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Abstract—Text classification, the activity of     
labeling natural language texts with relevant      
categories from a predefined set, is a foundational        
task in many NLP (natural language processing)       
applications. These applications include sentiment     
analysis, web searching, and information filtering.      
By using text classifiers, companies can structure       
business information such as email, legal      
documents, web pages, chat conversations, and      
social media messages in a fast and cost-effective        
way. This allows companies to save time when        
analyzing text data, help inform business decisions,       
and automate business processes [1]. In this paper,        
we discuss the implementation of a model similar to         
Kim Yoon’s Convolutional Neural Networks for      
Sentence Classification. We then discuss the      
performance of hyperparameter tuning on the      
model for training optimization. Following, we      
propose additional ways to improve the      
performance of the model. 
 
Keywords— sentiment analysis, CNN, NLP, text      
classification, hyperparameter, optimization 

I.  NLP 

A. Definition 

Natural Language Processing, usually shortened as      
NLP, is a branch of artificial intelligence that deals         
with the interaction between computers and humans       
using the natural language. The ultimate objective of        
NLP is to read, decipher, understand, and make sense         
of the human languages in a manner that is valuable.          
NLP is the driving force behind language translation        

applications, grammar check in word processors, and       
personal assistant applications like Siri, Alexa, and OK        
Google [7].  

B. Difficulties 

The nature of the human language introduces inherent        
difficulties to NLP. The rules that dictate the passing         
of information using natural languages are not easy for         
computers to understand. Furthermore, natural     
languages are difficult to translate into implementable       
algorithms due to these high-level and abstract rules.        
In addition, natural languages incorporate simpler      
rules, such as adding the character “s” to denote         
plurality of items. These rules that vary in complexity         
are the ambiguity and imprecise characteristics of the        
natural languages that make NLP difficult for       
machines to implement. 

C. Techniques 

NLP converts unstructured language data to a form        
that computers can understand by applying algorithms       
to identify and extract the natural language rules.        
Given textual input, algorithms are used to extract        
meaning associated with every sentence. Syntactic      
analysis and semantic analysis are the main techniques        
used to complete Natural Language Processing tasks       
[7]. Syntax refers to the arrangement of words in a          
sentence such that they make grammatical sense. In        
NLP, syntactic analysis is used to assess how the         
natural language aligns with the grammatical rules. 

Computer algorithms are used to apply grammatical       
rules to a group of words and derive meaning from          
them. Some syntax techniques include lemmanization,      
word segmentation, and sentence breaking.     
Lemmanization involves reducing the various inflected      
forms of a word into a single form for easy analysis.           
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Word segmentation divides a large piece of continuous        
text into distinct units. Sentence breaking involves       
placing sentence boundaries on a large piece of text.  

Semantics, while not a fully resolved aspect in NLP,         
refers to the meaning that is conveyed by a text. It           
involves applying computer algorithms to understand      
the meaning and interpretation of words and how        
sentences are structured [7]. Some techniques in       
Semantic include named entity recognition (NER),      
word sense disambiguation, and natural language      
generation. NER is comparable to tagging; NER is the         
process of determining the parts of a text that can be           
identified and categorized into preset groups.      
Examples of such groups include names of people and         
names of places. Word sense disambiguation involves       
giving meaning to a word based on the context.         
Finally, natural language generation involves using      
databases to derive semantic intentions and convert       
them into human language. Evidently, NLP plays a        
crucial role in supporting human-machine interaction. 

II.  CNNs 

A. Definition 

Convolutional Neural Networks (CNNs) are typically 
coupled with Computer Vision. CNNs were 
responsible for major breakthroughs in Image 
Classification and are the core of most Computer 
Vision systems today, from Facebook’s automated 
photo tagging to self-driving cars [8]. A convolution is 
best thought of as a sliding window function applied to 
a matrix.  

 

Figure 1: Convolution with 3×3 Filter [9] 

Figure 1 shows a matrix on the left that can represent a 
black and white image. Each entry corresponds to one 
pixel, 0 for black and 1 for white. The sliding window 
is called a kernel, filter, or feature detector [8]. Here a 

3×3 filter is used to multiply its values element-wise 
with the original matrix, then sum them up. To get the 
full convolution, we do this for each element by 
sliding the filter over the whole matrix. Some intuitive 
examples include blurring an image which involves 
averaging each pixel with its neighbor and edge 
detection which takes the difference between each 
pixel and its neighbor.  

CNNs are essentially several layers of convolutions 
with nonlinear activation functions like ReLU 
(Rectified Linear Unit) or tanh applied to the results. 
Convolutions are used over the input layer to compute 
the output. This results in local connections, where 
each region of the input is connected to a neuron in the 
output. Each layer applies different filters, typically 
hundreds or thousands like the ones shown above, and 
combines their results. This process can be visualized 
in Figure 2 below:  

Figure 2: Image Classification in CNNs 

During the training phase, a CNN automatically learns 
the values of its filters based on the task you want to 
perform. For example, in Image Classification a CNN 
may learn to detect edges from raw pixels in the first 
layer, then use the edges to detect simple shapes in the 
second layer, and then use these shapes to deter 
higher-level features, such as facial shapes in higher 
layers. The last layer is then a classifier that uses these 
high-level features [8]. This process of building from 
pixels to edges, edges to shapes, and shapes to 
complex objects allows compositionality.  

III. CNN APPLICATIONS FOR NLP 

A. Definition 

The most natural fit for CNNs seem to be 
classification tasks, such as sentiment analysis, spam 
detection, or topic categorization [8]. Applying CNNs 
to NLP is quite simple. Instead of image pixels, the 
input to most NLP tasks are sentences or documents 
represented as a matrix. Each row of the matrix 
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corresponds to one token - typically a word, but it 
could be a character. Each row is a vector that 
represents a word. Typically, these vectors are word 
embeddings (low-dimensional representations) like 
word2vec or GloVe. For example, a 10 word sentence 
using a 100-dimensional embedding would have a 
10×100 matrix as the input. That is the “image”.  In 
NLP, these filters slide over full rows of the matrix 
(words). Thus, the “width” of the filters are usually the 
same as the width of the input matrix. The height, or 
region size, may vary, but sliding windows over 2-5 
words at a time is typical. Putting all the above 
together, a Convolutional Neural Network for NLP 
may look like this: 

 

Figure 3: Illustration of a Convolutional Neural 
Network (CNN) architecture for sentence 
classification [8] 

The implementation of a CNN for text classification 
based on Kim Yoon’s Convolutional Neural Networks 
for Sentence Classification follows this process. The 
model uses over 10,000 movie review sentences (half 
positive and half negative) from Rotten Tomatoes as 
its dataset. The dataset has a vocabulary of size around 
20k. Since there's no specific train/test split, 10% of 
the data is used as a dev set. The first layer embeds 
words into low-dimensional vectors. Word vectors, or 
words are projected from a 1-of-V encoding (V is the 
vocabulary size) onto a lower dimensional vector 

space via a hidden layer, are essentially feature 
extractors that encode semantic features of words in 
their dimensions. In these representations, 
semantically close words are also close in the lower 
dimensional vector space. The next layer performs 
convolutions over the embedded word vectors using 
multiple filter sizes. For example, sliding over 3, 4 or 5 
words at a time. Next, the result of the convolutional 
layer is max-pooled into a long feature vector, dropout 
regularization is added, and the result is classified 
using a softmax layer.  

To simplify the model from Kim’s, embeddings are 
learned from scratch rather than from pre-trained 
vectors like word2vec, L2 norm constraints (i.e., 
linearly scale the L2 norm of the vector to a 
pre-specified threshold when it exceeds the constraint) 
are not enforced on the weight vectors, and only one 
input data channel is used rather than two. Altogether, 
deep learning models learn these word vector 
representations through neural language models 
[4][5][6] and perform composition over the learned 
word vectors for classification [10].  

B. Performance 

However, intuition is more ambiguous in NLP 
applications. It made sense that neighboring pixels are 
likely to be semantically related, but this doesn’t 
always apply to words. Neighboring words may not 
guarantee their meanings are semantically tied. 
However, the main argument that remains is that 
CNNs perform fast. Convolutions are a central part of 
computer graphics and implemented on a hardware 
level on GPUs. Additionally, CNNs are also efficient 
in terms of representation. With a large vocabulary, 
computing anything past 3-grams can quickly become 
expensive. Convolutional Filters learn good 
representations automatically, without needing to 
represent the whole vocabulary. Originally invented 
for computer vision, CNN models have subsequently 
been shown to be effective for NLP and have achieved 
excellent results in semantic parsing [5], search query 
retrieval [11], and other traditional NLP tasks [10].  

IV. HYPERPARAMETER TUNING 

A. Definition 

Building a CNN architecture means that there are 
many hyperparameters to choose from. A 
hyperparameter is a parameter whose value is set 
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before the learning process begins, and defines the 
model architecture. Thus, the process of searching for 
the ideal model architecture is referred to as 
hyperparameter tuning. Some CNN hyperparameters 
include narrow vs. wide convolution, stride size, 
pooling layers, and channels.  

Narrow vs. wide convolution handles edge pixels in 
applying the filter. For pixels along the edges that 
don’t have complete neighboring pixels, a method 
called zero-padding, or assigning all elements that fall 
outside of the matrix as zero, allows application of the 
filter to every element in the input matrix, thus 
yielding the same-sized or larger output. Adding 
zero-padding is also called wide convolution, and not 
using zero-padding would be a narrow convolution.  

Stride size is denoted by how much to shift the filter at 
each step.  Typically, stride sizes are 1 which cause 
consecutive applications of the filter to overlap. A 
larger stride size leads to fewer applications of the 
filter and a smaller output size, thus allowing a model 
to build more like a tree, and more reflective of a 
Recursive Neural Network.  

Pooling layers subsample their input and are applied 
after convolution layers. They provide a fixed-size 
output matrix, which typically is required for 
classification. The most common way to do pooling it 
to apply a max operation to the result of each filter. 
For example, if you have 1,000 filters and you apply 
max pooling to each, you will get a 1000-dimensional 
output, regardless of the size of your filters, or the size 
of your input. This allows you to use variable size 
sentences and variable size filters, but always get the 
same output dimensions to feed into a classifier.  

B. Results 

A few results that stand out are that max-pooling 
always beats average pooling, the ideal filter sizes are 
important but task-dependent, and regularization 
doesn’t seem to make a big difference in the NLP tasks 
that were considered. A caveat of this research is that 
all the datasets had fairly consistent document lengths, 
so this insignificance may apply to data that looks 
considerably different. Unfortunately, another 
downside to CNN-based models is that they require 
practitioners to specify the exact model architecture to 
be used and to set the accompanying hyperparameters. 
It is currently unknown how sensitive model 

performance is to changes in these configurations for 
the task of sentence classification. 

Specifically, the CNN model based on Yoon’s 
contains several hyperparameters: embedding 
dimension, filter sizes, number of filters, dropout keep 
probability, and L2 regularization lambda.  To provide 
a point of reference for the CNN results, a report on 
the performance achieved using SVM for sentence 
classification is used as a baseline [12].  

 

Table 1: Accuracy (AUC for Irony) achieved by SVM 
with different feature sets. bowSVM: uni- and bi-gram 
features. wvSVM: a naive word2vec-based 
representation, i.e., the average (300-dimensional) 
word vector for each sentence. bowwvSVM: 
concatenates bow vectors with the average word2vec 
representations [12]. 

In this model by Zhang and Wallace, nine sentence 
classification datasets were used; seven of which were 
also used by Yoon. For consistency, the model used 
the same pre-processing steps as Yoon’s for the data. 
To understand the variance in performance attributable 
to various architecture decisions and hyperparameter 
settings, it is crucial to assess the variance due strictly 
to the parameter estimation procedure.  

Table 2: Baseline configuration. ‘feature maps’ refers 
to the number of feature maps for each filter region 
size [12]. 

Hyperparameters were tuned via nested cross-fold 
validation, optimizing for accuracy (AUC for Irony) 
[12]. For every configuration considered, the 
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experiment was repeated 10 times, where each 
replication constituted a run of 10-fold cross-validation 
(CV). 

B. Filter Region Size 

 

Table 4: Effect of single filter region size [12] 

Here, the accuracy percentages of using only one filter 
region and 100 feature maps (as in the baseline 
configuration) are shown. Region sizes of 1, 3, 5, 7, 
10, 15, 20, 25 and 30 are listed, and recorded are the 
means and ranges. 

 

Figure 4: Effect of region size (using only one) [12] 

From the results, it is clear that each dataset has its 
own optimal filter region size. The figure here 
suggests that a reasonable range for sentence 
classification might be from 1 to 10. However, for 
datasets with longer sentences, such as the CR dataset 
(maximum sentence length is 105, whereas the other 
datasets ranged from 36-56), the optimal region size 
may be larger. 

With respect to multiple filter sizes, it was found that 
combining several filters with region sizes close to the 
optimal single region size can improve performance, 

but adding region sizes far from the optimal range may 
decrease performance.  

 

Table 3: Effect of filter region size with several region 
sizes on the MR dataset [12] 

From Table 5, it can be shown that sets near the best 
single region size produce the best results. Here, sets 
(5,6,7), (7,8,9), and (6,7,8,9) performed the best - all 
hovering around 7 - i.e., the single best region size. 
Region size (3,4,5) performed significantly worse. 
Evidently, the best performing strategy is to simply 
use many feature maps all with region size equal to 7. 

C. Feature Maps 

When testing the effect of feature map hyperparameter 
tuning, the three default filter region sizes are held 
constant: 3, 4 and 5. The number of feature maps 
considered are: 10, 50, 100, 200, 400, 600, 1000, and 
2000. 

 

Figure 5: Effect of number of feature maps [12] 

From the graph, it can be concluded that the most 
optimal number of feature maps for each filter region 
depends heavily on the dataset. Increasing the number 
of feature maps to over 600 yielded marginal returns 
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(likely due to overfitting). Thus, it is proposed that the 
best number of feature maps ranges from 100-600. 
However, a downside of this increase is an increase in 
training time.  

V. CONCLUSIONS 

After performing an empirical evaluation on the effect 
of varying hyperparameters in CNN architectures, 
investigating their impact on performance and variance 
over multiple runs, several conclusions can be made. 
The main takeaway found was that hyperparameter 
tuning is highly dependent on the dataset. Datasets can 
range in a variable number of ways and the optimal 
hyperparameters for one may not be the most optimal 
for another.  

Of the hyperparameters discussed, filter region size 
and number of feature maps have the largest effects on 
performance. By altering the filter sizes to be near the 
optimal single filter size, the accuracy of a model can 
be improved. A reasonable range might be 1∼10, and 
can be found with line-search. However, for datasets 
with very long sentences like CR, it may be worth 
exploring larger filter region sizes. To tune the 
multiple filter sizes, consider combining multiple 
filters using regions sizes near this single best size. 
Additionally, the optimal number of feature maps 
ranges from 100 to 600. When used with a small 
dropout rate (0.0-0.5) and a large max norm constraint, 
the performance of the model has been shown to 
increase [12].  

VI.  FUTURE WORK 
There are several proven, researched NLP      

techniques that can be implemented to improve our        
CNN model. NLP techniques can be applied to        
pre-processing the dataset or during training time. 

1) Removing Stopwords: Stopwords are     
extremely common words that add little to no value to          
an individual’s needs in use cases like document        
matching [2]. Some examples of stopwords include: a,        
an, as, are, and at. Given their lack of value, we could            
eliminate them entirely from the English vocabulary       
when cleansing the dataset in our improved model. So         
consider an example tweet: The election was over.        
After removing the stopwords from the sentence, it        
should now read: election over. Notice now that the         

sentence is much shorter, and only contains unique        
words with some value to its use. 

2) Lemmatizing Words: Lemmatization is the      
process of converting a word to its base form. In          
particular, lemmatization considers the context of a       
word, and converts it to its based form appropriately.         
So consider the words: election, elections, and elected.        
By lemmatizing the words, the base form should yield:         
elect. By applying this technique to our model, we         
could group together words of similar base form and         
count them as more appearances of the same word. 

3) Using TF-IDF: TF-IDF (Term Frequency -       
Inverse Document Frequency) is a technique that can        
be used for stopword filtering in various fields such as          
classification. It is used to evaluate how important a         
word is to a document in a collection or corpus, which           
increases proportionally to the number of times a word         
appears in the document, but is offset by the frequency          
of the word in the collection or corpus [9]. Therefore,          
instead of just counting the frequency of each word,         
we could incorporate TF-IDF to also penalize words        
that appear frequently in most of the dataset. 

In summary, while CNNs have proven their       
effectiveness in Computer Vision, their applications in       
NLP are proving to be also worthwhile. In the future,          
if given more time and resources, we would be         
interested in exploring some of the mentioned NLP        
approaches above to improve our model to get better         
text classification predictions.  

 

 

 

 

 

 

 

 

 

 

 

 

7 



REFERENCES 
[1] “Text Classification,” MonkeyLearn, 27-Jan-2020. 
[Online]. Available: 
https://monkeylearn.com/text-classification/. 

[2] A. Krizhevsky, I. Sutskever, G. Hinton. 2012. 
ImageNet Classification with Deep Convolutional 
Neural Networks. In Proceedings of NIPS 2012.  

[3] A. Graves, A. Mohamed, G. Hinton. 2013. Speech 
recognition with deep recurrent neural networks. In 
Proceedings of ICASSP 2013.  

[4] Y. Bengio, R. Ducharme, P. Vincent. 2003. Neural 
Probabilistic Language Model. Journal 

[5] W. Yih, K. Toutanova, J. Platt, C. Meek. 2011. 
Learning Discriminative Projections for Text 
Similarity Measures. Proceedings of the Fifteenth 
Conference on Computational Natural Language 
Learning, 247–256. 

[6] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, J. 
Dean. 2013. Distributed Representations of Words and 
Phrases and their Compositionality. In Proceedings of 
NIPS 2013.  

[7] M. J. Garbade, “A Simple Introduction to Natural 
Language Processing,” Medium, 15-Oct-2018. 
[Online]. Available: 
https://becominghuman.ai/a-simple-introduction-to-nat
ural-language-processing-ea66a1747b32.  

[8] D. Britz, “Understanding Convolutional Neural 
Networks for NLP,” WildML, 10-Jan-2016. [Online]. 
Available: 
http://www.wildml.com/2015/11/understanding-convo
lutional-neural-networks-for-nlp/.  

[9] “Feature extraction using convolution,” Feature 
extraction using convolution - Ufldl. [Online]. 
Available: 
http://deeplearning.stanford.edu/wiki/index.php/Featur
e_extraction_using_convolution.  

[10] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. 
Kavukcuglu, P. Kuksa. 2011. Natural Language 
Processing (Almost) from Scratch. Journal of Machine 
Learning Research 12:2493–2537.  

[11] Y. Shen, X. He, J. Gao, L. Deng, G. Mesnil. 
2014. Learning Semantic Representations Using 
Convolutional Neural Networks for Web Search. In 
Proceedings of WWW 2014. 

[12] Zhang, Y., & Wallace, B. 2015. A sensitivity 
analysis of (and practitioners' guide to) convolutional 
neural networks for sentence classification. arXiv 
preprint arXiv:1510.03820. 

 

8 


