikolov [1] proved that discrete infinite amenable groups have rank gradient zero
with respect to any normal chain of finite index subgroups with trivial intersection.
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Lackenby first proved the result for finitely presented groups [20]. The proof of this
result uses the following theorem of B. Weiss [38].

Theorem 3.4.1 (Weiss). Let Γ be an amenable group generated by a finite set S and
let {Hn} be a normal chain in Γ with trivial intersection. Then for every ε > 0 there
exists k ∈ N and a transversal T of Hk in Γ such that |TS \ T | < ε|T |.

Proof. For a full proof the reader is referred to [1]. The idea of the proof is as
follows: Let δ = 0.1

1.1e
. Since Γ is amenable, then by the Følner sequence definition of

amenability there exists a δ-invariant subset A with respect to the generating set S.
Since the chain {Hn} has trivial intersection, there exists an Hj such that the image
of every element of A in Γ = Γ/Hj is unique. One can show that there exists a set
X of Γ such that |AX| ≥ (1 − 1

e
)|Γ|. Let B be a subset of AX such that B = AX.

Then |∂S(B)| ≤ 1.4
e−1
|S||B|. By adding elements to B one can obtain a transversal T1

for Hj in Γ with |∂S(T1)| ≤ 2.4
e
|S||T1|. Letting c = 2.4

e
we have that T1 is c-invariant.

Applying the above argument to Hj yields a subgroup H` and a transversal T2 of

H` in Hj such that T2 is c-invariant with respect to the generating set S1 = {st−1
st |

(t, st) ∈ ∂S(T1)} (where st ∈ T2). The set S1 is generating by the Reidemeister-
Schreier theorem. One then shows that T ′ = T1T2 is a transversal of H` in Γ with

|∂S(T ′)| = |∂S1(T2)| ≤ c|S1||T2| = c|∂S(T1)||T2| ≤ c2|S||T |.

Iterating this process r times will yield a subgroup Hk and a transversal T that is
cr-invariant. The result follows.

Theorem 3.4.2 (Abert, Jaikin-Zapirain, Nikolov). Finitely generated discrete infi-
nite amenable groups have rank gradient zero with respect to any normal chain with
trivial intersection.

Proof. We will use the notation from the Følner definition of amenability and The-
orem 3.4.1. Let Γ be a finitely generated infinite amenable group and let {Hn} be
a normal chain of finite index subgroups of Γ with trivial intersection. By Theo-
rem 3.4.1, for every ε > 0 there exists k ∈ N and a transversal T of Hk in Γ such that
|TS \ T | < ε|T |. The Reidemeister-Schreier theorem shows that {st−1

st | (t, st) ∈
∂S(T )} is a generating set of Hk. The size of this set is |∂S(T )| = |TS \ T | < ε|T |
and therefore, d(Hk)− 1 ≤ ε[Γ : Hk]. It follows that

RG(Γ, {Hn}) = lim
n→∞

d(Hn)− 1

[Γ : Hn]
≤ d(Hk)− 1

[Γ : Hk]
< ε.

Since RG(Γ, {Hn}) < ε for every ε > 0, then RG(Γ, {Hn}) = 0.

As a simple corollary, we provide a corresponding, albeit weaker, result concerning
p-gradient.
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Corollary 3.4.3. If RGp(Γ) > 0 for some prime p, then Γ is not amenable.

Proof. Let Γ be a finitely generated group with RGp(Γ) > 0. Let Γ̃ be the p-

residualization of Γ. Then 0 < RGp(Γ) = RGp(Γ̃). Let {Hi} be a descending chain

of normal subgroups of p-power index in Γ̃ with trivial intersection. Then,

0 < RGp(Γ̃) ≤ inf
i

dp(Hi)− 1

[Γ̃ : Hi]
≤ inf

i

d(Hi)− 1

[Γ̃ : Hi]
= RG(Γ̃, {Hi}).

Therefore, Γ̃ is not amenable by Theorem 3.4.2. This implies that Γ is not amenable
since a quotient of an amenable group is amenable.

We end this section with some simple consequences of the Restricted Burnside
Problem, which states that a finitely generated residually finite group with finite
exponent is finite. A group has finite exponent if every element has finite order and
the maximum of the orders is also finite. The Restricted Burnside Problem was
proved by Efim Zelmanov for which he received a Fields Medal in 1994.

Theorem 3.4.4. If Γ is finitely generated and has finite exponent, then RGp(Γ) < 0
for any prime p.

Proof. Fix a prime p. Let Γ̃ be the p-residualization of Γ. Then Γ̃ is finitely generated,
residually finite, and has finite exponent. By the positive solution to the Restricted
Burnside Problem, Γ̃ is finite. By Lemma 3.3.1, RGp(Γ) = RGp(Γ̃) = −1

|Γ̃p̂|
< 0.

A simple consequence is that if Γ is finitely generated and there exists a prime p
such that RGp(Γ) ≥ 0, then Γ does not have finite exponent.

Theorem 3.4.5. If Γ is finitely generated, residually finite, and of finite exponent,
then RG(Γ) < 0.

Proof. This is equivalent to the Restricted Burnside Problem.
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Chapter 4

Arbitrary p-Gradient Values

In this chapter we will prove the main result that there exists a finitely generated
group Γ with RGp(Γ) = α for each α > 0 ∈ R. To prove this, we need some technical
results.

4.1 A Lower Bound for p-Gradient

The following lemma is similar to a lemma of Osin [32, Lemma 2.3] concerning de-
ficiency of a finitely presented group. In the next lemma, the notation 〈X〉G means
the normal subgroup generated by the set X in the group G.

Lemma 4.1.1. Let Γ be a finitely generated group and fix a prime p. Let x be some
non-trivial element of Γ. Let H be a finite index normal subgroup of Γ such that
xm ∈ H, but no smaller power of x is in H. Let π : Γ → Γ/〈xm〉Γ be the standard
projection homomorphism.

1. If T is a right transversal for 〈x〉H in Γ, then 〈xm〉Γ =
〈txmt−1 | t ∈ T 〉H .

2. If H = 〈Y | R〉, then π(H) = 〈Y | R ∪ {txmt−1 | t ∈ T}〉.

3. |T | = [Γ : H]

m
.

4. If q(H) =
dp(H)

[Γ : H]
, then q(π(H)) ≥ q(H)− 1

m
.

Proof. Since xm is in H, then [π(Γ) : π(H)] = [Γ : H].

1. The inclusion ⊇ is clear. Let gxmg−1 ∈ 〈xm〉Γ. Then g = txjh for some t ∈ T



35

and h ∈ H and therefore

gxmg−1 = (txjh)xm(txjh)−1

= t(xjhx−j)(xjxmx−j)(xjh−1x−j)t−1

= th0x
mh−1

0 t−1(since H is normal)

= (th0t
−1)txmt−1(th−1

0 t−1)

= h̃0tx
mt−1h̃−1

0 (again, since H is normal)

This shows that the inclusion ⊆ holds.

2. This holds by (1) and the fact that π(H) = H/(H ∩ 〈xm〉Γ) = H/〈xm〉Γ, since
xm ∈ H and H is normal in Γ.

3. Since H ⊆ 〈x〉H ⊆ Γ, then [Γ : H] = [Γ : 〈x〉H][〈x〉H : H]. Therefore,

|T | = [Γ : 〈x〉H] = [Γ:H]
[〈x〉H:H]

. Since xm ∈ H but no smaller power of x is

in H, then V = {1, x, x2, . . . , xm−1} is a transversal for H in 〈x〉H and thus

[〈x〉H : H] = m. Therefore, |T | = [Γ:H]
m

.

4. First, note that (2) and (3) imply that a presentation for π(H) is obtained from

a presentation for H by adding in [Γ:H]
m

relations. Now, q(π(H)) ≥ q(H)− 1
m

if

and only if dp(π(H)) ≥ dp(H)− [Γ:H]
m
. If H has presentation H = 〈Y | R〉 then

π(H) has presentation π(H) = 〈Y | R ∪ {txmt−1 for all t ∈ T}〉. For notational
simplicity let C = {[y1, y2] | y1, y2 ∈ Y }. Then,

H/([H,H]Hp) = 〈Y | R, C, wp for all w ∈ F (Y )〉

where F (Y ) is the free group on Y and

π(H)/([π(H), π(H)]π(H)p) = 〈Y | R, C, wp for all w ∈ F (Y ),

txmt−1for all t ∈ T 〉.

Therefore, a presentation for π(H)/([π(H), π(H)]π(H)p) is obtained from a pre-

sentation for H/([H,H]Hp) by adding in [Γ:H]
m

relations.

Note: Γ/[Γ,Γ]Γp can be considered as a vector space over Fp and dp(Γ) is the
dimension of this vector space. Therefore, π(H)/([π(H), π(H)]π(H)p) is a vec-

tor space satisfying [Γ:H]
m

more equations than the vector space H/([H,H]Hp).

Thus dp(π(H)) ≥ dp(H)− [Γ:H]
m
.

Lemma 4.1.2. Let Γ be a finitely generated group. Let x ∈ Γ and suppose there
exists a normal subgroup of finite index H0 such that the order of x in Γ/H0 is m.
Then for every normal subgroup K of finite index such that xm ∈ K, there exists a
normal subgroup L of finite index in Γ such that xm ∈ L, L ⊆ K, and the order of x
in Γ/L is m.
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Proof. Consider L = K ∩H0. Since xm is in K and H0 then xm is in L. Since xm is
in L, then the order of x in Γ/L must divide m, say the order is r. Then xr ∈ L ⊆ H0

and thus xr is 1 in Γ/H0 which is a contradiction to the order of x in Γ/H0.

A lower bound for the p-gradient when taking the quotient by the normal subgroup
generated by an element raised to a p-power follows by the above lemmas.

Theorem 4.1.3. Let Γ be a finitely generated group, p some fixed prime, and x ∈ Γ.
Then RGp(Γ/〈〈xp

k〉〉) ≥ RGp(Γ)− 1
pk
.

Proof. Case 1: There exists a normal subgroup H0 of p-power index such that the
order of x in Γ/H0 is at least pk.

In any p-group K, we can construct an ascending chain of normal subgroups
1 = K0 ≤ K1 ≤ · · · ≤ Kn = K such that each subgroup has index p in the next
subgroup. Since H0 is a normal subgroup of p-power index, then Γ/H0 is a p-group
and applying this to Γ/H0 and then taking full preimages will result in a chain of
normal subgroups of p-power index in Γ, H0 ≤ H1 ≤ · · · ≤ Hn = Γ such that each
subgroup has index p in the next subgroup. Thus there is a subgroup Hi in this chain
such that x has order precisely pk in Γ/Hi.

Since H0 is a normal subgroup of p-power index, then by the above remark we
may assume without loss of generality that the order of x in Γ/H0 is exactly pk.
Let H be a normal subgroup of p-power index in Γ = Γ/〈〈xpk〉〉. Let H ≤ Γ be
the full preimage of H. Then H is a p-power index normal subgroup in Γ which
contains 〈〈xpk〉〉. Let LH = H ∩ H0. Then LH is a normal subgroup in Γ such
that xp

k ∈ LH , LH ⊆ H, and the order of x in Γ/LH is pk. Note that LH is
normal and of p-power index in Γ since both H and H0 are normal and of p-power
index. Thus by Lemma 4.1.1, q(H) ≥ q(LH) ≥ q(LH) − 1

pk
, which by definition

is greater than or equal to RGp(Γ) − 1
pk

. Therefore, q(H) ≥ RGp(Γ) − 1
pk

. Thus

RGp(Γ/〈〈xp
k〉〉) ≥ RGp(Γ)− 1

pk
.

Case 2: For every normal subgroup H of p-power index, the order of x in Γ/H is
less than pk.

It will be shown that RGp(Γ/〈〈xp
k〉〉) = RGp(Γ) in this case. There exists an ` < k

such that xp
` ∈ H for every normal subgroup H of p-power index in Γ. Then xp

`
is in

the kernel of the natural map from Γ to its pro-p completion ϕ : Γ→ Γp̂. Therefore,

xp
k

= (xp
`
)p

k−` ∈ kerϕ. Let M = 〈〈xpk〉〉. Then M ⊆ kerϕ. This implies that there
is a bijective correspondence between all normal subgroups of p-power index in Γ and
Γ/M given by N → N/M . Since Γ/N ' (Γ/M)/(N/M) for all such N , then by the
inverse limit definition of pro-p completions, Γp̂ ' (Γ/M)p̂ as pro-p groups. Therefore,

RGp(Γ/〈〈xp
k〉〉) = RGp(Γ/M) = RGp((Γ/M)p̂) = RGp(Γp̂) = RGp(Γ).

Remark 4.1.4. The above theorem was independently stated and proved using dif-
ferent language and a different method by Barnea and Schlage-Puchta [5, Theorem
3]).
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Corollary 4.1.5. Let Γ be a finitely generated group, p a fixed prime, and let x ∈ Γ.
Then RGp(Γ/〈〈x〉〉) ≥ RGp(Γ)− 1.

4.2 p-Gradient and Direct Limits

Let (I,≤) be a totally ordered set with smallest element 0 and let {Γi | πij} be a direct
system of finitely generated groups with surjective homomorphisms πij : Γi → Γj for
every i ≤ j ∈ I.

Let Γ∞ = lim−→Γi be the direct limit of this direct system. Let πi : Γi → Γ∞ be the
map obtained from the direct limit. Because all the maps in the direct system are
surjective, then so are the πi. Let Γ = Γ0.

Another direct system {Mi | µij} can be defined over the same indexing set I,
where Mi = Γ for each i and µij is the identity map. The direct limit of this set is
clearly Γ = lim−→Mi and the map obtained from the direct limit µi : Mi → Γ is the
identity map.

A homomorphism Φ : {Mi | µij} → {Γi | πij} is by definition a family of group
homomorphisms ϕi : Mi → Γi such that ϕj ◦ µij = πij ◦ ϕi whenever i ≤ j. Then Φ
defines a unique homomorphism ϕ = lim−→ϕi : lim−→Mi → lim−→Γi such that ϕ◦µi = πi◦ϕi
fror all i ∈ I [4].

The surjection ϕi : Γ→ Γi is the map π0i in this case. It is clear that ϕ = lim−→ϕi.
Since each ϕi is surjective, it implies that kerϕi ⊆ kerϕj for every i ≤ j. In this
situation,

kerϕ = lim−→ kerϕi =
⋃
i∈I

kerϕi.

Let H ≤ Γ be a subgroup. For every i, let Hi = ϕi(H).

Lemma 4.2.1. Keep the notation defined above. Fix a prime p. For each K ≤ Γ∞
normal of p-power index, there exists an H ′ ≤ Γ normal of p-power index such that:

1. K = lim−→H ′i.

2. [Γ∞ : K] = lim
i∈I

[Γi : H ′i].

3. dp(K) = lim
i∈I

dp(H
′
i).

Proof. Let K ≤ Γ∞ be a p-power index normal subgroup. Since ϕ : Γ → Γ∞ is
surjective then Γ∞ ' Γ/ kerϕ. Let H ′ = ϕ−1(K). Then H ′ is normal in Γ and since
K ' H ′/ kerϕ then [Γ∞ : K] = [Γ : H ′] and so H ′ is of p-power index.

1. K = ϕ(H ′) = lim−→ϕi(H
′) = lim−→H ′i.
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2. Since each ϕi : Γ → Γi is surjective, then Γi ' Γ/ kerϕi and since H ′ contains
kerϕ, then H ′ contains kerϕi for each i. Thus, H ′i ' H ′/ kerϕi. Therefore for
every i,

Γi/H
′
i ' Γ/H ′ ' Γ∞/K.

Thus, [Γ∞ : K] = [Γi : H ′i] for every i.

3. For any group A, let Q(A) = A/[A,A]Ap. It is known that K ' H ′/ kerϕ and
H ′i ' H ′/ kerϕi and therefore,

Q(K) ' H ′/[H ′, H ′](H ′)p kerϕ ' Q(H ′)/M

where M = [H ′, H ′](H ′)p kerϕ/[H ′, H ′](H ′)p, and

Q(H ′i) ' H ′/[H ′, H ′](H ′)p kerϕi ' Q(H ′)/Mi

where Mi = [H ′, H ′](H ′)p kerϕi/[H
′, H ′](H ′)p. Since kerϕi ⊆ kerϕj for each

i ≤ j then Mi ⊆ Mj for each i ≤ j. Now, Q(H ′) is finitely generated abelian
and torsion and therefore is finite. Thus Q(H ′) can only have finitely many
non-isomorphic subgroups. Since {Mi} is an ascending set of subgroups, there
must exist an n ∈ I such that Mi = Mn for every i ≥ n. Since kerϕi ⊆ kerϕj
for each i ≤ j and

⋃
kerϕi = kerϕ, it follows that Mi ⊆Mj for every i ≤ j and⋃

Mi = M . Therefore, M =
⋃
Mi = Mn. Thus for each i ≥ n, M = Mi.

Therefore, Q(K) ' Q(H ′i) for each i ≥ n which implies dp(K) = dp(H
′
i) for

each i ≥ n. Thus, dp(K) = lim
i∈I

dp(H
′
i).

The following lemma is similar to Pichot’s related result for L2-Betti numbers
where convergence is in the space of marked groups [33].

Lemma 4.2.2. For each prime p, lim supRGp(Γi) ≤ RGp(Γ∞).

Proof. Fix a prime p. Let K ≤ Γ∞ be a normal subgroup of p-power index. By
Lemma 4.2.1 we obtain the subgroups H ′ and H ′i for each i. Now,

lim supRGp(Γi) = lim sup inf
NEΓi
p-power

dp(N)− 1

[Γi : N ]
≤ lim sup

dp(H
′
i)− 1

[Γi : H ′i]

and by Lemma 4.2.1

lim sup
dp(H

′
i)− 1

[Γi : H ′i]
= lim

i∈I

dp(H
′
i)− 1

[Γi : H ′i]
=
dp(K)− 1

[Γ∞ : K]
.

Therefore, for each K ≤ Γ∞ normal of p-power index, lim supRGp(Γi) ≤ dp(K)−1

[Γ∞:K]
.

This implies lim supRGp(Γi) ≤ RGp(Γ∞).
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4.3 The Main Result and Applications

It is now possible to prove the main result that every nonnegative real number is
realized as the p-gradient of some finitely generated group.

Theorem 4.3.1 (Main Result). For every real number α > 0 and any prime p,
there exists a finitely generated group Γ such that RGp(Γ) = α.

Proof. Fix a prime p and a real number α > 0. Let F be the free group on dαe + 1
generators. Let

Λ = {G | F surjects onto G, G is residually-p, and RGp(G) ≥ α}.

Since for any free group d(F ) = dp(F ) it is clear that RGp(F ) = rank(F ) − 1 and
therefore, Λ is not empty since F ∈ Λ. Partially order Λ by G1 < G2 if there is an
epimorphism from G1 to G2, denoted G1 � G2. This order is antisymmetric since
each group in this set is Hopfian.

Let C = {Gi} be a chain in Λ. Each chain forms a direct system of groups over
a totally ordered indexing set. Any chain can be extended so that it starts with the
element F = G0. Let G∞ = lim−→Gi.

By Lemma 4.2.2, RGp(G∞) ≥ lim supRGp(Gi) ≥ α. Let G̃∞ be the p-residualization

of G∞. By Lemma 3.3.1, RGp(G̃∞) = RGp(G∞). Therefore, RGp(G̃∞) ≥ α and G̃∞
is residually-p. Moreover, for each i, Gi � G∞ and in particular F � G∞ � G̃∞.
Thus G̃∞ ∈ Λ and Gi < G̃∞ for each i. Thus, each chain C in Λ has a lower bound
in Λ and therefore by Zorn’s Lemma, Λ has a minimal element, call it Γ.

Since Γ and its p-residualization Γ̃ have the same p-gradient and Γ surjects onto
Γ̃, it implies that Γ̃ ∈ Λ and Γ < Γ̃. Thus Γ must be residually-p, otherwise Γ̃
contradicts the minimality of Γ.
Note: Γ does not have finite exponent.

If Γ had finite exponent then since Γ is finitely generated and residually finite it
must be finite by the positive solution to the Restricted Burnside Problem [40]. This
would imply RGp(Γ) < 0 by Corollary 3.3.5. This contradicts that Γ is in Λ.

Therefore, Γ is a finitely generated residually-p group with infinite exponent such
that RGp(Γ) ≥ α.
Claim: RGp(Γ) = α.

Assume not. Then there exists a k ∈ N such that RGp(Γ) − 1
pk
≥ α. Since Γ

is residually-p, the order of every element is a power of p and since Γ has infinite
exponent, there exists an x ∈ Γ whose order is greater than pk.

Consider Γ′ = Γ/〈〈xpk〉〉. Since xp
k 6= 1 it implies that Γ′ 6' Γ. By Theo-

rem 4.1.3, RGp(Γ
′) ≥ RGp(Γ) − 1

pk
≥ α. If Γ′ is not residually-p, replace it with

its p-residualization, which will have the same p-gradient. Then Γ′ ∈ Λ and Γ < Γ′,
which contradicts the minimality of Γ.
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The result of Theorem 4.3.1 can be strengthened without much effort.

Theorem 4.3.2. Fix a prime p. For every real number α > 0 there exists a finitely
generated residually-p torsion group Γ such that RGp(Γ) = α.

Proof. Barnea and Schlage-Puchta showed [5, Corollary 4] that for any α > 0 there
exists a torsion group G with RGp(G) ≥ α. Applying the construction in Theo-
rem 4.3.1, replacing the free group F with the p-residualization of G, will result in a
group Γ that is torsion, residually-p, and RGp(Γ) = α.

For completeness we provide a full proof that there exists a finitely generated
torsion group with p-gradient greater than α, which was proved independently from
Barnea and Schlage-Puchta.

Let β = α+ 1
p−1

. By Theorem 4.3.1 there exists a finitely generated group G such

that RGp(G) = β. Since G is countable, let x1, x2, . . . be the non-torsion elements of
G. Let k1 ∈ N be such that β − 1

pk1
> α. By Case 1 of the proof of Theorem 4.3.1,

we can construct G1 = G/〈〈xp
k1

1 〉〉 and RGp(G1) ≥ β − 1
pk1

. Let k2 ∈ N be such

that RGp(G1) − 1
pk2

> α. By abuse of notation, let x2, x3, . . . represent the image

of the xi in G1. Applying the same process gives G2 such that G2 = G1/〈〈xp
k2

2 〉〉 and
RGp(G2) ≥ RGp(G1) − 1

pk2
≥ β − 1

pk1
− 1

pk2
. Continuing this way, we have ki ∈ N

such that RGp(Gi) ≥ RGp(Gi−1) − 1
pki

> α with Gi = Gi−1/〈〈xp
ki

i 〉〉. Moreover,

RGp(Gi) ≥ β −
i∑

j=1

1

pkj
. Thus we have the following

G � G1 � G2 � · · · .

Let G∞ = lim−→Gi. If G = 〈X | R〉 is a presentation for G, then by construction

G∞ = 〈X | R ∪ {xp
k1

1 , xp
k2

2 , . . . }〉 is a presentation for G∞. Thus G∞ is torsion.
By Lemma 4.2.2 we know RGp(G∞) ≥ lim sup

i→∞
RGp(Gi) and therefore,

RGp(G∞) ≥ lim sup
i→∞

(
β −

i∑
j=1

1

pkj

)
≥ β −

∞∑
j=1

1

pkj

≥ β −
∞∑
j=1

(
1

p

)j
= β − 1

p− 1
= α.

Let G̃∞ be the p-residualization of G∞. Then G̃∞ is residually-p, torsion, and
RGp(G̃∞) = RGp(G∞) ≥ α by Lemma 3.3.1.

If we now apply the construction given in Theorem 4.3.1 replacing the free group
F with the p-residualization of G∞, the resulting group Γ will be torsion, residually-p
and RGp(Γ) = α.
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Y. Barnea and J.C. Schlage-Puchta [5] proved a result similar to Theorem 4.3.2
(inequality instead of equality) albeit in a slightly different way.

The construction given in Theorem 4.3.1 has a few immediate applications. First,
it is noted that Theorem 4.3.2 gives a known counterexample to the General Burnside
Problem, which asks if every finitely generated torsion group is finite. The second ap-
plication is more general and shows that there exist uncountably many pairwise non-
commensurable groups that are finitely generated, infinite, torsion, non-amenable,
and residually-p.

The application of the construction used in Theorem 4.3.1 concerning commensu-
rable groups is given below.

Definition. Two groups are called commensurable if they have isomorphic subgroups
of finite index.

Lemma 4.3.3. Fix a prime p. Let Γ be a p-torsion group (every element has order a
power of p). Then every finite index subgroup H ≤ Γ is subnormal of p-power index.

Proof. Let H ≤ Γ be a finite index subgroup. Let N ≤ Γ be normal of finite index
such that N ≤ H. Consider Γ/N . Since Γ is p-torsion it implies Γ/N is also p-torsion
and by assumption |Γ/N | is finite. Let q be a prime that divides |Γ/N | and let Q
be a Sylow-q subgroup of Γ/N . For any y ∈ Q, the order of y is both a power of p
and a power of q, which implies p=q. Thus [Γ : N ] = |Γ/N | = p-power and therefore
[Γ : H] = p-power.

Let H be the image of H in Γ/N . Since Γ/N is a finite p-group then all subgroups
are subnormal, thus H is subnormal in Γ/N . Let H = H0 E H1 E · · · E Hk = Γ/N
be the subnormal chain. Lift these subgroups to Γ to get the chain H = H0 E H1 E
· · · E Hk = Γ. Therefore, H is subnormal.

Theorem 4.3.4. There exist uncountably many pairwise non-commensurable groups
that are finitely generated, infinite, torsion, non-amenable, and residually-p.

Proof. Let p be a fixed prime number. By Theorem 4.3.2 it is known that for every real
number α > 0 there exists a finitely generated, residually-p, infinite, torsion group
Γ such that RGp(Γ) = α. By Corollary 3.4.3 these groups are all non-amenable.
Since each of these groups is residually-p and torsion, they are all p-torsion. Thus by
Lemma 4.3.3, every subgroup of finite index in these groups is subnormal of p-power
index.

By Theorem 3.3.6 if any two of these groups are commensurable, then the p-
gradient of each group is a rational multiple of the other. Since there are uncountably
many positive real numbers that are not rational multiples of each other, the result
can be concluded.
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Chapter 5

Rank Gradient of Free Products,
Amalgams, and HNN Extensions

We calculate rank gradient and p-gradient of free products, free products with amal-
gamation over an amenable group, and HNN extensions with an amenable associated
subgroup. For rank gradient, the notion of cost is used to obtain lower bounds for the
rank gradient of amalgamated free products and HNN extensions. We will discuss
the notion of cost in Section 5.4 as it will be central to our calculation of the rank
gradient of amalgamated free products and HNN extensions.

5.1 Rank Gradient of Free Products

We begin this section by computing the rank gradient of the free product of a finite
number of finite groups and a free group. We compute the rank gradient in this case
using an Euler characteristic and it shows a different approach than what is used in
the more general case.

Definition. Let Ω be the smallest class of groups such that

i. Ω contains the trivial group {1} and Z.

ii. Ω is closed under finite direct products.

iii. Ω is closed under finite free products.

iv. Ω is closed under taking finite index subgroups and finite index supergroups.

For each group Γ ∈ Ω one can uniquely define the rational Euler characteristic,
χ(Γ) ∈ Q, such that the following properties hold:

1. χ({1}) = 1 and χ(Z) = 0.

2. χ(Γ ∗G) = χ(Γ) + χ(G)− 1 for any Γ, G ∈ Ω.
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3. χ(Γ×G) = χ(Γ)χ(G) for any Γ, G ∈ Ω.

4. If Γ ∈ Ω and H is a subgroup of index m in Γ, then χ(H) = mχ(Γ).

This definition of rational Euler characteristic is related to the notion of Euler
characteristic in topology. That is, if Γ is a group with a finite CW-complex X as its
classifying space, then it should be that χ(Γ) = χ(X) and we extend this to a larger
class of groups.

Lemma 5.1.1. Let Γ = Fr ∗ A1 ∗ · · · ∗ An be the free product of finitely many finite
groups and a free group of rank r. Let G = A1 × · · · ×An be the direct product of the
Ai. Let ϕ : Γ→ G be the natural epimorphism sending Fr to {1}. The kernel of ϕ is
called the Cartesian subgroup of Γ.

1. C = kerϕ is free.

2. rank(C)− 1 =

(
n∏
i=1

|Ai|

)(
r + n− 1−

n∑
i=1

1

|Ai|

)
.

Proof. 1. By the Kurosh Subgroup Theorem for free products (Theorem 2.3.1),
C = Fr ∗ B1 ∗ · · · ∗ Bn with each Bi conjugate in Γ to Fr or one of the Ai.
If Bi is conjugate to Ai then Bi = wAiw

−1 for some w ∈ Γ. Then for every
b ∈ Bi there exists an a ∈ Ai such that b = waw−1, which implies 0 = ϕ(b) =
ϕ(w)ϕ(a)ϕ(w)−1 = ϕ(a) and thus a ∈ C. This implies Ai ⊆ C, which is not
true. Thus each Bi is trivial or conjugate to Fr and thus is free. Therefore, C
is free.

2. Since Γ/C ' A1 × · · · × An, then [Γ : C] =
∏n

1 |Ai|. Therefore we know that
χ(C) = χ(Γ)

∏n
1 |Ai|. Since C is free, it is the free product of rank(C) copies

of Z and therefore χ(C) = −(rank(C)− 1). We calculate that χ(Ai) = 1
|Ai| and

thus, χ(Γ) = χ(Fr)+χ(A1∗· · ·∗An)−1 = −r+1+
∑n

1
1
|Ai|−(n−1)−1 = −(r+

n− 1−
∑n

1
1
|Ai|). Therefore, −(rank(C)− 1) = −

∏n
i=1 |Ai|(r+n− 1−

∑n
1

1
|Ai|)

and the result follows.

Proposition 5.1.2. Let Γ = Fr ∗ A1 ∗ · · · ∗ An be the free product of finitely many
finite groups and a free group of rank r. Then

RG(Γ) = r + n− 1−
n∑
i=1

1

|Ai|
.

Proof. Let C be the Cartesian subgroup of Γ as defined above. By Theorem 3.2.1 it
follows that RG(Γ) = RG(C)

[Γ:C]
. By Lemma 5.1.1, the group C is free and therefore

RG(C) = rank(C)− 1 =

(
n∏
i=1

|Ai|

)(
r + n− 1−

n∑
i=1

1

|Ai|

)
.
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Thus,

RG(Γ) =
(
∏n

i=1 |Ai|)
(
r + n− 1−

∑n
i=1

1
|Ai|

)
[Γ : C]

= r + n− 1−
n∑
i=1

1

|Ai|
.

Abert, Jaikin-Zapirain, and Nikolov [1] computed the rank gradient of a free
product of residually finite groups relative to a descending chain of normal subgroups
using Bass-Serre theory.

Theorem 5.1.3 (Abert, Jaikin-Zapirain, and Nikolov). Let Γ1 and Γ2 be finitely
generated and residually finite. Let {Hn} be a normal chain of finite index subgroups
in Γ = Γ1 ∗ Γ2. Then

RG(Γ, {Hn}) = RG(Γ1, {Γ1 ∩Hn}) +RG(Γ2, {Γ2 ∩Hn}) + 1.

We can prove a similar result to Theorem 5.1.3 by following a similar method
of proof. Namely we prove the result for the absolute rank gradient and p-gradient
of arbitrary finitely generated groups. By following the proof that Abert, Jaikin-
Zapirain, and Nikolov used in [1], one can actually stop after the first paragraph of
the proof below. However, we provide the complete proof since the argument also
gives the result for p-gradient without much alteration.

Theorem 5.1.4. Let Γ1 and Γ2 be finitely generated groups. Let Γ = Γ1 ∗ Γ2. Then
RG(Γ) = RG(Γ1) +RG(Γ2) + 1.

Proof. Let Hi ≤ Γi be a finite index subgroup. Let ϕ : Γ → Γ1 × Γ2 be the natural
map. Let C = kerϕ be the cartesian subgroup of Γ. First, note that H1×H2 ≤ Γ1×Γ2

is finite index. Let A = ϕ−1(H1 ×H2). Since A is the inverse image of a finite index
subgroup, then A is finite index in Γ. Moreover, C ∩ Γi = 1. Let a ∈ A ∩ Γ1. Then
a ∈ Γ1 which implies ϕ(a) = (a, 1) ∈ Γ1 × {1}, but ϕ(a) ∈ H1 × H2. Therefore
(a, 1) ∈ H1 ×H2 which implies a ∈ H1. Clearly H1 ⊆ A ∩ Γ1 and thus A ∩ Γ1 = H1.
Similarly A∩Γ2 = H2. Therefore, for every finite index subgroup Hi ≤ Γi there exists
a finite index subgroup A ≤ Γ such that A ∩ Γi = Hi.

Let H ≤ Γ be a finite index subgroup and let Hi = H ∩ Γi, which are finite
index. Let A = ϕ−1(H1 × H2). Again, A ≤ Γ is finite index and A ∩ Γi = Hi. Let
AH = H ∩A. Then AH is finite index in Γ, AH is contained in H, and AH ∩Γi = Hi.
Moreover, by the Schreier index formula,

d(AH)− 1

[Γ : AH ]
≤ d(H)− 1

[Γ : H]
.

Note that in the case where we start with Hi ≤ Γi and get A′ = ϕ−1(H1 ×H2), then
the procedure described gives A = AA′ . Moreover, every subgroup of finite index in
Γi can be obtained from such AH subgroups of Γ.
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Therefore, the rank gradient of Γ can be computed by only looking at the AH
subgroups. Using the Kurosh subgroup theorem for free products (Theorem 2.3.1),
Bass-Serre theory, and the Grushko-Neumann theorem (d(A ∗B) = d(A) + d(B)), it
follows that if [Γ : AH ] = n and Hi = AH ∩ Γi with [Γi : Hi] = ki, then

d(AH) =
n

k1

d(H1) +
n

k2

d(H2) + n− n

k1

− n

k2

+ 1.

This implies
d(AH)− 1

[Γ : AH ]
=
d(H1)− 1

[Γ1 : H1]
+
d(H2)− 1

[Γ2 : H2]
+ 1.

Therefore,

RG(Γ) = inf
AH

d(AH)− 1

[Γ : AH ]
= inf

AH

d(H1)− 1

[Γ1 : H1]
+ inf

AH

d(H2)− 1

[Γ2 : H2]
+ 1

= inf
H1

d(H1)− 1

[Γ1 : H1]
+ inf

H2

d(H2)− 1

[Γ2 : H2]
+ 1

= RG(Γ1) +RG(Γ2) + 1.

Corollary 5.1.5. Let Γ = Γ1 ∗Γ2 be the free product of finitely generated groups and
let C be the Cartesian subgroup of Γ. Then

RG(Γ) = inf
C≤H≤Γ
[Γ:H]<∞

d(H)− 1

[Γ : H]
.

Proof. If ϕ : Γ → Γ1 × Γ2, then C = kerϕ. Let H be a subgroup of finite index in
Γ containing C. Then H = ϕ−1(H1 ×H2) where Hi ≤ Γi is of finite index. Then by
the proof of Theorem 5.1.4,

inf
C≤H≤Γ
[Γ:H]<∞

d(H)− 1

[Γ : H]
= inf

C≤H≤Γ
[Γ:H]<∞

d(H1)− 1

[Γ1 : H1]
+ inf

C≤H≤Γ
[Γ:H]<∞

d(H2)− 1

[Γ2 : H2]
+ 1

= inf
H1

d(H1)− 1

[Γ1 : H1]
+ inf

H2

d(H2)− 1

[Γ2 : H2]
+ 1

= RG(Γ1) +RG(Γ2) + 1 = RG(Γ).

Corollary 5.1.6. Let Γ = Γ1 ∗ · · · ∗ Γk be the free product of finitely many finitely
generated groups. Then RG(Γ) = k − 1 +

∑k
i=1 RG(Γi).

5.2 Rank Gradient of Amalgams Over Finite Sub-

groups

In this section we compute the rank gradient of amalgamated free products of finite
groups using an argument not used in any other case. The argument given in this case
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is elementary and can be done strictly by computation. We then move to the case of
two infinite groups amalgamated over a finite subgroup where a different argument
is used.

Lemma 5.2.1. Let Γ1 and Γ2 be finite groups. Let Γ = Γ1 ∗A Γ2 be the amalgamated
free product of Γ1 and Γ2 over the subgroup A. Then Γ contains a free subgroup H
such that

1. [Γ : H] =
|Γ1||Γ2|
|A|

.

2. rank(H) =
|Γ1||Γ2|
|A||A|

− |Γ2|
|A|
− |Γ1|
|A|

+ 1.

Proof. Fix coset representatives for Γ1/A and Γ2/A. Let S = Γ1/A× Γ2/A× A and
note that |S| is finite. Let a ∈ Γ1, b ∈ Γ2, and c ∈ A. Define an action of Γ1 and Γ2

on S by

a · (ai, bj, ck) = (as, bj, ct) where aicka = asct

b · (ai, bj, ck) = (ai, br, cq) where bjckb = brcq

c · (ai, bj, ck) = (ai, bj, ckc).

This action is well-defined and unambiguous on A. This action permutes S and
thus ϕ : Γ → Symm(S), given by w · S, is a homomorphism. If ϕ(a) = 1Symm(S)

then a · (ai, bj, ck) = (ai, bj, ck), which implies aicka = aick. It follows that a = 1Γ1 .
Therefore, ϕ restricted to Γ1 is injective. It follows similarly that ϕ restricted to Γ2

is injective.
Let H = kerϕ. For every g ∈ Γ consider H ∩ gΓ1g

−1. If h ∈ H ∩ gΓ1g
−1 then

h = gag−1 with a ∈ Γ1 and 1Symm(S) = ϕ(h). Since ϕ restricted to Γ1 is injective,
a = 1Γ1 . Therefore, h = 1Γ and so H ∩ gΓ1g

−1 = 1Γ for every g ∈ Γ. Similarly
H ∩ gΓ2g

−1 = 1Γ and thus H ∩ gΓg−1 = 1Γ. By the Kurosh Subgroup Theorem for
amalgamated free products (Theorem 2.3.2), it follows that H is a free group.

1. The group ϕ(Γ) acts simply transitively on S by the following argument: Let
(ai, bj, ck) and (ar, bs, ct) be in S. Consider

a · (ai, bj, ck) = (ar, bj, ck) =⇒ aicka = arck =⇒ a = c−1
k a−1

i arck

b · (ai, bj, ck) = (ai, bs, ck) =⇒ bjckb = bsck =⇒ b = c−1
k b−1

j bsck

c · (ai, bj, ck) = (ai, bj, ct) =⇒ ckc = ct =⇒ c = c−1
k ct.

Let w = cab with a, b, c as above. Then, w · (ai, bj, ck) = (ar, bs, ct), which shows
that ϕ(Γ) acts simply transitively on S.

Since ϕ acts simply transitively on S, it implies |ϕ(Γ)| = |S| = |Γ1||Γ2|
|A| and

therefore [Γ : H] = |Γ1||Γ2|
|A| .
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2. To find the rank of H, we use Bass-Serre theory [7, 37].

The group H acts on a tree with vertices X0 = (Γ/A)
∐

(Γ/Γ1)
∐

(Γ/Γ2) and
oriented edges X1

+ = (Γ/A × {1})
∐

(Γ/A × {2}). The initial and terminal
vertices of an edge (γA, i) are γ and γΓi respectively. H acts on this tree by
left multiplication.

Let Y = H\X be the factor graph and T a maximal subtree of Y . Let (Ỹ , T̃ )

be a lift of (Y, T ) in X. Then |Y 1 − T 1| = |Ỹ 1 − T̃ 1| and |T 1| = |T 0| − 1 since
T is a tree. Well,

|T 0| = |Y 0| = |H\Γ/A|+ |H\Γ/Γ1|+ |H\Γ/Γ2|

=
[Γ : H]

|A|
+

[Γ : H]

|Γ1|
+

[Γ : H]

|Γ2|

=
|Γ1||Γ2|
|A||A|

+
|Γ2|
|A|

+
|Γ1|
|A|

and therefore,

|T 1| = |Γ1||Γ2|
|A||A|

+
|Γ2|
|A|

+
|Γ1|
|A|
− 1.

Now,

|Y 1| = |H\Γ/A|+ |H\Γ/A| = 2
|Γ1||Γ2|
|A||A|

.

By the proof of the Kurosh Subgroup Theorem in Bogopolski [7], it follows that

|Y 1 − T 1| is the rank of free group H (elements of Ỹ 1 − T̃ 1 are in one-to-one
correspondence with the free generators of H). Therefore,

rank(H) = |Y 1 − T 1| = |Γ1||Γ2|
|A||A|

− |Γ2|
|A|
− |Γ1|
|A|

+ 1.

Theorem 5.2.2. Let Γ1 and Γ2 be finite groups. Let Γ = Γ1∗AΓ2 be the amalgamated
free product of Γ1 and Γ2 over the subgroup A. Then RG(Γ) = RG(Γ1)+RG(Γ2)+ 1

|A| .

Proof. Let H be as in Lemma 5.2.1. Then by Theorem 3.2.1,

RG(Γ) =
RG(H)

[Γ : H]
=

|Γ1||Γ2|
|A||A| −

|Γ2|
|A| −

|Γ1|
|A|

|Γ1||Γ2|
|A|

= − 1

|Γ1|
+− 1

|Γ2|
+

1

|A|

= RG(Γ1) +RG(Γ2) +
1

|A|
.
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Computing the rank gradient of the free product of two infinite groups with amal-
gamation over a finite group was proved by the author and simultaneously and in-
dependently by the team of Kar and Nikolov [16, Proposition 2.2]. We provide our
proof here.

Theorem 5.2.3. Let Γ = Γ1 ∗AΓ2 be the amalgamated free product of Γ1 and Γ2 over
the finite subgroup A. If Γ is residually finite, then RG(Γ) = RG(Γ1) +RG(Γ2) + 1

|A| .

Proof. Claim: There exists a normal subgroup N of Γ with finite index such that
N ∩ A = 1.

Since Γ is residually finite, then for every nontrivial a ∈ A there exists an Na

normal of finite index in Γ such that a /∈ Na. Let N =
⋂

1 6=a∈ANa. Since A is finite,
N is the intersection of finitely many normal subgroups of finite index and thus is
normal and of finite index. Clearly, N ∩ A = 1.

Since N is normal of finite index in Γ with N ∩xAx−1 = N ∩A = 1 for any x ∈ Γ,
then by Kurosh Subgroup Theorem for amalgamated free products (Theorem 2.3.2),
N is isomorphic to a free product of a free group of finite rank along with intersections
of conjugates of the Γi’s. Namely,

N ' F ∗ (∗x∈N\Γ/Γ1N ∩ xΓ1x
−1) ∗ (∗y∈N\Γ/Γ2N ∩ yΓ2y

−1),

where N\Γ/Γi denotes a set of double coset representatives. By Corollary 5.1.6, it
follows that

RG(N) = RG(F ) +
∑

x∈N\Γ/Γ1

RG(N ∩ xΓ1x
−1) +

∑
y∈N\Γ/Γ2

RG(N ∩ yΓ2y
−1)

+ (1 + |N\Γ/Γ1|+ |N\Γ/Γ2|)− 1

= RG(F ) + |N\Γ/Γ1| RG(N ∩ Γ1) + |N\Γ/Γ2| RG(N ∩ Γ2)

+ |N\Γ/Γ1|+ |N\Γ/Γ2|.

Using Bass-Serre theory [7, 37], F is a free group of rank |N\Γ/A| − |N\Γ/Γ1| −
|N\Γ/Γ2| + 1 and therefore RG(F ) = |N\Γ/A| − |N\Γ/Γ1| − |N\Γ/Γ2|. We thus
have

RG(N) = |N\Γ/A|+ |N\Γ/Γ1| RG(N ∩ Γ1) + |N\Γ/Γ2| RG(N ∩ Γ2)

=
[Γ : N ]

[A : N ∩ A]
+

[Γ : N ]

[Γ1 : N ∩ Γ1]
RG(N ∩ Γ1) +

[Γ : N ]

[Γ2 : N ∩ Γ2]
RG(N ∩ Γ2)

= [Γ : N ]

(
1

[A : N ∩ A]
+
RG(N ∩ Γ1)

[Γ1 : N ∩ Γ1]
+
RG(N ∩ Γ2)

[Γ2 : N ∩ Γ2]

)
= [Γ : N ]

(
1

|A|
+RG(Γ1) +RG(Γ2)

)
,

since N ∩ A = 1 and N ∩ Γi is finite index in Γi for i = 1, 2. Therefore, since N is
finite index in Γ, we have RG(Γ) = RG(N)

[Γ:N ]
. The result follows.
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5.3 Invariant Measures on Homogenous Spaces

We will need the following theory of invariant measures on homogenous spaces when
we begin to discuss cost of an equivalence relation. Most of this material can be found
in [6] or [29].

Definition. Let Γ be a locally compact topological group and let B(Γ) be the Borel
σ-algebra of Γ generated by all compact subsets of Γ. A left (resp. right) Haar
measure on Γ is a nontrivial regular Borel measure µ on Γ, which is left (resp. right)
invariant. That is, µ(gB) = µ(B) for every B ∈ B(Γ) (resp. µ(Bg) = µ(B)).

Theorem 5.3.1. For every locally compact group Γ, there exists a left (and a right)
invariant Haar measure on Γ, which is unique up to multiplication by a positive
constant.

Not every left Haar measure is right Haar measure. By the uniqueness in The-
orem 5.3.1 we can define a function which determines the right invariance of a left
Haar measure.

Definition. Let µ be a left Haar measure on Γ. For every g ∈ Γ there exists a
∆Γ(g) ∈ R>0 such that µ(Bg) = µ(B)∆Γ(g). The function ∆Γ : Γ → R>0 is called
the modular function. Since any two left Haar measures differ by a constant, we see
that the modular function does not depend on the initial choice of µ.

A function is called unimodular if ∆Γ(g) = 1 for every g ∈ Γ.

Note. Γ is unimodular if and only if every left Haar measure is also a right Haar
measure.

Proposition 5.3.2. For any locally compact group Γ, the modular function ∆Γ : Γ→
R>0 is a continuous group homomorphism.

Proof. Using the defining equation µ(Bg) = µ(B)∆Γ(g) one can easily show that ∆Γ

is a group homomorphism. For continuity, see [6].

Proposition 5.3.3. Compact groups are unimodular.

Proof. By Proposition 5.3.2, ∆Γ(Γ) is a compact subgroup of R>0 and therefore
∆Γ(Γ) = {1}.

The following theorem about invariant measures on homogenous spaces will be
needed to prove how the cost of the relation changes when restricting to a subspace.
The reader is referred to [6] or [29] for more.

Theorem 5.3.4. Let Γ be a locally compact group and H a closed subgroup of Γ. Let
H\Γ be the space of right cosets of H. A nontrivial regular right invariant measure
on H\Γ exists if and only if ∆Γ|H = ∆H , where ∆ denotes the modular function on
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the respective group. If the latter condition holds, such a measure µH\Γ on H\Γ is
unique up to multiplication by a positive constant. For a suitable choice of such a
constant, the measure µH\Γ satisfies the following condition:∫

Γ

f(x) dµΓ(x) =

∫
H\Γ

∫
H

f(hx) dµH(h) dµH\Γ(Hx)

where µΓ and µH are Haar measures on Γ and H respectively.

Remark 5.3.5. The formula in Theorem 5.3.4 makes sense only when the function
ϕ : Γ → C given by ϕ(x) =

∫
H
f(hx) dµH(h) is constant on right cosets of H. The

fact that ϕ is constant on right cosets of H follows from the fact that µH is right
invariant.

5.4 Cost of Restricted Actions

To get a lower bound for the rank gradient of amalgamated free products and HNN
extensions over amenable subgroups we use the notion of cost. The notion of cost
was first introduced by Levitt [24] and for more information the reader is referred
to [2, 10,24]. The following explanation of cost closely follows [2].

Let Γ be a countable group that acts on a standard Borel probability space (X,µ)
by measure preserving Borel-automorphisms. Define the equivalence relation E on X
by

xEy if there exists γ ∈ Γ with y = γx.

The relation E is a Borel equivalence relation and every equivalence class is countable.
Since E is a subset of X ×X, we can consider E as a graph on X.

Definition. A Borel subgraph of E is a directed graph on X such that the edge set
is a Borel subset of E.

Definition. A subgraph S of E is said to span E if for any (x, y) ∈ E with x 6= y
there exists a path from x to y in S, where a path from x to y in S is defined as
a sequence x0, x1, . . . , xk ∈ X such that: x0 = x, xk = y; and (xi, xi+1) ∈ S or
(xi+1, xi) ∈ S (0 ≤ i ≤ k − 1).

Definition. S is called a graphing of E if it is a Borel subgraph of E that spans E.

The edge-measure of a Borel subgraph S of E is defined as

e(S) =

∫
x∈X

degS(x) dµ

where degS(x) is the number of edges in S with initial vertex x:

degS(x) = |{y ∈ X | (x, y) ∈ S}|.

Note that e(S) may be infinite.
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Definition. Let Γ be a countable group acting on a standard Borel probability space
X by measure preserving Borel-automorphism. Let E denote the equivalence relation
of this action. The cost of E is defined as

Cost(E) = Cost(Γ, X) = inf e(S)

where the infimum is taken over all graphings S of E.

Recall that Theorem 3.4.2 (Abert, Jaikin-Zapirain, and Nikolov) states that finitely
generated infinite amenable groups have rank gradient equal to zero with respect
to any normal chain with trivial intersection. A similar result holds for the cost of
amenable groups. An equivalence relation E on a space X is called hyperfinite if it can
be written (up to measure zero) as an ascending union of finite relations En: For every
x ∈ X and for every n ∈ N, each equivalence class En[x] is finite, En[x] ⊂ En+1[x],
and E[x] =

⋃
nEn[x]. Ornstein and Weiss [31] proved that an amenable group act-

ing essentially freely on a standard Borel probability space X by measure preserving
Borel-automorphism is a hyperfinite action. Moreover an infinite hyperfinite action
is orbit equivalent to a free action of Z. Since orbit equivalent actions have the same
cost, then an infinite hyperfinite action has cost equal to 1 [10]. We summarize this
information in a theorem as we will use it multiple times when computing rank gradi-
ent and p-gradient of amalgamated free products and HNN extensions over amenable
subgroups.

Theorem 5.4.1 (Gaboriau - Ornstein and Weiss). Let A be an amenable group acting
essentially freely on a Borel probability space X. Then Cost(A,X) = 1− 1

|A| .

Gaboriau [10] describes how one can decompose relations coming from amalga-
mated free products and HNN extensions. We start with amalgamated products and
then give the corresponding definitions and results for HNN extensions.

Amalgamated Products:
Let E be a relation on a Borel space X. Let E1 and E2 be sub-relations of E that

generate E, that is to say that E is the smallest relation containing E1 and E2. Let
E3 be a sub-relation of both E1 and E2.

Definition. A sequence (x1, x2, . . . , xn) of points in X is said to be reduced if

• (xi, xi+1) belongs to one of the factors E1 or E2,

• (xi−1, xi) and (xi, xi+1) belong to different factors,

• n > 2, then any (xi, xi+1) does not belong to E3,

• n = 2, then x1 6= x2.

Definition. We say that E is the amalgamated product of E1 and E2 over the sub-
relation E3, denoted E = E1 ∗E3 E2 if for each reduced sequence (x1, . . . , xn) (up to
a set of measure zero) we have x1 6= xn.
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Using the definition of a reduced element in an amalgamated free product of
groups, it follows immediately by definition that if E is a relation arising as a free
action of an amalgamated free product of groups Γ = Γ1 ∗Γ3 Γ2, then E = E|Γ1 ∗E|Γ3

E|Γ2 [10, Example 4.8].

Theorem 5.4.2 (Gaboriau, Theorem 4.15 [10]). Let E = E1 ∗E3 E2 be an amalga-
mated product relation on a space X and assume E3 is hyperfinite. Then Cost(E) =
Cost(E1) + Cost(E2)− Cost(E3).

HNN Extensions:
Let E be a relation on the space X with a sub-relation E1. Let f : A → B be a

measure preserving isomorphism between Borel sets of X. Let E3 be a sub-relation
of E1 that is trivial outside of B, that is, E3[x] = [x] for any x ∈ X − B. Consider
the relation, which we denote by f−1(E3), that is trivial outside of A and is defined
on A by (x, y) ∈ f−1(E3) if and only if (f(x), f(y)) ∈ E3. Assume that f−1(E3) is
a sub-relation of E1 and that E is generated by E1 and f , that is, E is the smallest
relation containing E1 and the graph of f .

Let εi = ±1. We denote by x2i
fεi−−→ x2i+1 the following:

x2i ∈ A and f(x2i) = x2i+1 if εi = 1

x2i ∈ B and f−1(x2i) = x2i+1 if εi = −1.

Definition. A sequence (x1, x2, . . . , x2n−1, x2n) of points of X that satisfies

x1
E1∼ x2

fε1

−−→ x3
E1∼ . . .

fεi−1

−−−→ x2i−1
E1∼ x2i

fεi−−→ x2i+1
E1∼ . . .

x2n−2
fεn−1

−−−→ x2n−1
E1∼ x2n

is said to be reduced if

• n ≥ 2, and there does not exist a sub-sequence

x2i−2
f−→ x2i−1

E1∼ x2i
f−1

−−→ x2i+1 with x2i−1
E1∼ x2i, or

x2i−2
f−1

−−→ x2i−1
E1∼ x2i

f−→ x2i+1 with x2i−1
E1∼ x2i.

• n = 1, and x1 6= x2.

Definition. We say that E is an HNN extension of E1 over the sub-relation E3 via
the map f , denoted E = E1∗f,E3 if for each reduced sequence (x1, x2, . . . , x2n) (up to
a set of measure zero) we have x1 6= xn.

Let Γ = Γ1∗Γ3 = 〈Γ1, t | tΓ3t
−1 = ϕ(Γ3)〉 be the HNN extension of Γ1 with associ-

ated subgroup Γ3. Using the definition of a reduced element in an HNN extension of
groups, it follows by definition that if E is a relation arising as a free action of Γ, then
E = E|Γ1∗f,E|Γ3

via the isomorphism f defined on X by the action of the element
t ∈ Γ [10, Example 4.21].
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Theorem 5.4.3 (Gaboriau, Corollary 4.25 [10]). Let E = E1∗f,E3 be an HNN exten-
sion of relations on a space (X,µ) via f : A→ B and assume E3 is hyperfinite. Then
Cost(E) = Cost(E1) + µ(A)− Cost(E3).

Abert and Nikolov proved the following connection between rank gradient and
cost. Their actual result [2, Theorem 1] is more general than the special case given
below, but the following is all that will be needed here.

Theorem 5.4.4 (Abert and Nikolov). Let Γ be a finitely generated residually finite
group and {Hn} be a lattice of normal subgroups of finite index such that

⋂
Hn = 1.

Then
RG(Γ, {Hn}) = Cost(E)− 1 = Cost(Γ, Γ̂(Hn))− 1,

where E is the equivalence relation coming from the action of Γ on Γ̂(Hn) (profinite
completion of Γ with respect to the lattice of subgroups {Hn}) by left multiplication

and Γ̂(Hn) has its natural Haar measure.

As the above theorem indicates, we will be interested in a group acting on its
profinite completion by left multiplication. This action is essentially free so we will
be able to use all of the results about cost given above. Since a profinite group is
a compact topological group then it is unimodular. That is, it has a unique Haar
measure that is both left and right invariant.

The following lemma concerning profinite completions is well known. The proof
follows from residual finiteness and [34, Corollary 1.1.8].

Lemma 5.4.5. Let Γ be a finitely generated group and let {Hn} be a lattice of normal

subgroups of finite index in Γ. Let L be a subgroup of Γ. Then L̂(L∩Hn) is isomorphic

to a closed subgroup of Γ̂(Hn).

The following lemma is used in order to determine the cost of a restricted action.

Lemma 5.4.6. Let Γ be a finitely generated residually finite group and {Hn} be
a lattice of normal subgroups of finite index in Γ such that

⋂
Hn = 1. Let L be

a subgroup of Γ acting on Γ̂(Hn) by left multiplication and denote the equivalence

relation by E
Γ̂(Hn)

L . Let S be a graphing of E
Γ̂(Hn)

L . Let {ḡ} denote a set of right coset

representatives for L̂(L∩Hn) in Γ̂(Hn). For any ḡ, let

Sḡ = {(x, y) ∈ L̂(L∩Hn) × L̂(L∩Hn) | (xḡ, yḡ) ∈ S}.

Then Sḡ is a graphing for E
L̂(L∩Hn)

L .

Proof. Note that (x, y) ∈ Sḡ if and only if (xḡ, yḡ) ∈ S. Also, by Lemma 5.4.5 it

follows that L̂(L∩Hn) is a closed subgroup of Γ̂(Hn).
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Spanning: We need to show that Sḡ spans E
L̂(L∩Hn)

L . Let (x, y) ∈ EL̂(L∩Hn)

L . Then
there exists α ∈ L such that αx = y which implies αxḡ = yḡ and therefore (xḡ, yḡ) ∈
E

Γ̂(Hn)

L . Since S is a graphing of E
Γ̂(Hn)

L , then S spans E
Γ̂(Hn)

L . Therefore, there exists
a path from xḡ to yḡ in S, call it

z0, z1, . . . zk.

By definition z0 = xḡ, zk = yḡ, and (zi, zi+1) or (zi+1, zi) ∈ S for 0 ≤ i ≤ k − 1. Let
z′i = ziḡ

−1. Then the path in S from xḡ to yḡ is now

z′0ḡ, z
′
1ḡ, . . . , z

′
kḡ.

It follows that z′0ḡ = xḡ, z′kḡ = yḡ, and (z′iḡ, z
′
i+1ḡ) or (z′i+1ḡ, z

′
iḡ) ∈ S for 0 ≤ i ≤ k−1.

Thus, (z′i, z
′
i+1) or (z′i+1, z

′
i) ∈ Sḡ for 0 ≤ i ≤ k − 1. Therefore there is a path in Sḡ

from x to y and thus Sḡ spans E
L̂(L∩Hn)

L .
Borel Subgraph: We need to show that the edge set of Sḡ is a Borel subset of

E
L̂(L∩Hn)

L . Let πḡ : L̂(L∩Hn)× L̂(L∩Hn) → Γ̂(Hn)× Γ̂(Hn) be given by πḡ(x, y) = (xḡ, yḡ).

Note that πḡ is injective since L̂(L∩Hn) ≤ Γ̂(Hn). Since these spaces are topological
groups, multiplication is a continuous map and so πḡ is continuous. By definition,

Sḡ = π−1
ḡ (S). By continuity of πḡ and the fact that S is a Borel subgraph of E

Γ̂(Hn)

L ,

it follows that Sḡ is a Borel subgraph of E
L̂(L∩Hn)

L .

Using the above theorem and lemma we can now prove the following result about
the cost of a restricted action.

Proposition 5.4.7. Let Γ be a finitely generated group and L be a subgroup. Let
{Hn} be a set of finite index normal subgroups of Γ such that

⋂
Hn = 1. Let Γ̂(Hn) be

the profinite completion of Γ with respect to {Hn} and define L̂(L∩Hn) similarly. Then

Cost(L, Γ̂(Hn)) ≥ Cost(L, L̂(L∩Hn)).

Proof. Let
degXR (x) = |{y ∈ X | (x, y) ∈ R}|

for any graphing R on EX
G , where G is a group acting on the space X. Let Γ̂ = Γ̂(Hn)

and let L̂ = L̂(L∩Hn). By Lemma 5.4.5, L̂ is a closed subgroup of Γ̂.

We know that if S is a graphing of EΓ̂
L, then Sḡ is a graphing of EL̂

L where we

recall that {ḡ} is a fixed set of right coset representatives of L̂ in Γ̂. For g ∈ Γ̂, there

is a map g → (`g, L̂ḡ) ∈ L̂× L̂\Γ̂ where `gḡ = g.

For (`, L̂ḡ) ∈ L̂× L̂\Γ̂ set

degΓ̂
S(`, L̂ḡ) = degΓ̂

S(`ḡ) = |{x ∈ Γ̂ | (`ḡ, x) ∈ S}|.
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Fix L̂ḡ ∈ L̂\Γ̂. Then

degΓ̂
S(`, L̂ḡ) = |{x ∈ Γ̂ | (`ḡ, x) ∈ S}| = |{z ∈ Γ̂ | (`ḡ, zḡ) ∈ S}|

(∗) = |{y ∈ L̂ | (`ḡ, yḡ) ∈ S}| = |{y ∈ L̂ | (`, y) ∈ Sḡ}|

= degL̂Sḡ
(`).

The equality (∗) is given by the following: Since L̂ ≤ Γ̂ it is clear that

{y ∈ L̂ | (`ḡ, yḡ) ∈ S} ⊆ {z ∈ Γ̂ | (`ḡ, zḡ) ∈ S}

and therefore we have the inequality≥. Let z ∈ Γ̂ with (`ḡ, zḡ) ∈ S. Then `ḡ, zḡ ∈ EΓ̂
L

and thus there is an α ∈ L such that zḡ = α`ḡ. Thus z = α` ∈ L̂ since L ⊂ L̂ by
assumption. The inequality ≤ follows. Thus, for all L̂ḡ ∈ L̂\Γ̂ we have degΓ̂

S(`, L̂ḡ) =

degL̂Sḡ
(`).

Let µΓ̂ and µL̂ be the unique normalized Haar measures on Γ̂ and L̂ respectively.

By Lemma 5.4.5 it follows that L̂ is a closed subgroup of Γ̂ and therefore,

Cost(L, Γ̂) = inf
S graphing

of EΓ̂
L

∫
Γ̂

degΓ̂
S(g) dµΓ̂(g)

by Theorem 5.3.4 = inf
S

∫
L̂\Γ̂

∫
L̂

degΓ̂
S(`, L̂ḡ) dµL̂(`) dµL̂\Γ̂(L̂ḡ)

by above = inf
S

∫
L̂\Γ̂

∫
L̂

degL̂Sḡ
(`) dµL̂(`) dµL̂\Γ̂(L̂ḡ)

(∗∗) ≥
∫
L̂\Γ̂

Cost(L, L̂) dµL̂\Γ̂(L̂ḡ)

= Cost(L, L̂) µL̂\Γ̂(L̂\Γ̂)

= Cost(L, L̂).

The inequality (∗∗) follows from the definition of cost:

Cost(L, L̂) = inf
T graphing

of EL̂
L

∫
L̂

degL̂T (`) dµL̂(`).

5.5 Rank Gradient of Amalgams

Let Γ = Γ1 ∗AΓ2 be residually finite and assume A is amenable. Let {Hn} be a lattice
of normal subgroups of finite index in Γ such that

⋂
Hn = 1. The action of Γ on the

boundary of the coset tree ∂T (Γ, {Hn}) is the action of Γ by left multiplication on its
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profinite completion with respect to the lattice {Hn} with normalized Haar measure.

For notational simplicity denote this completion and measure by Γ̂ = Γ̂(Hn) and µ
respectively. Since for i = 1, 2, {Γi∩Hn} is a lattice of finite index normal subgroups of

Γi with trivial intersection, then we have the completions Γ̂i = Γ̂i(Γi∩Hn) with measures

µi. Similarly define Â = Â(A∩Hn) and µA. Note that these completions are all profinite
groups and thus are compact Hausdorff topological groups. By Lemma 5.4.5 it follows
that Γ̂i ≤ Γ̂.

The following proposition of Abert, Jaikin-Zapirain, and Nikolov [1] established
an upper bound for the rank gradient of an amalgamated free product.

Proposition 5.5.1 (Abert, Jaikin-Zapirain, and Nikolov). Let Γ be a residually fi-
nite group generated by two finitely generated subgroups Γ1 and Γ2 such that their
intersection is infinite. Then

RG(Γ, {Hn}) ≤ RG(Γ1, {Γ1 ∩Hn}) +RG(Γ2, {Γ2 ∩Hn})

for any normal chain {Hn} in Γ.

Our result strengthens that of Abert, Jaikin-Zapirain, and Nikolov in the case of
the amalgamated subgroup being amenable.

Theorem 5.5.2. Let Γ = Γ1 ∗A Γ2 be finitely generated and residually finite with A
amenable. Let {Hn} be a lattice of normal subgroups of finite index in Γ such that⋂
Hn = 1. Then

RG(Γ, {Hn}) = RG(Γ1, {Γ1 ∩Hn}) +RG(Γ2, {Γ2 ∩Hn}) +
1

|A|
.

In particular, RG(Γ) ≥ RG(Γ1) +RG(Γ2) + 1
|A| .

Note. This theorem was independently proved by Kar and Nikolov [16, Proposition
2.2 ] in the case of amalgamation over a finite subgroup using Bass-Serre theory. We
will thus only show the case where A is infinite amenable.

Proof. Since A is infinite we only need to show that

RG(Γ, {Hn}) = RG(Γ1, {Γ1 ∩Hn}) +RG(Γ2, {Γ2 ∩Hn}).

To simplify notation let Γ̂ = Γ̂(Hn) and Γ̂i = Γ̂i(Γi∩Hn) for i = 1, 2 and let E = EΓ̂
Γ ,

E|Γi
= EΓ̂

Γi
, and E|A = EΓ̂

A. Recall that by Theorem 5.4.1 an essentially free action of
an infinite amenable group on a Borel probability space has cost equal to 1. Therefore,
Cost(E|A) = 1.

Theorem 5.4.4 states

RG(Γ, {Hn}) = Cost(Γ, Γ̂)− 1 = Cost(E)− 1
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and by definition of amalgamated product of relations, it follows that E = E|Γ1 ∗E|A
E|Γ2 . Since E|A is hyperfinite, then by Theorem 5.4.2

Cost(E|Γ1 ∗E|A E|Γ2)− 1 = Cost(E|Γ1) + Cost(E|Γ2)− Cost(E|A)− 1.

Thus,

RG(Γ, {Hn}) = Cost(E|Γ1 ∗E|A E|Γ2)− 1

= Cost(E|Γ1) + Cost(E|Γ2)− Cost(E|A)− 1

= (Cost(E|Γ1)− 1) + (Cost(E|Γ2)− 1)

=
(
Cost(Γ1, Γ̂)− 1

)
+
(
Cost(Γ2, Γ̂)− 1

)
by Prop 5.4.7 ≥

(
Cost(Γ1, Γ̂1)− 1

)
+
(
Cost(Γ2, Γ̂2)− 1

)
by Theorem 5.4.4 = RG(Γ1, {Γ1 ∩Hn}) +RG(Γ2, {Γ2 ∩Hn}).

Therefore, RG(Γ, {Hn}) ≥ RG(Γ1, {Γ1 ∩Hn}) +RG(Γ2, {Γ2 ∩Hn}).
The upper bound, RG(Γ, {Hn}) ≤ RG(Γ1, {Γ1 ∩ Hn}) + RG(Γ2, {Γ2 ∩ Hn}) is

given by Proposition 5.5.1.
The fact that RG(Γ) ≥ RG(Γ1) +RG(Γ2) + 1

|A| follows by using the lattice of all
subgroups of finite index in Γ and the definition of rank gradient.

Theorem 5.5.2 is not limited to amalgamated free products of two groups and
can be given for more general amalgamated free products. We denote by Γ = Γ1 ∗A2

Γ2 ∗A3 · · · ∗An Γn the left justified iterated amalgamated free product. For example
Γ1 ∗A2 Γ2 ∗A3 Γ3 = (Γ1 ∗A2 Γ2) ∗A3 Γ3.

Theorem 5.5.3. Let Γ = Γ1 ∗A2 Γ2 ∗A3 · · · ∗An Γn be finitely generated and residually
finite with each Ai amenable. Let {Hr} be a lattice of finite index normal subgroups
of Γ such that

⋂
Hr = 1. Then

RG(Γ, {Hr}) =
n∑
i=1

RG(Γi, {Γi ∩Hr}) +
n∑
i=2

1

|Ai|
.

In particular, RG(Γ) ≥
∑n

i=1RG(Γi) +
∑n

i=2
1
|Ai| .

Proof. Let Gm = Γ1 ∗A2 Γ2 ∗A3 · · · ∗An Γm for 2 ≤ m ≤ n. Then Gn = Γ and
Gm = Gm−1 ∗Am Γm for each m. It is clear that Gm−1 ≤ Gm and Am ≤ Gm for each
m. Thus by Theorem 5.5.2, it follows that RG(Gm, {Gm∩Hr}) = RG(Gm−1, {Gm−1∩
Hr}) +RG(Γm, {Γm ∩Hr}) + 1

|Am| . The result follows by induction on n.

A group Γ is said to have fixed price if every free action of Γ on a probability
space X has the same cost. It is an important open question about cost to determine
if all groups have fixed price. This is related to the question of whether rank gradient
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depends on the chain of subgroups if the chain is a normal descending chain with
trivial intersection.

Computing the absolute rank gradient of a free product with amalgamation over
an amenable subgroup is easy if we assume the groups have fixed price. This is
equivalent to assuming the rank gradient does not depend on the chain.

Proposition 5.5.4. Let Γ = Γ1 ∗A Γ2 with Γ1,Γ2, and A residually finite with fixed
price and A amenable. Then RG(Γ) = RG(Γ1) +RG(Γ2) + 1

|A| .

Proof. If Γ has fixed price and is residually finite, then RG(Γ, {Γn}) = cost(E)− 1 =
cost(Γ)− 1 using any chain of normal subgroups with trivial intersection. It follows
that RG(Γ, {Γn}) = RG(Γ).

Thus

RG(Γ) = RG(Γ, {Γn}) = cost(E)− 1

= cost(E|Γ1 ∗E|A E|Γ2)− 1

= cost(E|Γ1) + cost(E|Γ2)− cost(E|A)− 1

= cost(Γ1)− 1 + cost(Γ2)− 1 +
1

|A|

= RG(Γ1) +RG(Γ2) +
1

|A|
.

5.6 Rank Gradient of HNN Extensions

Let K be a finitely generated group with isomorphic subgroups A ' ϕ(A). We denote
the associated HNN extension of K by K∗A = 〈K, t | t−1At = ϕ(A)〉. Let {Hn} be

a lattice of finite index normal subgroups in Γ = K∗A with
⋂
Hn = 1. Let Γ̂(Hn)

be the profinite completion of Γ with respect to {Hn} and let µ denote the unique

normalized Haar measure on Γ̂(Hn). Define K̂(K∩Hn) and Â(A∩Hn) similarly.
The theorem about rank gradient of an HNN extension will be proved by first

establishing the lower bound and then the upper bound.

Proposition 5.6.1 (Lower Bound). Let Γ = 〈K, t | t−1At = B〉 be finitely generated
and residually finite with A amenable. Let {Hn} be a lattice of finite index normal
subgroups with

⋂
Hn = 1. Then

RG(Γ, {Hn}) ≥ RG(K, {K ∩Hn}) +
1

|A|
.
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Proof. For notational simplicity let Γ̂ = Γ̂(Hn), K̂ = K̂(K∩Hn), and Â = Â(A∩Hn). By

Lemma 5.4.5 it follows that K̂ ≤ Γ̂. Theorem 5.4.4 states

RG(Γ, {Hn}) = Cost(Γ, Γ̂)− 1 = Cost
(
EΓ̂

Γ

)
− 1.

Since Γ is an HNN extension, it follows by definition that

EΓ̂
Γ = EΓ̂

Γ |K∗f,EΓ̂
Γ |A

= EΓ̂
K∗EΓ̂

A

where f : Γ̂→ Γ̂ is multiplication by the element t ∈ Γ. Since µ(Γ̂) = 1 by assumption

and E|Γ̂A is hyperfinite, then by Theorem 5.4.3

Cost
(
EΓ̂
K∗EΓ̂

A

)
= Cost

(
EΓ̂
K

)
+ 1− Cost

(
EΓ̂
A

)
.

Recall that since A is amenable, then Cost
(
EΓ̂
A

)
= 1− 1

|A| by Theorem 5.4.1. There-

fore,

RG(Γ, {Hn}) = Cost
(
EΓ̂
K∗EΓ̂

A

)
− 1

= Cost
(
EΓ̂
K

)
− 1 +

1

|A|

by Lemma 5.4.7 ≥ Cost
(
EK̂
K

)
− 1 +

1

|A|

= RG(K, {K ∩Hn}) +
1

|A|
.

To prove an upper bound for the rank gradient of an HNN extension we need to be
able to bound from above the minimal number of generators of any normal subgroup
of finite index. The structure theorem for subgroups of an HNN group was proved
by Karrass, Pietrowski, and Solitar and independently by Cohen [8, 17, 19]. A more
detailed discussion of the structure of subgroups of amalgamated free products and
HNN extensions was given in Section 2.3. We provide a weaker version of their result
(Theorem 2.3.4) below as this is all that is needed right now.

Theorem 5.6.2 (Cohen - Karrass, Pietrowski, and Solitar). Let Γ = 〈K, t | t−1At =
B〉. Let H be a finite index subgroup of Γ and let Ω = {di} be a certain system of
double coset representatives for H\Γ/K (as constructed in [8, 17, 19]). Then H is
generated by |H\Γ/A| − |H\Γ/K| + 1 free generators and the groups diKd

−1
i ∩ H

where di ∈ Ω.

Lemma 5.6.3. Let H be a finite index normal subgroup of Γ = 〈K, t | t−1At = B〉.
Then

d(H) ≤ [Γ : H]

[A : A ∩H]
− [Γ : H]

[K : K ∩H]
+ 1 +

[Γ : H]

[K : K ∩H]
d(K ∩H).
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Proof. Since H is normal and finite index in Γ it follows that |H\Γ/K| = [Γ:H]
[K:K∩H]

and |H\Γ/A| = [Γ:H]
[A:A∩H]

. Since H is normal in Γ then for any g ∈ Γ it follows that

gKg−1∩H ' K∩g−1Hg ' K∩H. Theorem 5.6.2 states that H is therefore generated
by |H\Γ/A|− |H\Γ/K|+1 free generators and |H\Γ/K| copies of K ∩H. The result
now follows.

We now use the above result to get an upper bound for the rank gradient of an
HNN extension.

Proposition 5.6.4 (Upper Bound). Let Γ = K∗A = 〈K, t | t−1At = B〉 be finitely
generated and residually finite. Let {Hn} be a lattice of finite index normal subgroups
with

⋂
Hn = 1. Then

RG(Γ, {Hn}) ≤ RG(K, {K ∩Hn}) +
1

|A|
.

Proof. By Remark 3.1.4, it is enough to prove the result assuming that {Hn} is a
descending chain. By Lemma 5.6.3 it follows that for every H ∈ {Hn},

d(H)− 1

[Γ : H]
≤ d(K ∩H)− 1

[K : K ∩H]
+

1

[A : A ∩H]
.

Thus,

RG(Γ, {Hn}) = lim
n→∞

d(Hn)− 1

[Γ : Hn]
≤ lim

n→∞

d(K ∩Hn)− 1

[K : K ∩Hn]
+ lim

n→∞

1

[A : A ∩Hn]

= RG(K, {K ∩Hn}) +
1

|A|
.

Combining Proposition 5.6.1 and Proposition 5.6.4 yields the result:

Theorem 5.6.5. Let Γ = K∗A = 〈K, t | t−1At = B〉 be finitely generated and resid-
ually finite with A amenable. Let {Hn} be a lattice of finite index normal subgroups
with

⋂
Hn = 1. Then

RG(Γ, {Hn}) = RG(K, {K ∩Hn}) +
1

|A|
.

In particular, RG(Γ) ≥ RG(K) + 1
|A| .

Proof. The fact that RG(Γ) ≥ RG(K) + 1
|A| follows by using the lattice of all finite

index subgroups of Γ and the definition of rank gradient.
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Recall that since RG(A, {A∩Hn}) = −1
|A| for amenable groups, Theorem 5.5.2 and

Theorem 5.6.5 can be written as

RG(Γ1 ∗A Γ2, {Hn}) = RG(Γ1, {Γ1 ∩Hn}) +RG(Γ2, {Γ2 ∩Hn})−RG(A, {A ∩Hn})

and
RG(Γ, {Hn}) = RG(K, {K ∩Hn})−RG(A, {A ∩Hn})

respectively.
The following example shows that the equation for amalgamated free products

(Theorem 5.5.2) does not hold in general.

Example 5.6.6. Let Γ1 = Fr × Z/2Z,Γ2 = Fr × Z/3Z, and let A = Fr. Then A is
finite index in both Γ1 and Γ2 which implies

RG(Γ1) +RG(Γ2)−RG(A) =
RG(A)

[Γ1 : A]
+
RG(A)

[Γ2 : A]
−RG(A)

=
r − 1

2
+
r − 1

3
− (r − 1) = −1

6
(r − 1).

If we let r = 6k+ 1, then RG(Γ1) +RG(Γ2)−RG(A) = −k for any k ∈ N. However,
for any finitely generated group Γ, we know RG(Γ) ≥ −1. Therefore, RG(Γ) 6=
RG(Γ1) +RG(Γ2)−RG(A) in this case.

The condition that the amalgamated subgroup is amenable is sufficient but not
necessary for the equation for amalgamated free products to hold. Using Theo-
rem 5.6.5 we give an example illustrating this fact by writing the free product of
a cyclic group and an HNN extension as an amalgamated free product.

Example 5.6.7. Let G = 〈K, t | tAt−1 = ϕ(A)〉 be a finitely generated HNN exten-
sion that is residually finite with A amenable. Let 〈x〉 and 〈y〉 be two cyclic groups.
Let Γ = 〈x〉 ∗G. Then it is not hard to see that Γ is the amalgamated free product

Γ ' 〈K ∗ 〈x〉, K ∗ 〈y〉 | K ∗ xAx−1 = K ∗ yϕ(A)y−1〉.

To see this, simply use the isomorphism given by x → x, t → y−1x, and map K
identically to itself [18]. Let {Hn} be a lattice of normal subgroups of finite index in
Γ such that

⋂
Hn = 1. Since Γ can be thought of as a free product, [1, Proposition

8] shows that
RG(Γ, {Hn}) = RG(G, {G ∩Hn}) + 1.

Since G is a finitely generated and residually finite HNN extension with an amenable
associated subgroup, then by Theorem 5.6.5 it follows that

RG(G, {G ∩Hn}) = RG(K, {K ∩Hn})−RG(A, {A ∩Hn}).
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Thus,
RG(Γ, {Hn}) = RG(K, {K ∩Hn})−RG(A, {A ∩Hn}) + 1.

However, using [1, Proposition 8] again it follows that

RG(K,{K ∩Hn})−RG(A, {A ∩Hn}) + 1

= RG(K ∗ 〈x〉, {K ∗ 〈x〉 ∩Hn}) +RG(K ∗ 〈y〉, {K ∗ 〈y〉 ∩Hn})
−RG(K ∗ xAx−1, {K ∗ xAx−1 ∩Hn}).

Therefore,

RG(Γ, {Hn}) = RG(K ∗ 〈x〉, {K ∗ 〈x〉 ∩Hn}) +RG(K ∗ 〈y〉, {K ∗ 〈y〉 ∩Hn})
−RG(K ∗ xAx−1, {K ∗ xAx−1 ∩Hn}).

Thus, the equation from Theorem 5.5.2 holds for Γ when considered as an amalga-
mated free product.

Theorem 5.6.5 is not limited to a simple HNN extension and can be given for more
general HNN groups.

Theorem 5.6.8. Let Γ = 〈K, t1, . . . , tn | tiAit−1
i = ϕi(Ai)〉 be a finitely generated

and residually finite HNN group where each associated subgroup Ai is amenable. Let
{Hr} be a lattice of normal subgroups of finite index in Γ with

⋂
Hr = 1. Then

RG(Γ, {Hr}) = RG(K, {K ∩Hr}) +
n∑
i=1

1

|Ai|
.

In particular, RG(Γ) ≥ RG(K) +
∑n

i=1
1
|Ai| .

Proof. Let Γm = 〈K, t1, . . . , tm | tiAit−1
i = ϕi(Ai)〉 for 1 ≤ m ≤ n. Then Γn = Γ

and Γ1 = 〈K, t1 | t1A1t
−1
1 = ϕ1(A1)〉. It is clear that Γm = 〈Γm−1, tm | tmAmt−1

m =
ϕm(Am)〉 is an HNN extension of Γm−1 with associated subgroups Am and ϕm(Am).
Note that Γm−1 ≤ Γm and Am−1 ≤ K ≤ Γm−1 for each m. Thus by Theorem 5.6.5,

RG(Γm, {Γm ∩Hr}) = RG(Γm−1, {Γm−1 ∩Hr}) +
1

|Am|
.

The result follows by induction on n.
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Chapter 6

p-Gradient of Free Products,
Amalgams, and HNN Extensions

Throughout this chapter, p will always denote a prime number. We begin this chapter
with a section covering some basic results concerning dp(Γ) = d(Γ/[Γ,Γ]Γp) followed
by sections showing the calculation of p-gradient of amalgams and HNN extensions
over amenable groups.

6.1 Some Bounds For dp(Γ)

Before we give results about dp(Γ), we first give an important lemma.

Lemma 6.1.1. Let Γ be a residually finite p-torsion group. Then Γ is residually-p.

Proof. Since Γ is residually finite, then for every 1 6= g ∈ Γ there exists a finite index
normal subgroup H of Γ that does not contain g. Let 1 6= g denote the image of g in
Γ/H. Since Γ is p-torsion, then gp

k
= 1 for some k and thus the order of g in Γ/H is

a prime power. This implies that |Γ/H| = ptm for some m relatively prime to p and
t ≥ 1. If q is a prime factor of m, then by the Sylow subgroup theorem Γ/H contains
a nontrivial element y which is of order qa for some a. Let y ∈ Γ be any element
which has image y in Γ/H. Note that y is not in H. By assumption yp

b
= 1 in Γ for

some b and thus yp
b

= 1 in Γ/H. Since p and q are relatively prime this implies that
y = 1 and thus y is in H, which is a contradiction.

Therefore we have that every normal subgroup of finite index is actually a sub-
group of p-power index. Thus Γ must be residually-p since it is residually finite.

Since Γ/[Γ,Γ]Γp can be thought of as a vector space over Fp it follows that dp(Γ)
is the dimension of Γ/[Γ,Γ]Γp over Fp.

Lemma 6.1.2. Let Γ = G/N . Then dp(Γ) ≤ dp(G). In particular, if Γ = 〈Γ1,Γ2〉
then dp(Γ) ≤ dp(Γ1) + dp(Γ2).
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Proof. Since

Γ/[Γ,Γ]Γp '
G
N[

G
N
, G
N

] (
G
N

)p ' G
N

[G,G]GpN
N

' G/[G,G]GpN '
(

G

[G,G]Gp

)
/M

then as a vector space over Fp the dimension of Γ/[Γ,Γ]Γp is the dimension of
G/[G,G]Gp minus the dimension of M . Therefore dp(Γ) ≤ dp(G).

If Γ = 〈Γ1,Γ2〉, then Γ = (Γ1 ∗ Γ2)/N and the result follows from above and
Lemma 6.1.3.

The following lemma is well known and will be needed when computing the p-
gradient of free products.

Lemma 6.1.3. Let p be a prime number.

1. Let Γ be a finitely generated group and H a p-power index normal subgroup.
Then dp(H)− 1 ≤ (dp(Γ)− 1)[Γ : H].

2. Let A∗B be the free product of two finitely generated groups. Then dp(A∗B) =
dp(A) + dp(B).

Proof. 1. By the proof of Lemma 3.3.1 we can assume without loss of generality
that Γ is residually-p. Let Γp̂ be the pro-p completion of Γ. Let H be a normal
subgroup of p-power index in Γ. Since Γ is residually-p, then Hp̂ ' H ≤ Γp̂ is
an open normal subgroup with index [Γp̂ : Hp̂] = [Γ : H]. By the Schreier index
formula for finitely generated pro-p groups it follows that

d(Hp̂)− 1 ≤ [Γp̂ : Hp̂](d(Γp̂)− 1).

However, by the proof of Proposition 3.3.4 we know dp(Γ) = d(Γp̂) for any
finitely generated group Γ. Therefore,

dp(H)− 1 ≤ [Γ : H](dp(Γ)− 1).

2. Let Γ = A∗B. Then Γ/[Γ,Γ]Γp ' A/[A,A]Ap×B/[[B,B]Bp. Considering these
groups as finite dimensional vector spaces over Fp, it follows that d(Γ/[Γ,Γ]Γp) =
d(A/[A,A]Ap) + d(B/[B,B]Bp). Therefore, dp(Γ) = dp(A) + dp(B).

The following proposition will be needed when computing the p-gradient of amal-
gamated free products and HNN extensions.

Proposition 6.1.4. If Γ1∗AΓ2 = 〈Γ1,Γ2 | A = ϕ(A)〉 is an amalgamated free product,
then

dp(Γ1) + dp(Γ2)− dp(A) ≤ dp(Γ1 ∗A Γ2) ≤ dp(Γ1) + dp(Γ2).

If K∗A = 〈K, t | tAt−1 = ϕ(A)〉 is an HNN extension, then

dp(K)− dp(A) + 1 ≤ dp(K∗A) ≤ dp(K) + 1.
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Proof. In both cases assume that S is a generating set for A. Let π : A→ A/[A,A]Ap

be the natural homomorphism. Clearly π(S) generates A/[A,A]Ap as a group. Let
n = dp(A). Then there exist s1, . . . , sn ∈ S such that {π(s1), . . . , π(sn)} is a basis of
A/[A,A]Ap as a vector space over Fp. Let T = {s1, . . . , sn}. For every s ∈ S−T there

exist integers αi such that π(s) =
n∑
i=1

αiπ(si). For every s ∈ S−T , let s′ = s

n∏
i=1

s−αi
i .

Then π(s′) = 0 and therefore s′ ∈ [A,A]Ap. Let S ′ = T ∪ {s′ | s ∈ S − T}. Clearly
A = 〈S ′〉.

Thus for any generating set S of A, there exists a generating set S ′ of A such
that S and S ′ have the same cardinality and only dp(A) elements of S ′ do not lie in
[A,A]Ap.

Let Γ be either the amalgamated free product or HNN extension given above
and let S be a generating set of A such that only dp(A) elements of S do not lie in
[A,A]Ap. Then

Γ1 ∗A Γ2 ' (Γ1 ∗ Γ2)/〈〈sϕ(s)−1 | s ∈ S〉〉

and
K∗A ' (K ∗ 〈t〉)/〈〈tst−1ϕ(s)−1 | s ∈ S〉〉.

A presentation for Γ is given by taking Γ1 ∗ Γ2 or K ∗ 〈t〉 and adding in |S| relations.
Since dp(Γ) is the dimension of Γ/[Γ,Γ]Γp as a vector space over Fp, adding any
single relation to the group Γ adds at most one relation to the group Γ/[Γ,Γ]Γp and
therefore the dimension of the vector space drops by no more than 1. However, only
dp(A) elements of S do not lie in [A,A]Ap ≤ [Γ,Γ]Γp and therefore at most dp(A)
relations possibly get added to the group Γ/[Γ,Γ]Γp. Thus,

dp(Γ1 ∗A Γ2) ≥ dp(Γ1 ∗ Γ2)− dp(A) = dp(Γ1) + dp(Γ2)− dp(A)

and
dp(K∗A) ≥ dp(K ∗ 〈t〉)− dp(A) = dp(K)− dp(A) + 1.

The upper bounds follow from Lemma 6.1.2.

6.2 p-Gradient of Free Products

Using the results from the previous section, one can now compute the p-gradient for
free products.

Theorem 6.2.1. Let Γ1 and Γ2 be finitely generated groups and p a prime number.
Let Γ = Γ1 ∗ Γ2. Then RGp(Γ) = RGp(Γ1) +RGp(Γ2) + 1.

Proof. Using Lemma 6.1.3 the proof is identical to the proof of Theorem 5.1.4 replac-
ing “subgroups” with “normal subgroups” and “finite index” with “p-power index.”
However, for completeness we provide the full proof.
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Let Hi ≤ Γi be a p-power index normal subgroup. Let ϕ : Γ → Γ1 × Γ2 be the
natural map. Let C = kerϕ be the cartesian subgroup of Γ. First, H1×H2 ≤ Γ1×Γ2

is a p-power index normal subgroup. Let A = ϕ−1(H1 × H2). Since A is the full
pre-image of a p-power index normal subgroup, then A is a p-power index normal
subgroup in Γ. Moreover, C ∩ Γi = {1}. Let a ∈ A ∩ Γ1. Since a ∈ Γ1, it follows
that ϕ(a) = (a, 1) ∈ Γ1 × {1}, but since a ∈ A, then by assumption ϕ(a) ∈ H1 ×H2.
Therefore (a, 1) ∈ H1 × H2, which implies a ∈ H1. Clearly H1 ⊆ A ∩ Γ1 and thus
A ∩ Γ1 = H1. Similarly A ∩ Γ2 = H2. Therefore, for every p-power index normal
subgroup Hi ≤ Γi there exists a p-power index normal subgroup A ≤ Γ such that
A ∩ Γi = Hi.

Let H ≤ Γ be a p-power index normal subgroup and let Hi = H ∩ Γi, which are
p-power index normal subgroups. Let A = ϕ−1(H1 ×H2). Again, A ≤ Γ is s p-power
index normal subgroup and A ∩ Γi = Hi. Let AH = H ∩ A. Then AH is a p-power
index normal subgroup in Γ, AH is contained in H, and AH ∩ Γi = Hi. Moreover by
Lemma 6.1.3.1,

dp(AH)− 1

[Γ : AH ]
≤ dp(H)− 1

[Γ : H]
.

Note that in the case where we start with Hi ≤ Γi and get A′ = ϕ−1(H1 × H2),
using the procedure described gives A = AA′ . Moreover, every p-power index normal
subgroup in Γi can be obtained from such AH subgroups of Γ.

Therefore, we can compute the p-gradient of Γ by only looking at the AH sub-
groups. Using the Kurosh subgroup theorem for free products (Theorem 2.3.1), Bass-
Serre theory, and Lemma 6.1.3.2, if [Γ : AH ] = n and Hi = AH∩Γi with [Γi : Hi] = ki,
then

dp(AH) =
n

k1

dp(H1) +
n

k2

dp(H2) + n− n

k1

− n

k2

+ 1.

This implies

dp(AH)− 1 =
n

k1

(dp(H1)− 1) +
n

k2

(dp(H2)− 1) + n

and therefore
dp(AH)− 1

[Γ : AH ]
=
dp(H1)− 1

[Γ1 : H1]
+
dp(H2)− 1

[Γ2 : H2]
+ 1.

Thus,

RGp(Γ) = inf
AH

dp(AH)− 1

[Γ : AH ]
= inf

AH

dp(H1)− 1

[Γ1 : H1]
+ inf

AH

dp(H2)− 1

[Γ2 : H2]
+ 1

= inf
H1

dp(H1)− 1

[Γ1 : H1]
+ inf

H2

dp(H2)− 1

[Γ2 : H2]
+ 1

= RGp(Γ1) +RGp(Γ2) + 1.
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Corollary 6.2.2. Let Γ = Γ1 ∗Γ2 be the free product of finitely generated groups and
p a prime number. Let C be the Cartesian subgroup of Γ. Then

RGp(Γ) = inf
C≤HEΓ
[Γ:H]=pk

dp(H)− 1

[Γ : H]
.

Proof. This is proved analogously to Corollary 5.1.5.

Corollary 6.2.3. Let Γ = Γ1 ∗ · · · ∗ Γk be the free product of finitely many finitely
generated groups and p a prime number. Then RGp(Γ) = k − 1 +

∑k
i=1RGp(Γi).

6.3 p-Gradient of Amalgams

To compute the p-gradient for amalgamated free products we need the Kurosh sub-
group theorem for amalgamated free products. We repeat the remark following The-
orem 2.3.2 for convenience.

Remark 6.3.1. For our purposes we are only interested in applying Theorem 2.3.2 to
normal subgroups of finite index. In this case we can restate the theorem as follows:
Every normal subgroup H of finite index in the amalgamated free product Γ = Γ1∗AΓ2

is an HNN group with base subgroup L and n = |H\Γ/A|− |H\Γ/Γ1|− |H\Γ/Γ2|+1
free generators with each associated subgroup being isomorphic to A∩H. Specifically,

H = 〈L, t1, . . . , tn | ti(A ∩H)t−1
i = ϕi(A) ∩H〉

where the ϕi are appropriate embeddings from A to L.
Further, L is an amalgamated free product of |H\Γ/Γ1| groups that are isomorphic

to Γ1∩H and |H\Γ/Γ2| groups that are isomorphic to Γ2∩H with at most |H\Γ/Γ1|+
|H\Γ/Γ2| − 1 amalgamations each of which is isomorphic to A ∩H.

We are now ready to compute the p-gradient for amalgamated free products and
HNN extensions. We first make two trivial remarks about residually-p groups.

Lemma 6.3.2. Let Γ be a residually-p group and let K be a subgroup of Γ. Then K
is residually-p and if K is a finite subgroup, then |K| is a p-power. In particular, if
K is a finite and residually-p group, then RGp(K) = −1

|K| .

Proof. Let H be a normal subgroup of p-power index in Γ. Since

[Γ : H] = [Γ : HK][|HK : H] = [Γ : HK][K : K ∩H],

then [K : K ∩ H] divides [Γ : H] and thus [K : K ∩ H] is a p-power. By definition
since Γ is residually-p the intersection of all normal subgroups of p-power index in Γ
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is trivial, that is,
⋂
H = 1. By above K ∩ H is normal of p-power index in K and

clearly
⋂

(K ∩H) = 1. Thus K is residually-p.
Assume now that K is a finite subgroup of Γ. Then K is a finite residually-p

group. Since K is finite then there are only finitely many normal subgroups of p-
power index in K and thus Kp̂ is the inverse limit of finitely many p-groups and thus
is itself a p-group. Since K is residually-p then there is an embedding of K into its
pro-p completion Kp̂. Since K is dense in Kp̂, which is discrete since it is finite, it is
clear that |K| = |Kp̂|.

For any finite group RGp(A) = −1
|Ap̂|

. The result follows since |Ap̂| = |A|.

We are now ready to compute the p-gradient for amalgamated free products.

Theorem 6.3.3. Let Γ = Γ1 ∗A Γ2 be finitely generated and residually-p with A
amenable. Let {Hn} be a lattice of normal subgroups of p-power index in Γ such that⋂
Hn = 1. Then

RGp(Γ, {Hn}) = RGp(Γ1, {Γ1 ∩Hn}) +RGp(Γ2, {Γ2 ∩Hn}) +
1

|A|
.

In particular, RGp(Γ) ≥ RGp(Γ1) +RGp(Γ2) + 1
|A| .

Proof. By Remark 3.1.4, it is enough to prove the result assuming that {Hn} is a
descending chain. Let H be a normal subgroup of p-power index in Γ.

Upper Bound: By Remark 6.3.1, H is generated by |H\Γ/A|−|H\Γ/Γ1|−|H\Γ/Γ2|+
1 free generators, |H\Γ/Γ1| groups that are isomorphic to Γ1 ∩ H, and |H\Γ/Γ2|
groups that are isomorphic to Γ2 ∩H. Therefore by Lemma 6.1.2,

dp(H) ≤ [Γ : H]

[A : A ∩H]
− [Γ : H]

[Γ1 : Γ1 ∩H]
− [Γ : H]

[Γ2 : Γ2 ∩H]
+ 1

+
[Γ : H]

[Γ1 : Γ1 ∩H]
dp(Γ1 ∩H) +

[Γ : H]

[Γ2 : Γ2 ∩H]
dp(Γ2 ∩H),

which implies

dp(H)− 1

[Γ : H]
≤ dp(Γ1 ∩H)− 1

[Γ1 : Γ1 ∩H]
+
dp(Γ2 ∩H)− 1

[Γ2 : Γ2 ∩H]
+

1

[A : A ∩H]
.

The above inequality holds for all normal subgroups of p-power index in Γ and thus
holds for all subgroups Hn in the descending chain. Therefore, taking the limit of
both sides of the expression yields the upper bound in our result.

Lower Bound: First, note that |H\Γ/A| ≥ |H\Γ/Γ1|+ |H\Γ/Γ2|−1. Keeping the
notation from Remark 6.3.1, by the HNN part of Proposition 6.1.4, it follows that

dp(H) ≥ dp(L) + |H\Γ/A| − |H\Γ/Γ1| − |H\Γ/Γ2|+ 1

− (|H\Γ/A| − |H\Γ/Γ1| − |H\Γ/Γ2|+ 1)dp(A ∩H)

≥ dp(L) + |H\Γ/A| − |H\Γ/Γ1| − |H\Γ/Γ2|+ 1− |H\Γ/A|dp(A ∩H).
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By the amalgamated free product part of Proposition 6.1.4, we can find a lower bound
for dp(L):

dp(L) ≥ |H\Γ/Γ1|dp(Γ1 ∩H) + |H\Γ/Γ2|dp(Γ2 ∩H)− |H\Γ/A|dp(A ∩H).

Therefore,

dp(H) ≥
[Γ : H]

[Γ1 : Γ1 ∩H]
dp(Γ1 ∩H) +

[Γ : H]

[Γ2 : Γ2 ∩H]
dp(Γ2 ∩H)− [Γ : H]

[A : A ∩H]
dp(A ∩H)

+
[Γ : H]

[A : A ∩H]
− [Γ : H]

[Γ1 : Γ1 ∩H]
− [Γ : H]

[Γ2 : Γ2 ∩H]
+ 1− [Γ : H]

[A : A ∩H]
dp(A ∩H),

which implies

dp(H)− 1

[Γ : H]
≥ dp(Γ1 ∩H)− 1

[Γ1 : Γ1 ∩H]
+
dp(Γ2 ∩H)− 1

[Γ2 : Γ2 ∩H]
+

1

[A : A ∩H]
− 2

dp(A ∩H)

[A : A ∩H]
.

Replace H with Hn in the above inequality. If A is finite then there must exist an
N such that A ∩Hn = 1 for every n ≥ N since we assume that the chain is strictly
descending with trivial intersection. Therefore dp(A ∩ Hn) = 0 for every n ≥ N . If

A is infinite amenable then lim
n→∞

dp(A ∩Hn)

[A : A ∩Hn]
= RGp(A, {A ∩ Hn}) = 0. Therefore

taking the limit as n→∞ we get

RGp(Γ, {Hn}) ≥ RGp(Γ1, {Γ1 ∩Hn}) +RGp(Γ2, {Γ2 ∩Hn}) +
1

|A|
.

The fact that RGp(Γ) ≥ RGp(Γ1) + RGp(Γ2) + 1
|A| follows by using the lattice of

all normal subgroups of p-power index in Γ and the definition of p-gradient.

6.4 p-Gradient of HNN Extensions

To compute the p-gradient for HNN extensions we need the Kurosh subgroup theorem
for HNN extensions. We repeat the remark following Theorem 2.3.4 for convenience.

Remark 6.4.1. As in the case of amalgamated free products, for our purposes we
are only interested in applying Theorem 2.3.4 to normal subgroups of finite index. In
this case we can restate the theorem as follows: Every normal subgroup H of finite
index in the HNN extension Γ = 〈K, t | tAt−1 = ϕ(A)〉 is an HNN group with base
subgroup L and n = |H\Γ/A| − |H\Γ/K| + 1 free generators with each associated
subgroup being isomorphic to A ∩H. Specifically,

H = 〈L, t1, . . . , tn | ti(A ∩H)t−1
i = ϕi(A) ∩H〉
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where the ϕi are appropriate embeddings from A to L.
Further, L is an amalgamated free product of |H\Γ/K| groups that are isomorphic

to K ∩H with at most |H\Γ/K| − 1 amalgamations each of which is isomorphic to
A ∩H.

We now give the result for HNN extensions. The proof is analogous to that of
Theorem 6.3.3.

Theorem 6.4.2. Let Γ = K∗A = 〈K, t | tAt−1 = B〉 be finitely generated and
residually-p with A amenable. Let {Hn} be a lattice of normal subgroups of p-power
index in Γ such that

⋂
Hn = 1. Then

RGp(Γ, {Hn}) = RGp(K, {K ∩Hn}) +
1

|A|
.

In particular, RGp(Γ) ≥ RGp(K) + 1
|A| .

Proof. By Remark 3.1.4, it is enough to prove the result assuming that {Hn} is a
descending chain. Let H be any normal subgroup of p-power index in Γ.

Upper Bound: By Remark 6.4.1, H is generated by |H\Γ/A| − |H\Γ/K| + 1
free generators and |H\Γ/K| groups that are isomorphic to K ∩ H. Therefore by
Lemma 6.1.2,

dp(H) ≤ [Γ : H]

[A : A ∩H]
− [Γ : H]

[K : K ∩H]
+ 1 +

[Γ : H]

[K : K ∩H]
dp(K ∩H),

which implies
dp(H)− 1

[Γ : H]
≤ dp(K ∩H)− 1

[K : K ∩H]
+

1

[A : A ∩H]
.

The above inequality holds for all normal subgroups of p-power index in Γ and thus
holds for all subgroups Hn in the descending chain. Therefore, taking the limit of
both sides of the expression yields the upper bound of our result.

Lower Bound: First, note that |H\Γ/A| ≥ |H\Γ/K| − 1. Keeping the notation
from Remark 6.4.1, by the HNN result of Proposition 6.1.4 it follows that

dp(H) ≥ dp(L) + |H\Γ/A| − |H\Γ/K|+ 1− (|H\Γ/A| − |H\Γ/K|+ 1)dp(A ∩H)

≥ dp(L) + |H\Γ/A| − |H\Γ/K|+ 1− |H\Γ/A|dp(A ∩H).

By the amalgamated free product part of Proposition 6.1.4, we can find a lower bound
for dp(L):

dp(L) ≥ |H\Γ/K|dp(K ∩H)− |H\Γ/A|dp(A ∩H).

Therefore,

dp(H) ≥ [Γ : H]

[K : K ∩H]
dp(K ∩H)− [Γ : H]

[A : A ∩H]
dp(A ∩H)

+
[Γ : H]

[A : A ∩H]
− [Γ : H]

[K : K ∩H]
+ 1− [Γ : H]

[A : A ∩H]
dp(A ∩H),
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which implies

dp(H)− 1

[Γ : H]
≥ dp(K ∩H)− 1

[K : K ∩H]
+

1

[A : A ∩H]
− 2

dp(A ∩H)

[A : A ∩H]
.

The result now follows for the same reason as in Theorem 6.3.3.
The fact that RGp(Γ) ≥ RGp(K) + 1

|A| follows by using the lattice of all normal
subgroups of p-power index in Γ and the definition of p-gradient.
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