
Hyperparameter Tuning on Text Classification using CNNs (Convolutional Neural
Networks)

A Technical Report submitted to the Department of Computer Science

Presented to the Faculty of the School of Engineering and Applied Science

University of Virginia • Charlottesville, Virginia

In Partial Fulfillment of the Requirements for the Degree

Bachelor of Science, School of Engineering

Sarah Lei

Spring, 2020

On my honor as a University Student, I have neither given nor received unauthorized

aid on this assignment as defined by the Honor Guidelines for Thesis-Related
Assignments

Hyperparameter Tuning on Text Classification
using CNNs (Convolutional Neural Networks)

 Sarah Lei
 CS 4980
 University of Virginia
 ssl4jf@virginia.edu

Abstract—Text classification, the activity of
labeling natural language texts with relevant
categories from a predefined set, is a foundational
task in many NLP (natural language processing)
applications. These applications include sentiment
analysis, web searching, and information filtering.
By using text classifiers, companies can structure
business information such as email, legal
documents, web pages, chat conversations, and
social media messages in a fast and cost-effective
way. This allows companies to save time when
analyzing text data, help inform business decisions,
and automate business processes [1]. In this paper,
we discuss the implementation of a model similar to
Kim Yoon’s Convolutional Neural Networks for
Sentence Classification. We then discuss the
performance of hyperparameter tuning on the
model for training optimization. Following, we
propose additional ways to improve the
performance of the model.

Keywords— sentiment analysis, CNN, NLP, text
classification, hyperparameter, optimization

I. NLP

A. Definition

Natural Language Processing, usually shortened as
NLP, is a branch of artificial intelligence that deals
with the interaction between computers and humans
using the natural language. The ultimate objective of
NLP is to read, decipher, understand, and make sense
of the human languages in a manner that is valuable.
NLP is the driving force behind language translation

applications, grammar check in word processors, and
personal assistant applications like Siri, Alexa, and OK
Google [7].

B. Difficulties

The nature of the human language introduces inherent
difficulties to NLP. The rules that dictate the passing
of information using natural languages are not easy for
computers to understand. Furthermore, natural
languages are difficult to translate into implementable
algorithms due to these high-level and abstract rules.
In addition, natural languages incorporate simpler
rules, such as adding the character “s” to denote
plurality of items. These rules that vary in complexity
are the ambiguity and imprecise characteristics of the
natural languages that make NLP difficult for
machines to implement.

C. Techniques

NLP converts unstructured language data to a form
that computers can understand by applying algorithms
to identify and extract the natural language rules.
Given textual input, algorithms are used to extract
meaning associated with every sentence. Syntactic
analysis and semantic analysis are the main techniques
used to complete Natural Language Processing tasks
[7]. Syntax refers to the arrangement of words in a
sentence such that they make grammatical sense. In
NLP, syntactic analysis is used to assess how the
natural language aligns with the grammatical rules.

Computer algorithms are used to apply grammatical
rules to a group of words and derive meaning from
them. Some syntax techniques include lemmanization,
word segmentation, and sentence breaking.
Lemmanization involves reducing the various inflected
forms of a word into a single form for easy analysis.

2

Word segmentation divides a large piece of continuous
text into distinct units. Sentence breaking involves
placing sentence boundaries on a large piece of text.

Semantics, while not a fully resolved aspect in NLP,
refers to the meaning that is conveyed by a text. It
involves applying computer algorithms to understand
the meaning and interpretation of words and how
sentences are structured [7]. Some techniques in
Semantic include named entity recognition (NER),
word sense disambiguation, and natural language
generation. NER is comparable to tagging; NER is the
process of determining the parts of a text that can be
identified and categorized into preset groups.
Examples of such groups include names of people and
names of places. Word sense disambiguation involves
giving meaning to a word based on the context.
Finally, natural language generation involves using
databases to derive semantic intentions and convert
them into human language. Evidently, NLP plays a
crucial role in supporting human-machine interaction.

II. CNNs

A. Definition

Convolutional Neural Networks (CNNs) are typically
coupled with Computer Vision. CNNs were
responsible for major breakthroughs in Image
Classification and are the core of most Computer
Vision systems today, from Facebook’s automated
photo tagging to self-driving cars [8]. A convolution is
best thought of as a sliding window function applied to
a matrix.

Figure 1: Convolution with 3×3 Filter [9]

Figure 1 shows a matrix on the left that can represent a
black and white image. Each entry corresponds to one
pixel, 0 for black and 1 for white. The sliding window
is called a kernel, filter, or feature detector [8]. Here a

3×3 filter is used to multiply its values element-wise
with the original matrix, then sum them up. To get the
full convolution, we do this for each element by
sliding the filter over the whole matrix. Some intuitive
examples include blurring an image which involves
averaging each pixel with its neighbor and edge
detection which takes the difference between each
pixel and its neighbor.

CNNs are essentially several layers of convolutions
with nonlinear activation functions like ReLU
(Rectified Linear Unit) or tanh applied to the results.
Convolutions are used over the input layer to compute
the output. This results in local connections, where
each region of the input is connected to a neuron in the
output. Each layer applies different filters, typically
hundreds or thousands like the ones shown above, and
combines their results. This process can be visualized
in Figure 2 below:

Figure 2: Image Classification in CNNs

During the training phase, a CNN automatically learns
the values of its filters based on the task you want to
perform. For example, in Image Classification a CNN
may learn to detect edges from raw pixels in the first
layer, then use the edges to detect simple shapes in the
second layer, and then use these shapes to deter
higher-level features, such as facial shapes in higher
layers. The last layer is then a classifier that uses these
high-level features [8]. This process of building from
pixels to edges, edges to shapes, and shapes to
complex objects allows compositionality.

III. CNN APPLICATIONS FOR NLP

A. Definition

The most natural fit for CNNs seem to be
classification tasks, such as sentiment analysis, spam
detection, or topic categorization [8]. Applying CNNs
to NLP is quite simple. Instead of image pixels, the
input to most NLP tasks are sentences or documents
represented as a matrix. Each row of the matrix

3

corresponds to one token - typically a word, but it
could be a character. Each row is a vector that
represents a word. Typically, these vectors are word
embeddings (low-dimensional representations) like
word2vec or GloVe. For example, a 10 word sentence
using a 100-dimensional embedding would have a
10×100 matrix as the input. That is the “image”. In
NLP, these filters slide over full rows of the matrix
(words). Thus, the “width” of the filters are usually the
same as the width of the input matrix. The height, or
region size, may vary, but sliding windows over 2-5
words at a time is typical. Putting all the above
together, a Convolutional Neural Network for NLP
may look like this:

Figure 3: Illustration of a Convolutional Neural
Network (CNN) architecture for sentence
classification [8]

The implementation of a CNN for text classification
based on Kim Yoon’s Convolutional Neural Networks
for Sentence Classification follows this process. The
model uses over 10,000 movie review sentences (half
positive and half negative) from Rotten Tomatoes as
its dataset. The dataset has a vocabulary of size around
20k. Since there's no specific train/test split, 10% of
the data is used as a dev set. The first layer embeds
words into low-dimensional vectors. Word vectors, or
words are projected from a 1-of-V encoding (V is the
vocabulary size) onto a lower dimensional vector

space via a hidden layer, are essentially feature
extractors that encode semantic features of words in
their dimensions. In these representations,
semantically close words are also close in the lower
dimensional vector space. The next layer performs
convolutions over the embedded word vectors using
multiple filter sizes. For example, sliding over 3, 4 or 5
words at a time. Next, the result of the convolutional
layer is max-pooled into a long feature vector, dropout
regularization is added, and the result is classified
using a softmax layer.

To simplify the model from Kim’s, embeddings are
learned from scratch rather than from pre-trained
vectors like word2vec, L2 norm constraints (i.e.,
linearly scale the L2 norm of the vector to a
pre-specified threshold when it exceeds the constraint)
are not enforced on the weight vectors, and only one
input data channel is used rather than two. Altogether,
deep learning models learn these word vector
representations through neural language models
[4][5][6] and perform composition over the learned
word vectors for classification [10].

B. Performance

However, intuition is more ambiguous in NLP
applications. It made sense that neighboring pixels are
likely to be semantically related, but this doesn’t
always apply to words. Neighboring words may not
guarantee their meanings are semantically tied.
However, the main argument that remains is that
CNNs perform fast. Convolutions are a central part of
computer graphics and implemented on a hardware
level on GPUs. Additionally, CNNs are also efficient
in terms of representation. With a large vocabulary,
computing anything past 3-grams can quickly become
expensive. Convolutional Filters learn good
representations automatically, without needing to
represent the whole vocabulary. Originally invented
for computer vision, CNN models have subsequently
been shown to be effective for NLP and have achieved
excellent results in semantic parsing [5], search query
retrieval [11], and other traditional NLP tasks [10].

IV. HYPERPARAMETER TUNING

A. Definition

Building a CNN architecture means that there are
many hyperparameters to choose from. A
hyperparameter is a parameter whose value is set

4

before the learning process begins, and defines the
model architecture. Thus, the process of searching for
the ideal model architecture is referred to as
hyperparameter tuning. Some CNN hyperparameters
include narrow vs. wide convolution, stride size,
pooling layers, and channels.

Narrow vs. wide convolution handles edge pixels in
applying the filter. For pixels along the edges that
don’t have complete neighboring pixels, a method
called zero-padding, or assigning all elements that fall
outside of the matrix as zero, allows application of the
filter to every element in the input matrix, thus
yielding the same-sized or larger output. Adding
zero-padding is also called wide convolution, and not
using zero-padding would be a narrow convolution.

Stride size is denoted by how much to shift the filter at
each step. Typically, stride sizes are 1 which cause
consecutive applications of the filter to overlap. A
larger stride size leads to fewer applications of the
filter and a smaller output size, thus allowing a model
to build more like a tree, and more reflective of a
Recursive Neural Network.

Pooling layers subsample their input and are applied
after convolution layers. They provide a fixed-size
output matrix, which typically is required for
classification. The most common way to do pooling it
to apply a max operation to the result of each filter.
For example, if you have 1,000 filters and you apply
max pooling to each, you will get a 1000-dimensional
output, regardless of the size of your filters, or the size
of your input. This allows you to use variable size
sentences and variable size filters, but always get the
same output dimensions to feed into a classifier.

B. Results

A few results that stand out are that max-pooling
always beats average pooling, the ideal filter sizes are
important but task-dependent, and regularization
doesn’t seem to make a big difference in the NLP tasks
that were considered. A caveat of this research is that
all the datasets had fairly consistent document lengths,
so this insignificance may apply to data that looks
considerably different. Unfortunately, another
downside to CNN-based models is that they require
practitioners to specify the exact model architecture to
be used and to set the accompanying hyperparameters.
It is currently unknown how sensitive model

performance is to changes in these configurations for
the task of sentence classification.

Specifically, the CNN model based on Yoon’s
contains several hyperparameters: embedding
dimension, filter sizes, number of filters, dropout keep
probability, and L2 regularization lambda. To provide
a point of reference for the CNN results, a report on
the performance achieved using SVM for sentence
classification is used as a baseline [12].

Table 1: Accuracy (AUC for Irony) achieved by SVM
with different feature sets. bowSVM: uni- and bi-gram
features. wvSVM: a naive word2vec-based
representation, i.e., the average (300-dimensional)
word vector for each sentence. bowwvSVM:
concatenates bow vectors with the average word2vec
representations [12].

In this model by Zhang and Wallace, nine sentence
classification datasets were used; seven of which were
also used by Yoon. For consistency, the model used
the same pre-processing steps as Yoon’s for the data.
To understand the variance in performance attributable
to various architecture decisions and hyperparameter
settings, it is crucial to assess the variance due strictly
to the parameter estimation procedure.

Table 2: Baseline configuration. ‘feature maps’ refers
to the number of feature maps for each filter region
size [12].

Hyperparameters were tuned via nested cross-fold
validation, optimizing for accuracy (AUC for Irony)
[12]. For every configuration considered, the

5

experiment was repeated 10 times, where each
replication constituted a run of 10-fold cross-validation
(CV).

B. Filter Region Size

Table 4: Effect of single filter region size [12]

Here, the accuracy percentages of using only one filter
region and 100 feature maps (as in the baseline
configuration) are shown. Region sizes of 1, 3, 5, 7,
10, 15, 20, 25 and 30 are listed, and recorded are the
means and ranges.

Figure 4: Effect of region size (using only one) [12]

From the results, it is clear that each dataset has its
own optimal filter region size. The figure here
suggests that a reasonable range for sentence
classification might be from 1 to 10. However, for
datasets with longer sentences, such as the CR dataset
(maximum sentence length is 105, whereas the other
datasets ranged from 36-56), the optimal region size
may be larger.

With respect to multiple filter sizes, it was found that
combining several filters with region sizes close to the
optimal single region size can improve performance,

but adding region sizes far from the optimal range may
decrease performance.

Table 3: Effect of filter region size with several region
sizes on the MR dataset [12]

From Table 5, it can be shown that sets near the best
single region size produce the best results. Here, sets
(5,6,7), (7,8,9), and (6,7,8,9) performed the best - all
hovering around 7 - i.e., the single best region size.
Region size (3,4,5) performed significantly worse.
Evidently, the best performing strategy is to simply
use many feature maps all with region size equal to 7.

C. Feature Maps

When testing the effect of feature map hyperparameter
tuning, the three default filter region sizes are held
constant: 3, 4 and 5. The number of feature maps
considered are: 10, 50, 100, 200, 400, 600, 1000, and
2000.

Figure 5: Effect of number of feature maps [12]

From the graph, it can be concluded that the most
optimal number of feature maps for each filter region
depends heavily on the dataset. Increasing the number
of feature maps to over 600 yielded marginal returns

6

(likely due to overfitting). Thus, it is proposed that the
best number of feature maps ranges from 100-600.
However, a downside of this increase is an increase in
training time.

V. CONCLUSIONS

After performing an empirical evaluation on the effect
of varying hyperparameters in CNN architectures,
investigating their impact on performance and variance
over multiple runs, several conclusions can be made.
The main takeaway found was that hyperparameter
tuning is highly dependent on the dataset. Datasets can
range in a variable number of ways and the optimal
hyperparameters for one may not be the most optimal
for another.

Of the hyperparameters discussed, filter region size
and number of feature maps have the largest effects on
performance. By altering the filter sizes to be near the
optimal single filter size, the accuracy of a model can
be improved. A reasonable range might be 1∼10, and
can be found with line-search. However, for datasets
with very long sentences like CR, it may be worth
exploring larger filter region sizes. To tune the
multiple filter sizes, consider combining multiple
filters using regions sizes near this single best size.
Additionally, the optimal number of feature maps
ranges from 100 to 600. When used with a small
dropout rate (0.0-0.5) and a large max norm constraint,
the performance of the model has been shown to
increase [12].

VI. FUTURE WORK
There are several proven, researched NLP

techniques that can be implemented to improve our
CNN model. NLP techniques can be applied to
pre-processing the dataset or during training time.

1) Removing Stopwords: Stopwords are
extremely common words that add little to no value to
an individual’s needs in use cases like document
matching [2]. Some examples of stopwords include: a,
an, as, are, and at. Given their lack of value, we could
eliminate them entirely from the English vocabulary
when cleansing the dataset in our improved model. So
consider an example tweet: The election was over.
After removing the stopwords from the sentence, it
should now read: election over. Notice now that the

sentence is much shorter, and only contains unique
words with some value to its use.

2) Lemmatizing Words: Lemmatization is the
process of converting a word to its base form. In
particular, lemmatization considers the context of a
word, and converts it to its based form appropriately.
So consider the words: election, elections, and elected.
By lemmatizing the words, the base form should yield:
elect. By applying this technique to our model, we
could group together words of similar base form and
count them as more appearances of the same word.

3) Using TF-IDF: TF-IDF (Term Frequency -
Inverse Document Frequency) is a technique that can
be used for stopword filtering in various fields such as
classification. It is used to evaluate how important a
word is to a document in a collection or corpus, which
increases proportionally to the number of times a word
appears in the document, but is offset by the frequency
of the word in the collection or corpus [9]. Therefore,
instead of just counting the frequency of each word,
we could incorporate TF-IDF to also penalize words
that appear frequently in most of the dataset.

In summary, while CNNs have proven their
effectiveness in Computer Vision, their applications in
NLP are proving to be also worthwhile. In the future,
if given more time and resources, we would be
interested in exploring some of the mentioned NLP
approaches above to improve our model to get better
text classification predictions.

7

REFERENCES
[1] “Text Classification,” MonkeyLearn, 27-Jan-2020.
[Online]. Available:
https://monkeylearn.com/text-classification/.

[2] A. Krizhevsky, I. Sutskever, G. Hinton. 2012.
ImageNet Classification with Deep Convolutional
Neural Networks. In Proceedings of NIPS 2012.

[3] A. Graves, A. Mohamed, G. Hinton. 2013. Speech
recognition with deep recurrent neural networks. In
Proceedings of ICASSP 2013.

[4] Y. Bengio, R. Ducharme, P. Vincent. 2003. Neural
Probabilistic Language Model. Journal

[5] W. Yih, K. Toutanova, J. Platt, C. Meek. 2011.
Learning Discriminative Projections for Text
Similarity Measures. Proceedings of the Fifteenth
Conference on Computational Natural Language
Learning, 247–256.

[6] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, J.
Dean. 2013. Distributed Representations of Words and
Phrases and their Compositionality. In Proceedings of
NIPS 2013.

[7] M. J. Garbade, “A Simple Introduction to Natural
Language Processing,” Medium, 15-Oct-2018.
[Online]. Available:
https://becominghuman.ai/a-simple-introduction-to-nat
ural-language-processing-ea66a1747b32.

[8] D. Britz, “Understanding Convolutional Neural
Networks for NLP,” WildML, 10-Jan-2016. [Online].
Available:
http://www.wildml.com/2015/11/understanding-convo
lutional-neural-networks-for-nlp/.

[9] “Feature extraction using convolution,” Feature
extraction using convolution - Ufldl. [Online].
Available:
http://deeplearning.stanford.edu/wiki/index.php/Featur
e_extraction_using_convolution.

[10] R. Collobert, J. Weston, L. Bottou, M. Karlen, K.
Kavukcuglu, P. Kuksa. 2011. Natural Language
Processing (Almost) from Scratch. Journal of Machine
Learning Research 12:2493–2537.

[11] Y. Shen, X. He, J. Gao, L. Deng, G. Mesnil.
2014. Learning Semantic Representations Using
Convolutional Neural Networks for Web Search. In
Proceedings of WWW 2014.

[12] Zhang, Y., & Wallace, B. 2015. A sensitivity
analysis of (and practitioners' guide to) convolutional
neural networks for sentence classification. arXiv
preprint arXiv:1510.03820.

8

